WO2013016920A1 - Resonant cavity and filter having the resonant cavity - Google Patents

Resonant cavity and filter having the resonant cavity Download PDF

Info

Publication number
WO2013016920A1
WO2013016920A1 PCT/CN2011/083811 CN2011083811W WO2013016920A1 WO 2013016920 A1 WO2013016920 A1 WO 2013016920A1 CN 2011083811 W CN2011083811 W CN 2011083811W WO 2013016920 A1 WO2013016920 A1 WO 2013016920A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant cavity
metamaterial
cavity
resonant
sheets
Prior art date
Application number
PCT/CN2011/083811
Other languages
French (fr)
Chinese (zh)
Inventor
刘若鹏
栾琳
刘京京
苏翠
刘豫青
刘尧
钟果
李平军
任春阳
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110216460.4A external-priority patent/CN103187609B/en
Priority claimed from CN201110216572.XA external-priority patent/CN103187604B/en
Priority claimed from CN201110233307.2A external-priority patent/CN102945997B/en
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Publication of WO2013016920A1 publication Critical patent/WO2013016920A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators

Abstract

Provided is a resonant cavity, having the interior being a cavity. At least one metamaterial lamella is placed in the cavity. Each metamaterial lamella comprises a substrate made of a non-metallic material and a man-made microstructure adhering to a surface of the substrate. The man-made microstructure is a structure that is formed of a thread made of an electrically conductive material and has a geometric pattern. When the resonant cavity, and after the metamaterial lamella is added therein, the resonant frequency of the resonant cavity can be decreased obviously, thereby miniaturizing the resonant cavity. Also provided is a filter having the resonant cavity.

