WO2013015558A2 - 무선 통신 시스템에서 하향링크 제어 채널을 위한 비트 맵핑 방법 및 장치 - Google Patents

무선 통신 시스템에서 하향링크 제어 채널을 위한 비트 맵핑 방법 및 장치 Download PDF

Info

Publication number
WO2013015558A2
WO2013015558A2 PCT/KR2012/005732 KR2012005732W WO2013015558A2 WO 2013015558 A2 WO2013015558 A2 WO 2013015558A2 KR 2012005732 W KR2012005732 W KR 2012005732W WO 2013015558 A2 WO2013015558 A2 WO 2013015558A2
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
bit
region
subframe
ofdm symbol
Prior art date
Application number
PCT/KR2012/005732
Other languages
English (en)
French (fr)
Other versions
WO2013015558A3 (ko
Inventor
천진영
김기태
김수남
강지원
임빈철
박성호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/234,110 priority Critical patent/US9407408B2/en
Priority to KR1020147001672A priority patent/KR101486705B1/ko
Publication of WO2013015558A2 publication Critical patent/WO2013015558A2/ko
Publication of WO2013015558A3 publication Critical patent/WO2013015558A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to wireless communication, and more particularly, to a bit mapping method and apparatus for a downlink control channel in a wireless communication system.
  • the next generation multimedia wireless communication system which is being actively researched recently, requires a system capable of processing and transmitting various information such as video, wireless data, etc., out of an initial voice-oriented service.
  • the fourth generation of wireless communication which is currently being developed after the third generation of wireless communication systems, aims to support high-speed data services of downlink 1 gigabits per second (Gbps) and uplink 500 megabits per second (Mbps).
  • Gbps gigabits per second
  • Mbps megabits per second
  • the purpose of a wireless communication system is to enable a large number of users to communicate reliably regardless of location and mobility.
  • a wireless channel is a path loss, noise, fading due to multipath, inter-symbol interference (ISI) or mobility of UE.
  • ISI inter-symbol interference
  • There are non-ideal characteristics such as the Doppler effect.
  • Various techniques have been developed to overcome the non-ideal characteristics of the wireless channel and to improve the reliability of the wireless communication.
  • each node in a wireless communication system in which each node cooperates with each other, each node is independent of a base station (BS), an advanced BS (ABS), a Node-B (NB), an eNode-B (eNB), and an access point (AP). It has much better performance than wireless communication systems operating on the back.
  • BS base station
  • ABS advanced BS
  • NB Node-B
  • eNB eNode-B
  • AP access point
  • a distributed multi node system having a plurality of nodes in a cell may be applied.
  • the multi-node system may include a distributed antenna system (DAS), a radio remote head (RRH), and the like.
  • DAS distributed antenna system
  • RRH radio remote head
  • standardization work is underway to apply various MIMO (multiple-input multiple-output) and cooperative communication techniques to distributed multi-node systems.
  • MIMO multiple-input multiple-output
  • introduction of a new control channel is required to apply various MIMO techniques and cooperative communication techniques to the multi-node system.
  • An object of the present invention is to provide a bit mapping method and apparatus for a downlink control channel in a wireless communication system.
  • the present invention provides a method for mapping enhanced physical downlink control channel (e-PDCCH) bits and redundant bits of the e-PDCCH.
  • e-PDCCH enhanced physical downlink control channel
  • a method for mapping bits of an enhanced physical downlink control channel (e-PDCCH) by a base station in a wireless communication system.
  • the method maps an e-PDCCH bit to a first region to which an e-PDCCH is allocated among data regions in a subframe, and at least one orthogonal frequency division multiplexing (OFDM) between the control region and the first region in the subframe.
  • OFDM orthogonal frequency division multiplexing
  • the k-th OFDM symbol in the subframe is mapped in a direction in which the OFDM symbol index is increased, and the redundant bits are mapped in the direction in which the OFDM symbol index is lowered in the (k-1) -th OFDM symbol in the subframe.
  • the duplicate bit may be part or all of the e-PDCCH bit.
  • the control region may occupy the first 1 to 3 OFDM symbols of the subframe.
  • the mapping of the e-PDCCH bits may include adding a scrambling sequence to the e-PDCCH bits and performing quadrature phase shift keying (QPSK) modulation on the e-PDCCH bits to which the scrambling sequence is added. And performing layer mapping and precoding on the generated modulation symbols, and mapping the modulation symbols to resource elements.
  • QPSK quadrature phase shift keying
  • the mapping of the redundant bits includes adding a scrambling sequence to the redundant bits, performing QPSK modulation on the e-PDCCH bit to which the scrambling sequence is added, to generate modulation symbols, and layer mapping the generated modulation symbols. And performing precoding and mapping the modulation symbols to resource elements.
  • a method of decoding an enhanced physical downlink control channel (e-PDCCH) by a terminal in a wireless communication system includes a first region in which an e-PDCCH is allocated among data regions in a subframe, and a second region including at least one orthogonal frequency division multiplexing (OFDM) symbol between the control region and the first region in the subframe.
  • OFDM orthogonal frequency division multiplexing
  • a base station maps bits of an enhanced physical downlink control channel (e-PDCCH) in a wireless communication system.
  • the base station includes a radio frequency (RF) unit for transmitting or receiving a radio signal, and a processor connected to the RF unit, wherein the processor includes an e-field in a first region to which an e-PDCCH is allocated among data regions in a subframe.
  • RF radio frequency
  • the processor includes an e-field in a first region to which an e-PDCCH is allocated among data regions in a subframe.
  • a PDCCH bit is mapped and a redundant bit of the e-PDCCH bit is added to a second region including at least one orthogonal frequency division multiplexing (OFDM) symbol between the control region and the first region in the subframe.
  • OFDM orthogonal frequency division multiplexing
  • the mapped e-PDCCH bit and the duplicated bit to a terminal, wherein the e-PDCCH bit is mapped in a direction from which the kth OFDM symbol in the subframe increases to the OFDM symbol index. Is mapped in a direction in which the OFDM symbol index is lowered from the (k-1) -th OFDM symbol in the subframe.
  • Robust e-PDCCH may be provided.
  • 1 is a wireless communication system.
  • FIG. 2 shows a structure of a radio frame in 3GPP LTE.
  • FIG 3 shows an example of a resource grid for one downlink slot.
  • 5 shows a structure of an uplink subframe.
  • FIG. 6 shows an example of a multi-node system.
  • FIG. 7 shows an example of a process in which a PDCCH is mapped to a resource.
  • FIG. 8 shows an example of a rate matching process for a convolutionally coded transport channel and control information.
  • FIG. 10 shows an example of resource allocation through an e-PDCCH.
  • FIG. 11 shows an example of an R-PDCCH allocated to an RB.
  • FIG. 12 shows an example of a subframe to which an e-PDCCH is allocated.
  • FIG. 13 shows another example of a subframe to which an e-PDCCH is allocated.
  • FIG. 14 shows an example of a subframe to which an e-PDCCH is allocated according to a bit mapping method for the proposed e-PDCCH.
  • 16 shows an embodiment of a method for decoding the proposed e-PDCCH.
  • 17 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented by a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like.
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • 1 is a wireless communication system.
  • the wireless communication system 10 includes at least one base station (BS) 11.
  • Each base station 11 provides a communication service for a particular geographic area (generally called a cell) 15a, 15b, 15c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the UE 12 may be fixed or mobile and may have a mobile station (MS), a mobile terminal (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, or a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • the base station 11 generally refers to a fixed station communicating with the terminal 12, and may be called in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like. have.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like. have.
  • a terminal typically belongs to one cell, and a cell to which the terminal belongs is called a serving cell.
  • a base station that provides a communication service for a serving cell is called a serving BS. Since the wireless communication system is a cellular system, there are other cells adjacent to the serving cell. Another cell adjacent to the serving cell is called a neighbor cell.
  • a base station that provides communication service for a neighbor cell is called a neighbor BS. The serving cell and the neighbor cell are relatively determined based on the terminal.
  • downlink means communication from the base station 11 to the terminal 12
  • uplink means communication from the terminal 12 to the base station 11.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • the wireless communication system may be any one of a multiple-input multiple-output (MIMO) system, a multiple-input single-output (MIS) system, a single-input single-output (SISO) system, and a single-input multiple-output (SIMO) system.
  • MIMO multiple-input multiple-output
  • MIS multiple-input single-output
  • SISO single-input single-output
  • SIMO single-input multiple-output
  • the MIMO system uses a plurality of transmit antennas and a plurality of receive antennas.
  • the MISO system uses multiple transmit antennas and one receive antenna.
  • the SISO system uses one transmit antenna and one receive antenna.
  • the SIMO system uses one transmit antenna and multiple receive antennas.
  • the transmit antenna means a physical or logical antenna used to transmit one signal or stream
  • the receive antenna means a physical or logical antenna used to receive one signal or stream.
  • FIG. 2 shows a structure of a radio frame in 3GPP LTE.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots. Slots in a radio frame are numbered with slots # 0 through # 19. The time taken for one subframe to be transmitted is called a transmission time interval (TTI). TTI may be referred to as a scheduling unit for data transmission. For example, one radio frame may have a length of 10 ms, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of subcarriers in the frequency domain.
  • the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be called a different name according to a multiple access scheme.
  • SC-FDMA when SC-FDMA is used as an uplink multiple access scheme, it may be referred to as an SC-FDMA symbol.
  • a resource block (RB) includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • the structure of the radio frame is merely an example. Accordingly, the number of subframes included in the radio frame, the number of slots included in the subframe, or the number of OFDM symbols included in the slot may be variously changed.
  • 3GPP LTE defines that one slot includes 7 OFDM symbols in a normal cyclic prefix (CP), and one slot includes 6 OFDM symbols in an extended CP. .
  • CP normal cyclic prefix
  • Wireless communication systems can be largely divided into frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • uplink transmission and downlink transmission are performed while occupying different frequency bands.
  • uplink transmission and downlink transmission are performed at different times while occupying the same frequency band.
  • the channel response of the TDD scheme is substantially reciprocal. This means that the downlink channel response and the uplink channel response are almost the same in a given frequency domain. Therefore, in a TDD based wireless communication system, the downlink channel response can be obtained from the uplink channel response.
  • the uplink transmission and the downlink transmission are time-divided in the entire frequency band, and thus the downlink transmission by the base station and the uplink transmission by the terminal cannot be simultaneously performed.
  • uplink transmission and downlink transmission are performed in different subframes.
  • FIG 3 shows an example of a resource grid for one downlink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain and N RB resource blocks in the frequency domain.
  • the number N RB of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell. For example, in the LTE system, N RB may be any one of 6 to 110.
  • One resource block includes a plurality of subcarriers in the frequency domain.
  • the structure of the uplink slot may also be the same as that of the downlink slot.
  • Each element on the resource grid is called a resource element.
  • an exemplary resource block includes 7 ⁇ 12 resource elements including 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain, but the number of OFDM symbols and the number of subcarriers in the resource block is equal to this. It is not limited. The number of OFDM symbols and the number of subcarriers can be variously changed according to the length of the CP, frequency spacing, and the like. For example, the number of OFDM symbols is 7 for a normal CP and the number of OFDM symbols is 6 for an extended CP. The number of subcarriers in one OFDM symbol may be selected and used among 128, 256, 512, 1024, 1536 and 2048.
  • the downlink subframe includes two slots in the time domain, and each slot includes seven OFDM symbols in the normal CP.
  • the leading up to 3 OFDM symbols (up to 4 OFDM symbols for 1.4Mhz bandwidth) of the first slot in the subframe are the control regions to which control channels are allocated and the remaining OFDM symbols are the physical downlink shared channel (PDSCH). Becomes the data area to be allocated.
  • PDSCH physical downlink shared channel
  • the PDCCH includes resource allocation and transmission format of downlink-shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, and random access transmitted on PDSCH. Resource allocation of higher layer control messages such as responses, sets of transmit power control commands for individual UEs in any UE group, activation of voice over internet protocol (VoIP), and the like.
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to nine resource element groups (REGs) each including four resource elements.
  • QPSK quadrature phase shift keying
  • QPSK quadrature phase shift keying
  • Resource elements occupied by a reference signal (RS) are not included in the REG, and the total number of REGs in a given OFDM symbol may be determined depending on whether a cell-specific RS is present.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the number of CCEs used for transmission of a specific PDCCH may be determined by the base station according to channel conditions. For example, the PDCCH for a UE having a good channel state may use only one CCE. However, the PDCCH for the UE having a bad channel state may require 8 CCEs in order to obtain sufficient robustness. In addition, the transmit power of the PDCCH may be adjusted according to the channel situation. Table 1 shows supported PDCCH formats and the number of CCEs corresponding to each PDCCH format.
  • PDCCH format Number of CCEs Number of resource-element groups Number of PDCCH bits 0 One 9 72 One 2 18 144 2 4 36 288 3 8 72 576
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal, and attaches a cyclic redundancy check (CRC) to the control information.
  • CRC cyclic redundancy check
  • RNTI a unique radio network temporary identifier
  • the PDCCH is for a specific terminal, a unique identifier of the terminal, for example, a cell-RNTI (C-RNTI) may be masked to the CRC.
  • C-RNTI cell-RNTI
  • a paging indication identifier for example, p-RNTI (P-RNTI) may be masked to the CRC.
  • SI-RNTI system information-RNTI
  • RA-RNTI random access-RNTI
  • 5 shows a structure of an uplink subframe.
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a physical uplink control channel (PUCCH) for transmitting uplink control information.
  • the data region is allocated a physical uplink shared channel (PUSCH) for transmitting data.
  • the terminal may support simultaneous transmission of the PUSCH and the PUCCH.
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of the first slot and the second slot.
  • the frequency occupied by the resource block belonging to the resource block pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the terminal may obtain a frequency diversity gain by transmitting uplink control information through different subcarriers over time.
  • m is a location index indicating a logical frequency domain location of a resource block pair allocated to a PUCCH in a subframe.
  • the uplink control information transmitted on the PUCCH includes a hybrid automatic repeat request (HARQ) acknowledgment (ACK) / non-acknowledgement (NACK), a channel quality indicator (CQI) indicating a downlink channel state, and an uplink radio resource allocation request. (scheduling request).
  • HARQ hybrid automatic repeat request
  • ACK acknowledgment
  • NACK non-acknowledgement
  • CQI channel quality indicator
  • the PUSCH is mapped to the UL-SCH, which is a transport channel.
  • the uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the TTI.
  • the transport block may be user information.
  • the uplink data may be multiplexed data.
  • the multiplexed data may be a multiplexed transport block and control information for the UL-SCH.
  • control information multiplexed with data may include a CQI, a precoding matrix indicator (PMI), a HARQ, a rank indicator (RI), and the like.
  • the uplink data may consist of control information only.
  • the technology is evolving toward increasing the density of nodes that can be connected to a user.
  • performance may be further improved by cooperation between nodes.
  • FIG. 6 shows an example of a multi-node system.
  • the multi-node system 20 may include one base station 21 and a plurality of nodes 25-1, 25-2, 25-3, 25-4, and 25-5. .
  • the plurality of nodes 25-1, 25-2, 25-3, 25-4, and 25-5 may be managed by one base station 21. That is, the plurality of nodes 25-1, 25-2, 25-3, 25-4, and 25-5 operate as part of one cell.
