WO2013015702A1 - Конъюгат наноалмаза с глицином и способ его получения - Google Patents

Конъюгат наноалмаза с глицином и способ его получения Download PDF

Info

Publication number
WO2013015702A1
WO2013015702A1 PCT/RU2011/000490 RU2011000490W WO2013015702A1 WO 2013015702 A1 WO2013015702 A1 WO 2013015702A1 RU 2011000490 W RU2011000490 W RU 2011000490W WO 2013015702 A1 WO2013015702 A1 WO 2013015702A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycine
conjugate
nanodiamond
nanodiamonds
particle size
Prior art date
Application number
PCT/RU2011/000490
Other languages
English (en)
French (fr)
Inventor
Руслан Юрьевич ЯКОВЛЕВ
Original Assignee
Закрытое Акционерное Общество "Алмаз Фарм"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество "Алмаз Фарм" filed Critical Закрытое Акционерное Общество "Алмаз Фарм"
Priority to US14/234,137 priority Critical patent/US9254340B2/en
Priority to PCT/RU2011/000490 priority patent/WO2013015702A1/ru
Priority to EP11870136.6A priority patent/EP2662080B1/de
Priority to RU2013140653/15A priority patent/RU2560700C2/ru
Publication of WO2013015702A1 publication Critical patent/WO2013015702A1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6925Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a microcapsule, nanocapsule, microbubble or nanobubble
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to the field of pharmacy and medicine, specifically to pharmaceutical nanotechnology, and relates to a conjugate of nanodiamonds with glycine for the delivery of glycine into the body, as well as a method for its production.
  • Known conjugate of nanodiamonds with glycine consisting of particles with a size of 2-10 nm, used as a binder component in polymer compositions [1,2].
  • a feature of this conjugate is the presence of fluorine atoms on the surface of a nanodiamond.
  • the content of fluorine atoms on the surface of a nanodiamond is less than 1% at. However, in practice, the fluorine content can reach 14% at. and more.
  • nanodiamonds with glycine used as a binder in epoxy polymer composites used for anticorrosion coatings, which is as follows [2].
  • a portion of the nanodiamond is placed in a constant helium current reactor and annealed at a temperature of 150-470 ° C for 3-4 hours.
  • the nanodiamond samples are fluorinated at a temperature of 50-500 ° C for 1-24 hours by contacting with a mixture of gaseous fluorine and hydrogen .
  • SUBSTITUTE SHEET (RULE 26) Conjugates of a modified fluorine nanodiamond with glycine are undesirable for medical purposes, since it is known that the presence of fluorine and its derivatives in an organic substance increases its toxicity and can change the parameters of the microsomal xenobiotic biotransformation system in the liver [3]. In addition, fluorine and its compounds are able to accumulate in various environmental objects and be present in them in various quantities [4].
  • a conjugate of nanodiamonds with glycine for delivery of glycine to the body, which is particles of nanocrystals modified with glycine, with a particle size of 2-10 nm, containing up to 21 ⁇ 3% by weight, glycine, which is part of the surface shell of the conjugate with a thickness of 1 nm
  • the amount of glycine in the conjugate of nanodiamonds with glycine is determined as follows. Mixtures of nanodiamonds with different glycine contents are prepared. Take samples of each mixture and the determined sample of equal weight. Their RJ spectra are recorded, the most intense characteristic signals are selected on them, which correlate with the IR spectrum bands of the initial glycine. Then build calibration curves of the dependence of the signal intensity in the IR spectrum on the glycine content in the sample. Further, according to the intensity of the selected characteristic bands of the investigated conjugate of nanodiamond with glycine, the quantitative content of glycine in it is determined by calibration curves. According to the data obtained, the average value of the glycine content in the conjugate of a nanodiamond with glycine is determined.
  • a method of producing a conjugate of nanodiamonds with glycine (the implementation scheme is shown in Fig. 1) with a particle size of 2-10 nm, containing up to 21 ⁇ 3% by weight, glycine and having a surface shell of a thickness of up to 1 nm, namely, that the particles of nanodiamonds with a particle size of 2-10 nm, modified with chlorine, dissolved in
  • SUBSTITUTE SHEET (RULE 26) polar solvent with the formation of a suspension, add tertiary amine and glycine, the resulting mixture is treated with ultrasound, followed by exposure at a temperature of 50-80 ° C, centrifugation, washing with a solvent and drying.