Description

一种谐振腔及具有该谐振腔的滤波器  Resonant cavity and filter having the same
本申请要求于 2011年 7月 29日提交中国专利局、申请号为 201110216460.4, 发明名称为 "一种谐振腔" 的中国专利申请的优先权, 2011年 8月 16日提交中 国专利局、 申请号为 201110233307.2, 发明名称为 "一种谐振腔" 的中国专利 申请的优先权, 2011年 7月 29日提交中国专利局、 申请号为 201110216572.X, 发明名称为 "一种滤波器" 的中国专利申请的优先权, 其全部内容通过引用结 合在本申请中。 技术领域  This application claims the priority of the Chinese Patent Application entitled "A Resonant Cavity" submitted to the China Patent Office on July 29, 2011, with the application number of 201110216460.4, and submitted to the Chinese Patent Office on August 16, 2011. Priority for the Chinese patent application entitled "A Resonant Cavity", 201110233307.2, filed on July 29, 2011, Chinese Patent Office, Application No. 201110216572.X, Chinese patent entitled "A Filter" Priority of the application, the entire contents of which are incorporated herein by reference. Technical field
本发明涉及无线通信领域, 更具体地说, 涉及一种谐振腔及具有该谐振腔 的滤波器。 背景技术  The present invention relates to the field of wireless communications, and more particularly to a resonant cavity and a filter having the same. Background technique
在微波器件中, 腔体滤波器是很重要的一种器件。 腔体滤波器是由几个微 波谐振腔组成的, 每个谐振腔具有一个任意形状的由导电壁 (或导磁壁) 包围 的腔体, 并能在其中形成电磁振荡的介质区域, 它具有储存电磁能及选择一定 频率信号的特性。  In microwave devices, cavity filters are a very important device. The cavity filter is composed of several microwave resonators, each of which has an arbitrary shape of a cavity surrounded by a conductive wall (or a magnetic conductive wall), and can form an electromagnetically oscillated medium region therein, which has a storage Electromagnetic energy and the characteristics of selecting a certain frequency signal.
谐振腔是在微波频率下工作的谐振元件, 微波谐振腔的谐振频率取决于该 腔的容积, 一般来说, 谐振腔容积越大谐振频率越低, 谐振腔容积减小谐振频 率越高, 因此如何实现在不增大谐振腔尺寸的情况下降低谐振腔的谐振频率对 于谐振腔的小型化具有重要的意义。 发明内容  The resonant cavity is a resonant component that operates at a microwave frequency. The resonant frequency of the microwave resonant cavity depends on the volume of the cavity. Generally, the larger the resonant cavity volume, the lower the resonant frequency, and the larger the resonant cavity volume, the higher the resonant frequency. How to reduce the resonant frequency of the resonant cavity without increasing the size of the resonant cavity is of great significance for the miniaturization of the resonant cavity. Summary of the invention
本发明要解决的技术问题提供一种 d、体积的谐振腔及滤波器。  The technical problem to be solved by the present invention provides a d, a volume of a resonant cavity and a filter.
本发明提供一种谐振腔, 其内部为腔体, 所述腔体内部放置有至少一个超 材料片层, 每个超材料片层包括非金属材料制成的基板和附着在基板表面上的 人造微结构, 所述人造微结构为导电材料的丝线组成的具有几何图案的结构。  The invention provides a resonant cavity, the inside of which is a cavity, and at least one metamaterial sheet is placed inside the cavity, and each of the metamaterial sheets comprises a substrate made of a non-metal material and an artificial material attached to the surface of the substrate. Microstructure, the artificial microstructure is a geometrically patterned structure composed of wires of a conductive material.
其中, 所述超材料片层有多个, 所述各超材料片层相互平行地间隔设置。 其中, 所述超材料片层有多个, 所述各超材料片层表面相接触地连接成一 体。 其中, 相邻所述两超材料片层之间放置透波材料。 There are a plurality of the super-material sheets, and the super-material sheets are arranged in parallel with each other. There are a plurality of the super-material sheets, and the surfaces of the super-material sheets are integrally connected in contact with each other. Wherein, a wave-transparent material is placed between adjacent two super-material sheets.
其中, 所述谐振腔还包括第一超材料板、 输入端及输出端, 所述第一超材 料板由所述至少一个超材料片层组成, 所述第一超材料板将所述腔体隔成两个 连通的腔室, 所述输入端、 输出端分别位于两个腔室内, 且所述输入端及输出 端分别装在所述腔体两侧内壁上。  Wherein, the resonant cavity further includes a first metamaterial plate, an input end and an output end, the first metamaterial plate is composed of the at least one metamaterial sheet, the first metamaterial plate is to be the cavity The input end and the output end are respectively located in two chambers, and the input end and the output end are respectively mounted on inner walls of both sides of the cavity.
其中, 所述超材料片层有多个, 所述两个腔室内分别各设置有一个第二超 材料板, 两个所述第二超材料板分别与所述输入端和输出端接触耦合连接, 所 述第二超材料板由至少一个所述超材料片层组成。  Wherein, the plurality of metamaterial sheets are provided, and each of the two chambers is respectively provided with a second metamaterial board, and the two second metamaterial boards are respectively coupled with the input end and the output end. The second metamaterial sheet is composed of at least one of the metamaterial sheets.
其中, 所述谐振腔还包括调谐螺杆, 所述调谐螺杆装在所述腔体顶部内壁 上, 位于所述输入端及输出端之间, 且位于第一超材料板正上方。  The resonant cavity further includes a tuning screw mounted on the inner wall of the top of the cavity, between the input end and the output end, and located directly above the first metamaterial board.
其中, 所述人造微结构为丝线绕成螺旋形的结构。  Wherein, the artificial microstructure is a structure in which a wire is spirally wound.
其中, 所述腔体内设置有支座, 所述超材料片层固定在所述支座上。  Wherein, a cavity is disposed in the cavity, and the metamaterial sheet layer is fixed on the support.
其中, 所述支座是由透波材料制成。  Wherein, the support is made of a wave permeable material.
其中, 所述支座上设置插槽, 所述超材料片层插入所述插槽内。 其中, 所述人造微结构为十字形或者十字形的衍生形。  Wherein the socket is provided with a slot, and the metamaterial sheet layer is inserted into the slot. Wherein, the artificial microstructure is a cross shape or a cross shape.
其中, 所述十字形的衍生形具有四个相同的支路, 任一支路以一点为旋转 中心依次旋转 90度、 180度、 270度后依次分别于其他三个支路重合。  Wherein, the cross-shaped derivative has four identical branches, and any of the branches is rotated 90 degrees, 180 degrees, and 270 degrees in a row as a center of rotation, and then coincides with the other three branches in turn.