  • each node 25-1, 25-2, 25-3, 25-4, 25-5 may be assigned a separate node identifier or operate like some antenna group in a cell without a separate node ID. can do.
  • the multi-node system 20 of FIG. 6 may be viewed as a distributed multi node system (DMNS) forming one cell.
  • DMNS distributed multi node system
  • the plurality of nodes 25-1, 25-2, 25-3, 25-4, and 25-5 may perform scheduling and handover (HO) of the terminal with individual cell IDs.
  • the multi-node system 20 of FIG. 6 may be viewed as a multi-cell system.
  • the base station 21 may be a macro cell, and each node may be a femto cell or a pico cell having cell coverage smaller than the cell coverage of the macro cell.
  • a multi-tier network when a plurality of cells are overlayed and configured according to coverage, it may be referred to as a multi-tier network.
  • each node 25-1, 25-2, 25-3, 25-4, and 25-5 is a base station, Node-B, eNode-B, pico cell eNb (PeNB), home eNB (HeNB), It may be any one of a radio remote head (RRH), a relay station (RS) and a distributed antenna. At least one antenna may be installed in one node. Nodes may also be called points.
  • a node refers to an antenna group spaced apart from a predetermined interval in DMNS. That is, in the following specification, it is assumed that each node physically means RRH. However, the present invention is not limited thereto, and a node may be defined as any antenna group regardless of physical intervals.
  • a base station composed of a plurality of cross polarized antennas is reported to be composed of a node composed of horizontal polarized antennas and a node composed of vertical polarized antennas.
  • the present invention can be applied.
  • the present invention can be applied to a case where each node is a pico cell or femto cell having a smaller cell coverage than a macro cell, that is, a multi-cell system.
  • the antenna may be replaced with not only a physical antenna but also an antenna port, a virtual antenna, an antenna group, and the like.
  • FIG. 7 shows an example of a process in which a PDCCH is mapped to a resource.
  • step S100 a PDCCH bit is generated.
  • the PDCCH bit may be expressed as in Equation 1.
  • M bit (i) is the number of bits transmitted on the PDCCH number i in one subframe.
  • n PDCCH is the number of PDCCHs transmitted in a subframe.
  • a scrambling sequence is added to the PDCCH bit generated in step S110.
  • the PDCCH bit to which the scrambling sequence is added may be represented by Equation 2.
  • step S120 QPSK modulation is performed on the PDCCH bit to which the scrambling sequence is added.
  • Modulation symbols generated by QPSK modulation may be represented by d (0),..., D (M symb ⁇ 1).
  • step S130 layer mapping and precoding are performed on the modulation symbols.
  • Modulation symbols on which layer mapping and precoding are performed may be represented as in Equation 3.
  • modulation symbols on which layer mapping and precoding are performed are mapped to resource elements.
  • Y (i) in equation (3) is mapped to a resource on antenna port p.
  • the modulation symbols are mapped to the REG in the order of time and frequency after sub-block interleaving.
  • the PDCCH is transmitted on the same antenna port set as the antenna port through which a physical broadcast channel (PBCH) is transmitted.
  • PBCH physical broadcast channel
  • FIG. 8 shows an example of a rate matching process for a convolutionally coded transport channel and control information.
  • step S201 step S201, step S202, and step S203, three bit streams d k (0), d k (1), and d k (2) are interleaved for each subblock.
  • v k (0), v k (1) and v k (2) are output.
  • V k (0), v k (1) and v k (2) output at step S210 are collected, and a circular buffer is generated.
  • Rate matching is performed in step S220. If the length of the output sequence of rate matching is E, a sequence e k having a length e as a result of the rate matching is output.
  • PCFICH physical control format indicator channel
  • 3GPP LTE allocates a PDCCH to transmit a downlink control signal for controlling a terminal.
  • the region where the PDCCHs of the plurality of terminals are mapped may be referred to as a PDCCH region or a control region.
  • the PCFICH carries information on the number of OFDM symbols used for the PDCCH in a subframe.
  • Information on the number of OFDM symbols to which the PDCCH is allocated may be referred to as a control format indicator (CFI). All terminals in the cell must search the area to which the PDCCH is allocated, and thus CIF can be set to a cell-specific value.
  • a control region for which a PDCCH is to be allocated is allocated to the foremost OFDM symbols of a downlink subframe, and the PDCCH may be allocated to up to three OFDM symbols.
  • CIF is set to 3, so that the PDCCH is allocated in three OFDM symbols earlier in a subframe.
  • the UE detects its own PDCCH in the control region and can find its PDSCH through the PDCCH detected in the control region.
  • PDCCH has been transmitted using transmission diversity within a certain region, and includes beamforming, multi-user (MU) -multi-input multiple-output (MIMO), and best band selection (best band).
  • MU multi-user
  • MIMO multi-input multiple-output
  • best band selection best band.
  • a new control channel may be introduced in addition to the existing PDCCH.
  • a control channel newly defined in the following description is referred to as an enhanced PDCCH (e-PDCCH).
  • the e-PDCCH may be allocated to the data region instead of the existing control region to which the PDCCH is allocated.
  • the e-PDCCH is defined, it is possible to transmit a control signal for each node for each UE, and solve a problem that the existing PDCCH region may be insufficient.
  • a new channel indicating the region to which the e-PDCCH is allocated can be defined. That is, an enhanced PCFICH (e-PCFICH) indicating an area to which an e-PDCCH is allocated may be newly defined.
  • the e-PCFICH may carry some or all information necessary for detecting the e-PDCCH.
  • the e-PDCCH may be allocated to a common search space (CSS) in an existing control region or to a data region.
  • SCS common search space
  • FIG. 10 shows an example of resource allocation through an e-PDCCH.
  • the e-PDCCH may be allocated to a part of the data area rather than the existing control area.
  • the e-PDCCH is not provided to the legacy legacy terminal and may be searched by a terminal (hereinafter, referred to as a rel-11 terminal) supporting 3GPP LTE rel-11.
  • the rel-11 terminal performs blind decoding for detecting its e-PDCCH.
  • the minimum area information for detecting the e-PDCCH may be transmitted through a newly defined e-PCFICH or an existing PDCCH.
  • PDSCH may be scheduled by an e-PDCCH allocated to a data region.
  • the base station may transmit downlink data to each terminal through the scheduled PDSCH.
  • a wireless communication system including a relay station has recently been developed.
  • the relay station serves to extend cell coverage and improve transmission performance.
  • the base station serves the terminal located at the coverage boundary of the base station through the relay station, it is possible to obtain the effect of extending the cell coverage.
  • the relay station can increase the transmission capacity by improving the transmission reliability of the signal between the base station and the terminal. Even if the terminal is within the coverage of the base station, the relay station may be used when it is located in the shadow area.
  • the uplink and downlink between the base station and the repeater is a backhaul link, and the uplink and downlink between the base station and the terminal or the repeater and the terminal are an access link.
  • a signal transmitted through the backhaul link is called a backhaul signal
  • a signal transmitted through the access link is called an access signal.
  • a relay zone In a wireless communication system including a relay station, a relay zone may be defined.
  • the relay region means a period in which a control channel (hereinafter R-PDCCH) for a relay station or a data channel (hereinafter R-PDSCH) for a relay station is transmitted in a downlink subframe transmitted by the base station. That is, the backhaul transmission is performed in the downlink subframe. Transmission between the base station and the relay station is limited to the relay area in the slot.
  • the PDSCH for transmission between the base station and the relay station is processed the same as the PDSCH when no relay station is introduced and is mapped to resource elements. However, the PDSCH is mapped only to resource elements in the relay region, and when the R-PDCCH is allocated to the first slot of the RB pair, the PDSCH is not mapped to the first slot of the RB pair.
  • R-PDCCH carries the DCI for the relay station.
  • the R-PDCCH may be allocated from the fourth OFDM symbol to the last OFDM symbol of the first slot and also from the first OFDM symbol to the last OFDM symbol of the second slot.
  • a plurality of VRBs may be set by a higher layer to a VRB to which an R-PDCCH may be allocated.
  • the R-PDCCH may be transmitted on one or more PRBs without cross-interleaving with other R-PDCCHs within a given PRB.
  • a plurality of R-PDCCHs may be cross interleaved in one or more PRBs.
  • FIG. 11 shows an example of an R-PDCCH allocated to an RB.
  • a DL grant may be allocated to a first slot in an RB, and a UL grant or PDSCH may be allocated to a second slot.
  • the R-PDCCH may be allocated to the remaining resource elements except for the resource elements to which the control region, the CRS, and the DMRS are mapped. Both CRS and DMRS may be used for demodulation of the R-PDCCH.
  • antenna port 7 and a scrambling ID (SCID) 0 may be used.
  • antenna port 0 is used only when there is one PBCH transmit antenna, and when two or four PBCH transmit antennas are used, the antenna is switched to Tx diversity mode. Ports 0-1 or 0-3 can all be used.
  • the structure of the existing R-PDCCH described in FIG. 14 may be reused. That is, only the DL grant may be allocated to the first slot in the RB, and the UL grant or the PDSCH may be allocated to the second slot.
  • the e-PDCCH may be allocated to the remaining resource elements except for the resource elements to which the control region, the CRS, and the DMRS are mapped.
  • the e-PDCCH may be allocated to the first slot of the data area.
  • the e-PDCCH may be allocated only to the first slot or may be allocated to the first slot and the second slot. Since the first few OFDM symbols of the first slot are used as the control region, the e-PDCCH needs to be allocated avoiding the control region.
  • the number of OFDM symbols used in the control region may vary from subframe to subframe, and information on this may be indicated by a CFI transmitted through the PCFICH.
  • the e-PDCCH may be allocated from the next OFDM symbol of the last OFDM symbol occupied by the control region. That is, the OFDM symbol at which the e-PDCCH starts may be the same as the OFDM symbol at which the PDSCH starts. However, if the OFDM symbol at which the e-PDCCH starts is the same as the OFDM symbol at which the PDSCH starts, a decoding error also occurs for the e-PDCCH when a decoding error of the PCFICH occurs.
  • the OFDM symbol at which the e-PDCCH starts is preferably set irrespective of CFI. That is, the OFDM symbol to which the e-PDCCH is allocated may be fixed. For example, the e-PDCCH may be allocated in a direction in which the OFDM symbol index is lowered from the last OFDM symbol of the slot to which the e-PDCCH is allocated. Alternatively, the e-PDCCH may be allocated in a direction in which the OFDM symbol index increases from the fixed start OFDM symbol.
  • FIG. 12 shows an example of a subframe to which an e-PDCCH is allocated.
  • RRC radio resource control
  • the empty OFDM symbol described above may be used for robust e-PDCCH.
  • the UE can decode the e-PDCCH even by reading only the region to which the e-PDCCH is allocated. However, if the channel situation is not good, the UE can improve decoding performance by using an empty OFDM symbol. That is, the empty OFDM symbol may be used as a redundant region. Duplicate bits that are part of the e-PDCCH bits transmitted over the e-PDCCH may be mapped to the overlapped region.
  • the UE may improve performance by lowering a coding rate by reading not only an area to which an e-PDCCH is allocated but also an overlapping area. For example, when rate matching is performed, redundant bits may be added by increasing E, which is the length of the output sequence of rate matching.
  • FIG. 13 shows another example of a subframe to which an e-PDCCH is allocated.
  • an information bit of the e-PDCCH is allocated to the first region (301).
  • the first area may be referred to as an area to which an e-PDCCH is allocated.
  • the information bits of the e-PDCCH are mapped in the direction from which the OFDM symbol index increases from the kth OFDM symbol at which the e-PDCCH starts.
  • redundant bits that are part of the e-PDCCH information bits are allocated to the second region (302).
  • the second region represents an empty OFDM symbol between the control region and the first region. The duplicate bits are mapped from the OFDM symbol at the end of the control region to the k-th OFDM symbol at which the e-PDCCH begins.
  • mapping of the information bits or the duplicate bits of the e-PDCCH means that the PDDCH described in FIG. 7 is mapped to resource elements. That is, the information bits or redundant bits of the e-PDCCH may be QPSK modulated and mapped to resource elements through layer mapping and precoding. This detailed description of the process is omitted here.
  • the duplicate bits may be decoded incorrectly.
  • an information bit of the e-PDCCH is allocated to the first region (311).
  • redundant bits that are part of the e-PDCCH information bits are allocated to the second region (312).
  • the duplicate bits are mapped from the OFDM symbol at the end of the control region to the k-th OFDM symbol at which the e-PDCCH begins. At this time, the UE may decode the CFI incorrectly.
  • the UE cannot read the duplicate bits mapped to the second OFDM symbol, and may incorrectly determine that the first duplicate bit is mapped to the third OFDM symbol and decode the e-PDCCH. Therefore, there is no gain in using redundant bits.
  • FIG. 14 shows an example of a subframe to which an e-PDCCH is allocated according to a bit mapping method for the proposed e-PDCCH.
  • an information bit of the e-PDCCH is allocated to the first region (401).
  • the first area may be referred to as an area to which an e-PDCCH is allocated.
  • the information bits of the e-PDCCH are mapped in the direction from which the OFDM symbol index increases from the kth OFDM symbol at which the e-PDCCH starts.
  • redundant bits that are part of the e-PDCCH information bits are allocated to the second region (402).
  • the second region represents an empty OFDM symbol between the control region and the first region.
  • the duplicate bits are mapped in a direction in which the OFDM symbol index is lowered from the first OFFM symbol of the e-PDCCH to the last OFDM symbol of the control region.
  • the redundant bits of the information bits of the e-PDCCH may be mapped in the reverse order from the (k-1) th OFDM symbol to the last OFDM symbol of the control region. Accordingly, the OFDM symbol at which the duplicate bit starts may be fixed at all times.
  • step S500 the base station maps the e-PDCCH bits to the first region in which the e-PDCCH is allocated among the data regions in the subframe.
  • step S510 the base station maps the redundant bits of the e-PDCCH bits to a second region including at least one OFDM symbol between the control region and the first region in the subframe.
  • step S520 the base station transmits the mapped e-PDCCH bits and the redundant bits to the terminal.
  • the e-PDCCH bits are mapped in a direction in which the OFDM symbol index increases from the kth OFDM symbol in the subframe, and the redundant bits are in a direction in which the OFDM symbol index decreases from the (k-1) th OFDM symbol in the subframe. Is mapped.
  • 16 shows an embodiment of a method for decoding the proposed e-PDCCH.
  • step S600 the UE searches for a first region to which an e-PDCCH is allocated among the data regions in the subframe and a second region including at least one OFDM symbol between the control region and the first region in the subframe.
  • step S610 the UE decodes the e-PDCCH bits and redundant bits received through the first region and the second region.
  • the e-PDCCH bits are mapped in a direction in which the OFDM symbol index increases from the kth OFDM symbol in the subframe, and the redundant bits are in a direction in which the OFDM symbol index decreases from the (k-1) th OFDM symbol in the subframe. Is mapped.
  • 17 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 800 includes a processor 810, a memory 820, and an RF unit 830.
  • Processor 810 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 810.
  • the memory 820 is connected to the processor 810 and stores various information for driving the processor 810.
  • the RF unit 830 is connected to the processor 810 to transmit and / or receive a radio signal.
  • the terminal 900 includes a processor 910, a memory 920, and an RF unit 930.
  • Processor 910 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 910.
  • the memory 920 is connected to the processor 910 and stores various information for driving the processor 910.
  • the RF unit 930 is connected to the processor 910 to transmit and / or receive a radio signal.
  • Processors 810 and 910 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory 820, 920 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 830 and 930 may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memory 820, 920 and executed by the processor 810, 910.
  • the memories 820 and 920 may be inside or outside the processors 810 and 910, and may be connected to the processors 810 and 910 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 e-PDCCH(enhanced physical downlink control channel)의 비트를 맵핑하는 방법 및 장치가 제공된다. 기지국은 서브프레임 내의 데이터 영역 중 e-PDCCH가 할당되는 제1 영역에 e-PDCCH 비트를 맵핑하고, 상기 서브프레임 내의 제어 영역과 상기 제1 영역 사이의 적어도 하나의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하는 제2 영역에 상기 e-PDCCH 비트의 중복 비트(redundant bit)를 맵핑한다. 상기 e-PDCCH 비트는 상기 서브프레임 내의 k번째 OFDM 심벌부터 OFDM 심벌 인덱스가 높아지는 방향으로 맵핑되며, 상기 중복 비트는 상기 서브프레임 내의 (k-1)번째 OFDM 심벌부터 OFDM 심벌 인덱스가 낮아지는 방향으로 맵핑된다.

