WO2013018502A1 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
WO2013018502A1
WO2013018502A1 PCT/JP2012/067308 JP2012067308W WO2013018502A1 WO 2013018502 A1 WO2013018502 A1 WO 2013018502A1 JP 2012067308 W JP2012067308 W JP 2012067308W WO 2013018502 A1 WO2013018502 A1 WO 2013018502A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
cell
flow path
fuel cell
layer
Prior art date
Application number
PCT/JP2012/067308
Other languages
French (fr)
Japanese (ja)
Inventor
武範 大西
智寿 吉江
宏隆 水畑
菰田 睦子
忍 竹中
将史 村岡
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013018502A1 publication Critical patent/WO2013018502A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • H01M8/1013Other direct alcohol fuel cells [DAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell in which a plurality of fuel cells are arranged on the same plane.
  • Fuel cells are expected to be put to practical use as new power sources for portable electronic devices that support the information society. Fuel cells are classified into a phosphoric acid type, a molten carbonate type, a solid electrolyte type, a solid polymer type, a direct alcohol type, and the like according to the classification of the electrolyte material and fuel used.
  • solid polymer fuel cells and direct alcohol fuel cells that use an ion exchange membrane, which is a solid polymer, as the electrolyte material can achieve high power generation efficiency at room temperature. Practical application as a small fuel cell is under study.
  • the direct alcohol fuel cell that uses alcohol or an aqueous alcohol solution as the fuel has a simplified structure of the fuel cell because the fuel storage chamber can be designed relatively easily compared to the case where the fuel is a gas. Space-saving is possible, and the expectation as a small fuel cell for the purpose of application to portable electronic devices is particularly high.
  • a fuel cell In a fuel cell, a plurality of fuel cells are electrically connected and combined (stack) in order to increase the power, which is insufficient with one fuel cell, to a sufficient level as a new power source for portable electronic devices. Etc.) are conventionally performed.
  • An example is a fuel in which a plurality of fuel cells are arranged on the same plane as described in, for example, Japanese Patent Application Laid-Open No. 2004-079506 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2006-093119 (Patent Document 2).
  • a battery hereinafter also referred to as a “planar integrated fuel cell”).
  • planar integrated fuel cell is applied as a power source for an electronic device such as a portable electronic device, in accordance with the shape and area of the limited fuel cell accommodation space in various electronic devices that can be applied, It is extremely meaningful to be able to flexibly design a planar integrated fuel cell structure. This is because it greatly contributes to improvement of production efficiency (simplification of production process) and reduction of production cost of the fuel cell.
  • the conventional planar integrated fuel cell as described in Patent Documents 1 and 2 has a structure in which a plurality of fuel cells share one fuel supply unit.
  • the fuel supply unit refers to a part that contains or distributes the fuel supplied to each fuel cell, and includes the liquid fuel storage unit 3 in Patent Document 1 and the bipolar plate 20 in Patent Document 2. Equivalent to.
  • the fuel supply unit in order to apply to an electronic device having a different shape and area of the fuel cell accommodation space, it is not necessary to change only the design of the fuel cell cell integration form. Therefore, it is necessary to redesign the system, and it is not easy to change the design of the fuel cell structure according to the electronic equipment, which is disadvantageous in terms of production efficiency and production cost of the fuel cell.
  • the solution of the above problem proposed by the present inventors is to modularize the fuel cell by providing a fuel flow path through which fuel flows to each fuel cell itself. According to this, without changing the design of the module (fuel cell having the fuel flow path), the number of modules, the arrangement pattern, and the fuel for guiding the fuel to the fuel flow path of each fuel battery cell as required By redesigning only the supply system, the planar integrated fuel cell can be easily applied to electronic devices having different shapes and areas of the fuel cell accommodation space. However, when a planar integrated fuel cell is constructed using modularized fuel cells, it may be difficult to uniformly supply fuel to each fuel cell.
  • An object of the present invention is to provide a fuel cell in which a plurality of modularized fuel cells having fuel flow paths are arranged on the same plane, and a fuel cell with good uniformity of fuel supply to each fuel cell. There is to do.
  • the present invention includes the following.
  • a fuel cell including one or more first fuel cells and one or more second fuel cells arranged on the same plane
  • the first fuel battery cell is A first membrane electrode assembly having a first anode electrode, a first electrolyte membrane, and a first cathode electrode in this order;
  • a first flow path plate disposed on the first anode electrode side, wherein a first in-cell fuel flow path for circulating liquid fuel is disposed on the first anode electrode side surface;
  • a first gas-liquid separation layer disposed between the first membrane electrode assembly and the first flow path plate and capable of transmitting a vaporized component of the liquid fuel;
  • a first intervening layer disposed between the first gas-liquid separation layer and the first flow path plate so as to cover the first in-cell fuel flow path, and having a contact angle with respect to water of less than 70 degrees;
  • the second fuel battery cell is A second membrane electrode assembly having a second anode electrode, a second electrolyte membrane, and a second cathode electrode
  • [3] including at least one row of fuel cell assemblies in which one or more first fuel cells and one or more second fuel cells are arranged in a line;
  • the fuel distribution section has one inlet for introducing the liquid fuel, [5]
  • the first fuel cell further includes a first anode current collecting layer laminated on the first anode electrode, and a first cathode current collecting layer laminated on the first cathode electrode
  • the second fuel cell further includes a second anode current collecting layer laminated on the second anode electrode and a second cathode current collecting layer laminated on the second cathode electrode.
  • the uniformity of fuel supply to each fuel cell can be improved.
  • the fuel cell of the present invention is useful as a power source for electronic devices, particularly portable electronic devices.
  • FIG. 2 is a schematic sectional view taken along line II-II shown in FIG. 1.
  • FIG. 3 is a schematic cross-sectional view taken along line III-III shown in FIG. 2.
  • FIG. 4 is a schematic sectional view taken along line IV-IV shown in FIG. 1.
  • It is a schematic sectional drawing which shows another example of the fuel cell which concerns on this invention.
  • It is a schematic sectional drawing which shows another example of the fuel cell which concerns on this invention.
  • FIG. 9 is a schematic cross-sectional view showing a fuel cell manufactured in Example 1.
  • FIG. 3 is a schematic perspective view showing a fuel distribution unit used in Example 1. It is a figure which shows the change of the output voltage for every fuel cell in the fuel cell produced in Example 1.
  • FIG. 3 is a schematic perspective view showing a fuel distribution unit used in Example 1. It is a figure which shows the change of the output voltage for every fuel cell in the fuel cell produced in Example 1.
  • FIG. 1 is a schematic top view showing an example of a fuel cell according to the present invention
  • FIG. 2 is a schematic cross-sectional view taken along line II-II shown in FIG. 1
  • FIG. 3 is a schematic cross-sectional view taken along line III-III shown in FIG. It is sectional drawing.
  • FIG. 4 is a schematic sectional view taken along line IV-IV shown in FIG.
  • a fuel cell 100 shown in these drawings is a planar integrated fuel cell including two first fuel cells 101 and one second fuel cell 102 arranged on the same plane, more specifically. Is arranged adjacent to the side surface of the fuel cell assembly 110, and the fuel cell assembly 110 in which two first fuel cells 101 and one second fuel cell 102 are arranged in a line. And a fuel distributor 150. The fuel cells constituting the fuel cell 100 are electrically connected in series or in parallel.
  • the fuel cell 100 uses the first fuel cell 101 as the fuel cell at both ends of the fuel cell assembly 110 composed of three fuel cells, and uses the second fuel cell 102 as the central fuel cell. It is one of the features. Both the first fuel cell 101 and the second fuel cell 102 are modularized fuel cells having fuel flow paths in the cells, but have different cell structures.
  • the first fuel cell 101 includes a first membrane electrode assembly 4 having a first anode electrode 2, a first electrolyte membrane 1, and a first cathode electrode 3 in this order; First anode current collecting layer 5 laminated on and electrically connected thereto; first cathode current collecting layer 6 laminated on first cathode electrode 3 and electrically connected thereto; first anode A first anode moisturizing layer 7 laminated on the first anode current collecting layer 5 so as to be in contact with the current collecting layer 5; laminated on the first cathode current collecting layer 6 so as to be in contact with the first cathode current collecting layer 6 First cathode moisturizing layer 8; disposed on the first anode electrode 2 side (below the first anode electrode 2), and a first in-cell fuel flow path 10a for flowing liquid fuel is formed on the surface of the first anode electrode 2 side.
  • the first flow path plate 10 disposed between the first membrane electrode assembly 4 and the first flow path plate 10.
  • the first gas-liquid separation layer 12 that is permeable to the vaporized component of the liquid fuel; disposed between the first gas-liquid separation layer 12 and the first anode moisturizing layer 7, and includes a first vaporized fuel storage portion 9a.
  • a first vaporized fuel plate 9; and a first intervening layer 11 disposed between the first gas-liquid separation layer 12 and the first flow channel plate 10 so as to cover the first in-cell fuel flow channel 10a.
  • the first intervening layer 11 is a layer having a contact angle with water of less than 70 degrees.
  • the second fuel cell 102 includes a second membrane electrode assembly 4 ′ having a second anode electrode 2 ′, a second electrolyte membrane 1 ′, and a second cathode electrode 3 ′ in this order; on the second anode electrode 2 ′.
  • first fuel cell 101 has the first intervening layer 11 disposed between the first gas-liquid separation layer 12 and the first flow path plate 10, while the second fuel cell 101 The battery cell 102 does not have such an intervening layer, and the second gas-liquid separation layer 12 ′ is laminated directly on the second in-cell fuel flow path 10a ′.
  • the fuel distributor 150 distributes the liquid fuel introduced through the inlet 151 to each fuel cell (all the first fuel cells 101 and the second fuel cells 102). Therefore, it is a member independent of the fuel cell, and has an out-cell fuel flow path 155 connected to each of the first in-cell fuel flow path 10a and the second in-cell fuel flow path 10a ′.
  • the out-cell fuel flow path 155 can be constituted by a main flow path 152 connected to the inlet 151 and a branch flow path 153 connecting the main flow path 152 and each in-cell fuel flow path.
  • the fuel distributor 150 is a substantially rectangular parallelepiped member attached adjacent to the longitudinal end surface of the fuel cell assembly 110 in which the inlet end of the in-cell fuel flow path of each fuel cell is disposed.
  • the introduction port 151 is provided approximately at the center with respect to the longitudinal direction of the fuel distribution unit 150 (parallel to the arrangement direction of the fuel cells).
  • the uniformity of fuel supply to each fuel cell is improved. be able to. That is, when considering the fuel distributor 150 in a state where no fuel cells are connected, the distance from the inlet 151 to the outlet end of the branch channel 153 is long, and X and Y in FIG.
  • the first fuel cell 101 having the first intervening layer 11 having hydrophilicity on both ends of the fuel cell assembly 110 where the pressure loss is relatively large is provided on the in-cell fuel flow path 10a. Since a force for drawing the liquid fuel is generated on the basis of the hydrophilicity (wetting property) (the pressure loss of the liquid fuel in the in-cell fuel flow path is reduced), the fuel cell assembly 110
  • the supply flow rate of the liquid fuel to the in-cell fuel flow path of the fuel cells arranged at both ends can be increased, the fuel supply can be made uniform among the fuel cells, and all the first cells can be made uniform.
  • the supply flow rate of the liquid fuel to the inner fuel flow path 10a and the second cell fuel flow path 10a ′ can be made substantially the same.
  • Uniform fuel supply enables stable power generation and the power generation characteristics of fuel cells that have been fuel deficient can be raised to a high level, thus improving the power generation characteristics of the entire fuel cell. it can.
  • variation in power generation between fuel cells is reduced, temperature variation between fuel cells is also reduced. This also leads to stable power generation.
  • FIG. 5 is a schematic cross-sectional view similar to FIG. 3 showing a form in which the fuel cell assembly 110 is composed of four fuel cells arranged in a line. Also in this example, the introduction port 151 is installed at approximately the center in the longitudinal direction of the fuel distributor 150, and both ends of the fuel cell assembly 110 are arranged in order to make the fuel supply uniform between the fuel cells.
  • the 1st fuel cell 101 provided with the 1st intervening layer 11 is arranged.
  • FIG. 6 shows a mode in which the fuel cell assembly is composed of three fuel cells arranged in a line, and the introduction port 151 is installed at one end in the longitudinal direction of the fuel distribution unit 150.
  • FIG. 4 is a schematic sectional view similar to FIG. 3. In such a configuration, the distance from the inlet 151 to the outlet side end of the out-cell fuel flow path 155 is particularly long, and the end of the out-cell fuel flow path 155 as shown by Z in FIG. In order to make the fuel supply uniform between the fuel cells, the end on the side opposite to the inlet installation position in the fuel cell assembly 110 is likely to be retained.
  • a first fuel cell 101 having a first intervening layer 11 is disposed in the part.
  • the fuel cell of the present invention may include, for example, two or more fuel cell assemblies composed of a plurality of fuel cells arranged in a line, and includes two or more fuel distribution portions. There may be. You may make it couple
  • the pressure loss of the liquid fuel at the outlet side end portion (connection point with the in-cell fuel flow path) of the out-cell fuel flow path is considered, and the relative pressure
  • the first fuel battery cell in which the pressure loss of the liquid fuel in the in-cell fuel flow path is relatively low due to the hydrophilicity of the first intervening layer is disposed at the location where the loss is large, while the pressure loss is relatively low.
  • the fuel cell according to the present invention uses a fuel cell having a fuel flow path in the cell as a module, only the number of modules, the arrangement pattern, the shape of the fuel distribution part, etc. are changed in design.
  • the present invention can be easily applied to electronic devices having different shapes and areas of fuel cell accommodation spaces.
  • Such flexibility of the fuel cell structure design is extremely effective for improving the production efficiency of the fuel cell (simplification of the production process) and reducing the production cost.
  • the first electrolyte membrane 1 constituting the first membrane electrode assembly 4 has a function of transmitting protons from the first anode electrode 2 to the first cathode electrode 3, and the electricity between the first anode electrode 2 and the first cathode electrode 3. It has the function of maintaining the electrical insulation and preventing short circuit.
  • the material of the electrolyte membrane is not particularly limited as long as it has proton conductivity and electrical insulation, and a polymer membrane, an inorganic membrane, or a composite membrane can be used.
  • polymer membrane for example, Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), which is a perfluorosulfonic acid electrolyte membrane, etc.
  • Nafion registered trademark, manufactured by DuPont
  • Aciplex registered trademark, manufactured by Asahi Kasei
  • Flemion registered trademark, manufactured by Asahi Glass Co., Ltd.
  • Hydrocarbon electrolyte membranes such as can also be used.
  • the inorganic film examples include films made of glass phosphate, cesium hydrogen sulfate, polytungstophosphoric acid, ammonium polyphosphate, and the like.
  • the composite film examples include a composite film of an inorganic material such as tungstic acid, cesium hydrogen sulfate, and polytungstophosphoric acid and an organic material such as polyimide, polyetheretherketone, and perfluorosulfonic acid.
  • the thickness of the first electrolyte membrane 1 is, for example, 1 to 200 ⁇ m.
  • the first anode electrode 2 laminated on one surface of the first electrolyte membrane 1 and the first cathode electrode 3 laminated on the other surface are each a catalyst layer comprising a porous layer containing at least a catalyst and an electrolyte. Is provided.
  • a catalyst anode catalyst
  • the electrolyte has a function of conducting the generated protons to the first electrolyte membrane 1.
  • the catalyst catalyzes a reaction for generating water from protons conducted through the electrolyte and an oxidant (such as air).
  • the catalyst of the first anode electrode 2 and the first cathode electrode 3 may be supported on the surface of a conductor such as carbon or titanium, and in particular, carbon or titanium having a hydrophilic functional group such as a hydroxyl group or a carboxyl group. It is preferable to be carried on the surface of a conductor such as. Thereby, the water retention of the 1st anode pole 2 and the 1st cathode pole 3 can be improved. By improving the water retention, it is possible to improve the resistance of the first electrolyte membrane 1 accompanying proton transfer and the potential distribution in the first anode electrode 2 and the first cathode electrode 3.
  • Each of the first anode electrode 2 and the first cathode electrode 3 includes an anode conductive porous layer (anode gas diffusion layer) and a cathode conductive porous layer (cathode gas diffusion layer) laminated on the catalyst layer. Also good. These conductive porous layers have a function of diffusing gas (vaporized fuel or oxidant) supplied to the first anode electrode 2 and the first cathode electrode 3 in the plane, and exchange of electrons with the catalyst layer. Has the function to perform.
  • carbon materials As the anode conductive porous layer and the cathode conductive porous layer, since the specific resistance is small and the decrease in voltage is suppressed, carbon materials; conductive polymers; noble metals such as Au, Pt, Pd; Ti, Porous materials comprising transition metals such as Ta, W, Nb, Ni, Al, Cu, Ag, Zn; nitrides or carbides of these metals; and alloys containing these metals typified by stainless steel Is preferably used.
  • noble metals having resistance to corrosion such as Au, Pt, Pd, conductive polymers, conductive nitrides, conductive Surface treatment (film formation) may be performed with carbide, conductive oxide, or the like.
  • anode conductive porous layer and the cathode conductive porous layer for example, foam metal, metal fabric and metal sintered body made of the above-mentioned noble metal, transition metal or alloy; and carbon paper, carbon cloth, An epoxy resin film containing carbon particles can be suitably used.
  • the first anode current collecting layer 5 and the first cathode current collecting layer 6 are laminated on the first anode electrode 2 and the first cathode electrode 3, respectively.
  • the first anode current collecting layer 5 and the first cathode current collecting layer 6 have a function of collecting electrons in the first anode electrode 2 and the first cathode electrode 3 and a function of performing electrical wiring, respectively.
  • the material of the current collecting layer is preferably a metal because it has a small specific resistance and suppresses a decrease in voltage even when a current is taken in the plane direction. In particular, it has electron conductivity and has an acidic atmosphere. More preferably, the metal has corrosion resistance.
  • Such metals include noble metals such as Au, Pt, Pd; transition metals such as Ti, Ta, W, Nb, Ni, Al, Cu, Ag, Zn; and nitrides or carbides of these metals; and And alloys containing these metals typified by stainless steel.
  • noble metals such as Au, Pt, Pd
  • transition metals such as Ti, Ta, W, Nb, Ni, Al, Cu, Ag, Zn
  • nitrides or carbides of these metals and And alloys containing these metals typified by stainless steel.
  • noble metals having resistance to corrosion such as Au, Pt, Pd, conductive polymers, conductive nitrides, conductive Surface treatment (film formation) may be performed with carbide, conductive oxide, or the like.
  • the anode conductive porous layer and the cathode conductive porous layer are made of, for example, metal and the conductivity is relatively high, the first anode current collecting layer and the first cathode current collecting layer are
  • the first anode current collecting layer 5 has a mesh shape made of the above metal material or the like having a plurality of through holes (openings) penetrating in the thickness direction for guiding the vaporized fuel to the first anode electrode 2. Or it can be a flat plate having a punching metal shape. This through hole also functions as a path for guiding the by-product gas (CO 2 gas or the like) generated in the catalyst layer of the first anode electrode 2 to the first vaporized fuel storage unit 9a side.
  • CO 2 gas or the like by-product gas
  • the first cathode current collecting layer 6 includes a plurality of through holes (openings) penetrating in the thickness direction for supplying an oxidizing agent (for example, air outside the fuel cell) to the catalyst layer of the first cathode electrode 3. It can be a flat plate having a mesh shape or a punching metal shape made of the above metal material.
  • the first flow path plate 10 is a plate-like body in which a first in-cell fuel flow path 10a for flowing liquid fuel is formed on the surface of the first anode electrode 2 side, and the first anode electrode 2 side of the fuel cell. Placed in.
  • the first in-cell fuel flow path 10a can be formed of, for example, a groove (concave portion) formed on one surface of the plate-like body.
  • the shape (pattern) of the first in-cell fuel flow path 10a is not particularly limited, but is arranged uniformly over the widest possible range of the flow path plate surface so that vaporized fuel can be supplied as uniformly as possible to the entire surface of the first anode electrode 2. It is preferable.
  • FIG. 3 shows a preferred example of the flow path pattern.
  • the hatched portions of the first flow path plate 10 and the second flow path plate 10 ′ shown in FIG. 3 indicate grooves (recesses) (the same applies to FIGS. 5, 6, and 11).
  • the first in-cell fuel flow path 10a and the second in-cell fuel flow path 10a ′ shown in FIG. 3 are connected to the out-cell fuel flow path 155 at four locations, respectively.
  • the four flow paths connected to the out-cell fuel flow path 155 are once aggregated into one flow path, and five flow paths extend from the flow path at regular intervals in a branch shape. Note that the circles (seven in each case) drawn on the periphery of each fuel cell in FIG. 3 indicate screw holes used for fastening between the members (the same applies to FIGS. 5, 6, and 11).
  • channel shape examples include a channel shape that does not have a branched portion (for example, a plurality of channels that extend linearly from the connection point with the fuel flow path outside the cell), a mesh-like channel, and a surface.
  • the width and depth of the channel in the cell are not particularly limited, but for example, each is about 0.2 to 1.5 mm (especially larger in the case of a tank type channel), about 0.1 to 0.6 mm. is there.
  • the first flow path plate 10 can be made of a plastic material or a metal material.
  • the plastic material include polyphenylene sulfide (PPS), polymethyl methacrylate (PMMA), acrylonitrile butadiene styrene (ABS), polyvinyl chloride, polyethylene (PE), polyethylene terephthalate (PET), polyether ether ketone (PEEK). ), Polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and the like.
  • the metal material for example, alloy materials such as stainless steel and magnesium alloy can be used in addition to titanium and aluminum.
  • the first gas-liquid separation layer 12 disposed between the first membrane electrode assembly 4 and the first flow path plate 10 and on the surface of the first intervening layer 11 described later on the first anode electrode 2 side, Gas-liquid separation that is a porous layer that is permeable to vaporized fuel (property of vaporized components of liquid fuel) and has a hydrophobic property that is impermeable to liquid fuel, and enables vaporized supply of fuel to the first anode electrode 2 It is a layer having a function.
  • the first gas-liquid separation layer 12 controls (limits) the amount or concentration of vaporized fuel supplied to the first anode electrode 2 to an appropriate amount and also has a function of making it uniform.
  • the first gas-liquid separation layer 12 is not particularly limited as long as it has gas-liquid separation ability with respect to the fuel to be used.
  • fluorine-based resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride, water repellent A porous film or a porous sheet made of a modified silicone resin, and specifically, a TEMISH (registered trademark) manufactured by Nitto Denko Corporation, which is a porous film made of polytetrafluoroethylene. )] "NTF2026A-N06" and "NTF2122A-S06".
  • the maximum pore diameter of the pores of the first gas-liquid separation layer 12 is preferably 0.1 to 10 ⁇ m, preferably 0.5 to 5 ⁇ m. More preferably. The maximum pore diameter can be obtained by measuring the bubble point using methanol or the like as in the first intervening layer 11 described later.
  • the first gas-liquid separation layer 12 has a contact angle with water, which will be described later, usually 80 degrees or more, and more typically 90 degrees or more.
  • the thickness of the first gas-liquid separation layer 12 is not particularly limited, but is preferably 20 ⁇ m or more, and more preferably 50 ⁇ m or more in order to sufficiently express the above function. From the viewpoint of reducing the thickness of the fuel cell, the thickness of the first gas-liquid separation layer 12 is preferably 500 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the first gas-liquid separation layer 12 and the first flow path plate 10 so as to cover the first anode electrode 2 side surface of the first flow path plate 10 (therefore, the groove (recess) forming the first in-cell fuel flow path 10a).
  • the 1st intervening layer 11 arrange
  • the first intervening layer 11 preferably exhibits a capillary action with respect to the liquid fuel, and more preferably has a relatively large capillary force so that the nonuniformity of the fuel supply can be corrected more effectively.
  • the first intervening layer 11 preferably has pores, and the maximum pore diameter is preferably 1 ⁇ m or less, and more preferably 0.7 ⁇ m or less.
  • the maximum pore diameter can be obtained by measuring the bubble point described later, but can be measured by mercury porosimetry as another method. However, since the mercury intrusion method can measure only a pore distribution of 0.005 ⁇ m to 500 ⁇ m, it is an effective measuring means when pores outside this range do not exist or can be ignored.
  • the first intervening layer 11 is not particularly limited, but the bubble point when the measurement medium is methanol can be, for example, about 5 kPa or more. When applying a higher capillary force, the bubble point is preferably high. From such a viewpoint, the bubble point may be 30 kPa or more, and further may be 50 kPa or more.
  • the bubble point of the first intervening layer 11 is preferably low.
  • the hydrophilicity (surface wettability) of the first intervening layer 11 contributes to the reduction of the pressure loss of the liquid fuel inside the first in-cell fuel flow path 10a.
  • the bubble point is the minimum pressure at which bubbles are observed on the surface of the layer (membrane) when air pressure is applied from the back side of the layer (membrane) wetted with the liquid medium.
  • the bubble point is measured according to JIS K3832, using methanol as the measurement medium.
  • Examples of the first intervening layer 11 include a porous layer made of a polymer material, a metal material, an inorganic material, or the like, or a polymer film. Specific examples are as follows.
  • a porous layer made of the following materials. Fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); acrylic resins; ABS resins; polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate; cellulose acetate and nitrocellulose Cellulose resins such as ion exchange cellulose; Nylon; Polycarbonate resins; Chlorine resins such as polyvinyl chloride; Polyetheretherketone; Polyethersulfone; Glass; Ceramics; Stainless steel, titanium, tungsten, nickel, aluminum, steel, etc. Metal material.
  • Fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); acrylic resins; ABS resins; polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate; cellulose acetate and nitrocellulose Cellulose resin
  • the porous layer can be a foam, a sintered body, a nonwoven fabric or a fiber (such as glass fiber) made of these materials.
  • a hydrophobic material when used as a base material, the contact angle is improved by applying a hydrophilic treatment by a method such as introducing a hydrophilic functional group and increasing the wettability of the pore surface to water. Can be adjusted to less than 70 degrees.
  • a hydrophobic material when used as a base material, it is subjected to a hydrophilic treatment by a method such as introducing a hydrophilic functional group, and by increasing the wettability of the pore surface to water,
  • the contact angle can be adjusted to less than 70 degrees.
  • the thickness of the first intervening layer 11 is not particularly limited, but is preferably 20 to 500 ⁇ m, more preferably 50 to 200 ⁇ m from the viewpoint of reducing the thickness of the fuel cell.
  • FIG. 7A is a schematic top view showing the first vaporized fuel plate 9 used in the first fuel battery cell 101
  • FIG. 7B is a cross-sectional view taken along line VII-VII shown in FIG. 7A. It is a schematic sectional drawing.
  • the first vaporized fuel plate 9 forms a space for accommodating vaporized fuel (that is, the first vaporized fuel accommodating portion 9a) between the first membrane electrode assembly 4 and the first gas-liquid separation layer 12. It is a member.
  • the first vaporized fuel plate 9 is disposed between the first anode moisturizing layer 7 and the first gas-liquid separation layer 12 so as to be in contact with the first anode moisturizing layer 7.
  • the first vaporized fuel plate 9 is a first vaporized fuel storage portion 9a that is a through-hole penetrating in the thickness direction, and a first communication path that connects the first vaporized fuel storage portion 9a and the outside of the first vaporized fuel plate 9 9b.
  • the first communication path 9b is a path for discharging by-product gas (CO 2 gas or the like) generated at the first anode electrode 2 to the outside of the fuel cell.
  • the first communication path 9b is provided at the peripheral portion of the first vaporized fuel plate 9, and extends from the first vaporized fuel storage portion 9a to the end surface of the peripheral portion (recessed portion). ).
  • the outlet of the first communication path 9b is provided, for example, on the side surface facing the side surface of the fuel cell to which the fuel distributor 150 is coupled (see FIG. 4).
  • the first anode electrode surface of the vaporized fuel concentration supplied to the first anode electrode 2 In the interior and optimization of the amount of vaporized fuel is promoted.
  • Providing the first vaporized fuel storage portion 9a is also advantageous in the following points.
  • (I) Heat insulation between the power generation unit (first membrane electrode assembly 4) and the first in-cell fuel flow path 10a can be achieved by the air layer present in the first vaporized fuel storage unit 9a. Thereby, the crossover by the temperature of the liquid fuel in the 1st in-cell fuel flow path 10a rising too much can be suppressed. This contributes to suppression of runaway battery internal temperature and increase in internal pressure.
  • the by-product gas such as CO 2 gas generated at the first anode electrode 2 reaches the first vaporized fuel storage portion 9a with heat generated by power generation, and then passes through the first communication path 9b. And discharged outside the fuel cell.
  • the amount of heat accumulated inside the fuel cell can be significantly reduced, so that an excessive temperature rise as the entire fuel cell including the first in-cell fuel flow path 10a can be suppressed. This also contributes to suppression of battery internal temperature runaway and internal pressure rise.
  • the first vaporization fuel plate 9 is provided with the first communication path 9b (by-product gas discharge port), it is difficult for heat to be transmitted to the first in-cell fuel flow path 10a.
  • the excessive temperature rise of the liquid fuel in the inner fuel flow path 10a, and the accompanying crossover and temperature runaway are less likely to occur.
  • the thickness of the first vaporized fuel plate 9 can be set to, for example, about 100 to 1000 ⁇ m, and the above effects can be sufficiently obtained even when the thickness is reduced to about 100 to 300 ⁇ m.
  • the through-hole (first vaporized fuel storage unit 9a) of the first vaporized fuel plate 9 is as shown in FIG. It is preferable to make the aperture ratio with respect to the area of the first vaporized fuel plate 9 as large as possible. Therefore, it is preferable that the first vaporized fuel plate 9 has a frame shape (b-shaped) having as large a through-hole as possible.
  • the opening ratio of the through hole that is, the opening area of the through hole with respect to the area of the first vaporized fuel plate 9 (as will be described later, the first vaporized fuel plate 9 may have two or more through holes. Is preferably 50% or more, more preferably 60% or more. Increasing the opening ratio of the through-hole is also advantageous for enhancing the function of the first vaporized fuel plate 9 to make the concentration of the fuel supplied to the first anode electrode 2 uniform. It is also advantageous in securing a sufficient fuel supply. In addition, the opening rate of a through-hole is 90% or less normally.
  • the first communication path 9b is not limited to a groove (concave portion) provided in the peripheral portion of the first vaporized fuel plate 9, and may be a through hole penetrating in the thickness direction. It is preferable to consist of a groove
  • FIG. 8A is a schematic top view showing another example of the first vaporized fuel plate
  • FIG. 8B is a schematic cross-sectional view taken along the line VIII-VIII shown in FIG. 8A.
  • the first vaporized fuel plate may have two or more through holes.
  • the first vaporized fuel plate 99 shown in FIG. 8 has a total of four through-holes 99a arranged in two rows. It can also be said that beams are provided in the vertical direction and the horizontal direction of a large through hole and divided into four.
  • Such a first vaporized fuel plate having a plurality of through-holes (provided with beams) is advantageous in that a fuel cell excellent in strength against impact or the like can be obtained because rigidity in the in-plane direction is improved. Further, in comparison with a structure without a beam as shown in FIG. 7, it is more difficult to block the through-hole due to expansion or the like due to heat of members disposed above and below the first vaporized fuel plate. Is also advantageous.
  • the same number of first communication paths provided on the peripheral edge portion as the number of through holes may be provided for each through hole.
  • a smaller or larger number of communication paths can be provided.
  • two first communication paths 99b are provided for the four through holes 99a.
  • the lower two through-holes 99a) are spatially connected to the through-hole provided with the first communication path 99b (the upper two through-holes 99a in FIG. 8A) by the first connection path 99c. .
  • route 99c can be the groove
  • the by-product gas that has entered the through hole in which the first communication path 99b is not provided can be discharged to the outside through the first communication path 99b.
  • the through holes provided with the first communication path 99b and / or the through holes not provided with the first communication path 99b are spatially connected. It is also preferable to provide one connection path 99d (see FIG. 8A).
  • the ratio S 1 / S between the cross-sectional area of the first communication path (the total of these cross-sectional areas if there are two or more first communication paths) S 1 and the total area S 0 of the side surfaces of the first vaporized fuel plate 0 is required to be larger than 0 in order to discharge by-product gas and heat accompanying it, and is preferably 0.002 or more. Further, it is preferably less than 0.3, more preferably less than 0.1, and still more preferably less than 0.05. When the ratio is 0.3 or more, fuel leakage or air mixing is likely to occur, and power generation stability may be reduced.
  • the cross-sectional area of the first communication path (the sum of these cross-sectional areas when there are two or more first communication paths) S 1 and the first communication path are provided.
  • the ratio S 1 / S 2 to the cross-sectional area S 2 of the side surface at the peripheral edge is preferably 0.008 or more for the same reason as described above.
  • the material of the first vaporized fuel plate can be plastic, metal, or non-porous carbon material.
  • the plastic include polyphenylene sulfide (PPS), polyimide (PI), polymethyl methacrylate (PMMA), acrylonitrile butadiene styrene (ABS), polyvinyl chloride, polyethylene (PE), polyethylene terephthalate (PET), and polyether.
  • PPS polyphenylene sulfide
  • PI polyimide
  • PMMA polymethyl methacrylate
  • ABS acrylonitrile butadiene styrene
  • PVC polyvinyl chloride
  • PE polyethylene
  • PET polyethylene terephthalate
  • PVDF polyvinylidene fluoride
  • the metal for example, alloys such as stainless steel and magnesium alloy can be used in addition to titanium and aluminum.
  • the first vaporized fuel plate is preferably made of a material having high rigidity such as metal, polyphenylene sulfide (PPS), or polyimide (PI).
  • PPS polyphenylene sulfide
  • PI polyimide
  • the 1st vaporization fuel board may be abbreviate
  • the first cathode moisturizing layer 8 is disposed on the first cathode electrode 3, preferably on the first cathode current collecting layer 6, and water generated at the first cathode electrode 3 is allowed to flow from the first cathode electrode 3 side to the fuel cell. This is an optional layer for preventing evaporation from the cell.
  • water generated at the first cathode electrode 3 is efficiently returned to the first anode electrode 2 through the first electrolyte membrane 1 without evaporating outside the fuel cell, It can be used effectively for the reaction at the first anode electrode 2.
  • the first anode moisturizing layer 7 is disposed between the first anode electrode 2 or the first anode current collecting layer 5 and the first vaporized fuel storage unit 9a, and the moisture in the first anode electrode 2 is used to make the first anode
  • This is an optional layer for preventing evaporation from the electrode 2 side to the outside of the first membrane electrode assembly (for example, to the first vaporized fuel housing portion 9 a) and for retaining the first anode electrode 2.
  • water generated at the first cathode electrode 3 and reaching the first anode electrode 2 through the first electrolyte membrane 1 is evaporated to the outside of the first membrane electrode assembly 4. And can be held well in the first anode electrode 2.
  • the reaction efficiency at the first anode electrode 2 is improved, and high power generation characteristics can be stably exhibited.
  • the combined use with the first cathode moisturizing layer 8 can achieve the effect more effectively.
  • the installation of the first cathode moisturizing layer 8 and the first anode moisturizing layer 7 is effective for preventing the drying of the first electrolyte membrane 1 and the accompanying increase in cell resistance and degradation of power generation characteristics.
  • the first cathode moisturizing layer 8 and the first anode moisturizing layer 7 are gas permeable so as to be able to permeate vaporized fuel or oxidant (air etc.) from the outside of the fuel cell, are insoluble in water, and It is composed of a material having moisture retention (property that does not evaporate water).
  • fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); acrylic resins; polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate; polyurethane resins Polyamide resin; Polyacetal resin; Polycarbonate resin; Chlorine resin such as polyvinyl chloride; Polyether resin; Polyphenylene resin; Porous membrane (porous layer) made of water repellent treated silicone resin, etc. Can be.
  • These moisturizing layers can be foams made of the above polymer, fiber bundles, woven fibers, non-woven fibers, or combinations thereof.
  • the first cathode moisturizing layer 8 is desired to be gas permeable so as to allow the passage of an oxidant (air, etc.) from the outside of the fuel cell and to have moisture retention (a property that does not evaporate water).
  • the porosity is preferably 30% or more and 90% or less, and more preferably 50% or more and 80% or less. When the porosity exceeds 90%, it may be difficult to keep the water generated at the first cathode electrode 3 in the fuel cell. On the other hand, when the porosity is less than 30%, the diffusion of an oxidant (air or the like) from the outside of the fuel cell is hindered, and the power generation characteristics of the first cathode electrode 3 are likely to deteriorate.
  • the first anode moisturizing layer 7 is gas permeable so as to allow the by-product gas (CO 2 gas, etc.) generated in the vaporized fuel and the catalyst layer to pass therethrough, and has a moisturizing property (a property that does not evaporate water). Therefore, the porosity is preferably 50% or more and 90% or less, and more preferably 60% or more and 80% or less. When the porosity exceeds 90%, it may be difficult to retain water generated in the first cathode electrode 3 and reaching the first anode electrode 2 via the first electrolyte membrane 1 in the first membrane electrode assembly. .
  • the thickness of the first cathode moisturizing layer 8 and the first anode moisturizing layer 7 is not particularly limited, but is preferably 20 ⁇ m or more, and more preferably 50 ⁇ m or more, in order to sufficiently exhibit the above functions. Further, from the viewpoint of reducing the thickness of the fuel cell, it is preferably 500 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the first cathode moisturizing layer 8 and the first anode moisturizing layer 7 should have high water absorption properties and do not have the property of taking in liquid water once absorbed and not releasing it to the outside. Therefore, it is preferable to have water repellency. From such a viewpoint, the first cathode moisturizing layer 8 and the first anode moisturizing layer 7 are, among the above, fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); A porous film (porous layer) made of a silicone resin or the like is preferable.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • NVF2026A-N06 and NF2122A-S06 manufactured by Nitto Denko Corporation, which are porous films made of polytetrafluoroethylene (TEMISH (registered trademark)), can be exemplified.
  • TEMISH polytetrafluoroethylene
  • the first anode moisturizing layer 7 includes a first anode current collecting layer 5 disposed on the first anode electrode 2, and is laminated on the first anode current collecting layer 5 so as to be in contact with the first anode current collecting layer 5. It is preferable. Thereby, it can prevent more effectively that the water
  • the first cathode moisturizing layer 8 and the first anode moisturizing layer 7 are provided as necessary, and at least one of these may be omitted.
  • the first fuel battery cell 101 may have a second intervening layer 13 interposed between the first intervening layer 11 and the first gas-liquid separation layer 12.
  • FIG. 9 shows an example of the first fuel cell including the second intervening layer 13.
  • the first fuel cell 901 shown in FIG. 9 has the first fuel cell shown in FIG. 2 except that it has a second intervening layer 13 between the first intervening layer 11 and the first gas-liquid separation layer 12. 101.
  • FIG. 10 is a schematic top view showing the second intervening layer 13 used in the first fuel cell 901.
  • the second intervening layer 13 is a layer having a through-hole penetrating in the thickness direction through which liquid fuel can permeate, and plays a role in surface-bonding at least the first intervening layer 11 and the first gas-liquid separation layer 12 with good adhesion. It preferably has a function of adjusting (limiting) the amount of liquid fuel permeation to the first gas-liquid separation layer 12 side.
  • seat (film) which has a through-hole penetrated in the thickness direction as shown, for example in FIG. 10 can be used, and a thermoplastic resin can be illustrated preferably as the material. .
  • a laminated body composed of the first intervening layer / the second intervening layer / the first gas-liquid separation layer is subjected to thermocompression bonding so that the respective layers can be surface-bonded with good adhesion.
  • seat which has the through-hole penetrated in the thickness direction as the 2nd intervening layer 13, and can be surface-bonded is advantageous in the following points.
  • the amount of liquid fuel permeated to the first gas-liquid separation layer 12 side and, in turn, the amount of vaporized fuel supplied to the first anode electrode 2 are adequate Can be adjusted (restricted) to an appropriate amount. As a result, it is possible to prevent or suppress the crossover of the fuel and stabilize the fuel supply.
  • the number of through holes is not particularly limited, but it is preferable that there are a plurality of through holes. From the viewpoint of uniformizing the amount of vaporized fuel permeation in the first gas-liquid separation layer 12 surface, the through holes are formed in the second intervening layer 13 surface. It is preferable to distribute it uniformly.
  • the opening diameter (diameter) of the through hole can be set to about 0.1 to 5 mm, for example.
  • the second intervening layer 13 may be formed of, for example, the following.
  • a porous layer formed from an adhesive resin or resin composition for example, a porous layer formed from an adhesive such as a hot-melt adhesive or a curable adhesive.
  • the second intervening layer 13 is an adhesive layer, that is, a porous layer made of the adhesive or a cured product thereof. The liquid fuel permeation amount to the first gas-liquid separation layer 12 side is adjusted (limited) by the pores of the porous layer.
  • a through-hole penetrating in the thickness direction preferably including a non-porous metal plate.
  • an adhesive layer is formed on both surfaces of the metal plate in order to ensure good adhesion between the first intervening layer 11 and the first gas-liquid separating layer 12, and therefore the second intervening layer 13 is And a three-layer structure of adhesive layer / metal plate / adhesive layer.
  • the adhesive layer is a porous layer made of an adhesive or a cured product thereof.
  • the adhesive may be a hot melt adhesive or a curable adhesive.
  • the liquid fuel permeation amount to the first gas-liquid separation layer 12 side can be adjusted (controlled) by the number of through holes formed in the metal plate and the opening diameter, as in the case of the thermoplastic resin sheet.
  • the adhesive layer is preferably formed so as not to block the through hole.
  • Second fuel cell 2nd membrane electrode assembly 4 ′ (second anode electrode 2 ′, second electrolyte membrane 1 ′ and second cathode electrode 3 ′) constituting the second fuel cell 102, second Anode current collecting layer 5 ′, second cathode current collecting layer 6 ′, second anode moisturizing layer 7 ′, second cathode moisturizing layer 8 ′, second flow path plate 10 ′, second gas-liquid separation layer 12 ′ and second
  • the two vaporized fuel plates 9 ' are respectively the first membrane electrode assembly 4 (first anode electrode 2, first electrolyte membrane 1 and first cathode electrode 3), first anode current collecting layer 5, and first cathode current collector.
  • the electric layer 6, the first anode moisturizing layer 7, the first cathode moisturizing layer 8, the first flow path plate 10, the first gas-liquid separation layer 12, and the first vaporized fuel plate 9 have the same configuration.
  • the second fuel battery cell 102 does not have the first intervening layer, and the second gas-liquid separation layer 12 ′ is laminated directly on the second in-cell fuel flow path 10 a ′.
  • Fuel distribution unit 150 is a member independent of the fuel cells for distributing the liquid fuel introduced through the introduction port 151 to each fuel cell, and the first cell is disposed inside the fuel cell.
  • An out-cell fuel flow path 155 is connected to each of the inner fuel flow path 10a and the second in-cell fuel flow path 10a ′.
  • the fuel flow path (intra-cell fuel flow path) for distributing the liquid fuel to the region directly below the anode electrode is incorporated in the fuel battery cell as a part of the fuel battery cell, while the liquid fuel is supplied to each fuel battery cell.
  • the fuel battery cell can be modularized.
  • the out-cell fuel flow path 155 connects the main flow path 152 connected to the inlet 151 provided on the upper surface, for example, and connects the main flow path 152 to each in-cell fuel flow path.
  • the branch channel 153 can be configured.
  • the fuel distributor 150 is a tank-like hollow member.
  • an inlet 151 is provided on the upper surface, and through holes connected to the fuel flow paths in the cells are formed on the side surfaces connected to the fuel cells. It may be provided (the hollow portion corresponds to the trunk channel and the through hole corresponds to the branch channel).
  • the outer shape of the fuel distribution unit 150 is not particularly limited, and is an appropriate shape in consideration of the shape and area of the fuel cell housing space of the applied electronic device, the number of modules (fuel cell), the arrangement form, and the like.
  • the fuel distributor 150 can be composed of various plastic materials, metal materials, alloy materials, and the like.
  • a fuel tank (not shown) for storing liquid fuel is usually connected to the introduction port 151 via a flow path.
  • the fuel supply from the fuel tank to the out-cell fuel flow path and the in-cell fuel flow path is normally performed using a liquid feed pump, but may be passive supply without using auxiliary equipment such as a liquid feed pump.
  • the fuel cell of the present invention can be a polymer electrolyte fuel cell or a direct alcohol fuel cell, and is particularly suitable as a direct alcohol fuel cell (in particular, a direct methanol fuel cell). It is.
  • the liquid fuel that can be used in the fuel cell of the present invention include alcohols such as methanol and ethanol; acetals such as dimethoxymethane; carboxylic acids such as formic acid; esters such as methyl formate; and aqueous solutions thereof. Can be mentioned.
  • the liquid fuel is not limited to one type, and may be a mixture of two or more types.
  • an aqueous methanol solution or pure methanol is preferably used.
  • the oxidant gas supplied to the cathode electrode air or oxygen gas is preferable, and air is particularly preferable.
  • the fuel cell of the present invention can be suitably used as a power source for electronic devices, in particular, small electronic devices such as mobile devices typified by mobile phones, electronic notebooks, and notebook computers.
  • FIG. 11 is a schematic sectional view similar to FIG. 3 and shows the shapes of the out-cell fuel flow path and the in-cell fuel flow path.
  • the planar integrated fuel cell produced in the present example is the same as the fuel cell shown in FIG. 5 except that it includes two fuel cell assemblies composed of four fuel cells arranged in a line. These fuel cell assemblies are respectively coupled to two opposing side surfaces of the fuel distributor 150.
  • the out-cell fuel flow path 155 has branch flow paths 153 extending from the main flow path 152 to both side surfaces so that the fuel cell connection can be made to the in-cell fuel flow paths of the two fuel battery cell assemblies.
  • Each of the two fuel cell assemblies is a first fuel cell having a first intervening layer disposed at both ends thereof (first fuel cell 101a and 101b and first fuel cell 101c and 101d in FIG. 11, respectively). And two second fuel cells arranged in the center (second fuel cells 102a and 102b and second fuel cells 102c and 102d in FIG. 11, respectively).
  • the cell structures of the first fuel cells 101a, 101b, 101c, 101d and the second fuel cells 102a, 102b, 102c, 102d are respectively the first fuel cell 101, the second fuel cell 102 shown in FIG. It is the same.
  • first membrane electrode assembly Catalyst-supported carbon particles (TEC66E50, manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt loading amount of 32.5 wt% and a Ru loading amount of 16.9 wt%, and 20 wt% of an electrolyte
  • An alcohol solution of Nafion (registered trademark) (manufactured by Aldrich), n-propanol, isopropanol, and zirconia balls are put into a fluororesin container at a predetermined ratio, and are stirred at 500 rpm for 50 minutes. By mixing, a catalyst paste for the first anode electrode was produced.
  • the catalyst paste for the first cathode electrode was prepared in the same manner as the catalyst paste for the first anode electrode, except that the catalyst-supporting carbon particles (TEC10E50E, manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt loading amount of 46.8% by weight were used. Produced.
  • the catalyst-supporting carbon particles TEC10E50E, manufactured by Tanaka Kikinzoku Co., Ltd.
  • the above-mentioned first anode electrode is formed on the porous layer.
  • the catalyst paste is applied using a screen printing plate having a window of 30 mm in length and 35 mm in width so that the amount of supported catalyst is about 3 mg / cm 2, and dried, so that carbon as an anode conductive porous layer is obtained.
  • a first anode electrode 2 having a thickness of about 200 ⁇ m and having an anode catalyst layer formed at the center on the paper was produced.
  • a perfluorosulfonic acid ion exchange membrane having a thickness of about 175 ⁇ m (Nafion (registered trademark) 117, manufactured by DuPont) was cut into a length of 35 mm and a width of 40 mm to form the first electrolyte membrane 1, and the first anode electrode 2 And the first electrolyte membrane 1 and the first cathode electrode 3 in this order so that the respective catalyst layers face the first electrolyte membrane 1, and then thermocompression bonded at 130 ° C. for 2 minutes, The 1 anode electrode 2 and the first cathode electrode 3 were joined to the first electrolyte membrane 1.
  • the superposition is such that the positions of the first anode electrode 2 and the first cathode electrode 3 in the plane of the first electrolyte membrane 1 coincide with each other, and the first anode electrode 2, the first electrolyte membrane 1 and the first cathode electrode. This was done so that the centers of 3 coincided.
  • the outer periphery of the obtained laminate was cut to produce a first membrane electrode assembly (MEA) 4 having a length of 22 mm and a width of 26 mm.
  • the first anode current collecting layer 5 is laminated on the first anode electrode 2 via a conductive adhesive layer made of carbon particles and an epoxy resin, and the first cathode current collecting layer 6 is formed as the first cathode current collecting layer 6.
  • the cathode electrode 3 was laminated via the same conductive adhesive layer, and these were joined by thermocompression bonding to produce a MEA-current collecting layer laminate.
  • a porous film made of polyvinylidene fluoride having a length of 26.5 mm, a width of 27 mm, and a thickness of 0.1 mm (dura made by MILLIPORE) A pore membrane filter) was used.
  • the contact angle of this porous film with respect to water was less than 70 degrees.
  • the maximum pore diameter of the pores of this porous film was 0.1 ⁇ m, and the bubble point based on JIS K3832 was 115 kPa when methanol was used as the measurement medium.
  • a porous film made of polytetrafluoroethylene having a length of 26.5 mm, a width of 27 mm, and a thickness of 0.2 mm (“TEMISH (registered trademark)” manufactured by Nitto Denko Corporation) NTF2122A-S06 ") was used as the first gas-liquid separation layer 12.
  • the contact angle of this porous film with respect to water was about 120 degrees.
  • the bubble point according to JIS K 3832 of this porous film was 18 kPa when the measurement medium was methanol.
  • the first gas-liquid separation layer 12 was laminated on the first intervening layer 11, and the layer boundary portions on all side surfaces were joined with an adhesive.
  • a first vaporized fuel plate 99 made of SUS having a shape shown in FIG. 8 and having a length of 26.5 mm, a width of 27 mm, and a thickness of 0.2 mm was produced (first
  • the communication path 99b and the first connection paths 99c and 99d are all formed by grooves (concave portions).
  • the opening ratio of the through holes 99a is 63% in total, and the ratio of the total of the two cross-sectional areas of the first communication path 99b to the total area of the side surfaces of the first vaporized fuel plate is 0.04. .
  • the joined body of the first intervening layer 11 and the first gas-liquid separation layer 12 is provided on the surface opposite to the groove forming surface of the first vaporized fuel plate 99, and the first gas-liquid separation layer 12 side is the first vaporization. They were laminated so as to face the fuel plate 99, and these were joined by thermocompression bonding.
  • the first 26 cells provided with the first in-cell fuel flow path 10a (flow path width 1.5 mm, depth 0.4 mm) having the flow path pattern as shown in FIG.
  • After the first flow path plate 10 is laminated on the first intervening layer 11 of the joined body of the first vaporized fuel plate 99 / the first gas-liquid separation layer 12 / the first intervening layer 11 with a polyolefin adhesive, The joined body and the first flow path plate 10 were joined by pressure bonding.
  • Second fuel cells 102a, 102b, 102c, 102d were produced and used as second fuel cells (second fuel cells 102a, 102b, 102c, 102d).
  • a methanol aqueous solution with a methanol concentration of 20M is used as fuel, and fuel is supplied from the inlet 151 to the fuel flow path 155 outside the cell and further to the fuel flow path in the cell by using a liquid feed pump to generate power in the fuel cell.
  • the change in the output voltage from the start of power generation to 2000 seconds after the start of power generation was measured.
  • the extracted current value was gradually increased from the start of power generation, and was set to a constant current of 0.3 A from about 250 seconds after the start of power generation to about 1750 seconds after the start of power generation. The results are shown in FIG. As shown in FIG.
  • the eight fuel cells show a change pattern in which the output voltage value is almost the same when operating at a constant current of 0.3 A, and the fuel supply to each fuel cell is made uniform. As a result, it was confirmed that the variation in power generation between fuel cells was reduced.