其中, 每个支路一端与其他三个支路共端点连接, 另一端为自由端, 两端 之间设置有至少一个弯折部。  One end of each branch is connected to the other three branches at the same end, and the other end is a free end, and at least one bent portion is disposed between the two ends.
其中, 所述支路的自由端连接有一线段。  Wherein, the free end of the branch is connected with a line segment.
其中, 所述人造微结构由金属制成。  Wherein the artificial microstructure is made of metal.
其中, 如权利要求 1-6任一项所述的谐振腔, 其特征在于, 所述人造微结构 为非金属的导电材料组成。  The resonant cavity according to any one of claims 1 to 6, wherein the artificial microstructure is composed of a non-metallic conductive material.
其中, 所述基板的材料为陶瓷、 聚四氟乙烯、 环氧树脂、 铁电材料、 铁氧 材料、 铁磁材料或者 FR-4。  The material of the substrate is ceramic, polytetrafluoroethylene, epoxy resin, ferroelectric material, ferrite material, ferromagnetic material or FR-4.
相应地, 本发明实施例还提供了一种滤波器, 所述滤波器包括至少一个上 述的谐振腔。  Accordingly, embodiments of the present invention also provide a filter including at least one of the above-described resonant cavities.
实施本发明的谐振腔, 具有以下有益效果: 采用本发明的谐振腔, 其加入 超材料片层后, 能够有利于实现谐振腔及滤波器的小型化。 附图说明 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 The implementation of the resonant cavity of the present invention has the following beneficial effects: The use of the resonant cavity of the present invention, which is added to the metamaterial sheet, facilitates miniaturization of the resonant cavity and the filter. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in the claims Other drawings may also be obtained from these drawings without the inventive labor.
图 1为本发明第一实施例的谐振腔的示意图;  1 is a schematic view of a resonant cavity of a first embodiment of the present invention;
图 2是图 1所示谐振腔的超材料片层的结构示意图;  2 is a schematic structural view of a metamaterial sheet of the resonator shown in FIG. 1;
图 3是人造微结构为工字形的衍生形的结构示意图;  3 is a schematic structural view of a derivative structure in which an artificial microstructure is an I-shaped shape;
图 4是人造微结构为十字形的衍生形的结构示意图;  Figure 4 is a schematic view showing the structure of an artificial microstructure having a cross shape;
图 5至图 8是人造微结构为另四种十字形的衍生形的结构示意图; 图 9是本发明第二实施例的谐振腔的结构示意图;  5 to FIG. 8 are schematic structural views showing the artificial microstructures of the other four cross-shaped derivations; FIG. 9 is a schematic structural view of the resonant cavity of the second embodiment of the present invention;
图 10是人造微结构为第一种螺旋形结构的示意图;  Figure 10 is a schematic view showing the artificial microstructure being the first spiral structure;
图 11是人造微结构为第二种螺旋形结构的示意图;  Figure 11 is a schematic view showing the artificial microstructure being a second spiral structure;
图 12是人造微结构为第三种螺旋形结构的示意图;  Figure 12 is a schematic view showing the artificial microstructure as a third spiral structure;
图 13是本发明第三实施例的谐振腔的结构示意图  Figure 13 is a schematic view showing the structure of a resonant cavity in accordance with a third embodiment of the present invention;
图 14是谐振腔未放入第一超材料板时的仿真图;  Figure 14 is a simulation diagram when the resonant cavity is not placed in the first metamaterial plate;
图 15是谐振腔中加入第一超材料板后的仿真图;  Figure 15 is a simulation diagram after the first metamaterial plate is added to the resonant cavity;
图 16是本发明第四实施例的滤波器的结构示意图。 具体实施例  Fig. 16 is a view showing the configuration of a filter of a fourth embodiment of the present invention. Specific embodiment
本发明涉及一种谐振腔, 主要是指微波谐振腔, 请参阅图 1 , 本发明第一实 施例提供的谐振腔, 其内部为填充介质的腔体 8。 本发明在腔体 8内填充的介质 为超材料。  The invention relates to a resonant cavity, which mainly refers to a microwave resonant cavity. Referring to Fig. 1, a resonant cavity provided by a first embodiment of the present invention has a cavity 8 filled with a medium inside. The medium filled in the cavity 8 of the present invention is a metamaterial.
如图 1所示,超材料包括至少一个超材料片层 1。当超材料片层 1有一个时, 可以将其直接固定到腔体 8 内。 当超材料片层 1有多个时, 多个超材料片层 1 表面相接触地粘接成一体, 也可在相邻两超材料片层 1 之间放置透波材料例如 泡沫来将它们间隔开。 腔体 8 内可放置支座, 支座上设置插槽, 将多个超材料 片层 1 构成的整体插入插槽内, 从而使它们相互平行放置。 支座优选泡沫塑料 等透波材料。 超材料片层 1包括平板状的基板 3和附着在基板 3表面上的人造微结构 2。 其中, 基板 3由非金属材料制成, 如聚四氟乙烯、 环氧树脂、 陶瓷、 铁电材料、 铁氧材料、 铁磁材料、 FR-4材料等。 人造微结构 2为至少一根丝线在基板 3表 面上组成的一定几何图案的结构, 例如 "工" 字形、 开口谐振环形等。 人造微 结构 2 的丝线是由导电材料制成的, 通常为金属如银、 铜等, 也可以用其他非 金属的导电材料如 ITO制成。 这些丝线的线宽在 lmm以内, 优选为可加工的最 小线宽例如 0.1mm; 丝线的厚度 4艮薄, 通常为镀层的厚度, 本发明中通常小于 0.1mm, 列: ¾口 0.018mm。 As shown in FIG. 1, the metamaterial includes at least one metamaterial sheet 1. When there is one of the metamaterial sheets 1, it can be directly fixed into the cavity 8. When there are a plurality of super-material sheet layers 1, the surfaces of the plurality of meta-material sheets 1 are bonded in contact with each other, and a wave-transparent material such as foam may be placed between adjacent two super-material sheets 1 to separate them. open. A cavity can be placed in the cavity 8, and a socket is arranged on the support, and the whole of the plurality of metamaterial sheets 1 is inserted into the slot so that they are placed in parallel with each other. The support is preferably a wave permeable material such as foam. The metamaterial sheet layer 1 includes a flat substrate 3 and an artificial microstructure 2 attached to the surface of the substrate 3. The substrate 3 is made of a non-metallic material such as polytetrafluoroethylene, epoxy resin, ceramics, ferroelectric material, ferrite material, ferromagnetic material, FR-4 material, and the like. The artificial microstructure 2 is a structure of a certain geometric pattern composed of at least one wire on the surface of the substrate 3, such as a "work" shape, an open resonance ring, and the like. The wires of the artificial microstructure 2 are made of a conductive material, usually a metal such as silver, copper, etc., and may also be made of other non-metallic conductive materials such as ITO. The wire has a line width of less than 1 mm, preferably a processable minimum line width of, for example, 0.1 mm; the thickness of the wire is 4 inches, usually the thickness of the plating layer, typically less than 0.1 mm in the present invention, and the column: 3⁄4 port 0.018 mm.