  • Triethylamine is used as a tertiary amine, pyridine, lower aliphatic alcohols, a water-alcohol mixture or water are used as a polar solvent. Ultrasound treatment is carried out for 5-60 minutes and keeping at a temperature of 50-80 ° C is carried out for from 18 to 48 hours
  • the described conjugate of the nanodiamond with the amino acid glycine, which does not contain fluorine atoms on its surface, is an ultrafine powder (Fig. 2) of a dark gray color or dark gray color with a greenish or dark blue shade with a particle size of 2 to 10 nm (Fig. . 3) and the size of the aggregates in an aqueous suspension from 25 to 50 nm (Fig. 4).
  • FIG. 2 clearly shows the presence of the inventive conjugate of an ultrafine structure of particles with a size smaller than the resolution of the used device (from 20 nm).
  • a micrograph of the particles of the conjugate of nanodiamonds with glycine was obtained on a Zeiss Ultra Plus field emission scanning electron microscope (Carl Zeiss, Germany). The shooting conditions are shown in microphotographs.
  • FIG. Figure 3 shows that the particle size distribution of the conjugate of nanodiamond with glycine is 2-10 nm with a shell of the surface layer of up to 1 nm.
  • a micrograph of the particles of the conjugate of nanodiamond with glycine was obtained on a Jeol 101 1 transmission electron microscope (JEOL, Japan).
  • FIG. Figure 4 shows the particle size distribution curve in the suspension of the described conjugate of nanodiamond with glycine, from which it follows that the particle sizes of the suspension are 25-50 nm.
  • the particle size distribution in the conjugate suspension was measured by dynamic laser light scattering on a ZetaSizer instrument (Malvern Instruments, USA).
  • the abscissa represents the logarithmic scale of particle size in nm.
  • the ordinate is the percentage.
  • FIG. 5 shows the IR spectrum of the described conjugate.
  • the spectrum contains an intense wide band with a maximum of 3400 cm “1 , a strong signal at a frequency of 1621 cm “ 1 , six bands of medium intensity at 2924, 2881, 1383, 1306, 1212 and 1154 cm “1 and a weak characteristic signal at 504 cm ' 1.
  • the spectrum has maxima at 1383, 1306, 1212 and 1154 cm “1 , corresponding to the maxima of the initial glycine amino acid, which, due to the formation of a covalent bond with the surface of the nanodiamond, have shifted to the region of 1400-1 100 cm " 1 .
  • IR spectra were recorded on a FTIRS IR200 Thermonicolet instrument (Thermo Scientific, USA). Resolution 2 cm “1 , number of scans 64.
  • the samples were mixed with KBg powder and pressed into a tablet.
  • FIG. Figure 6 shows the XPS spectra of the described conjugate of nanodiamond with glycine.
  • XPS X-ray photoelectron spectroscopy
  • Table 1 The elemental composition and binding energies of surface atoms of the described conjugate of nanodiamonds with glycine.
  • Chlorine-modified nanodiamond particles used in the production method are obtained by annealing the nanodiamond in a stream of gaseous H 2 at a rate of 2-3 l / h at a temperature of 500 to 1200 ° C for 1-8 hours. Then, the annealed nanodiamond is subjected to liquid phase chlorination with molecular chlorine. To this end, chlorine produced in
  • the reaction between K2SG2O7 (or KMPO4) and hydrochloric acid is dissolved in CC1 4 to 3-5% of the mass.
  • the chlorination reaction is carried out by photochemical exposure to visible light for 36-60 hours at a temperature of 50-70 ° C. Then the sample is washed with CC1 4 , the suspension is centrifuged at a speed of 6000 rpm and dried under vacuum to constant weight.
  • a method for producing a nanodiamond conjugate with glycine consists in preparing a suspension of chlorinated nanodiamond in a polar organic, aqueous-organic solvent or in water and introducing glycine into it in the form of amino acetic acid NH 2 CH 2 COOH with the addition of a tertiary amine.
  • an organic solvent it is preferable to use those in which the glycine amino acid is soluble, for example, pyridine or lower aliphatic alcohols.
  • the resulting mixture was sonicated (50 W) for 5-60 minutes and kept under constant stirring at a temperature of 50 to 80 ° C for 12-48 hours.
  • the resulting product was washed with ethanol, centrifuged and the precipitate was dried under vacuum at 70 ° C. throughout the night.