Abstract

Provided is a fuel cell that includes one or more first fuel cells and one or more second fuel cells disposed on the same plane. The first fuel cell is equipped with a first composite film electrode, a first flow channel plate having a first cell internal flow channel through which flows a liquid fuel, a first vapor-liquid separation layer permeable to the vaporized component of the liquid fuel and disposed between the first composite film electrode and the first flow channel plate, and a first intervening layer disposed so as to cover the first cell internal flow channel. The second fuel cell is equipped with a second composite film electrode, a second flow channel plate having a second cell internal flow channel through which flows a liquid fuel, and a second vapor-liquid separation layer permeable to the vaporized component of the liquid fuel and disposed so as to cover the second cell internal flow channel.

Description

燃料電池Fuel cell
 本発明は、複数の燃料電池セルを同一平面上に配置した燃料電池に関する。 The present invention relates to a fuel cell in which a plurality of fuel cells are arranged on the same plane.
 燃料電池は、情報化社会を支える携帯用電子機器の新規電源として実用化の期待が高まっている。燃料電池は、使用する電解質材料や燃料の分類から、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型、ダイレクトアルコール型等に分類される。特に、電解質材料に固体高分子であるイオン交換膜を用いる固体高分子型燃料電池およびダイレクトアルコール型燃料電池は、常温で高い発電効率が得られることから、携帯用電子機器への応用を目的とした小型燃料電池としての実用化が検討されている。 Fuel cells are expected to be put to practical use as new power sources for portable electronic devices that support the information society. Fuel cells are classified into a phosphoric acid type, a molten carbonate type, a solid electrolyte type, a solid polymer type, a direct alcohol type, and the like according to the classification of the electrolyte material and fuel used. In particular, solid polymer fuel cells and direct alcohol fuel cells that use an ion exchange membrane, which is a solid polymer, as the electrolyte material can achieve high power generation efficiency at room temperature. Practical application as a small fuel cell is under study.
 燃料としてアルコールまたはアルコール水溶液を使用するダイレクトアルコール型燃料電池は、燃料がガスである場合と比較して、燃料貯蔵室を比較的簡易に設計できるなどの理由から、燃料電池の構造の簡略化、省スペース化が可能であり、携帯用電子機器への応用を目的とした小型燃料電池としての期待が特に高い。 The direct alcohol fuel cell that uses alcohol or an aqueous alcohol solution as the fuel has a simplified structure of the fuel cell because the fuel storage chamber can be designed relatively easily compared to the case where the fuel is a gas. Space-saving is possible, and the expectation as a small fuel cell for the purpose of application to portable electronic devices is particularly high.
 燃料電池においては、1つの燃料電池セルでは不十分である電力を、携帯用電子機器の新規電源として十分な程度にまで高めるために、複数の燃料電池セルを電気的に接続して組み合わせる(スタック化するなど)ことが従来行なわれている。その一例が、たとえば特開2004-079506号公報(特許文献1)および特開2006-093119号公報(特許文献2)に記載されるような、複数の燃料電池セルを同一平面上に配置した燃料電池(以下、「平面集積型燃料電池」ともいう。)である。 In a fuel cell, a plurality of fuel cells are electrically connected and combined (stack) in order to increase the power, which is insufficient with one fuel cell, to a sufficient level as a new power source for portable electronic devices. Etc.) are conventionally performed. An example is a fuel in which a plurality of fuel cells are arranged on the same plane as described in, for example, Japanese Patent Application Laid-Open No. 2004-079506 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2006-093119 (Patent Document 2). A battery (hereinafter also referred to as a “planar integrated fuel cell”).
特開2004-079506号公報Japanese Patent Laid-Open No. 2004-079506 特開2006-093119号公報JP 2006-093119 A
 携帯用電子機器等の電子機器用の電源として平面集積型燃料電池を適用することを想定した場合、適用され得る様々な電子機器における限られた燃料電池収容スペースの形状や面積などに合わせて、平面集積型燃料電池構造の設計を柔軟に行なえることは極めて有意義である。これは、燃料電池の生産効率の向上(生産工程の簡略化)および生産コスト削減に大きく寄与するためである。 Assuming that a planar integrated fuel cell is applied as a power source for an electronic device such as a portable electronic device, in accordance with the shape and area of the limited fuel cell accommodation space in various electronic devices that can be applied, It is extremely meaningful to be able to flexibly design a planar integrated fuel cell structure. This is because it greatly contributes to improvement of production efficiency (simplification of production process) and reduction of production cost of the fuel cell.
 一般的に、上記特許文献1および2に記載されるような従来の平面集積型燃料電池は、複数の燃料電池セルが1つの燃料供給部を共有する構造を採っている。ここでいう燃料供給部とは、各燃料電池セルに供給される燃料を収容するかまたは流通させる部位をいい、特許文献1における液体燃料貯蔵部3や特許文献2におけるバイポーラープレート20がこれに相当する。しかしこのような構造の場合、燃料電池収容スペースの形状や面積が異なる電子機器に適用するためには、燃料電池セルの集積形態を設計変更するだけでは足りず、燃料供給部全体およびこれに付随する系統を設計し直す必要が生じ、電子機器に合わせた燃料電池構造の設計変更が容易ではなく、燃料電池の生産効率および生産コストの面で不利であった。 Generally, the conventional planar integrated fuel cell as described in Patent Documents 1 and 2 has a structure in which a plurality of fuel cells share one fuel supply unit. Here, the fuel supply unit refers to a part that contains or distributes the fuel supplied to each fuel cell, and includes the liquid fuel storage unit 3 in Patent Document 1 and the bipolar plate 20 in Patent Document 2. Equivalent to. However, in the case of such a structure, in order to apply to an electronic device having a different shape and area of the fuel cell accommodation space, it is not necessary to change only the design of the fuel cell cell integration form. Therefore, it is necessary to redesign the system, and it is not easy to change the design of the fuel cell structure according to the electronic equipment, which is disadvantageous in terms of production efficiency and production cost of the fuel cell.
 本発明者らによって提案される上記課題の解決策は、各燃料電池セル自体に燃料を流通させる燃料流路を付与することによって燃料電池セルのモジュール化を図ることである。これによれば、モジュール(燃料流路を有する燃料電池セル)を設計変更することなく、モジュールの数や配置パターンおよび必要に応じて各燃料電池セルの燃料流路に燃料を誘導するための燃料供給系のみを設計変更することによって、容易に燃料電池収容スペースの形状や面積が異なる電子機器に平面集積型燃料電池を適用することができる。しかしながら、モジュール化された燃料電池セルを用いて平面集積型燃料電池を構築した場合、各燃料電池セルに均一に燃料供給を行なうことが難しいことがあった。 The solution of the above problem proposed by the present inventors is to modularize the fuel cell by providing a fuel flow path through which fuel flows to each fuel cell itself. According to this, without changing the design of the module (fuel cell having the fuel flow path), the number of modules, the arrangement pattern, and the fuel for guiding the fuel to the fuel flow path of each fuel battery cell as required By redesigning only the supply system, the planar integrated fuel cell can be easily applied to electronic devices having different shapes and areas of the fuel cell accommodation space. However, when a planar integrated fuel cell is constructed using modularized fuel cells, it may be difficult to uniformly supply fuel to each fuel cell.
 本発明の目的は、燃料流路を有するモジュール化された燃料電池セルを同一平面上に複数配置した燃料電池であって、各燃料電池セルへの燃料供給の均一性が良好な燃料電池を提供することにある。 An object of the present invention is to provide a fuel cell in which a plurality of modularized fuel cells having fuel flow paths are arranged on the same plane, and a fuel cell with good uniformity of fuel supply to each fuel cell. There is to do.
 本発明は以下のものを含む。
 [1]同一平面上に配置される1以上の第1燃料電池セルおよび1以上の第2燃料電池セルを含む燃料電池であって、
 前記第1燃料電池セルは、
 第1アノード極、第1電解質膜および第1カソード極をこの順で有する第1膜電極複合体と、
 液体燃料を流通させるための第1セル内燃料流路が第1アノード極側表面に配された、前記第1アノード極側に配置される第1流路板と、
 前記第1膜電極複合体と前記第1流路板との間に配置され、前記液体燃料の気化成分を透過可能な第1気液分離層と、
 前記第1セル内燃料流路を覆うように前記第1気液分離層と前記第1流路板との間に配置され、水に対する接触角が70度未満である第1介在層と、
を備え、
 前記第2燃料電池セルは、
 第2アノード極、第2電解質膜および第2カソード極をこの順で有する第2膜電極複合体と、
 液体燃料を流通させるための第2セル内燃料流路が第2アノード極側表面に配された、前記第2アノード極側に配置される第2流路板と、
 前記第2セル内燃料流路を覆うように前記第2流路板における第2アノード極側表面上に配置され、前記液体燃料の気化成分を透過可能な第2気液分離層と、
を備える燃料電池。
The present invention includes the following.
[1] A fuel cell including one or more first fuel cells and one or more second fuel cells arranged on the same plane,
The first fuel battery cell is
A first membrane electrode assembly having a first anode electrode, a first electrolyte membrane, and a first cathode electrode in this order;
A first flow path plate disposed on the first anode electrode side, wherein a first in-cell fuel flow path for circulating liquid fuel is disposed on the first anode electrode side surface;
A first gas-liquid separation layer disposed between the first membrane electrode assembly and the first flow path plate and capable of transmitting a vaporized component of the liquid fuel;
A first intervening layer disposed between the first gas-liquid separation layer and the first flow path plate so as to cover the first in-cell fuel flow path, and having a contact angle with respect to water of less than 70 degrees;
With
The second fuel battery cell is
A second membrane electrode assembly having a second anode electrode, a second electrolyte membrane, and a second cathode electrode in this order;
A second flow path plate disposed on the second anode pole side, wherein a second in-cell fuel flow path for circulating liquid fuel is disposed on the second anode pole side surface;
A second gas-liquid separation layer disposed on the second anode electrode side surface of the second flow path plate so as to cover the fuel flow path in the second cell, and capable of transmitting a vaporized component of the liquid fuel;
A fuel cell comprising:
 [2]すべての前記第1セル内燃料流路および前記第2セル内燃料流路への前記液体燃料の供給流量が略同じとなるように、前記第1燃料電池セルおよび前記第2燃料電池セルが配置されている[1]に記載の燃料電池。 [2] The first fuel cell and the second fuel cell so that the supply flow rates of the liquid fuel to all the first in-cell fuel flow paths and the second in-cell fuel flow paths are substantially the same. The fuel cell according to [1], wherein the cell is disposed.
 [3]1以上の前記第1燃料電池セルおよび1以上の前記第2燃料電池セルをライン状に配列した少なくとも一列の燃料電池セル集合体を含み、
 前記燃料電池セル集合体の少なくとも一端に配置される燃料電池セルは前記第1燃料電池セルである[1]または[2]に記載の燃料電池。
[3] including at least one row of fuel cell assemblies in which one or more first fuel cells and one or more second fuel cells are arranged in a line;
The fuel cell according to [1] or [2], wherein the fuel cell disposed at at least one end of the fuel cell assembly is the first fuel cell.
 [4]前記燃料電池セル集合体は、その両端に配置される2つの前記第1燃料電池セルと、1以上の前記第2燃料電池セルとからなる[3]に記載の燃料電池。 [4] The fuel cell according to [3], wherein the fuel cell assembly includes two first fuel cells arranged at both ends thereof and one or more second fuel cells.
 [5]前記第1セル内燃料流路および前記第2セル内燃料流路のそれぞれに接続され、燃料電池が有する各燃料電池セルへの前記液体燃料の分配を行なうセル外燃料流路を有する燃料分配部をさらに備える[1]~[4]のいずれかに記載の燃料電池。 [5] An out-cell fuel flow path that is connected to each of the first in-cell fuel flow path and the second in-cell fuel flow path and distributes the liquid fuel to each fuel cell of the fuel cell. The fuel cell according to any one of [1] to [4], further comprising a fuel distributor.
 [6]前記燃料分配部は、前記液体燃料を導入するための1つの導入口を有しており、
 前記セル外燃料流路は、前記導入口と接続される幹流路、および、前記幹流路と各セル内燃料流路とを接続する枝流路から構成される[5]に記載の燃料電池。
[6] The fuel distribution section has one inlet for introducing the liquid fuel,
[5] The fuel cell according to [5], wherein the out-cell fuel flow path includes a main flow path connected to the introduction port, and a branch flow path connecting the main flow path and each in-cell fuel flow path.
 [7]前記第1燃料電池セルは、前記第1アノード極上に積層される第1アノード集電層と、前記第1カソード極上に積層される第1カソード集電層とをさらに含み、
 前記第2燃料電池セルは、前記第2アノード極上に積層される第2アノード集電層と、前記第2カソード極上に積層される第2カソード集電層とをさらに含む[1]~[6]のいずれかに記載の燃料電池。
[7] The first fuel cell further includes a first anode current collecting layer laminated on the first anode electrode, and a first cathode current collecting layer laminated on the first cathode electrode,
The second fuel cell further includes a second anode current collecting layer laminated on the second anode electrode and a second cathode current collecting layer laminated on the second cathode electrode. ] The fuel cell in any one of.
 [8]ダイレクトアルコール型燃料電池である[1]~[7]のいずれかに記載の燃料電池。 [8] The fuel cell according to any one of [1] to [7], which is a direct alcohol fuel cell.
 本発明によれば、燃料流路を有するモジュール化された燃料電池セルを同一平面上に複数配置した燃料電池において、各燃料電池セルへの燃料供給の均一性を向上させることができる。本発明の燃料電池は、電子機器、とりわけ携帯電子機器用の電源として有用である。 According to the present invention, in a fuel cell in which a plurality of modular fuel cells having fuel flow paths are arranged on the same plane, the uniformity of fuel supply to each fuel cell can be improved. The fuel cell of the present invention is useful as a power source for electronic devices, particularly portable electronic devices.
本発明に係る燃料電池の一例を示す概略上面図である。It is a schematic top view which shows an example of the fuel cell which concerns on this invention. 図1に示されるII-II線における概略断面図である。FIG. 2 is a schematic sectional view taken along line II-II shown in FIG. 1. 図2に示されるIII-III線における概略断面図である。FIG. 3 is a schematic cross-sectional view taken along line III-III shown in FIG. 2. 図1に示されるIV-IV線における概略断面図である。FIG. 4 is a schematic sectional view taken along line IV-IV shown in FIG. 1. 本発明に係る燃料電池の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the fuel cell which concerns on this invention. 本発明に係る燃料電池の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the fuel cell which concerns on this invention. 第1気化燃料板の一例を示す概略上面図および概略断面図である。It is the schematic top view and schematic sectional drawing which show an example of a 1st vaporization fuel board. 第1気化燃料板の他の例を示す概略上面図および概略断面図である。It is the schematic top view and schematic sectional drawing which show the other example of a 1st vaporization fuel board. 本発明に係る燃料電池に用いる第1燃料電池セルの他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the 1st fuel cell used for the fuel cell which concerns on this invention. 図9に示される第1燃料電池セルが備える第2介在層を示す概略上面図である。It is a schematic top view which shows the 2nd intervening layer with which the 1st fuel battery cell shown by FIG. 9 is provided. 実施例1で作製した燃料電池を示す概略断面図である。1 is a schematic cross-sectional view showing a fuel cell manufactured in Example 1. FIG. 実施例1で用いた燃料分配部を示す概略斜視図である。FIG. 3 is a schematic perspective view showing a fuel distribution unit used in Example 1. 実施例1で作製した燃料電池における燃料電池セルごとの出力電圧の変化を示す図である。It is a figure which shows the change of the output voltage for every fuel cell in the fuel cell produced in Example 1. FIG.
 以下、本発明の燃料電池を実施の形態を示して詳細に説明する。
 図1は本発明に係る燃料電池の一例を示す概略上面図であり、図2は図1に示されるII-II線における概略断面図、図3は図2に示されるIII-III線における概略断面図である。また、図4は図1に示されるIV-IV線における概略断面図である。
Hereinafter, the fuel cell of the present invention will be described in detail with reference to embodiments.
1 is a schematic top view showing an example of a fuel cell according to the present invention, FIG. 2 is a schematic cross-sectional view taken along line II-II shown in FIG. 1, and FIG. 3 is a schematic cross-sectional view taken along line III-III shown in FIG. It is sectional drawing. FIG. 4 is a schematic sectional view taken along line IV-IV shown in FIG.
 これらの図面に示される燃料電池100は、同一平面上に配置された2つの第1燃料電池セル101と1つの第2燃料電池セル102とを含む平面集積型燃料電池であり、より具体的には、2つの第1燃料電池セル101および1つの第2燃料電池セル102をライン状に配列してなる燃料電池セル集合体110と、燃料電池セル集合体110の側面に隣接して配置された燃料分配部150とから構成される。燃料電池100を構成する燃料電池セルは、電気的に直列接続または並列接続される。 A fuel cell 100 shown in these drawings is a planar integrated fuel cell including two first fuel cells 101 and one second fuel cell 102 arranged on the same plane, more specifically. Is arranged adjacent to the side surface of the fuel cell assembly 110, and the fuel cell assembly 110 in which two first fuel cells 101 and one second fuel cell 102 are arranged in a line. And a fuel distributor 150. The fuel cells constituting the fuel cell 100 are electrically connected in series or in parallel.
 燃料電池100は、3つの燃料電池セルから構成される燃料電池セル集合体110の両端の燃料電池セルに第1燃料電池セル101を用い、中央の燃料電池セルに第2燃料電池セル102を用いたことを1つの特徴としている。第1燃料電池セル101および第2燃料電池セル102はともに、セル内に燃料流路を有するモジュール化された燃料電池セルであるが、互いに異なるセル構造を有している。 The fuel cell 100 uses the first fuel cell 101 as the fuel cell at both ends of the fuel cell assembly 110 composed of three fuel cells, and uses the second fuel cell 102 as the central fuel cell. It is one of the features. Both the first fuel cell 101 and the second fuel cell 102 are modularized fuel cells having fuel flow paths in the cells, but have different cell structures.
 図2を参照して、第1燃料電池セル101は、第1アノード極2、第1電解質膜1および第1カソード極3をこの順で有する第1膜電極複合体4;第1アノード極2上に積層され、これに電気的に接続された第1アノード集電層5;第1カソード極3上に積層され、これに電気的に接続された第1カソード集電層6;第1アノード集電層5に接するように第1アノード集電層5上に積層される第1アノード保湿層7;第1カソード集電層6に接するように第1カソード集電層6上に積層される第1カソード保湿層8;第1アノード極2側(第1アノード極2の下方)に配置され、液体燃料を流通させるための第1セル内燃料流路10aが第1アノード極2側表面に配された第1流路板10;第1膜電極複合体4と第1流路板10との間に配置され、液体燃料の気化成分を透過可能な第1気液分離層12;第1気液分離層12と第1アノード保湿層7との間に配置され、第1気化燃料収容部9aを具備する第1気化燃料板9;および、第1セル内燃料流路10aを覆うように第1気液分離層12と第1流路板10との間に配置される第1介在層11から構成されている。第1介在層11は、水に対する接触角が70度未満の層である。 Referring to FIG. 2, the first fuel cell 101 includes a first membrane electrode assembly 4 having a first anode electrode 2, a first electrolyte membrane 1, and a first cathode electrode 3 in this order; First anode current collecting layer 5 laminated on and electrically connected thereto; first cathode current collecting layer 6 laminated on first cathode electrode 3 and electrically connected thereto; first anode A first anode moisturizing layer 7 laminated on the first anode current collecting layer 5 so as to be in contact with the current collecting layer 5; laminated on the first cathode current collecting layer 6 so as to be in contact with the first cathode current collecting layer 6 First cathode moisturizing layer 8; disposed on the first anode electrode 2 side (below the first anode electrode 2), and a first in-cell fuel flow path 10a for flowing liquid fuel is formed on the surface of the first anode electrode 2 side. The first flow path plate 10 disposed between the first membrane electrode assembly 4 and the first flow path plate 10. The first gas-liquid separation layer 12 that is permeable to the vaporized component of the liquid fuel; disposed between the first gas-liquid separation layer 12 and the first anode moisturizing layer 7, and includes a first vaporized fuel storage portion 9a. A first vaporized fuel plate 9; and a first intervening layer 11 disposed between the first gas-liquid separation layer 12 and the first flow channel plate 10 so as to cover the first in-cell fuel flow channel 10a. ing. The first intervening layer 11 is a layer having a contact angle with water of less than 70 degrees.
 第2燃料電池セル102は、第2アノード極2’、第2電解質膜1’および第2カソード極3’をこの順で有する第2膜電極複合体4’;第2アノード極2’上に積層され、これに電気的に接続された第2アノード集電層5’;第2カソード極3’上に積層され、これに電気的に接続された第2カソード集電層6’;第2アノード集電層5’に接するように第2アノード集電層5’上に積層される第2アノード保湿層7’;第2カソード集電層6’に接するように第2カソード集電層6’上に積層される第2カソード保湿層8’;第2アノード極2’側(第2アノード極2’の下方)に配置され、液体燃料を流通させるための第2セル内燃料流路10a’が第2アノード極2’側表面に配された第2流路板10’;第2膜電極複合体4’と第2流路板10’との間に配置され、液体燃料の気化成分を透過可能な第2気液分離層12’;および、第2気液分離層12’と第2アノード保湿層7’との間に配置され、第2気化燃料収容部9a’を具備する第2気化燃料板9’から構成されている。 The second fuel cell 102 includes a second membrane electrode assembly 4 ′ having a second anode electrode 2 ′, a second electrolyte membrane 1 ′, and a second cathode electrode 3 ′ in this order; on the second anode electrode 2 ′. Second anode current collecting layer 5 ′ laminated and electrically connected thereto; second cathode current collecting layer 6 ′ laminated on second cathode electrode 3 ′ and electrically connected thereto; A second anode moisture retention layer 7 ′ laminated on the second anode current collection layer 5 ′ so as to be in contact with the anode current collection layer 5 ′; a second cathode current collection layer 6 so as to be in contact with the second cathode current collection layer 6 ′ 'Second cathode moisturizing layer 8' stacked on the second anode electrode 2 'side (below the second anode electrode 2') and the second in-cell fuel flow path 10a for flowing liquid fuel A second flow path plate 10 'arranged on the surface of the second anode electrode 2'; a second membrane electrode assembly 4 '; A second gas-liquid separation layer 12 ′ disposed between the two flow path plates 10 ′ and capable of transmitting a vaporized component of the liquid fuel; and a second gas-liquid separation layer 12 ′ and a second anode moisturizing layer 7 ′ And a second vaporized fuel plate 9 ′ having a second vaporized fuel storage portion 9a ′.
 これらの燃料電池セルの相違点は、第1燃料電池セル101が第1気液分離層12と第1流路板10との間に配置される第1介在層11を有する一方、第2燃料電池セル102はこのような介在層を有しておらず、第2セル内燃料流路10a’上に直接、第2気液分離層12’が積層されていることである。 The difference between these fuel cells is that the first fuel cell 101 has the first intervening layer 11 disposed between the first gas-liquid separation layer 12 and the first flow path plate 10, while the second fuel cell 101 The battery cell 102 does not have such an intervening layer, and the second gas-liquid separation layer 12 ′ is laminated directly on the second in-cell fuel flow path 10a ′.
 図3および図4を参照して、燃料分配部150は、導入口151を通して導入された液体燃料を各燃料電池セル(すべての第1燃料電池セル101および第2燃料電池セル102)に分配するための、燃料電池セルとは独立した部材であり、その内部に、第1セル内燃料流路10aおよび第2セル内燃料流路10a’のそれぞれに接続されるセル外燃料流路155を有する。たとえば、セル外燃料流路155は、導入口151と接続された幹流路152、および、幹流路152と各セル内燃料流路とを接続する枝流路153から構成することができる。 3 and 4, the fuel distributor 150 distributes the liquid fuel introduced through the inlet 151 to each fuel cell (all the first fuel cells 101 and the second fuel cells 102). Therefore, it is a member independent of the fuel cell, and has an out-cell fuel flow path 155 connected to each of the first in-cell fuel flow path 10a and the second in-cell fuel flow path 10a ′. . For example, the out-cell fuel flow path 155 can be constituted by a main flow path 152 connected to the inlet 151 and a branch flow path 153 connecting the main flow path 152 and each in-cell fuel flow path.
 燃料分配部150は、各燃料電池セルが有するセル内燃料流路の入口端部が配置された燃料電池セル集合体110の長手端面に隣接して付設された略直方体形状の部材であり、その導入口151は、燃料分配部150の長手方向(燃料電池セルの配列方向と平行)に関しておよそ中央部に設けられている。 The fuel distributor 150 is a substantially rectangular parallelepiped member attached adjacent to the longitudinal end surface of the fuel cell assembly 110 in which the inlet end of the in-cell fuel flow path of each fuel cell is disposed. The introduction port 151 is provided approximately at the center with respect to the longitudinal direction of the fuel distribution unit 150 (parallel to the arrangement direction of the fuel cells).