人造微结构 2 的几何图案有很多种情况, 已知的如工字形, 其包括成直线 的第一金属线 201和连接在第一金属线 201两端且被第一金属线 201垂直平分 的两根第二金属线 202; 这样的工字形人造微结构还可以进一步衍生,得到工字 形的衍生形, 如图 3 所示, 其除了第一、 第二金属线外, 还包括分别连接在每 根第二金属线 202两端且被第二金属线 202垂直平分的第三金属线 203、分别连 接在每根第三金属线 203两端且被第三金属线 203垂直平分的第四金属线 204, 依此类推, 继续衍生。  There are many cases in the geometric pattern of the artificial microstructure 2, such as an I-shape, which includes a first metal wire 201 that is in line and two that are connected at both ends of the first metal wire 201 and are vertically divided by the first metal wire 201. The second metal wire 202; such an I-shaped artificial microstructure can be further derivatized to obtain an I-shaped derivative shape, as shown in FIG. 3, which includes, in addition to the first and second metal wires, respectively connected to each A third metal line 203 at both ends of the second metal line 202 and vertically divided by the second metal line 202, and a fourth metal line 204 respectively connected to each of the third metal lines 203 and vertically divided by the third metal line 203 , and so on, continue to derive.
同样, 本发明的人造微结构 2还可以是十字形的衍生形, 其包括两根垂直 且互相平分构成十字形的第一金属线 201 , 还包括分别连接在每根第一金属线 201两端且被第一金属线 201垂直平分的第二金属线 202, 构成的衍生形如图 2 所示; 进一步地, 当人造微结构除第一、 第二金属线外, 还可包括分别连接在 每根第二金属线 202两端且被第二金属线 202垂直平分的第三金属线 203 ,以及 分别连接在每根第三金属线 203两端且被每根第三金属线 203垂直平分的第四 金属线 204, 则其结构如图 4所示。 还可以依此类推, 得到其他衍生结构。  Similarly, the artificial microstructure 2 of the present invention may also be a cross-shaped derivative shape including two first metal wires 201 that are vertically and halved to form a cross, and are further connected to the ends of each of the first metal wires 201, respectively. And a derivative shape formed by the second metal line 202 vertically divided by the first metal line 201 is as shown in FIG. 2; further, when the artificial microstructure is divided into the first and second metal lines, it may further comprise a third metal line 203 at both ends of the second metal line 202 and vertically divided by the second metal line 202, and a first line respectively connected to each of the third metal lines 203 and vertically divided by each of the third metal lines 203 The four metal wires 204 are structured as shown in FIG. Other derivatives can also be obtained by analogy.
在其他十字形的衍生形的实施例中,人造微结构 2包括四个相同的支路 210, 任一支路 210以一点为旋转中心依次旋转 90度、 180度、 270度后依次分别于 其他三个支路 210重合。 因此, 这样的人造微结构 2为各向同性结构, 其在所 在的平面的各个方向上对电磁波的响应特征均相同, 上述如图 2、 图 4的十字形 的衍生形人造微结构也具有这样的特性。 当然, 上述实施例中, 四个支路 210 可以共一个端点从而连接为一体。  In other embodiments of the cross-shaped derivative shape, the artificial microstructure 2 includes four identical branches 210, and any of the branches 210 is rotated 90 degrees, 180 degrees, and 270 degrees in sequence with a point as a center of rotation, respectively. The three branches 210 coincide. Therefore, such an artificial microstructure 2 is an isotropic structure, and its response characteristics to electromagnetic waves are the same in all directions of the plane in which it is located, and the above-described cross-shaped derivative artificial microstructures as shown in FIGS. 2 and 4 also have such a structure. Characteristics. Of course, in the above embodiment, the four branches 210 may be connected in one end to be integrated.
如图 5至图 8所示, 每个支路 210一端与其他三个支路 210共端点连接, 另一端为自由端, 两端之间设置有至少一个弯折部。 这里的弯折部可以为直角 弯折, 如图 5所示, 也可以是尖角弯折如图 6、 图 7所示, 还可以是圓角弯折, 如图 8所示。 自由端的外部还可连接有直线段, 如图 7、 图 8所示, 优选为自由 端的端点与该线段的中点连接。 As shown in FIG. 5 to FIG. 8 , one end of each branch 210 is connected to the other three branches 210 at the same end, and the other end is a free end, and at least one bent portion is disposed between the two ends. The bend here can be a right angle The bending, as shown in Fig. 5, may also be a sharp corner bending as shown in Fig. 6 and Fig. 7, and may also be a rounded corner, as shown in Fig. 8. The outer portion of the free end may also be connected with a straight line segment. As shown in Figs. 7 and 8, the end point of the free end is preferably connected to the midpoint of the line segment.
由于导电材料制成的人造微结构 2 的存在, 超材料片层具有较高的介电常 数, 其装入谐振腔后, 能够明显降低谐振腔的谐振频率, 使得由多个谐振腔组 成的滤波器小型化成为可能。  Due to the existence of the artificial microstructure 2 made of a conductive material, the metamaterial sheet has a high dielectric constant, and after being incorporated into the cavity, the resonant frequency of the cavity can be significantly reduced, so that the filter composed of a plurality of resonators is formed. Miniaturization is possible.
例如,图 1所示腔体为 20mm 20mm 20mm的立方体,超材料片层为 15mm 12mm 1.018mm, 一共 12个超材料片层, 基板为陶瓷, 厚度为 1mm, 每个 人造微结构为如图 1、 图 2所示的十字形的衍生形, 其尺寸为 3mm x 3mm, 每 块基板上阵列排布有 4 x 5个人造微结构。 通过仿真可知, 第一、 第二谐振频率 均为 0, 第三谐振频率为 1.9699GHz。 而空腔的谐振频率为 10GHz。 可见, 加入 超材料结构后, 其谐振频率降低到 1.9699GHz。另夕卜,谐振腔中有很多不同的模, 对应着不同的谐振频率, 采用本发明的实施例, 第一、 第二谐振频率为 0, 表明 低阶模被抑制, 高阶模被激发, 而越高阶模则 Q值越高, Q值高意味着谐振腔 的损耗小。 这也是本发明的优势之一。 由此可见, 采用本发明的谐振腔, 其加 入超材料片层 1后, 能明显降低谐振频率, 有利于实现滤波器的小型化。  