  • the dangerous, complex and expensive gas phase fluorination process is replaced by an affordable, safe and substantially cheaper liquid phase chlorination process, and the expensive glycine derivative, glycine ethyl ester hydrochloride, is replaced by a significantly cheaper glycine amino acid.
  • the inventive conjugate of nanodiamonds with glycine does not contain fluorine atoms, the dispersion of its particles in suspension is increased by 6-12 times.
  • the obtained conjugate of nanodiamonds with glycine can be used in medicine as a system for the delivery of glycine amino acids to the body. For this purpose, using electron microscopy
  • FIG. 1 Scheme for producing conjugate of nanodiamonds with glycine.
  • FIG. 2 Micrograph of the described conjugate of nanodiamonds with glycine.
  • FIG. 3 Micrograph of the described conjugate of nanodiamonds with glycine.
  • FIG. 4 The particle size distribution of the described conjugate of nanodiamonds with glycine in suspension.
  • FIG. 5 The IR spectrum of the described conjugate of nanodiamonds with glycine.
  • FIG. 6 C I s, O Is, N Is XPS spectra of the surface of the described conjugate of nanodiamond with glycine.
  • FIG. 7 IR spectra of mixtures of nanodiamonds with glycine for constructing calibration curves. I, II, III - spectra of mixtures with glycine content in them relative to each other 1: 1, 75: 2.5, respectively. Within the framework, characteristic peaks are identified.
  • FIG. 8 Calibration curves for each characteristic band of the IR spectrum of a mixture of nanodiamonds with glycine, a, b, c — calibration curves for the bands 1407, 1332 and 504 cm “1 , respectively.
  • FIG. 9 Micrograph of penetration of the conjugate of nanodiamonds with glycine into the cell of the lymphoblast MOLT-4. a, b - selected areas of penetration of particles into the cell.
  • the invention is illustrated by the following example.
  • 300 mg of the initial nanodiamond are annealed in a stream of gaseous Ng at a rate of 3.0 l / h at a temperature of 1000 ° C for 6 hours. Then, the annealed nanodiamond is subjected to liquid-phase chlorination with molecular chlorine dissolved in 40 ml of CCI4 to 6 wt%. C1 2 . The chlorination reaction is carried out
  • the resulting product is a dark gray with a bluish tint ultrafine powder with primary particle sizes of 2-10 nm, having a shell of the surface layer up to 1 nm, and characterized by an IR spectrum: intense wide band at 3400 cm “1 , strong signal at a frequency of 1621 cm “1 , six bands of medium intensity at 2924, 2881, 1383, 1306, 1212 and 1154 cm “ 1 and a weak characteristic signal at 504 cm “1 .
  • the particle size in the suspension of the obtained product was 25 nm.
  • the elemental composition of the surface of the product is shown in Table 3.
  • SUBSTITUTE SHEET (RULE 26) take a weighed mass of 0.0035 g and carefully rub in a mortar with 0.090 g KBg. 0.070 g of the resulting mixture is pressed into a tablet and its IR spectrum is removed (Fig. 7).
  • the characteristic bands are selected at 1407, 1332 and 504 cm “1 , respectively, and calibration graphs are constructed for them (Fig. 8).
  • the intensity of the bands of the corresponding characteristic bands on the IR spectrum of the obtained sample of conjugate of nanodiamonds with glycine weighing 0.0035 g is 0.23 0.22 and 0.10 pu, respectively.
  • the glycine content in the sample is determined, which is 0.00057 ⁇ 8 ⁇ 10 "5 g of glycine in the sample . Therefore, the mass fraction of glycine in the sample is 21 ⁇ 3% of the mass.
  • the resulting conjugate of nanodiamond with glycine is used to deliver glycine to the body.
  • the penetration of the conjugate of nanodiamond with glycine into the body is confirmed by electron microscopic studies of its interaction with the MOLT-4 lymphoblast cell culture (FIG. 9) after an incubation time of 8 hours.
  • FIG. Figure 9 shows that under the influence of the conjugate, the cell membrane of the lymphoblast cell is invaginated, which, gradually deepening, lead to the absorption of the nanodiamond conjugate with the glycine cell.
  • SUBSTITUTE SHEET (RULE 26) Slices of cells incubated with the resulting conjugate were obtained on a Leica Ultracut UCT ultramicrotome (Leica, Germany). Micrographs of cell sections were obtained on a JEM 1230 transmission electron microscope (JEOL, Japan).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к области фармацевтики и медицины и касается конъюгата наноалмаза с глицином для доставки глицина в организм, представляющего собой частицы наноалмаза, модифицированные глицином, с размером частиц 2-10 нм, содержащие до 21% масс, глицина, который входит в состав их поверхностной оболочки толщиной до 1 нм, и способа его получения.