Description

무선 통신 시스템에서 하향링크 제어 채널을 위한 비트 맵핑 방법 및 장치
본 발명을 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 하향링크 제어 채널을 위한 비트 맵핑 방법 및 장치에 관한 것이다.
최근 활발하게 연구되고 있는 차세대 멀티미디어 무선 통신 시스템은 초기의 음성 위주의 서비스를 벗어나 영상, 무선 데이터 등의 다양한 정보를 처리하여 전송할 수 있는 시스템이 요구되고 있다. 현재 3세대 무선 통신 시스템에 이어 개발되고 있는 4세대 무선 통신은 하향링크 1Gbps(gigabits per second) 및 상향링크 500Mbps(megabits per second)의 고속의 데이터 서비스를 지원하는 것을 목표로 한다. 무선 통신 시스템의 목적은 다수의 사용자가 위치와 이동성에 관계없이 신뢰할 수 있는(reliable) 통신을 할 수 있도록 하는 것이다. 그런데, 무선 채널(wireless channel)은 경로 손실(path loss), 잡음(noise), 다중 경로(multipath)에 의한 페이딩(fading) 현상, 심벌 간 간섭(ISI; inter-symbol interference) 또는 단말의 이동성으로 인한 도플러 효과(Doppler effect) 등의 비이상적인 특성이 있다. 무선 채널의 비이상적 특성을 극복하고, 무선 통신의 신뢰도(reliability)를 높이기 위해 다양한 기술이 개발되고 있다.
한편 M2M(machine-to-machine) 통신의 도입, 스마트폰, 태블릿 PC 등의 다양한 디바이스의 출현 및 보급으로 인하여 셀룰러(celluar) 망에 대한 데이터 요구량이 빠르게 증가하고 있다. 높은 데이터 요구량을 만족시키기 위하여 다양한 기술들이 개발되고 있다. 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집합(CA; carrier aggregation) 기술, 인지 무선(CR; cognitive radio) 기술 등이 연구 중에 있다. 또한, 한정된 주파수 대역 내에서 데이터 용량을 높이기 위한 다중 안테나 기술, 다중 기지국 협력 기술 등이 연구되고 있다. 즉, 결국 무선 통신 시스템은 사용자 주변에 접속할 수 있는 노드(node)의 밀도가 높아지는 방향으로 진화하게 될 것이다. 노드의 밀도가 높은 무선 통신 시스템은 노드 간의 협력에 의하여 성능이 더욱 향상될 수 있다. 즉, 각 노드가 서로 협력하는 무선 통신 시스템은 각 노드가 독립적인 기지국(BS; base station), ABS(advanced BS), Node-B(NB), eNode-B(eNB), AP(access point) 등으로 동작하는 무선 통신 시스템보다 훨씬 우수한 성능을 가진다.
무선 통신 시스템의 성능 개선을 위하여, 셀 내 복수의 노드를 구비한 분산 다중 노드 시스템(DMNS; distributed multi node system)이 적용될 수 있다. 다중 노드 시스템은 분산 안테나 시스템(DAS; distributed antenna system), 무선 원격 장비(RRH; radio remote head) 등을 포함할 수 있다. 또한, 이미 개발되었거나 향후에 적용이 가능한 다양한 MIMO(multiple-input multiple-output) 기법과 협력 통신 기법들을 분산 다중 노드 시스템에 적용하기 위한 표준화 작업이 진행 중이다. 다중 노드 시스템에 의해서 링크 품질(link quality)의 개선이 예상되나, 다양한 MIMO 기법 및 협력 통신 기법을 다중 노드 시스템에 적용하기 위하여 새로운 제어 채널의 도입이 요구된다.
다중 노드 시스템을 위한 새로운 제어 채널을 효율적으로 할당하기 위한 방법이 요구된다.
본 발명의 기술적 과제는 무선 통신 시스템에서 하향링크 제어 채널을 위한 비트 맵핑 방법 및 장치를 제공하는 데에 있다. 본 발명은 e-PDCCH(enhanced physical downlink control channel) 비트 및 e-PDCCH의 중복 비트를 맵핑하는 방법을 제공한다.
일 양태에 있어서, 무선 통신 시스템에서 기지국에 의한 e-PDCCH(enhanced physical downlink control channel)의 비트를 맵핑하는 방법이 제공된다. 상기 방법은 서브프레임 내의 데이터 영역 중 e-PDCCH가 할당되는 제1 영역에 e-PDCCH 비트를 맵핑하고, 상기 서브프레임 내의 제어 영역과 상기 제1 영역 사이의 적어도 하나의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하는 제2 영역에 상기 e-PDCCH 비트의 중복 비트(redundant bit)를 맵핑하고, 상기 맵핑된 e-PDCCH 비트 및 상기 중복 비트를 단말로 전송하는 것을 포함하되, 상기 e-PDCCH 비트는 상기 서브프레임 내의 k번째 OFDM 심벌부터 OFDM 심벌 인덱스가 높아지는 방향으로 맵핑되며, 상기 중복 비트는 상기 서브프레임 내의 (k-1)번째 OFDM 심벌부터 OFDM 심벌 인덱스가 낮아지는 방향으로 맵핑된다.
상기 중복 비트는 상기 e-PDCCH 비트의 일부 또는 전부일 수 있다.
상기 제어 영역은 상기 서브프레임의 처음 1개 내지 3개의 OFDM 심벌을 차지할 수 있다.
k=4일 수 있다.
상기 e-PDCCH 비트를 맵핑하는 것은, 상기 e-PDCCH 비트에 스크램블링 시퀀스(scrambling sequence)를 추가하고, 상기 스크램블링 시퀀스가 추가된 e-PDCCH 비트에 QPSK(quadrature phase shift keying) 변조를 수행하여 변조 심벌들을 생성하고, 상기 생성된 변조 심벌들에 대하여 레이어 맵핑(layer mapping) 및 프리코딩(precoding)을 수행하고, 상기 변조 심벌들을 자원 요소에 맵핑하는 것을 포함할 수 있다.
상기 중복 비트를 맵핑하는 것은, 상기 중복 비트에 스크램블링 시퀀스를 추가하고, 상기 스크램블링 시퀀스가 추가된 e-PDCCH 비트에 QPSK 변조를 수행하여 변조 심벌들을 생성하고, 상기 생성된 변조 심벌들에 대하여 레이어 맵핑 및 프리코딩을 수행하고, 상기 변조 심벌들을 자원 요소에 맵핑하는 것을 포함할 수 있다.
다른 양태에 있어서, 무선 통신 시스템에서 단말에 의한 e-PDCCH(enhanced physical downlink control channel)를 디코딩 하는 방법이 제공된다. 상기 방법은 서브프레임 내의 데이터 영역 중 e-PDCCH가 할당되는 제1 영역 및 상기 서브프레임 내의 제어 영역과 상기 제1 영역 사이의 적어도 하나의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하는 제2 영역을 탐색하고, 상기 제1 영역 및 제2 영역을 통해 수신되는 e-PDCCH 비트 및 중복 비트(redundant bit)를 디코딩하는 것을 포함하되, 상기 e-PDCCH 비트는 상기 서브프레임 내의 k번째 OFDM 심벌부터 OFDM 심벌 인덱스 가 높아지는 방향으로 맵핑되며,상기 중복 비트는 상기 서브프레임 내의 (k-1)번째 OFDM 심벌부터 OFDM 심벌 인덱스가 낮아지는 방향으로 맵핑된다.
또 다른 양태에 있어서, 무선 통신 시스템에서 e-PDCCH(enhanced physical downlink control channel)의 비트를 맵핑하는 기지국이 제공된다. 상기 기지국은 무선 신호를 전송 또는 수신하는 RF(radio frequency)부, 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 서브프레임 내의 데이터 영역 중 e-PDCCH가 할당되는 제1 영역에 e-PDCCH 비트를 맵핑하고, 상기 서브프레임 내의 제어 영역과 상기 제1 영역 사이의 적어도 하나의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하는 제2 영역에 상기 e-PDCCH 비트의 중복 비트(redundant bit)를 맵핑하고, 상기 맵핑된 e-PDCCH 비트 및 상기 중복 비트를 단말로 전송하도록 구성되며, 상기 e-PDCCH 비트는 상기 서브프레임 내의 k번째 OFDM 심벌부터 OFDM 심벌 인덱스가 높아지는 방향으로 맵핑되며, 상기 중복 비트는 상기 서브프레임 내의 (k-1)번째 OFDM 심벌부터 OFDM 심벌 인덱스가 낮아지는 방향으로 맵핑된다.
에러에 강인한(robust) e-PDCCH가 제공될 수 있다.
도 1은 무선 통신 시스템이다.
도 2는 3GPP LTE에서 무선 프레임(radio frame)의 구조를 나타낸다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 상향링크 서브프레임의 구조를 나타낸다.
도 6은 다중 노드 시스템의 일 예를 나타낸다.
도 7은 PDCCH가 자원에 맵핑되는 과정의 일 예를 나타낸다.
도 8은 컨벌루션 코딩된(convolutionally coded) 전송 채널(transport channel)과 제어 정보를 위한 레이트 매칭(rate matching) 과정의 일 예를 나타낸다.
도 9는 PCFICH, PDCCH 및 PDSCH가 서브프레임에 맵핑되는 일 예를 나타낸다.
도 10은 e-PDCCH를 통한 자원 할당의 일 예를 나타낸다.
도 11은 RB에 할당되는 R-PDCCH의 일 예를 나타낸다.
도 12는 e-PDCCH가 할당되는 서브프레임의 일 예를 나타낸다.
도 13은 e-PDCCH가 할당되는 서브프레임의 또 다른 예를 나타낸다.
도 14는 제안된 e-PDCCH를 위한 비트 맵핑 방법에 따라 e-PDCCH가 할당된 서브프레임의 일 예를 나타낸다.
도 15는 제안된 e-PDCCH를 위한 비트 맵핑 방법의 일 실시예를 나타낸다.
도 16는 제안된 e-PDCCH를 디코딩하는 방법의 일 실시예를 나타낸다.
도 17은 본 발명의 실시예가 구현되는 무선 통신 시스템의 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
설명을 명확하게 하기 위해, LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 무선 통신 시스템이다.
무선 통신 시스템(10)은 적어도 하나의 기지국(11; base station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역(일반적으로 셀이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. 단말(12; user equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다.
단말은 통상적으로 하나의 셀에 속하는데, 단말이 속한 셀을 서빙 셀(serving cell)이라 한다. 서빙 셀에 대해 통신 서비스를 제공하는 기지국을 서빙 기지국(serving BS)이라 한다. 무선 통신 시스템은 셀룰러 시스템(cellular system)이므로, 서빙 셀에 인접하는 다른 셀이 존재한다. 서빙 셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 기지국을 인접 기지국(neighbor BS)이라 한다. 서빙 셀 및 인접 셀은 단말을 기준으로 상대적으로 결정된다.
이 기술은 하향링크(downlink) 또는 상향링크(uplink)에 사용될 수 있다. 일반적으로 하향링크는 기지국(11)에서 단말(12)로의 통신을 의미하며, 상향링크는 단말(12)에서 기지국(11)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분이고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분이고, 수신기는 기지국(11)의 일부분일 수 있다.
