WO2013015252A1 - Information transmission terminal - Google Patents

Information transmission terminal Download PDF

Info

Publication number
WO2013015252A1
WO2013015252A1 PCT/JP2012/068614 JP2012068614W WO2013015252A1 WO 2013015252 A1 WO2013015252 A1 WO 2013015252A1 JP 2012068614 W JP2012068614 W JP 2012068614W WO 2013015252 A1 WO2013015252 A1 WO 2013015252A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
information
key
information transmission
transmission terminal
Prior art date
Application number
PCT/JP2012/068614
Other languages
French (fr)
Japanese (ja)
Inventor
修 山森
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Publication of WO2013015252A1 publication Critical patent/WO2013015252A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords

Definitions

  • the present invention relates to encrypted communication by an information transmission terminal.
  • Passwords and passphrases may be used as keys to protect information. From the viewpoint of security, a complicated character string or the like is suitable for this key, but if the key is too complicated, the user may not be able to remember it. On the other hand, if a key that is easy for the user to remember is adopted as the key, the key may be guessed by an unauthorized user.
  • US Pat. No. 6,057,017 uses one or several digital signatures derived from at least one structural property of a material element that is complex, disordered, unique and has a stable structure. And a method for reading such protected data, as well as a medium for such protected data.
  • Patent Document 2 discloses that a physical object having a random feature is authenticated using a memory tag.
  • Patent Document 3 discloses the use of inorganic particles held in place in a coating composition or printing ink as a labeling means so that the chemical element ratio can be analyzed.
  • the material elements have to be complicated, disordered, unique, and have a stable structure.
  • the technology described in Patent Document 1 uses a unique structure of a material element, it is difficult to use it for encryption communication using a common key for both transmission and reception without using a substitute or duplicate of the material element. there were.
  • the technique disclosed in Patent Document 2 checks whether or not the basic medium is the original by checking whether or not the measurement result of the specific position of the basic medium matches the measurement result stored in advance. It was difficult to apply to encrypted communication.
  • the technique disclosed in Patent Document 3 uses inorganic particles as a labeling means, and can be applied to prevent forgery or unauthorized transactions, but encrypts a message and uses it for communication. It was difficult to use for encryption communication.
  • the object of the present invention is to make it difficult to predict a key used for encrypted communication.
  • an information transmission terminal is an acquisition unit that acquires information about one or more components included in a sample, and a generation unit that generates a key based on the information acquired by the acquisition unit.
  • An encryption unit that encrypts data using the key generated by the generation unit to generate encrypted data, and a transmission unit that transmits the encrypted data generated by the encryption unit to another information transmission terminal; It comprises.
  • an information transmission terminal is a reception unit that receives encrypted data from another information transmission terminal, an acquisition unit that acquires information about one or more components included in a sample, and the acquisition unit A generating unit that generates a key based on each piece of information acquired by the above, and a decrypting unit that decrypts the encrypted data received by the receiving unit using the key generated by the generating unit.
  • a specifying unit that specifies a method of generating a key based on information indicating the amount or physical property of a component is provided, and the generating unit generates the key according to a method specified by the specifying unit.
  • the method further includes a specifying unit that specifies a method for acquiring information about one or more components contained in the sample, and the acquiring unit acquires the information according to the method specified by the specifying unit. Good.
  • a specifying unit that specifies an encryption method is provided, and the encryption unit encrypts the data according to a method specified by the specifying unit.
  • a specifying unit that specifies a decryption method is provided, and the decryption unit decrypts the encrypted data according to a method specified by the specifying unit.
  • an operation unit that receives an operation for a user to select one option for each of a plurality of items to which a plurality of options are respectively assigned is provided, and the specifying unit is configured to perform an operation received by the operation unit.
  • the method may be specified according to the combination of options shown.
  • a time information acquisition unit that acquires time information indicating time
  • the specifying unit may specify the method according to a period including the time indicated by the time information.
  • an information transmission method of the present invention acquires information on one or more components contained in a sample from a measurement unit connected to a transmission device, and generates a key based on the acquired information.
  • the data is encrypted using the generated key to generate encrypted data, and the generated encrypted data is transmitted.
  • the information transmission method of the present invention receives encrypted data from a transmission device, acquires information about one or more components contained in a sample from a measurement unit connected to the reception device, and the acquired information A key is generated based on the information, and the received encrypted data is decrypted using the generated key.
  • the information transmission method of the present invention acquires information indicating at least one of the amounts or physical properties of a plurality of components contained in a sample in each of a transmission device and a reception device, and the acquired information
  • An encryption key and a decryption key are respectively generated on the basis of the transmission of data encrypted using the encryption key in the communication between the transmission device and the reception device, and the encrypted Data is decrypted using the decryption key.
  • FIG. 1 is a diagram illustrating an overview of a communication system 9 according to an embodiment.
  • the communication system 9 includes a plurality of information transmission terminals 1 and a communication network 2 that connects them to each other.
  • the information transmission terminal 1 is a terminal that performs communication via the communication network 2, and is a mobile telephone that transmits and receives electronic mail in this embodiment.
  • the communication network 2 is a communication network that connects the information transmission terminals 1 to each other, and is a mobile communication network in the present embodiment.
  • the number of information transmission terminals 1 is not limited to two and may be three or more.
  • FIG. 2 is a diagram illustrating a configuration of the information transmission terminal 1.
  • the control unit 11 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the CPU stores a boot loader stored in the ROM and a program stored in the storage unit 12 in the RAM.
  • Each part of the information transmission terminal 1 is controlled by reading out and executing.
  • the storage unit 12 is a storage unit such as a solid state drive or an EEPROM (Electrically Erasable and Programmable Read Only Memory), and stores programs and various data read into the control unit 11.
  • the communication unit 13 is a circuit that communicates with the communication network 2.
  • the operation unit 14 includes operation elements such as buttons and sensors for inputting various instructions, receives an operation by the user, and supplies a signal corresponding to the operation content to the control unit 11.
  • the display unit 15 is a display device using liquid crystal, and displays an image according to a signal supplied from the control unit 11.
  • the measuring unit 16 is a mobile measuring device that receives a sample and measures the chemical composition of the sample.
  • the measuring unit 16 is specifically an organic acid measuring device using high performance liquid chromatography.
  • a user of the information transmission terminal 1 adjusts a solution by dissolving a sample such as food or beverage in a determined solvent at a determined ratio, and encloses the solution in an ampoule Am such as a glass container.
  • the measuring unit 16 includes a column filled with a porous solid and the like, and a socket Sc connected to the column. When the ampoule Am is inserted into the socket Sc by the user, the column of the measuring unit 16 receives the solution enclosed in the ampoule Am.
  • the measurement unit 16 acquires component values indicating the amounts of a plurality of components contained in the received sample, and supplies signals corresponding to these component values to the control unit 11.
  • the “component value” as used herein may be, for example, the presence ratio of each substance (for example, expressed by weight concentration or molar concentration) in the case where the sample is a mixture of a plurality of types of substances. May be the elemental composition ratio, or may be the ratio of one component to the whole. In short, any physical quantity such as mass or specific gravity obtained as a result of analyzing a sample by some method from the viewpoint of components may be used.
  • liquid chromatography method information on a plurality of components can be obtained at once by liquefying a sample and measuring the amount of infrared absorption. Moreover, it may replace with a liquid chromatography method and may use the gas chromatography method which measures with respect to the gasified sample.
  • the measurement method of the measurement unit 16 is not limited to an analysis method based on the premise of separation of substances such as a chromatography method, and any analysis method can be applied. Further, it is not necessary to supply all of the measured information to the control unit 11, and only a part of the information may be supplied. For example, when information about a plurality of components in a sample (component ratio or the like) is measured, only information about some components may be supplied.
  • the component includes a component of a substance recognized as a foreign object. Further, when a plurality of pieces of information (for example, pH (hydrogen ion concentration) and salinity (sodium) concentration) are measured for one component, only one piece of information may be supplied.
  • measuring devices include pH meters, salinity analyzers, sugar content analyzers, conductivity meters, resistivity meters, TOC meters, fluorescence spectrometers, Raman spectrometers, various small analyzers, and FT-IR. Any of these may be used in the present invention, but these are merely examples and are not intended to be limiting.
  • the sound collection unit 17 includes a microphone that generates an audio signal corresponding to the surrounding audio, converts the generated audio signal into a digital signal, and supplies the digital signal to the control unit 11.
  • the sound emitting unit 18 includes a speaker that generates sound. Under the control of the control unit 11, the sound emitting unit 18 converts the instructed sound signal into an analog signal and generates sound corresponding to the signal from the speaker.
  • FIG. 3 is a diagram showing a functional configuration related to encryption of the information transmission terminal 1.
  • the control unit 11 of the information transmission terminal 1 functions as the generation unit 111, the encryption unit 112, and the acquisition unit 115 illustrated in FIG.
  • the acquisition unit 115 acquires a signal (information) corresponding to each component value of the sample to be used from the measurement unit 16.
  • the generation unit 111 generates a key based on each of these signals, that is, the amount of each component acquired by the acquisition unit 115.
  • This key is an electronic key represented by digital data.
  • the encryption unit 112 encrypts the message.
  • the message is data to be transmitted, for example, data representing a document, audio, video, etc. to be transmitted to a person.
  • the message is e-mail data edited and stored in the storage unit 12 for transmission.
  • the encryption unit 112 reads the message from the storage unit 12 and encrypts the message using the key generated by the generation unit 111 according to the determined common key encryption method to generate encrypted data.
  • the communication unit 13 transmits the encrypted data generated by the encryption unit 112 to another information transmission terminal 1 as an electronic mail.
  • FIG. 4 is a diagram showing a functional configuration related to decoding of the information transmission terminal 1.
  • the control unit 11 of the information transmission terminal 1 functions as the generation unit 111 and the decryption unit 113 illustrated in FIG. 4 when receiving the encrypted electronic mail.
  • the communication unit 13 at the time of receiving the e-mail receives the encrypted data as an e-mail from the information transmission terminal 1 on the transmission side.
  • the generation unit 111 generates a key based on a signal corresponding to each component value acquired from the measurement unit 16 in the same manner as when sending an e-mail.
  • the decryption unit 113 decrypts the encrypted data into a message.
  • the decryption unit 113 decrypts the encrypted data received by the communication unit 13 by using the key generated by the generation unit 111 according to the determined common key encryption method, and generates a message.
  • the generated message is stored in the storage unit 12.
  • FIG. 5 is a flowchart showing a flow of operations in which the generation unit 111 generates a key.
  • the generation unit 111 acquires a signal corresponding to each component value from the measurement unit 16 (step S101)
  • the generation unit 111 performs quantization to generate a quantization value that is a digital signal used as a key element based on the acquired signal. Perform (step S102).
  • FIG. 6 is a chromatogram of the sample measured by the measuring unit 16.
  • the horizontal axis in FIG. 6 indicates the time from when the sample is put into the column until it passes through the column, and the vertical axis indicates the amount of the component that has passed through the column at that time. Since each component contained in the sample has a different speed of passing through the column, there is a difference in the time to pass through the column.
  • An electrical conductivity measuring device is provided after the column. The electric conductivity of the solution that has passed through the column is measured by this electric conductivity measuring device. Since this electrical conductivity has a correlation with the amount of the component contained in the solution, the amount of each component contained in the sample is obtained as a peak value in the chromatogram representing the temporal change of the electrical conductivity.
  • FIG. 7 is a diagram showing the peak value and the quantized value of each component measured by the measurement unit 16.
  • the peak of the component with the component number “2” appears at the position “8.6 minutes” shown in FIG. Based on the electrical conductivity measured at this peak, a numerical value “9.5” in decimal notation is obtained as a component value corresponding to the amount of the component with the component number “2”.
  • the generation unit 111 performs quantization called “truncation” on the signal.
  • the generation unit 111 generates a quantized value indicating the numerical value “9.0” in decimal notation and “1001” in binary notation by truncating the above decimal point.
  • quantized values that are used as key elements are generated for each of the component numbers “1” to “9” included in the sample.
  • the quantization here includes generating a digital signal from a digital signal in addition to generating a digital signal from an analog signal.
  • the generation unit 111 arranges the quantized values generated by the quantization in accordance with the determined rule (step S103) and converts it into a key (step S104).
  • FIG. 8 is a diagram illustrating a state in which the quantized values of the components are arranged. Each quantized value shown in FIG. 7 is arranged in the order of the component number from the left end representing the most significant digit, and becomes a numerical value “11000100110011110111101001100” in binary notation. Then, the rightmost 4 digits on the least significant side (right end) of the arranged binary numbers are “right-justified”, and the whole is converted into one number. . In the example shown in FIG. 8, this numerical value is “1899EF4C” in hexadecimal notation. This numerical value is used as a key when the information transmission terminal 1 transmits and receives an electronic mail. This key is an example, and the number of digits of the key may be more or less than this.
  • the information transmission terminal 1 on the transmission side transmits encrypted data obtained by encrypting an electronic mail as a message.
  • the information transmission terminal 1 on the reception side generates the same key as the key used in the information transmission terminal 1 on the transmission side by measuring the same type of sample as that measured on the information transmission terminal 1 on the transmission side.
  • the information transmission terminal 1 on the receiving side decrypts the received encrypted data using this key and generates a message.
  • a common chemical substance is used as a sample between the user of the information transmission terminal 1 on the transmission side and the user of the information transmission terminal 1 on the reception side. Can be used for encrypted communication.
  • the measurement unit 16 has the socket Sc into which the ampoule Am in which the sample is sealed is inserted, but the measurement unit 16 may incorporate the sample itself in advance. In this case, the built-in sample may be kept secret from the user.
  • the measurement unit 16 may acquire the component values of a plurality of components constituting the built-in sample, and supply signals corresponding to these component values to the control unit 11.
  • the key generated by the generation unit 111 based on a signal corresponding to each component value may be used as identification information for identifying the information transmission terminal 1 in addition to being used for encryption and decryption.
  • the information transmission terminal 1 performs cryptographic communication by using the samples shown in advance on the transmitting side and the receiving side, respectively.
  • Cryptographic communication determined by a combination with a method for generating a key from a sample may be performed.
  • FIG. 9 is a diagram showing a functional configuration related to encryption of the information transmission terminal 1 in this modification.
  • FIG. 10 is a figure which shows the functional structure which concerns on the decoding of the information transmission terminal 1 in this modification.
  • FIG. 11 is a diagram illustrating combinations of components to be measured.
  • set A, set B, and set C are names for identifying each pair of components to be measured from each other, and the columns shown in FIG. 6 are associated with the component numbers for each pair.
  • the transit time (unit: minute) is described.
  • the component number “1” is assigned to the component whose column passage time is “8.1 minutes”.
  • “-” indicating that the passage time is not specified is described in the component number that is not used.
  • the control unit 11 causes the display unit 15 shown in FIG. 2 to display the set A, the set B, the set C,.
  • the user operates the operation unit 14 to perform an operation of selecting one of set A, set B, set C,.
  • the specifying unit 114 specifies a set of components to be measured based on the options indicated by the user operation received by the operation unit 14.
  • the generation unit 111 generates a key by a method in which the above-described identified component set is a measurement target.
  • FIG. 12 is a diagram showing the types of quantization methods.
  • the quantization methods “ ⁇ ”, “ ⁇ ”, and “ ⁇ ” are associated with “rounded down”, “rounded up”, and “rounded off after double”, respectively.
  • the control unit 11 causes the display unit 15 to display the quantization method ⁇ , the quantization method ⁇ , the quantization method ⁇ .
  • the user operates the operation unit 14 to perform an operation of selecting one of the quantization method ⁇ , the quantization method ⁇ , the quantization method ⁇ , and so on.
  • the specifying unit 114 specifies the type of the quantization method based on the options indicated by the user operation received by the operation unit 14.
  • the generation unit 111 generates a key by a method using the specified type of quantization method.
  • the specifying unit 114 notifies the generation unit 111 that “rounded up” is selected as the quantization method.
  • the generation unit 111 performs quantization “rounded up” on the numerical value. Specifically, the generation unit 111 rounds up the decimal point of the peak value and generates a quantized value “10.0” in decimal notation and “1010” in binary notation.