 互いにセル構造の異なる第1燃料電池セル101および第2燃料電池セル102を組み合わせ、これらを適切な位置に配置した燃料電池100によれば、各燃料電池セルへの燃料供給の均一性を改善することができる。すなわち、燃料電池セルが接続されていない状態の燃料分配部150を考えた場合、導入口151から枝流路153の出口側端部までの距離が長いこと、および、図3のX、Yで示されるようなセル外燃料流路155の端部において気泡が滞留しやすいことなどに起因して、燃料分配部150のセル外燃料流路155の出口側端部(セル内燃料流路に接続されることとなる端部、すなわち枝流路153の出口)における液体燃料の圧力損失は、導入口151からより遠くに位置する出口側端部ほど大きくなる。 According to the fuel cell 100 in which the first fuel cell 101 and the second fuel cell 102 having different cell structures are combined and arranged at appropriate positions, the uniformity of fuel supply to each fuel cell is improved. be able to. That is, when considering the fuel distributor 150 in a state where no fuel cells are connected, the distance from the inlet 151 to the outlet end of the branch channel 153 is long, and X and Y in FIG. Due to the fact that bubbles tend to stay at the end of the fuel flow path 155 outside the cell as shown, the outlet side end of the fuel flow path 155 outside the cell (connected to the fuel flow path inside the cell) The pressure loss of the liquid fuel at the end to be performed, that is, the outlet of the branch flow path 153 becomes larger at the outlet side end located farther from the inlet 151.
 このような圧力損失の不均一性の問題は、燃料分配部150に同じセル構造を有する燃料電池セルを接続した場合でも同様である。燃料分配部150に接続される燃料電池セル集合体110を構成する燃料電池セルがすべて同じセル構造を有する場合、セル外燃料流路155の出口側端部における液体燃料の圧力損失は、導入口151からより遠くに位置する燃料電池セルに接続される端部の方がより大きくなる。導入口151が燃料分配部150の長手方向における中央部に設置されるような形態においては、燃料電池セル集合体110を構成する燃料電池セルがすべて同じセル構造を有する場合、燃料電池セル集合体110の両端に配置される燃料電池セルに接続される端部における上記圧力損失が相対的に大きくなり、セル内燃料流路への液体燃料の供給流量が相対的に小さくなってしまう。 Such a problem of nonuniform pressure loss is the same even when fuel cells having the same cell structure are connected to the fuel distributor 150. When the fuel cells constituting the fuel cell assembly 110 connected to the fuel distributor 150 all have the same cell structure, the pressure loss of the liquid fuel at the outlet side end of the out-cell fuel flow path 155 The end portion connected to the fuel cell located farther from 151 becomes larger. In the configuration in which the introduction port 151 is installed at the center in the longitudinal direction of the fuel distribution unit 150, when all the fuel cells constituting the fuel cell assembly 110 have the same cell structure, the fuel cell assembly. The pressure loss at the ends connected to the fuel cells arranged at both ends of 110 becomes relatively large, and the supply flow rate of liquid fuel to the in-cell fuel flow path becomes relatively small.
 これに対して、上記圧力損失が相対的に大きくなる燃料電池セル集合体110の両端に、親水性を有する第1介在層11をセル内燃料流路10a上に備えた第1燃料電池セル101を配置することにより、その親水性(濡れ性)に基づいて液体燃料を引き込む力が生じる(セル内燃料流路内における液体燃料の圧力損失が低減される)ため、燃料電池セル集合体110の両端に配置された燃料電池セルのセル内燃料流路への液体燃料の供給流量が増加し、燃料電池セル間での燃料供給の均一化を図ることができ、さらには、すべての第1セル内燃料流路10aおよび第2セル内燃料流路10a’への液体燃料の供給流量を略同じにすることが可能となる。 On the other hand, the first fuel cell 101 having the first intervening layer 11 having hydrophilicity on both ends of the fuel cell assembly 110 where the pressure loss is relatively large is provided on the in-cell fuel flow path 10a. Since a force for drawing the liquid fuel is generated on the basis of the hydrophilicity (wetting property) (the pressure loss of the liquid fuel in the in-cell fuel flow path is reduced), the fuel cell assembly 110 The supply flow rate of the liquid fuel to the in-cell fuel flow path of the fuel cells arranged at both ends can be increased, the fuel supply can be made uniform among the fuel cells, and all the first cells can be made uniform. The supply flow rate of the liquid fuel to the inner fuel flow path 10a and the second cell fuel flow path 10a ′ can be made substantially the same.
 燃料供給の均一化により、安定的な発電が可能になるとともに、燃料不足であった燃料電池セルの発電特性を高レベルに引き上げることができるため、燃料電池全体としての発電特性を向上させることができる。また、燃料電池セル間での発電のばらつきが小さくなるため、燃料電池セル間での温度のばらつきも小さくなる。このこともまた安定的な発電をもたらす。 Uniform fuel supply enables stable power generation and the power generation characteristics of fuel cells that have been fuel deficient can be raised to a high level, thus improving the power generation characteristics of the entire fuel cell. it can. In addition, since variation in power generation between fuel cells is reduced, temperature variation between fuel cells is also reduced. This also leads to stable power generation.
 燃料電池が有する燃料電池セルの数は2以上であれば特に制限されないが、好ましくは3以上である。図5は、燃料電池セル集合体110が、ライン状に配列された4つの燃料電池セルからなる形態を示した、図3と同様の概略断面図である。この例においても、導入口151が燃料分配部150の長手方向におけるおよそ中央部に設置されており、燃料電池セル間での燃料供給の均一化を図るために、燃料電池セル集合体110の両端に第1介在層11を備えた第1燃料電池セル101が配置されている。 Although the number of fuel cells included in the fuel cell is not particularly limited as long as it is 2 or more, it is preferably 3 or more. FIG. 5 is a schematic cross-sectional view similar to FIG. 3 showing a form in which the fuel cell assembly 110 is composed of four fuel cells arranged in a line. Also in this example, the introduction port 151 is installed at approximately the center in the longitudinal direction of the fuel distributor 150, and both ends of the fuel cell assembly 110 are arranged in order to make the fuel supply uniform between the fuel cells. The 1st fuel cell 101 provided with the 1st intervening layer 11 is arranged.
 図6は、燃料電池セル集合体が、ライン状に配列された3つの燃料電池セルからなり、導入口151が燃料分配部150の長手方向における一方の端部に設置された形態を示した、図3と同様の概略断面図である。かかる形態においては、導入口151からセル外燃料流路155の出口側端部までの距離が特に長く、図6のZで示されるようなセル外燃料流路155の端部(導入口設置位置とは反対側の端部)において気泡が滞留しやすいことから、燃料電池セル間での燃料供給の均一化を図るために、燃料電池セル集合体110における導入口設置位置とは反対側の端部に第1介在層11を備えた第1燃料電池セル101が配置されている。 FIG. 6 shows a mode in which the fuel cell assembly is composed of three fuel cells arranged in a line, and the introduction port 151 is installed at one end in the longitudinal direction of the fuel distribution unit 150. FIG. 4 is a schematic sectional view similar to FIG. 3. In such a configuration, the distance from the inlet 151 to the outlet side end of the out-cell fuel flow path 155 is particularly long, and the end of the out-cell fuel flow path 155 as shown by Z in FIG. In order to make the fuel supply uniform between the fuel cells, the end on the side opposite to the inlet installation position in the fuel cell assembly 110 is likely to be retained. A first fuel cell 101 having a first intervening layer 11 is disposed in the part.
 なお、本発明の燃料電池は、たとえばライン状に配列された複数の燃料電池セルからなる燃料電池セル集合体を2以上含むものであってもよく、また、燃料分配部を2以上含むものであってもよい。1つの燃料分配部の対向する2つの側面にそれぞれ燃料電池セル集合体を結合させるようにしてもよい。 The fuel cell of the present invention may include, for example, two or more fuel cell assemblies composed of a plurality of fuel cells arranged in a line, and includes two or more fuel distribution portions. There may be. You may make it couple | bond a fuel cell assembly with two side surfaces which one fuel distribution part opposes, respectively.
 以上のように、本発明に係る燃料電池においては、セル外燃料流路の出口側端部(セル内燃料流路との接続点)における液体燃料の圧力損失を考慮し、相対的に当該圧力損失の大きい箇所に、第1介在層の親水性に起因してセル内燃料流路内における液体燃料の圧力損失が相対的に低い第1燃料電池セルを配置する一方、相対的に圧力損失の小さい箇所に第1介在層を有しない第2燃料電池セルを配置することにより、圧力損失の全体的なバランスをとり、燃料電池セル間での燃料供給の均一化を図り、好ましくはすべての第1セル内燃料流路および第2セル内燃料流路への液体燃料の供給流量を略同じにする。 As described above, in the fuel cell according to the present invention, the pressure loss of the liquid fuel at the outlet side end portion (connection point with the in-cell fuel flow path) of the out-cell fuel flow path is considered, and the relative pressure The first fuel battery cell in which the pressure loss of the liquid fuel in the in-cell fuel flow path is relatively low due to the hydrophilicity of the first intervening layer is disposed at the location where the loss is large, while the pressure loss is relatively low. By disposing the second fuel cell not having the first intervening layer in a small place, the overall pressure loss is balanced, and the fuel supply between the fuel cells is made uniform. The supply flow rates of the liquid fuel to the in-cell fuel flow path and the second in-cell fuel flow path are made substantially the same.
 本発明に係る燃料電池はまた、セル内に燃料流路を有する燃料電池セルをモジュールとして使用したものであるので、モジュールの数や配置パターンおよび燃料分配部の形状等のみを設計変更することによって、容易に燃料電池収容スペースの形状や面積が異なる電子機器に適用することができる。このような燃料電池構造設計の柔軟性は、燃料電池の生産効率の向上(生産工程の簡略化)および生産コスト削減に極めて有効である。 Since the fuel cell according to the present invention uses a fuel cell having a fuel flow path in the cell as a module, only the number of modules, the arrangement pattern, the shape of the fuel distribution part, etc. are changed in design. Thus, the present invention can be easily applied to electronic devices having different shapes and areas of fuel cell accommodation spaces. Such flexibility of the fuel cell structure design is extremely effective for improving the production efficiency of the fuel cell (simplification of the production process) and reducing the production cost.
 次に、本発明の燃料電池を構成する各部材等について詳細に説明する。
 (1)第1燃料電池セル
 〔第1電解質膜〕
 第1膜電極複合体4を構成する第1電解質膜1は、第1アノード極2から第1カソード極3へプロトンを伝達する機能と、第1アノード極2と第1カソード極3との電気的絶縁性を保ち、短絡を防止する機能を有する。電解質膜の材質は、プロトン伝導性を有し、かつ電気的絶縁性を有する材質であれば特に限定されず、高分子膜、無機膜またはコンポジット膜を用いることができる。高分子膜としては、たとえば、パーフルオロスルホン酸系電解質膜である、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成社製)、フレミオン(登録商標、旭硝子社製)などが挙げられる。また、スチレン系グラフト重合体、トリフルオロスチレン誘導体共重合体、スルホン化ポリアリーレンエーテル、スルホン化ポリエーテルエーテルケトン、スルホン化ポリイミド、スルホン化ポリベンゾイミダゾール、ホスホン化ポリベンゾイミダゾール、スルホン化ポリフォスファゼンなどの炭化水素系電解質膜などを用いることもできる。
Next, each member constituting the fuel cell of the present invention will be described in detail.
(1) First fuel cell [First electrolyte membrane]
The first electrolyte membrane 1 constituting the first membrane electrode assembly 4 has a function of transmitting protons from the first anode electrode 2 to the first cathode electrode 3, and the electricity between the first anode electrode 2 and the first cathode electrode 3. It has the function of maintaining the electrical insulation and preventing short circuit. The material of the electrolyte membrane is not particularly limited as long as it has proton conductivity and electrical insulation, and a polymer membrane, an inorganic membrane, or a composite membrane can be used. As the polymer membrane, for example, Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), which is a perfluorosulfonic acid electrolyte membrane, etc. Can be mentioned. Also, styrene-based graft polymer, trifluorostyrene derivative copolymer, sulfonated polyarylene ether, sulfonated polyetheretherketone, sulfonated polyimide, sulfonated polybenzimidazole, phosphonated polybenzimidazole, sulfonated polyphosphazene. Hydrocarbon electrolyte membranes such as can also be used.
 無機膜としては、たとえばリン酸ガラス、硫酸水素セシウム、ポリタングストリン酸、ポリリン酸アンモニウムなどからなる膜が挙げられる。コンポジット膜としては、タングステン酸、硫酸水素セシウム、ポリタングストリン酸等の無機物とポリイミド、ポリエーテルエーテルケトン、パーフルオロスルホン酸等の有機物とのコンポジット膜などが挙げられる。第1電解質膜1の厚みはたとえば1~200μmである。 Examples of the inorganic film include films made of glass phosphate, cesium hydrogen sulfate, polytungstophosphoric acid, ammonium polyphosphate, and the like. Examples of the composite film include a composite film of an inorganic material such as tungstic acid, cesium hydrogen sulfate, and polytungstophosphoric acid and an organic material such as polyimide, polyetheretherketone, and perfluorosulfonic acid. The thickness of the first electrolyte membrane 1 is, for example, 1 to 200 μm.
 〔第1アノード極および第1カソード極〕
 第1電解質膜1の一方の表面に積層される第1アノード極2および他方の表面に積層される第1カソード極3にはそれぞれ、少なくとも触媒と電解質とを含有する多孔質層からなる触媒層が設けられる。第1アノード極2において触媒(アノード触媒)は、燃料からプロトンと電子とを生成する反応を触媒し、電解質は、生成したプロトンを第1電解質膜1へ伝導する機能を有する。第1カソード極3において触媒は、電解質を伝導してきたプロトンと酸化剤(空気など)から水を生成する反応を触媒する。
[First anode electrode and first cathode electrode]
The first anode electrode 2 laminated on one surface of the first electrolyte membrane 1 and the first cathode electrode 3 laminated on the other surface are each a catalyst layer comprising a porous layer containing at least a catalyst and an electrolyte. Is provided. In the first anode electrode 2, a catalyst (anode catalyst) catalyzes a reaction that generates protons and electrons from the fuel, and the electrolyte has a function of conducting the generated protons to the first electrolyte membrane 1. In the first cathode electrode 3, the catalyst catalyzes a reaction for generating water from protons conducted through the electrolyte and an oxidant (such as air).
 第1アノード極2および第1カソード極3の触媒は、カーボンやチタン等の導電体の表面に担持されたものでもよく、なかでも、水酸基やカルボキシル基等の親水性官能基を有するカーボンやチタン等の導電体の表面に担持されていることが好ましい。これにより、第1アノード極2および第1カソード極3の保水性を向上させることができる。保水性の向上により、プロトン移動に伴う第1電解質膜1の抵抗や、第1アノード極2および第1カソード極3における電位分布を改善することができる。 The catalyst of the first anode electrode 2 and the first cathode electrode 3 may be supported on the surface of a conductor such as carbon or titanium, and in particular, carbon or titanium having a hydrophilic functional group such as a hydroxyl group or a carboxyl group. It is preferable to be carried on the surface of a conductor such as. Thereby, the water retention of the 1st anode pole 2 and the 1st cathode pole 3 can be improved. By improving the water retention, it is possible to improve the resistance of the first electrolyte membrane 1 accompanying proton transfer and the potential distribution in the first anode electrode 2 and the first cathode electrode 3.
 第1アノード極2および第1カソード極3はそれぞれ、触媒層上に積層されるアノード導電性多孔質層(アノードガス拡散層)、カソード導電性多孔質層(カソードガス拡散層)を備えていてもよい。これらの導電性多孔質層は、第1アノード極2、第1カソード極3に供給されるガス(気化燃料または酸化剤)を面内において拡散させる機能を有するとともに、触媒層と電子の授受を行なう機能を有する。アノード導電性多孔質層およびカソード導電性多孔質層としては、比抵抗が小さく、電圧の低下が抑制されることから、カーボン材料;導電性高分子;Au、Pt、Pd等の貴金属;Ti、Ta、W、Nb、Ni、Al、Cu、Ag、Zn等の遷移金属;これらの金属の窒化物または炭化物等;ならびに、ステンレスに代表されるこれらの金属を含有する合金などからなる多孔質材料を用いることが好ましい。Cu、Ag、Zn等の、酸性雰囲気下で耐腐食性に乏しい金属を用いる場合には、Au、Pt、Pdなどの耐腐食性を有する貴金属、導電性高分子、導電性窒化物、導電性炭化物、導電性酸化物等により表面処理(皮膜形成)を行なってもよい。より具体的には、アノード導電性多孔質層およびカソード導電性多孔質層として、たとえば、上記貴金属、遷移金属または合金からなる発泡金属、金属織物および金属焼結体;ならびにカーボンペーパー、カーボンクロス、カーボン粒子を含有するエポキシ樹脂膜などを好適に用いることができる。 Each of the first anode electrode 2 and the first cathode electrode 3 includes an anode conductive porous layer (anode gas diffusion layer) and a cathode conductive porous layer (cathode gas diffusion layer) laminated on the catalyst layer. Also good. These conductive porous layers have a function of diffusing gas (vaporized fuel or oxidant) supplied to the first anode electrode 2 and the first cathode electrode 3 in the plane, and exchange of electrons with the catalyst layer. Has the function to perform. As the anode conductive porous layer and the cathode conductive porous layer, since the specific resistance is small and the decrease in voltage is suppressed, carbon materials; conductive polymers; noble metals such as Au, Pt, Pd; Ti, Porous materials comprising transition metals such as Ta, W, Nb, Ni, Al, Cu, Ag, Zn; nitrides or carbides of these metals; and alloys containing these metals typified by stainless steel Is preferably used. In the case of using a metal having poor corrosion resistance in an acidic atmosphere, such as Cu, Ag, Zn, etc., noble metals having resistance to corrosion such as Au, Pt, Pd, conductive polymers, conductive nitrides, conductive Surface treatment (film formation) may be performed with carbide, conductive oxide, or the like. More specifically, as the anode conductive porous layer and the cathode conductive porous layer, for example, foam metal, metal fabric and metal sintered body made of the above-mentioned noble metal, transition metal or alloy; and carbon paper, carbon cloth, An epoxy resin film containing carbon particles can be suitably used.
 〔第1アノード集電層および第1カソード集電層〕
 第1アノード集電層5、第1カソード集電層6はそれぞれ、第1アノード極2上、第1カソード極3上に積層される。第1アノード集電層5および第1カソード集電層6はそれぞれ、第1アノード極2、第1カソード極3における電子を集電する機能と、電気的配線を行なう機能とを有する。集電層の材質は、比抵抗が小さく、面方向に電流を取り出しても電圧の低下が抑制されることから、金属であることが好ましく、なかでも、電子伝導性を有し、酸性雰囲気下で耐腐食性を有する金属であることがより好ましい。このような金属としては、Au、Pt、Pd等の貴金属;Ti、Ta、W、Nb、Ni、Al、Cu、Ag、Zn等の遷移金属;およびこれらの金属の窒化物または炭化物等;ならびに、ステンレスに代表されるこれらの金属を含有する合金などが挙げられる。Cu、Ag、Zn等の、酸性雰囲気下で耐腐食性に乏しい金属を用いる場合には、Au、Pt、Pdなどの耐腐食性を有する貴金属、導電性高分子、導電性窒化物、導電性炭化物、導電性酸化物等により表面処理(皮膜形成)を行なってもよい。なお、アノード導電性多孔質層およびカソード導電性多孔質層が、たとえば金属等からなり、導電性が比較的高い場合には、第1アノード集電層および第1カソード集電層は省略されてもよい。
[First anode current collecting layer and first cathode current collecting layer]
The first anode current collecting layer 5 and the first cathode current collecting layer 6 are laminated on the first anode electrode 2 and the first cathode electrode 3, respectively. The first anode current collecting layer 5 and the first cathode current collecting layer 6 have a function of collecting electrons in the first anode electrode 2 and the first cathode electrode 3 and a function of performing electrical wiring, respectively. The material of the current collecting layer is preferably a metal because it has a small specific resistance and suppresses a decrease in voltage even when a current is taken in the plane direction. In particular, it has electron conductivity and has an acidic atmosphere. More preferably, the metal has corrosion resistance. Such metals include noble metals such as Au, Pt, Pd; transition metals such as Ti, Ta, W, Nb, Ni, Al, Cu, Ag, Zn; and nitrides or carbides of these metals; and And alloys containing these metals typified by stainless steel. In the case of using a metal having poor corrosion resistance in an acidic atmosphere, such as Cu, Ag, Zn, etc., noble metals having resistance to corrosion such as Au, Pt, Pd, conductive polymers, conductive nitrides, conductive Surface treatment (film formation) may be performed with carbide, conductive oxide, or the like. When the anode conductive porous layer and the cathode conductive porous layer are made of, for example, metal and the conductivity is relatively high, the first anode current collecting layer and the first cathode current collecting layer are omitted. Also good.
 より具体的には、第1アノード集電層5は、気化燃料を第1アノード極2へ誘導するための厚み方向に貫通する貫通孔(開口)を複数備える、上記金属材料などからなるメッシュ形状またはパンチングメタル形状を有する平板であることができる。この貫通孔は、第1アノード極2の触媒層で生成する副生ガス(CO2ガス等)を第1気化燃料収容部9a側へ誘導するための経路としても機能する。同様に、第1カソード集電層6は、酸化剤(たとえば燃料電池外部の空気)を第1カソード極3の触媒層に供給するための厚み方向に貫通する貫通孔(開口)を複数備える、上記金属材料などからなるメッシュ形状またはパンチングメタル形状を有する平板であることができる。 More specifically, the first anode current collecting layer 5 has a mesh shape made of the above metal material or the like having a plurality of through holes (openings) penetrating in the thickness direction for guiding the vaporized fuel to the first anode electrode 2. Or it can be a flat plate having a punching metal shape. This through hole also functions as a path for guiding the by-product gas (CO 2 gas or the like) generated in the catalyst layer of the first anode electrode 2 to the first vaporized fuel storage unit 9a side. Similarly, the first cathode current collecting layer 6 includes a plurality of through holes (openings) penetrating in the thickness direction for supplying an oxidizing agent (for example, air outside the fuel cell) to the catalyst layer of the first cathode electrode 3. It can be a flat plate having a mesh shape or a punching metal shape made of the above metal material.
 〔第1流路板〕
 第1流路板10は、液体燃料を流通させるための第1セル内燃料流路10aが第1アノード極2側表面に形成された板状体であり、燃料電池の第1アノード極2側に配置される。第1セル内燃料流路10aは、たとえば上記板状体の一方の表面に形成された溝(凹部)からなることができる。第1セル内燃料流路10aの形状(パターン)は特に制限されないが、第1アノード極2全面にできるだけ均一に気化燃料を供給できるよう、流路板表面のできるだけ広い範囲にわたって、均一に配置することが好ましい。図3に流路パターンの好ましい一例を示している。図3に示される第1流路板10および第2流路板10’の斜線部は溝(凹部)であることを示している(図5、6、11も同様)。図3に示される第1セル内燃料流路10aおよび第2セル内燃料流路10a’はそれぞれ、4箇所でセル外燃料流路155と接続されている。セル外燃料流路155と接続された4つの流路は一旦一つの流路に集約され、この流路から5本の流路が枝状に等間隔を置いて延びている。なお、図3の各燃料電池セルの周縁部に描かれている丸(それぞれ計7個)は、各部材間の締結に用いるネジ孔を示している(図5、6、11も同様)。
[First flow path plate]
The first flow path plate 10 is a plate-like body in which a first in-cell fuel flow path 10a for flowing liquid fuel is formed on the surface of the first anode electrode 2 side, and the first anode electrode 2 side of the fuel cell. Placed in. The first in-cell fuel flow path 10a can be formed of, for example, a groove (concave portion) formed on one surface of the plate-like body. The shape (pattern) of the first in-cell fuel flow path 10a is not particularly limited, but is arranged uniformly over the widest possible range of the flow path plate surface so that vaporized fuel can be supplied as uniformly as possible to the entire surface of the first anode electrode 2. It is preferable. FIG. 3 shows a preferred example of the flow path pattern. The hatched portions of the first flow path plate 10 and the second flow path plate 10 ′ shown in FIG. 3 indicate grooves (recesses) (the same applies to FIGS. 5, 6, and 11). The first in-cell fuel flow path 10a and the second in-cell fuel flow path 10a ′ shown in FIG. 3 are connected to the out-cell fuel flow path 155 at four locations, respectively. The four flow paths connected to the out-cell fuel flow path 155 are once aggregated into one flow path, and five flow paths extend from the flow path at regular intervals in a branch shape. Note that the circles (seven in each case) drawn on the periphery of each fuel cell in FIG. 3 indicate screw holes used for fastening between the members (the same applies to FIGS. 5, 6, and 11).
 流路形状の他の例を挙げれば、分岐部分を有さない流路形状(たとえば、セル外燃料流路との接続箇所から直線状に延びる複数の流路)、網目状の流路、表面に形成された大きな凹部からなる槽型の流路などである。 Other examples of the channel shape include a channel shape that does not have a branched portion (for example, a plurality of channels that extend linearly from the connection point with the fuel flow path outside the cell), a mesh-like channel, and a surface. A tank-shaped flow path formed of a large concave portion formed on the surface.
 セル内流路の幅および深さは特に制限されないが、たとえばそれぞれ0.2~1.5mm程度(とりわけ槽型流路の場合はこれより大きくなり得る)、0.1~0.6mm程度である。 The width and depth of the channel in the cell are not particularly limited, but for example, each is about 0.2 to 1.5 mm (especially larger in the case of a tank type channel), about 0.1 to 0.6 mm. is there.
 第1流路板10は、プラスチック材料または金属材料などから作製することができる。プラスチック材料としては、たとえば、ポリフェニレンサルファイド(PPS)、ポリメタクリル酸メチル(PMMA)、アクリロニトリルブタジエンスチレン(ABS)、ポリ塩化ビニル、ポリエチレン(PE)、ポリエチレンテレフタラート(PET)、ポリエーテルエーテルケトン(PEEK)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などを挙げることができる。金属材料としては、たとえば、チタン、アルミニウム等のほか、ステンレス、マグネシウム合金等の合金材料を用いることができる。 The first flow path plate 10 can be made of a plastic material or a metal material. Examples of the plastic material include polyphenylene sulfide (PPS), polymethyl methacrylate (PMMA), acrylonitrile butadiene styrene (ABS), polyvinyl chloride, polyethylene (PE), polyethylene terephthalate (PET), polyether ether ketone (PEEK). ), Polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and the like. As the metal material, for example, alloy materials such as stainless steel and magnesium alloy can be used in addition to titanium and aluminum.
 〔第1気液分離層〕
 第1膜電極複合体4と第1流路板10との間であって、後述する第1介在層11の第1アノード極2側表面上に配置される第1気液分離層12は、気化燃料透過性(液体燃料の気化成分を透過できる性質)かつ液体燃料不透過性の疎水性を有する多孔質層であり、第1アノード極2への燃料の気化供給を可能とする気液分離能を有する層である。第1気液分離層12は、第1アノード極2へ供給される気化燃料の量または濃度を適切量に制御(制限)するとともに、均一化する機能をも有する。第1気液分離層12を設けることにより、燃料のクロスオーバーを効果的に抑制でき、発電部に温度ムラが生じにくく、安定した発電状態を維持することができる。