For example, the cavity shown in Figure 1 is a 20mm 20mm 20mm cube, the metamaterial sheet is 15mm 12mm 1.018mm, a total of 12 metamaterial sheets, the substrate is ceramic, the thickness is 1mm, and each artificial microstructure is as shown in Figure 1. The cross-shaped derivative shown in Fig. 2 has a size of 3 mm x 3 mm, and each of the substrates is arranged with 4 x 5 human microstructures. It can be seen from the simulation that the first and second resonant frequencies are both 0 and the third resonant frequency is 1.9699 GHz. The resonant frequency of the cavity is 10 GHz. It can be seen that after adding the metamaterial structure, its resonant frequency is reduced to 1.9699 GHz. In addition, there are many different modes in the resonant cavity, corresponding to different resonant frequencies. According to the embodiment of the present invention, the first and second resonant frequencies are 0, indicating that the low-order modes are suppressed, and the higher-order modes are excited, and the more The higher the Q mode, the higher the Q value means that the loss of the cavity is small. This is also one of the advantages of the present invention. It can be seen that, by using the resonant cavity of the present invention, after adding the super-material layer 1, the resonant frequency can be significantly reduced, which is advantageous for miniaturization of the filter.
请参阅图 9, 为本发明第二实施例所提供的谐振腔 200, 所述谐振腔 200与 第一实施例的谐振腔基本相同, 其不同之处在于, 所述谐振腔 200还在腔体 104 的顶部内壁上安装有调谐螺杆 106、在腔体 104两侧内壁上安装有输入端 150和 输出端 105。 所述超材料片层 101a组成第一超材料板 101。 第一超材料板 101 包括 5个超材料片层 101a。 第一超材料板 101放置在腔体 104的底部内壁上, 由于第一超材料板 101具有一定的面积, 从而将腔体 104内部空间一分为二, 即原本的一个腔体 104被分成两个腔室。 由于第一超材料板 101正对着调谐螺 杆 106设置, 且与调谐螺杆 106之间隔有间距, 因此并未完全将两个腔室封闭 地隔绝开, 而是两个腔室通过第一超材料板 101和调谐螺杆 106之间的间距连 通, 输入端 150和输出端 105分别位于两个腔室内, 且二者的连线穿过第一超 材料板 101。  Referring to FIG. 9, a resonant cavity 200 according to a second embodiment of the present invention is provided. The resonant cavity 200 is substantially the same as the resonant cavity of the first embodiment, except that the resonant cavity 200 is also in the cavity. A tuning screw 106 is mounted on the top inner wall of the 104, and an input end 150 and an output end 105 are mounted on the inner walls of both sides of the cavity 104. The metamaterial sheet layer 101a constitutes a first metamaterial sheet 101. The first metamaterial sheet 101 includes five metamaterial sheets 101a. The first metamaterial sheet 101 is placed on the inner wall of the bottom of the cavity 104. Since the first metamaterial sheet 101 has a certain area, the inner space of the cavity 104 is divided into two, that is, the original one cavity 104 is divided into two. a chamber. Since the first metamaterial sheet 101 is disposed opposite the tuning screw 106 and spaced apart from the tuning screw 106, the two chambers are not completely closed, but the two chambers pass through the first metamaterial. The spacing between the plate 101 and the tuning screw 106 is in communication, the input end 150 and the output end 105 are respectively located in the two chambers, and the wires of the two pass through the first metamaterial sheet 101.
此时, 由于单腔被近似地划分为 "双腔", 该谐振腔的传输特性会达到带宽 的效果。 在实现带宽的同时, 为了减小谐振腔的体积, 还应尽量降低谐振腔的 谐振频率, 这一点可以利用第一超材料板的特性来实现。 所述超材料片层 101a能体现出特殊的、 甚至自然界中 4艮难达到的特性, 例 如较高的介电常数、 负磁导率、 负折射率等特性。 本实施例中的所述超材料片 层 101a能使谐振腔具有谐振带宽的效果。 At this time, since the single cavity is approximately divided into "dual cavity", the transmission characteristics of the cavity can reach the effect of bandwidth. While realizing the bandwidth, in order to reduce the volume of the resonant cavity, the resonant frequency of the resonant cavity should also be minimized, which can be achieved by utilizing the characteristics of the first metamaterial plate. The metamaterial sheet layer 101a can exhibit special, even natural, properties that are difficult to achieve, such as higher dielectric constant, negative magnetic permeability, negative refractive index, and the like. The metamaterial sheet layer 101a in this embodiment enables the resonant cavity to have a resonance bandwidth effect.
当所述超材料片层 101a的人造微结构为如图 10-12所示的螺旋形时, 可以 达到高介电常数的特性。 图 10是一根丝线的两端分别顺时针、 逆时针螺旋, 图 11是一根丝线对折后同步螺旋,图 12是四根相同的螺旋线共一外端点而连成的 结构。 这样的螺旋结构都能使第一超材料块具有较高的介电常数, 从而起到降 低频点的作用。  When the artificial microstructure of the metamaterial sheet 101a is a spiral as shown in Figs. 10-12, a high dielectric constant characteristic can be attained. Fig. 10 is a clockwise, counterclockwise spiral at both ends of a wire, Fig. 11 is a synchronous spiral of a wire folded in half, and Fig. 12 is a structure in which four identical spirals are connected at one end. Such a spiral structure enables the first metamaterial block to have a high dielectric constant, thereby functioning as a low frequency point.
为了进一步增加谐振腔的降频特性, 如图 13所示, 在第三实施例中, 本发 明的谐振腔除了如图 9所示的所有部件和结构以外, 还在输入端 150和输出端 105末端分别接触有一第二超材料板 107, 两个第二超材料板 107分别位于上述 两个腔室内, 且不与第一超材料板 101接触。 此时, 调节调谐螺杆 106, 会改变 谐振腔内的耦合形式, 从而使得频率和差损变得可调。  In order to further increase the frequency down characteristic of the cavity, as shown in FIG. 13, in the third embodiment, the resonator of the present invention is also at the input terminal 150 and the output terminal 105 in addition to all the components and structures as shown in FIG. The ends are respectively contacted with a second metamaterial plate 107, and the two second metamaterial plates 107 are respectively located in the two chambers, and are not in contact with the first metamaterial plate 101. At this time, adjusting the tuning screw 106 changes the coupling form in the cavity, thereby making the frequency and the differential loss adjustable.
第二超材料板 107与第一超材料板 101一样, 也是由至少一个超材料片层 构成, 其可采用与上述第一超材料板 101 完全相同的基板和人造微结构, 也可 以不同, 但尺寸应小于第一超材料板 101。  The second metamaterial sheet 107, like the first metamaterial sheet 101, is also composed of at least one metamaterial sheet, which may be the same substrate and artificial microstructure as the first metamaterial sheet 101 described above, or may be different, but The size should be smaller than the first metamaterial sheet 101.