  • the specifying unit 114 informs the generation unit 111 that “double rounding after rounding” is selected as the quantization method.
  • the generation unit 111 when the generation unit 111 obtains a peak value of “9.6” in decimal notation, the generation unit 111 doubles the peak value to “19.2” in decimal notation, and rounds off after the decimal point. As a result, the generation unit 111 generates a quantization value “19.0” in decimal notation and “10011” in binary notation.
  • FIG. 13 is a diagram showing the types of arrangement methods.
  • the control unit 11 causes the display unit 15 to display the arrangement method I, the arrangement method II, the arrangement method III.
  • the user operates the operation unit 14 to perform an operation of selecting any one of the array method I, the array method II, the array method III.
  • the specifying unit 114 specifies the type of arrangement method based on the options indicated by the user operation received by the operation unit 14.
  • the generation unit 111 generates a key by the above specified arrangement method.
  • the arrangement method I is “left-justified”, which is a method in which the quantized values of each component are packed from the left end, which is the most significant digit, and converted in order from the left end.
  • the generation unit 111 arranges the quantized values expressed in binary numbers, and converts the four digits from the left end to one hexadecimal number. If the numerical value remaining at the right end is less than 4 digits, the generation unit 111 fills the right side of the remaining numerical value with “0” in binary notation to make it 4 digits, and converts this to a 1-digit hexadecimal number. To do. According to this, the numerical value in binary notation shown in FIG. 8 is converted to “C4CF7A60” in hexadecimal notation after three digits of “0” in binary notation are padded on the right end.
  • Arrangement method II is “right-justified”, and as described above, conversion is performed with the least significant 4 digits of the numerical value in binary notation as one's place.
  • Arrangement method III is “padding”, which is a method of securing a predetermined number of digits in the quantized value of each component and padding bits that do not represent the quantized value with 0 as a pad.
  • the array method III is selected, for example, when the generation unit 111 reserves 5 digits in binary notation for all quantized values, “11000 ⁇ 1001 ⁇ 100 ⁇ 111 ⁇ 101 ⁇ 11” in binary notation.
  • the numerical value of “11000, 01001, 10100, 00111, 00101, 00001, 010000, 01001, 10000” is obtained.
  • the middle point “ ⁇ ” is a symbol for indicating the separation of each component.
  • the sender and receiver of the e-mail show a “pair” of the sample and a method for generating a key from the sample, and thereby the e-mail is encrypted and decrypted by the information transmission terminal 1 for encrypted communication.
  • a plurality of options are assigned to a plurality of items such as a combination of components to be measured, a quantization method, and an array method, and the user selects one option for each item. It was. That is, the method for generating the key may be specified by a combination of options selected by the user.
  • the information transmission terminal 1 displays options for each item indicating each process and allows the user to select. And the information transmission terminal 1 should just specify this "method to generate a key" with the combination of each selected option.
  • Two or more of the plurality of measurement methods exemplified above may be used. In this case, any combination of results (component values or physical property values) obtained by the respective measurement methods may be used for key generation.
  • a plurality of component values or physical property values can be obtained by one measurement method, they may be used in any combination.
  • information to be combined with the sample includes the combination of components to be measured, the quantization method, and the method of generating a key called the method of arrangement.
  • the constituent elements are listed, they may be combined with information related to other processes.
  • the information which shows the measuring method among the methods of acquiring the quantity of a component may be sufficient.
  • FIG. 14 is a diagram showing the types of measurement methods. In FIG. 14, the measuring method “a” is “gas chromatography”, the measuring method “a” is “liquid chromatography”, and the measuring method “c” is “infrared spectroscopy”.
  • the information transmission terminal 1 is provided with a plurality of measurement units 16 having different measurement methods, and when any of the measurement methods shown in FIG. 14 is selected by the user via the operation unit 14, the specifying unit 114 is 9 and 10, the selected measurement method is transmitted to the acquisition unit 115 as indicated by a broken line.
  • the acquisition unit 115 determines the measurement unit 16 to be used from among the plurality of measurement units 16 according to this measurement method. As a result, even if the same sample is used, different keys are generated due to different measurement methods.
  • said measurement method may be specified by the combination of the choice selected about several items.
  • Combination of Sample and Encryption / Decryption Method Information indicating an encryption or decryption method may be used as information combined with the sample.
  • the encryption or decryption method is an algorithm used for them, for example, DES (Data Encryption Standard), AES (Advanced Encryption Standard), or the like.
  • the generation unit 111 may perform encryption and decryption according to the selected algorithm by allowing the user to select these algorithm types. In this case, the identification unit 114 only has to notify the encryption unit 112 and the decryption unit 113 that the selected algorithm is to be used, as indicated by a broken line in FIGS. 9 and 10.
  • the above encryption or decryption method may be specified as a combination of options selected for a plurality of items.
  • FIG. 15 is a diagram showing an overall configuration of a communication system 9a according to this modification.
  • the communication system 9a is different from the communication system 9 according to the above-described embodiment in that the information transmission terminal 1a is configured to connect to the measuring device 3.
  • FIG. 16 is a diagram showing a configuration of the information transmission terminal 1a.
  • the information transmission terminal 1a is different from the information transmission terminal 1 according to the embodiment in that the information transmission terminal 1a includes an interface 16a connected to the external measurement device 3 instead of the measurement unit 16.
  • the control part 11 should just acquire the quantity of the some component contained in a sample from the measuring apparatus 3 via the interface 16a, respectively.
  • the information transmission terminal 1a does not need to have a built-in configuration for measurement, so that the weight can be reduced and the mobile phone or the like is suitable. be able to.
  • the measuring device 3 may be fixed.
  • Each program executed by the control unit 11 of the information transmission terminal 1 (1a) is a computer apparatus such as a magnetic recording medium such as a magnetic tape or a magnetic disk, an optical recording medium such as an optical disk, a magneto-optical recording medium, or a semiconductor memory. Can be provided in a state stored in a readable recording medium. It is also possible to download this program via a network such as the Internet. Note that various devices other than the CPU may be applied as the control means exemplified by the control unit 11. For example, a dedicated processor or the like is used.
  • the “message” to be encrypted is data such as e-mail, but it may be audio data indicating call voice, video data indicating streaming video, or the like.
  • the object to be encrypted may not be information that can be understood by humans.
  • it may be data encrypted by another encryption process.
  • the information transmission terminal 1 may further encrypt the encrypted data and transmit it to another information transmission terminal 1.
  • the message only needs to be data to be transmitted.
  • the item measured by the measurement unit 16 is a component value indicating the amount of each component of the sample.
  • the physical characteristics (physical properties of the sample) ) May be measured. Physical properties are macroscopic mechanical, thermal, electrical, magnetic, and optical properties that are inherent to the material. For example, light transmittance, refractive index, reflectance, magnetic permeability, and thermal conductivity. It is evaluated by electrical conductivity.
  • the generation unit 111 may generate a key based on at least one of these physical property parameters and the determined value of at least one component.
  • an information transmission terminal of the present invention includes an acquisition unit that acquires information about one or more components included in a sample, and a generation unit that generates a key based on the information acquired by the acquisition unit.
  • the information about one or more components contained in the sample represents the ratio of the predetermined one or more components to the whole (component ratio such as weight ratio or volume ratio) or physical characteristics of each of the one or more components.
  • the information transmission method of the present invention includes (a) information indicating the amount of at least one component contained in samples prepared in each of the transmission device and the reception device, and (b) physical properties of the sample. Communication between the transmitting device and the receiving device is performed by acquiring at least one of the at least one information to be expressed, generating an encryption key and a decryption key based on the acquired information , Transmission of data encrypted with the encryption key and decryption of the encrypted data using the decryption key are executed.
  • the measurement unit 16 measures each component value, but instead of the measurement unit 16, a detection unit (or detection device) that detects the presence or absence of the component may be used. This detection part should just detect each component qualitatively, and does not need to quantify the quantity of each component. Alternatively, each component value may be measured, and the measured value may be compared with a predetermined threshold value to detect the presence or absence of each component. For example, the generation unit 111 assigns a numerical value “1” to the detected component and assigns a numerical value “0” to the component that has not been detected, and arranges these numerical values in a predetermined order. Since the numerical values arranged in this way are binary numbers, the generation unit 111 may generate a key based on the binary numbers.
  • the key generation method, the measurement method, and the encryption or decryption method are predetermined. In the above-described modification, these methods are determined according to the user's operation. However, these methods are not limited to user operations. For example, these methods may be determined according to time. Examples included in this embodiment are shown below.
  • the storage unit 12 of the information transmission terminal 1 stores a plurality of types for the above-described method in advance, and a schedule that is set so as to change every day.
  • the control unit 11 of the information transmission terminal 1 on the transmission side acquires time information indicating the current time with reference to a built-in timer.
  • the control part 11 specifies the measurement method matched with today's date including the time which this time information shows with reference to said schedule, According to this measurement method, the some component contained in a sample is specified. Get the quantity.
  • the control unit 11 refers to the above schedule, specifies a key generation method associated with today's date, and generates a key from the amount of the acquired component according to the generation method.
  • control unit 11 refers to the above schedule, identifies the encryption method associated with today's date, encrypts the message according to this encryption method, and converts the encrypted data into the obtained encrypted data. Add today's date and send.
  • the information transmission terminal 1 on the receiving side specifies the measurement method, the key generation method, and the decryption method corresponding to the encryption date from the schedule stored in the storage unit 12, and measures the sample according to these. Then, a key is generated and the encrypted data is decrypted.
  • the measurement method, the key generation method, and the encryption / decryption method change every day, but the rules of this change are known only to the respective users on the transmission side and the reception side. Therefore, the sample for use in encryption is not known in advance, and it becomes more difficult for an unauthorized user who does not know the rules of change to decrypt the encrypted data.
  • the period associated with the method is not limited to one day, and may be another period (such as one week). Each method may be associated with a period of a different length.
  • the period only needs to be determined. For example, when two methods are used while being switched periodically, the first method may be adopted when the date is an odd day, and the second method may be adopted when the date is an even day.
  • Calculation Calculations using numerical values indicating time may be performed on various measurement values used for key generation, such as component values and physical property values obtained by the measurement unit 16.
  • the key may be generated based on the obtained numerical value by multiplying the measurement result by the measurement unit 16 by a numerical value indicating the time when the measurement was performed.
  • a numerical value representing this time may be added to the encrypted data encrypted using the generated key and transmitted. Since the operation (in this case, multiplication) when generating the key is kept secret, it is difficult for an unauthorized user to decrypt the encryption using the numerical value added to the encrypted data. Note that this calculation may be a combination of a plurality of functions.
  • the information transmission terminal 1 is a mobile phone that communicates with another information transmission terminal 1 via the communication network 2, but is a mobile phone, a PDA (Personal Digital Assistant), portable music. It may be a playback device, portable video playback device, game machine, electronic book browsing device, navigation device, personal computer, or the like.
  • FIG. 17 shows a communication system 100 according to an embodiment of the present invention.
  • the communication system 100 includes a terminal 100A and a terminal 100B.
  • the terminal 100A and the terminal 100B perform data transmission / reception via the Internet 400.
  • the terminal 100A (100B) has a function as a general personal computer.
  • Each terminal 100 is connected to a measuring apparatus 200 (200A, 200B) via a bus such as a USB.
  • Each measuring device 200 analyzes the sample when the container 300 (300A, 300B) containing the sample is set in accordance with the command output from each terminal 100, and the analysis result is sent to each terminal 100. Output.
  • the user of the terminal 100A and the user of 100B may contact the user in advance for the type of sample used for encryption / decryption, or when transmitting encrypted data, Information specifying the type of sample may be transmitted to the other party in an unencrypted state.
  • FIG. 18 shows a functional configuration of the terminal 100.
  • the terminal 100 includes a control unit 110, a storage unit 130, an input unit 150, and a communication unit 160.
  • the storage unit 130 stores algorithm generation information in addition to data to be transmitted and received data.
  • the algorithm generation information is information defining how to generate an encryption key from the analysis result of the sample. For example, if the analysis result includes multiple parameters such as the types of multiple compounds and the amount of each component (component ratio), how to use these parameters and how to generate the encryption key Information to be defined. Alternatively, for example, it is defined to “use the three weight values from the highest component ratio to the third and multiply these three values”. Alternatively, when the analysis result includes only one value (for example, pH concentration or salinity concentration), it may be information defining how to process the value to generate a key.
  • the algorithm generation information is determined in advance between the sender and the receiver before performing encrypted communication. Moreover, the type of sample to be used may be included in the algorithm generation information. Note that the algorithm generation information may include information that the value of the analysis result is used as it is without being processed.
  • each terminal 100 at least the type of the sample needs to be specified so that the key generated when encrypting the transmission data and decrypting the reception data is uniquely determined for the other party performing the encrypted communication, and in addition, the analysis is performed. You may identify the method of using a key from a result.
  • the control unit 100 is realized by a processor such as a CPU, and includes a key generation unit 111, an acquisition unit 112, an encryption / decryption processing unit 113, and an algorithm 120.
  • the acquisition unit 112 outputs an analysis execution instruction to the analysis device 200, acquires an analysis result from the analysis device 200, and outputs the analysis result to the key generation unit 111.
  • the key generation unit 111 generates a key necessary for encryption and decryption based on the analysis result and the algorithm generation information acquired from the acquisition unit 112 and based on the algorithm generation information, and sends the key to the encryption / decryption processing unit 113. Output.
  • the key is, for example, an enumeration of numbers with predetermined digits.
  • the encryption / decryption processing unit 113 encrypts transmission data using the key supplied from the key generation unit 111 according to a predetermined algorithm (AES or the like) and outputs the encrypted transmission data to the communication unit 160. Further, the received data provided from the communication unit 160 is decrypted using the key supplied from the key generation unit 111 according to a predetermined algorithm (AES or the like), and is output to the display unit 140 and the storage unit 130.
  • the algorithm specifying unit 120 reads the algorithm generation information from the storage unit 130 and outputs the algorithm generation information to the key generation unit 111.
  • the display unit 140 is a display device such as a liquid crystal display.
  • the communication unit 160 is realized as a communication processor, transmits data output from the control unit 110, and outputs received data to the control unit 100.
  • the input unit 150 is an input device that is operated by a user such as a keyboard and a mouse, and inputs commands to the control unit 100 and stores data in the storage unit.
  • FIG. 19 is a diagram illustrating an example of an operation when data is transmitted.
  • the measuring devices 200A and 200B are pH meters, and in the terminal 100A, as an algorithm generation method, the beverage Y is associated with the terminal 100B as an algorithm generation method, and the “measured value and measured date / time information is an algorithm. It is assumed that information (this is referred to as information X) “calculate according to A” is stored. In terminal 100B, information X is stored in association with terminal 100A. Now, a case where data is transmitted from terminal 100A to terminal 100B will be described.
  • the user of the terminal 100A designates data to be transmitted with the communication partner (terminal 100B) (S100). Subsequently, a key generation algorithm (information X) corresponding to the terminal 100B is determined (S102).
  • a key generation algorithm stored in the storage unit 130 in association with the communication partner may be read.
  • the user sets the sample (here, beverage Y) in the analyzer 200 and performs a predetermined operation, the sample is analyzed (S104).
  • a key is generated based on the pH value and information X, which is the analysis result (S106).
  • the data is encrypted using the generated key (S108), and the encrypted data is transmitted to the communication partner (S110).
  • the data transmission source information is plain text.
  • FIG. 20 is a diagram illustrating an example of an operation when receiving data.
  • the terminal 100B receives the encrypted data (S200).
  • the information X including the beverage Y as a sample to be used is specified (S202).
  • the user of the terminal 100B sets the beverage Y and inputs a sample analysis command (S204).
  • a key is generated (S206), data received using this key is decrypted (S208), and the decrypted data is displayed on the display unit and stored in the storage unit 130 (S200).
  • the communication partner only needs to have a device for measuring pH, so even if a high-performance but expensive device such as chromatography is not used, a key is generated based on information based on the components of the substance. Therefore, encrypted communication with high security can be realized easily.