[First gas-liquid separation layer]
The first gas-liquid separation layer 12 disposed between the first membrane electrode assembly 4 and the first flow path plate 10 and on the surface of the first intervening layer 11 described later on the first anode electrode 2 side, Gas-liquid separation that is a porous layer that is permeable to vaporized fuel (property of vaporized components of liquid fuel) and has a hydrophobic property that is impermeable to liquid fuel, and enables vaporized supply of fuel to the first anode electrode 2 It is a layer having a function. The first gas-liquid separation layer 12 controls (limits) the amount or concentration of vaporized fuel supplied to the first anode electrode 2 to an appropriate amount and also has a function of making it uniform. By providing the first gas-liquid separation layer 12, it is possible to effectively suppress the crossover of the fuel, hardly generate temperature unevenness in the power generation unit, and maintain a stable power generation state.
 第1気液分離層12としては、使用する燃料に関して気液分離能を有するものであれば特に制限されないが、たとえば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン等のフッ素系樹脂、撥水化処理されたシリコーン樹脂などからなる多孔質膜または多孔質シートを挙げることができ、具体的には、ポリテトラフルオロエチレンからなる多孔質フィルムである日東電工(株)製テミッシュ〔TEMISH(登録商標)〕の「NTF2026A-N06」や「NTF2122A-S06」が例示できる。 The first gas-liquid separation layer 12 is not particularly limited as long as it has gas-liquid separation ability with respect to the fuel to be used. For example, fluorine-based resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride, water repellent A porous film or a porous sheet made of a modified silicone resin, and specifically, a TEMISH (registered trademark) manufactured by Nitto Denko Corporation, which is a porous film made of polytetrafluoroethylene. )] "NTF2026A-N06" and "NTF2122A-S06".
 気化燃料透過性および液体燃料不透過性を付与する観点から、第1気液分離層12が有する細孔の最大細孔径は、0.1~10μmであることが好ましく、0.5~5μmであることがより好ましい。最大細孔径は、後述する第1介在層11と同様、メタノール等を用いてバブルポイントを測定することにより求めることができる。第1気液分離層12は、後述する水に対する接触角が、通常80度以上であり、より典型的には90度以上である。 From the viewpoint of imparting vaporized fuel permeability and liquid fuel impermeability, the maximum pore diameter of the pores of the first gas-liquid separation layer 12 is preferably 0.1 to 10 μm, preferably 0.5 to 5 μm. More preferably. The maximum pore diameter can be obtained by measuring the bubble point using methanol or the like as in the first intervening layer 11 described later. The first gas-liquid separation layer 12 has a contact angle with water, which will be described later, usually 80 degrees or more, and more typically 90 degrees or more.
 第1気液分離層12の厚みは特に制限されないが、上記機能を十分に発現させるために、20μm以上であることが好ましく、50μm以上であることがより好ましい。また、燃料電池の薄型化の観点からは、第1気液分離層12の厚みは500μm以下であることが好ましく、300μm以下であることがより好ましい。 The thickness of the first gas-liquid separation layer 12 is not particularly limited, but is preferably 20 μm or more, and more preferably 50 μm or more in order to sufficiently express the above function. From the viewpoint of reducing the thickness of the fuel cell, the thickness of the first gas-liquid separation layer 12 is preferably 500 μm or less, and more preferably 300 μm or less.
 〔第1介在層〕
 第1流路板10の第1アノード極2側表面(したがって第1セル内燃料流路10aを形成する溝(凹部))を覆うように第1気液分離層12と第1流路板10との間に配置される第1介在層11は、水に対する接触角が70度未満の親水性を有する層である。このような層を、第1セル内燃料流路10aを覆うように配置することによって、液体燃料は、第1介在層11が有する親水性に基づいて第1セル内燃料流路10a内に引き込まれるため、第1セル内燃料流路10aの内部における液体燃料の圧力損失を低減させることができる。第1介在層11の水に対する接触角は、JIS R 3257(基板ガラス表面のぬれ性試験)に準拠して測定される。
[First intervening layer]
The first gas-liquid separation layer 12 and the first flow path plate 10 so as to cover the first anode electrode 2 side surface of the first flow path plate 10 (therefore, the groove (recess) forming the first in-cell fuel flow path 10a). The 1st intervening layer 11 arrange | positioned between these is a layer which has the hydrophilicity whose contact angle with respect to water is less than 70 degree | times. By arranging such a layer so as to cover the first in-cell fuel flow path 10a, the liquid fuel is drawn into the first in-cell fuel flow path 10a based on the hydrophilicity of the first intervening layer 11. Therefore, the pressure loss of the liquid fuel inside the first in-cell fuel flow path 10a can be reduced. The contact angle of the first intervening layer 11 with respect to water is measured in accordance with JIS R 3257 (substrate glass surface wettability test).
 第1介在層11は、液体燃料に対して毛細管作用を示すことが好ましく、燃料供給の不均一性をより効果的に是正できるよう、比較的大きな毛細管力を有することがより好ましい。このような観点から、第1介在層11は細孔を有することが好ましく、その最大細孔径は、1μm以下であることが好ましく、0.7μm以下であることがより好ましい。最大細孔径は、後述するバブルポイントを測定することで得られるが、それ以外の手法としては水銀圧入法によって測定することができる。ただし、水銀圧入法では0.005μm~500μmの細孔分布しか測定できないため、この範囲外の細孔は存在しない、もしくは無視できる場合に有効な測定手段である。 The first intervening layer 11 preferably exhibits a capillary action with respect to the liquid fuel, and more preferably has a relatively large capillary force so that the nonuniformity of the fuel supply can be corrected more effectively. From such a viewpoint, the first intervening layer 11 preferably has pores, and the maximum pore diameter is preferably 1 μm or less, and more preferably 0.7 μm or less. The maximum pore diameter can be obtained by measuring the bubble point described later, but can be measured by mercury porosimetry as another method. However, since the mercury intrusion method can measure only a pore distribution of 0.005 μm to 500 μm, it is an effective measuring means when pores outside this range do not exist or can be ignored.
 第1介在層11は、特に制限されないが、測定媒体をメタノールとしたときのバブルポイントが、たとえば5kPa以上程度であることができる。より高い毛細管力を付与する場合には、バブルポイントは高いことが好ましい。このような観点から、バブルポイントは30kPa以上であってよく、さらには50kPa以上であってよい。 The first intervening layer 11 is not particularly limited, but the bubble point when the measurement medium is methanol can be, for example, about 5 kPa or more. When applying a higher capillary force, the bubble point is preferably high. From such a viewpoint, the bubble point may be 30 kPa or more, and further may be 50 kPa or more.
 一方で、発電中に第1セル内燃料流路10aまたはセル外燃料流路中の液体燃料内に生じた気泡を第1介在層11および第1気液分離層12を介して第1気化燃料収容部9a側に逃がし、燃料電池セル外に排出できるようにすることを考慮した実施形態においては、第1介在層11のバブルポイントは低いことが好ましい。このような実施形態においては、主に第1介在層11の親水性(表面の濡れ性)が、第1セル内燃料流路10aの内部における液体燃料の圧力損失の低減に寄与する。 On the other hand, bubbles generated in the liquid fuel in the first in-cell fuel flow path 10a or the out-cell fuel flow path during power generation are transferred to the first vaporized fuel via the first intervening layer 11 and the first gas-liquid separation layer 12. In the embodiment in consideration of allowing escape to the housing portion 9a side and discharging to the outside of the fuel cell, the bubble point of the first intervening layer 11 is preferably low. In such an embodiment, mainly the hydrophilicity (surface wettability) of the first intervening layer 11 contributes to the reduction of the pressure loss of the liquid fuel inside the first in-cell fuel flow path 10a.
 バブルポイントとは、液媒体で濡らした層(膜)の裏側から空気圧をかけたときに、層(膜)の表面に気泡の発生が認められる最小圧力である。バブルポイントΔPは、下記式(1):
 ΔP[Pa]=4γcosθ/d     (1)
(γは測定媒体の表面張力[N/m]、θは層(膜)の素材と測定媒体との接触角、dは層(膜)が有する最大細孔径である。)
によって定義される。本発明においてバブルポイントは、測定媒体をメタノールとし、JIS K 3832に準拠して測定される。
The bubble point is the minimum pressure at which bubbles are observed on the surface of the layer (membrane) when air pressure is applied from the back side of the layer (membrane) wetted with the liquid medium. The bubble point ΔP is expressed by the following formula (1):
ΔP [Pa] = 4γcos θ / d (1)
(Γ is the surface tension [N / m] of the measurement medium, θ is the contact angle between the material of the layer (film) and the measurement medium, and d is the maximum pore diameter of the layer (film)).
Defined by In the present invention, the bubble point is measured according to JIS K3832, using methanol as the measurement medium.
 第1介在層11としては、たとえば、高分子材料、金属材料または無機材料などからなる多孔質層や、高分子膜を挙げることができ、具体例を示せば以下のとおりである。 Examples of the first intervening layer 11 include a porous layer made of a polymer material, a metal material, an inorganic material, or the like, or a polymer film. Specific examples are as follows.
 1)次の材料からなる多孔質層。ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂;アクリル系樹脂;ABS樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリエチレンテレフタラート等のポリエステル系樹脂;セルロースアセテート、ニトロセルロース、イオン交換セルロース等のセルロース系樹脂;ナイロン;ポリカーボネート系樹脂;ポリ塩化ビニル等の塩素系樹脂;ポリエーテルエーテルケトン;ポリエーテルスルホン;ガラス;セラミックス;ステンレス、チタン、タングステン、ニッケル、アルミニウム、スチール等の金属材料。多孔質層は、これらの材料からなる発泡体、焼結体、不織布または繊維(ガラス繊維等)などであることができる。これらの材料のうち、疎水性材料を基材として用いる場合には、親水性官能基を導入するなどの方法により親水化処理を施し、細孔表面の水に対する濡れ性を高めることにより、接触角を70度未満に調整することができる。 1) A porous layer made of the following materials. Fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); acrylic resins; ABS resins; polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate; cellulose acetate and nitrocellulose Cellulose resins such as ion exchange cellulose; Nylon; Polycarbonate resins; Chlorine resins such as polyvinyl chloride; Polyetheretherketone; Polyethersulfone; Glass; Ceramics; Stainless steel, titanium, tungsten, nickel, aluminum, steel, etc. Metal material. The porous layer can be a foam, a sintered body, a nonwoven fabric or a fiber (such as glass fiber) made of these materials. Among these materials, when a hydrophobic material is used as a base material, the contact angle is improved by applying a hydrophilic treatment by a method such as introducing a hydrophilic functional group and increasing the wettability of the pore surface to water. Can be adjusted to less than 70 degrees.
 2)次の材料からなる高分子膜。パーフルオロスルホン酸系重合体;スチレン系グラフト重合体、トリフルオロスチレン誘導体共重合体、スルホン化ポリアリーレンエーテル、スルホン化ポリエーテルエーテルケトン、スルホン化ポリイミド、スルホン化ポリベンゾイミダゾール、ホスホン化ポリベンゾイミダゾール、スルホン化ポリフォスファゼンなどの炭化水素系重合体などの電解質膜材料として用いることができるもの。これらの高分子膜は、3次元的に絡み合う高分子間の隙間として、ナノオーダーの細孔を有している。 2) A polymer film made of the following materials. Perfluorosulfonic acid polymer; styrene graft polymer, trifluorostyrene derivative copolymer, sulfonated polyarylene ether, sulfonated polyetheretherketone, sulfonated polyimide, sulfonated polybenzimidazole, phosphonated polybenzimidazole Those that can be used as electrolyte membrane materials such as hydrocarbon polymers such as sulfonated polyphosphazene. These polymer films have nano-order pores as gaps between polymers that are three-dimensionally entangled.
 以上に掲げた材料のうち、疎水性材料を基材として用いる場合には、親水性官能基を導入するなどの方法により親水化処理を施し、細孔表面の水に対する濡れ性を高めることにより、接触角を70度未満に調整することができる。 Among the materials listed above, when a hydrophobic material is used as a base material, it is subjected to a hydrophilic treatment by a method such as introducing a hydrophilic functional group, and by increasing the wettability of the pore surface to water, The contact angle can be adjusted to less than 70 degrees.
 第1介在層11の厚みは特に制限されないが、燃料電池の薄型化の観点から、好ましくは20~500μmであり、より好ましくは50~200μmである。 The thickness of the first intervening layer 11 is not particularly limited, but is preferably 20 to 500 μm, more preferably 50 to 200 μm from the viewpoint of reducing the thickness of the fuel cell.
 〔第1気化燃料板〕
 図7(a)は第1燃料電池セル101で用いられている第1気化燃料板9を示す概略上面図であり、図7(b)は図7(a)に示されるVII-VII線における概略断面図である。第1気化燃料板9は、第1膜電極複合体4と第1気液分離層12との間に気化燃料を収容するための空間(すなわち、第1気化燃料収容部9a)を形成するための部材である。図2の例において第1気化燃料板9は、第1アノード保湿層7に接するように第1アノード保湿層7と第1気液分離層12との間に配置されている。第1気化燃料板9は、厚み方向に貫通する貫通口である第1気化燃料収容部9a、および、第1気化燃料収容部9aと第1気化燃料板9外部とを連通する第1連通経路9bを有する。第1連通経路9bは、第1アノード極2で生成した副生ガス(CO2ガス等)を燃料電池外部に排出させるための経路である。
[First vaporized fuel plate]
7A is a schematic top view showing the first vaporized fuel plate 9 used in the first fuel battery cell 101, and FIG. 7B is a cross-sectional view taken along line VII-VII shown in FIG. 7A. It is a schematic sectional drawing. The first vaporized fuel plate 9 forms a space for accommodating vaporized fuel (that is, the first vaporized fuel accommodating portion 9a) between the first membrane electrode assembly 4 and the first gas-liquid separation layer 12. It is a member. In the example of FIG. 2, the first vaporized fuel plate 9 is disposed between the first anode moisturizing layer 7 and the first gas-liquid separation layer 12 so as to be in contact with the first anode moisturizing layer 7. The first vaporized fuel plate 9 is a first vaporized fuel storage portion 9a that is a through-hole penetrating in the thickness direction, and a first communication path that connects the first vaporized fuel storage portion 9a and the outside of the first vaporized fuel plate 9 9b. The first communication path 9b is a path for discharging by-product gas (CO 2 gas or the like) generated at the first anode electrode 2 to the outside of the fuel cell.
 図7に示される第1気化燃料板9において第1連通経路9bは、第1気化燃料板9の周縁部に設けられ、第1気化燃料収容部9aから該周縁部の端面まで延びる溝(凹部)からなる。第1連通経路9bの出口は、たとえば燃料分配部150が結合される燃料電池側面に対向する側面に設けられる(図4参照)。 In the first vaporized fuel plate 9 shown in FIG. 7, the first communication path 9b is provided at the peripheral portion of the first vaporized fuel plate 9, and extends from the first vaporized fuel storage portion 9a to the end surface of the peripheral portion (recessed portion). ). The outlet of the first communication path 9b is provided, for example, on the side surface facing the side surface of the fuel cell to which the fuel distributor 150 is coupled (see FIG. 4).
 第1セル内燃料流路10a上に第1気液分離層12を介して第1気化燃料収容部9aを設けることにより、第1アノード極2に供給される気化燃料濃度の第1アノード極面内における均一化および気化燃料量の最適化が促進される。 By providing the first vaporized fuel storage portion 9a via the first gas-liquid separation layer 12 on the first in-cell fuel flow path 10a, the first anode electrode surface of the vaporized fuel concentration supplied to the first anode electrode 2 In the interior and optimization of the amount of vaporized fuel is promoted.
 第1気化燃料収容部9aを設けることは以下の点でも有利である。
 (i)第1気化燃料収容部9a内に存在する空気層により、発電部(第1膜電極複合体4)と第1セル内燃料流路10aとの間の断熱を図ることができる。これにより、第1セル内燃料流路10a内の液体燃料の温度が過度に上昇することによるクロスオーバーを抑制できる。このことは、電池内部温度の暴走および内圧上昇の抑制に寄与する。
Providing the first vaporized fuel storage portion 9a is also advantageous in the following points.
(I) Heat insulation between the power generation unit (first membrane electrode assembly 4) and the first in-cell fuel flow path 10a can be achieved by the air layer present in the first vaporized fuel storage unit 9a. Thereby, the crossover by the temperature of the liquid fuel in the 1st in-cell fuel flow path 10a rising too much can be suppressed. This contributes to suppression of runaway battery internal temperature and increase in internal pressure.
 (ii)第1アノード極2で生成したCO2ガス等の副生ガスは、発電により生じた熱を伴って第1気化燃料収容部9a内に到達し、続いて第1連通経路9bを通って、燃料電池セル外部に排出される。これにより、燃料電池セル内部に蓄積される熱量を大幅に低減することができるため、第1セル内燃料流路10aを含めて燃料電池セル全体としての過度の温度上昇を抑制することができる。このこともまた、電池内部温度の暴走および内圧上昇の抑制に寄与する。特に、第1気化燃料板9に第1連通経路9b(副生ガスの排出口)を設けていることにより、第1セル内燃料流路10aへの熱の伝達が起こりにくく、したがって第1セル内燃料流路10a内の液体燃料の過度の温度上昇ならびに、これに伴うクロスオーバーおよび温度暴走がより生じにくい。 (Ii) The by-product gas such as CO 2 gas generated at the first anode electrode 2 reaches the first vaporized fuel storage portion 9a with heat generated by power generation, and then passes through the first communication path 9b. And discharged outside the fuel cell. As a result, the amount of heat accumulated inside the fuel cell can be significantly reduced, so that an excessive temperature rise as the entire fuel cell including the first in-cell fuel flow path 10a can be suppressed. This also contributes to suppression of battery internal temperature runaway and internal pressure rise. In particular, since the first vaporization fuel plate 9 is provided with the first communication path 9b (by-product gas discharge port), it is difficult for heat to be transmitted to the first in-cell fuel flow path 10a. The excessive temperature rise of the liquid fuel in the inner fuel flow path 10a, and the accompanying crossover and temperature runaway are less likely to occur.
 (iii)第1連通経路9bより副生ガスを良好に排出することができるため、副生ガスの排出不良による燃料供給阻害を抑制することができ、第1アノード極2への燃料供給を良好に行なうことができる。これにより、安定した発電特性を得ることができる。また、第1連通経路9bより副生ガスを良好に排出することができるため、副生ガスの第1セル内燃料流路10a内への侵入を抑制することができる。これにより、第1アノード極2に対して、十分な量の気化燃料を安定して供給することができるようになるため、燃料電池の出力安定性を向上させることができる。 (Iii) By-product gas can be satisfactorily discharged from the first communication path 9b, fuel supply hindrance due to poor discharge of by-product gas can be suppressed, and fuel supply to the first anode electrode 2 is excellent. Can be done. Thereby, stable power generation characteristics can be obtained. Moreover, since by-product gas can be discharged | emitted favorably from the 1st communication path | route 9b, the penetration | invasion into the fuel flow path 10a in 1st cell of by-product gas can be suppressed. As a result, a sufficient amount of vaporized fuel can be stably supplied to the first anode electrode 2, so that the output stability of the fuel cell can be improved.
 第1気化燃料板9の厚みは、たとえば、100~1000μm程度とすることができ、100~300μm程度まで薄くした場合であっても、上記のような効果を十分に得ることができる。 The thickness of the first vaporized fuel plate 9 can be set to, for example, about 100 to 1000 μm, and the above effects can be sufficiently obtained even when the thickness is reduced to about 100 to 300 μm.
 第1気化燃料板9が有する貫通口(第1気化燃料収容部9a)は、発電部と第1セル内燃料流路10aとの間の断熱性の観点から、図7に示されるように、第1気化燃料板9の面積に対する開口率をできるだけ大きくすることが好ましく、したがって第1気化燃料板9はできるだけ大きな貫通口を有する枠形状(ロの字状)を有することが好ましい。 From the viewpoint of heat insulation between the power generation unit and the first in-cell fuel flow path 10a, the through-hole (first vaporized fuel storage unit 9a) of the first vaporized fuel plate 9 is as shown in FIG. It is preferable to make the aperture ratio with respect to the area of the first vaporized fuel plate 9 as large as possible. Therefore, it is preferable that the first vaporized fuel plate 9 has a frame shape (b-shaped) having as large a through-hole as possible.
 貫通口の開口率、すなわち、第1気化燃料板9の面積に対する貫通口の開口面積(後述するように、第1気化燃料板9は2以上の貫通口を有していてもよく、その場合にはそれらの開口面積の合計)の割合は、好ましくは50%以上、より好ましくは60%以上である。貫通口の開口率を大きくすることは、第1気化燃料板9の、第1アノード極2に供給される燃料濃度を均一化する機能を高める上でも有利であり、第1アノード極2への十分な燃料供給を確保する上でも有利である。なお、貫通口の開口率は、通常、90%以下である。 The opening ratio of the through hole, that is, the opening area of the through hole with respect to the area of the first vaporized fuel plate 9 (as will be described later, the first vaporized fuel plate 9 may have two or more through holes. Is preferably 50% or more, more preferably 60% or more. Increasing the opening ratio of the through-hole is also advantageous for enhancing the function of the first vaporized fuel plate 9 to make the concentration of the fuel supplied to the first anode electrode 2 uniform. It is also advantageous in securing a sufficient fuel supply. In addition, the opening rate of a through-hole is 90% or less normally.
 第1連通経路9bは、第1気化燃料板9の周縁部に設けられる溝(凹部)に限定されるものではなく、厚み方向に貫通する貫通穴であってもよいが、強度の観点から、溝(凹部)からなることが好ましい。第1気化燃料板9の強度の観点から、第1連通経路9bの深さは第1気化燃料板9の厚みの75%程度までとすることが好ましい。 The first communication path 9b is not limited to a groove (concave portion) provided in the peripheral portion of the first vaporized fuel plate 9, and may be a through hole penetrating in the thickness direction. It is preferable to consist of a groove | channel (concave part). From the viewpoint of the strength of the first vaporized fuel plate 9, the depth of the first communication path 9 b is preferably up to about 75% of the thickness of the first vaporized fuel plate 9.
 図8(a)は第1気化燃料板の他の例を示す概略上面図であり、図8(b)は図8(a)に示されるVIII-VIII線における概略断面図である。図8に示されるように、第1気化燃料板は2以上の貫通口を有していてもよい。図8に示される第1気化燃料板99は、縦横2列に配列された合計4つの貫通口99aを有する。これは、大きな貫通口の縦方向および横方向に梁を設け、4つに分割したものということもできる。このような複数の貫通口を有する(梁を設けた)第1気化燃料板は、面内方向の剛性が向上するため、衝撃等に対する強度に優れる燃料電池が得られる点において有利である。また、図7に示されるような梁を設けない構造と比較して、第1気化燃料板の上下に配置される部材の熱などに起因する膨張等による貫通口の閉塞がより生じにくい点においても有利である。 FIG. 8A is a schematic top view showing another example of the first vaporized fuel plate, and FIG. 8B is a schematic cross-sectional view taken along the line VIII-VIII shown in FIG. 8A. As shown in FIG. 8, the first vaporized fuel plate may have two or more through holes. The first vaporized fuel plate 99 shown in FIG. 8 has a total of four through-holes 99a arranged in two rows. It can also be said that beams are provided in the vertical direction and the horizontal direction of a large through hole and divided into four. Such a first vaporized fuel plate having a plurality of through-holes (provided with beams) is advantageous in that a fuel cell excellent in strength against impact or the like can be obtained because rigidity in the in-plane direction is improved. Further, in comparison with a structure without a beam as shown in FIG. 7, it is more difficult to block the through-hole due to expansion or the like due to heat of members disposed above and below the first vaporized fuel plate. Is also advantageous.
 第1気化燃料板が2以上の貫通口を有する場合、その周縁部に設けられる第1連通経路は、貫通口ごとに、貫通口の数と同じ数だけ設けてもよいし、貫通口の数より少ない、もしくは多い数の連通経路を設けることもできる。図8の例においては、4つの貫通口99aに対して2つの第1連通経路99bが設けられている。このように、貫通口ごとに第1連通経路を設けなくてもよいが、その場合には、図8に示されるように、第1連通経路99bが設けられていない貫通口(図8(a)における下2つの貫通口99a)は、第1接続経路99cによって、第1連通経路99bが設けられた貫通口(図8(a)における上2つの貫通口99a)に空間的に接続される。第1接続経路99cは、第1連通経路99bと同様、貫通口間の梁に設けられた溝(凹部)であることができる(図8(b)参照)。第1接続経路99cを設けることにより、第1連通経路99bが設けられていない貫通口内に入った副生ガスを、第1連通経路99bを通して外部に排出することができる。 When the first vaporized fuel plate has two or more through holes, the same number of first communication paths provided on the peripheral edge portion as the number of through holes may be provided for each through hole. A smaller or larger number of communication paths can be provided. In the example of FIG. 8, two first communication paths 99b are provided for the four through holes 99a. Thus, although it is not necessary to provide the first communication path for each through-hole, in that case, as shown in FIG. 8, the through-hole (FIG. 8 (a) where the first communication path 99b is not provided. The lower two through-holes 99a) are spatially connected to the through-hole provided with the first communication path 99b (the upper two through-holes 99a in FIG. 8A) by the first connection path 99c. . The 1st connection path | route 99c can be the groove | channel (recessed part) provided in the beam between through-holes similarly to the 1st communication path | route 99b (refer FIG.8 (b)). By providing the first connection path 99c, the by-product gas that has entered the through hole in which the first communication path 99b is not provided can be discharged to the outside through the first communication path 99b.