Description

(72) Автор:
Яковлев Руслан Юрьевич (RU)
(54) КОНЪЮГАТ НАНОАЛМАЗА С ГЛИЦИНОМ И СПОСОБ ЕГО
ПОЛУЧЕНИЯ
Настоящее изобретение относится к области фармации и медицины, конкретно, к фармацевтической нанотехнологии и касается конъюгата наноалмаза с глицином для доставки глицина в организм, а также способа его получения.
Известен конъюгат наноалмаза с глицином, состоящий из частиц с размером 2-10 нм, применяемый в качестве связующего компонента в полимерных композициях [1,2]. Особенностью данного конъюгата является наличие атомов фтора на поверхности наноалмаза. Содержание атомов фтора на поверхности наноалмаза составляет менее 1% ат. Однако, на практике содержание фтора может достигать 14% ат. и более.
Описан также способ получения конъюгата наноалмаза с глицином, используемый в качестве связующего компонента в эпоксидных полимерных композитах, применяемых для антикоррозионных покрытий, который заключается в следующем [2]. Навеску наноалмаза помещают в реактор в постоянном токе гелия и отжигают при температуре 150-470 °С в течение 3- 4 ч. Далее проводят фторирование образцов наноалмаза при температуре 50- 500 °С в течение 1-24 ч контактированием со смесью газообразных фтора и водорода. Для получения конъюгата наноалмаза с глицином фторированный наноалмаз обрабатывают ультразвуком в о-дихлорбензоле в течение 20-30 мин, добавляют гидрохлорид этилового эфира глицина (ЫН2СН2СООСН2СНз»НС1) и несколько капель пиридина. Полученную смесь перемешивают при температуре 130-140 °С в течение 8-12 ч. Образовавшийся конъюгат фильтруют, промывают этанолом и сушат под вакуумом при 70 °С.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Конъюгаты модифицированного фтором наноалмаза с глицином нежелательно использовать в медицинских целях, так как известно, что присутствие в органическом веществе фтора и его производных повышает его токсичность и может изменять показатели микросомальной системы биотрансформации ксенобиотиков в печени [3]. Кроме того, фтор и его соединения способны накапливаться в различных объектах окружающей среды и присутствовать в них в различных количествах [4].
В соответствии с изобретением описывается конъюгат наноалмаза с глицином для доставки глицина в организм, представляющий собой частицы наноалмаза, модифицированные глицином, с размером частиц 2-10 нм, содержащие до 21±3% масс, глицина, который входит в состав поверхностной оболочки конъюгата толщиной до 1 нм.
Количество глицина в конъюгате наноалмаза с глицином определяют следующим образом. Готовят смеси наноалмаза с разным содержанием глицина. Берут навески каждой смеси и определяемого образца равной массы. Регистрируют их РЖ-спектры, выбирают на них наиболее интенсивные характеристические сигналы, которые соотносят с полосами ИК-спектра исходного глицина. Затем строят калибровочные кривые зависимости интенсивности сигнала в ИК-спектре от содержания глицина в навеске. Далее, по интенсивности выбранных характеристических полос исследуемого конъюгата наноалмаза с глицином по калибровочным кривым определяют количественное содержание в нем глицина. По полученным данным определяют среднее значение величины содержания глицина в конъюгате наноалмаза с глицином.
Описывается также способ получения конъюгата наноалмаза с глицином (схема осуществления представлена на Фиг. 1) с размером частиц 2-10 нм, содержащие до 21±3% масс, глицина и имеющие поверхностную оболочку толщиной до 1 нм, заключающийся в том, что частицы наноалмаза с размером частиц 2-10 нм, модифицированные хлором, растворяют в
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) полярном растворителе с образованием суспензии, добавляют третичный амин и глицин, полученную смесь обрабатывают ультразвуком с последующими выдерживанием при температуре 50-80°С, центрифугированием, промывкой растворителем и сушкой.
В качестве третичного амина используют триэтиламин, в качестве полярного растворителя используют пиридин, низшие алифатические спирты, водно-спиртовую смесь или воду. Обработку ультразвуком ведут в течение 5-60 мин и выдерживание при температуре 50-80 °С осуществляют в течение от 18 до 48 ч.
Поэтому получение конъюгата наноалмаза с глицином, не содержащего атомов фтора, с повышенной дисперсностью, а также снижение уровня экологической и эндоэкологической опасности, упрощение и удешевление способа получения конъюгата наноалмаза с глицином представляют собой актуальную и практически значимую задачу.
Описываемый конъюгат наноалмаза с аминокислотой глицином, не содержащий на своей поверхности атомов фтора, представляет собой ультрадисперсный порошок (Фиг. 2) темно-серого цвета или темно-серого цвета с зеленоватым или темно-синим оттенками с размером частиц от 2 до 10 нм (Фиг. 3) и размером агрегатов в водной суспензии от 25 до 50 нм (Фиг. 4).
На Фиг. 2 отчетливо видно наличие у заявляемого конъюгата ультрадисперсной структуры из частиц с размером, меньшим разрешающей способности использованного прибора (от 20 нм).
Микрофотография частиц конъюгата наноалмаза с глицином получена на автоэмиссионном сканирующем электронном микроскопе сверхвысокого разрешения Zeiss Ultra Plus (Carl Zeiss, Германия). Условия съемки приведены на микрофотографии.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) На Фиг. 3 видно, что распределение по размерам частиц конъюгата наноалмаза с глицином составляет 2-10 нм с оболочкой поверхностного слоя до 1 нм.
Микрофотография частиц конъюгата наноалмаза с глицином получена на просвечивающем электронном микроскопе Jeol 101 1 (JEOL, Япония).