Abstract

[Problem] To make it difficult to predict a key which is used in an encrypted communication. [Solution] With a transmission-side information transmission terminal (1), a measurement unit (16) measures quantities of a plurality of respective components which are included in a specimen. An acquisition unit (115) acquires information which denotes the quantities of the components which are measured by the measuring unit (16). A generation unit (111) generates a key based on the quantities of each component which is acquired with the acquisition unit (115). An encryption unit (112) encrypts data using the key which is generated with the generation unit (111) and generates encrypted data. A communication unit (13) transmits the encrypted data which is generated by the encryption unit (112) to a receiving-side information transmission terminal (1).

Description

情報伝送端末Information transmission terminal
 本発明は、情報伝送端末による暗号通信に関するものである。 The present invention relates to encrypted communication by an information transmission terminal.
 情報を保全する目的でパスワードやパスフレーズなどが鍵として採用されることがある。安全性の面からこの鍵には複雑な文字列などが適しているが、鍵にあまり複雑なものを採用するとユーザが覚えられないことがある。一方、ユーザにとって覚えやすいものを鍵として採用すると、その鍵が不正利用者に推測されてしまう可能性がある。  Passwords and passphrases may be used as keys to protect information. From the viewpoint of security, a complicated character string or the like is suitable for this key, but if the key is too complicated, the user may not be able to remember it. On the other hand, if a key that is easy for the user to remember is adopted as the key, the key may be guessed by an unauthorized user.
 そこで、物質の解析結果を情報の保全に利用することが考えられている。特許文献1には、複雑であり、無秩序であって、固有であり、且つ安定した構造を具備する材料要素の少なくとも1つの構造的な特性から得られた1つ又はいくつかのデジタル署名の使用法と、このような保護されたデータの媒体、並びに、この保護されたデータを読み取る方法が開示されている。特許文献2には、メモリタグを用いてランダムな特徴を有する物理オブジェクトの認証を行うことが開示されている。特許文献3には、化学元素の割合の分析ができるようにコーティング用組成物または印刷用インク中の適所に保持される無機粒子を標識付け手段として使用することが開示されている。 Therefore, it is considered to use the analysis results of substances for the maintenance of information. US Pat. No. 6,057,017 uses one or several digital signatures derived from at least one structural property of a material element that is complex, disordered, unique and has a stable structure. And a method for reading such protected data, as well as a medium for such protected data. Patent Document 2 discloses that a physical object having a random feature is authenticated using a memory tag. Patent Document 3 discloses the use of inorganic particles held in place in a coating composition or printing ink as a labeling means so that the chemical element ratio can be analyzed.
特表2007-520962号公報Special table 2007-520962 gazette 特開2005-327248号公報JP 2005-327248 A 特表2002-500244号公報JP-T 2002-2002144 Publication
 しかしながら、特許文献1に開示された技術において、材料要素は、複雑であり、無秩序であって、固有であり、且つ安定した構造を具備する必要があった。特に特許文献1に記載の技術は、材料要素の固有な構造を用いるので、その材料要素の代替物や複製物を使えず送受信の双方で共通の鍵を用いる暗号通信に利用することは困難であった。また、特許文献2に開示された技術は、基本媒体の特定位置の測定結果と予め記憶されている測定結果とが一致するか否かをチェックすることにより、基本媒体がオリジナルであるか否かをチェックするものであり、暗号通信に適用することが困難であった。また、特許文献3に開示された技術は、無機粒子を標識付手段として使用するものであって、偽造や無許可取引などを防止するために適用され得るが、メッセージを暗号化して通信に用いる暗号通信に利用することは困難であった。 However, in the technique disclosed in Patent Document 1, the material elements have to be complicated, disordered, unique, and have a stable structure. In particular, since the technology described in Patent Document 1 uses a unique structure of a material element, it is difficult to use it for encryption communication using a common key for both transmission and reception without using a substitute or duplicate of the material element. there were. Further, the technique disclosed in Patent Document 2 checks whether or not the basic medium is the original by checking whether or not the measurement result of the specific position of the basic medium matches the measurement result stored in advance. It was difficult to apply to encrypted communication. Further, the technique disclosed in Patent Document 3 uses inorganic particles as a labeling means, and can be applied to prevent forgery or unauthorized transactions, but encrypts a message and uses it for communication. It was difficult to use for encryption communication.
 本発明は、暗号通信に用いる鍵を予測され難くすることを目的とする。 The object of the present invention is to make it difficult to predict a key used for encrypted communication.
 本発明に係る情報伝送端末は、一の態様において、試料に含まれる一以上の成分についての情報を取得する取得部と、前記取得部により取得された前記情報に基づいて鍵を生成する生成部と、前記生成部により生成された鍵を用いてデータを暗号化して暗号データを生成する暗号化部と、前記暗号化部により生成された暗号データを他の情報伝送端末へ送信する送信部とを具備する。 In one aspect, an information transmission terminal according to the present invention is an acquisition unit that acquires information about one or more components included in a sample, and a generation unit that generates a key based on the information acquired by the acquisition unit. An encryption unit that encrypts data using the key generated by the generation unit to generate encrypted data, and a transmission unit that transmits the encrypted data generated by the encryption unit to another information transmission terminal; It comprises.
 本発明に係る情報伝送端末は、他の態様において、他の情報伝送端末から暗号データを受信する受信部と、試料に含まれる一以上の成分についての情報を取得する取得部と、前記取得部により取得された前記各情報に基づいて鍵を生成する生成部と、前記受信部により受信された暗号データを、前記生成部により生成された鍵を用いて復号する復号部とを具備する。 In another aspect, an information transmission terminal according to the present invention is a reception unit that receives encrypted data from another information transmission terminal, an acquisition unit that acquires information about one or more components included in a sample, and the acquisition unit A generating unit that generates a key based on each piece of information acquired by the above, and a decrypting unit that decrypts the encrypted data received by the receiving unit using the key generated by the generating unit.
 好ましくは、鍵を成分の量または物性を示す情報に基づいて生成する方法を特定する特定部を具備し、前記生成部は、前記特定部が特定した方法にしたがって、前記鍵を生成するとよい。 Preferably, a specifying unit that specifies a method of generating a key based on information indicating the amount or physical property of a component is provided, and the generating unit generates the key according to a method specified by the specifying unit.
 また、好ましくは、試料に含まれる一以上の成分についての情報を取得する方法を特定する特定部を具備し、前記取得部は、前記特定部が特定した方法にしたがって、前記各情報を取得するとよい。 Preferably, the method further includes a specifying unit that specifies a method for acquiring information about one or more components contained in the sample, and the acquiring unit acquires the information according to the method specified by the specifying unit. Good.
 また、好ましくは、暗号化の方法を特定する特定部を具備し、前記暗号化部は、前記特定部が特定した方法にしたがって、前記データを暗号化するとよい。 Also, preferably, a specifying unit that specifies an encryption method is provided, and the encryption unit encrypts the data according to a method specified by the specifying unit.
 また、好ましくは、復号の方法を特定する特定部を具備し、前記復号部は、前記特定部が特定した方法にしたがって、前記暗号データを復号するとよい。 Further, preferably, a specifying unit that specifies a decryption method is provided, and the decryption unit decrypts the encrypted data according to a method specified by the specifying unit.
 また、好ましくは、複数の選択肢をそれぞれ割り当てられた複数の項目に対してユーザがそれぞれ1つの選択肢を選択する操作を受け付ける操作部を具備し、前記特定部は、前記操作部が受け付けた操作が示す選択肢の組み合わせに応じて、前記方法を特定するとよい。 Preferably, an operation unit that receives an operation for a user to select one option for each of a plurality of items to which a plurality of options are respectively assigned is provided, and the specifying unit is configured to perform an operation received by the operation unit. The method may be specified according to the combination of options shown.
 また、好ましくは、時刻を示す時刻情報を取得する時刻情報取得部を具備し、前記特定部は、前記時刻情報が示す時刻が含まれる期間に応じて、前記方法を特定するとよい。 Preferably, a time information acquisition unit that acquires time information indicating time is provided, and the specifying unit may specify the method according to a period including the time indicated by the time information.
 本発明の情報伝送方法は、一の態様において、送信装置に接続された測定部から、試料に含まれる一以上の成分についての情報を取得し、前記取得された情報に基づいて鍵を生成し、前記生成された鍵を用いてデータを暗号化して暗号データを生成し、前記生成された暗号データを送信することを特徴とする。 In one aspect, an information transmission method of the present invention acquires information on one or more components contained in a sample from a measurement unit connected to a transmission device, and generates a key based on the acquired information. The data is encrypted using the generated key to generate encrypted data, and the generated encrypted data is transmitted.
 本発明の情報伝送方法は、他の態様において、送信装置から暗号データを受信し、受信装置に接続された測定部から、試料に含まれる一以上の成分についての情報を取得し、前記取得された前記各情報に基づいて鍵を生成し、前記受信された暗号データを、前記生成された鍵を用いて復号する。 In another aspect, the information transmission method of the present invention receives encrypted data from a transmission device, acquires information about one or more components contained in a sample from a measurement unit connected to the reception device, and the acquired information A key is generated based on the information, and the received encrypted data is decrypted using the generated key.
 本発明の情報伝送方法は、さらに他の態様において、送信装置と受信装置のそれぞれにおいて試料に含まれる複数の成分の量または物性の少なくとも1つを示す情報を取得し、前記取得された前記情報に基づいて暗号化鍵および復号化鍵をそれぞれ生成し、前記送信装置と前記受信装置との間の通信において、前記暗号化鍵を用いて暗号化されたデータの送信と、当該暗号化されたデータの前記復号化鍵を用いた復号とが実行される。 In still another aspect, the information transmission method of the present invention acquires information indicating at least one of the amounts or physical properties of a plurality of components contained in a sample in each of a transmission device and a reception device, and the acquired information An encryption key and a decryption key are respectively generated on the basis of the transmission of data encrypted using the encryption key in the communication between the transmission device and the reception device, and the encrypted Data is decrypted using the decryption key.
 本発明によれば、暗号通信に用いる鍵を予測され難くすることができる。 According to the present invention, it is possible to make it difficult to predict a key used for encrypted communication.
実施形態に係る通信システムの概要を示す図である。It is a figure which shows the outline | summary of the communication system which concerns on embodiment. 情報伝送端末の構成を示す図である。It is a figure which shows the structure of an information transmission terminal. 情報伝送端末の暗号化に係る機能的構成を示す図である。It is a figure which shows the functional structure which concerns on the encryption of an information transmission terminal. 情報伝送端末の復号に係る機能的構成を示す図である。It is a figure which shows the functional structure which concerns on the decoding of an information transmission terminal. 生成部が鍵を生成する動作の流れを示すフロー図である。It is a flowchart which shows the flow of the operation | movement in which a production | generation part produces | generates a key. 測定部により測定された試料の化学組成を表すグラフである。It is a graph showing the chemical composition of the sample measured by the measurement part. 測定部により測定された各成分のピーク値と量子化値を表す図である。It is a figure showing the peak value and quantization value of each component which were measured by the measurement part. 各成分の量子化値を配列した状態を示す図である。It is a figure which shows the state which arranged the quantization value of each component. 変形例における情報伝送端末の暗号化に係る機能的構成を示す図である。It is a figure which shows the functional structure which concerns on the encryption of the information transmission terminal in a modification. 変形例における情報伝送端末の復号に係る機能的構成を示す図である。It is a figure which shows the functional structure which concerns on the decoding of the information transmission terminal in a modification. 測定対象となる成分の組み合わせを示す図である。It is a figure which shows the combination of the component used as a measuring object. 量子化法の種類を示す図である。It is a figure which shows the kind of quantization method. 配列法の種類を示す図である。It is a figure which shows the kind of arrangement method. 測定方法の種類を示す図である。It is a figure which shows the kind of measuring method. 変形例に係る通信システムの全体構成を示す図である。It is a figure which shows the whole structure of the communication system which concerns on a modification. 変形例に係る情報伝送端末の構成を示す図である。It is a figure which shows the structure of the information transmission terminal which concerns on a modification. 変形例に係る通信システムの構成を示す図である。It is a figure which shows the structure of the communication system which concerns on a modification. 変形例に係る端末の機能構成を示す図である。It is a figure which shows the function structure of the terminal which concerns on a modification. 変形例に係る送信動作例を示す図である。It is a figure which shows the example of transmission operation | movement which concerns on a modification. 変形例に係る受信動作例を示す図である。It is a figure which shows the example of reception operation | movement which concerns on a modification.
1,1a…情報伝送端末、11…制御部、111…生成部、112…暗号化部、113…復号部、114…特定部、115…取得部、12…記憶部、13…通信部、14…操作部、15…表示部、16…測定部、16a…インターフェース、17…収音部、18…放音部、2…通信網、3…測定装置、9,9a…通信システム DESCRIPTION OF SYMBOLS 1, 1a ... Information transmission terminal, 11 ... Control part, 111 ... Generation part, 112 ... Encryption part, 113 ... Decoding part, 114 ... Identification part, 115 ... Acquisition part, 12 ... Storage part, 13 ... Communication part, 14 DESCRIPTION OF SYMBOLS Operation part 15 ... Display part 16 ... Measurement part 16a ... Interface 17 ... Sound collection part 18 ... Sound emission part 2 ... Communication network 3 ... Measurement apparatus 9, 9a ... Communication system
1.実施形態
1-1.システムの構成
 図1は、実施形態に係る通信システム9の概要を示す図である。通信システム9は、複数の情報伝送端末1と、これらを互いに接続する通信網2とを有する。情報伝送端末1は、通信網2を介して通信を行う端末であり、本実施形態では電子メールの送受信を行う移動電話機である。通信網2は、情報伝送端末1同士を接続する通信網であり、本実施形態では移動体通信網である。情報伝送端末1の個数は2つに限らず3つ以上であってもよい。
1. Embodiment 1-1. System Configuration FIG. 1 is a diagram illustrating an overview of a communication system 9 according to an embodiment. The communication system 9 includes a plurality of information transmission terminals 1 and a communication network 2 that connects them to each other. The information transmission terminal 1 is a terminal that performs communication via the communication network 2, and is a mobile telephone that transmits and receives electronic mail in this embodiment. The communication network 2 is a communication network that connects the information transmission terminals 1 to each other, and is a mobile communication network in the present embodiment. The number of information transmission terminals 1 is not limited to two and may be three or more.
1-2.情報伝送端末の構成
 図2は、情報伝送端末1の構成を示す図である。制御部11は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)を備え、CPUが、ROMに記憶されているブートローダや記憶部12に記憶されているプログラムをRAMに読み出して実行することにより情報伝送端末1の各部を制御する。
1-2. Configuration of Information Transmission Terminal FIG. 2 is a diagram illustrating a configuration of the information transmission terminal 1. The control unit 11 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). The CPU stores a boot loader stored in the ROM and a program stored in the storage unit 12 in the RAM. Each part of the information transmission terminal 1 is controlled by reading out and executing.
 記憶部12はソリッドステートドライブやEEPROM(Electrically Erasable and Programmable Read Only Memory)などの記憶手段であり、制御部11に読み込まれるプログラムや各種データを記憶する。
 通信部13は、通信網2と接続して通信を行う回路である。
 操作部14は、各種の指示を入力するためのボタンやセンサなどの操作子を備えており、ユーザによる操作を受け付けてその操作内容に応じた信号を制御部11に供給する。
 表示部15は、液晶を使用したディスプレイ装置であり、制御部11から供給される信号に応じて画像を表示する。
The storage unit 12 is a storage unit such as a solid state drive or an EEPROM (Electrically Erasable and Programmable Read Only Memory), and stores programs and various data read into the control unit 11.
The communication unit 13 is a circuit that communicates with the communication network 2.
The operation unit 14 includes operation elements such as buttons and sensors for inputting various instructions, receives an operation by the user, and supplies a signal corresponding to the operation content to the control unit 11.
The display unit 15 is a display device using liquid crystal, and displays an image according to a signal supplied from the control unit 11.
 測定部16は、試料を受け入れてその試料の化学組成を測定する移動式の測定機器である。測定部16は、具体的には高速液体クロマトグラフィーを用いた有機酸の測定装置である。情報伝送端末1のユーザは、食品や飲料などの試料を決められた溶媒に決められた割合で溶解させて溶液を調整し、これをガラス容器などであるアンプルAmに封入する。測定部16は、多孔性固体などが充填されたカラムと、このカラムに通じたソケットScを有している。ユーザにより上記のアンプルAmがこのソケットScに挿し込まれると、測定部16のカラムは、アンプルAmに封入された上記の溶液を受け入れる。測定部16は、受け入れた試料に含まれる複数の成分の量を示す成分値をそれぞれ取得し、これら各成分値に応じた信号を制御部11に供給する。 The measuring unit 16 is a mobile measuring device that receives a sample and measures the chemical composition of the sample. The measuring unit 16 is specifically an organic acid measuring device using high performance liquid chromatography. A user of the information transmission terminal 1 adjusts a solution by dissolving a sample such as food or beverage in a determined solvent at a determined ratio, and encloses the solution in an ampoule Am such as a glass container. The measuring unit 16 includes a column filled with a porous solid and the like, and a socket Sc connected to the column. When the ampoule Am is inserted into the socket Sc by the user, the column of the measuring unit 16 receives the solution enclosed in the ampoule Am. The measurement unit 16 acquires component values indicating the amounts of a plurality of components contained in the received sample, and supplies signals corresponding to these component values to the control unit 11.
 ここでいう「成分値」とは、例えば試料が複数種類の物質からなる混合物の場合における各物質の存在割合(例えば重量濃度やモル濃度などによって表される)ものであってもよいし、試料が一の種類の化合物である場合にはその元素組成比であってもよいし、一つの成分が全体に占める割合であってもよい。
要は、試料を成分の観点から、何らかの方法で分析した結果得られる質量や比重などの物理量であればよい。
 「液体クロマトグラフィー法」は、試料を液体化させて赤外線の吸収量を測定するにより、複数の成分についての情報を一度に取得することが可能である。また、液体クロマトグラフィー法に替えて、ガス化した試料に対して計測を行うガスクロマトグラフィー法を用いてもよい。