 第1気化燃料板の貫通口(第1気化燃料収容部)に到達した副生ガスの外部への排出効率を向上させるために、あるいは、第1気化燃料板の、第1アノード極2に供給される燃料の濃度を均一化する機能を高めるために、第1連通経路99bが設けられた貫通口同士および/または第1連通経路99bが設けられていない貫通口同士を空間的に接続する第1接続経路99dを設けることも好ましい(図8(a)参照)。 Supply to the first anode electrode 2 of the first vaporized fuel plate in order to improve the discharge efficiency of the by-product gas that has reached the through-hole (first vaporized fuel storage unit) of the first vaporized fuel plate In order to enhance the function of equalizing the concentration of the generated fuel, the through holes provided with the first communication path 99b and / or the through holes not provided with the first communication path 99b are spatially connected. It is also preferable to provide one connection path 99d (see FIG. 8A).
 第1連通経路の断面積(2以上の第1連通経路を有する場合にはこれらの断面積の合計)S1と、第1気化燃料板の側面の合計面積S0との比S1/S0は、副生ガスおよびこれに伴う熱の排出を行なうために0より大きくすることが必要であり、好ましくは0.002以上である。また、好ましくは0.3未満、より好ましくは0.1未満、さらに好ましくは0.05未満である。当該比が0.3以上になると、燃料の漏洩や空気の混入が起こりやすくなり、発電の安定性が低下するおそれがある。 The ratio S 1 / S between the cross-sectional area of the first communication path (the total of these cross-sectional areas if there are two or more first communication paths) S 1 and the total area S 0 of the side surfaces of the first vaporized fuel plate 0 is required to be larger than 0 in order to discharge by-product gas and heat accompanying it, and is preferably 0.002 or more. Further, it is preferably less than 0.3, more preferably less than 0.1, and still more preferably less than 0.05. When the ratio is 0.3 or more, fuel leakage or air mixing is likely to occur, and power generation stability may be reduced.
 第1連通経路のすべてを燃料分配部150が結合される燃料電池側面に対向する側面に設ける場合など、第1気化燃料板が有する4つの周縁部のうち、いずれか1つの周縁部にのみ1または2以上の第1連通経路を設ける場合において、第1連通経路の断面積(2以上の第1連通経路を有する場合にはこれらの断面積の合計)S1と、第1連通経路が設けられる周縁部における側面の断面積S2との比S1/S2は、上記と同様の理由から、好ましくは0.008以上である。 For example, when all of the first communication path is provided on the side facing the side of the fuel cell to which the fuel distributor 150 is coupled, only one of the four peripheral edges of the first vaporized fuel plate is 1 Alternatively, when two or more first communication paths are provided, the cross-sectional area of the first communication path (the sum of these cross-sectional areas when there are two or more first communication paths) S 1 and the first communication path are provided. The ratio S 1 / S 2 to the cross-sectional area S 2 of the side surface at the peripheral edge is preferably 0.008 or more for the same reason as described above.
 第1気化燃料板の材質は、プラスチック、金属または非多孔質性のカーボン材料などであることができる。プラスチックとしては、たとえば、ポリフェニレンサルファイド(PPS)、ポリイミド(PI)、ポリメタクリル酸メチル(PMMA)、アクリロニトリルブタジエンスチレン(ABS)、ポリ塩化ビニル、ポリエチレン(PE)、ポリエチレンテレフタラート(PET)、ポリエーテルエーテルケトン(PEEK)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などを挙げることができる。金属としては、たとえば、チタン、アルミニウム等のほか、ステンレス、マグネシウム合金等の合金を用いることができる。 The material of the first vaporized fuel plate can be plastic, metal, or non-porous carbon material. Examples of the plastic include polyphenylene sulfide (PPS), polyimide (PI), polymethyl methacrylate (PMMA), acrylonitrile butadiene styrene (ABS), polyvinyl chloride, polyethylene (PE), polyethylene terephthalate (PET), and polyether. Examples include ether ketone (PEEK), polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF). As the metal, for example, alloys such as stainless steel and magnesium alloy can be used in addition to titanium and aluminum.
 上記のなかでも、第1気化燃料板は、金属、ポリフェニレンサルファイド(PPS)またはポリイミド(PI)などの剛性が大きい材質からなることが好ましい。剛性が大きい第1気化燃料板を用いると、ホットプレス(熱圧着)により第1気化燃料板とこれに隣接する部材との接合が可能になるため、燃料電池の厚みや発電特性のばらつきを低減することができる。また、ホットプレス時において、第1連通経路の閉塞を有効に防止することができる。 Among the above, the first vaporized fuel plate is preferably made of a material having high rigidity such as metal, polyphenylene sulfide (PPS), or polyimide (PI). When the first vaporized fuel plate with high rigidity is used, the first vaporized fuel plate and the adjacent member can be joined by hot pressing (thermocompression bonding), reducing variations in fuel cell thickness and power generation characteristics. can do. Further, it is possible to effectively prevent the first communication path from being blocked during hot pressing.
 なお、第1気化燃料板は省略されてもよいが、上述の効果を得るために第1気化燃料板を設置することが好ましい。 In addition, although the 1st vaporization fuel board may be abbreviate | omitted, in order to acquire the above-mentioned effect, it is preferable to install a 1st vaporization fuel board.
 〔第1カソード保湿層および第1アノード保湿層〕
 第1カソード保湿層8は、第1カソード極3上、好ましくは第1カソード集電層6上に配置される、第1カソード極3で発生した水が、第1カソード極3側から燃料電池セル外に蒸散することを防止するための任意で設けられる層である。第1カソード保湿層8を設けることにより、第1カソード極3で生じた水を燃料電池セル外部に蒸散させることなく、効率的に第1電解質膜1を介して第1アノード極2に戻し、第1アノード極2での反応に有効利用させることができる。
[First cathode moisturizing layer and first anode moisturizing layer]
The first cathode moisturizing layer 8 is disposed on the first cathode electrode 3, preferably on the first cathode current collecting layer 6, and water generated at the first cathode electrode 3 is allowed to flow from the first cathode electrode 3 side to the fuel cell. This is an optional layer for preventing evaporation from the cell. By providing the first cathode moisturizing layer 8, water generated at the first cathode electrode 3 is efficiently returned to the first anode electrode 2 through the first electrolyte membrane 1 without evaporating outside the fuel cell, It can be used effectively for the reaction at the first anode electrode 2.
 第1アノード保湿層7は、第1アノード極2または第1アノード集電層5と第1気化燃料収容部9aとの間に配置される、第1アノード極2内の水分が、第1アノード極2側から第1膜電極複合体外に(たとえば第1気化燃料収容部9aへ)蒸散することを防止し、第1アノード極2内に保持させるための任意で設けられる層である。第1アノード保湿層7を設けることにより、第1カソード極3で発生し、第1電解質膜1を介して第1アノード極2に到達した水を第1膜電極複合体4外に蒸散させることなく第1アノード極2内に良好に保持することができる。これにより当該水が第1アノード極2での反応に有効に利用されるため、第1アノード極2での反応効率が向上し、高い発電特性を安定して発揮することができる。とりわけ、第1カソード保湿層8との併用により、当該効果をより効果的に得ることができる。 The first anode moisturizing layer 7 is disposed between the first anode electrode 2 or the first anode current collecting layer 5 and the first vaporized fuel storage unit 9a, and the moisture in the first anode electrode 2 is used to make the first anode This is an optional layer for preventing evaporation from the electrode 2 side to the outside of the first membrane electrode assembly (for example, to the first vaporized fuel housing portion 9 a) and for retaining the first anode electrode 2. By providing the first anode moisturizing layer 7, water generated at the first cathode electrode 3 and reaching the first anode electrode 2 through the first electrolyte membrane 1 is evaporated to the outside of the first membrane electrode assembly 4. And can be held well in the first anode electrode 2. Thereby, since the water is effectively used for the reaction at the first anode electrode 2, the reaction efficiency at the first anode electrode 2 is improved, and high power generation characteristics can be stably exhibited. In particular, the combined use with the first cathode moisturizing layer 8 can achieve the effect more effectively.
 また、第1カソード保湿層8および第1アノード保湿層7の設置は、第1電解質膜1の乾燥、ならびにこれに伴うセル抵抗の増大および発電特性の低下を防止するうえでも有効である。 Also, the installation of the first cathode moisturizing layer 8 and the first anode moisturizing layer 7 is effective for preventing the drying of the first electrolyte membrane 1 and the accompanying increase in cell resistance and degradation of power generation characteristics.
 第1カソード保湿層8および第1アノード保湿層7は、気化燃料または燃料電池外部からの酸化剤(空気など)等を透過できるよう気体透過性であり、水に対して不溶性であって、かつ保湿性(水を蒸散させない性質)を有する材料から構成される。具体的には、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂;アクリル系樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリエチレンテレフタラート等のポリエステル系樹脂;ポリウレタン系樹脂;ポリアミド系樹脂;ポリアセタール系樹脂;ポリカーボネート系樹脂;ポリ塩化ビニル等の塩素系樹脂;ポリエーテル系樹脂;ポリフェニレン系樹脂;撥水化処理されたシリコーン樹脂などからなる多孔性膜(多孔質層)であることができる。これらの保湿層は、上記高分子からなる発泡体、繊維束、織繊維、不織繊維、あるいはこれらの組み合わせなどであることができる。 The first cathode moisturizing layer 8 and the first anode moisturizing layer 7 are gas permeable so as to be able to permeate vaporized fuel or oxidant (air etc.) from the outside of the fuel cell, are insoluble in water, and It is composed of a material having moisture retention (property that does not evaporate water). Specifically, fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); acrylic resins; polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate; polyurethane resins Polyamide resin; Polyacetal resin; Polycarbonate resin; Chlorine resin such as polyvinyl chloride; Polyether resin; Polyphenylene resin; Porous membrane (porous layer) made of water repellent treated silicone resin, etc. Can be. These moisturizing layers can be foams made of the above polymer, fiber bundles, woven fibers, non-woven fibers, or combinations thereof.
 第1カソード保湿層8は、燃料電池外部からの酸化剤(空気など)を透過できるよう気体透過性であり、かつ保湿性(水を蒸散させない性質)を有していることが望まれることから、その気孔率は、30%以上90%以下であることが好ましく、50%以上80%以下であることがより好ましい。気孔率が90%を超える場合、第1カソード極3で発生した水を燃料電池セル内に保持することが困難となり得る。一方、気孔率が30%未満である場合、燃料電池外部からの酸化剤(空気など)の拡散が阻害され、第1カソード極3における発電特性が低下しやすい。 The first cathode moisturizing layer 8 is desired to be gas permeable so as to allow the passage of an oxidant (air, etc.) from the outside of the fuel cell and to have moisture retention (a property that does not evaporate water). The porosity is preferably 30% or more and 90% or less, and more preferably 50% or more and 80% or less. When the porosity exceeds 90%, it may be difficult to keep the water generated at the first cathode electrode 3 in the fuel cell. On the other hand, when the porosity is less than 30%, the diffusion of an oxidant (air or the like) from the outside of the fuel cell is hindered, and the power generation characteristics of the first cathode electrode 3 are likely to deteriorate.
 第1アノード保湿層7は、気化燃料および触媒層で生成する副生ガス(CO2ガス等)などを透過できるような気体透過性であり、かつ保湿性(水を蒸散させない性質)を有していることが望まれることから、その気孔率は、50%以上90%以下であることが好ましく、60%以上80%以下であることがより好ましい。気孔率が90%を超える場合、第1カソード極3で発生し、第1電解質膜1を介して第1アノード極2に到達した水を第1膜電極複合体内に保持することが困難となり得る。一方、気孔率が50%未満である場合、気化燃料および触媒層で生成する副生ガス(CO2ガス等)などの拡散が阻害され、第1アノード極2における発電特性が低下しやすい。 The first anode moisturizing layer 7 is gas permeable so as to allow the by-product gas (CO 2 gas, etc.) generated in the vaporized fuel and the catalyst layer to pass therethrough, and has a moisturizing property (a property that does not evaporate water). Therefore, the porosity is preferably 50% or more and 90% or less, and more preferably 60% or more and 80% or less. When the porosity exceeds 90%, it may be difficult to retain water generated in the first cathode electrode 3 and reaching the first anode electrode 2 via the first electrolyte membrane 1 in the first membrane electrode assembly. . On the other hand, when the porosity is less than 50%, diffusion of vaporized fuel and by-product gas (CO 2 gas or the like) generated in the catalyst layer is hindered, and the power generation characteristics in the first anode electrode 2 are likely to deteriorate.
 第1カソード保湿層8および第1アノード保湿層7の気孔率は、当該保湿層の容積と重量を測定し、当該保湿層の比重を求め、これと素材の比重より、下記式(2):
 気孔率(%)=〔1-(保湿層の比重/素材比重)〕×100 (2)
により算出することができる。
The porosity of the first cathode moisturizing layer 8 and the first anode moisturizing layer 7 is determined by measuring the volume and weight of the moisturizing layer, obtaining the specific gravity of the moisturizing layer, and calculating the specific gravity of the moisturizing layer and the specific gravity of the material from the following formula (2):
Porosity (%) = [1− (specific gravity of moisture retaining layer / material specific gravity)] × 100 (2)
Can be calculated.
 第1カソード保湿層8および第1アノード保湿層7の厚みは特に制限されないが、上記機能を十分に発現させるために、20μm以上であることが好ましく、50μm以上であることがより好ましい。また、燃料電池の薄型化の観点からは、500μm以下であることが好ましく、300μm以下であることがより好ましい。 The thickness of the first cathode moisturizing layer 8 and the first anode moisturizing layer 7 is not particularly limited, but is preferably 20 μm or more, and more preferably 50 μm or more, in order to sufficiently exhibit the above functions. Further, from the viewpoint of reducing the thickness of the fuel cell, it is preferably 500 μm or less, and more preferably 300 μm or less.
 第1カソード保湿層8および第1アノード保湿層7は、それ自身が高い吸水性を有して、一旦吸収した液状の水を取り込んで外部に放出しないような性質を有しないことが望まれることから、撥水性を有することが好ましい。このような観点から、第1カソード保湿層8および第1アノード保湿層7は、上記の中でも、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂;撥水化処理されたシリコーン樹脂などからなる多孔性膜(多孔質層)であることが好ましい。具体的には、ポリテトラフルオロエチレンからなる多孔質フィルムである日東電工(株)製テミッシュ〔TEMISH(登録商標)〕の「NTF2026A-N06」や「NTF2122A-S06」が例示できる。 The first cathode moisturizing layer 8 and the first anode moisturizing layer 7 should have high water absorption properties and do not have the property of taking in liquid water once absorbed and not releasing it to the outside. Therefore, it is preferable to have water repellency. From such a viewpoint, the first cathode moisturizing layer 8 and the first anode moisturizing layer 7 are, among the above, fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); A porous film (porous layer) made of a silicone resin or the like is preferable. Specifically, “NTF2026A-N06” and “NTF2122A-S06” manufactured by Nitto Denko Corporation, which are porous films made of polytetrafluoroethylene (TEMISH (registered trademark)), can be exemplified.
 第1アノード保湿層7は、第1アノード極2上に第1アノード集電層5を配置し、この第1アノード集電層5に接するように第1アノード集電層5上に積層されることが好ましい。これにより、第1アノード極2内の水分が第1膜電極複合体4外に蒸散されることをより効果的に防止することができる。 The first anode moisturizing layer 7 includes a first anode current collecting layer 5 disposed on the first anode electrode 2, and is laminated on the first anode current collecting layer 5 so as to be in contact with the first anode current collecting layer 5. It is preferable. Thereby, it can prevent more effectively that the water | moisture content in the 1st anode electrode 2 is transpired out of the 1st membrane electrode assembly 4. FIG.
 なお、第1カソード保湿層8および第1アノード保湿層7は必要に応じて設けられるものであり、これらの少なくともいずれか一方を省略してもよい。 The first cathode moisturizing layer 8 and the first anode moisturizing layer 7 are provided as necessary, and at least one of these may be omitted.
 〔第2介在層〕
 第1燃料電池セル101は、第1介在層11と第1気液分離層12との間に介在される第2介在層13を有していてもよい。図9に第2介在層13を備える第1燃料電池セルの一例を示す。図9に示される第1燃料電池セル901は、第1介在層11と第1気液分離層12との間に第2介在層13を有すること以外は図2に示される第1燃料電池セル101と同様である。図10は、第1燃料電池セル901で使用されている第2介在層13を示す概略上面図である。
[Second intervening layer]
The first fuel battery cell 101 may have a second intervening layer 13 interposed between the first intervening layer 11 and the first gas-liquid separation layer 12. FIG. 9 shows an example of the first fuel cell including the second intervening layer 13. The first fuel cell 901 shown in FIG. 9 has the first fuel cell shown in FIG. 2 except that it has a second intervening layer 13 between the first intervening layer 11 and the first gas-liquid separation layer 12. 101. FIG. 10 is a schematic top view showing the second intervening layer 13 used in the first fuel cell 901.
 第2介在層13は、液体燃料が透過可能な厚み方向に貫通する貫通孔を有する層であり、少なくとも第1介在層11と第1気液分離層12とを密着性良く面接合する役割を担い、好ましくは第1気液分離層12側への液体燃料透過量を調整(制限)する機能を有する。第2介在層13としては、たとえば図10に示されるような、厚み方向に貫通する貫通孔を有する非多孔性シート(フィルム)を用いることができ、その材料としては熱可塑性樹脂が好ましく例示できる。これを用いて、第1介在層/第2介在層/第1気液分離層からなる積層体を熱圧着することにより、各層間を密着性良く面接合することができる。第2介在層13として、厚み方向に貫通する貫通孔を有し、面接合が可能な非多孔性シートを有する第1燃料電池セルは、以下の点において有利である。 The second intervening layer 13 is a layer having a through-hole penetrating in the thickness direction through which liquid fuel can permeate, and plays a role in surface-bonding at least the first intervening layer 11 and the first gas-liquid separation layer 12 with good adhesion. It preferably has a function of adjusting (limiting) the amount of liquid fuel permeation to the first gas-liquid separation layer 12 side. As the 2nd intervening layer 13, the non-porous sheet | seat (film) which has a through-hole penetrated in the thickness direction as shown, for example in FIG. 10 can be used, and a thermoplastic resin can be illustrated preferably as the material. . By using this, a laminated body composed of the first intervening layer / the second intervening layer / the first gas-liquid separation layer is subjected to thermocompression bonding so that the respective layers can be surface-bonded with good adhesion. The 1st fuel cell which has the non-porous sheet | seat which has the through-hole penetrated in the thickness direction as the 2nd intervening layer 13, and can be surface-bonded is advantageous in the following points.
 (i)第2介在層13を介して第1介在層11と第1気液分離層12とを密着性良く接合することができるため、第1介在層11と第1気液分離層12との間に副生ガスが滞留することがなく、第1気液分離層12面内における気化燃料透過量のバラツキを抑制することができ、これにより第1アノード極2に対して均一な燃料供給を行なうことができる。 (I) Since the first intervening layer 11 and the first gas-liquid separating layer 12 can be bonded with good adhesion via the second intervening layer 13, the first intervening layer 11 and the first gas-liquid separating layer 12 By-product gas does not stay between the first gas-liquid separation layer 12 and variation in the amount of vaporized fuel permeation in the surface of the first gas-liquid separation layer 12 can be suppressed. Can be performed.
 (ii)第2介在層13に形成される貫通孔の数や開孔径により、第1気液分離層12側への液体燃料透過量、ひいては第1アノード極2への気化燃料供給量を適切な量に調整(制限)することができる。これにより、燃料のクロスオーバーの防止または抑制、および燃料供給の安定化を図ることができる。貫通孔の数は特に制限されないが、複数個存在することが好ましく、第1気液分離層12面内における気化燃料透過量を均一化する観点から、貫通孔を第2介在層13面内において均一に分布させることが好ましい。貫通孔の開孔径(直径)は、たとえば、0.1~5mm程度とすることができる。 (Ii) Depending on the number of through-holes formed in the second intervening layer 13 and the opening diameter, the amount of liquid fuel permeated to the first gas-liquid separation layer 12 side and, in turn, the amount of vaporized fuel supplied to the first anode electrode 2 are adequate Can be adjusted (restricted) to an appropriate amount. As a result, it is possible to prevent or suppress the crossover of the fuel and stabilize the fuel supply. The number of through holes is not particularly limited, but it is preferable that there are a plurality of through holes. From the viewpoint of uniformizing the amount of vaporized fuel permeation in the first gas-liquid separation layer 12 surface, the through holes are formed in the second intervening layer 13 surface. It is preferable to distribute it uniformly. The opening diameter (diameter) of the through hole can be set to about 0.1 to 5 mm, for example.
 上述の熱可塑性樹脂シートのほか、第2介在層13は、たとえば次のものから形成されるものであってもよい。 In addition to the thermoplastic resin sheet described above, the second intervening layer 13 may be formed of, for example, the following.
 1)接着性を有する樹脂または樹脂組成物から形成される多孔質層、たとえば、ホットメルト系接着剤や硬化型接着剤などの接着剤から形成される多孔質層。当該接着剤を用いる場合、第2介在層13は、接着剤層、すなわち、当該接着剤またはその硬化物からなる多孔質層である。第1気液分離層12側への液体燃料透過量は、多孔質層が有する細孔によって調整(制限)される。 1) A porous layer formed from an adhesive resin or resin composition, for example, a porous layer formed from an adhesive such as a hot-melt adhesive or a curable adhesive. When the adhesive is used, the second intervening layer 13 is an adhesive layer, that is, a porous layer made of the adhesive or a cured product thereof. The liquid fuel permeation amount to the first gas-liquid separation layer 12 side is adjusted (limited) by the pores of the porous layer.
 2)厚み方向に貫通する貫通孔を有する、好ましくは非多孔性の金属板を含むもの。この場合、金属板の両面には、第1介在層11および第1気液分離層12との良好な密着性を確保するために、接着剤層が形成され、したがって、第2介在層13は、接着剤層/金属板/接着剤層の3層構造となる。接着剤層は、接着剤またはその硬化物からなる多孔質層である。接着剤は、ホットメルト系接着剤や硬化型接着剤などであることができる。第1気液分離層12側への液体燃料透過量は、熱可塑性樹脂シートの場合と同様、金属板に形成される貫通孔の数や開孔径により調整(制御)できる。接着剤層は貫通孔を塞がないように形成されることが好ましい。 2) A through-hole penetrating in the thickness direction, preferably including a non-porous metal plate. In this case, an adhesive layer is formed on both surfaces of the metal plate in order to ensure good adhesion between the first intervening layer 11 and the first gas-liquid separating layer 12, and therefore the second intervening layer 13 is And a three-layer structure of adhesive layer / metal plate / adhesive layer. The adhesive layer is a porous layer made of an adhesive or a cured product thereof. The adhesive may be a hot melt adhesive or a curable adhesive. The liquid fuel permeation amount to the first gas-liquid separation layer 12 side can be adjusted (controlled) by the number of through holes formed in the metal plate and the opening diameter, as in the case of the thermoplastic resin sheet. The adhesive layer is preferably formed so as not to block the through hole.
 (2)第2燃料電池セル
 第2燃料電池セル102を構成する第2膜電極複合体4’(第2アノード極2’、第2電解質膜1’および第2カソード極3’)、第2アノード集電層5’、第2カソード集電層6’、第2アノード保湿層7’、第2カソード保湿層8’、第2流路板10’、第2気液分離層12’ならびに第2気化燃料板9’はそれぞれ、上述の第1膜電極複合体4(第1アノード極2、第1電解質膜1および第1カソード極3)、第1アノード集電層5、第1カソード集電層6、第1アノード保湿層7、第1カソード保湿層8、第1流路板10、第1気液分離層12ならびに第1気化燃料板9と同様の構成を有する。第2燃料電池セル102は第1介在層を有しておらず、第2セル内燃料流路10a’上に直接、第2気液分離層12’が積層される。
(2) Second fuel cell 2nd membrane electrode assembly 4 ′ (second anode electrode 2 ′, second electrolyte membrane 1 ′ and second cathode electrode 3 ′) constituting the second fuel cell 102, second Anode current collecting layer 5 ′, second cathode current collecting layer 6 ′, second anode moisturizing layer 7 ′, second cathode moisturizing layer 8 ′, second flow path plate 10 ′, second gas-liquid separation layer 12 ′ and second The two vaporized fuel plates 9 'are respectively the first membrane electrode assembly 4 (first anode electrode 2, first electrolyte membrane 1 and first cathode electrode 3), first anode current collecting layer 5, and first cathode current collector. The electric layer 6, the first anode moisturizing layer 7, the first cathode moisturizing layer 8, the first flow path plate 10, the first gas-liquid separation layer 12, and the first vaporized fuel plate 9 have the same configuration. The second fuel battery cell 102 does not have the first intervening layer, and the second gas-liquid separation layer 12 ′ is laminated directly on the second in-cell fuel flow path 10 a ′.
 (3)燃料分配部
 燃料分配部150は、導入口151を通して導入された液体燃料を各燃料電池セルに分配するための、燃料電池セルとは独立した部材であり、その内部に、第1セル内燃料流路10aおよび第2セル内燃料流路10a’のそれぞれに接続されるセル外燃料流路155を有する。このように、アノード極の直下領域に液体燃料を行き渡らせる燃料流路(セル内燃料流路)を燃料電池セルの一部として燃料電池セル内に組み込む一方で、各燃料電池セルに液体燃料を分配するための燃料流路(セル外燃料流路)を、燃料電池セルとは独立した部材で形成することにより、燃料電池セルのモジュール化を図ることができる。