На Фиг. 4. приведена кривая распределения размеров частиц в суспензии описываемого конъюгата наноалмаза с глицином, из которой следует, что размеры частиц суспензии составляют 25-50 нм. Измерение распределения размера частиц в суспензии конъюгата проводили методом динамического лазерного светорассеяния на приборе ZetaSizer (Malvern Instruments, США). По оси абсцисс отложена логарифмическая шкала размера частиц в нм. По оси ординат - процентное содержание.
На Фиг. 5 приведен ИК-спектр описываемого конъюгата. На спектре присутствуют интенсивная широкая полоса с максимумом 3400 см"1, сильный сигнал при частоте 1621 см"1, шесть полос средней интенсивности при 2924, 2881, 1383, 1306, 1212 и 1 154 см"1 и слабый характеристический сигнал при 504 см'1. Спектр имеет максимумы при 1383, 1306, 1212 и 1154 см"1, соответствующие максимумам исходной аминокислоты глицина, которые из- за образования ковалентной связи с поверхностью наноалмаза, сместились в область 1400-1 100 см"1.
ИК-спектры регистрировали на приборе FTIRS IR200 Thermonicolet (Thermo Scientific, США). Разрешение 2 см"1, количество сканов 64. Для анализа навески образцы смешивали с порошком КВг и прессовали в таблетку.
На Фиг. 6 приведены спектры РФЭС описываемого конъюгата наноалмаза с глицином. Применение рентгеновской фотоэлектронной спектроскопии (РФЭС) позволяет установить природу, энергетическое состояние и количество поверхностных атомов частиц наноалмаза, а также определять практически все элементы, кроме водорода и гелия [5].
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Исследование поверхности описываемого конъюгата наноалмаза с глицином проводили на приборе LAS-3000 (Riber, Франция), оснащенном полусферическим анализатором ОРХ-150. Для возбуждения фотоэлектронов использовали немонохроматизированное рентгеновское излучение алюминиевого анода (ΑΙΚα = 1486,6 эВ) при напряжении на трубке 12 кВ и токе эмиссии 20 мА. Калибровку фотоэлектронных пиков проводили по линии углерода С I s с энергией связи (Есв) 285 эВ. Вакуум в рабочей камере составлял 6,7* 10"8 Па. Для получения высокого вакуума был использован ионный насос.
Элементный состав поверхности описываемого конъюгата наноалмаза с глицином по данным РФЭС приведен в Таблице 1.
Таблица 1. Элементный состав и энергии связи поверхностных атомов описываемого конъюгата наноалмаза с глицином.
Figure imgf000006_0001
Из Таблицы 1 следует, что описываемый конъюгат наноалмаза с глицином не содержит атомов фтора, а также атомов других галогенов в количестве, превышающем ошибку прибора (0,1 % ат.), так как в процессе получения конъюгата наноалмаза с глицином (Фиг. 1) все атомы хлора заменяются на молекулы глицина и уходят с поверхности наноалмаза в виде молекул НС1.
Используемые в способе получения модифицированные хлором частицы наноалмаза получают путем отжига наноалмаза в токе газообразного Н2 со скоростью 2-3 л/ч при температуре от 500 до 1200 °С в течение 1-8 ч. Затем отожженный наноалмаз подвергают жидкофазному хлорированию молекулярным хлором. С этой целью хлор, получаемый в
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) V/UI t/ 1 А. Д1Я/ Д1Л/ /
6
процессе реакции между К2СГ2О7 (или КМПО4) и соляной кислотой, растворяют в СС14 до 3-5% масс. Реакцию хлорирования проводят при фотохимическом воздействии видимым светом в течение 36-60 ч при температуре 50-70 °С. Затем образец промывают СС14, центрифугируют суспензию со скоростью от 6000 об/мин и высушивают под вакуумом до постоянного веса.
Более подробно способ получения конъюгата наноалмаза с глицином заключается в том, что готовят суспензию хлорированного наноалмаза в полярном органическом, водно-органическом растворителе или в воде и вносят в нее глицин в виде аминоуксусной кислоты NH2CH2COOH с добавлением третичного амина. В качестве органического растворителя предпочтительно использовать те, в которых растворяется аминокислота глицин, например, пиридин или низшие алифатические спирты. Полученную смесь обрабатывают ультразвуком (50 Вт) в течение 5-60 мин и выдерживают при постоянном перемешивании при температуре от 50 до 80 °С в течение 12-48 ч. Полученный продукт промывают этанолом, центрифугируют и осадок высушивают под вакуумом при 70 °С в течение всей ночи.
Таким образом, в заявляемом способе получения конъюгата наноалмаза с глицином опасный, сложный и дорогостоящий процесс газофазного фторирования заменен на доступный, безопасный и существенно более дешевый процесс жидкофазного хлорирования, а дорогостоящее производное глицина - гидрохлорид этилового эфира глицина заменен существенно более дешевой аминокислотой глицином.
Заявляемый конъюгат наноалмаза с глицином не содержит атомов фтора, дисперсность его частиц в суспензии повышена в 6-12 раз.
Полученный конъюгат наноалмаза с глицином может найти применение в медицине в качестве системы доставки аминокислоты глицина в организм. С этой целью используют электронно-микроскопическое
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) изучение взаимодействия полученного конъюгата с культурами клеток методами клеточной биологии.
Краткое описание графических материалов.
Фиг. 1. Схема получения конъюгата наноалмаза с глицином.
Фиг. 2. Микрофотография описываемого коньюгата наноалмаза с глицином.
Фиг. 3. Микрофотография описываемого конъюгата наноалмаза с глицином.
Фиг. 4. Распределение размеров частиц описываемого конъюгата наноалмаза с глицином в суспензии.
Фиг. 5. ИК-спектр описываемого конъюгата наноалмаза с глицином.