무선 통신 시스템은 MIMO(multiple-input multiple-output) 시스템, MISO(multiple-input single-output) 시스템, SISO(single-input single-output) 시스템 및 SIMO(single-input multiple-output) 시스템 중 어느 하나일 수 있다. MIMO 시스템은 다수의 전송 안테나(transmit antenna)와 다수의 수신 안테나(receive antenna)를 사용한다. MISO 시스템은 다수의 전송 안테나와 하나의 수신 안테나를 사용한다. SISO 시스템은 하나의 전송 안테나와 하나의 수신 안테나를 사용한다. SIMO 시스템은 하나의 전송 안테나와 다수의 수신 안테나를 사용한다. 이하에서, 전송 안테나는 하나의 신호 또는 스트림을 전송하는 데 사용되는 물리적 또는 논리적 안테나를 의미하고, 수신 안테나는 하나의 신호 또는 스트림을 수신하는 데 사용되는 물리적 또는 논리적 안테나를 의미한다.
도 2는 3GPP LTE에서 무선 프레임(radio frame)의 구조를 나타낸다.
이는 3GPP(3rd Generation Partnership Project) TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 8)"의 5절을 참조할 수 있다. 도 2를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 무선 프레임 내 슬롯은 #0부터 #19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 복수의 부반송파를 포함한다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 다른 명칭으로 불리울 수 있다. 예를 들어, 상향링크 다중 접속 방식으로 SC-FDMA가 사용될 경우 SC-FDMA 심벌이라고 할 수 있다. 자원블록(RB; resource block)는 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파를 포함한다. 상기 무선 프레임의 구조는 일 예에 불과한 것이다. 따라서 무선 프레임에 포함되는 서브프레임의 개수나 서브프레임에 포함되는 슬롯의 개수, 또는 슬롯에 포함되는 OFDM 심벌의 개수는 다양하게 변경될 수 있다.
3GPP LTE는 노멀(normal) 사이클릭 프리픽스(CP; cyclic prefix)에서 하나의 슬롯은 7개의 OFDM 심벌을 포함하고, 확장(extended) CP에서 하나의 슬롯은 6개의 OFDM 심벌을 포함하는 것으로 정의하고 있다.
무선 통신 시스템은 크게 FDD(frequency division duplex) 방식과 TDD(time division duplex) 방식으로 나눌 수 있다. FDD 방식에 의하면 상향링크 전송과 하향링크 전송이 서로 다른 주파수 대역을 차지하면서 이루어진다. TDD 방식에 의하면 상향링크 전송과 하향링크 전송이 같은 주파수 대역을 차지하면서 서로 다른 시간에 이루어진다. TDD 방식의 채널 응답은 실질적으로 상호적(reciprocal)이다. 이는 주어진 주파수 영역에서 하향링크 채널 응답과 상향링크 채널 응답이 거의 동일하다는 것이다. 따라서, TDD에 기반한 무선통신 시스템에서 하향링크 채널 응답은 상향링크 채널 응답으로부터 얻어질 수 있는 장점이 있다. TDD 방식은 전체 주파수 대역을 상향링크 전송과 하향링크 전송이 시분할되므로 기지국에 의한 하향링크 전송과 단말에 의한 상향링크 전송이 동시에 수행될 수 없다. 상향링크 전송과 하향링크 전송이 서브프레임 단위로 구분되는 TDD 시스템에서, 상향링크 전송과 하향링크 전송은 서로 다른 서브프레임에서 수행된다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
하향링크 슬롯은 시간 영역에서 복수의 OFDM 심벌을 포함하고, 주파수 영역에서 NRB개의 자원 블록을 포함한다. 하향링크 슬롯에 포함되는 자원 블록의 수 NRB은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 예를 들어, LTE 시스템에서 NRB은 6 내지 110 중 어느 하나일 수 있다. 하나의 자원 블록은 주파수 영역에서 복수의 부반송파를 포함한다. 상향링크 슬롯의 구조도 상기 하향링크 슬롯의 구조와 동일할 수 있다.
자원 그리드 상의 각 요소(element)를 자원 요소(resource element)라 한다. 자원 그리드 상의 자원 요소는 슬롯 내 인덱스 쌍(pair) (k,l)에 의해 식별될 수 있다. 여기서, k(k=0,...,NRB×12-1)는 주파수 영역 내 부반송파 인덱스이고, l(l=0,...,6)은 시간 영역 내 OFDM 심벌 인덱스이다.
여기서, 하나의 자원 블록은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되는 7×12 자원 요소를 포함하는 것을 예시적으로 기술하나, 자원 블록 내 OFDM 심벌의 수와 부반송파의 수는 이에 제한되는 것은 아니다. OFDM 심벌의 수와 부반송파의 수는 CP의 길이, 주파수 간격(frequency spacing) 등에 따라 다양하게 변경될 수 있다. 예를 들어, 노멀 CP의 경우 OFDM 심벌의 수는 7이고, 확장된 CP의 경우 OFDM 심벌의 수는 6이다. 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
하향링크 서브프레임은 시간 영역에서 2개의 슬롯을 포함하고, 각 슬롯은 노멀 CP에서 7개의 OFDM 심벌을 포함한다. 서브프레임 내의 첫 번째 슬롯의 앞선 최대 3 OFDM 심벌들(1.4Mhz 대역폭에 대해서는 최대 4 OFDM 심벌들)이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(physical downlink shared channel)가 할당되는 데이터 영역이 된다.
PDCCH는 DL-SCH(downlink-shared channel)의 자원 할당 및 전송 포맷, UL-SCH(uplink shared channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(voice over internet protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 각각 4개의 자원 요소를 포함하는 9개의 자원 요소 그룹(REG; resource element group)에 대응된다. 4개의 QPSK(quadrature phase shift keying) 심벌이 각 REG에 맵핑된다. 참조 신호(RS; reference signal)이 차지하는 자원 요소는 REG 내에 포함되지 않으며, 주어진 OFDM 심벌 내에서 REG의 총 개수는 셀 특정 참조 신호(CRS; cell-specific RS)가 존재하는지 여부에 따라 결정될 수 있다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다. 특정 PDCCH의 전송을 위하여 사용되는 CCE의 개수는 채널 상황에 따라 기지국에 의해 결정될 수 있다. 예를 들어, 좋은 채널 상태를 가진 단말에 대한 PDCCH는 하나의 CCE만을 사용할 수 있다. 그러나 좋지 않은 채널 상태를 가진 단말에 대한 PDCCH는 충분한 강인함(robustness)를 얻기 위하여 8개의 CCE가 필요할 수도 있다. 또한, PDCCH의 전송 전력은 채널 상황에 맞추어 조정될 수 있다. 표 1은 지원되는 PDCCH 포맷 및 각 PDCCH 포맷에 대응되는 CCE의 개수 등을 나타낸다.
PDCCH format Number of CCEs Number of resource-element groups Number of PDCCH bits
0 1 9 72
1 2 18 144
2 4 36 288
3 8 72 576
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(RNTI; radio network temporary identifier)가 마스킹된다. 특정 단말을 위한 PDCCH라면 단말의 고유 식별자, 예를 들어 C-RNTI(cell-RNTI)가 CRC에 마스킹될 수 있다. 또는, 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보 블록(SIB; system information block)을 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information-RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
도 5는 상향링크 서브프레임의 구조를 나타낸다.
상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 상기 제어 영역은 상향링크 제어 정보가 전송되기 위한 PUCCH(physical uplink control channel)이 할당된다. 상기 데이터 영역은 데이터가 전송되기 위한 PUSCH(physical uplink shared channel)이 할당된다. 상위 계층에서 지시되는 경우, 단말은 PUSCH와 PUCCH의 동시 전송을 지원할 수 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원 블록 쌍(RB pair)으로 할당된다. 자원 블록 쌍에 속하는 자원 블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원 블록 쌍에 속하는 자원 블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다. 단말이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티 이득을 얻을 수 있다. m은 서브프레임 내에서 PUCCH에 할당된 자원블록 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다.
PUCCH 상으로 전송되는 상향링크 제어정보에는 HARQ(hybrid automatic repeat request) ACK(acknowledgement)/NACK(non-acknowledgement), 하향링크 채널 상태를 나타내는 CQI(channel quality indicator), 상향링크 무선 자원 할당 요청인 SR(scheduling request) 등이 있다.
PUSCH는 전송 채널(transport channel)인 UL-SCH에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 TTI 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH를 위한 전송 블록과 제어정보가 다중화된 것일 수 있다. 예를 들어, 데이터에 다중화되는 제어정보에는 CQI, PMI(precoding matrix indicator), HARQ, RI(rank indicator) 등이 있을 수 있다. 또는 상향링크 데이터는 제어정보만으로 구성될 수도 있다.
무선 통신 시스템의 성능을 향상시키기 위하여 사용자 주변에 접속할 수 있는 노드(node)의 밀도를 높이는 방향으로 기술이 진화하고 있다. 노드의 밀도가 높은 무선 통신 시스템은 노드 간의 협력에 의하여 성능이 더욱 향상될 수 있다.
도 6은 다중 노드 시스템의 일 예를 나타낸다.
도 6을 참조하면, 다중 노드 시스템(20)은 하나의 기지국(21)과 복수의 노드(25-1, 25-2, 25-3, 25-4, 25-5)들로 구성될 수 있다. 복수의 노드(25-1, 25-2, 25-3, 25-4, 25-5)들은 하나의 기지국(21)에 의해서 관리될 수 있다. 즉, 복수의 노드(25-1, 25-2, 25-3, 25-4, 25-5)들은 하나의 셀의 일부처럼 동작을 한다. 이때 각 노드(25-1, 25-2, 25-3, 25-4, 25-5)는 별도의 노드 ID(identifier)를 할당 받을 수 있고 또는 별도의 노드 ID 없이 셀 내의 일부 안테나 집단처럼 동작할 수 있다. 이러한 경우 도 6의 다중 노드 시스템(20)은 하나의 셀을 형성하는 분산 다중 노드 시스템(DMNS; distributed multi node system)으로 볼 수 있다.