 ただし、測定部16の測定方法はクロマトグラフィー法等の、物質の分離を前提とした分析手法に限定されるものではなく、あらゆる分析手法を適用することが可能である。また、測定した情報のすべてを制御部11に供給する必要はなく一部のみを供給してもよい。例えば、試料中の複数の成分についての情報(成分比など)が測定された場合、一部の成分についての情報のみを供給してもよい。なお、成分には、異物として認識される物質の成分も含む。また、一つの成分についての複数の情報(例えばpH(水素イオン濃度)と塩分(ナトリウム)濃度など)が測定された場合に、そのうちの一つの情報のみを供給してもよい。
 具体的な測定装置の例としては、pHメータや塩分分析計、糖度分析計、導電率計、比抵抗計、TOC計、蛍光分光測定装置、ラマン分光測定装置、各種小型分析器やFT-IR装置が挙げられ、本発明においては、これらのいずれも用いることができるが、これらは単に例示あって、これらに限定されるものではない。
The “component value” as used herein may be, for example, the presence ratio of each substance (for example, expressed by weight concentration or molar concentration) in the case where the sample is a mixture of a plurality of types of substances. May be the elemental composition ratio, or may be the ratio of one component to the whole.
In short, any physical quantity such as mass or specific gravity obtained as a result of analyzing a sample by some method from the viewpoint of components may be used.
In the “liquid chromatography method”, information on a plurality of components can be obtained at once by liquefying a sample and measuring the amount of infrared absorption. Moreover, it may replace with a liquid chromatography method and may use the gas chromatography method which measures with respect to the gasified sample.
However, the measurement method of the measurement unit 16 is not limited to an analysis method based on the premise of separation of substances such as a chromatography method, and any analysis method can be applied. Further, it is not necessary to supply all of the measured information to the control unit 11, and only a part of the information may be supplied. For example, when information about a plurality of components in a sample (component ratio or the like) is measured, only information about some components may be supplied. The component includes a component of a substance recognized as a foreign object. Further, when a plurality of pieces of information (for example, pH (hydrogen ion concentration) and salinity (sodium) concentration) are measured for one component, only one piece of information may be supplied.
Specific examples of measuring devices include pH meters, salinity analyzers, sugar content analyzers, conductivity meters, resistivity meters, TOC meters, fluorescence spectrometers, Raman spectrometers, various small analyzers, and FT-IR. Any of these may be used in the present invention, but these are merely examples and are not intended to be limiting.
 収音部17は、周囲の音声に応じた音声信号を発生させるマイクを有し、発生させた音声信号をデジタル信号に変換して制御部11に供給する。
 放音部18は、音声を発生させるスピーカを有し、制御部11の制御の下、指示された音声信号をアナログ信号に変換してその信号に応じた音声をスピーカにより発生させる。
The sound collection unit 17 includes a microphone that generates an audio signal corresponding to the surrounding audio, converts the generated audio signal into a digital signal, and supplies the digital signal to the control unit 11.
The sound emitting unit 18 includes a speaker that generates sound. Under the control of the control unit 11, the sound emitting unit 18 converts the instructed sound signal into an analog signal and generates sound corresponding to the signal from the speaker.
1-3.情報伝送端末の機能的構成
 図3は、情報伝送端末1の暗号化に係る機能的構成を示す図である。情報伝送端末1の制御部11は、電子メールの送信に際し、図3に示す生成部111、暗号化部112および取得部115として機能する。取得部115は、使用する試料の各成分値に応じた信号(情報)を測定部16から取得する。生成部111は、これらの各信号、すなわち、取得部115により取得された各成分の量に基づいて鍵を生成する。この鍵とはデジタルデータで表される電子鍵である。
1-3. Functional Configuration of Information Transmission Terminal FIG. 3 is a diagram showing a functional configuration related to encryption of the information transmission terminal 1. The control unit 11 of the information transmission terminal 1 functions as the generation unit 111, the encryption unit 112, and the acquisition unit 115 illustrated in FIG. The acquisition unit 115 acquires a signal (information) corresponding to each component value of the sample to be used from the measurement unit 16. The generation unit 111 generates a key based on each of these signals, that is, the amount of each component acquired by the acquisition unit 115. This key is an electronic key represented by digital data.
 暗号化部112はメッセージを暗号化する。メッセージとは、送信の対象となるデータであり、例えば人に伝える文書や音声、映像などを表したデータである。この例においてメッセージは、送信するために編集され記憶部12に記憶されている電子メールのデータである。暗号化部112は、記憶部12からメッセージを読み出し、決められた共通鍵暗号方式によって、生成部111により生成された鍵を用いて暗号化して暗号データを生成する。通信部13は、暗号化部112により生成された暗号データを電子メールとして他の情報伝送端末1へ送信する。 The encryption unit 112 encrypts the message. The message is data to be transmitted, for example, data representing a document, audio, video, etc. to be transmitted to a person. In this example, the message is e-mail data edited and stored in the storage unit 12 for transmission. The encryption unit 112 reads the message from the storage unit 12 and encrypts the message using the key generated by the generation unit 111 according to the determined common key encryption method to generate encrypted data. The communication unit 13 transmits the encrypted data generated by the encryption unit 112 to another information transmission terminal 1 as an electronic mail.
 図4は、情報伝送端末1の復号に係る機能的構成を示す図である。情報伝送端末1の制御部11は、暗号化された電子メールの受信に際し、図4に示す生成部111および復号部113として機能する。電子メールの受信時における通信部13は、送信側の情報伝送端末1から電子メールとして暗号データを受信する。生成部111は、電子メール送信時と同様に測定部16から取得した各成分値に応じた信号に基づいて鍵を生成する。 FIG. 4 is a diagram showing a functional configuration related to decoding of the information transmission terminal 1. The control unit 11 of the information transmission terminal 1 functions as the generation unit 111 and the decryption unit 113 illustrated in FIG. 4 when receiving the encrypted electronic mail. The communication unit 13 at the time of receiving the e-mail receives the encrypted data as an e-mail from the information transmission terminal 1 on the transmission side. The generation unit 111 generates a key based on a signal corresponding to each component value acquired from the measurement unit 16 in the same manner as when sending an e-mail.
 復号部113は暗号データを復号してメッセージにする。復号部113は、通信部13により受信された暗号データを、決められた共通鍵暗号方式によって、生成部111により生成された鍵を用いて復号してメッセージを生成する。生成されたメッセージは、記憶部12に記憶される。 The decryption unit 113 decrypts the encrypted data into a message. The decryption unit 113 decrypts the encrypted data received by the communication unit 13 by using the key generated by the generation unit 111 according to the determined common key encryption method, and generates a message. The generated message is stored in the storage unit 12.
1-4.鍵生成の動作
 図5は、生成部111が鍵を生成する動作の流れを示すフロー図である。生成部111は、測定部16から各成分値に応じた信号を取得すると(ステップS101)、取得した各信号に基づいて、鍵の要素として用いるデジタル信号である量子化値を生成する量子化を行う(ステップS102)。
1-4. Key Generation Operation FIG. 5 is a flowchart showing a flow of operations in which the generation unit 111 generates a key. When the generation unit 111 acquires a signal corresponding to each component value from the measurement unit 16 (step S101), the generation unit 111 performs quantization to generate a quantization value that is a digital signal used as a key element based on the acquired signal. Perform (step S102).
 図6は、測定部16により測定された試料のクロマトグラムである。図6の横軸は試料がカラムに投入されてからカラムを通過するまでの時間を示し、縦軸は、その時間にカラムを通過した成分の量を示す。試料に含まれている各成分は、それぞれカラムを通過する速度が異なるので、カラムを通過するまでの時間に差が生じる。カラムの後には電気伝導度測定器が備えられている。カラムを通過した溶液は、この電気伝導度測定器により電気伝導度を測定される。この電気伝導度は、溶液に含まれる成分の量と相関を有するので、上記の電気伝導度の時間変化を表すクロマトグラムにおいて、試料に含まれる各成分の量がピーク値として得られる。 FIG. 6 is a chromatogram of the sample measured by the measuring unit 16. The horizontal axis in FIG. 6 indicates the time from when the sample is put into the column until it passes through the column, and the vertical axis indicates the amount of the component that has passed through the column at that time. Since each component contained in the sample has a different speed of passing through the column, there is a difference in the time to pass through the column. An electrical conductivity measuring device is provided after the column. The electric conductivity of the solution that has passed through the column is measured by this electric conductivity measuring device. Since this electrical conductivity has a correlation with the amount of the component contained in the solution, the amount of each component contained in the sample is obtained as a peak value in the chromatogram representing the temporal change of the electrical conductivity.
 図7は、測定部16により測定された各成分のピーク値と量子化値を表す図である。図6に示した「8.6分」の位置には、成分番号「2」の成分のピークが現れる。このピークにおいて測定された電気伝導度に基づき、成分番号「2」の成分の量に応じた成分値として十進数表記で「9.5」という数値が得られる。この数値を示す信号を測定部16から取得すると、生成部111は、これに対し「切り捨て」という量子化を行う。その結果、生成部111は、上記の数値の小数点以下を切り捨て、十進数表記で「9.0」、二進数表記で「1001」という数値を示す量子化値を生成する。このようにして、図7に示すように、試料に含まれる成分番号「1」から「9」までの各成分に対して、鍵の要素として用いられる量子化値がそれぞれ生成される。なお、ここでいう量子化は、アナログ信号からデジタル信号を生成することに加え、デジタル信号からデジタル信号を生成することも含む。 FIG. 7 is a diagram showing the peak value and the quantized value of each component measured by the measurement unit 16. The peak of the component with the component number “2” appears at the position “8.6 minutes” shown in FIG. Based on the electrical conductivity measured at this peak, a numerical value “9.5” in decimal notation is obtained as a component value corresponding to the amount of the component with the component number “2”. When a signal indicating this numerical value is acquired from the measurement unit 16, the generation unit 111 performs quantization called “truncation” on the signal. As a result, the generation unit 111 generates a quantized value indicating the numerical value “9.0” in decimal notation and “1001” in binary notation by truncating the above decimal point. In this way, as shown in FIG. 7, quantized values that are used as key elements are generated for each of the component numbers “1” to “9” included in the sample. The quantization here includes generating a digital signal from a digital signal in addition to generating a digital signal from an analog signal.
 生成部111は、量子化により生成された量子化値を決められた規則に沿って配列し(ステップS103)、鍵に変換する(ステップS104)。
 図8は、各成分の量子化値を配列した状態を示す図である。図7に示した各量子化値は、最上位桁を表す左端から成分番号の順に配列され、二進数表記で「11000100110011110111101001100」という数値となる。そして、この配列された二進数表記の数値の最下位側(右端)の4桁を十六進数表記における1の位の値とする「右詰め」がなされ、全体が1つの数値に変換される。図8に示す例においてこの数値は、十六進数表記で「1899EF4C」である。この数値が情報伝送端末1で電子メール送信時および受信時に、鍵として用いられる。なお、この鍵は一例であり、鍵の桁数はこれより多くても少なくてもよい。
The generation unit 111 arranges the quantized values generated by the quantization in accordance with the determined rule (step S103) and converts it into a key (step S104).
FIG. 8 is a diagram illustrating a state in which the quantized values of the components are arranged. Each quantized value shown in FIG. 7 is arranged in the order of the component number from the left end representing the most significant digit, and becomes a numerical value “11000100110011110111101001100” in binary notation. Then, the rightmost 4 digits on the least significant side (right end) of the arranged binary numbers are “right-justified”, and the whole is converted into one number. . In the example shown in FIG. 8, this numerical value is “1899EF4C” in hexadecimal notation. This numerical value is used as a key when the information transmission terminal 1 transmits and receives an electronic mail. This key is an example, and the number of digits of the key may be more or less than this.
 以上の動作によって得られた鍵により、送信側の情報伝送端末1は、メッセージとしての電子メールを暗号化した暗号データを送信する。受信側の情報伝送端末1は、送信側の情報伝送端末1で測定された試料と同種の試料を測定することで、送信側の情報伝送端末1で利用された鍵と同じ鍵を生成する。そして、受信側の情報伝送端末1は、この鍵を用いて受信した暗号データを復号してメッセージを生成する。その結果、この通信システム9によれば、送信側の情報伝送端末1のユーザと、受信側の情報伝送端末1のユーザとの間で、共通の化学物質を試料として用いることを示し合わせておくことで暗号通信を行うことができる。 Using the key obtained by the above operation, the information transmission terminal 1 on the transmission side transmits encrypted data obtained by encrypting an electronic mail as a message. The information transmission terminal 1 on the reception side generates the same key as the key used in the information transmission terminal 1 on the transmission side by measuring the same type of sample as that measured on the information transmission terminal 1 on the transmission side. The information transmission terminal 1 on the receiving side decrypts the received encrypted data using this key and generates a message. As a result, according to this communication system 9, it is shown that a common chemical substance is used as a sample between the user of the information transmission terminal 1 on the transmission side and the user of the information transmission terminal 1 on the reception side. Can be used for encrypted communication.
2.変形例
 上記実施形態の内容は以下の観点から変形し得る。また、これらの観点を組み合わせてもよい。
2-1.試料の内蔵
 上述した実施形態において、測定部16は、試料を封入したアンプルAmを挿し込むソケットScを有していたが、測定部16は、試料そのものを予め内蔵していてもよい。この場合、内蔵された試料はユーザに対して秘匿されていてもよい。測定部16は、内蔵されたこの試料を構成する複数の成分の成分値をそれぞれ取得し、これら各成分値に応じた信号を制御部11に供給すればよい。各成分値に応じた信号に基づいて生成部111が生成した鍵は、暗号化および復号に用いられるほか、情報伝送端末1を識別する識別情報として用いられてもよい。
2. Modifications The contents of the above embodiment can be modified from the following viewpoints. Moreover, you may combine these viewpoints.
2-1. In the embodiment described above, the measurement unit 16 has the socket Sc into which the ampoule Am in which the sample is sealed is inserted, but the measurement unit 16 may incorporate the sample itself in advance. In this case, the built-in sample may be kept secret from the user. The measurement unit 16 may acquire the component values of a plurality of components constituting the built-in sample, and supply signals corresponding to these component values to the control unit 11. The key generated by the generation unit 111 based on a signal corresponding to each component value may be used as identification information for identifying the information transmission terminal 1 in addition to being used for encryption and decryption.
2-2.試料と鍵を生成する方法との組
 上述した実施形態において、情報伝送端末1は、予め示し合わせた試料を送信側および受信側でそれぞれ用いることで暗号通信を行っていたが、この試料と、この試料から鍵を生成する方法との組によって決まる暗号通信を行ってもよい。
2-2. In the above-described embodiment, the information transmission terminal 1 performs cryptographic communication by using the samples shown in advance on the transmitting side and the receiving side, respectively. Cryptographic communication determined by a combination with a method for generating a key from a sample may be performed.
 図9は、この変形例における情報伝送端末1の暗号化に係る機能的構成を示す図である。また、図10は、この変形例における情報伝送端末1の復号に係る機能的構成を示す図である。特定部114は、ユーザの操作内容に応じた信号を操作部14から受け取ると、この信号に基づいて生成部111が鍵を生成する方法を決定して生成部111に伝える。 FIG. 9 is a diagram showing a functional configuration related to encryption of the information transmission terminal 1 in this modification. Moreover, FIG. 10 is a figure which shows the functional structure which concerns on the decoding of the information transmission terminal 1 in this modification. When the identification unit 114 receives a signal corresponding to the user's operation content from the operation unit 14, the generation unit 111 determines a method for generating a key based on this signal and notifies the generation unit 111 of the method.
 例えば、図11は、測定対象となる成分の組み合わせを示す図である。図11において、セットA、セットB、セットCとは、測定対象となる成分の各組を互いに識別するための名称であり、各組ごとに、成分番号に対応付けて図6に示したカラムの通過時間(単位:分)が記述されている。例えば、セットAにおいて、成分番号「1」は、カラムの通過時間が「8.1分」の成分に割り当てられている。なお、使用しない成分番号には、通過時間を特定しないことを示す「―」が記述されている。制御部11は、図2に示す表示部15により、セットA、セットB、セットC…をそれぞれ選択肢としてユーザに表示させる。ユーザは操作部14を操作してセットA、セットB、セットC…のいずれかを選択する操作を行う。特定部114は、操作部14が受け付けたユーザの操作が示す選択肢により、測定対象となる成分の組を特定する。生成部111は、上述の特定された成分の組を測定対象とする方法により鍵を生成する。 For example, FIG. 11 is a diagram illustrating combinations of components to be measured. In FIG. 11, set A, set B, and set C are names for identifying each pair of components to be measured from each other, and the columns shown in FIG. 6 are associated with the component numbers for each pair. The transit time (unit: minute) is described. For example, in the set A, the component number “1” is assigned to the component whose column passage time is “8.1 minutes”. Note that “-” indicating that the passage time is not specified is described in the component number that is not used. The control unit 11 causes the display unit 15 shown in FIG. 2 to display the set A, the set B, the set C,. The user operates the operation unit 14 to perform an operation of selecting one of set A, set B, set C,. The specifying unit 114 specifies a set of components to be measured based on the options indicated by the user operation received by the operation unit 14. The generation unit 111 generates a key by a method in which the above-described identified component set is a measurement target.
 また、図12は、量子化法の種類を示す図である。図12において、量子化法「α」「β」「γ」とは、それぞれ「切り捨て」「切り上げ」「2倍後四捨五入」に対応付けられている。例えば、制御部11は、表示部15により、量子化法α、量子化法β、量子化法γ…をそれぞれ選択肢としてユーザに表示させる。ユーザは操作部14を操作して量子化法α、量子化法β、量子化法γ…のいずれかを選択する操作を行う。特定部114は、操作部14が受け付けたユーザの操作が示す選択肢により、量子化法の種類を特定する。生成部111は、上述の特定された種類の量子化法を用いた方法により鍵を生成する。 FIG. 12 is a diagram showing the types of quantization methods. In FIG. 12, the quantization methods “α”, “β”, and “γ” are associated with “rounded down”, “rounded up”, and “rounded off after double”, respectively. For example, the control unit 11 causes the display unit 15 to display the quantization method α, the quantization method β, the quantization method γ. The user operates the operation unit 14 to perform an operation of selecting one of the quantization method α, the quantization method β, the quantization method γ, and so on. The specifying unit 114 specifies the type of the quantization method based on the options indicated by the user operation received by the operation unit 14. The generation unit 111 generates a key by a method using the specified type of quantization method.