通过仿真发现, 采用图 9所示的谐振腔, 当其不放置第一超材料板 101时, 其 S参数仿真图如图 14所示, 由图可知其只有一个谐振频率且约为 9.8GHz; 当其放入第一超材料板 101且第一超材料板 101 包括五片如图 2所示的超材料 片层时, 得到的 S参数仿真图如图 15所示, 由图可知, 增加了超材料以后, 上 述谐振腔从 6.275GHz到 6.324GHz之间形成通带, 带宽约 50MHz, 显然谐振频 率也相较于之前的 9.8GHz有了明显降低。 因此, 采用本发明的加入了第一超材 料板的谐振腔, 可以形成至少两个谐振腔组合才能形成的带宽, 同时谐振频率 也能得到降低。  Through simulation, it is found that the resonant cavity shown in FIG. 9 is used when the first metamaterial plate 101 is not placed, and its S-parameter simulation diagram is shown in FIG. 14 , which shows that it has only one resonant frequency and is about 9.8 GHz; When it is placed in the first metamaterial sheet 101 and the first metamaterial sheet 101 includes five super material sheets as shown in FIG. 2, the obtained S-parameter simulation map is as shown in FIG. 15, which is known from the figure. After the metamaterial, the above resonator forms a passband from 6.275 GHz to 6.324 GHz with a bandwidth of about 50 MHz. Obviously, the resonant frequency is also significantly lower than the previous 9.8 GHz. Therefore, with the resonator of the present invention incorporating the first supermaterial plate, a bandwidth which can be formed by combining at least two resonators can be formed, and the resonance frequency can also be lowered.
本实施例中的谐振腔可以依靠单个谐振腔实现带宽, 在实现相同带宽的情 况下能有效减少滤波器中谐振腔的个数, 从而有效减小滤波器的体积。  The cavity in this embodiment can realize the bandwidth by relying on a single cavity, and can effectively reduce the number of resonators in the filter under the same bandwidth, thereby effectively reducing the volume of the filter.
请参阅图 16, 为本发明第四实施例所提供的一种滤波器。  Please refer to FIG. 16, which is a filter according to a fourth embodiment of the present invention.
本实施例的滤波器主要是指微波滤波器, 如图 16所示, 其内部为至少一个 实施例一的谐振腔 208。 当然, 在其他实施例中, 所述谐振腔 208还可以采用实 施例二或三的谐振腔。 所述谐振腔 208的两侧装有输入端和输出端。 超材料片层 201共 14片, 其 相互粘接到一起, 输入端和输出端分别抵在超材料片层 201 的两侧表面上。 当 然, 输入端和输出端也可以不与超材料片层接触。 The filter of this embodiment mainly refers to a microwave filter. As shown in FIG. 16, the inside is at least one resonant cavity 208 of the first embodiment. Of course, in other embodiments, the resonant cavity 208 can also adopt the resonant cavity of the second or third embodiment. The resonant cavity 208 is provided with an input end and an output end on both sides. A total of 14 sheets of metamaterial sheets 201 are bonded to each other, and the input end and the output end are respectively abutted on both side surfaces of the metamaterial sheet layer 201. Of course, the input and output terminals may also not be in contact with the metamaterial sheet.
所述超材料片层 201能增加谐振腔的带宽, 从而减小滤波器谐振腔的个数, 进而实现滤波器的小型化。  The metamaterial sheet 201 can increase the bandwidth of the resonant cavity, thereby reducing the number of filter resonators, thereby achieving miniaturization of the filter.
例如, 图 16所示谐振腔为 20mm 20mm 20mm的立方体, 超材料片层为 7mm X 5.6mm X 1.018mm, —共 6个超材料片层, 基板为 FR-4环氧树脂, 厚度 为 1mm, 每个人造微结构为如图 2所示的十字形的衍生形, 其尺寸为 1.4mm X 1.4mm, 每块基板上阵列排布有 20个人造微结构。 通过仿真可知, 第一、 第二 谐振频率均为 0, 第三、 第四谐振频率分别为 3.810GHz、 3.861GHz, 二者组成 超过至少 50MHz的带宽。 而在同样的谐振腔内不放置超材料片层的话, 第一谐 振频率为 6.100GHz, 第二谐振频率为 8.360GHz, 第三谐振频率为 9.938GHz, 第四谐振频率为 9.938GHz, 第一、 第二谐振频率相差大于 2GHz, 无法形成宽 频带。 另外, 谐振腔中有很多不同的模, 对应着不同的谐振频率, 采用本发明 的实施例, 第一、 第二谐振频率为 0, 表明低阶模被抑制, 高阶模被激发, 而越 高阶模则 Q值越高, Q值高意味着谐振腔的损耗小。 这也是本发明的优势之一。  For example, the resonator shown in Figure 16 is a 20mm 20mm 20mm cube, the metamaterial sheet is 7mm X 5.6mm X 1.018mm, a total of 6 metamaterial sheets, the substrate is FR-4 epoxy, and the thickness is 1mm. Each of the artificial microstructures has a cross-shaped derivative shape as shown in Fig. 2, and has a size of 1.4 mm X 1.4 mm, and each of the substrates is arranged in an array of 20 human microstructures. It can be seen from the simulation that the first and second resonant frequencies are all 0, and the third and fourth resonant frequencies are 3.810 GHz and 3.861 GHz, respectively, which constitute a bandwidth exceeding at least 50 MHz. When the super-material layer is not placed in the same cavity, the first resonant frequency is 6.100 GHz, the second resonant frequency is 8.360 GHz, the third resonant frequency is 9.938 GHz, and the fourth resonant frequency is 9.938 GHz. The second resonant frequency differs by more than 2 GHz and cannot form a wide frequency band. In addition, there are many different modes in the resonant cavity, corresponding to different resonant frequencies. With the embodiment of the present invention, the first and second resonant frequencies are 0, indicating that the low-order modes are suppressed, the higher-order modes are excited, and the higher-order modes are excited. The higher the Q value, the higher the Q value means that the loss of the cavity is small. This is also one of the advantages of the present invention.
由此可见, 采用本发明的滤波器, 其加入超材料片层 201 后, 能将多个谐 振频率拉进来, 导致单个谐振腔的带宽变宽, 因而能够承受大功率的滤波器, 也即单腔大功率滤波器, 因此可以实现滤波器的小型化, 同时还具有抑制低阶 模降低损耗的优点。  It can be seen that the filter of the present invention, when added to the metamaterial layer 201, can pull in multiple resonant frequencies, resulting in a wide bandwidth of a single resonant cavity, and thus can withstand a high power filter, that is, a single The cavity high power filter can therefore achieve miniaturization of the filter, while also having the advantage of suppressing the loss of the low order mode.
以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。  The above description is only a preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, and the equivalent changes made by the claims of the present invention are still within the scope of the present invention.