또는 복수의 노드(25-1, 25-2, 25-3, 25-4, 25-5)들은 개별적인 셀 ID를 가지고 단말의 스케줄링 및 핸드오버(HO; handover)를 수행할 수 있다. 이러한 경우 도 6의 다중 노드 시스템(20)은 다중 셀 시스템으로 볼 수 있다. 기지국(21)은 매크로 셀(macro cell)일 수 있으며, 각 노드는 매크로 셀의 셀 커버리지(cell coverage)보다 작은 셀 커버리지를 가지는 펨토 셀(femto cell) 또는 피코 셀(pico cell)일 수 있다. 이와 같이 복수의 셀이 커버리지에 따라 오버레이(overlay)되어 구성되는 경우, 복수 계층 네트워크(multi-tier network)라 할 수 있다.
도 6에서 각 노드(25-1, 25-2, 25-3, 25-4, 25-5)는 기지국, Node-B, eNode-B, 피코 셀 eNb(PeNB), 홈 eNB(HeNB), 무선 원격 장비(RRH; radio remote head), 중계국(RS; relay station 또는 repeater), 분산 안테나(distributed antenna) 중 어느 하나가 될 수 있다. 하나의 노드에는 최소 하나의 안테나가 설치될 수 있다. 또한, 노드는 포인트(point)로 불릴 수 있다. 이하의 명세서에서 노드는 DMNS에서 일정 간격 이상으로 떨어진 안테나 그룹을 의미한다. 즉, 이하의 명세서에서 각 노드는 물리적으로 RRH를 의미한다고 가정한다. 그러나 본 발명은 이에 제한되지 않으며, 노드는 물리적 간격에 상관 없이 임의의 안테나 그룹으로 정의될 수 있다. 예를 들어 복수의 교차 편광된 안테나(cross polarized antenna)들로 구성된 기지국을 수평 편광된 안테나(horizontal polarized antenna)들로 구성된 노드와 수직 편광된 안테나(vertical polarized antenna)들로 구성된 노드로 이루어져 있다고 보고 본 발명을 적용할 수 있다. 또한 본 발명은 각 노드가 셀 커버리지가 매크로 셀에 비해서 작은 피코 셀 또는 펨토 셀인 경우, 즉 다중 셀 시스템에서도 적용될 수 있다. 이하의 설명에서 안테나는 물리적인 안테나뿐만 아니라 안테나 포트, 가상(virtual) 안테나, 안테나 그룹 등으로 대체될 수 있다.
도 7은 PDCCH가 자원에 맵핑되는 과정의 일 예를 나타낸다.
단계 S100에서 PDCCH 비트가 생성된다. PDCCH 비트는 수학식 1과 같이 표현될 수 있다.
<수학식 1>
Figure PCTKR2012005732-appb-I000001
Mbit (i)는 하나의 서브프레임 내에서 PDCCH 번호 i 상으로 전송되는 비트의 개수이다. nPDCCH는 서브프레임 내에서 전송되는 PDCCH의 개수이다.
단계 S110에서 생성된 PDCCH 비트에 스크램블링 시퀀스(scrambling sequence)가 추가된다. 스크램블링 시퀀스가 추가된 PDCCH 비트는 수학식 2와 같이 나타낼 수 있다.
<수학식 2>
Figure PCTKR2012005732-appb-I000002
단계 S120에서 스크램블링 시퀀스가 추가된 PDCCH 비트에 대하여 QPSK 변조가 수행된다. QPSK 변조에 의해 생성된 변조 심벌들은 d(0),...,d(Msymb-1)로 나타낼 수 있다.
단계 S130에서 변조 심벌들에 대하여 레이어 맵핑(layer mapping) 및 프리코딩(precoding)이 수행된다. 레이어 맵핑 및 프리코딩이 수행된 변조 심벌들을 수학식 3과 같이 나타낼 수 있다.
<수학식 3>
단계 S140에서 레이어 맵핑 및 프리코딩이 수행된 변조 심벌들이 자원 요소에 맵핑된다. 수학식 3의 y(i)가 안테나 포트 p 상의 자원으로 맵핑된다. 변조 심벌들은 서브블록 인터리빙(sub-block interleaving) 이후, 시간과 주파수의 순서대로 REG에 맵핑된다. PDCCH는 PBCH(physical broadcast channel)이 전송되는 안테나 포트와 동일한 안테나 포트 집합 상으로 전송된다.
도 8은 컨벌루션 코딩된(convolutionally coded) 전송 채널(transport channel)과 제어 정보를 위한 레이트 매칭(rate matching) 과정의 일 예를 나타낸다.
단계 S201, 단계 S202 및 단계 S203에서 3개의 비트 스트림 dk(0), dk(1) 및, dk(2)가 각각 서브블록 별로 인터리빙 된다. 서브블록 인터리빙의 결과 vk(0), vk(1) 및 vk(2)가 출력된다.
단계 S210에서 출력된 vk(0), vk(1) 및 vk(2)가 모이고, 순환 버퍼가 생성된다. 순환 버퍼의 길이 Kw=3KΠ이며, wk=vk(0), wKΠ+k= vk(1), w2KΠ+k= vk(2)로 나타낼 수 있다.
단계 S220에서 레이트 매칭이 수행된다. 레이트 매칭의 출력 시퀀스의 길이를 E라 하면, 레이트 매칭의 결과 길이가 e인 시퀀스 ek가 출력된다.
이하 PCFICH(physical control format indicator channel)에 대해서 설명한다.
도 9는 PCFICH, PDCCH 및 PDSCH가 서브프레임에 맵핑되는 일 예를 나타낸다.
3GPP LTE는 단말을 제어하는 하향링크 제어 신호를 전송하기 위하여 PDCCH를 할당한다. 복수의 단말의 PDCCH들이 맵핑되는 영역을 PDCCH 영역 또는 제어 영역이라 할 수 있다. PCFICH는 서브프레임 내에서 PDCCH의 할을 위하여 사용되는 OFDM 심벌의 개수에 대한 정보를 나른다. PDCCH 가 할당되는 OFDM 심벌의 개수에 대한 정보를 제어 포맷 지시자(CFI; control format indicator)라 할 수 있다. 셀 내의 모든 단말들은 PDCCH가 할당되는 영역을 탐색해야 하며, 이에 따라 CIF는 셀 특정(cell-specific)한 값으로 설정될 수 있다. 일반적으로 PDCCH가 할되는 제어 영역은 하향링크 서브프레임의 가장 앞쪽의 OFDM 심벌들에 할당되며, PDCCH는 최대 3개의 OFDM 심벌들에 할당될 수 있다.
도 9를 참조하면, CIF가 3으로 설정되며, 이에 따라 PDCCH는 서브프레임 내에서 앞에서 3개의 OFDM 심벌들 내에 할당된다. 단말은 제어 영역 내에서 자신의 PDCCH를 검출하며, 해당 제어 영역에서 검출한 PDCCH를 통해서 자신의 PDSCH를 찾을 수 있다.
종래의 PDCCH는 일정 영역 내에서 전송 다이버시티(transmission diversity)를 이용하여 전송되었을 뿐, 빔포밍(beamforming), MU(multi user)-MIMO(multiple-input multiple-output), 최적 대역 선택(best band selection) 등 PDSCH에 지원되는 다양한 기법들은 적용되지 않는다. 또한, 시스템 성능의 향상을 위하여 분산 다중 노드 시스템이 도입되는 경우, 복수의 노드들 또는 복수의 RRH의 셀 ID가 동일하면 PDCCH의 용량이 부족해지는 문제가 발생할 수 있다. 이에 따라 기존의 PDCCH 외에 새로운 제어 채널이 도입될 수 있다. 이하의 설명에서 새롭게 정의되는 제어 채널을 e-PDCCH(enhanced PDCCH)라 한다. e-PDCCH는 PDCCH가 할당되는 기존의 제어 영역이 아닌 데이터 영역에 할당될 수 있다. e-PDCCH가 정의됨에 따라 각 단말 별로 각 노드에 대한 제어 신호를 전송할 수 있고, 기존의 PDCCH 영역이 부족할 수 있는 문제를 해결할 수 있다.
PDCCH가 할당되는 제어 영역이 PCFICH에 의해서 지시되는 것과 마찬가지로, e-PDCCH가 할당되는 영역을 지시하는 새로운 채널이 정의될 수 있다. 즉, e-PDCCH가 할당되는 영역을 지시하는 e-PCFICH(enhanced PCFICH)가 새롭게 정의될 수 있다. e-PCFICH는 e-PDCCH를 검출하기 위하여 필요한 일부 또는 모든 정보를 나를 수 있다. e-PDCCH는 기존의 제어 영역 내의 공통 탐색 영역(CSS; common search space)에 할당되거나, 데이터 영역에 할당될 수 있다.
도 10은 e-PDCCH를 통한 자원 할당의 일 예를 나타낸다.
e-PDCCH는 기존의 제어 영역이 아닌 데이터 영역의 일부에 할당될 수 있다. e-PDCCH는 기존의 레거시 단말에게는 제공되지 않으며, 3GPP LTE rel-11을 지원하는 단말(이하, rel-11 단말)이 탐색할 수 있다. rel-11 단말은 자신의 e-PDCCH 검출을 위한 블라인드 디코딩(blind decoding)을 수행한다. e-PDCCH를 검출하기 위한 최소한의 영역 정보는 새롭게 정의되는 e-PCFICH 또는 기존의 PDCCH를 통해 전송될 수 있다. 데이터 영역에 할당된 e-PDCCH에 의해서 PDSCH가 스케줄링 될 수 있다. 기지국은 스케줄링 된 PDSCH를 통해서 각 단말로 하향링크 데이터를 전송할 수 있다. 다만, 각 노드에 접속한 단말의 수가 증가하면 e-PDCCH가 데이터 영역 내에서 차지하는 부분이 커지게 된다. 이에 따라 단말이 수행해야 할 블라인드 디코딩의 수도 증가하게 되며, 복잡도가 높아질 수 있는 단점이 존재한다.
한편, 최근에 중계국(RS; relay station)을 포함한 무선 통신 시스템이 개발되고 있다. 중계국은 셀 커버리지를 확장시키고 전송 성능을 향상시키는 역할을 한다. 기지국이 기지국의 커버리지 경계에 위치한 단말을 중계국을 통해 서비스함으로써 셀 커버리지를 확장시키는 효과를 얻을 수 있다. 또한, 중계국이 기지국과 단말 사이에서 신호의 전송 신뢰성을 향상시킴으로써 전송 용량을 증가시킬 수 있다. 단말이 기지국의 커버리지 내에 있다 하더라도 음영 지역에 위치한 경우에 중계국을 이용할 수도 있다. 기지국과 중계기 사이의 상향링크 및 하향링크는 백홀 링크(backhaul link)이고, 기지국과 단말 또는 중계기와 단말 사이의 상향링크 및 하향링크는 액세스링크(access link)이다. 이하, 백홀 링크를 통하여 전송되는 신호를 백홀 신호라 하고, 액세스 링크를 통하여 전송되는 신호를 액세스 신호라 한다.
중계국을 포함하는 무선 통신 시스템에서 중계 영역(relay zone)이 정의될 수 있다. 중계 영역은 기지국이 전송하는 하향링크 서브프레임 내에 중계국을 위한 제어 채널(이하 R-PDCCH) 또는 중계국을 위한 데이터 채널(이하 R-PDSCH)의 전송이 이루어지는 구간을 의미한다. 즉, 하향링크 서브프레임 내에 백홀(backhaul) 전송이 이루어지는 구간이다. 기지국과 중계국 간의 전송은 슬롯 내의 중계 영역으로 제한된다. 기지국과 중계국 간의 전송을 위한 PDSCH는 중계국이 도입되지 않았을 때의 PDSCH와 동일하게 처리되고 자원 요소에 맵핑된다. 다만, 해당 PDSCH는 중계 영역 내의 자원 요소에만 맵핑되며, RB 쌍의 제1 슬롯에 R-PDCCH가 할당되는 경우에 해당 PDSCH는 상기 RB 쌍의 제1 슬롯에는 맵핑되지 않는다.
R-PDCCH는 중계국의 위한 DCI를 나른다. R-PDCCH는 제1 슬롯의 4번째 OFDM 심벌부터 마지막 OFDM 심벌까지, 또한 제2 슬롯의 첫 번째 OFDM 심벌부터 마지막 OFDM 심벌까지 할당될 수 있다. 주파수 영역에서 복수의 VRB가 R-PDCCH가 할당될 수 있는 VRB로 상위 계층에 의해 설정될 수 있다. R-PDCCH는 주어진 PRB 내에서 다른 R-PDCCH들과 크로스 인터리빙(cross-interleaving)되지 않고 하나 이상의 PRB 상으로 전송될 수 있다. 또는, 복수의 R-PDCCH들이 하나 이상의 PRB 내에서 크로스 인터리빙 될 수 있다.
도 11은 RB에 할당되는 R-PDCCH의 일 예를 나타낸다.
도 11을 참조하면, RB 내의 제1 슬롯에는 DL 그랜트만이 할당되고, 제2 슬롯에는 UL 그랜트 또는 PDSCH가 할당될 수 있다. 이때 제어 영역, CRS 및 DMRS가 맵핑된 자원 요소를 제외한 나머지 자원 요소에 R-PDCCH가 할당될 수 있다. R-PDCCH의 복조에는 CRS, DMRS가 모두 사용될 수 있다. R-PDCCH의 복조에 DMRS가 사용되는 경우 안테나 포트 7과 스크램블링 ID(SCID; scrambling ID)=0이 사용될 수 있다. 반면 R-PDCCH의 복조에 CRS가 사용되는 경우 PBCH 전송 안테나가 1개일 경우에만 안테나 포트 0를 사용하고, PBCH 전송 안테나가 2개 또는 4개일 경우에는 전송 다이버시티(Tx diversity) 모드로 전환하여 안테나 포트 0~1 또는 0~3을 모두 사용할 수 있다.