(3) Fuel distribution unit The fuel distribution unit 150 is a member independent of the fuel cells for distributing the liquid fuel introduced through the introduction port 151 to each fuel cell, and the first cell is disposed inside the fuel cell. An out-cell fuel flow path 155 is connected to each of the inner fuel flow path 10a and the second in-cell fuel flow path 10a ′. As described above, the fuel flow path (intra-cell fuel flow path) for distributing the liquid fuel to the region directly below the anode electrode is incorporated in the fuel battery cell as a part of the fuel battery cell, while the liquid fuel is supplied to each fuel battery cell. By forming the fuel flow path (outer cell fuel flow path) for distribution with a member independent of the fuel battery cell, the fuel battery cell can be modularized.
 セル外燃料流路155は、たとえば図3に示されるように、たとえば上面などに設けられた導入口151と接続された幹流路152、および、幹流路152と各セル内燃料流路とを接続する枝流路153から構成することができる。また、燃料分配部150は、タンク様の中空部材であって、たとえば上面などに導入口151が設けられ、燃料電池セルと結合される側面に各セル内燃料流路と連結される貫通孔を設けたものであってもよい(中空部分が幹流路、貫通孔が枝流路に相当する)。 For example, as shown in FIG. 3, the out-cell fuel flow path 155 connects the main flow path 152 connected to the inlet 151 provided on the upper surface, for example, and connects the main flow path 152 to each in-cell fuel flow path. The branch channel 153 can be configured. The fuel distributor 150 is a tank-like hollow member. For example, an inlet 151 is provided on the upper surface, and through holes connected to the fuel flow paths in the cells are formed on the side surfaces connected to the fuel cells. It may be provided (the hollow portion corresponds to the trunk channel and the through hole corresponds to the branch channel).
 燃料分配部150の外形形状は特に制限されず、適用する電子機器が有する燃料電池収容スペースの形状や面積、モジュール(燃料電池セル)の数や配列形態などを考慮して適宜の形状とされる。燃料分配部150は、各種プラスチック材料、金属材料、合金材料などから構成することができる。 The outer shape of the fuel distribution unit 150 is not particularly limited, and is an appropriate shape in consideration of the shape and area of the fuel cell housing space of the applied electronic device, the number of modules (fuel cell), the arrangement form, and the like. . The fuel distributor 150 can be composed of various plastic materials, metal materials, alloy materials, and the like.
 導入口151には、通常、流路を介して液体燃料を貯蔵する燃料タンク(図示せず)が接続される。燃料タンクからのセル外燃料流路およびセル内燃料流路への燃料供給は、通常、送液ポンプを用いて行なうが、送液ポンプ等の補機を用いないパッシブ供給であってもよい。 A fuel tank (not shown) for storing liquid fuel is usually connected to the introduction port 151 via a flow path. The fuel supply from the fuel tank to the out-cell fuel flow path and the in-cell fuel flow path is normally performed using a liquid feed pump, but may be passive supply without using auxiliary equipment such as a liquid feed pump.
 (4)燃料電池のタイプ
 本発明の燃料電池は、固体高分子型燃料電池またダイレクトアルコール型燃料電池などであることができ、特にダイレクトアルコール型燃料電池(とりわけ、ダイレクトメタノール型燃料電池)として好適である。本発明の燃料電池において使用することのできる液体燃料としては、たとえば、メタノール、エタノールなどのアルコール類;ジメトキシメタンなどのアセタール類;ギ酸などのカルボン酸類;ギ酸メチルなどのエステル類;ならびにこれらの水溶液を挙げることができる。液体燃料は1種に限定されず、2種以上の混合物であってもよい。コストの低さや体積あたりのエネルギー密度の高さ、発電効率の高さなどの点から、メタノール水溶液または純メタノールが好ましく用いられる。また、カソード極に供給される酸化剤ガスとしては、空気または酸素ガスが好適であり、特に空気が好ましい。
(4) Type of fuel cell The fuel cell of the present invention can be a polymer electrolyte fuel cell or a direct alcohol fuel cell, and is particularly suitable as a direct alcohol fuel cell (in particular, a direct methanol fuel cell). It is. Examples of the liquid fuel that can be used in the fuel cell of the present invention include alcohols such as methanol and ethanol; acetals such as dimethoxymethane; carboxylic acids such as formic acid; esters such as methyl formate; and aqueous solutions thereof. Can be mentioned. The liquid fuel is not limited to one type, and may be a mixture of two or more types. In view of low cost, high energy density per volume, high power generation efficiency, etc., an aqueous methanol solution or pure methanol is preferably used. In addition, as the oxidant gas supplied to the cathode electrode, air or oxygen gas is preferable, and air is particularly preferable.
 本発明の燃料電池は、電子機器、特には、携帯電話、電子手帳、ノート型パソコンに代表される携帯機器などの小型電子機器用の電源として好適に用いることができる。 The fuel cell of the present invention can be suitably used as a power source for electronic devices, in particular, small electronic devices such as mobile devices typified by mobile phones, electronic notebooks, and notebook computers.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 <実施例1>
 以下の手順で、図11に示される構成の燃料電池を作製した。図11は図3と同様の概略断面図であり、セル外燃料流路およびセル内燃料流路の形状を示したものである。本実施例で作製した平面集積型燃料電池は、ライン状に配列された4つの燃料電池セルからなる燃料電池セル集合体を2つ含むこと以外は図5に示される燃料電池と同様である。これらの燃料電池セル集合体は、燃料分配部150の対向する2つの側面にそれぞれ結合されている。2つの燃料電池セル集合体のセル内燃料流路に接続できるよう、セル外燃料流路155は、幹流路152から当該両側面に延びる枝流路153を有している。
<Example 1>
The fuel cell having the configuration shown in FIG. 11 was manufactured by the following procedure. FIG. 11 is a schematic sectional view similar to FIG. 3 and shows the shapes of the out-cell fuel flow path and the in-cell fuel flow path. The planar integrated fuel cell produced in the present example is the same as the fuel cell shown in FIG. 5 except that it includes two fuel cell assemblies composed of four fuel cells arranged in a line. These fuel cell assemblies are respectively coupled to two opposing side surfaces of the fuel distributor 150. The out-cell fuel flow path 155 has branch flow paths 153 extending from the main flow path 152 to both side surfaces so that the fuel cell connection can be made to the in-cell fuel flow paths of the two fuel battery cell assemblies.
 2つの燃料電池セル集合体はそれぞれ、その両端に配置された第1介在層を有する第1燃料電池セル(それぞれ図11における第1燃料電池セル101aおよび101b、第1燃料電池セル101cおよび101d)と、中央部に配置された2つの第2燃料電池セル(それぞれ図11における第2燃料電池セル102aおよび102b、第2燃料電池セル102cおよび102d)からなる。第1燃料電池セル101a、101b、101c、101dおよび第2燃料電池セル102a、102b、102c、102dのセル構造はそれぞれ、図2に示される第1燃料電池セル101、第2燃料電池セル102と同様である。 Each of the two fuel cell assemblies is a first fuel cell having a first intervening layer disposed at both ends thereof ( first fuel cell 101a and 101b and first fuel cell 101c and 101d in FIG. 11, respectively). And two second fuel cells arranged in the center ( second fuel cells 102a and 102b and second fuel cells 102c and 102d in FIG. 11, respectively). The cell structures of the first fuel cells 101a, 101b, 101c, 101d and the second fuel cells 102a, 102b, 102c, 102d are respectively the first fuel cell 101, the second fuel cell 102 shown in FIG. It is the same.
 (1)第1膜電極複合体の作製
 Pt担持量32.5重量%、Ru担持量16.9重量%の触媒担持カーボン粒子(TEC66E50、田中貴金属社製)と、電解質である20重量%のナフィオン(登録商標)のアルコール溶液(アルドリッチ社製)と、n-プロパノールと、イソプロパノールと、ジルコニアボールとを、所定の割合でフッ素系樹脂製の容器に入れ、攪拌機を用いて500rpmで50分間の混合を行なうことにより、第1アノード極用の触媒ペーストを作製した。また、Pt担持量46.8重量%の触媒担持カーボン粒子(TEC10E50E、田中貴金属社製)を用いること以外は第1アノード極用の触媒ペーストと同様にして、第1カソード極用の触媒ペーストを作製した。
(1) Production of first membrane electrode assembly Catalyst-supported carbon particles (TEC66E50, manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt loading amount of 32.5 wt% and a Ru loading amount of 16.9 wt%, and 20 wt% of an electrolyte An alcohol solution of Nafion (registered trademark) (manufactured by Aldrich), n-propanol, isopropanol, and zirconia balls are put into a fluororesin container at a predetermined ratio, and are stirred at 500 rpm for 50 minutes. By mixing, a catalyst paste for the first anode electrode was produced. The catalyst paste for the first cathode electrode was prepared in the same manner as the catalyst paste for the first anode electrode, except that the catalyst-supporting carbon particles (TEC10E50E, manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt loading amount of 46.8% by weight were used. Produced.
 ついで、片面に撥水性を有する多孔質層が形成されたカーボンペーパー(25BC、SGL社製)を縦35mm、横40mmに切断した後、その多孔質層上に、上記の第1アノード極用の触媒ペーストを触媒担持量が約3mg/cm2となるように、縦30mm、横35mmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、アノード導電性多孔質層であるカーボンペーパー上の中央にアノード触媒層が形成された、厚み約200μmの第1アノード極2を作製した。また、同じサイズのカーボンペーパーの多孔質層上に、上記の第1カソード極用の触媒ペーストを触媒担持量が約1mg/cm2となるように、縦30mm、横35mmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、カソード導電性多孔質層であるカーボンペーパー上の中央にカソード触媒層が形成された、厚み約70μmの第1カソード極3を作製した。 Next, after cutting a carbon paper (25BC, manufactured by SGL) having a water-repellent porous layer on one side into a length of 35 mm and a width of 40 mm, the above-mentioned first anode electrode is formed on the porous layer. The catalyst paste is applied using a screen printing plate having a window of 30 mm in length and 35 mm in width so that the amount of supported catalyst is about 3 mg / cm 2, and dried, so that carbon as an anode conductive porous layer is obtained. A first anode electrode 2 having a thickness of about 200 μm and having an anode catalyst layer formed at the center on the paper was produced. A screen having a window of 30 mm length and 35 mm width on the porous layer of carbon paper of the same size so that the catalyst loading amount of the catalyst paste for the first cathode electrode is about 1 mg / cm 2. The first cathode electrode 3 having a thickness of about 70 μm in which a cathode catalyst layer was formed at the center on the carbon paper, which is a cathode conductive porous layer, was prepared by applying using a printing plate and drying.
 次に、厚み約175μmのパーフルオロスルホン酸系イオン交換膜(ナフィオン(登録商標)117、デュポン社製)を縦35mm、横40mmに切断して第1電解質膜1とし、上記第1アノード極2と第1電解質膜1と上記第1カソード極3をこの順で、それぞれの触媒層が第1電解質膜1に対向するように重ね合わせた後、130℃、2分間の熱圧着を行ない、第1アノード極2および第1カソード極3を第1電解質膜1に接合した。上記重ね合わせは、第1アノード極2と第1カソード極3の第1電解質膜1の面内における位置が一致するように、かつ第1アノード極2と第1電解質膜1と第1カソード極3の中心が一致するように行なった。ついで、得られた積層体の外周部を切断することにより、縦22mm、横26mmの第1膜電極複合体(MEA)4を作製した。 Next, a perfluorosulfonic acid ion exchange membrane having a thickness of about 175 μm (Nafion (registered trademark) 117, manufactured by DuPont) was cut into a length of 35 mm and a width of 40 mm to form the first electrolyte membrane 1, and the first anode electrode 2 And the first electrolyte membrane 1 and the first cathode electrode 3 in this order so that the respective catalyst layers face the first electrolyte membrane 1, and then thermocompression bonded at 130 ° C. for 2 minutes, The 1 anode electrode 2 and the first cathode electrode 3 were joined to the first electrolyte membrane 1. The superposition is such that the positions of the first anode electrode 2 and the first cathode electrode 3 in the plane of the first electrolyte membrane 1 coincide with each other, and the first anode electrode 2, the first electrolyte membrane 1 and the first cathode electrode. This was done so that the centers of 3 coincided. Next, the outer periphery of the obtained laminate was cut to produce a first membrane electrode assembly (MEA) 4 having a length of 22 mm and a width of 26 mm.
 (2)集電層の積層
 縦26.5mm、横27mm、厚み0.1mmのステンレス板(NSS445M2、日新製鋼社製)を用意し、この中央領域に、開孔径φ0.6mmである複数の開孔(開孔パターン:千鳥60°ピッチ0.8mm)を、フォトレジストマスクを用いたウェットエッチングにて両面から加工することにより、厚み方向に貫通する貫通孔を複数備えるステンレス板を2枚作製し、これらを第1アノード集電層5および第1カソード集電層6とした。
(2) Lamination of current collecting layer A stainless steel plate (NSS445M2, manufactured by Nisshin Steel Co., Ltd.) having a length of 26.5 mm, a width of 27 mm, and a thickness of 0.1 mm is prepared. Two stainless steel plates with multiple through holes penetrating in the thickness direction are produced by processing holes (opening pattern: staggered 60 ° pitch 0.8 mm) from both sides by wet etching using a photoresist mask. These were used as the first anode current collecting layer 5 and the first cathode current collecting layer 6.
 次に、上記第1アノード集電層5を第1アノード極2上に、カーボン粒子とエポキシ樹脂とからなる導電性接着剤層を介して積層するとともに、第1カソード集電層6を第1カソード極3上に、同じ導電性接着剤層を介して積層し、これらを熱圧着により接合して、MEA-集電層積層体を作製した。 Next, the first anode current collecting layer 5 is laminated on the first anode electrode 2 via a conductive adhesive layer made of carbon particles and an epoxy resin, and the first cathode current collecting layer 6 is formed as the first cathode current collecting layer 6. The cathode electrode 3 was laminated via the same conductive adhesive layer, and these were joined by thermocompression bonding to produce a MEA-current collecting layer laminate.
 (3)保湿層の接合
 第1アノード保湿層7および第1カソード保湿層8として、ポリテトラフルオロエチレンからなる多孔質フィルム(日東電工(株)製の「テミッシュ〔TEMISH(登録商標)〕NTF2122A-S06」、縦22mm、横26mm、厚み0.2mm、気孔率75%)を2枚用意した。これらの保湿層をMEA-集電層積層体の第1アノード集電層5および第1カソード集電層6上に、ポリオレフィンからなる接着剤層を介して積層し、これらを熱圧着により接合した。これらの保湿層は、MEAの直上または直下に配置されるように接合した。
(3) Bonding of Moisturizing Layer As the first anode moisturizing layer 7 and the first cathode moisturizing layer 8, a porous film made of polytetrafluoroethylene (“TEMISH (registered trademark)” NTF2122A- manufactured by Nitto Denko Corporation) S06 ", length 22 mm, width 26 mm, thickness 0.2 mm, porosity 75%) were prepared. These moisturizing layers were laminated on the first anode current collecting layer 5 and the first cathode current collecting layer 6 of the MEA-current collecting layer laminate through an adhesive layer made of polyolefin, and these were joined by thermocompression bonding. . These moisturizing layers were joined so as to be disposed immediately above or below the MEA.
 (4)第1介在層と第1気液分離層との接合
 第1介在層11として、縦26.5mm、横27mm、厚み0.1mmのポリフッ化ビニリデンからなる多孔質フィルム(MILLIPORE製のデュラポアメンブレンフィルター)を用いた。この多孔質フィルムの水に対する接触角は70度未満であった。また、この多孔質フィルムが有する細孔の最大細孔径は0.1μmであり、またJIS K 3832に準拠したバブルポイントは、測定媒体をメタノールとしたとき、115kPaであった。
(4) Joining of the first intervening layer and the first gas-liquid separation layer As the first intervening layer 11, a porous film made of polyvinylidene fluoride having a length of 26.5 mm, a width of 27 mm, and a thickness of 0.1 mm (dura made by MILLIPORE) A pore membrane filter) was used. The contact angle of this porous film with respect to water was less than 70 degrees. The maximum pore diameter of the pores of this porous film was 0.1 μm, and the bubble point based on JIS K3832 was 115 kPa when methanol was used as the measurement medium.
 また、第1気液分離層12として、縦26.5mm、横27mm、厚み0.2mmのポリテトラフルオロエチレンからなる多孔質フィルム(日東電工(株)製の「テミッシュ〔TEMISH(登録商標)〕NTF2122A-S06」)を用いた。この多孔質フィルムの水に対する接触角は120度程度であった。この多孔質フィルムのJIS K 3832に準拠したバブルポイントは、測定媒体をメタノールとしたとき、18kPaであった。 Further, as the first gas-liquid separation layer 12, a porous film made of polytetrafluoroethylene having a length of 26.5 mm, a width of 27 mm, and a thickness of 0.2 mm (“TEMISH (registered trademark)” manufactured by Nitto Denko Corporation) NTF2122A-S06 ") was used. The contact angle of this porous film with respect to water was about 120 degrees. The bubble point according to JIS K 3832 of this porous film was 18 kPa when the measurement medium was methanol.
 上記第1介在層11上に第1気液分離層12を積層し、すべての側面の層境界部を接着剤で接合した。 The first gas-liquid separation layer 12 was laminated on the first intervening layer 11, and the layer boundary portions on all side surfaces were joined with an adhesive.
 (5)第1気化燃料板の接合
 エッチング加工により、図8に示される形状を有する縦26.5mm、横27mm、厚み0.2mmのSUS製の第1気化燃料板99を作製した(第1連通経路99bおよび第1接続経路99c,99dはすべて溝(凹部)からなる)。貫通口99aの開口率は、4個の合計で63%であり、第1連通経路99bの断面積の2個の合計と第1気化燃料板側面の合計面積との比は0.04である。第1気化燃料板99の溝形成面とは反対側の面に上記の第1介在層11と第1気液分離層12との接合体を、その第1気液分離層12側が第1気化燃料板99に対向するように積層し、熱圧着によりこれらを接合した。
(5) Joining of the first vaporized fuel plate By etching, a first vaporized fuel plate 99 made of SUS having a shape shown in FIG. 8 and having a length of 26.5 mm, a width of 27 mm, and a thickness of 0.2 mm was produced (first The communication path 99b and the first connection paths 99c and 99d are all formed by grooves (concave portions). The opening ratio of the through holes 99a is 63% in total, and the ratio of the total of the two cross-sectional areas of the first communication path 99b to the total area of the side surfaces of the first vaporized fuel plate is 0.04. . The joined body of the first intervening layer 11 and the first gas-liquid separation layer 12 is provided on the surface opposite to the groove forming surface of the first vaporized fuel plate 99, and the first gas-liquid separation layer 12 side is the first vaporization. They were laminated so as to face the fuel plate 99, and these were joined by thermocompression bonding.
 (6)第1流路板の接合
 図11に示したような流路パターンを有する第1セル内燃料流路10a(流路幅1.5mm、深さ0.4mm)を備えた縦26.5mm、横27mm、厚み0.6mmのSUS製の第1流路板10を用意した。第1気化燃料板99/第1気液分離層12/第1介在層11の接合体の第1介在層11上にポリオレフィン系接着剤を介して第1流路板10を積層した後、熱圧着を行なうことにより、該接合体と第1流路板10とを接合した。
(6) Joining of the first flow path plates 26. The first 26 cells provided with the first in-cell fuel flow path 10a (flow path width 1.5 mm, depth 0.4 mm) having the flow path pattern as shown in FIG. A first flow path plate 10 made of SUS having a width of 5 mm, a width of 27 mm, and a thickness of 0.6 mm was prepared. After the first flow path plate 10 is laminated on the first intervening layer 11 of the joined body of the first vaporized fuel plate 99 / the first gas-liquid separation layer 12 / the first intervening layer 11 with a polyolefin adhesive, The joined body and the first flow path plate 10 were joined by pressure bonding.
 (7)第1燃料電池セルの作製
 第1気化燃料板99上に、上で作製した保湿層を有するMEA-集電層積層体を積層し、熱圧着によりこれらを接合した。最後に、端面にエポキシ樹脂を塗布し硬化させることにより封止層を形成して第1燃料電池セルを得た。合計4つの第1燃料電池セル(第1燃料電池セル101a、101b、101c、101d)を作製した。
(7) Production of First Fuel Battery Cell The MEA-current collecting layer laminate having the moisture retention layer produced above was laminated on the first vaporized fuel plate 99, and these were joined by thermocompression bonding. Finally, an epoxy resin was applied to the end face and cured to form a sealing layer to obtain a first fuel cell. A total of four first fuel cells ( first fuel cells 101a, 101b, 101c, 101d) were produced.
 (8)第2燃料電池セルの作製
 第1介在層11を使用せず、第1流路板10上に直接第1気液分離層12を接合するようにしたこと以外は上記と同様にして燃料電池セルを4つ作製し、第2燃料電池セルとした(第2燃料電池セル102a、102b、102c、102d)。
(8) Production of second fuel battery cell The same manner as above except that the first gas-liquid separation layer 12 is joined directly on the first flow path plate 10 without using the first intervening layer 11. Four fuel cells were produced and used as second fuel cells ( second fuel cells 102a, 102b, 102c, 102d).
 (9)燃料分配部の作製
 ポリフェニレンサルファイド(PPS)からなる、図12に示すような外形形状を有し(外形縦56mm、横110mm、高さ50mm)、中央の凸部に図11に示すようなパターンのセル外燃料流路155が形成された燃料分配部150を作製した。凸部上面の長手方向中央部に導入口151が形成されている。導入口151は、セル外燃料流路155の幹流路152に連通する貫通口である。
(9) Fabrication of fuel distribution part The outer shape of polyphenylene sulfide (PPS) as shown in FIG. 12 (outer dimensions 56 mm, width 110 mm, height 50 mm), as shown in FIG. A fuel distributor 150 having an out-cell fuel flow path 155 with a different pattern was produced. An introduction port 151 is formed at the longitudinal center of the upper surface of the convex portion. The introduction port 151 is a through-hole that communicates with the trunk channel 152 of the out-cell fuel channel 155.
 (10)平面集積型燃料電池の作製
 図11に示すように、4つの第1燃料電池セルおよび4つの第2燃料電池セルと燃料分配部150とを結合し(ネジ孔が合致するように)、平面集積型燃料電池を作製した。結合は、セル内燃料流路とセル外燃料流路との接続部での液漏れを防止するため、燃料電池セル-燃料分配部間に両面テープを配置し、さらにネジにて締結することにより行なった(図11中の丸はネジ孔を示している)。
(10) Fabrication of planar integrated fuel cell As shown in FIG. 11, the four first fuel cells, the four second fuel cells, and the fuel distributor 150 are coupled (so that the screw holes are matched). A flat integrated fuel cell was produced. In order to prevent liquid leakage at the connection between the fuel flow path in the cell and the fuel flow path outside the cell, a double-sided tape is placed between the fuel cell and the fuel distribution part, and then tightened with screws. Performed (circles in FIG. 11 indicate screw holes).
 (燃料電池の発電特性評価)
 メタノール濃度20Mのメタノール水溶液を燃料とし、送液ポンプを用いて導入口151からセル外燃料流路155、さらにセル内燃料流路に燃料供給を行なって燃料電池を発電させ、燃料電池セルごとに、発電開始から発電開始後2000秒までの出力電圧の変化を測定した。取り出し電流値は、発電開始から段階的に大きくしていき、発電開始後約250秒~発電開始後約1750秒において、0.3Aの定電流とした。結果を図13に示す。図13に示されるように、8つの燃料電池セルは、0.3Aの定電流稼動時において、出力電圧値がほぼ同じ変化パターンを示しており、各燃料電池セルへの燃料供給が均一化された結果、燃料電池セル間での発電のばらつきが小さくなったことが確認された。
(Evaluation of power generation characteristics of fuel cells)
A methanol aqueous solution with a methanol concentration of 20M is used as fuel, and fuel is supplied from the inlet 151 to the fuel flow path 155 outside the cell and further to the fuel flow path in the cell by using a liquid feed pump to generate power in the fuel cell. The change in the output voltage from the start of power generation to 2000 seconds after the start of power generation was measured. The extracted current value was gradually increased from the start of power generation, and was set to a constant current of 0.3 A from about 250 seconds after the start of power generation to about 1750 seconds after the start of power generation. The results are shown in FIG. As shown in FIG. 13, the eight fuel cells show a change pattern in which the output voltage value is almost the same when operating at a constant current of 0.3 A, and the fuel supply to each fuel cell is made uniform. As a result, it was confirmed that the variation in power generation between fuel cells was reduced.
 1 第1電解質膜、1’ 第2電解質膜、2 第1アノード極、2’ 第2アノード極、3 第1カソード極、3’ 第2カソード極、4 第1膜電極複合体、4’ 第2膜電極複合体、5 第1アノード集電層、5’ 第2アノード集電層、6 第1カソード集電層、6’ 第2カソード集電層、7 第1アノード保湿層、7’ 第2アノード保湿層、8 第1カソード保湿層、8’ 第2カソード保湿層、9,99 第1気化燃料板、9’ 第2気化燃料板、9a,99a 第1気化燃料収容部(貫通口)、9a’ 第2気化燃料収容部、9b,99b 第1連通経路、10 第1流路板、10’ 第2流路板、10a 第1セル内燃料流路、10a’ 第2セル内燃料流路、11 第1介在層、12 第1気液分離層、12’ 第2気液分離層、13 第2介在層、99c,99d 第1接続経路、100 燃料電池、101,101a,101b,101c,101d,901 第1燃料電池セル、102,102a,102b,102c,102d 第2燃料電池セル、110 燃料電池セル集合体、150 燃料分配部、151 導入口、152 幹流路、153 枝流路、155 セル外燃料流路。 DESCRIPTION OF SYMBOLS 1 1st electrolyte membrane, 1 '2nd electrolyte membrane, 2nd 1st anode pole, 2' 2nd anode pole, 1st cathode pole, 3 '2nd cathode pole, 4th 1st membrane electrode complex, 4'th 2 membrane electrode composite, 5 first anode current collecting layer, 5 'second anode current collecting layer, 6 first cathode current collecting layer, 6' second cathode current collecting layer, 7 first anode moisturizing layer, 7 'first 2 anode moisturizing layer, 8 first cathode moisturizing layer, 8 ′ second cathode moisturizing layer, 9,99 first vaporized fuel plate, 9 ′ second vaporized fuel plate, 9a, 99a first vaporized fuel storage part (through port) , 9a ′ second vaporized fuel storage portion, 9b, 99b first communication path, 10 first flow path plate, 10 ′ second flow path plate, 10a first in-cell fuel flow path, 10a ′ second in-cell fuel flow Road, 11 first intervening layer, 12 first gas-liquid separation layer, 12 ′ second Liquid separation layer, 13 second intervening layer, 99c, 99d first connection path, 100 fuel cell, 101, 101a, 101b, 101c, 101d, 901 first fuel cell, 102, 102a, 102b, 102c, 102d second Fuel cell, 110 fuel cell assembly, 150 fuel distributor, 151 inlet, 152 trunk channel, 153 branch channel, 155 external fuel channel.