 ここでユーザが量子化法「β」を選択した場合、特定部114は、量子化法として「切り上げ」が選択されたことを生成部111に伝える。そして上述したように、或るピーク値として十進数表記で「9.5」という数値が得られたとすると、生成部111は、これに対し「切り上げ」という量子化を行う。具体的には、生成部111は、上記のピーク値の小数点以下を切り上げ、十進数表記で「10.0」、二進数表記で「1010」という量子化値を生成する。また、ユーザが量子化法「γ」を選択した場合、特定部114は、量子化法として「2倍後四捨五入」が選択されたことを生成部111に伝える。このとき、生成部111は、十進数表記で「9.6」というピーク値を得た場合に、これを2倍して十進数表記で「19.2」にし、小数点以下を四捨五入する。その結果、生成部111は、十進数表記で「19.0」、二進数表記で「10011」という量子化値を生成する。 Here, when the user selects the quantization method “β”, the specifying unit 114 notifies the generation unit 111 that “rounded up” is selected as the quantization method. As described above, if a numerical value “9.5” in decimal notation is obtained as a certain peak value, the generation unit 111 performs quantization “rounded up” on the numerical value. Specifically, the generation unit 111 rounds up the decimal point of the peak value and generates a quantized value “10.0” in decimal notation and “1010” in binary notation. When the user selects the quantization method “γ”, the specifying unit 114 informs the generation unit 111 that “double rounding after rounding” is selected as the quantization method. At this time, when the generation unit 111 obtains a peak value of “9.6” in decimal notation, the generation unit 111 doubles the peak value to “19.2” in decimal notation, and rounds off after the decimal point. As a result, the generation unit 111 generates a quantization value “19.0” in decimal notation and “10011” in binary notation.
 また、図13は、配列法の種類を示す図である。制御部11は、表示部15により、配列法I、配列法II、配列法III…をそれぞれ選択肢としてユーザに表示させる。ユーザは操作部14を操作して配列法I、配列法II、配列法III…のいずれかを選択する操作を行う。特定部114は、操作部14が受け付けたユーザの操作が示す選択肢により、配列法の種類を特定する。生成部111は、上述の特定された配列法により鍵を生成する。 FIG. 13 is a diagram showing the types of arrangement methods. The control unit 11 causes the display unit 15 to display the arrangement method I, the arrangement method II, the arrangement method III. The user operates the operation unit 14 to perform an operation of selecting any one of the array method I, the array method II, the array method III. The specifying unit 114 specifies the type of arrangement method based on the options indicated by the user operation received by the operation unit 14. The generation unit 111 generates a key by the above specified arrangement method.
 図13において、配列法Iは「左詰」であり、各成分の量子化値を最上位桁である左端から詰めていき、左端から順に変換する方法である。配列法Iが選択されたとき、生成部111は、二進数表記した量子化値を並べ、左端から4桁ずつを1桁の16進数に変換する。そして、右端に残った数値が4桁に満たない場合、生成部111は、この残った数値の右側に二進数表記の「0」を詰めて4桁にしてこれを1桁の16進数に変換する。これによれば、図8に示した二進数表記の数値は、右端に二進数表記における「0」が3桁詰められた上で、十六進数表記で「C4CF7A60」に変換される。 In FIG. 13, the arrangement method I is “left-justified”, which is a method in which the quantized values of each component are packed from the left end, which is the most significant digit, and converted in order from the left end. When the array method I is selected, the generation unit 111 arranges the quantized values expressed in binary numbers, and converts the four digits from the left end to one hexadecimal number. If the numerical value remaining at the right end is less than 4 digits, the generation unit 111 fills the right side of the remaining numerical value with “0” in binary notation to make it 4 digits, and converts this to a 1-digit hexadecimal number. To do. According to this, the numerical value in binary notation shown in FIG. 8 is converted to “C4CF7A60” in hexadecimal notation after three digits of “0” in binary notation are padded on the right end.
 配列法IIは「右詰」であり、上述したように二進数表記の数値の最下位側の4桁を1の位として、変換を行う方法である。配列法IIIは「パッディング」であり、各成分の量子化値にそれぞれ決められた桁数を確保して、量子化値を表さないビットにパッドとして0を詰め込む方法である。配列法IIIが選択されたとき、生成部111は、例えば、全ての量子化値に二進数表記で5桁をそれぞれ確保する場合、二進数表記で「11000・1001・100・111・101・11・10・1001・100」という上述した数値ではなく、「11000・01001・00100・00111・00101・00011・00010・01001・00100」という数値を得る。なお、ここで中点「・」は、各成分の区切りを示すための記号である。 Arrangement method II is “right-justified”, and as described above, conversion is performed with the least significant 4 digits of the numerical value in binary notation as one's place. Arrangement method III is “padding”, which is a method of securing a predetermined number of digits in the quantized value of each component and padding bits that do not represent the quantized value with 0 as a pad. When the array method III is selected, for example, when the generation unit 111 reserves 5 digits in binary notation for all quantized values, “11000 · 1001 · 100 · 111 · 101 · 11” in binary notation. Instead of the above-described numerical value of “10, 1001, 100”, the numerical value of “11000, 01001, 10100, 00111, 00101, 00001, 010000, 01001, 10000” is obtained. Here, the middle point “·” is a symbol for indicating the separation of each component.
 以上のように、測定部16により測定される試料が同じであっても、鍵を生成する方法が異なることにより異なる鍵が生成される。したがって、電子メールの送信者および受信者は、試料と、この試料から鍵を生成する方法との「組」を示し合わせ、これによって電子メールを情報伝送端末1に暗号化および復号させて暗号通信を行えばよい。なお上述した例では、測定対象となる成分の組み合わせ、量子化法、および配列法という複数の項目についてそれぞれ複数の選択肢が割り当てられており、ユーザは、各項目に対して1つの選択肢を選択していた。すなわち、鍵を生成する方法は、ユーザの選択した選択肢の組み合わせによって特定されてもよい。例えば、鍵を生成する方法が、複数の工程に分解されるといった場合に、情報伝送端末1は、各工程を示す項目ごとに選択肢を表示してユーザに選択させる。そして、情報伝送端末1は、選択された各選択肢の組み合わせによってこの「鍵を生成する方法」を特定すればよい。
また、上記例示した複数の測定方法を二以上用いてもよい。この場合、それぞれの測定方法にて得られる結果(成分値もしくは物性値等)の任意の組み合わせて鍵の生成に利用してもよい。勿論、一の測定方法において複数の成分値もしくは物性値が得られる場合は、それらを任意の組み合わせで利用してもよい。
As described above, even if the samples measured by the measurement unit 16 are the same, different keys are generated due to different methods for generating the keys. Therefore, the sender and receiver of the e-mail show a “pair” of the sample and a method for generating a key from the sample, and thereby the e-mail is encrypted and decrypted by the information transmission terminal 1 for encrypted communication. Just do it. In the above-described example, a plurality of options are assigned to a plurality of items such as a combination of components to be measured, a quantization method, and an array method, and the user selects one option for each item. It was. That is, the method for generating the key may be specified by a combination of options selected by the user. For example, when the method of generating a key is broken down into a plurality of processes, the information transmission terminal 1 displays options for each item indicating each process and allows the user to select. And the information transmission terminal 1 should just specify this "method to generate a key" with the combination of each selected option.
Two or more of the plurality of measurement methods exemplified above may be used. In this case, any combination of results (component values or physical property values) obtained by the respective measurement methods may be used for key generation. Of course, when a plurality of component values or physical property values can be obtained by one measurement method, they may be used in any combination.
2-3.試料と、成分の量を取得する方法との組
 上記の変形例では、試料と組み合わせる情報として、測定対象となる成分の組み合わせ、量子化法、および配列法という、「鍵を生成する方法」の構成要素を挙げたが、他の処理に関する情報と組み合わせてもよい。例えば、成分の量を取得する方法のうち、例えば、測定方法を示す情報であってもよい。図14は、測定方法の種類を示す図である。図14において、測定法アは「ガスクロマトグラフィー」であり、測定法イは「液体クロマトグラフィー」であり、測定法ウは「赤外分光測定」である。
2-3. Combination of sample and method for obtaining component amount In the above modification, information to be combined with the sample includes the combination of components to be measured, the quantization method, and the method of generating a key called the method of arrangement. Although the constituent elements are listed, they may be combined with information related to other processes. For example, the information which shows the measuring method among the methods of acquiring the quantity of a component may be sufficient. FIG. 14 is a diagram showing the types of measurement methods. In FIG. 14, the measuring method “a” is “gas chromatography”, the measuring method “a” is “liquid chromatography”, and the measuring method “c” is “infrared spectroscopy”.
 例えば、情報伝送端末1には測定方法の異なる複数の測定部16が設けられていて、図14に示すいずれかの測定法がユーザにより操作部14を介して選択されたとき、特定部114は、図9および図10に破線で示すように、選択された測定方法を取得部115に伝える。取得部115は、この測定方法に応じて、複数の測定部16の中から使用する測定部16を決定する。これにより、同じ試料を用いても測定方法が異なるために生成される鍵は異なったものとなる。なお、上記の測定方法は、複数の項目について選択された選択肢の組み合わせによって特定されてもよい。 For example, the information transmission terminal 1 is provided with a plurality of measurement units 16 having different measurement methods, and when any of the measurement methods shown in FIG. 14 is selected by the user via the operation unit 14, the specifying unit 114 is 9 and 10, the selected measurement method is transmitted to the acquisition unit 115 as indicated by a broken line. The acquisition unit 115 determines the measurement unit 16 to be used from among the plurality of measurement units 16 according to this measurement method. As a result, even if the same sample is used, different keys are generated due to different measurement methods. In addition, said measurement method may be specified by the combination of the choice selected about several items.
2-4.試料と暗号化・復号の方法との組
 また、試料と組み合わせる情報として、暗号化または復号の方法を示す情報が用いられてもよい。暗号化または復号の方法とは、それらに用いられるアルゴリズムなどであり、例えば、DES(Data Encryption Standard)やAES(Advanced Encryption Standard)などである。これらアルゴリズムの種類をユーザに選択させ、生成部111は、選択されたアルゴリズムにしたがって暗号化および復号を行うようにすればよい。この場合、特定部114は、図9および図10に破線で示すように、選択されたアルゴリズムを利用する旨を暗号化部112や復号部113に伝えればよい。
 なお、上記の暗号化または復号の方法は、複数の項目について選択された選択肢の組み合わせとして特定されてもよい。
2-4. Combination of Sample and Encryption / Decryption Method Information indicating an encryption or decryption method may be used as information combined with the sample. The encryption or decryption method is an algorithm used for them, for example, DES (Data Encryption Standard), AES (Advanced Encryption Standard), or the like. The generation unit 111 may perform encryption and decryption according to the selected algorithm by allowing the user to select these algorithm types. In this case, the identification unit 114 only has to notify the encryption unit 112 and the decryption unit 113 that the selected algorithm is to be used, as indicated by a broken line in FIGS. 9 and 10.
The above encryption or decryption method may be specified as a combination of options selected for a plurality of items.
2-5.インターフェース
 上述した情報伝送端末1は測定部16を備えていたが、これに代えて外部の測定装置と接続してその測定装置から測定結果を取得するインターフェースを備えていてもよい。図15は、この変形例に係る通信システム9aの全体構成を示す図である。通信システム9aは、情報伝送端末1aが測定装置3と接続するように構成されている点が上述した実施形態に係る通信システム9と異なっている。
2-5. Interface Although the information transmission terminal 1 described above includes the measurement unit 16, the information transmission terminal 1 may include an interface that is connected to an external measurement device and acquires measurement results from the measurement device instead. FIG. 15 is a diagram showing an overall configuration of a communication system 9a according to this modification. The communication system 9a is different from the communication system 9 according to the above-described embodiment in that the information transmission terminal 1a is configured to connect to the measuring device 3.
 図16は、情報伝送端末1aの構成を示す図である。情報伝送端末1aは、測定部16に代えて外部の測定装置3と接続するインターフェース16aを備えている点が、実施形態に係る情報伝送端末1と異なっている。制御部11は、インターフェース16aを介して測定装置3から、試料に含まれる複数の成分の量をそれぞれ取得すればよい。このようにインターフェース16aを介して測定装置3に接続することで、情報伝送端末1aは測定のための構成を内蔵する必要がなくなるので、軽量化が図れ、携帯電話機など携帯に適したものとすることができる。また、この場合の測定装置3は固定されていてもよい。 FIG. 16 is a diagram showing a configuration of the information transmission terminal 1a. The information transmission terminal 1a is different from the information transmission terminal 1 according to the embodiment in that the information transmission terminal 1a includes an interface 16a connected to the external measurement device 3 instead of the measurement unit 16. The control part 11 should just acquire the quantity of the some component contained in a sample from the measuring apparatus 3 via the interface 16a, respectively. By connecting to the measuring device 3 via the interface 16a in this way, the information transmission terminal 1a does not need to have a built-in configuration for measurement, so that the weight can be reduced and the mobile phone or the like is suitable. be able to. In this case, the measuring device 3 may be fixed.
2-6.プログラム
 情報伝送端末1(1a)の制御部11によって実行される各プログラムは、磁気テープや磁気ディスクなどの磁気記録媒体、光ディスクなどの光記録媒体、光磁気記録媒体、半導体メモリなどの、コンピュータ装置が読み取り可能な記録媒体に記憶された状態で提供し得る。また、このプログラムを、インターネットなどのネットワーク経由でダウンロードさせることも可能である。なお、上記の制御部11によって例示した制御手段としてはCPU以外にも種々の装置が適用される場合があり、例えば、専用のプロセッサなどが用いられる。
2-6. Each program executed by the control unit 11 of the information transmission terminal 1 (1a) is a computer apparatus such as a magnetic recording medium such as a magnetic tape or a magnetic disk, an optical recording medium such as an optical disk, a magneto-optical recording medium, or a semiconductor memory. Can be provided in a state stored in a readable recording medium. It is also possible to download this program via a network such as the Internet. Note that various devices other than the CPU may be applied as the control means exemplified by the control unit 11. For example, a dedicated processor or the like is used.
2-7.暗号化の対象
 上述した実施形態において、暗号化される対象である「メッセージ」は電子メールなどのデータであったが、通話音声を示す音声データやストリーミング映像を示す映像データなどであってもよい。また、暗号化される対象は人間に理解得る情報でなくてもよい。例えば、他の暗号化処理によって暗号化されたデータであってもよい。この場合、情報伝送端末1は、この暗号化されたデータをさらに暗号化して他の情報伝送端末1へ送信すればよい。要するにメッセージは送信の対象となるデータであればよい。
2-7. Encryption target In the above-described embodiment, the “message” to be encrypted is data such as e-mail, but it may be audio data indicating call voice, video data indicating streaming video, or the like. . Further, the object to be encrypted may not be information that can be understood by humans. For example, it may be data encrypted by another encryption process. In this case, the information transmission terminal 1 may further encrypt the encrypted data and transmit it to another information transmission terminal 1. In short, the message only needs to be data to be transmitted.
2-8.測定項目
 上述した実施形態において、測定部16により測定される項目は試料の各成分の量を示す成分値であったが、これに加えて、またはこれに代えて、試料の物理的特性(物性)が測定されてもよい。物性とは、その物質に固有な巨視的な力学的・熱的・電気的・磁気的・光学的などの性質であって、例えば光透過率や屈折率、反射率、透磁率、熱伝導率、電気伝導率などによって評価される。好ましい態様において、これらの物性パラメータの少なくともいずれか一つと、決められた少なくとも一つ以上の成分の値とに基づいて、生成部111が鍵を生成すればよい。
 本発明の情報伝送端末は、一の態様において、試料に含まれる一以上の成分についての情報を取得する取得部と、前記取得部により取得された前記情報に基づいて鍵を生成する生成部を有し、且つ前記生成部により生成された鍵を用いてデータを暗号化して暗号データを生成して他の情報伝送端末へ送信する送信部と、他の情報伝送端末から暗号データを受信して前記生成部により生成された鍵を用いて復号する受信部の少なくともいずれかを有していればよい。
 試料に含まれる一以上の成分についての情報とは、所定の1以上の成分が全体に占める割合(重量比や体積比とうの成分比)あるいは一以上の成分の各々についての物理的特性を表わす量であり、さらに一の成分についての成分比と物理量とを組み合わせたものであってもよい。
 本発明の情報伝送方法は、一の態様において、送信装置と受信装置のそれぞれにおいて用意された試料に含まれる、(a)少なくとも1つの成分の量を示す情報および(b)当該試料の物性を表わす少なくとも1つの情報のうち、少なくともいずれか一方の情報を取得し、前記取得された前記情報に基づいて暗号化鍵および復号化鍵を生成し、前記送信装置と前記受信装置との間の通信において、前記暗号化鍵によって暗号化されたデータの送信と、当該暗号化されたデータの前記復号化鍵を用いた復号が実行される。
2-8. Measurement Item In the above-described embodiment, the item measured by the measurement unit 16 is a component value indicating the amount of each component of the sample. In addition to or instead of this, the physical characteristics (physical properties of the sample) ) May be measured. Physical properties are macroscopic mechanical, thermal, electrical, magnetic, and optical properties that are inherent to the material. For example, light transmittance, refractive index, reflectance, magnetic permeability, and thermal conductivity. It is evaluated by electrical conductivity. In a preferred embodiment, the generation unit 111 may generate a key based on at least one of these physical property parameters and the determined value of at least one component.
In one aspect, an information transmission terminal of the present invention includes an acquisition unit that acquires information about one or more components included in a sample, and a generation unit that generates a key based on the information acquired by the acquisition unit. A transmission unit that encrypts data using the key generated by the generation unit to generate encrypted data and transmits the encrypted data to another information transmission terminal; and receives encrypted data from the other information transmission terminal It suffices to have at least one of a receiving unit that performs decryption using the key generated by the generating unit.
The information about one or more components contained in the sample represents the ratio of the predetermined one or more components to the whole (component ratio such as weight ratio or volume ratio) or physical characteristics of each of the one or more components. Further, it may be a combination of a component ratio and a physical quantity for one component.
In one aspect, the information transmission method of the present invention includes (a) information indicating the amount of at least one component contained in samples prepared in each of the transmission device and the reception device, and (b) physical properties of the sample. Communication between the transmitting device and the receiving device is performed by acquiring at least one of the at least one information to be expressed, generating an encryption key and a decryption key based on the acquired information , Transmission of data encrypted with the encryption key and decryption of the encrypted data using the decryption key are executed.
2-9.検出
 上述した実施形態において、測定部16は、各成分値を測定していたが、測定部16に代えて、その成分の有無を検出する検出部(または検出装置)を用いてもよい。この検出部は各成分を定性的に検出すればよく、各成分の量を定量しなくてもよい。また、各成分値を測定して、その測定値と予め決められている閾値とを比較し、各成分の有無を検出してもよい。生成部111は、例えば、検出された成分に数値「1」を、検出されなかった成分に数値「0」を割り当てて、決められた順序でこれらの数値を配列する。このようにして配列された数値は二進数となっているので、生成部111はこれに基づいて鍵を生成すればよい。