Claims

权 利 要 求 Rights request
1. 一种谐振腔, 其内部为腔体, 其特征在于, 所述腔体内部放置有至少一 个超材料片层, 每个超材料片层包括非金属材料制成的基板和附着在基板表面 上的人造微结构, 所述人造微结构为导电材料的丝线组成的具有几何图案的结 构。 A cavity having a cavity inside, wherein at least one metamaterial sheet is placed inside the cavity, each of the metamaterial sheets comprising a substrate made of a non-metal material and attached to the surface of the substrate The artificial microstructure on the artificial microstructure is a geometrically patterned structure composed of wires of a conductive material.
2. 如权利要求 1所述的谐振腔, 其特征在于, 所述超材料片层有多个, 所 述各超材料片层相互平行地间隔设置。  The resonant cavity according to claim 1, wherein the plurality of metamaterial sheets are plural, and each of the metamaterial sheets is spaced apart from each other in parallel.
3. 如权利要求 1所述的谐振腔, 其特征在于, 所述超材料片层有多个, 所 述各超材料片层表面相接触地连接成一体。  3. The resonant cavity according to claim 1, wherein the plurality of metamaterial sheets have a plurality of layers, and the surfaces of the super material sheets are integrally connected in contact with each other.
4. 如权利要求 3所述的谐振腔, 其特征在于, 相邻所述两超材料片层之间 放置透波材料。  4. The resonant cavity of claim 3, wherein a wave permeable material is placed between adjacent ones of the two metamaterial sheets.
5. 如权利要求 1所述的谐振腔, 其特征在于, 所述谐振腔还包括第一超材 料板、 输入端及输出端, 所述第一超材料板由所述至少一个超材料片层组成, 所述第一超材料板将所述腔体隔成两个连通的腔室, 所述输入端、 输出端分别 位于两个腔室内, 且所述输入端及输出端分别装在所述腔体两侧内壁上。  5. The resonant cavity of claim 1 , wherein the resonant cavity further comprises a first metamaterial plate, an input end and an output end, the first metamaterial plate being composed of the at least one metamaterial sheet The first meta-material board divides the cavity into two communicating chambers, wherein the input end and the output end are respectively located in two chambers, and the input end and the output end are respectively installed in the chamber On the inner walls on both sides of the cavity.
6. 如权利要求 5所述的谐振腔, 其特征在于, 所述超材料片层有多个, 所 述两个腔室内分别各设置有一个第二超材料板, 两个所述第二超材料板分别与 所述输入端和输出端接触耦合连接, 所述第二超材料板由至少一个所述超材料 片层组成。  The resonant cavity according to claim 5, wherein the plurality of metamaterial sheets are provided, and each of the two chambers is respectively provided with a second metamaterial board, and the two second super A material plate is coupled to the input end and the output end, respectively, and the second metamaterial plate is composed of at least one of the metamaterial sheets.
7. 如权利要求 5或 6所述的谐振腔, 其特征在于, 所述谐振腔还包括调谐 螺杆, 所述调谐螺杆装在所述腔体顶部内壁上, 位于所述输入端及输出端之间, 且位于第一超材料板正上方。  The resonant cavity according to claim 5 or 6, wherein the resonant cavity further comprises a tuning screw, and the tuning screw is mounted on an inner wall of the top of the cavity, at the input end and the output end Between, and located directly above the first metamaterial board.
8. 如权利要求 5或 6所述的谐振腔, 其特征在于, 所述人造微结构为丝线 绕成螺旋形的结构。  The resonant cavity according to claim 5 or 6, wherein the artificial microstructure is a structure in which a wire is spirally wound.
9. 如权利要求 1-6任一项所述的谐振腔, 其特征在于, 所述腔体内设置有 支座, 所述超材料片层固定在所述支座上。  The resonant cavity according to any one of claims 1 to 6, wherein a cavity is disposed in the cavity, and the metamaterial sheet is fixed on the support.
10. 如权利要求 9所述的谐振腔,其特征在于,所述支座是由透波材料制成。 10. A resonant cavity according to claim 9 wherein the support is made of a wave permeable material.
11. 如权利要求 9所述的谐振腔, 其特征在于, 所述支座上设置插槽, 所述 超材料片层插入所述插槽内。 11. The resonant cavity of claim 9, wherein the holder is provided with a slot into which the metamaterial sheet layer is inserted.
12. 如权利要求 1-6任一项所述的谐振腔, 其特征在于, 所述人造微结构为 工字形或者工字形的衍生形。 The resonant cavity according to any one of claims 1 to 6, wherein the artificial microstructure is a deformed shape of an I-shape or an I-shape.
13. 如权利要求 1-6任一项所述的谐振腔, 其特征在于, 所述人造微结构为 十字形或者十字形的衍生形。  The resonant cavity according to any one of claims 1 to 6, wherein the artificial microstructure is a cruciform or cruciform derivative.
14. 如权利要求 13所述的谐振腔, 其特征在于, 所述十字形的衍生形具有 四个相同的支路, 任一支路以一点为旋转中心依次旋转 90度、 180度、 270度 后依次分别于其他三个支路重合。  14. The resonant cavity according to claim 13, wherein the derivative of the cross shape has four identical branches, and any of the branches rotates 90 degrees, 180 degrees, and 270 degrees in sequence with a point of rotation. After that, they overlap in the other three branches.
15. 如权利要求 14所述的谐振腔, 其特征在于, 每个支路一端与其他三个 支路共端点连接, 另一端为自由端, 两端之间设置有至少一个弯折部。  15. The resonant cavity according to claim 14, wherein one end of each branch is connected to the other three branches at the same end, and the other end is a free end, and at least one bent portion is disposed between the two ends.
16. 如权利要求 15所述的谐振腔, 其特征在于, 所述支路的自由端连接有 一线段。  16. The resonant cavity of claim 15 wherein the free end of the branch is connected to a line segment.
17. 如权利要求 1-6任一项所述的谐振腔, 其特征在于, 所述人造微结构由 金属制成。  The resonator according to any one of claims 1 to 6, wherein the artificial microstructure is made of metal.
18. 如权利要求 1-6任一项所述的谐振腔, 其特征在于, 所述人造微结构为 非金属的导电材料组成。  The resonant cavity according to any one of claims 1 to 6, wherein the artificial microstructure is composed of a non-metallic conductive material.
19. 如权利要求 1-6任一项所述的谐振腔, 其特征在于, 所述基板的材料为 陶瓷、 聚四氟乙烯、 环氧树脂、 铁电材料、 铁氧材料、 铁磁材料或者 FR-4。  The resonant cavity according to any one of claims 1 to 6, wherein the material of the substrate is ceramic, polytetrafluoroethylene, epoxy resin, ferroelectric material, ferrite material, ferromagnetic material or FR-4.
20. 一种滤波器, 所述滤波器包括至少一个如权利要求 1-19任一项所述的 谐振腔。  A filter comprising at least one resonant cavity according to any of claims 1-19.
PCT/CN2011/083811 2011-07-29 2011-12-12 Resonant cavity and filter having the resonant cavity WO2013016920A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201110216460.4 2011-07-29
CN201110216572.X 2011-07-29
CN201110216460.4A CN103187609B (en) 2011-07-29 2011-07-29 A kind of resonator cavity
CN201110216572.XA CN103187604B (en) 2011-07-29 A kind of wave filter
CN201110233307.2A CN102945997B (en) 2011-08-16 2011-08-16 Resonant cavity
CN201110233307.2 2011-08-16