Claims (8)

  1.  同一平面上に配置される1以上の第1燃料電池セルおよび1以上の第2燃料電池セルを含む燃料電池であって、
     前記第1燃料電池セルは、
     第1アノード極、第1電解質膜および第1カソード極をこの順で有する第1膜電極複合体と、
     液体燃料を流通させるための第1セル内燃料流路が第1アノード極側表面に配された、前記第1アノード極側に配置される第1流路板と、
     前記第1膜電極複合体と前記第1流路板との間に配置され、前記液体燃料の気化成分を透過可能な第1気液分離層と、
     前記第1セル内燃料流路を覆うように前記第1気液分離層と前記第1流路板との間に配置され、水に対する接触角が70度未満である第1介在層と、
    を備え、
     前記第2燃料電池セルは、
     第2アノード極、第2電解質膜および第2カソード極をこの順で有する第2膜電極複合体と、
     液体燃料を流通させるための第2セル内燃料流路が第2アノード極側表面に配された、前記第2アノード極側に配置される第2流路板と、
     前記第2セル内燃料流路を覆うように前記第2流路板における第2アノード極側表面上に配置され、前記液体燃料の気化成分を透過可能な第2気液分離層と、
    を備える燃料電池。
    A fuel cell including one or more first fuel cells and one or more second fuel cells arranged on the same plane,
    The first fuel battery cell is
    A first membrane electrode assembly having a first anode electrode, a first electrolyte membrane, and a first cathode electrode in this order;
    A first flow path plate disposed on the first anode electrode side, wherein a first in-cell fuel flow path for circulating liquid fuel is disposed on the first anode electrode side surface;
    A first gas-liquid separation layer disposed between the first membrane electrode assembly and the first flow path plate and capable of transmitting a vaporized component of the liquid fuel;
    A first intervening layer disposed between the first gas-liquid separation layer and the first flow path plate so as to cover the first in-cell fuel flow path, and having a contact angle with respect to water of less than 70 degrees;
    With
    The second fuel battery cell is
    A second membrane electrode assembly having a second anode electrode, a second electrolyte membrane, and a second cathode electrode in this order;
    A second flow path plate disposed on the second anode pole side, wherein a second in-cell fuel flow path for circulating liquid fuel is disposed on the second anode pole side surface;
    A second gas-liquid separation layer disposed on the second anode electrode side surface of the second flow path plate so as to cover the fuel flow path in the second cell, and capable of transmitting a vaporized component of the liquid fuel;
    A fuel cell comprising:
  2.  すべての前記第1セル内燃料流路および前記第2セル内燃料流路への前記液体燃料の供給流量が略同じとなるように、前記第1燃料電池セルおよび前記第2燃料電池セルが配置されている請求項1に記載の燃料電池。 The first fuel cell and the second fuel cell are arranged so that the supply flow rates of the liquid fuel to all the first in-cell fuel flow paths and the second in-cell fuel flow paths are substantially the same. The fuel cell according to claim 1.
  3.  1以上の前記第1燃料電池セルおよび1以上の前記第2燃料電池セルをライン状に配列した少なくとも一列の燃料電池セル集合体を含み、
     前記燃料電池セル集合体の少なくとも一端に配置される燃料電池セルは前記第1燃料電池セルである請求項1に記載の燃料電池。
    Including at least one row of fuel cell assemblies in which one or more first fuel cells and one or more second fuel cells are arranged in a line;
    2. The fuel cell according to claim 1, wherein a fuel cell disposed at at least one end of the fuel cell assembly is the first fuel cell.
  4.  前記燃料電池セル集合体は、その両端に配置される2つの前記第1燃料電池セルと、1以上の前記第2燃料電池セルとからなる請求項3に記載の燃料電池。 4. The fuel cell according to claim 3, wherein the fuel cell assembly includes two first fuel cells arranged at both ends thereof and one or more second fuel cells.
  5.  前記第1セル内燃料流路および前記第2セル内燃料流路のそれぞれに接続され、燃料電池が有する各燃料電池セルへの前記液体燃料の分配を行なうセル外燃料流路を有する燃料分配部をさらに備える請求項1に記載の燃料電池。 A fuel distributor having an out-cell fuel channel connected to each of the first in-cell fuel channel and the second in-cell fuel channel and distributing the liquid fuel to each fuel cell of the fuel cell. The fuel cell according to claim 1, further comprising:
  6.  前記燃料分配部は、前記液体燃料を導入するための1つの導入口を有しており、
     前記セル外燃料流路は、前記導入口と接続される幹流路、および、前記幹流路と各セル内燃料流路とを接続する枝流路から構成される請求項5に記載の燃料電池。
    The fuel distributor has one inlet for introducing the liquid fuel,
    The fuel cell according to claim 5, wherein the outside-cell fuel flow path includes a main flow path connected to the introduction port, and a branch flow path connecting the main flow path and each intra-cell fuel flow path.
  7.  前記第1燃料電池セルは、前記第1アノード極上に積層される第1アノード集電層と、前記第1カソード極上に積層される第1カソード集電層とをさらに含み、
     前記第2燃料電池セルは、前記第2アノード極上に積層される第2アノード集電層と、前記第2カソード極上に積層される第2カソード集電層とをさらに含む請求項1に記載の燃料電池。
    The first fuel cell further includes a first anode current collecting layer laminated on the first anode electrode, and a first cathode current collecting layer laminated on the first cathode electrode,
    The said 2nd fuel cell further contains the 2nd anode current collection layer laminated | stacked on the said 2nd anode electrode, and the 2nd cathode current collection layer laminated | stacked on the said 2nd cathode electrode. Fuel cell.
  8.  ダイレクトアルコール型燃料電池である請求項1に記載の燃料電池。 The fuel cell according to claim 1, which is a direct alcohol fuel cell.
PCT/JP2012/067308 2011-08-03 2012-07-06 Fuel cell WO2013018502A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-170050 2011-08-03
JP2011170050A JP2013033690A (en) 2011-08-03 2011-08-03 Fuel battery