다중 노드 시스템을 위하여 새롭게 정의된 e-PDCCH를 할당함에 있어서, 도 14에서 설명된 기존의 R-PDCCH의 구조를 재사용할 수 있다. 즉, RB 내의 제1 슬롯에는 DL 그랜트만이 할당되고, 제2 슬롯에는 UL 그랜트 또는 PDSCH가 할당될 수 있다. 또한, 제어 영역, CRS 및 DMRS가 맵핑된 자원 요소를 제외한 나머지 자원 요소에 e-PDCCH가 할당될 수 있다. 기존의 구조를 그대로 사용함으로써 기존 표준에 큰 영향을 미치지 않고 e-PDCCH를 할당할 수 있다.
이하, 제안되는 e-PDCCH를 위한 비트 맵핑 방법을 설명하도록 한다.
e-PDCCH가 R-PDCCH가 할당되는 구조를 그대로 사용하는 경우, e-PDCCH가 데이터 영역 중 제1 슬롯에 할당될 수 있다. 이때 e-PDCCH는 제1 슬롯에만 할당되거나 또는 제1 슬롯 및 제2 슬롯에 할당될 수 있다. 제1 슬롯의 처음 몇 개의 OFDM 심벌은 제어 영역으로 사용되므로, e-PDCCH는 제어 영역을 피하여 할당될 필요가 있다. 제어 영역에 사용되는 OFDM 심벌의 개수는 서브프레임마다 변할 수 있고, 이에 대한 정보는 PCFICH를 통해 전송되는 CFI에 의해서 지시될 수 있다.
제어 영역이 차지하는 마지막 OFDM 심벌의 다음 OFDM 심벌부터 e-PDCCH가 할당될 수 있다. 즉, e-PDCCH가 시작되는 OFDM 심벌은 PDSCH가 시작되는 OFDM 심벌과 동일할 수 있다. 그러나 e-PDCCH가 시작되는 OFDM 심벌을 PDSCH가 시작되는 OFDM 심벌과 동일하게 한다면, PCFICH의 디코딩 에러가 발생하는 경우 e-PDCCH에 대해서도 디코딩 에러가 발생하게 된다. 예를 들어, CFI가 2이고 e-PDCCH가 3번째 OFDM 심벌부터 시작되는데 단말이 CFI를 3으로 잘못 디코딩 하게 되면, 단말은 e-PDCCH가 4번째 OFDM 심벌부터 시작된다고 판단하고 e-PDCCH를 잘못 디코딩 할 수 있다. 따라서 e-PDCCH가 시작되는 OFDM 심벌은 CFI와 무관하게 설정되는 것이 바람직하다. 즉, e-PDCCH가 할당되는 OFDM 심벌이 고정될 수 있다. 예를 들어, e-PDCCH는 e-PDCCH가 할당된 슬롯의 마지막 OFDM 심벌부터 OFDM 심벌 인덱스가 낮아지는 방향으로 할당될 수 있다. 또는, e-PDCCH는 고정된 시작 OFDM 심벌부터 OFDM 심벌 인덱스가 높아지는 방향으로 할당될 수 있다.
도 12는 e-PDCCH가 할당되는 서브프레임의 일 예를 나타낸다.
e-PDCCH는 CFI에 관계 없이 k번째 OFDM 심벌부터 할당된다. 도 12는 k번째 OFDM 심벌부터 3개의 e-PDCCH(e-PDCCH 1, e-PDCCH 2, e-PDCCH 3)이 할당되는 모습을 나타낸다. k는 미리 결정될 수도 있고, RRC(radio resource control) 메시지 등을 통하여 지시될 수 있다. CFI의 값이 k보다 작은 경우, 제어 영역과 e-PDCCH가 할당되는 영역 사이의 OFDM 심벌을 통해 아무런 신호도 전송되지 않을 수 있다. 예를 들어 CIF=2, k=4인 경우, 3번째 OFDM 심벌은 빈 OFDM 심벌로 남는다.
위에서 설명한 빈 OFDM 심벌이 강인한(robust) e-PDCCH를 위하여 사용될 수 있다. 단말은 e-PDCCH가 할당된 영역만 읽어도 e-PDCCH를 디코딩 할 수 있으나, 채널 상황이 좋지 않을 경우 빈 OFDM 심벌을 이용하여 디코딩 성능을 높일 수 있다. 즉, 빈 OFDM 심벌은 중복(redundant) 영역으로 사용될 수 있다. e-PDCCH를 통해 전송되는 e-PDCCH 비트의 일부인 중복 비트가 중복 영역에 맵핑될 수 있다. 단말은 e-PDCCH가 할당된 영역뿐만 아니라 중복 영역까지 읽어 코딩율(coding rate)을 낮춤으로써 성능을 높일 수 있다. 예를 들어 레이트 매칭이 수행되는 경우, 레이트 매칭의 출력 시퀀스의 길이인 E를 증가시켜 중복 비트를 추가할 수 있다.
도 13은 e-PDCCH가 할당되는 서브프레임의 또 다른 예를 나타낸다.
도 13-(a)를 참조하면, e-PDCCH의 정보 비트가 제1 영역에 할당된다(301). 제1 영역은 e-PDCCH가 할당되는 영역이라 할 수 있다. e-PDCCH의 정보 비트는 e-PDCCH가 시작하는 k번째 OFDM 심벌부터 OFDM 심벌 인덱스가 높아지는 방향으로 맵핑된다. 또한, e-PDCCH 정보 비트의 일부인 중복 비트가 제2 영역에 할당된다(302). 제2 영역은 제어 영역과 제1 영역 사이의 빈 OFDM 심벌을 나타낸다. 상기 중복 비트는 제어 영역이 끝나는 OFDM 심벌부터 e-PDCCH가 시작하는 k번째 OFDM 심벌에 걸쳐 맵핑된다. 여기서 e-PDCCH의 정보 비트 또는 중복 비트가 맵핑된다는 것은 도 7에서 설명된 PDDCH가 자원 요소에 맵핑되는 과정을 거치는 것을 의미한다. 즉, e-PDCCH의 정보 비트 또는 중복 비트는 QPSK 변조되고, 레이어 맵핑 및 프리코딩을 거쳐 자원 요소에 맵핑될 수 있다. 여기서는 이러한 자세한 과정에 대한 설명은 생략하도록 한다.
도 13-(a)와 같이 중복 비트를 제어 영역의 마지막 OFDM 심벌부터 e-PDCCH 영역의 첫 번째 OFDM 심벌까지 OFDM 심벌 인덱스가 높아지는 방향으로 맵핑하는 경우, 중복 비트가 잘못 디코딩 될 수 있다. 도 13-(b)를 참조하면, e-PDCCH의 정보 비트가 제1 영역에 할당된다(311). 또한, e-PDCCH 정보 비트의 일부인 중복 비트가 제2 영역에 할당된다(312). 상기 중복 비트는 제어 영역이 끝나는 OFDM 심벌부터 e-PDCCH가 시작하는 k번째 OFDM 심벌에 걸쳐 맵핑된다. 이때 단말이 CFI를 잘못 디코딩 할 수 있다. 예를 들어 CFI=1, k=4이고, 제2 영역이 2번째 및 3번째 OFDM 심벌인 경우, 단말이 CFI=2로 잘못 디코딩 할 수 있다. 이때 단말은 2번째 OFDM 심벌에 맵핑된 중복 비트를 읽을 수 없으며, 3번째 OFDM 심벌에 첫 번째 중복 비트가 맵핑된다고 잘못 판단하고 e-PDCCH의 디코딩을 수행할 수 있다. 따라서 중복 비트를 사용하는 이득이 없다.
도 14는 제안된 e-PDCCH를 위한 비트 맵핑 방법에 따라 e-PDCCH가 할당된 서브프레임의 일 예를 나타낸다.
도 14-(a)를 참조하면, e-PDCCH의 정보 비트가 제1 영역에 할당된다(401). 제1 영역은 e-PDCCH가 할당되는 영역이라 할 수 있다. e-PDCCH의 정보 비트는 e-PDCCH가 시작하는 k번째 OFDM 심벌부터 OFDM 심벌 인덱스가 높아지는 방향으로 맵핑된다. 또한, e-PDCCH 정보 비트의 일부인 중복 비트가 제2 영역에 할당된다(402). 제2 영역은 제어 영역과 제1 영역 사이의 빈 OFDM 심벌을 나타낸다. 상기 중복 비트는 e-PDCCH의 첫 번째 OFFM 심벌부터 제어 영역의 마지막 OFDM 심벌까지 OFDM 심벌 인덱스가 낮아지는 방향으로 맵핑된다. 즉, e-PDCCH의 정보 비트의 중복 비트는 (k-1)번째 OFDM 심벌부터 제어 영역의 마지막 OFDM 심벌까지 역순으로 맵핑될 수 있다. 이에 따라 중복 비트가 시작하는 OFDM 심벌이 항상 고정될 수 있다.
도 14-(a)와 같이 중복 비트를 (k-1)번째 OFDM 심벌부터 제어 영역의 마지막 OFDM 심벌까지 OFDM 심벌 인덱스가 낮아지는 방향으로 맵핑하는 경우, 단말이 CFI를 잘못 디코딩 하는 경우에도 중복 비트가 잘못 디코딩 되는 오류는 발생하지 않는다. 도 14-(b)를 참조하면, e-PDCCH의 정보 비트가 제1 영역에 할당된다(411). 또한, e-PDCCH 정보 비트의 일부인 중복 비트가 제2 영역에 할당된다(412). 상기 중복 비트는 e-PDCCH의 첫 번째 OFFM 심벌부터 제어 영역의 마지막 OFDM 심벌까지 OFDM 심벌 인덱스가 낮아지는 방향으로 맵핑된다. 이때 단말이 CFI를 잘못 디코딩 할 수 있다. 예를 들어, CFI=1, k=4이고, 제2 영역이 2번째 및 3번째 OFDM 심벌인 경우, 단말이 CFI=2로 잘못 디코딩 할 수 있다. 이런 경우에도 중복 비트의 개수가 줄어들 뿐, 단말은 3번째 OFDM 심벌에 맵핑된 중복 비트를 첫 번째 중복 비트로 판단하고 이를 e-PDCCH의 디코딩에 사용할 수 있다.
도 15는 제안된 e-PDCCH를 위한 비트 맵핑 방법의 일 실시예를 나타낸다.
단계 S500에서 기지국은 서브프레임 내의 데이터 영역 중 e-PDCCH가 할당되는 제1 영역에 e-PDCCH 비트를 맵핑한다. 단계 S510에서 기지국은 상기 서브프레임 내의 제어 영역과 상기 제1 영역 사이의 적어도 하나의 OFDM 심벌을 포함하는 제2 영역에 상기 e-PDCCH 비트의 중복 비트를 맵핑한다. 단계 S520에서 기지국은 상기 맵핑된 e-PDCCH 비트 및 상기 중복 비트를 단말로 전송한다. 상기 e-PDCCH 비트는 상기 서브프레임 내의 k번째 OFDM 심벌부터 OFDM 심벌 인덱스가 높아지는 방향으로 맵핑되며, 상기 중복 비트는 상기 서브프레임 내의 (k-1)번째 OFDM 심벌부터 OFDM 심벌 인덱스가 낮아지는 방향으로 맵핑된다.
도 16는 제안된 e-PDCCH를 디코딩하는 방법의 일 실시예를 나타낸다.
단계 S600에서 단말은 서브프레임 내의 데이터 영역 중 e-PDCCH가 할당되는 제1 영역 및 상기 서브프레임 내의 제어 영역과 상기 제1 영역 사이의 적어도 하나의 OFDM 심벌을 포함하는 제2 영역을 탐색한다. 단계 S610에서 단말은 상기 제1 영역 및 제2 영역을 통해 수신되는 e-PDCCH 비트 및 중복 비트(redundant bit)를 디코딩한다. 상기 e-PDCCH 비트는 상기 서브프레임 내의 k번째 OFDM 심벌부터 OFDM 심벌 인덱스가 높아지는 방향으로 맵핑되며, 상기 중복 비트는 상기 서브프레임 내의 (k-1)번째 OFDM 심벌부터 OFDM 심벌 인덱스가 낮아지는 방향으로 맵핑된다.
도 17은 본 발명의 실시예가 구현되는 무선 통신 시스템의 블록도이다.
기지국(800)은 프로세서(810; processor), 메모리(820; memory) 및 RF부(830; radio frequency unit)을 포함한다. 프로세서(810)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(810)에 의해 구현될 수 있다. 메모리(820)는 프로세서(810)와 연결되어, 프로세서(810)를 구동하기 위한 다양한 정보를 저장한다. RF부(830)는 프로세서(810)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(900)은 프로세서(910), 메모리(920) 및 RF부(930)을 포함한다. 프로세서(910)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(910)에 의해 구현될 수 있다. 메모리(920)는 프로세서(910)와 연결되어, 프로세서(910)를 구동하기 위한 다양한 정보를 저장한다. RF부(930)는 프로세서(910)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(810, 910)은 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(820, 920)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(830, 930)은 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(820, 920)에 저장되고, 프로세서(810, 910)에 의해 실행될 수 있다. 메모리(820, 920)는 프로세서(810, 910) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(810, 910)와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 실시예들은 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.