Publications (1)

Publication Number Publication Date
WO2013016920A1 true WO2013016920A1 (en) 2013-02-07

Family

ID=47628633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083811 WO2013016920A1 (en) 2011-07-29 2011-12-12 Resonant cavity and filter having the resonant cavity

Country Status (1)

Country Link
WO (1) WO2013016920A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084665A1 (en) * 2000-04-28 2001-11-08 Motorola, Inc. Filtering device and method
CN1890810A (en) * 2003-12-04 2007-01-03 秦内蒂克有限公司 Electronic circuit package with cavity resonance cut off member
US7417518B2 (en) * 2004-10-11 2008-08-26 Indian Institute Of Technology Dielectric resonator
CN101276952A (en) * 2008-04-15 2008-10-01 华南理工大学 Mixed coupling coaxial cavity filter capable of controlling electromagnetism
CN101286584A (en) * 2007-11-12 2008-10-15 杭州电子科技大学 Novel bilateral frequency selecting surface having sudden drop characteristic
CN101465458A (en) * 2009-01-05 2009-06-24 东南大学 Miniaturisation high-performance microstrip bimodule band-pass filter
CN201421872Y (en) * 2009-04-23 2010-03-10 鸿富锦精密工业(深圳)有限公司 Hollow cavity filter
JP2010278152A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Multilayer high-frequency package substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084665A1 (en) * 2000-04-28 2001-11-08 Motorola, Inc. Filtering device and method
CN1890810A (en) * 2003-12-04 2007-01-03 秦内蒂克有限公司 Electronic circuit package with cavity resonance cut off member
US7417518B2 (en) * 2004-10-11 2008-08-26 Indian Institute Of Technology Dielectric resonator
CN101286584A (en) * 2007-11-12 2008-10-15 杭州电子科技大学 Novel bilateral frequency selecting surface having sudden drop characteristic
CN101276952A (en) * 2008-04-15 2008-10-01 华南理工大学 Mixed coupling coaxial cavity filter capable of controlling electromagnetism
CN101465458A (en) * 2009-01-05 2009-06-24 东南大学 Miniaturisation high-performance microstrip bimodule band-pass filter
CN201421872Y (en) * 2009-04-23 2010-03-10 鸿富锦精密工业(深圳)有限公司 Hollow cavity filter
JP2010278152A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Multilayer high-frequency package substrate

Similar Documents

Publication Publication Date Title
CN107946762B (en) X-waveband miniaturized high-wave-permeability FSS (frequency selective surface system) based on C-type interlayer radar cover wall structure
CN110797613B (en) Dielectric waveguide filter with ten-order and six-notch
CN109462000B (en) Multi-layer substrate integrated waveguide third-order filtering power divider
CN106025464B (en) A kind of substrate integration wave-guide formula cavity body filter
CN106654567B (en) Capacitive and inductive surface coupling mechanism miniaturized high-performance high-frequency band communication radome
CN111883914A (en) Dielectric resonator broadband antenna with filter characteristic based on SIW feeding
US20150280681A1 (en) Resonator and filter having the same
CN102610924A (en) Metamaterial and filter using same
WO2021134997A1 (en) Filter and manufacturing method therefor
CN105406158A (en) Dual-mode dielectric filter enabling frequency and coupling control based metal patches
US10587029B2 (en) Multi-layer substrate with integrated resonator
WO2012139370A1 (en) An artificial microstructure and a magnetic resonance metamaterial which the artificial microstructure is used for
CN103296359A (en) Filter
CN110752425A (en) Band-pass filter and communication device
WO2013016920A1 (en) Resonant cavity and filter having the resonant cavity
WO2021170119A1 (en) Dielectric filter and communication device
KR101216433B1 (en) High-pass filter using metameterial
CN205335401U (en) Bimodulus dielectric filter based on metal paster controlled frequency and coupling
CN103296371A (en) Resonance cavity
WO2013016922A1 (en) Resonant cavity and filter having the resonant cavity
WO2013023423A1 (en) Resonant cavity and filter having same
WO2013023424A1 (en) Resonant cavity and filter having same
CN206282952U (en) High-performance bandstop filter and its communication cavity device
WO2013037173A1 (en) Resonant cavity and filter having same
WO2013016924A1 (en) Resonant cavity and filter having the resonant cavity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870337

Country of ref document: EP

Kind code of ref document: A1