2-9. Detection In the above-described embodiment, the measurement unit 16 measures each component value, but instead of the measurement unit 16, a detection unit (or detection device) that detects the presence or absence of the component may be used. This detection part should just detect each component qualitatively, and does not need to quantify the quantity of each component. Alternatively, each component value may be measured, and the measured value may be compared with a predetermined threshold value to detect the presence or absence of each component. For example, the generation unit 111 assigns a numerical value “1” to the detected component and assigns a numerical value “0” to the component that has not been detected, and arranges these numerical values in a predetermined order. Since the numerical values arranged in this way are binary numbers, the generation unit 111 may generate a key based on the binary numbers.
2-10.時系列変化
 上述した実施形態において、鍵を生成する方法、測定方法、暗号化または復号の方法は予め決められたものであった。また、上述した変形例において、これらの方法は、ユーザの操作に応じて決められるものであった。しかし、これらの方法を決めるのはユーザの操作に限られない。例えば、これらの方法は、時刻に応じて決められてもよい。以下に、この態様に含まれる例を示す。
2-10. Time Series Change In the above-described embodiment, the key generation method, the measurement method, and the encryption or decryption method are predetermined. In the above-described modification, these methods are determined according to the user's operation. However, these methods are not limited to user operations. For example, these methods may be determined according to time. Examples included in this embodiment are shown below.
(1)スケジュール
 情報伝送端末1の記憶部12には、予め上記の方法について複数の種類を定め、これらが毎日変化するように設定されたスケジュールが記憶されている。
 まず、送信側の情報伝送端末1の制御部11は、内蔵されたタイマを参照して現在の時刻を示す時刻情報を取得する。そして、制御部11は、上記のスケジュールを参照して、この時刻情報が示す時刻を含む今日の日付に対応付けられた測定方法を特定し、この測定方法に従って、試料に含まれる複数の成分の量を取得する。
 次に、この制御部11は、上記のスケジュールを参照して、今日の日付に対応付けられた鍵の生成方法を特定し、この生成方法に従って、取得した成分の量から鍵を生成する。
 その後、この制御部11は、上記のスケジュールを参照して、今日の日付に対応付けられた暗号化の方法を特定し、この暗号化の方法に従って、メッセージを暗号化し、得られた暗号データに今日の日付を付加して送信する。
 受信側の情報伝送端末1は、暗号化の日付に対応する測定方法、鍵の生成方法、および復号の方法を記憶部12に記憶された上記のスケジュールからそれぞれ特定し、これらに従って、試料を測定し、鍵を生成して、暗号データを復号すればよい。
(1) Schedule The storage unit 12 of the information transmission terminal 1 stores a plurality of types for the above-described method in advance, and a schedule that is set so as to change every day.
First, the control unit 11 of the information transmission terminal 1 on the transmission side acquires time information indicating the current time with reference to a built-in timer. And the control part 11 specifies the measurement method matched with today's date including the time which this time information shows with reference to said schedule, According to this measurement method, the some component contained in a sample is specified. Get the quantity.
Next, the control unit 11 refers to the above schedule, specifies a key generation method associated with today's date, and generates a key from the amount of the acquired component according to the generation method.
Thereafter, the control unit 11 refers to the above schedule, identifies the encryption method associated with today's date, encrypts the message according to this encryption method, and converts the encrypted data into the obtained encrypted data. Add today's date and send.
The information transmission terminal 1 on the receiving side specifies the measurement method, the key generation method, and the decryption method corresponding to the encryption date from the schedule stored in the storage unit 12, and measures the sample according to these. Then, a key is generated and the encrypted data is decrypted.
 この変形例では、測定方法、鍵の生成方法、および暗号化・復号の方法が毎日変化するが、この変化の規則は送信側および受信側のそれぞれのユーザしか知らない。したがって、暗号に用いる際の試料を予め知らされていない上に、上記の変化の規則を知らない不正利用者にとっては暗号データの解読の困難性がさらに増すこととなる。なお、方法に対応付けられる期間は1日に限られず、他の期間(1週間など)であってもよい。各方法に異なる長さの期間が対応付けられていてもよい。 In this modification, the measurement method, the key generation method, and the encryption / decryption method change every day, but the rules of this change are known only to the respective users on the transmission side and the reception side. Therefore, the sample for use in encryption is not known in advance, and it becomes more difficult for an unauthorized user who does not know the rules of change to decrypt the encrypted data. The period associated with the method is not limited to one day, and may be another period (such as one week). Each method may be associated with a period of a different length.
(2)周期
 方法が周期的に変化する場合には、その1周期が定められていればよい。例えば、2つの方法を周期的に切り替えて用いる場合、日付が奇数日のときは第1の方法、偶数日のときは第2の方法を採用するように決めておいてもよい。
(2) Period When the method changes periodically, the period only needs to be determined. For example, when two methods are used while being switched periodically, the first method may be adopted when the date is an odd day, and the second method may be adopted when the date is an even day.
(3)演算
 測定部16により得られる成分値や物性値など、鍵の生成に用いられる各種測定値に、時刻を示す数値を用いた演算を施してもよい。例えば、測定部16による測定結果に、その測定が行われた時刻を表す数値を乗算して、得られた数値に基づいて鍵を生成してもよい。この場合、生成された鍵を使って暗号化された暗号データに、この時刻を表す数値を付加して送信すればよい。鍵を生成する際の演算(この場合は、乗算)が秘匿されているため、不正利用者が暗号データに付加された数値を使って暗号を解読することは困難である。なお、この演算は複数の関数を組み合わせたものであってもよい。
(3) Calculation Calculations using numerical values indicating time may be performed on various measurement values used for key generation, such as component values and physical property values obtained by the measurement unit 16. For example, the key may be generated based on the obtained numerical value by multiplying the measurement result by the measurement unit 16 by a numerical value indicating the time when the measurement was performed. In this case, a numerical value representing this time may be added to the encrypted data encrypted using the generated key and transmitted. Since the operation (in this case, multiplication) when generating the key is kept secret, it is difficult for an unauthorized user to decrypt the encryption using the numerical value added to the encrypted data. Note that this calculation may be a combination of a plurality of functions.
2-11.情報伝送端末
 上述の実施形態において、情報伝送端末1は、通信網2を介して他の情報伝送端末1と通信を行う移動電話機であったが、携帯電話機、PDA(Personal Digital Assistant)、携帯音楽再生機、携帯動画再生機、ゲーム機、電子書籍の閲覧装置、ナビゲーション装置、パーソナルコンピュータ等であってもよい。
2-11. Information Transmission Terminal In the above-described embodiment, the information transmission terminal 1 is a mobile phone that communicates with another information transmission terminal 1 via the communication network 2, but is a mobile phone, a PDA (Personal Digital Assistant), portable music. It may be a playback device, portable video playback device, game machine, electronic book browsing device, navigation device, personal computer, or the like.
2-12.具体的な変形例の一例
 図17は、本発明の一実施例に係る通信システム100を示す。通信システム100は、端末100Aと端末100Bとを有する。端末100Aと端末100Bとはインターネット400を介してデータの送受信を行う。端末100A(100B)は一般的なパーソナルコンピュータとしての機能を備える。各端末100には測定装置200(200A、200B)とがUSB等のバスによって接続されている。
 各測定装置200は、各端末100から出力された命令に応じて、試料が入った容器300(300A、300B)がセットされた場合に、当該試料の分析を行い、分析結果を各端末100に出力する。
 暗号化通信を行う場合は、端末100Aのユーザと100Bのユーザとの間で、暗号化/復号に用いる試料の種類を事前に申し合わせておいてもよいし、暗号化データを送信する際に、試料の種類を指定する情報を暗号化されていない状態で相手に送信してもよい。
2-12. FIG. 17 shows a communication system 100 according to an embodiment of the present invention. The communication system 100 includes a terminal 100A and a terminal 100B. The terminal 100A and the terminal 100B perform data transmission / reception via the Internet 400. The terminal 100A (100B) has a function as a general personal computer. Each terminal 100 is connected to a measuring apparatus 200 (200A, 200B) via a bus such as a USB.
Each measuring device 200 analyzes the sample when the container 300 (300A, 300B) containing the sample is set in accordance with the command output from each terminal 100, and the analysis result is sent to each terminal 100. Output.
When performing encrypted communication, the user of the terminal 100A and the user of 100B may contact the user in advance for the type of sample used for encryption / decryption, or when transmitting encrypted data, Information specifying the type of sample may be transmitted to the other party in an unencrypted state.
 図18に端末100の機能構成を示す。端末100は、制御部110と記憶部130と入力部150と通信部160とを含む。 FIG. 18 shows a functional configuration of the terminal 100. The terminal 100 includes a control unit 110, a storage unit 130, an input unit 150, and a communication unit 160.
 記憶部130は、送信すべきデータや受信したデータに加え、アルゴリズム生成情報を記憶する。アルゴリズム生成情報とは、試料の分析結果から暗号鍵をどのように生成するかを定義した情報である。例えば、分析結果に、複数の化合物の種類と各化合物の成分量(成分比)といった複数のパラメータが含まれる場合に、これらのパラメータのうちどれをどのように用いて暗号鍵を生成するのかを定義する情報である。あるいは、例えば、「成分比の高いものから3番目までの重量パーセント値を使用しこれらの3つの値を乗算する」することが定義される。
 あるいは、分析結果が一つの値(たとえばpH濃度や塩分濃度)のみ含まれる場合において、その値をどのように加工して鍵を生成するのかを定義する情報であってもよい。例えば、分析装置からpH(水素イオン濃度)の測定結果として「5.04」という値を取得した場合に、この値と所定の他の情報(測定日時などの測定に付随する情報や測定温度などの測定条件・測定環境に関する情報など)とを組み合わせて鍵を生成することを定義することができる。アルゴリズム生成情報は、暗号化通信を行う前に送信者と受信者との間で予め取り決めておく。また、アルゴリズム生成情報に、用いるべき試料の種類を含ませてもよい。
 なお、分析結果の値を加工せずにそのまま使用するという情報をアルゴリズム生成情報に包含させてもよい。
 すなわち、各端末100において、暗号化通信を行う相手に関し、送信データの暗号化および受信データの復号に際して生成される鍵が一意に定まるように、少なくとも試料の種類が特定さればよく、加えて分析結果から鍵を用いる方法を特定してもよい。
The storage unit 130 stores algorithm generation information in addition to data to be transmitted and received data. The algorithm generation information is information defining how to generate an encryption key from the analysis result of the sample. For example, if the analysis result includes multiple parameters such as the types of multiple compounds and the amount of each component (component ratio), how to use these parameters and how to generate the encryption key Information to be defined. Alternatively, for example, it is defined to “use the three weight values from the highest component ratio to the third and multiply these three values”.
Alternatively, when the analysis result includes only one value (for example, pH concentration or salinity concentration), it may be information defining how to process the value to generate a key. For example, when a value of “5.04” is acquired as a measurement result of pH (hydrogen ion concentration) from the analyzer, this value and other predetermined information (information accompanying measurement such as measurement date and time, measurement temperature, etc.) To generate a key in combination with information on measurement conditions and measurement environments). The algorithm generation information is determined in advance between the sender and the receiver before performing encrypted communication. Moreover, the type of sample to be used may be included in the algorithm generation information.
Note that the algorithm generation information may include information that the value of the analysis result is used as it is without being processed.
That is, at each terminal 100, at least the type of the sample needs to be specified so that the key generated when encrypting the transmission data and decrypting the reception data is uniquely determined for the other party performing the encrypted communication, and in addition, the analysis is performed. You may identify the method of using a key from a result.
 制御部100は、CPU等のプロセッサによって実現され、鍵生成部111、取得部112、暗号/復号処理部113およびアルゴリズム120を含む。
 取得部112は、分析装置200に分析の実行命令を出力し、分析装置200から分析結果を取得して鍵生成部111に出力する。鍵生成部111は、取得部112から取得して分析結果とアルゴリズム特定部120から取得してアルゴリズム生成情報とに基づいて暗号化および復号に必要な鍵を生成し、暗号/復号処理部113に出力する。鍵とはは、例えば所定桁の数字の羅列である。暗号/復号処理部113は、所定のアルゴリズム(AES等)に従い、鍵生成部111から供給された鍵を用いて、送信データを暗号化して通信部160に出力する。また、通信部160から提供された受信データに、所定のアルゴリズム(AES等)に従い、鍵生成部111から供給された鍵を用いて復号し、表示部140および記憶部130に出力する。
 アルゴリズム特定部120は、記憶部130からアルゴリズム生成情報を読み出して、鍵生成部111に出力する。
 表示部140は液晶ディスプレイ等の表示装置である。通信部160は、通信処理プロセッサとして実現され、制御部110から出力されたデータを送信し、受信したデータを制御部100に出力する。入力部150は、キーボードやマウス等のユーザによって操作される入力デバイスであって、制御部100への命令の入力や記憶部へのデータの格納等を行う。
The control unit 100 is realized by a processor such as a CPU, and includes a key generation unit 111, an acquisition unit 112, an encryption / decryption processing unit 113, and an algorithm 120.
The acquisition unit 112 outputs an analysis execution instruction to the analysis device 200, acquires an analysis result from the analysis device 200, and outputs the analysis result to the key generation unit 111. The key generation unit 111 generates a key necessary for encryption and decryption based on the analysis result and the algorithm generation information acquired from the acquisition unit 112 and based on the algorithm generation information, and sends the key to the encryption / decryption processing unit 113. Output. The key is, for example, an enumeration of numbers with predetermined digits. The encryption / decryption processing unit 113 encrypts transmission data using the key supplied from the key generation unit 111 according to a predetermined algorithm (AES or the like) and outputs the encrypted transmission data to the communication unit 160. Further, the received data provided from the communication unit 160 is decrypted using the key supplied from the key generation unit 111 according to a predetermined algorithm (AES or the like), and is output to the display unit 140 and the storage unit 130.
The algorithm specifying unit 120 reads the algorithm generation information from the storage unit 130 and outputs the algorithm generation information to the key generation unit 111.
The display unit 140 is a display device such as a liquid crystal display. The communication unit 160 is realized as a communication processor, transmits data output from the control unit 110, and outputs received data to the control unit 100. The input unit 150 is an input device that is operated by a user such as a keyboard and a mouse, and inputs commands to the control unit 100 and stores data in the storage unit.
 図19は、データを送信する際の動作の例を表わす図である。この例では、測定装置200Aよび200BはpH測定計であり、端末100Aにおいては、アルゴリズム生成方法として、端末100Bと対応付けて、試料として飲料Y、および「測定値と測定した日時情報とをアルゴリズムAに従って演算する」という情報(これを情報Xとする)が記憶されているとする。そして端末100Bにおいては、当該情報Xが端末100Aに対応付け記憶されている。いま、端末100Aから端末100Bにデータを送信する場合を説明する。 FIG. 19 is a diagram illustrating an example of an operation when data is transmitted. In this example, the measuring devices 200A and 200B are pH meters, and in the terminal 100A, as an algorithm generation method, the beverage Y is associated with the terminal 100B as an algorithm generation method, and the “measured value and measured date / time information is an algorithm. It is assumed that information (this is referred to as information X) “calculate according to A” is stored. In terminal 100B, information X is stored in association with terminal 100A. Now, a case where data is transmitted from terminal 100A to terminal 100B will be described.
 端末100Aのユーザは、通信相手(端末100B)と送信したいデータを指定する(S100)。続いて、端末100Bに対応する鍵生成アルゴリズム(情報X)を決定する(S102)。なお、相手ごとに異なる試料を使用することになっている場合は、その相手に対応した試料が少なくとも特定される。これに加えて、当該通信相手に対応付けて記憶部130に記憶された鍵生成アルゴリズムが読み出されてもよい。そして、ユーザはその試料(ここでは飲料Y)を分析装置200にセットし、所定の操作を行うと、試料の分析が行われる(S104)。分析結果が取得されると、分析結果であるpH値と情報Xとに基づいて鍵が生成される(S106)。生成された鍵を用いて当該データが暗号化され(S108)、当該通信相手に暗号化されたデータが送信される(S110)。なお、データの送信元の情報については平文であるとする。 The user of the terminal 100A designates data to be transmitted with the communication partner (terminal 100B) (S100). Subsequently, a key generation algorithm (information X) corresponding to the terminal 100B is determined (S102). In addition, when a different sample is to be used for each partner, at least a sample corresponding to the partner is specified. In addition to this, the key generation algorithm stored in the storage unit 130 in association with the communication partner may be read. Then, when the user sets the sample (here, beverage Y) in the analyzer 200 and performs a predetermined operation, the sample is analyzed (S104). When the analysis result is acquired, a key is generated based on the pH value and information X, which is the analysis result (S106). The data is encrypted using the generated key (S108), and the encrypted data is transmitted to the communication partner (S110). Note that the data transmission source information is plain text.
 図20はデータを受信する際の動作の例を表わす図である。端末100Bは、暗号化されたデータを受信する(S200)。データの送信元が端末100Aであることを確認すると、用いるべき試料として飲料Yであることを含む情報Xを特定する(S202)。端末100Bのユーザは飲料Yをセットし、試料の分析命令を入力する(S204)。すると、鍵が生成され(S206)、この鍵を用いて受信したデータが復号され(S208)、復号後のデータが表示部に表示されるとともに記憶部130に記憶される(S200)。
 この例においては、pHを測定する装置を通信相手同士が所有していればよいので、クロマトグラフィー等の高性能だが高価な装置を用いなくても、物質の成分に基づいた情報によって鍵が生成されるので、手軽かつセキュリティの高い暗号化通信が実現される。
FIG. 20 is a diagram illustrating an example of an operation when receiving data. The terminal 100B receives the encrypted data (S200). When it is confirmed that the data transmission source is the terminal 100A, the information X including the beverage Y as a sample to be used is specified (S202). The user of the terminal 100B sets the beverage Y and inputs a sample analysis command (S204). Then, a key is generated (S206), data received using this key is decrypted (S208), and the decrypted data is displayed on the display unit and stored in the storage unit 130 (S200).
In this example, the communication partner only needs to have a device for measuring pH, so even if a high-performance but expensive device such as chromatography is not used, a key is generated based on information based on the components of the substance. Therefore, encrypted communication with high security can be realized easily.