Publications (1)

Publication Number Publication Date
WO2013018502A1 true WO2013018502A1 (en) 2013-02-07

Family

ID=47629033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067308 WO2013018502A1 (en) 2011-08-03 2012-07-06 Fuel cell

Country Status (2)

Country Link
JP (1) JP2013033690A (en)
WO (1) WO2013018502A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037919A (en) * 2007-08-02 2009-02-19 Sharp Corp Fuel cell and its manufacturing method, and fuel-cell stack
JP2010238458A (en) * 2009-03-30 2010-10-21 Nec Corp Fuel battery cell stack, fuel battery, and manufacturing method of fuel battery cell stack

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037919A (en) * 2007-08-02 2009-02-19 Sharp Corp Fuel cell and its manufacturing method, and fuel-cell stack
JP2010238458A (en) * 2009-03-30 2010-10-21 Nec Corp Fuel battery cell stack, fuel battery, and manufacturing method of fuel battery cell stack

Also Published As

Publication number Publication date
JP2013033690A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
US7407721B2 (en) Direct oxidation fuel cell operating with direct feed of concentrated fuel under passive water management
US7282293B2 (en) Passive water management techniques in direct methanol fuel cells
US20100221633A1 (en) Fuel cell stack and fuel cell system
WO2010114059A1 (en) Fuel cell stack and electronic apparatus provided with same
JP5019122B2 (en) Fuel cell and fuel cell system
US20160049674A1 (en) Fuel cell stack, fuel cell stack composite, and fuel cell system
JP5901892B2 (en) Fuel cell
JP2013033691A (en) Fuel battery
JP5128909B2 (en) Polymer electrolyte fuel cell
WO2007046231A1 (en) Fuel cell system and fuel cell
WO2013018502A1 (en) Fuel cell
JP2013218944A (en) Fuel cell
JP5685463B2 (en) Fuel cell
JP5675455B2 (en) Fuel cell
JP2013058369A (en) Fuel cell stack and fuel cell system
JP6062154B2 (en) Fuel cell and method of using the same
JP2013058370A (en) Fuel cell stack, fuel cell stack complex, and fuel cell system
JP5517203B2 (en) Fuel cell and fuel cell stack using the same
WO2012128238A1 (en) Fuel cell
JPWO2008062551A1 (en) Polymer electrolyte fuel cell
JP2011222348A (en) Fuel cell and fuel cell stack using the same
JP2009076404A (en) Fuel battery cell and fuel battery stack
WO2010007818A1 (en) Solid polymer fuel cell
JP2010160934A (en) Fuel cell system and electronic apparatus
JP2011222349A (en) Fuel cell and fuel cell stack using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819892

Country of ref document: EP

Kind code of ref document: A1