Claims (13)

  1. 무선 통신 시스템에서 기지국에 의한 e-PDCCH(enhanced physical downlink control channel)의 비트를 맵핑하는 방법에 있어서,
    서브프레임 내의 데이터 영역 중 e-PDCCH가 할당되는 제1 영역에 e-PDCCH 비트를 맵핑하고,
    상기 서브프레임 내의 제어 영역과 상기 제1 영역 사이의 적어도 하나의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하는 제2 영역에 상기 e-PDCCH 비트의 중복 비트(redundant bit)를 맵핑하고,
    상기 맵핑된 e-PDCCH 비트 및 상기 중복 비트를 단말로 전송하는 것을 포함하되,
    상기 e-PDCCH 비트는 상기 서브프레임 내의 k번째 OFDM 심벌부터 OFDM 심벌 인덱스가 높아지는 방향으로 맵핑되며,
    상기 중복 비트는 상기 서브프레임 내의 (k-1)번째 OFDM 심벌부터 OFDM 심벌 인덱스가 낮아지는 방향으로 맵핑되는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 중복 비트는 상기 e-PDCCH 비트의 일부 또는 전부인 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 제어 영역은 상기 서브프레임의 처음 1개 내지 3개의 OFDM 심벌을 차지하는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서,
    k=4인 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서,
    상기 e-PDCCH 비트를 맵핑하는 것은,
    상기 e-PDCCH 비트에 스크램블링 시퀀스(scrambling sequence)를 추가하고,
    상기 스크램블링 시퀀스가 추가된 e-PDCCH 비트에 QPSK(quadrature phase shift keying) 변조를 수행하여 변조 심벌들을 생성하고,
    상기 생성된 변조 심벌들에 대하여 레이어 맵핑(layer mapping) 및 프리코딩(precoding)을 수행하고,
    상기 변조 심벌들을 자원 요소에 맵핑하는 것을 포함하는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서,
    상기 중복 비트를 맵핑하는 것은,
    상기 중복 비트에 스크램블링 시퀀스를 추가하고,
    상기 스크램블링 시퀀스가 추가된 e-PDCCH 비트에 QPSK 변조를 수행하여 변조 심벌들을 생성하고,
    상기 생성된 변조 심벌들에 대하여 레이어 맵핑 및 프리코딩을 수행하고,
    상기 변조 심벌들을 자원 요소에 맵핑하는 것을 포함하는 것을 특징으로 하는 방법.
  7. 무선 통신 시스템에서 단말에 의한 e-PDCCH(enhanced physical downlink control channel)를 디코딩 하는 방법에 있어서,
    서브프레임 내의 데이터 영역 중 e-PDCCH가 할당되는 제1 영역 및 상기 서브프레임 내의 제어 영역과 상기 제1 영역 사이의 적어도 하나의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하는 제2 영역을 탐색하고,
    상기 제1 영역 및 제2 영역을 통해 수신되는 e-PDCCH 비트 및 중복 비트(redundant bit)를 디코딩하는 것을 포함하되,
    상기 e-PDCCH 비트는 상기 서브프레임 내의 k번째 OFDM 심벌부터 OFDM 심벌 인덱스가 높아지는 방향으로 맵핑되며,
    상기 중복 비트는 상기 서브프레임 내의 (k-1)번째 OFDM 심벌부터 OFDM 심벌 인덱스가 낮아지는 방향으로 맵핑되는 것을 특징으로 하는 방법.
  8. 제 7 항에 있어서,
    상기 중복 비트는 상기 e-PDCCH 비트의 일부 또는 전부인 것을 특징으로 하는 방법.
  9. 제 7 항에 있어서,
    상기 제어 영역은 상기 서브프레임의 처음 1개 내지 3개의 OFDM 심벌을 차지하는 것을 특징으로 하는 방법.
  10. 제 7 항에 있어서,
    k=4인 것을 특징으로 하는 방법.
  11. 무선 통신 시스템에서 e-PDCCH(enhanced physical downlink control channel)의 비트를 맵핑하는 기지국에 있어서,
    무선 신호를 전송 또는 수신하는 RF(radio frequency)부; 및
    상기 RF부와 연결되는 프로세서를 포함하되,
    상기 프로세서는,
    서브프레임 내의 데이터 영역 중 e-PDCCH가 할당되는 제1 영역에 e-PDCCH 비트를 맵핑하고,
    상기 서브프레임 내의 제어 영역과 상기 제1 영역 사이의 적어도 하나의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하는 제2 영역에 상기 e-PDCCH 비트의 중복 비트(redundant bit)를 맵핑하고,
    상기 맵핑된 e-PDCCH 비트 및 상기 중복 비트를 단말로 전송하도록 구성되며,
    상기 e-PDCCH 비트는 상기 서브프레임 내의 k번째 OFDM 심벌부터 OFDM 심벌 인덱스가 높아지는 방향으로 맵핑되며,
    상기 중복 비트는 상기 서브프레임 내의 (k-1)번째 OFDM 심벌부터 OFDM 심벌 인덱스가 낮아지는 방향으로 맵핑되는 것을 특징으로 하는 기지국.
  12. 제 11 항에 있어서,
    상기 중복 비트는 상기 e-PDCCH 비트의 일부 또는 전부인 것을 특징으로 하는 기지국.
  13. 제 11 항에 있어서,
    상기 제어 영역은 상기 서브프레임의 처음 1개 내지 3개의 OFDM 심벌을 차지하는 것을 특징으로 하는 기지국.
PCT/KR2012/005732 2011-07-24 2012-07-18 무선 통신 시스템에서 하향링크 제어 채널을 위한 비트 맵핑 방법 및 장치 WO2013015558A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/234,110 US9407408B2 (en) 2011-07-24 2012-07-18 Method and apparatus for bit mapping for downlink control channel in wireless communication system
KR1020147001672A KR101486705B1 (ko) 2011-07-24 2012-07-18 무선 통신 시스템에서 하향링크 제어 채널을 위한 비트 맵핑 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161511105P 2011-07-24 2011-07-24
US61/511,105 2011-07-24