Claims (17)

  1.  試料に含まれる一以上の成分についての情報を取得する取得部と、
     前記取得部により取得された前記情報に基づいて鍵を生成する生成部と、
     前記生成部により生成された鍵を用いてデータを暗号化して暗号データを生成する暗号化部と、
     前記暗号化部により生成された暗号データを送信する送信部と
     を具備する情報伝送端末。
    An acquisition unit for acquiring information about one or more components contained in the sample;
    A generating unit that generates a key based on the information acquired by the acquiring unit;
    An encryption unit that encrypts data using the key generated by the generation unit to generate encrypted data;
    An information transmission terminal comprising: a transmission unit that transmits the encrypted data generated by the encryption unit.
  2.  暗号データを受信する受信部と、
     試料に含まれる一以上の成分についての情報を取得する取得部と、
     前記取得部により取得された前記情報に基づいて鍵を生成する生成部と、
     前記受信部により受信された暗号データを、前記生成部により生成された鍵を用いて復号する復号部と
     を具備する情報伝送端末。
    A receiving unit for receiving encrypted data;
    An acquisition unit for acquiring information about one or more components contained in the sample;
    A generating unit that generates a key based on the information acquired by the acquiring unit;
    An information transmission terminal comprising: a decryption unit that decrypts the encrypted data received by the reception unit using the key generated by the generation unit.
  3.  前記鍵を前記情報に基づいて生成する方法を特定する特定部
     を具備し、
     前記生成部は、前記特定部が特定した方法にしたがって、前記鍵を生成する
     ことを特徴とする請求項1または2に記載の情報伝送端末。
    A specifying unit for specifying a method for generating the key based on the information;
    The information transmission terminal according to claim 1, wherein the generation unit generates the key according to a method specified by the specification unit.
  4.  前記情報を取得する方法を特定する特定部
     を具備し、
     前記取得部は、前記特定部が特定した方法にしたがって、前記各情報を取得する
     ことを特徴とする請求項1または2に記載の情報伝送端末。
    A specifying unit for specifying a method for acquiring the information;
    The information transmission terminal according to claim 1, wherein the acquisition unit acquires the information according to a method specified by the specification unit.
  5.  暗号化の方法を特定する特定部
     を具備し、
     前記暗号化部は、前記特定部が特定した方法にしたがって、前記データを暗号化する
     ことを特徴とする請求項1に記載の情報伝送端末。
    It has a specific part that specifies the encryption method,
    The information transmission terminal according to claim 1, wherein the encryption unit encrypts the data according to a method specified by the specifying unit.
  6.  復号の方法を特定する特定部
     を具備し、
     前記復号部は、前記特定部が特定した方法にしたがって、前記暗号データを復号する
     ことを特徴とする請求項2に記載の情報伝送端末。
    A specifying unit for specifying a decoding method;
    The information transmission terminal according to claim 2, wherein the decrypting unit decrypts the encrypted data according to a method specified by the specifying unit.
  7.  複数の選択肢をそれぞれ割り当てられた複数の項目に対してユーザがそれぞれ1つの選択肢を選択する操作を受け付ける操作部
     を具備し、
     前記特定部は、前記操作部が受け付けた操作が示す選択肢の組み合わせに応じて、前記方法を特定する
     ことを特徴とする請求項3から6のいずれか1項に記載の情報伝送端末。
    An operation unit that accepts an operation for a user to select one option for each of a plurality of items to which a plurality of options are respectively assigned;
    The information transmission terminal according to claim 3, wherein the specifying unit specifies the method according to a combination of options indicated by the operation received by the operation unit.
  8.  時刻を示す時刻情報を取得する時刻情報取得部
     を具備し、
     前記特定部は、前記時刻情報が示す時刻が含まれる期間に応じて、前記方法を特定する
     ことを特徴とする請求項3から6のいずれか1項に記載の情報伝送端末。
    A time information acquisition unit for acquiring time information indicating the time,
    The information transmission terminal according to claim 3, wherein the specifying unit specifies the method according to a period in which a time indicated by the time information is included.
  9.  送信装置に接続された測定部から、試料に含まれる一以上の成分についての情報を取得し、
     前記取得された情報に基づいて鍵を生成し、
     前記生成された鍵を用いてデータを暗号化して暗号データを生成し、
     前記生成された暗号データを送信する情報伝送方法。
    Obtain information about one or more components contained in the sample from the measurement unit connected to the transmitter,
    Generating a key based on the acquired information;
    Encrypt data using the generated key to generate encrypted data,
    An information transmission method for transmitting the generated encrypted data.
  10.  送信装置から暗号データを受信し、
     受信装置に接続された測定部から、試料に含まれる一以上の成分についての情報を取得し、
     前記取得された前記各情報に基づいて鍵を生成し、
     前記受信された暗号データを、前記生成された鍵を用いて復号する情報伝送方法。
    Receive encrypted data from the sending device,
    Obtain information about one or more components contained in the sample from the measurement unit connected to the receiver,
    Generate a key based on each of the acquired information,
    An information transmission method for decrypting the received encrypted data using the generated key.
  11.  前記鍵を前記情報に基づいて生成する方法を特定し、
     前記特定した方法にしたがって、前記鍵を生成することを特徴とする請求項9または10に記載の情報伝送方法。
    Identify a method for generating the key based on the information;
    The information transmission method according to claim 9 or 10, wherein the key is generated according to the specified method.
  12.  前記情報を取得する方法を特定し、
     前記特定した方法にしたがって、前記各情報を取得することを特徴とする請求項9または10に記載の情報伝送方法。
    Identify how to obtain the information,
    The information transmission method according to claim 9 or 10, wherein the information is acquired according to the specified method.
  13.  前記取得した情報に基づき暗号化の方法を特定し、
     前記特定した方法にしたがって、前記データを暗号化することを特徴とする請求項9に記載の情報伝送方法。
    Identify the encryption method based on the acquired information,
    10. The information transmission method according to claim 9, wherein the data is encrypted according to the specified method.
  14.  前記取得した情報に基づき復号の方法を特定し、
     前記特定した方法にしたがって、前記暗号データを復号することを特徴とする請求項10に記載の情報伝送方法。
    Identify a decoding method based on the acquired information,
    11. The information transmission method according to claim 10, wherein the encrypted data is decrypted according to the specified method.
  15.  複数の選択肢をそれぞれ割り当てられた複数の項目に対してユーザがそれぞれ1つの選択肢を選択する操作を受け付け、
     前記受け付けた操作が示す選択肢の組み合わせに応じて、前記方法を特定することを特徴とする請求項11から14のいずれか1項に記載の情報伝送方法。
    The user accepts an operation of selecting one option for each of a plurality of items assigned with a plurality of options,
    The information transmission method according to claim 11, wherein the method is specified according to a combination of options indicated by the received operation.
  16.  時刻を示す時刻情報を取得し、
     前記特定部は、前記時刻情報が示す時刻が含まれる期間に応じて、前記方法を特定することを特徴とする請求項11から14のいずれか1項に記載の情報伝送方法。
    Get time information indicating the time,
    The information transmission method according to claim 11, wherein the specifying unit specifies the method according to a period including a time indicated by the time information.
  17.  送信装置と受信装置のそれぞれにおいて試料に含まれる一以上の成分についての情報を取得し、
     前記取得された前記情報に基づいて暗号化鍵および復号化鍵をそれぞれ生成し、
     前記送信装置と前記受信装置との間の通信において、前記暗号化鍵を用いて暗号化されたデータの送信と、当該暗号化されたデータの前記復号化鍵を用いた復号とが実行される
     ことを特徴とする情報伝送方法。
    Obtaining information about one or more components contained in the sample in each of the transmitter and receiver;
    Generating an encryption key and a decryption key based on the acquired information,
    In communication between the transmission device and the reception device, transmission of data encrypted using the encryption key and decryption of the encrypted data using the decryption key are executed. An information transmission method characterized by the above.
PCT/JP2012/068614 2011-07-22 2012-07-23 Information transmission terminal WO2013015252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-161118 2011-07-22
JP2011161118 2011-07-22