Фиг. 6. С I s, О Is, N Is спектры РФЭС поверхности описываемого конъюгата наноалмаза с глицином.
Фиг. 7. ИК-спектры смесей наноалмаза с глицином для построения калибровочных кривых. I, II, III - спектры смесей с содержанием в них глицина относительно друг друга 1 : 1 ,75 : 2,5, соответственно. В рамках выделены характеристические пики.
Фиг. 8. Калибровочные кривые для каждой характеристической полосы ИК-спектра смеси наноалмаза с глицином, а, б, в - калибровочные кривые для полос 1407, 1332 и 504 см"1, соответственно.
Фиг. 9. Микрофотография проникновения конъюгата наноалмаза с глицином в клетку лимфобласта MOLT-4. а,б - выделенные области проникновения частиц в клетку.
Изобретение иллюстрируется следующим примером.
Пример.
300 мг исходного наноалмаза отжигают в токе газообразного Нг со скоростью 3,0 л/ч при температуре 1000 °С в течение 6 ч. Затем отожженный наноалмаз подвергают жидкофазному хлорированию молекулярным хлором, растворенном в 40 мл CCI4 до 6% масс. С12. Реакцию хлорирования проводят
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) при фотохимическом воздействии видимым светом в течение 60 ч при температуре 60 °С. Затем образец промывают СС14 с центрифугированием суспензии при 6000 об/мин и высушивают под давлением 0,1 мм. рт.ст. до постоянного веса. Затем из хлорированного наноалмаза получают суспензию, используя 40 мл водно-спиртовой смеси (вода:метанол = 1 :1), в которую вносят 300 мг глицина в виде свободной аминокислоты (NH2CH2COOH) с добавлением 1 мл триэтиламина. Полученную смесь обрабатывают ультразвуком (50 Вт) в течение 60 мин и выдерживают при постоянном перемешивании при температуре при 65 °С в течение 30 ч. Полученный продукт промывают большим количеством этанола, центрифугируют и высушивают под вакуумом при 70 °С в течение всей ночи. Остаточная влажность продукта составляет 2,2%. Выход целевого продукта 279 мг (93 %).
Полученный продукт представляет собой темно-серый с синеватым оттенком ультрадисперсный порошок с размерами первичных частиц 2-10 нм, имеющих оболочку поверхностного слоя до 1 нм, и характеризующийся ИК-спектром: интенсивная широкая полоса при 3400 см"1, сильный сигнал при частоте 1621 см"1, шесть полос средней интенсивности при 2924, 2881, 1383, 1306, 1212 и 1154 см"1 и слабый характеристический сигнал при 504 см"1. Размер частиц в суспензии полученного продукта составил 25 нм. Элементный состав поверхности продукта приведен в Таблице 3.
Таблица 3. Данные РФЭС полученного продукта.
Figure imgf000009_0001
Для определения массовой доли глицина в полученном конъюгате готовят 3 смеси наноалмаза с глицином с соотношением последнего относительно друг друга 1 : 1 ,75 : 3,5, соответственно. Для каждой смеси
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) берут навеску массой 0,0035 г и тщательно перетирают в ступке с 0,090 г КВг. 0,070 г полученной смеси прессуют в таблетку и снимают ее ИК-спектр (Фиг. 7). Характеристические полосы выбирают при 1407, 1332 и 504 см"1, соответственно и строят для них калибровочные графики (Фиг. 8). Интенсивность полос соответствующих характеристических полос на ИК- спектре полученного образца конъюгата наноалмаза с глицином массой 0,0035 г составляет 0,23, 0,22 и 0,10 о.е., соответственно. Из калибровочных кривых а, б, в (Фиг. 8) определяют величину содержания глицина в образце, которая составляет 0,00057±8· 10"5 г глицина в образце. Следовательно, массовая доля глицина в навеске образца составляет 21±3% масс.
Обработка суспензии ультразвуком в течение 30-60 мин, выдерживание при температуре 70-80 °С в течение 30-48 ч и использование в качестве полярного растворителя пиридина или низших алифатических спиртов приводит к получению конъюгата с аналогичными характеристиками и содержанием глицина в интервале 13-21% масс.
Обработка суспензии ультразвуком в течение 5-30 мин, выдерживание при температуре 50-70 °С в течение 12-30 ч и использование в качестве полярного растворителя водно-спиртовой смеси или воды приводит к получению конъюгата с аналогичными характеристиками и содержанием глицина в интервале 2-14% масс.
Полученный конъюгат наноалмаза с глицином используют для доставки глицина в организм. Проникновение конъюгата наноалмаза с глицином в организм подтверждается электронно-микроскопическими исследованиями его взаимодействия с культурой клеток лимфобластов MOLT-4 (Фиг. 9) после времени инкубации 8 ч. На Фиг. 9 видно, что под действием конъюгата происходят инвагинации клеточной мембраны клетки лимфобласта, которые, постепенно углубляясь, приводят к поглощению конъюгата наноалмаза с глицином клеткой.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Срезы клеток, инкубированных с полученным конъюгатом, получали на ультрамикротоме Leica Ultracut UCT (Leica, Германия). Микрофотографии срезов клеток получали на просвечивающем электронном микроскопе JEM 1230 (JEOL, Япония).
Список литературы
1. USPat 2005/0158549 А1 , 21.07.2005.
2. Y. Liu, Zh. Gu, J.L. Margrave, V.N. IChabashesku. Functionalization of Nanoscale Diamond Powder: Fluoro-, Alkyl-, Amino-, and Amino Acid- Nanodiamond Derivatives // Chem. Mater. 2004. V.16. P. 3924-3930.
3. Российская энциклопедия по охране труда. В 3 т. 2-е изд., перераб. и доп. Т. 3. -М.: изд. НЦ ЭНАС. 2007. С. 181.
4. Т.И. Шалина, Л.С. Васильева. Общие вопросы токсического действия фтора // Сибирский медицинский журнал. 2009. N°5. С. 5-9.
5. Электронная и ионная спектроскопия твердых тел / Под ред. Фирменса Л.И. и др. -М.: Мир. -1981, -С. 195-232.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)