Publications (2)

Publication Number Publication Date
WO2013015558A2 true WO2013015558A2 (ko) 2013-01-31
WO2013015558A3 WO2013015558A3 (ko) 2013-03-21

Family

ID=47601617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005732 WO2013015558A2 (ko) 2011-07-24 2012-07-18 무선 통신 시스템에서 하향링크 제어 채널을 위한 비트 맵핑 방법 및 장치

Country Status (3)

Country Link
US (1) US9407408B2 (ko)
KR (1) KR101486705B1 (ko)
WO (1) WO2013015558A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827658A1 (en) * 2013-07-16 2015-01-21 Telefonaktiebolaget L M Ericsson (Publ) Flexible downlink subframe structure for energy-efficient transmission
CN110536270A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 数据发送、接收方法、装置、终端、基站及存储介质
CN110785952A (zh) * 2017-06-14 2020-02-11 Idac控股公司 用于极化编码的pdcch传输的两阶段加扰

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104838613B (zh) * 2012-12-03 2018-11-09 索尼公司 到减小的带宽的终端的控制信息的传输
EP3000199B1 (en) * 2013-05-21 2019-09-25 Telefonaktiebolaget LM Ericsson (publ) Transmission and reception methods and associated communication devices for use in ofdm-based communication network
CN114727401A (zh) * 2015-08-11 2022-07-08 三菱电机株式会社 通信系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090064299A (ko) * 2007-12-14 2009-06-18 엘지전자 주식회사 제어 채널 매핑 방법
WO2010076300A1 (en) * 2008-12-30 2010-07-08 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for robust transmission of control information in a wireless communication network
WO2010079890A2 (ko) * 2009-01-08 2010-07-15 엘지전자주식회사 무선통신 시스템에서 제어신호 전송방법
WO2010087685A2 (ko) * 2009-02-02 2010-08-05 삼성 전자 주식회사 무선 통신 시스템에서 제어 채널 송수신 방법 및 장치
WO2011085189A1 (en) * 2010-01-11 2011-07-14 Research In Motion Limited Control channel interference management and extended pdcch for heterogeneous network

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115020A1 (en) * 2007-03-21 2008-09-25 Samsung Electronics Co., Ltd. Method for mapping physical downlink control channel to resources and apparatus for transmitting/receiving the mapped physical downlink control channel in a wireless communication system
US9295043B2 (en) 2009-09-28 2016-03-22 Samsung Electronics Co., Ltd Extending physical downlink control channels
KR101684867B1 (ko) * 2010-04-07 2016-12-09 삼성전자주식회사 공간 다중화 이득을 이용한 제어 정보 송수신 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090064299A (ko) * 2007-12-14 2009-06-18 엘지전자 주식회사 제어 채널 매핑 방법
WO2010076300A1 (en) * 2008-12-30 2010-07-08 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for robust transmission of control information in a wireless communication network
WO2010079890A2 (ko) * 2009-01-08 2010-07-15 엘지전자주식회사 무선통신 시스템에서 제어신호 전송방법
WO2010087685A2 (ko) * 2009-02-02 2010-08-05 삼성 전자 주식회사 무선 통신 시스템에서 제어 채널 송수신 방법 및 장치
WO2011085189A1 (en) * 2010-01-11 2011-07-14 Research In Motion Limited Control channel interference management and extended pdcch for heterogeneous network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: 'Discussions on DL Control Signaling Enhancement' 3GPP TSG RAN WG1 MEETING #65 13 May 2011, BARCELONA, SPAIN, *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827658A1 (en) * 2013-07-16 2015-01-21 Telefonaktiebolaget L M Ericsson (Publ) Flexible downlink subframe structure for energy-efficient transmission
CN110785952A (zh) * 2017-06-14 2020-02-11 Idac控股公司 用于极化编码的pdcch传输的两阶段加扰
CN110536270A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 数据发送、接收方法、装置、终端、基站及存储介质
CN110536270B (zh) * 2018-09-28 2023-09-01 中兴通讯股份有限公司 数据发送、接收方法、装置、终端、基站及存储介质

Also Published As

Publication number Publication date
KR20140040247A (ko) 2014-04-02
KR101486705B1 (ko) 2015-01-26
US20140161087A1 (en) 2014-06-12
US9407408B2 (en) 2016-08-02
WO2013015558A3 (ko) 2013-03-21

Similar Documents

Publication Publication Date Title
US9853789B2 (en) Method and apparatus for allocating control channel in wireless communication system
KR101514175B1 (ko) 무선 통신 시스템에서 하향링크 제어 채널 할당 방법 및 장치
KR101605280B1 (ko) 무선 통신 시스템에서 채널 품질 지시자를 측정하는 방법 및 장치
KR101547052B1 (ko) 무선 통신 시스템에서 하향링크 제어 채널 할당 방법 및 장치
KR101577518B1 (ko) 무선 통신 시스템에서 참조 신호 포트를 할당하는 방법 및 장치
KR101603457B1 (ko) 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치
KR101525723B1 (ko) 무선 통신 시스템에서 하향링크 제어 채널 할당 방법 및 장치
KR101554804B1 (ko) 무선 통신 시스템에서 하향링크 제어 채널 할당 방법 및 장치
KR101525722B1 (ko) 무선 통신 시스템에서 하향링크 제어 채널 할당 방법 및 장치
KR101486705B1 (ko) 무선 통신 시스템에서 하향링크 제어 채널을 위한 비트 맵핑 방법 및 장치
KR101487122B1 (ko) 무선 통신 시스템에서 상향링크 제어 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817972

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20147001672

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14234110

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817972

Country of ref document: EP

Kind code of ref document: A2