Publications (1)

Publication Number Publication Date
WO2013015252A1 true WO2013015252A1 (en) 2013-01-31

Family

ID=47601099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068614 WO2013015252A1 (en) 2011-07-22 2012-07-23 Information transmission terminal

Country Status (2)

Country Link
JP (1) JPWO2013015252A1 (en)
WO (1) WO2013015252A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095724A (en) * 2011-11-30 2017-06-01 シクパ ホルディング ソシエテ アノニムSicpa Holding Sa Marked coating composition and authentication method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212041A (en) * 1988-02-18 1989-08-25 Hitachi Ltd Cryptographic communication system
JP2001053739A (en) * 1999-08-10 2001-02-23 Zeon Joho System Kk Ciphering communication method
WO2004003839A1 (en) * 2002-07-01 2004-01-08 Shinya Fukui Material containing coding information, method of identification thereof and identification system therefor
JP2010514227A (en) * 2005-12-23 2010-04-30 シグノプティク テクノロジーズ Method for extracting a random signature from a material element and method for generating a decomposition base for realizing the extraction method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918469A (en) * 1995-06-30 1997-01-17 Canon Inc Equipment and system for cipher communication and ciphering device
JP2003101528A (en) * 2001-09-19 2003-04-04 Nagano Fujitsu Component Kk Encrypted data transmission/reception method, and system and transmitter for implementing the method
JP4043860B2 (en) * 2002-06-27 2008-02-06 株式会社日立コミュニケーションテクノロジー Encrypted communication device
JP2007295342A (en) * 2006-04-26 2007-11-08 Sharp Corp Cipher communication system
JP4939155B2 (en) * 2006-09-14 2012-05-23 日本放送協会 Shared encryption key generation device and program thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212041A (en) * 1988-02-18 1989-08-25 Hitachi Ltd Cryptographic communication system
JP2001053739A (en) * 1999-08-10 2001-02-23 Zeon Joho System Kk Ciphering communication method
WO2004003839A1 (en) * 2002-07-01 2004-01-08 Shinya Fukui Material containing coding information, method of identification thereof and identification system therefor
JP2010514227A (en) * 2005-12-23 2010-04-30 シグノプティク テクノロジーズ Method for extracting a random signature from a material element and method for generating a decomposition base for realizing the extraction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095724A (en) * 2011-11-30 2017-06-01 シクパ ホルディング ソシエテ アノニムSicpa Holding Sa Marked coating composition and authentication method thereof

Also Published As

Publication number Publication date
JPWO2013015252A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
CN104935626B (en) For effective, secure distribution of digital content system and method
US20210019429A1 (en) Internet of things devices for use with an encryption service
CN104517065B (en) It is used for transmission and stores the method for image, non-transient computer-readable media and be used for transmission equipment with storage file
TW200703018A (en) Content information providing system, content information providing server, content reproduction apparatus, content information providing method, content reproduction method and computer readable storage medium encoded with a computer program
CN101777158B (en) Method and system for secure transaction
CN103295046A (en) Method and device for generating and using safe two-dimensional codes
CN101019371A (en) Time authentication device, time authentication method, computer program, recording medium, integrated circuit, and time authentication system
WO2014044137A1 (en) Communication encryption and decryption method, device and system
CN104735471B (en) The preset technology of safety for digital content protection scheme
CN104994098B (en) Document transmission method and relevant apparatus and Transmission system
JP2018502524A (en) Encryption control for information, information analysis method, system and terminal
CN105162588A (en) Media file encryption/decryption methods and device
JP2011071615A (en) Device for determining password of encrypted file of electronic mail and electronic mail server, and operation control method for them
US20140219452A1 (en) Authentication of a chemical sensor in a portable electronic device
WO2013015252A1 (en) Information transmission terminal
CN113055184B (en) Data encryption and decryption method and device
CN105408884A (en) Data view based on context
CN109691012A (en) The user interface shared for the enabled equity of access control
CN1318934C (en) Data encrypting and deciphering method of data storing device with laminated storing structure
CN110266490A (en) The keyword ciphertext generation method and device of cloud storage data
WO2018059303A1 (en) Method and device for encrypting and decrypting information in short message
CN108055271A (en) Encryption and decryption approaches, storage medium and the electronic equipment of Email
CN102387181B (en) A kind of login method and entering device
Mohammed et al. A New Method Encryption and Decryption.
CN109492427A (en) Online shopping method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525717

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817823

Country of ref document: EP

Kind code of ref document: A1