Claims

Формула изобретения
1. Конъюгат наноалмаза с глицином для доставки глицина в организм, представляющий собой частицы наноалмаза, модифицированные глицином, с размером частиц 2-10 нм, содержащие до 21±3 % масс, глицина, который входит в состав их поверхностной оболочки толщиной до 1 нм.
2. Способ получения конъюгата наноалмаза с глицином по п.1, характеризующийся тем, что модифицированные хлором частицы наноалмаза с размером частиц 2-10 нм растворяют в полярном растворителе с образованием суспензии, добавляют третичный амин и глицин, полученную смесь обрабатывают ультразвуком с последующим выдерживанием при 50-80 °С, центрифугированием, промывкой растворителем и сушкой.
3. Способ по п.2, где обработку ультразвуком ведут в течение 5-60 мин и выдерживание при 50-80 °С осуществляют в течение от 12 до 48 ч.
4. Способ по п.2 или п.З, где в качестве третичного амина используют триэтиламин и в качестве полярного растворителя используют пиридин, низший алифатический спирт, водно-спиртовую смесь или воду.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2011/000490 2011-07-26 2011-07-26 Конъюгат наноалмаза с глицином и способ его получения WO2013015702A1 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/234,137 US9254340B2 (en) 2011-07-26 2011-07-26 Nanodiamond and glycine conjugate and method for the preparation thereof
PCT/RU2011/000490 WO2013015702A1 (ru) 2011-07-26 2011-07-26 Конъюгат наноалмаза с глицином и способ его получения
EP11870136.6A EP2662080B1 (de) 2011-07-26 2011-07-26 Nanodiamantkonjugat mit glycin und verfahren zur herstellung dieses konjugats
RU2013140653/15A RU2560700C2 (ru) 2011-07-26 2011-07-26 Конъюгат наноалмаза с глицином и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2011/000490 WO2013015702A1 (ru) 2011-07-26 2011-07-26 Конъюгат наноалмаза с глицином и способ его получения

Publications (1)

Publication Number Publication Date
WO2013015702A1 true WO2013015702A1 (ru) 2013-01-31

Family

ID=47601342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2011/000490 WO2013015702A1 (ru) 2011-07-26 2011-07-26 Конъюгат наноалмаза с глицином и способ его получения

Country Status (4)

Country Link
US (1) US9254340B2 (ru)
EP (1) EP2662080B1 (ru)
RU (1) RU2560700C2 (ru)
WO (1) WO2013015702A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160158382A1 (en) * 2014-12-09 2016-06-09 Nikolay LEONIDOV Agent for the treatment and prevention of sleep disorders

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820130B2 (en) * 2003-11-26 2010-10-26 William Marsh Rice University Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160746A (en) * 1978-05-23 1979-07-10 Malcon Research & Development Corporation Catalyst for hydrogenation of acetophenone
US20090226495A1 (en) * 2007-07-17 2009-09-10 Picardi Salvatore Charles Nanodiamond enhanced efficacy
US7569205B1 (en) * 2006-09-08 2009-08-04 International Technology Center Nanodiamond fractional and the products thereof
US9511025B2 (en) * 2011-07-26 2016-12-06 Zakrytoe Aktsionernoe Obschestvo “Almaz Pharm” System for the delivery of biologically active compounds into an organism and method for the preparation of said system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820130B2 (en) * 2003-11-26 2010-10-26 William Marsh Rice University Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KULAKOVA I.I. ET AL.: "Stroenie chastits khmicheski modifitsirovannogo nanoalmaza detonatsionnnogo sinteza", ROSSIISKIE NANOTEKHNOLOGII 1992-7223, vol. 5, no. 7-8, 2010, pages 66 - 73, XP008168000 *
LISICHKIN, GEORGII V.: "Halogenation of detonation-synthesised nanodiamond surfaces", MENDELEEV COMMUN., vol. 19, 2009, pages 309 - 310, XP026770054 *
See also references of EP2662080A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160158382A1 (en) * 2014-12-09 2016-06-09 Nikolay LEONIDOV Agent for the treatment and prevention of sleep disorders

Also Published As

Publication number Publication date
EP2662080B1 (de) 2016-02-24
RU2013140653A (ru) 2015-04-20
US9254340B2 (en) 2016-02-09
US20140162066A1 (en) 2014-06-12
EP2662080A4 (de) 2014-05-07
EP2662080A1 (de) 2013-11-13
RU2560700C2 (ru) 2015-08-20

Similar Documents

Publication Publication Date Title
Dehvari et al. Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging
Wang et al. Photoluminescent carbon quantum dot grafted silica nanoparticles directly synthesized from rice husk biomass
So et al. Gram-scale synthesis and kinetic study of bright carbon dots from citric acid and Citrus japonica via a microwave-assisted method
US8410196B2 (en) Surface-modified nanodiamond and its producing method
US20070036728A1 (en) A Method of Transdermal Drug Delivery Using Hyaluronic Acid Nanoparticles
Koenig et al. Ultrasound-induced transformation of fluorescent organic nanoparticles from a molecular rotor into rhomboidal nanocrystals with enhanced emission
Ciobotaru et al. Covalent functionalization of graphene oxide with cisplatin
Flores–Oña et al. Carbon nanoparticles production using solvent assisted hydrothermal carbonization
Chen et al. Chemo-photothermal effects of doxorubicin/silica–carbon hollow spheres on liver cancer
KR101846699B1 (ko) 하이드록시기가 도입된 육방정 질화 붕소 나노 시트 및 이의 제조방법
Bhunia et al. Microscopic and spectroscopic study of the corona formation and unfolding of human haemoglobin in presence of ZnO nanoparticles
RU2560700C2 (ru) Конъюгат наноалмаза с глицином и способ его получения
Deshmukh et al. A novel method for genetic transformation of C. albicans using modified-hydroxyapatite nanoparticles as a plasmid DNA vehicle
Ge et al. A facile high-speed vibration milling method to mass production of water-dispersible silicon quantum dots for long-term cell imaging
RU2462474C2 (ru) Способ получения аддуктов фуллерена
Solomatin et al. Effect of detonation nanodiamond surface composition on physiological indicators of mitochondrial functions
Avashthi et al. Surface-induced in situ sonothermodynamically controlled functionalized graphene oxide for in vitro cytotoxicity and antioxidant evaluations
JP2014172781A (ja) 表面修飾グラフェン
Ramana et al. Nanodiamonds synthesis using sustainable concentrated solar thermal energy: applications in bioimaging and phototherapy
Ioni et al. Study of the interaction of graphene oxide with chlorine
Assali et al. Covalent functionalization of graphene sheets for plasmid DNA delivery: experimental and theoretical study
Consoli et al. Red light-triggerable nanohybrids of graphene oxide, gold nanoparticles and thermo-responsive polymers for combined photothermia and drug release effects
Gonzalez et al. Preliminary Evaluation of Median Lethal Concentrations of Stöber Silica Particles with Various Sizes and Surface Functionalities Towards Fibroblast Cells
Aldobaev et al. Shortened single-walled carbon nanotubes modification as design of nano-structural drug delivery system for pharmaceutical substances
Chen et al. One pot synthesis of graphene quantum disks derived from single-layered exfoliated graphene sheets and their application in bioimaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011870136

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013140653

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14234137

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE