WO2013015053A1 - Device for producing field-pole magnet and method for producing same - Google Patents

Device for producing field-pole magnet and method for producing same Download PDF

Info

Publication number
WO2013015053A1
WO2013015053A1 PCT/JP2012/065866 JP2012065866W WO2013015053A1 WO 2013015053 A1 WO2013015053 A1 WO 2013015053A1 JP 2012065866 W JP2012065866 W JP 2012065866W WO 2013015053 A1 WO2013015053 A1 WO 2013015053A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet body
magnet
lower mold
mold
upper mold
Prior art date
Application number
PCT/JP2012/065866
Other languages
French (fr)
Japanese (ja)
Inventor
泰久 小池
国朋 石黒
西村 公男
一宏 高市
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013015053A1 publication Critical patent/WO2013015053A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/222Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by pressing, e.g. presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D31/00Shearing machines or shearing devices covered by none or more than one of the groups B23D15/00 - B23D29/00; Combinations of shearing machines
    • B23D31/002Breaking machines, i.e. pre-cutting and subsequent breaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • B28D7/04Accessories specially adapted for use with machines or devices of the preceding groups for supporting or holding work or conveying or discharging work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • B28D7/04Accessories specially adapted for use with machines or devices of the preceding groups for supporting or holding work or conveying or discharging work
    • B28D7/043Accessories specially adapted for use with machines or devices of the preceding groups for supporting or holding work or conveying or discharging work the supporting or holding device being angularly adjustable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Definitions

  • the present invention relates to an apparatus for manufacturing a field pole magnet body disposed in a rotor core of a permanent magnet embedded rotary electric machine and a method for manufacturing the same.
  • an upper punch (upper die) having a notch extending in the magnet width direction, which is a guide for cleaving, is provided in advance in a magnet body having substantially the same size and shape as the rotor slot, and having a contact portion that comes into contact with the magnet body.
  • the lower punch (lower mold), the magnet body is cleaved and divided.
  • the accuracy of the cleaved surface may deteriorate due to abnormal cracking in which the cleaved surface of the magnet piece deviates from the planned cutting surface or becomes bifurcated. This is presumed to occur due to stress other than the cleaving load acting on the magnet body, for example, when the abutment portion of the lower mold or upper mold hits the magnet body at the time of cleaving.
  • the factors that cause stresses other than the cleaving load on the magnet body are due to poor parallelism of the magnet body itself, warpage of the rough material, poor flatness of the rough material (roughness of the rough material surface), etc.
  • the magnet body comes into contact with the lower or upper mold contact portion at one point away from the center in the width direction of the magnet body and is supported in a floating state.
  • Another factor that causes stresses other than the cleaving load on the magnet body is that foreign matter such as fine powder generated during cleaving is caught between the lower mold contact portion and the brittle magnet body. It is also assumed that when the magnet body is cleaved, the magnet body is supported in a floating state by contacting the lower mold contact portion with a foreign object at one point away from the center in the width direction of the magnet body. Can do.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide an apparatus for manufacturing a field pole magnet body disposed on a rotor core of a rotating electrical machine and a method for manufacturing the same, which are suitable for improving the accuracy of a split section.
  • a field pole magnet body manufacturing apparatus places a magnet body on an abutting portion arranged in a lower mold so as to extend in the width direction of the magnet body, and is arranged in parallel with the abutting portion of the lower mold.
  • the magnet body is cleaved by bringing the contact portion of the upper mold into contact with the upper portion of the magnet body and pressing it.
  • at least one of the lower mold contact portion and the upper mold contact portion can be displaced following the surface shape of the magnet body.
  • FIG. 1 is a schematic configuration diagram illustrating a configuration of a main part of a permanent magnet type electric motor to which a magnet body manufactured by a field pole magnet body manufacturing apparatus according to the present embodiment is applied.
  • FIG. 2 is a configuration diagram showing the configuration of the magnet body.
  • FIG. 3 is a schematic configuration diagram of a field pole magnet body manufacturing apparatus according to the first embodiment.
  • FIG. 4 is an enlarged view of a main part of the magnet cleaving apparatus.
  • FIG. 5 is a sectional view taken along line VV in FIG.
  • FIG. 6 is a cross-sectional view showing the operating state of the magnet cleaving device.
  • FIG. 7 is a cross-sectional view showing another operating state of the magnet cleaving device.
  • FIG. 1 is a schematic configuration diagram illustrating a configuration of a main part of a permanent magnet type electric motor to which a magnet body manufactured by a field pole magnet body manufacturing apparatus according to the present embodiment is applied.
  • FIG. 2 is a configuration diagram showing
  • FIG. 8 is a cross-sectional view showing a modification of the magnet cleaving device.
  • FIG. 9 is a cross-sectional view showing another modification of the magnet cleaving apparatus.
  • FIG. 10 is an enlarged view of a main part of the field pole magnet manufacturing apparatus according to the second embodiment.
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG.
  • FIG. 12 is a cross-sectional view showing the operating state of the magnet cleaving device.
  • FIG. 13 is a cross-sectional view showing another operating state of the magnet cleaving device.
  • FIG. 14 is an enlarged view of a main part of the field pole magnet body manufacturing apparatus according to the third embodiment.
  • FIG. 15 is a sectional view taken along line XV-XV in FIG. FIG.
  • FIG. 16 is a cross-sectional view showing an operating state of the magnet cleaving device.
  • FIG. 17 is a cross-sectional view showing another operating state of the magnet cleaving device.
  • FIG. 18 is an explanatory diagram for explaining an abnormal cracking state when the magnet body is cleaved.
  • FIG. 19A is a diagram illustrating an example in which the biting position of the crushed powder is shifted to one side in the width direction on the short side to be cleaved.
  • FIG. 19B is a diagram illustrating an example in the center in the width direction on the short side where the biting position of the crushed powder is cleaved.
  • FIG. 19C is a diagram illustrating an example in which the crushing powder biting position is on the long side to be cleaved.
  • FIG. 1 is a schematic configuration diagram illustrating a configuration of a main part of a permanent magnet type electric motor to which a magnet body manufactured by a field pole magnet body manufacturing apparatus according to the present embodiment is applied.
  • the left diagram is a cross-sectional view of a permanent magnet motor
  • the right diagram is a side view.
  • a permanent magnet embedded type rotary electric machine A (hereinafter, simply referred to as “rotary electric machine”) is arranged in a ring-shaped stator 10 that constitutes a part of a casing (not shown), and coaxially arranged with the stator 10.
  • a cylindrical rotor 20 is arranged in a ring-shaped stator 10 that constitutes a part of a casing (not shown), and coaxially arranged with the stator 10.
  • the stator 10 includes a stator core 11 and a plurality of coils 12.
  • the plurality of coils 12 are accommodated in slots 13 formed at equal angular intervals on the same circumference around the axis O in the stator core 11.
  • the rotor 20 includes a rotor core 21, a rotating shaft 23 that rotates integrally with the rotor core 21, and a plurality of field pole magnet bodies 80.
  • the plurality of field pole magnet bodies 80 are accommodated in slots 22 formed at equal angular intervals on the same circumference around the axis O.
  • the field pole magnet body 80 accommodated in the slot 22 of the rotor 20 is divided into a plurality of parts by splitting the rectangular magnet body 30 along the width direction in plan view in the thickness direction. It is configured as an assembly of magnet pieces 31. More specifically, the field pole magnet body 80 is configured as an aggregate of magnet pieces 31 aligned in a line by bonding the split sections of the plurality of magnet pieces 31 with the resin 32. For example, a resin 32 having a heat resistance of about 200 ° C. is used, and the adjacent magnet pieces 31 are electrically insulated from each other.
  • a notch groove 33 In order to cleave the magnet body 30 into the plurality of magnet pieces 31, it is effective to form a notch groove 33 in advance at a site where the magnet body 30 is to be cleaved.
  • this notch groove 33 is not indispensable. In other words, if it is possible to cleave without providing the notch groove 33, the magnet body 30 may not be provided with the notch groove 33.
  • the notch groove 33 is deeper from the surface and the sharpness of the tip of the notch groove 33 is sharper, the flatness of the cut section when cleaved as the magnet piece 31 is improved.
  • the notch grooves 33 are provided at predetermined intervals in the longitudinal direction of the magnet body 30.
  • a method for forming the notch groove 33 As a method for forming the notch groove 33, a method of forming the magnet body 30 by a groove forming protrusion provided in the mold of the magnet body 30, a method of machining by a dicer, a method of laser beam irradiation, etc. There is.
  • FIG. 3 is a schematic configuration diagram illustrating a magnet body cleaving apparatus that is a field pole magnet body manufacturing apparatus according to the first embodiment
  • FIG. 4 is an enlarged view of a main part of the magnet cleaving apparatus.
  • the magnet cleaving device 40 cleaves the magnet body 30 into a plurality of magnet pieces 31, and cleaves the blade body 61 by pressing the blade 61 against the positioned lower magnet 50 and the positioned magnet body 30.
  • An upper mold 60 is provided.
  • the magnet cleaving device 40 includes a positioning device 70 that sequentially moves the magnet body 30 supported by the lower mold 50 and sequentially positions the planned cleaving surface at the cleaving position.
  • the lower mold 50 that supports and guides the magnet body 30 includes a plurality of protrusions 51 extending on the upper surface corresponding to the extending direction of the cutout grooves 33 of the magnet body 30. On the upper surface of the protrusion 51, the magnet body 30 is supported from below.
  • the lower die 50 includes a through hole 52 that opens downward at a position corresponding to the blade 61 of the upper die 60, and a pair of protrusions 51 serving as contact portions with the magnet body 30 before and after the through hole 52. Is arranged.
  • the ridge 51 that contacts the lower surface on the tip side of the magnet body 30 to be cleaved includes a foreign matter such as crushed powder, and includes the ridge 51. It is configured to be displaceable following the surface shape (in a direction substantially perpendicular to the surface of the magnet body 30).
  • the structure that can be displaced following the surface shape of the magnet body 30, as shown in FIGS. 4 and 5 it is separated from the lower mold 50 and at the center in the width direction of the ridge 51.
  • the shaft 53 arranged parallel to the feeding direction of the magnet body 30 is supported so as to be swingable with respect to the lower mold 50.
  • FIG. 4 is an enlarged view of a main part of the magnet cleaving apparatus
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG.
  • the lower surface of the magnet body 30 has a lower mold due to poor parallelism of the rough material of the magnet body 30, warpage of the rough material, poor flatness of the rough material (roughness of the rough material surface), and the like.
  • the swingable ridge 51 swings following the lower surface of the magnet body 30.
  • foreign matter such as fine powder generated during cleaving is caught between the protrusion 51 of the lower mold 50 and the magnet body 30 which is a brittle material, as shown in FIG.
  • the movable protrusion 51 swings following the lower surface of the magnet body 30 containing foreign matter. For this reason, in any case, the magnet body 30 can be reliably supported by the lower mold 50 without being lifted from the lower mold 50.
  • the upper mold 60 cleaves the positioned magnet body 30, so that the blade 61 that extends corresponding to the extending direction of the notch groove 33 of the magnet body 30 and the magnet spring that suppresses the magnet body 30 from jumping up during cleaving. And an ascent prevention clamp 62.
  • the blade 61 as a contact portion to the magnet body 30 is lowered by the upper mold 60 and is pushed down while bringing the cutting edge into contact with the cleaving position of the magnet body 30, before and after the through hole 52 of the lower mold 50.
  • the magnet body 30 is cleaved by bending by a three-point bend between the pair of protrusions 51.
  • the blade 61 is provided with a sharp cutting edge facing the magnet body 30 arranged in the width direction of the magnet body 30, and in the case where foreign matter such as crushed powder is interposed, the blade 61 has the surface shape of the magnet body 30. It is configured to be able to follow and displace (in a direction substantially perpendicular to the surface of the magnet body 30).
  • the magnet body is separated from the upper mold 60 and is located at the center in the width direction of the blade 61.
  • the upper die 60 is supported so as to be swingable by a shaft 63 arranged in parallel with the feeding direction of 30.
  • the upper surface of the magnet body 30 is inclined with respect to the upper mold 60 due to a poor parallelism of the rough material of the magnet body 30, warpage of the rough material, poor flatness of the rough material (irregularities on the surface of the rough material), and the like. Even so, the swingable blade 61 swings following the upper surface of the magnet body 30. Further, even when foreign matter such as fine powder generated at the time of cleaving is caught between the blade 61 and the magnet body 30 that is a brittle material, the swingable blade 61 of the magnet body 30 containing foreign matter is included. It swings following the top surface.
  • the blade 61 is bent by three-point bending between the pair of protrusions 51 before and after the through hole 52 of the lower die 50 without causing the blade 61 to come into contact with the magnet body 30.
  • the magnet body 30 can be cleaved.
  • the magnet jump-up prevention clamp 62 is formed by a leaf spring whose base is fixed to the upper die 60, and presses the magnet body 30 against the lower die 50 by its spring action, thereby cleaving the magnet body 30 (particularly the magnet on the tip side). It suppresses that the piece 31) jumps up.
  • the positioning device 70 includes a pusher 71 that contacts the rear end of the magnet body 30 in the feeding direction and presses the magnet body 30; a holder 72 that contacts the front end of the magnet body 30 in the feeding direction and holds the magnet body 30; Is provided.
  • the pusher 71 includes a servo motor that pushes out the magnet body 30, and every time the cleaving operation is executed, the pusher 71 is rotated by one pitch of the predetermined length set by the notch groove 33 (adjacent notch grooves 33 By repeating the pushing operation by the distance of (3), the planned cutting surface of the magnet body 30 is sequentially positioned at the cutting position.
  • the holder 72 comes into contact with the front end of the magnet body 30 to apply a braking force to the magnet body 30, and the moving amount of the magnet body 30 pushed out by the pusher 71 is exceeded.
  • the movement of the magnet body 30 is suppressed and the positioning accuracy of the magnet body 30 is improved. For this reason, when the magnet body 30 is cleaved, the holder 72 releases the contact with the front end of the magnet body 30 to allow the movement of the front end side magnet piece 31 cleaved from the magnet body 30.
  • the magnet body 30 is placed on the protrusion 51 of the lower mold 50, and the first cleaving schedule of the magnet body 30 is planned by the pusher 71 and the holder 72 of the positioning device 70.
  • the surface is positioned between the pair of protrusions 51 of the lower mold 50 and the blade 61 of the upper mold 60.
  • the magnet body 30 After the magnet body 30 is positioned, the contact of the holder 72 with the magnet body 30 is released. Next, the upper die 60 is lowered, and the magnet jumping prevention clamp 62 provided on the upper die 60 comes into contact with the upper surface of the magnet body 30, so that the magnet body 30 is elastically attached to the protrusion 51 of the lower die 50. The magnet body 30 is pressed and held so as not to move.
  • the tip (lower end) of the blade 61 comes into contact with the cleaving position of the magnet body 30, and the three points between the pair of protrusions 51 before and after the through hole 52 of the lower die 50.
  • the magnet body 30 is cleaved by being pushed down by bending. At the same time, the magnet body 30 is prevented from jumping up by the magnet jump-up prevention clamp 62.
  • the magnet body 30 is in a state where it floats due to foreign matter, and the lower surface and the upper surface of the magnet body 30 are inclined with respect to the lower mold 50 and the upper mold 60.
  • the upper mold 60 or the lower mold 50 is not attached to the magnet body 30.
  • One-sided contact that contacts only at one point away from the center in the width direction occurs.
  • the distribution of the stress input to the magnet body 30 is non-uniform between the one side and the other side with respect to the center in the width direction of the magnet body 30, and the upper mold 60 and the lower mold 50 are added to the magnet body 30 when cleaved.
  • the torsional load acts, and on the short side (magnet piece 31 side) where the longitudinal dimension is short and the width direction rigidity is low, an abnormal crack having a split cross-section is formed, and the accuracy of the split section deteriorates.
  • the magnet body 30 includes, in addition to the tension 1 in the longitudinal direction of the magnet body 30 that is legitimately generated at the time of cleaving, Tension 2 is also generated in the 30-width direction. This tension 2 generates a torsional action that bends the magnet body 30 in the width direction, causing the magnet body 30 to be cleaved in the longitudinal direction as shown by a broken line in the figure, thereby causing abnormal cracks in the magnet body 30. .
  • the size of the crushed powder (contamination) that causes abnormal cracking in the magnet body 30 is about 20 ⁇ m or more.
  • the size (size) of the crushed powder to be bitten was set to 0.14 [mm] larger than the assumed size.
  • the magnet body 30 side when the crushed powder is caught on the long side to be cut (the magnet body 30 side) (FIG. 19C), the dimension in the longitudinal direction of the magnet body 30 is large, and the rigidity in the width direction of the magnet body 30 itself is large. In some cases, abnormal cracking did not occur in the magnet body 30 on the long side. However, also in this case, the magnet body 30 is supported by the pulverized powder so as to be inclined with respect to the ridge 51, and therefore, on the short side (magnet piece 31 side), the ridge 51 and the blade 61 are connected. It can be confirmed that abnormal cracks are generated with a low probability (25%) due to one piece.
  • the magnet body cleaving apparatus of the present embodiment due to the rough parallelism of the magnet body 30 itself, the warp of the rough material, the flatness of the rough material (unevenness on the surface of the rough material), and the like. Even when the lower surface of the magnet body 30 is inclined with respect to the lower mold 50, the swingable protrusion 51 swings following the lower surface of the magnet body 30.
  • the swingable ridge 51 swings following the lower surface of the magnet body 30 containing foreign matter.
  • the magnet body 30 is not lifted from the lower mold 50 (abutted at one point away from the center in the width direction of the magnet body 30) and is reliably supported by the lower mold 50. be able to. For this reason, the lower mold can be brought into contact with the surface of the magnet body 30 at at least two points that are separated from the center in the width direction of the magnet body 30 by an equal distance. 30 is not supported in a floating state.
  • the swingable blade 61 swings following the tilt of the upper surface of the magnet body 30.
  • the upper die can be brought into contact with the surface of the magnet body 30 at least at two points separated from the center of the magnet body 30 in the width direction by an equal distance.
  • the blade 61 is raised together with the upper mold 60. Since the magnet body 30 is pressed by the magnet jump prevention clamp 62 provided in the upper mold 60, the cleaved portion of the magnet body 30 also rises and returns. When the upper die 60 returns to the initial position, the magnet jumping prevention clamp 62 provided in the upper die 60 also releases the contact with the upper surface of the magnet body 30 and releases the holding of the magnet body 30.
  • the magnet piece 31 at the tip that is cleaved from the magnet body 30 is conveyed by a conveying device (not shown) in the next step, is aligned in the cleaving order, and is bonded and integrated through an adhesive.
  • the pusher 71 of the positioning device 70 pushes the magnet body 30 by one pitch, and the holder 72 contacts the front end of the magnet body 30 to apply a braking force to the magnet body 30. Is positioned between the elevating member 81 and the blade 61 of the upper die 60.
  • the magnet body 30 is cleaved in the same manner as described above, and the operation of moving the magnet body 30 by one pitch by the positioning device 70 is repeated.
  • both the protrusion 51 and the blade 61 that contact the lower surface on the tip side of the magnet body 30 to be cleaved follow the surface shape of the magnet body 30 with respect to the lower mold 50 and the upper mold 60.
  • any one of the protrusion 51 and the blade 61 that are in contact with the lower surface on the tip side of the magnet body 30 to be cut may be swung with respect to the lower die 50 or the upper die 60.
  • only the protrusion 51 that contacts the lower surface of the tip of the magnet body 30 to be cut is supported so as to be swingable with respect to the lower mold 50, and the blade 61 is attached to the upper mold 60.
  • the protruding ridge 51 may be configured to be fixedly supported on the lower mold 50.
  • any one of the protrusion part 51 and the blade 61 which contacts the lower surface of the front end side of the magnet body 30 to be cut will swing and follow the lower surface or upper surface of the magnet body 30. .
  • a bending force biased in the width direction of the magnet body 30 acts by the blade 61 fixed to the upper mold 60 or the lower mold 50 or the protrusion 51 that contacts the lower surface on the tip side of the magnet body 30.
  • the occurrence of the twisting action of bending the magnet body 30 in the width direction is alleviated due to the universal contact with the magnet body 30 from the opposite side. As a result, the occurrence of abnormal cracking of the magnet body 30 can be prevented, and the surface accuracy of the fractured surface can be improved.
  • At least one of the protrusion 51 as the contact portion of the lower die 50 and the blade 61 as the contact portion of the upper die 60 can be displaced following the surface shape of the magnet body 30. .
  • the lower surface and the upper surface of the magnet body 30 have the lower die 50 and the upper die 60 due to the roughness of the magnet body 30 itself, the roughness of the rough material, the warping of the rough material, the poorness of the flatness of the rough material, and foreign matter.
  • the abutment of the abutting portions (the protruding portions 51 and the blades 61) with respect to the magnet body 30 is suppressed, the generation of a twisting action that bends the magnet body 30 in the width direction is alleviated, and the abnormal cracking of the magnet body 30 occurs. Can be prevented, and the surface accuracy of the split section can be improved.
  • FIGS. 10 to 13 show a field pole magnet body manufacturing apparatus and a manufacturing method thereof according to the second embodiment.
  • FIG. 10 is an enlarged view of a main part of the magnet cleaving apparatus according to the second embodiment
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG.
  • the upper blade or the lower-side magnet body short side ridge portion is divided into a plurality of portions in the width direction (extending direction of the notch groove 33), and each of the divided portions is supported in a floating manner. It is what. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • the ridge portion 51 (contact portion) that contacts the lower surface on the tip side of the magnet body 30 to be cleaved is as shown in FIGS.
  • it is separated from the lower mold 50 and divided into a plurality of parts in the width direction.
  • segmented protrusion part 51 is supported by the lower mold
  • segmented rib part 51 is float-supported by the lower mold
  • the lower surface of the magnet body 30 has a lower die due to poor parallelism of the rough material of the magnet body 30, warpage of the rough material, poor flatness of the rough material (roughness of the rough material surface), and the like. Even in a state inclined with respect to 50, each of the divided protrusions 51 moves up and down following the lower surface of the magnet body 30. Further, even when foreign matter such as fine powder generated during cleaving is caught between the protrusion 51 of the lower mold 50 and the magnet body 30 which is a brittle material, as shown in FIG. Each of the projected ridges 51 moves up and down following the lower surface of the magnet body 30 including foreign matter. For this reason, in any case, the magnet body 30 is not lifted from the lower mold 50 (contacted at one point away from the center in the width direction of the magnet body 30) and can be reliably supported by the lower mold 50. it can.
  • the blade 61 provided in the upper mold 60 is provided with a sharp cutting edge directed toward the magnet body 30 arranged in the width direction of the magnet body 30 and separated from the upper mold 60 as shown in FIGS. It is divided into a plurality in the width direction.
  • Each of the divided blades 61 is supported by the upper mold 60 via an elastic body 64 provided at the upper end, for example, a spring or rubber. Therefore, each of the divided blades 61 is floatingly supported by the upper mold 60 so as to be movable upward independently of each other.
  • the upper surface of the magnet body 30 is inclined with respect to the upper mold 60 due to a poor parallelism of the rough material of the magnet body 30, warpage of the rough material, poor flatness of the rough material (irregularities on the surface of the rough material), and the like. Even so, each of the divided blades 61 moves up and down following the upper surface of the magnet body 30. Further, even when foreign matter such as fine powder generated at the time of cleaving is placed on the upper surface of the magnet body 30 that is a brittle material, each of the divided blades 61 follows the upper surface of the magnet body 30 containing the foreign matter. Move up and down. For this reason, in any case, the magnet body 30 can be pressed and pushed down without contact with the magnet body 30.
  • both the protrusion 51 and the blade 61 that contact the lower surface on the front end side of the magnet body 30 to be cleaved are divided into a plurality of parts, which are respectively divided with respect to the lower mold 50 and the upper mold 60.
  • the floating support by the elastic body has been described.
  • either one of the protruding portion 51 and the blade 61 that contacts the lower surface of the tip side of the magnet body 30 to be cut is divided into a plurality of parts, and the elastic body 54 or 64 with respect to the lower mold 50 or the upper mold 60. It is good also as a structure supported by floating.
  • the protrusion 51 that contacts the lower surface on the tip side of the magnet body 30 to be cleaved is divided into a plurality of parts, and is float-supported by the elastic body 54 with respect to the lower mold 50, and the blade 61 is attached to the upper mold 60. It is good also as a structure fixedly supported. Further, only the blade 61 that comes into contact with the upper surface of the magnet body 30 to be cut is divided into a plurality of parts, and is float-supported by the elastic body 64 with respect to the upper mold 60, and is in contact with the lower surface on the tip side of the magnet body 30 to be cut.
  • the protruding ridge 51 may be configured to be fixedly supported on the lower mold 50.
  • either one of the protrusion 51 and the blade 61 that contacts the lower surface of the tip of the magnet body 30 to be cleaved closely contacts the lower surface or the upper surface of the magnet body 30.
  • a bending force biased in the width direction of the magnet body 30 acts by the blade 61 fixed to the upper mold 60 or the lower mold 50 or the protrusion 51 that contacts the lower surface on the tip side of the magnet body 30.
  • the occurrence of the twisting action of bending the magnet body 30 in the width direction is alleviated due to the universal contact with the magnet body 30 from the opposite side. As a result, the occurrence of abnormal cracking of the magnet body 30 can be prevented, and the surface accuracy of the fractured surface can be improved.
  • FIG. 14 is an enlarged view of a main part of the magnet cleaving apparatus according to the third embodiment
  • FIG. 15 is a cross-sectional view taken along line XV-XV in FIG.
  • at least the tip end of the upper blade or the protrusion 51 on the short side of the lower magnet body is an elastic body.
  • symbol is attached
  • the distal end side of the protrusion 51 that contacts the lower surface of the distal end side of the magnet body 30 to be cut is as shown in FIGS.
  • the elastic body 55 is made of, for example, rubber or silicon resin.
  • the lower surface of the magnet body 30 has a lower mold due to poor parallelism of the rough material of the magnet body 30, warpage of the rough material, poor flatness of the rough material (roughness of the rough material surface), and the like. Even in a state of being inclined with respect to 50, the distal end portion of the ridge portion 51 is deformed following the lower surface of the magnet body 30. Further, even when foreign matter such as fine powder generated during cleaving is caught between the protrusion 51 of the lower mold 50 and the magnet body 30 which is a brittle material, as shown in FIG. The distal end portion of the protrusion 51 that contacts the lower surface on the distal end side of the body 30 is deformed following the lower surface of the magnet body 30 including foreign matter. For this reason, in any case, the magnet body 30 is not lifted from the lower mold 50 (contacted at one point away from the center in the width direction of the magnet body 30) and can be reliably supported by the lower mold 50. it can.
  • the tip side of the blade 61 provided on the upper mold 60 is made of an elastic body 65 such as rubber or silicon resin.
  • the upper surface of the magnet body 30 is inclined with respect to the upper mold 60 due to a poor parallelism of the rough material of the magnet body 30, warpage of the rough material, poor flatness of the rough material (irregularities on the surface of the rough material), and the like. Even so, the tip of the blade 61 deforms following the upper surface of the magnet body 30. Further, even when foreign matter such as fine powder generated at the time of cleaving is placed on the upper surface of the magnet body 30 which is a brittle material, the tip of the blade 61 is deformed following the upper surface of the magnet body 30 containing foreign matter. . For this reason, in any case, the magnet body 30 can be pressed and pushed down without contact with the magnet body 30.
  • the lower end 50 and the upper mold 60 are provided with the end portions of both the protruding portion 51 and the blade 61 contacting the lower surface of the end of the magnet body 30 to be cleaved as the elastic bodies 55 and 65.
  • the floating support was explained. However, either one of the protruding portion 51 and the blade 61 that contacts the lower surface of the tip of the magnet body 30 to be cut is floatingly supported on the lower die 50 or the upper die 60 as an elastic body 55 or 65. It is good also as a structure.
  • only the distal end portion of the protrusion 51 that contacts the lower surface on the distal end side of the magnet body 30 to be cut may be floatingly supported on the lower mold 50 as the elastic body 55.
  • only the tip of the blade 61 that contacts the upper surface of the cleaved magnet body 30 may be floatingly supported by the upper mold 60 as the elastic body 65.
  • one of the protrusion 51 and the blade 61 contacting the lower surface of the tip side of the magnet body 30 to be cleaved closely follows the lower surface or upper surface of the magnet body 30 by the elastic bodies 55 and 65. And abut.
  • a bending force biased in the width direction of the magnet body 30 acts by the blade 61 fixed to the upper mold 60 or the lower mold 50 or the protrusion 51 that contacts the lower surface on the tip side of the magnet body 30.
  • the elastic body 55 or 65 contacts the magnet body 30 from the opposite side evenly.
  • the generation of the twisting action of bending the magnet body 30 in the width direction is alleviated.
  • the occurrence of abnormal cracking of the magnet body 30 can be prevented, and the surface accuracy of the fractured surface can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

In this device for producing a field-pole magnet, a magnet is placed on a protrusion as a contact section disposed at a bottom tool in a manner so as to extend in the widthwise direction of the magnet, and the magnet is segmented by causing a blade, which is the contact section of an top tool disposed parallel to the protrusion, to contact and apply pressure to the top of the magnet. The protrusion of the bottom tool and/or the blade of the top tool is capable of displacement tracking the surface shape of the magnet.

Description

界磁極用磁石体の製造装置およびその製造方法Field pole magnet body manufacturing apparatus and method
 本発明は、永久磁石埋込型回転電機のロータコアに配設される界磁極用磁石体の製造装置およびその製造方法に関する。 The present invention relates to an apparatus for manufacturing a field pole magnet body disposed in a rotor core of a permanent magnet embedded rotary electric machine and a method for manufacturing the same.
 永久磁石埋込型回転電機のロータコアに配設される界磁極用磁石体として、平面視矩形の磁石体を割断分割して複数の磁石片とし、この複数の磁石片同士を接着することによって形成する技術が知られている。このように、界磁極用磁石体を複数の磁石片で形成することにより、個々の磁石片の体積を小さくして、作用する磁界の変動により発生する渦電流を低減させるようにしている。これにより、渦電流に伴う界磁極用磁石体の発熱を抑制し、不可逆な熱減磁を防止するようにしている(JP2009-142081A参照)。 Formed by splitting a rectangular magnet body in plan view into a plurality of magnet pieces and bonding the magnet pieces together as a field pole magnet body disposed in the rotor core of a permanent magnet embedded rotating electrical machine The technology to do is known. Thus, by forming the field pole magnet body with a plurality of magnet pieces, the volume of each magnet piece is reduced, and the eddy current generated by the fluctuation of the acting magnetic field is reduced. This suppresses the heat generation of the field pole magnet body caused by the eddy current, and prevents irreversible thermal demagnetization (see JP2009-148201A).
 JP2009-142081Aでは、ロータスロットと略同寸法および同形状の磁石体に、予め割断の目安となる磁石幅方向に延びる切り欠きを設け、磁石体に当接する当接部を有する上パンチ(上型)と下パンチ(下型)で磁石体を挟み込むことによって、磁石体を割断分割している。 In JP2009-148201A, an upper punch (upper die) having a notch extending in the magnet width direction, which is a guide for cleaving, is provided in advance in a magnet body having substantially the same size and shape as the rotor slot, and having a contact portion that comes into contact with the magnet body. ) And the lower punch (lower mold), the magnet body is cleaved and divided.
 ところで、磁石体を磁石片に割断した場合に、磁石片の割断面が割断予定面からずれたり二叉状となる異常割れにより、割断面精度が悪化する場合がある。これは、割断時に、下型若しくは上型の当接部が磁石体に片当りする等により、磁石体に割断荷重以外の応力が作用して生ずるものと推定される。 By the way, when the magnet body is cleaved into magnet pieces, the accuracy of the cleaved surface may deteriorate due to abnormal cracking in which the cleaved surface of the magnet piece deviates from the planned cutting surface or becomes bifurcated. This is presumed to occur due to stress other than the cleaving load acting on the magnet body, for example, when the abutment portion of the lower mold or upper mold hits the magnet body at the time of cleaving.
 このように、磁石体に割断荷重以外の応力が作用する要因としては、磁石体自身の粗材平行度不良、粗材の反り、粗材の平面度不良(粗材表面の凹凸)等により、磁石体の割断時に、磁石体が下型若しくは上型の当接部と磁石体の幅方向中央から離れた一点で当接することにより、浮いた状態で支持されることによると推定できる。また、磁石体に割断荷重以外の応力が作用する他の要因としては、下型の当接部と脆性材である磁石体との間に、割断時に生ずる微粉末などの異物が噛み込まれて、磁石体の割断時に磁石体が、下型の当接部と磁石体の幅方向中央から離れた一点で異物を介して当接することにより、浮いた状態で支持されることによるとも推定することができる。 As described above, the factors that cause stresses other than the cleaving load on the magnet body are due to poor parallelism of the magnet body itself, warpage of the rough material, poor flatness of the rough material (roughness of the rough material surface), etc. When the magnet body is cleaved, it can be presumed that the magnet body comes into contact with the lower or upper mold contact portion at one point away from the center in the width direction of the magnet body and is supported in a floating state. Another factor that causes stresses other than the cleaving load on the magnet body is that foreign matter such as fine powder generated during cleaving is caught between the lower mold contact portion and the brittle magnet body. It is also assumed that when the magnet body is cleaved, the magnet body is supported in a floating state by contacting the lower mold contact portion with a foreign object at one point away from the center in the width direction of the magnet body. Can do.
 本発明は、上記問題点に鑑みてなされたもので、割断面精度の向上に好適な回転電機のロータコアに配設される界磁極用磁石体の製造装置およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and it is an object of the present invention to provide an apparatus for manufacturing a field pole magnet body disposed on a rotor core of a rotating electrical machine and a method for manufacturing the same, which are suitable for improving the accuracy of a split section. And
 一実施形態における界磁極用磁石体の製造装置は、磁石体の幅方向に延びるよう下型に配置された当接部に磁石体を載置して、下型の当接部と平行に配置された上型の当接部を磁石体の上部に接触させて押圧することにより磁石体を割断する。この界磁極用磁石体の製造装置において、下型の当接部と上型の当接部との少なくともいずれか一方は、磁石体の表面形状に追従して変位可能である。 In one embodiment, a field pole magnet body manufacturing apparatus places a magnet body on an abutting portion arranged in a lower mold so as to extend in the width direction of the magnet body, and is arranged in parallel with the abutting portion of the lower mold. The magnet body is cleaved by bringing the contact portion of the upper mold into contact with the upper portion of the magnet body and pressing it. In the field pole magnet body manufacturing apparatus, at least one of the lower mold contact portion and the upper mold contact portion can be displaced following the surface shape of the magnet body.
 本発明の実施形態、本発明の利点については、添付された図面とともに以下に詳細に説明される。 Embodiments of the present invention and advantages of the present invention will be described below in detail with reference to the accompanying drawings.
図1は、本実施形態における界磁極用磁石体の製造装置によって製造された磁石体を適用した永久磁石型電動機の主要部の構成を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating a configuration of a main part of a permanent magnet type electric motor to which a magnet body manufactured by a field pole magnet body manufacturing apparatus according to the present embodiment is applied. 図2は、磁石体の構成を示す構成図である。FIG. 2 is a configuration diagram showing the configuration of the magnet body. 図3は、第1実施形態における界磁極用磁石体の製造装置の概略構成図である。FIG. 3 is a schematic configuration diagram of a field pole magnet body manufacturing apparatus according to the first embodiment. 図4は、磁石割断装置の要部の拡大図である。FIG. 4 is an enlarged view of a main part of the magnet cleaving apparatus. 図5は、図4のV-V線に沿う断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 図6は、磁石割断装置の作動状態を示す断面図である。FIG. 6 is a cross-sectional view showing the operating state of the magnet cleaving device. 図7は、磁石割断装置の別の作動状態を示す断面図である。FIG. 7 is a cross-sectional view showing another operating state of the magnet cleaving device. 図8は、磁石割断装置の変形例を示す断面図である。FIG. 8 is a cross-sectional view showing a modification of the magnet cleaving device. 図9は、磁石割断装置の別の変形例を示す断面図である。FIG. 9 is a cross-sectional view showing another modification of the magnet cleaving apparatus. 図10は、第2実施形態における界磁極用磁石体の製造装置の要部拡大図である。FIG. 10 is an enlarged view of a main part of the field pole magnet manufacturing apparatus according to the second embodiment. 図11は、図10のXI-XI線に沿う断面図である。FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 図12は、磁石割断装置の作動状態を示す断面図である。FIG. 12 is a cross-sectional view showing the operating state of the magnet cleaving device. 図13は、磁石割断装置の別の作動状態を示す断面図である。FIG. 13 is a cross-sectional view showing another operating state of the magnet cleaving device. 図14は、第3実施形態における界磁極用磁石体の製造装置の要部拡大図である。FIG. 14 is an enlarged view of a main part of the field pole magnet body manufacturing apparatus according to the third embodiment. 図15は、図14のXV-XV線に沿う断面図である。FIG. 15 is a sectional view taken along line XV-XV in FIG. 図16は、磁石割断装置の作動状態を示す断面図である。FIG. 16 is a cross-sectional view showing an operating state of the magnet cleaving device. 図17は、磁石割断装置の別の作動状態を示す断面図である。FIG. 17 is a cross-sectional view showing another operating state of the magnet cleaving device. 図18は、磁石体の割断時における異常割れ状態を説明する説明図である。FIG. 18 is an explanatory diagram for explaining an abnormal cracking state when the magnet body is cleaved. 図19Aは、破砕粉末の噛み込み位置が割断される短辺側の幅方向の一方側に片寄っている例を示す図である。FIG. 19A is a diagram illustrating an example in which the biting position of the crushed powder is shifted to one side in the width direction on the short side to be cleaved. 図19Bは、破砕粉末の噛み込み位置が割断される短辺側の幅方向の中央にある例を示す図である。FIG. 19B is a diagram illustrating an example in the center in the width direction on the short side where the biting position of the crushed powder is cleaved. 図19Cは、破砕粉末の噛み込み位置が割断される長辺側にある例を示す図である。FIG. 19C is a diagram illustrating an example in which the crushing powder biting position is on the long side to be cleaved.
 先ず、回転電機のロータコアに配設される界磁極用磁石体について説明する。 First, the field pole magnet body disposed in the rotor core of the rotating electrical machine will be described.
 図1は、本実施形態における界磁極用磁石体の製造装置によって製造された磁石体を適用した永久磁石型電動機の主要部の構成を示す概略構成図である。図1において、左側の図は、永久磁石型電動機の断面図であり、右側の図は、側面図である。図1において、永久磁石埋込型回転電機A(以下、単に「回転電機」という)は、図示しないケーシングの一部を構成する円環形のステータ10と、このステータ10と同軸的に配置された円柱形のロータ20とを備える。 FIG. 1 is a schematic configuration diagram illustrating a configuration of a main part of a permanent magnet type electric motor to which a magnet body manufactured by a field pole magnet body manufacturing apparatus according to the present embodiment is applied. In FIG. 1, the left diagram is a cross-sectional view of a permanent magnet motor, and the right diagram is a side view. In FIG. 1, a permanent magnet embedded type rotary electric machine A (hereinafter, simply referred to as “rotary electric machine”) is arranged in a ring-shaped stator 10 that constitutes a part of a casing (not shown), and coaxially arranged with the stator 10. And a cylindrical rotor 20.
 ステータ10は、ステータコア11と、複数のコイル12とを備える。複数のコイル12は、ステータコア11に軸心Oを中心とした同一円周上に等角度間隔で形成されるスロット13に収設される。 The stator 10 includes a stator core 11 and a plurality of coils 12. The plurality of coils 12 are accommodated in slots 13 formed at equal angular intervals on the same circumference around the axis O in the stator core 11.
 ロータ20は、ロータコア21と、ロータコア21と一体的に回転する回転軸23と、複数の界磁極用磁石体80とを備える。複数の界磁極用磁石体80は、軸心Oを中心とした同一円周上に等角度間隔で形成されるスロット22に収設される。 The rotor 20 includes a rotor core 21, a rotating shaft 23 that rotates integrally with the rotor core 21, and a plurality of field pole magnet bodies 80. The plurality of field pole magnet bodies 80 are accommodated in slots 22 formed at equal angular intervals on the same circumference around the axis O.
 ロータ20のスロット22に収設される界磁極用磁石体80は、図2に示すように、厚み方向の平面視で矩形の磁石体30を幅方向に沿って割断することによって分割した複数の磁石片31の集合体として構成される。より具体的には、界磁極用磁石体80は、複数の磁石片31の割断面同士を樹脂32により接着することによって、一列に整列した磁石片31の集合体として構成される。樹脂32は、例えば200℃程度の耐熱性能を備えるものが使用され、隣接する磁石片31同士を電気的に絶縁する。このため、作用する磁界の変動により発生する渦電流を個々の磁石片31内に留めることにより低減させ、渦電流に伴う界磁極用磁石体80の発熱を抑制し、不可逆な熱減磁を防止する。 As shown in FIG. 2, the field pole magnet body 80 accommodated in the slot 22 of the rotor 20 is divided into a plurality of parts by splitting the rectangular magnet body 30 along the width direction in plan view in the thickness direction. It is configured as an assembly of magnet pieces 31. More specifically, the field pole magnet body 80 is configured as an aggregate of magnet pieces 31 aligned in a line by bonding the split sections of the plurality of magnet pieces 31 with the resin 32. For example, a resin 32 having a heat resistance of about 200 ° C. is used, and the adjacent magnet pieces 31 are electrically insulated from each other. For this reason, the eddy current generated by the fluctuation of the acting magnetic field is reduced by staying in the individual magnet pieces 31, the heat generation of the field pole magnet body 80 due to the eddy current is suppressed, and irreversible thermal demagnetization is prevented. To do.
 磁石体30を複数の磁石片31に割断するために、磁石体30の割断しようとする部位に、予め切り欠き溝33を形成することが有効である。以下では、切り欠き溝33が形成されている磁石体30について説明するが、この切り欠き溝33は必要不可欠なものではない。すなわち、切り欠き溝33を設けなくとも割断できる場合には、磁石体30に切り欠き溝33を設けないようにしてもよい。切り欠き溝33は、表面からの深さが深いほど、また、切り欠き溝33の先端の尖りが鋭いほど、磁石片31として割断した場合の割断面の平面度が向上する。なお、以下では、切り欠き溝33は、磁石体30の長手方向で所定間隔毎に設けられているものとする。 In order to cleave the magnet body 30 into the plurality of magnet pieces 31, it is effective to form a notch groove 33 in advance at a site where the magnet body 30 is to be cleaved. Below, although the magnet body 30 in which the notch groove 33 is formed is demonstrated, this notch groove 33 is not indispensable. In other words, if it is possible to cleave without providing the notch groove 33, the magnet body 30 may not be provided with the notch groove 33. As the notch groove 33 is deeper from the surface and the sharpness of the tip of the notch groove 33 is sharper, the flatness of the cut section when cleaved as the magnet piece 31 is improved. In the following, it is assumed that the notch grooves 33 are provided at predetermined intervals in the longitudinal direction of the magnet body 30.
 切り欠き溝33の形成方法としては、磁石体30の成形型に設けた溝形成用の突条により磁石体30の成形工程で設ける方法、ダイサー等の機械加工による方法、レーザビーム照射による方法等がある。 As a method for forming the notch groove 33, a method of forming the magnet body 30 by a groove forming protrusion provided in the mold of the magnet body 30, a method of machining by a dicer, a method of laser beam irradiation, etc. There is.
 以下、永久磁石埋込型回転電機Aに用いる界磁極用磁石体80の製造装置およびその製造方法を各実施形態に基づいて説明する。 Hereinafter, a manufacturing apparatus and a manufacturing method of the field pole magnet body 80 used in the permanent magnet embedded type rotary electric machine A will be described based on each embodiment.
 (第1実施形態)
 図3は、第1実施形態における界磁極用磁石体の製造装置である磁石体割断装置を示す概略構成図であり、図4は、磁石割断装置の要部の拡大図である。磁石割断装置40は、磁石体30を複数の磁石片31に割断するものであり、磁石体30を支持案内する下型50と、位置決めされた磁石体30にブレード61を押し当てることで割断する上型60と、からなる金型を備える。また、磁石割断装置40は、下型50に支持された磁石体30を順次移動させて、その割断予定面を割断位置に順次位置決めする位置決め装置70を備える。
(First embodiment)
FIG. 3 is a schematic configuration diagram illustrating a magnet body cleaving apparatus that is a field pole magnet body manufacturing apparatus according to the first embodiment, and FIG. 4 is an enlarged view of a main part of the magnet cleaving apparatus. The magnet cleaving device 40 cleaves the magnet body 30 into a plurality of magnet pieces 31, and cleaves the blade body 61 by pressing the blade 61 against the positioned lower magnet 50 and the positioned magnet body 30. An upper mold 60 is provided. The magnet cleaving device 40 includes a positioning device 70 that sequentially moves the magnet body 30 supported by the lower mold 50 and sequentially positions the planned cleaving surface at the cleaving position.
 磁石体30を支持案内する下型50は、上面に磁石体30の切り欠き溝33の延在方向に対応して延びる複数の突条部51を備えている。突条部51の上面において、磁石体30を下方から支持する。下型50は、上型60のブレード61に対応する位置において、下方に開放する貫通穴52を備え、貫通穴52の前後に、磁石体30への当接部としての一対の突条部51が配置されている。 The lower mold 50 that supports and guides the magnet body 30 includes a plurality of protrusions 51 extending on the upper surface corresponding to the extending direction of the cutout grooves 33 of the magnet body 30. On the upper surface of the protrusion 51, the magnet body 30 is supported from below. The lower die 50 includes a through hole 52 that opens downward at a position corresponding to the blade 61 of the upper die 60, and a pair of protrusions 51 serving as contact portions with the magnet body 30 before and after the through hole 52. Is arranged.
 一対の突条部51のうち、割断される磁石体30の先端側の下面に接触する突条部51は、破砕粉末等の異物が介在される場合にはそれも含んで、磁石体30の表面形状に追従して(磁石体30の表面に対して略垂直方向に)変位可能に構成する。本実施形態では、磁石体30の表面形状に追従して変位可能な構造の一形態として、図4,5に示すように、下型50から分離され、突条部51の幅方向中央位置で磁石体30の送り方向と平行に配置された軸53により、下型50に対して揺動可能に支持されている。図4は、磁石割断装置の要部の拡大図であり、図5は、図4のV-V線に沿う断面図である。 Of the pair of ridges 51, the ridge 51 that contacts the lower surface on the tip side of the magnet body 30 to be cleaved includes a foreign matter such as crushed powder, and includes the ridge 51. It is configured to be displaceable following the surface shape (in a direction substantially perpendicular to the surface of the magnet body 30). In the present embodiment, as one form of the structure that can be displaced following the surface shape of the magnet body 30, as shown in FIGS. 4 and 5, it is separated from the lower mold 50 and at the center in the width direction of the ridge 51. The shaft 53 arranged parallel to the feeding direction of the magnet body 30 is supported so as to be swingable with respect to the lower mold 50. FIG. 4 is an enlarged view of a main part of the magnet cleaving apparatus, and FIG. 5 is a cross-sectional view taken along the line VV of FIG.
 このため、磁石体30自身の粗材平行度不良、粗材の反り、粗材の平面度不良(粗材表面の凹凸)等により、図6に示すように、磁石体30の下面が下型50に対して傾いた状態であっても、揺動可能な突条部51が磁石体30の下面に追従して揺動する。また、下型50の突条部51と脆性材である磁石体30との間に、割断時に生ずる微粉末などの異物が噛み込まれた状態となっても、図7に示すように、揺動可能な突条部51が異物を含む磁石体30の下面に追従して揺動する。このため、いずれの場合においても、磁石体30を下型50から浮いた状態とせず、確実に下型50に支持することができる。 For this reason, as shown in FIG. 6, the lower surface of the magnet body 30 has a lower mold due to poor parallelism of the rough material of the magnet body 30, warpage of the rough material, poor flatness of the rough material (roughness of the rough material surface), and the like. Even when tilted with respect to 50, the swingable ridge 51 swings following the lower surface of the magnet body 30. Further, even if foreign matter such as fine powder generated during cleaving is caught between the protrusion 51 of the lower mold 50 and the magnet body 30 which is a brittle material, as shown in FIG. The movable protrusion 51 swings following the lower surface of the magnet body 30 containing foreign matter. For this reason, in any case, the magnet body 30 can be reliably supported by the lower mold 50 without being lifted from the lower mold 50.
 上型60は、位置決めされた磁石体30を割断するため、磁石体30の切り欠き溝33の延在方向に対応して延びるブレード61と、割断時に磁石体30が跳ね上がることを抑制する磁石跳ね上り防止クランプ62と、を備える。磁石体30への当接部としてのブレード61は、上型60により下降されることにより、磁石体30の割断位置に刃先を当接させつつ押下げて、下型50の貫通穴52の前後の一対の突条部51との間で3点曲げにより折曲げて、磁石体30を割断する。ブレード61は、磁石体30に向かう尖った刃先を磁石体30の幅方向に配置して備え、破砕粉末等の異物が介在される場合には、それも含んで、磁石体30の表面形状に追従して(磁石体30の表面に対して略垂直方向に)変位可能に構成する。本実施形態では、磁石体30の表面形状に追従して変位可能な構造の一形態として、図4,5に示すように、上型60から分離され、ブレード61の幅方向中央位置で磁石体30の送り方向と平行に配置された軸63により上型60に対して揺動可能に支持させている。 The upper mold 60 cleaves the positioned magnet body 30, so that the blade 61 that extends corresponding to the extending direction of the notch groove 33 of the magnet body 30 and the magnet spring that suppresses the magnet body 30 from jumping up during cleaving. And an ascent prevention clamp 62. The blade 61 as a contact portion to the magnet body 30 is lowered by the upper mold 60 and is pushed down while bringing the cutting edge into contact with the cleaving position of the magnet body 30, before and after the through hole 52 of the lower mold 50. The magnet body 30 is cleaved by bending by a three-point bend between the pair of protrusions 51. The blade 61 is provided with a sharp cutting edge facing the magnet body 30 arranged in the width direction of the magnet body 30, and in the case where foreign matter such as crushed powder is interposed, the blade 61 has the surface shape of the magnet body 30. It is configured to be able to follow and displace (in a direction substantially perpendicular to the surface of the magnet body 30). In the present embodiment, as one form of a structure that can be displaced following the surface shape of the magnet body 30, as shown in FIGS. 4 and 5, the magnet body is separated from the upper mold 60 and is located at the center in the width direction of the blade 61. The upper die 60 is supported so as to be swingable by a shaft 63 arranged in parallel with the feeding direction of 30.
 このため、磁石体30自身の粗材平行度不良、粗材の反り、粗材の平面度不良(粗材表面の凹凸)等により、磁石体30の上面が上型60に対して傾いた状態であっても、揺動可能なブレード61が磁石体30の上面に追従して揺動する。また、ブレード61と脆性材である磁石体30との間に、割断時に生ずる微粉末などの異物が噛み込まれた状態となっても、揺動可能なブレード61が異物を含む磁石体30の上面に追従して揺動する。このため、いずれの場合においても、磁石体30に対してブレード61を片当りさせることなく、下型50の貫通穴52の前後の一対の突条部51との間で3点曲げにより折曲げて磁石体30を割断することができる。 For this reason, the upper surface of the magnet body 30 is inclined with respect to the upper mold 60 due to a poor parallelism of the rough material of the magnet body 30, warpage of the rough material, poor flatness of the rough material (irregularities on the surface of the rough material), and the like. Even so, the swingable blade 61 swings following the upper surface of the magnet body 30. Further, even when foreign matter such as fine powder generated at the time of cleaving is caught between the blade 61 and the magnet body 30 that is a brittle material, the swingable blade 61 of the magnet body 30 containing foreign matter is included. It swings following the top surface. For this reason, in any case, the blade 61 is bent by three-point bending between the pair of protrusions 51 before and after the through hole 52 of the lower die 50 without causing the blade 61 to come into contact with the magnet body 30. Thus, the magnet body 30 can be cleaved.
 磁石跳ね上り防止クランプ62は、基部が上型60に固定された板ばねにより形成され、磁石体30をそのばね作用により下型50に押付けて、割断された磁石体30(特に先端側の磁石片31)が跳ね上がることを抑制する。 The magnet jump-up prevention clamp 62 is formed by a leaf spring whose base is fixed to the upper die 60, and presses the magnet body 30 against the lower die 50 by its spring action, thereby cleaving the magnet body 30 (particularly the magnet on the tip side). It suppresses that the piece 31) jumps up.
 位置決め装置70は、磁石体30の送り方向の後端に当接して磁石体30を押圧するプッシャ71と、磁石体30の送り方向の前端に当接して磁石体30をホールドするホルダー72と、を備える。プッシャ71は、磁石体30を押出すサーボモータを備え、割断動作が実行される毎に、磁石体30を切り欠き溝33により設定された所定長さの1ピッチ分(隣り合う切り欠き溝33の距離分)だけ押出す動作を繰返すことにより、磁石体30の割断予定面を割断位置に順次位置決めする。 The positioning device 70 includes a pusher 71 that contacts the rear end of the magnet body 30 in the feeding direction and presses the magnet body 30; a holder 72 that contacts the front end of the magnet body 30 in the feeding direction and holds the magnet body 30; Is provided. The pusher 71 includes a servo motor that pushes out the magnet body 30, and every time the cleaving operation is executed, the pusher 71 is rotated by one pitch of the predetermined length set by the notch groove 33 (adjacent notch grooves 33 By repeating the pushing operation by the distance of (3), the planned cutting surface of the magnet body 30 is sequentially positioned at the cutting position.
 ホルダー72は、プッシャ71により1ピッチ分だけ押出される度に、磁石体30の前端に接触して磁石体30に制動力を加えて、磁石体30がプッシャ71により押出された移動量を超えて移動することを抑制し、磁石体30の位置決め精度を向上させるよう作用する。このため、ホルダー72は、磁石体30の割断時には、磁石体30の前端への接触を解除して、磁石体30から割断された前端側磁石片31の移動を許容するようにしている。 Each time the holder 72 is pushed out by one pitch by the pusher 71, the holder 72 comes into contact with the front end of the magnet body 30 to apply a braking force to the magnet body 30, and the moving amount of the magnet body 30 pushed out by the pusher 71 is exceeded. The movement of the magnet body 30 is suppressed and the positioning accuracy of the magnet body 30 is improved. For this reason, when the magnet body 30 is cleaved, the holder 72 releases the contact with the front end of the magnet body 30 to allow the movement of the front end side magnet piece 31 cleaved from the magnet body 30.
 以上の構成になる磁石体割断装置においては、下型50の突条部51上に磁石体30が載置され、位置決め装置70のプッシャ71とホルダー72とにより、磁石体30の最初の割断予定面が、下型50の一対の突条部51間と上型60のブレード61との間に位置決めされる。 In the magnet body cleaving device having the above-described configuration, the magnet body 30 is placed on the protrusion 51 of the lower mold 50, and the first cleaving schedule of the magnet body 30 is planned by the pusher 71 and the holder 72 of the positioning device 70. The surface is positioned between the pair of protrusions 51 of the lower mold 50 and the blade 61 of the upper mold 60.
 磁石体30の位置決め後に、ホルダー72の磁石体30への接触が解除される。次いで、上型60が下降され、上型60に設けられている磁石跳ね上り防止クランプ62が磁石体30の上面に接触して、磁石体30を弾性的に下型50の突条部51に押圧して、磁石体30が移動しないように保持する。 After the magnet body 30 is positioned, the contact of the holder 72 with the magnet body 30 is released. Next, the upper die 60 is lowered, and the magnet jumping prevention clamp 62 provided on the upper die 60 comes into contact with the upper surface of the magnet body 30, so that the magnet body 30 is elastically attached to the protrusion 51 of the lower die 50. The magnet body 30 is pressed and held so as not to move.
 上型60の更なる下降により、ブレード61の先端(下端)が磁石体30の割断位置に当接して、下型50の貫通穴52の前後の一対の突条部51との間で3点曲げにより押下げて、磁石体30を割断する。同時に、磁石体30は、磁石跳ね上り防止クランプ62により跳ね上がることを抑制される。 As the upper die 60 is further lowered, the tip (lower end) of the blade 61 comes into contact with the cleaving position of the magnet body 30, and the three points between the pair of protrusions 51 before and after the through hole 52 of the lower die 50. The magnet body 30 is cleaved by being pushed down by bending. At the same time, the magnet body 30 is prevented from jumping up by the magnet jump-up prevention clamp 62.
 ところで、一対の突条部51が下型50に固定され、かつ、ブレード61が上型60に固定される場合には、磁石体30自身の粗材平行度不良、粗材の反り、粗材の平面度不良(粗材表面の凹凸)等により、磁石体30の下面や上面が下型50や上型60に対して傾いた状態となる。また、下型50の一対の突条部51と磁石体30との間に、割断時に生ずる破砕粉末などの異物が噛み込まれると、図18に示すように、下型50に対して磁石体30が異物により浮いた状態となり、磁石体30の下面や上面が下型50や上型60に対して傾いた状態となる。このように、磁石体30の下面や上面が下型50や上型60に対して傾いた状態で、金型により磁石体30を割断した時には、上型60若しくは下型50が磁石体30の幅方向中央から離れた一点でのみ当接する片当りが発生する。この結果、磁石体30に入力する応力の分布が、磁石体30の幅方向中央を境とした一方側と他方側とで不均一となり、割断時の磁石体30に上型60と下型50による捩り荷重が作用し、長手方向の寸法が短く幅方向の剛性が低い短辺側(磁石片31側)において、割断面が二叉状となる異常割れを生じ、割断面精度が悪化する。 By the way, when a pair of protrusion 51 is fixed to the lower mold | type 50 and the braid | blade 61 is fixed to the upper mold | type 60, the coarse parallelism defect of the magnet body 30 itself, a rough warp of a rough material, a rough material The lower surface and the upper surface of the magnet body 30 are inclined with respect to the lower mold 50 and the upper mold 60 due to poor flatness (irregularities on the surface of the rough material). When foreign matter such as crushed powder generated at the time of cleaving is caught between the pair of protrusions 51 of the lower mold 50 and the magnet body 30, as shown in FIG. 30 is in a state where it floats due to foreign matter, and the lower surface and the upper surface of the magnet body 30 are inclined with respect to the lower mold 50 and the upper mold 60. As described above, when the magnet body 30 is cleaved by the mold while the lower surface and the upper surface of the magnet body 30 are inclined with respect to the lower mold 50 and the upper mold 60, the upper mold 60 or the lower mold 50 is not attached to the magnet body 30. One-sided contact that contacts only at one point away from the center in the width direction occurs. As a result, the distribution of the stress input to the magnet body 30 is non-uniform between the one side and the other side with respect to the center in the width direction of the magnet body 30, and the upper mold 60 and the lower mold 50 are added to the magnet body 30 when cleaved. The torsional load acts, and on the short side (magnet piece 31 side) where the longitudinal dimension is short and the width direction rigidity is low, an abnormal crack having a split cross-section is formed, and the accuracy of the split section deteriorates.
 即ち、異物が下型50に噛み込まれた状態を示す図18を用いて説明すると、磁石体30には、割断時に正当に生ずる磁石体30長手方向の張力1の他に、異物により磁石体30幅方向にも張力2が発生する。この張力2は、磁石体30を幅方向に折曲げる捩り作用を発生させ、図中の破線で示すように、磁石体30を長手方向にも割断させて、磁石体30に異常割れを発生させる。なお、このように、磁石体30に異常割れを引き起こす破砕粉末(コンタミ)の大きさは、約20μm以上である。 That is, a description will be given with reference to FIG. 18 showing a state in which a foreign object is caught in the lower mold 50. The magnet body 30 includes, in addition to the tension 1 in the longitudinal direction of the magnet body 30 that is legitimately generated at the time of cleaving, Tension 2 is also generated in the 30-width direction. This tension 2 generates a torsional action that bends the magnet body 30 in the width direction, causing the magnet body 30 to be cleaved in the longitudinal direction as shown by a broken line in the figure, thereby causing abnormal cracks in the magnet body 30. . As described above, the size of the crushed powder (contamination) that causes abnormal cracking in the magnet body 30 is about 20 μm or more.
 ところで、下型50の突条部51と磁石体30との間に破砕粉末が噛み込まれた場合に、その破砕粉末の噛み込み位置に応じて、磁石体30の割断時における異常割れの発生率がどのように変化するかを確認した。破砕粉末の噛み込み位置としては、割断される短辺側(磁石片31側)の幅方向の一方側に片寄る場合(図19A)、割断される短辺側(磁石片31側)の幅方向の中央にある場合(図19B)、割断される長辺側(磁石体30側)にある場合(図19C)を想定した。また、噛み込まれる破砕粉末の大きさ(寸法)としては、想定される大きさより、0.14[mm]と、大きくした。上記した各場合について、複数回の割断実験を実行した結果、図19Aの場合は、略100%の磁石体30において異常割れが発生したが、図19Bの場合は、磁石体30に異常割れは発生しなかった。また、図19Cの場合は、略25%の磁石体30において異常割れが発生した。 By the way, when the crushed powder is caught between the protrusion 51 of the lower mold 50 and the magnet body 30, the occurrence of abnormal cracking when the magnet body 30 is cleaved according to the biting position of the crushed powder. We confirmed how the rate changed. As the biting position of the crushed powder, when it is shifted to one side in the width direction of the short side to be cut (magnet piece 31 side) (FIG. 19A), the width direction of the short side to be cut (magnet piece 31 side) The case where it exists in the center (FIG. 19B) and the case where it exists in the long side (magnet body 30 side) to be cut (FIG. 19C) was assumed. Further, the size (size) of the crushed powder to be bitten was set to 0.14 [mm] larger than the assumed size. As a result of performing a plurality of cleaving experiments for each of the cases described above, in the case of FIG. 19A, abnormal cracks occurred in approximately 100% of the magnet body 30, but in the case of FIG. 19B, abnormal cracks occurred in the magnet body 30. Did not occur. In the case of FIG. 19C, abnormal cracks occurred in approximately 25% of the magnet body 30.
 上記結果を考察するに、割断される短辺側(磁石片31側)の幅方向の一方側に片寄った位置に破砕粉末が噛み込まれた場合(図19A)には、割断される磁石片31の長手方向の寸法が小さく、磁石片31自体の幅方向の剛性が低いことから、異常割れが確実に発生する結果となっている。しかし、割断される短辺側(磁石片31側)の幅方向の中央位置に破砕粉末が噛み込まれた場合(図19B)には、割断される磁石片31自体の幅方向の剛性が低いが、磁石片31が破砕粉末により幅方向中央位置で支持されるため、上記片当りがなく、異常割れが発生しない結果となる。また、割断される長辺側(磁石体30側)に破砕粉末が噛み込まれた場合(図19C)には、磁石体30長手方向の寸法が大きく、磁石体30自体の幅方向の剛性が高いこともあり、長辺側の磁石体30には異常割れが発生しなかった。しかし、この場合においても、磁石体30が破砕粉末により、突条部51に対して傾いて支持されるため、短辺側(磁石片31側)には、突条部51及びブレード61との片当りにより、異常割れが低い確率(25%)により発生することが確認できる。 In consideration of the above results, when the crushed powder is bitten at a position shifted to one side in the width direction on the short side (magnet piece 31 side) to be cleaved (FIG. 19A), the magnet piece to be cleaved. Since the longitudinal dimension of 31 is small and the rigidity of the magnet piece 31 itself in the width direction is low, abnormal cracks are reliably generated. However, when the crushed powder is caught in the center position in the width direction on the short side (magnet piece 31 side) to be cut (FIG. 19B), the rigidity in the width direction of the cut magnet piece 31 itself is low. However, since the magnet piece 31 is supported by the crushed powder at the center in the width direction, there is no contact with the piece, resulting in no abnormal cracking. Further, when the crushed powder is caught on the long side to be cut (the magnet body 30 side) (FIG. 19C), the dimension in the longitudinal direction of the magnet body 30 is large, and the rigidity in the width direction of the magnet body 30 itself is large. In some cases, abnormal cracking did not occur in the magnet body 30 on the long side. However, also in this case, the magnet body 30 is supported by the pulverized powder so as to be inclined with respect to the ridge 51, and therefore, on the short side (magnet piece 31 side), the ridge 51 and the blade 61 are connected. It can be confirmed that abnormal cracks are generated with a low probability (25%) due to one piece.
 しかしながら、本実施形態の磁石体割断装置では、磁石体30自身の粗材平行度不良、粗材の反り、粗材の平面度不良(粗材表面の凹凸)等により、図6に示すように、磁石体30の下面が下型50に対して傾いた状態であっても、揺動可能な突条部51が磁石体30の下面に追従して揺動する。 However, in the magnet body cleaving apparatus of the present embodiment, as shown in FIG. 6, due to the rough parallelism of the magnet body 30 itself, the warp of the rough material, the flatness of the rough material (unevenness on the surface of the rough material), and the like. Even when the lower surface of the magnet body 30 is inclined with respect to the lower mold 50, the swingable protrusion 51 swings following the lower surface of the magnet body 30.
 また、本実施形態の磁石体割断装置では、下型50の一対の突条部51と脆性材である磁石体30との間に、割断時に生ずる破砕粉末などの異物が噛み込まれる場合でも、図7に示すように、揺動可能な突条部51が異物を含む磁石体30の下面に追従して揺動する。 Further, in the magnet cleaving apparatus of the present embodiment, even when foreign matter such as crushed powder generated during cleaving is caught between the pair of protrusions 51 of the lower mold 50 and the magnet body 30 that is a brittle material, As shown in FIG. 7, the swingable ridge 51 swings following the lower surface of the magnet body 30 containing foreign matter.
 以上のように、いずれの場合においても、磁石体30を下型50から浮いた状態(磁石体30の幅方向中央から離れた一点で当接する状態)とせず、確実に下型50に支持することができる。このため、下型が磁石体30の表面に対して、少なくとも磁石体30の幅方向中央から均等な距離だけ離れた二点で当接する状態とすることができ、下型50に対して磁石体30が浮いた状態で支持されることがない。 As described above, in any case, the magnet body 30 is not lifted from the lower mold 50 (abutted at one point away from the center in the width direction of the magnet body 30) and is reliably supported by the lower mold 50. be able to. For this reason, the lower mold can be brought into contact with the surface of the magnet body 30 at at least two points that are separated from the center in the width direction of the magnet body 30 by an equal distance. 30 is not supported in a floating state.
 即ち、磁石体30自身の粗材平行度不良、粗材の反り、粗材の平面度不良(粗材表面の凹凸)等や、下型50の突条部51との間に異物が噛み込まれる等により、磁石体30の上面が上型60に対して傾いた状態であっても、揺動可能なブレード61が磁石体30の上面の傾きに追従して揺動する。このため、上型が磁石体30の表面に対して、少なくとも磁石体30の幅方向中央から均等な距離だけ離れた二点で当接する状態とすることができる。これにより、割断時に磁石体30に発生する幅方向の異常な張力や捩り荷重を抑制でき、上記した磁石体30の異常割れの発生を防止することができ、割断面の面精度を向上させることができる。 That is, foreign matter is caught between the rough material parallelism failure of the magnet body 30 itself, the warp of the rough material, the poor flatness of the rough material (roughness of the rough material surface), and the protrusion 51 of the lower mold 50. Thus, even when the upper surface of the magnet body 30 is tilted with respect to the upper mold 60, the swingable blade 61 swings following the tilt of the upper surface of the magnet body 30. For this reason, the upper die can be brought into contact with the surface of the magnet body 30 at least at two points separated from the center of the magnet body 30 in the width direction by an equal distance. Thereby, the abnormal tension and torsional load in the width direction generated in the magnet body 30 at the time of cleaving can be suppressed, the occurrence of abnormal cracking of the magnet body 30 described above can be prevented, and the surface accuracy of the fractured surface can be improved. Can do.
 割断後に、上型60と共にブレード61が上昇される。磁石体30は、上型60に設けられている磁石跳ね上り防止クランプ62により押えられているため、磁石体30の割断部分も上昇復帰する。上型60が初期位置に復帰すると、上型60に設けられている磁石跳ね上り防止クランプ62も磁石体30の上面への接触を解除して、磁石体30の保持を解除する。磁石体30から割断された先端の磁石片31は、次工程で図示しない搬送装置により搬送され、割断順に整列されて、接着剤を介して接着されて一体化される。 After cutting, the blade 61 is raised together with the upper mold 60. Since the magnet body 30 is pressed by the magnet jump prevention clamp 62 provided in the upper mold 60, the cleaved portion of the magnet body 30 also rises and returns. When the upper die 60 returns to the initial position, the magnet jumping prevention clamp 62 provided in the upper die 60 also releases the contact with the upper surface of the magnet body 30 and releases the holding of the magnet body 30. The magnet piece 31 at the tip that is cleaved from the magnet body 30 is conveyed by a conveying device (not shown) in the next step, is aligned in the cleaving order, and is bonded and integrated through an adhesive.
 次いで、位置決め装置70のプッシャ71により、磁石体30を1ピッチ分だけ押出すと共に、ホルダー72により、磁石体30の前端に接触して磁石体30に制動力を加えて、磁石体30の次の割断予定面を、昇降部材81と上型60のブレード61との間に位置決めする。 Next, the pusher 71 of the positioning device 70 pushes the magnet body 30 by one pitch, and the holder 72 contacts the front end of the magnet body 30 to apply a braking force to the magnet body 30. Is positioned between the elevating member 81 and the blade 61 of the upper die 60.
 そして、上型60の下降により、前記したと同様に磁石体30を割断し、位置決め装置70により磁石体30を1ピッチ分だけ移動させる動作が繰返される。 Then, when the upper die 60 is lowered, the magnet body 30 is cleaved in the same manner as described above, and the operation of moving the magnet body 30 by one pitch by the positioning device 70 is repeated.
 なお、上記実施形態において、割断される磁石体30の先端側の下面に接触する突条部51とブレード61との両方を下型50及び上型60に対して磁石体30の表面形状に追従して揺動するものについて説明した。しかし、割断される磁石体30の先端側の下面に接触する突条部51とブレード61とのいずれか一方を、下型50若しくは上型60に対して揺動するようにしてもよい。例えば、図8に示すように、割断される磁石体30の先端側の下面に接触する突条部51のみを下型50に対して揺動可能に支持させ、ブレード61は、上型60に固定支持する構成としてもよい。また、図9に示すように、割断される磁石体30の上面に接触するブレード61のみを上型60に対して揺動可能に支持させ、割断される磁石体30の先端側の下面に接触する突条部51は、下型50に固定支持する構成としてもよい。 In the above-described embodiment, both the protrusion 51 and the blade 61 that contact the lower surface on the tip side of the magnet body 30 to be cleaved follow the surface shape of the magnet body 30 with respect to the lower mold 50 and the upper mold 60. As described above, what swings is described. However, any one of the protrusion 51 and the blade 61 that are in contact with the lower surface on the tip side of the magnet body 30 to be cut may be swung with respect to the lower die 50 or the upper die 60. For example, as shown in FIG. 8, only the protrusion 51 that contacts the lower surface of the tip of the magnet body 30 to be cut is supported so as to be swingable with respect to the lower mold 50, and the blade 61 is attached to the upper mold 60. It is good also as a structure fixedly supported. Further, as shown in FIG. 9, only the blade 61 that contacts the upper surface of the magnet body 30 to be cut is supported so as to be swingable with respect to the upper mold 60, and contacts the lower surface of the tip side of the magnet body 30 to be cut. The protruding ridge 51 may be configured to be fixedly supported on the lower mold 50.
 このようにすると、割断される磁石体30の先端側の下面に接触する突条部51とブレード61とのいずれか一方は、磁石体30の下面若しくは上面に追従して揺動して当接する。このため、上型60若しくは下型50に固定されたブレード61若しくは磁石体30の先端側の下面に接触する突条部51により、磁石体30の幅方向に偏った折曲げ力が作用しても、反対側よりの磁石体30への万遍ない当接により、磁石体30に幅方向に折曲げる捩り作用の発生が緩和される。結果として、磁石体30の異常割れの発生を防止することができ、割断面の面精度を向上させることができる。 If it does in this way, any one of the protrusion part 51 and the blade 61 which contacts the lower surface of the front end side of the magnet body 30 to be cut will swing and follow the lower surface or upper surface of the magnet body 30. . For this reason, a bending force biased in the width direction of the magnet body 30 acts by the blade 61 fixed to the upper mold 60 or the lower mold 50 or the protrusion 51 that contacts the lower surface on the tip side of the magnet body 30. However, the occurrence of the twisting action of bending the magnet body 30 in the width direction is alleviated due to the universal contact with the magnet body 30 from the opposite side. As a result, the occurrence of abnormal cracking of the magnet body 30 can be prevented, and the surface accuracy of the fractured surface can be improved.
 本実施形態においては、以下に記載する効果を奏することができる。 In the present embodiment, the following effects can be achieved.
 (A)下型50の当接部としての突条部51と上型60の当接部としてのブレード61との少なくともいずれか一方を、磁石体30の表面形状に追従して変位可能とした。このため、磁石体30自身の粗材平行度不良、粗材の反り、粗材の平面度不良等や異物が噛み込まれることにより、磁石体30の下面や上面が下型50や上型60に対して傾いた状態であっても、磁石体30に接触する突条部51と上型60のブレード61との少なくともいずれか一方は、磁石体30の下面若しくは上面に万遍なく当接する。このため、磁石体30に対する当接部(突条部51、ブレード61)の片当りを抑制して、磁石体30を幅方向に折曲げる捩り作用の発生を緩和し、磁石体30の異常割れの発生を防止することができ、割断面の面精度を向上させることができる。 (A) At least one of the protrusion 51 as the contact portion of the lower die 50 and the blade 61 as the contact portion of the upper die 60 can be displaced following the surface shape of the magnet body 30. . For this reason, the lower surface and the upper surface of the magnet body 30 have the lower die 50 and the upper die 60 due to the roughness of the magnet body 30 itself, the roughness of the rough material, the warping of the rough material, the poorness of the flatness of the rough material, and foreign matter. Even when the ridge portion 51 is inclined with respect to the magnet body 30, at least one of the protrusion 51 that contacts the magnet body 30 and the blade 61 of the upper mold 60 uniformly contacts the lower surface or the upper surface of the magnet body 30. For this reason, the abutment of the abutting portions (the protruding portions 51 and the blades 61) with respect to the magnet body 30 is suppressed, the generation of a twisting action that bends the magnet body 30 in the width direction is alleviated, and the abnormal cracking of the magnet body 30 occurs. Can be prevented, and the surface accuracy of the split section can be improved.
 (B)下型50の当接部としての突条部51のうちの磁石片31として割断される先端側の下面に接触する突条部51と上型60の当接部としてのブレード61との少なくともいずれか一方を、下型50若しくは上型60から分離させる。そして、分離させた突条部51若しくはブレード61の幅方向中央部を下型50若しくは上型60に支持させて、揺動可能とした。このため、幅方向中央部による支持という簡単な構造により、突条部51若しくはブレード61を確実に磁石体30の上下面に追従させつつ割断荷重を磁石体30に確実に付与することができる。 (B) Of the protrusion 51 as the contact portion of the lower mold 50, the protrusion 51 that contacts the lower surface on the tip side that is cleaved as the magnet piece 31, and the blade 61 as the contact portion of the upper mold 60, Is separated from the lower mold 50 or the upper mold 60. Then, the separated protrusion 51 or blade 61 is supported by the lower die 50 or the upper die 60 in the width direction central portion so as to be swingable. For this reason, it is possible to reliably apply a cleaving load to the magnet body 30 while the ridges 51 or the blades 61 are made to follow the upper and lower surfaces of the magnet body 30 with a simple structure of support by the central portion in the width direction.
 (第2実施形態)
 図10~図13は、第2実施形態における界磁極用磁石体の製造装置およびその製造方法を示す。図10は、第2実施形態における磁石割断装置の要部の拡大図、図11は、図10のXI-XI線に沿う断面図である。本実施形態においては、上型のブレード若しくは下型の磁石体短辺側の突条部を幅方向(切り欠き溝33の延在方向)において複数に分割し、分割した夫々を浮動支持する構成としたものである。なお、第1実施形態の装置と同一の構成部分には、同一符号を付してその説明を省略ないし簡略化する。
(Second Embodiment)
FIGS. 10 to 13 show a field pole magnet body manufacturing apparatus and a manufacturing method thereof according to the second embodiment. FIG. 10 is an enlarged view of a main part of the magnet cleaving apparatus according to the second embodiment, and FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. In the present embodiment, the upper blade or the lower-side magnet body short side ridge portion is divided into a plurality of portions in the width direction (extending direction of the notch groove 33), and each of the divided portions is supported in a floating manner. It is what. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
 本実施形態では、下型50の一対の突条部51のうち、割断される磁石体30の先端側の下面に接触する突条部51(当接部)は、図10,11に示すように、下型50から分離されると共に、幅方向において複数に分割されている。そして、分割された夫々の突条部51は、下端に設けた弾性体54、例えば、ばねやゴム等を介して、下型50に支持されている。このため、分割された夫々の突条部51は、夫々他とは独立して下方に移動可能に下型50に浮動支持されている。 In the present embodiment, of the pair of ridge portions 51 of the lower mold 50, the ridge portion 51 (contact portion) that contacts the lower surface on the tip side of the magnet body 30 to be cleaved is as shown in FIGS. In addition, it is separated from the lower mold 50 and divided into a plurality of parts in the width direction. And each divided | segmented protrusion part 51 is supported by the lower mold | type 50 via the elastic body 54 provided in the lower end, for example, a spring, rubber | gum, etc. For this reason, each divided | segmented rib part 51 is float-supported by the lower mold | type 50 so that it can move below independently of each other.
 このため、磁石体30自身の粗材平行度不良、粗材の反り、粗材の平面度不良(粗材表面の凹凸)等により、図12に示すように、磁石体30の下面が下型50に対して傾いた状態であっても、分割された夫々の突条部51は磁石体30の下面に追従して上下動する。また、下型50の突条部51と脆性材である磁石体30との間に、割断時に生ずる微粉末などの異物が噛み込まれた状態となっても、図13に示すように、分割された夫々の突条部51は、異物を含む磁石体30の下面に追従して上下動する。このため、いずれの場合においても、磁石体30を下型50から浮いた状態(磁石体30の幅方向中央から離れた一点で当接する状態)とせず、確実に下型50に支持することができる。 For this reason, as shown in FIG. 12, the lower surface of the magnet body 30 has a lower die due to poor parallelism of the rough material of the magnet body 30, warpage of the rough material, poor flatness of the rough material (roughness of the rough material surface), and the like. Even in a state inclined with respect to 50, each of the divided protrusions 51 moves up and down following the lower surface of the magnet body 30. Further, even when foreign matter such as fine powder generated during cleaving is caught between the protrusion 51 of the lower mold 50 and the magnet body 30 which is a brittle material, as shown in FIG. Each of the projected ridges 51 moves up and down following the lower surface of the magnet body 30 including foreign matter. For this reason, in any case, the magnet body 30 is not lifted from the lower mold 50 (contacted at one point away from the center in the width direction of the magnet body 30) and can be reliably supported by the lower mold 50. it can.
 また、上型60に設けるブレード61は、磁石体30に向かう尖った刃先を磁石体30の幅方向に配置して備え、図10,11に示すように、上型60から分離されると共に、幅方向において複数に分割されている。そして、分割された夫々のブレード61は、上端に設けた弾性体64、例えば、ばねやゴム等を介して、上型60に支持されている。このため、分割された夫々のブレード61は、夫々他とは独立して上方に移動可能に上型60に浮動支持されている。 Further, the blade 61 provided in the upper mold 60 is provided with a sharp cutting edge directed toward the magnet body 30 arranged in the width direction of the magnet body 30 and separated from the upper mold 60 as shown in FIGS. It is divided into a plurality in the width direction. Each of the divided blades 61 is supported by the upper mold 60 via an elastic body 64 provided at the upper end, for example, a spring or rubber. Therefore, each of the divided blades 61 is floatingly supported by the upper mold 60 so as to be movable upward independently of each other.
 このため、磁石体30自身の粗材平行度不良、粗材の反り、粗材の平面度不良(粗材表面の凹凸)等により、磁石体30の上面が上型60に対して傾いた状態であっても、分割された夫々のブレード61は、磁石体30の上面に追従して上下動する。また、脆性材である磁石体30の上面に、割断時に生ずる微粉末などの異物が乗った状態となっても、分割された夫々のブレード61は、異物を含む磁石体30の上面に追従して上下動する。このため、いずれの場合においても、磁石体30に片当りすることなく、万遍なく当接して押下げることができる。 For this reason, the upper surface of the magnet body 30 is inclined with respect to the upper mold 60 due to a poor parallelism of the rough material of the magnet body 30, warpage of the rough material, poor flatness of the rough material (irregularities on the surface of the rough material), and the like. Even so, each of the divided blades 61 moves up and down following the upper surface of the magnet body 30. Further, even when foreign matter such as fine powder generated at the time of cleaving is placed on the upper surface of the magnet body 30 that is a brittle material, each of the divided blades 61 follows the upper surface of the magnet body 30 containing the foreign matter. Move up and down. For this reason, in any case, the magnet body 30 can be pressed and pushed down without contact with the magnet body 30.
 なお、上記実施形態において、割断される磁石体30の先端側の下面に接触する突条部51とブレード61との両方を複数に分割して、その夫々を下型50及び上型60に対して弾性体により浮動支持するものについて説明した。しかし、割断される磁石体30の先端側の下面に接触する突条部51とブレード61とのいずれか一方を複数に分割して、下型50若しくは上型60に対して弾性体54若しくは64により浮動支持する構成としてもよい。例えば、割断される磁石体30の先端側の下面に接触する突条部51のみを複数に分割して、下型50に対して弾性体54により浮動支持させ、ブレード61は、上型60に固定支持する構成としてもよい。また、割断される磁石体30の上面に接触するブレード61のみを複数に分割して、上型60に対して弾性体64により浮動支持させ、割断される磁石体30の先端側の下面に接触する突条部51は、下型50に固定支持する構成としてもよい。 In the above-described embodiment, both the protrusion 51 and the blade 61 that contact the lower surface on the front end side of the magnet body 30 to be cleaved are divided into a plurality of parts, which are respectively divided with respect to the lower mold 50 and the upper mold 60. Thus, the floating support by the elastic body has been described. However, either one of the protruding portion 51 and the blade 61 that contacts the lower surface of the tip side of the magnet body 30 to be cut is divided into a plurality of parts, and the elastic body 54 or 64 with respect to the lower mold 50 or the upper mold 60. It is good also as a structure supported by floating. For example, only the protrusion 51 that contacts the lower surface on the tip side of the magnet body 30 to be cleaved is divided into a plurality of parts, and is float-supported by the elastic body 54 with respect to the lower mold 50, and the blade 61 is attached to the upper mold 60. It is good also as a structure fixedly supported. Further, only the blade 61 that comes into contact with the upper surface of the magnet body 30 to be cut is divided into a plurality of parts, and is float-supported by the elastic body 64 with respect to the upper mold 60, and is in contact with the lower surface on the tip side of the magnet body 30 to be cut. The protruding ridge 51 may be configured to be fixedly supported on the lower mold 50.
 このようにすると、割断される磁石体30の先端側の下面に接触する突条部51とブレード61とのいずれか一方は、磁石体30の下面若しくは上面にきめ細かく追従して当接する。このため、上型60若しくは下型50に固定されたブレード61若しくは磁石体30の先端側の下面に接触する突条部51により、磁石体30の幅方向に偏った折曲げ力が作用しても、反対側よりの磁石体30への万遍ない当接により、磁石体30に幅方向に折曲げる捩り作用の発生が緩和される。結果として、磁石体30の異常割れの発生を防止することができ、割断面の面精度を向上させることができる。 In this way, either one of the protrusion 51 and the blade 61 that contacts the lower surface of the tip of the magnet body 30 to be cleaved closely contacts the lower surface or the upper surface of the magnet body 30. For this reason, a bending force biased in the width direction of the magnet body 30 acts by the blade 61 fixed to the upper mold 60 or the lower mold 50 or the protrusion 51 that contacts the lower surface on the tip side of the magnet body 30. However, the occurrence of the twisting action of bending the magnet body 30 in the width direction is alleviated due to the universal contact with the magnet body 30 from the opposite side. As a result, the occurrence of abnormal cracking of the magnet body 30 can be prevented, and the surface accuracy of the fractured surface can be improved.
 本実施形態においては、第1実施形態における効果(A)に加えて、以下に記載した効果を奏することができる。 In the present embodiment, in addition to the effect (A) in the first embodiment, the following effects can be achieved.
 (C)下型50の当接部としての突条部51のうち、磁石片31として割断される先端側の下面に接触する突条部51と、上型60の当接部としてのブレード61との少なくともいずれか一方を、下型50若しくは上型60から分離させる。そして、その幅方向において複数に分割して、下型50若しくは上型60に対して弾性体54,64を介して浮動状態に支持するようにした。このため、磁石体30自身の粗材平行度不良、粗材の反り、粗材の平面度不良(粗材表面の凹凸)等や異物が噛み込まれることにより、磁石体30の下面や上面が下型50や上型60に対して傾いた状態であっても、磁石体30の先端側に接触する突条部51とブレード61との少なくともいずれか一方は、磁石体30の下面若しくは上面にきめ細かく万遍なく当接する。このため、磁石体30に対する当接部(突条部51、ブレード61)の片当りを抑制して、磁石体30を幅方向に折曲げる捩り作用の発生を緩和して均一に割断荷重をかけることができ、磁石体30の異常割れの発生を防止することができ、割断面の面精度を向上させることができる。 (C) Of the ridges 51 as the contact portions of the lower mold 50, the ridge portions 51 that come into contact with the lower surface of the tip side that is cleaved as the magnet piece 31, and the blades 61 as the contact portions of the upper mold 60. Are separated from the lower mold 50 or the upper mold 60. And it divided | segmented into plurality in the width direction, and was supported in the floating state via the elastic bodies 54 and 64 with respect to the lower mold | type 50 or the upper mold | type 60. FIG. For this reason, the lower surface and the upper surface of the magnet body 30 are caused by the roughness of the magnet body 30 itself, the roughness of the rough material, the warpage of the rough material, the flatness of the rough material (roughness of the surface of the rough material), and foreign matter. Even when tilted with respect to the lower mold 50 and the upper mold 60, at least one of the protrusion 51 and the blade 61 contacting the tip side of the magnet body 30 is on the lower surface or the upper surface of the magnet body 30. Contact finely and uniformly. For this reason, the contact of the abutting portion (the protruding portion 51 and the blade 61) with the magnet body 30 is suppressed, the generation of the twisting action that bends the magnet body 30 in the width direction is reduced, and the cleaving load is uniformly applied. Thus, the occurrence of abnormal cracking of the magnet body 30 can be prevented, and the surface accuracy of the fractured surface can be improved.
 (第3実施形態)
 図14~17は、第3実施形態における界磁極用磁石体の製造装置およびその製造方法を示す。図14は、第3実施形態における磁石割断装置の要部の拡大図であり、図15は、図14のXV-XV線に沿う断面図である。本実施形態においては、上型のブレード若しくは下型の磁石体短辺側の突条部51の少なくとも先端部を弾性体とした。なお、第1実施形態における装置と同一の構成部分には、同一符号を付してその説明を省略ないし簡略化する。
(Third embodiment)
14 to 17 show a field pole magnet body manufacturing apparatus and a manufacturing method thereof according to the third embodiment. FIG. 14 is an enlarged view of a main part of the magnet cleaving apparatus according to the third embodiment, and FIG. 15 is a cross-sectional view taken along line XV-XV in FIG. In the present embodiment, at least the tip end of the upper blade or the protrusion 51 on the short side of the lower magnet body is an elastic body. In addition, the same code | symbol is attached | subjected to the component same as the apparatus in 1st Embodiment, and the description is abbreviate | omitted or simplified.
 本実施形態では、下型50の一対の突条部51のうち、割断される磁石体30の先端側の下面に接触する突条部51の少なくとも先端側は、図14,15に示すように、弾性体55、例えば、ゴム、シリコン樹脂などにより構成した。 In the present embodiment, among the pair of protrusions 51 of the lower mold 50, at least the distal end side of the protrusion 51 that contacts the lower surface of the distal end side of the magnet body 30 to be cut is as shown in FIGS. The elastic body 55 is made of, for example, rubber or silicon resin.
 このため、磁石体30自身の粗材平行度不良、粗材の反り、粗材の平面度不良(粗材表面の凹凸)等により、図16に示すように、磁石体30の下面が下型50に対して傾いた状態であっても、突条部51の先端部は磁石体30の下面に追従して変形する。また、下型50の突条部51と脆性材である磁石体30との間に、割断時に生ずる微粉末などの異物が噛み込まれた状態となっても、図17に示すように、磁石体30の先端側の下面に接触する突条部51の先端部は、異物を含む磁石体30の下面に追従して変形する。このため、いずれの場合においても、磁石体30を下型50から浮いた状態(磁石体30の幅方向中央から離れた一点で当接する状態)とせず、確実に下型50に支持することができる。 For this reason, as shown in FIG. 16, the lower surface of the magnet body 30 has a lower mold due to poor parallelism of the rough material of the magnet body 30, warpage of the rough material, poor flatness of the rough material (roughness of the rough material surface), and the like. Even in a state of being inclined with respect to 50, the distal end portion of the ridge portion 51 is deformed following the lower surface of the magnet body 30. Further, even when foreign matter such as fine powder generated during cleaving is caught between the protrusion 51 of the lower mold 50 and the magnet body 30 which is a brittle material, as shown in FIG. The distal end portion of the protrusion 51 that contacts the lower surface on the distal end side of the body 30 is deformed following the lower surface of the magnet body 30 including foreign matter. For this reason, in any case, the magnet body 30 is not lifted from the lower mold 50 (contacted at one point away from the center in the width direction of the magnet body 30) and can be reliably supported by the lower mold 50. it can.
 また、上型60に設けるブレード61の先端側は、図14,15に示すように、弾性体65、例えば、ゴム、シリコン樹脂などにより構成した。 Further, as shown in FIGS. 14 and 15, the tip side of the blade 61 provided on the upper mold 60 is made of an elastic body 65 such as rubber or silicon resin.
 このため、磁石体30自身の粗材平行度不良、粗材の反り、粗材の平面度不良(粗材表面の凹凸)等により、磁石体30の上面が上型60に対して傾いた状態であっても、ブレード61の先端部は、磁石体30の上面に追従して変形する。また、脆性材である磁石体30の上面に、割断時に生ずる微粉末などの異物が乗った状態となっても、ブレード61の先端部は異物を含む磁石体30の上面に追従して変形する。このため、いずれの場合においても、磁石体30に片当りすることなく、万遍なく当接して押下げることができる。 For this reason, the upper surface of the magnet body 30 is inclined with respect to the upper mold 60 due to a poor parallelism of the rough material of the magnet body 30, warpage of the rough material, poor flatness of the rough material (irregularities on the surface of the rough material), and the like. Even so, the tip of the blade 61 deforms following the upper surface of the magnet body 30. Further, even when foreign matter such as fine powder generated at the time of cleaving is placed on the upper surface of the magnet body 30 which is a brittle material, the tip of the blade 61 is deformed following the upper surface of the magnet body 30 containing foreign matter. . For this reason, in any case, the magnet body 30 can be pressed and pushed down without contact with the magnet body 30.
 なお、上記実施形態では、割断される磁石体30の先端側の下面に接触する突条部51とブレード61との両方の先端部を弾性体55,65として、下型50及び上型60に浮動支持するものについて説明した。しかし、割断される磁石体30の先端側の下面に接触する突条部51とブレード61とのいずれか一方の先端部を弾性体55若しくは65として、下型50若しくは上型60に浮動支持する構成としてもよい。例えば、割断される磁石体30の先端側の下面に接触する突条部51の先端部のみを弾性体55として、下型50に浮動支持させてもよい。また、割断される磁石体30の上面に接触するブレード61の先端部のみを弾性体65として、上型60に浮動支持させてもよい。 In the above-described embodiment, the lower end 50 and the upper mold 60 are provided with the end portions of both the protruding portion 51 and the blade 61 contacting the lower surface of the end of the magnet body 30 to be cleaved as the elastic bodies 55 and 65. The floating support was explained. However, either one of the protruding portion 51 and the blade 61 that contacts the lower surface of the tip of the magnet body 30 to be cut is floatingly supported on the lower die 50 or the upper die 60 as an elastic body 55 or 65. It is good also as a structure. For example, only the distal end portion of the protrusion 51 that contacts the lower surface on the distal end side of the magnet body 30 to be cut may be floatingly supported on the lower mold 50 as the elastic body 55. Alternatively, only the tip of the blade 61 that contacts the upper surface of the cleaved magnet body 30 may be floatingly supported by the upper mold 60 as the elastic body 65.
 このようにすると、割断される磁石体30の先端側の下面に接触する突条部51とブレード61とのいずれか一方は、磁石体30の下面若しくは上面に弾性体55,65により、きめ細かく追従して当接する。このため、上型60若しくは下型50に固定されたブレード61若しくは磁石体30の先端側の下面に接触する突条部51により、磁石体30の幅方向に偏った折曲げ力が作用しても、反対側よりの磁石体30への弾性体55若しくは65による万遍なく当接する。このことにより、磁石体30に幅方向に折曲げる捩り作用の発生が緩和される。結果として、磁石体30の異常割れの発生を防止することができ、割断面の面精度を向上させることができる。 In this way, one of the protrusion 51 and the blade 61 contacting the lower surface of the tip side of the magnet body 30 to be cleaved closely follows the lower surface or upper surface of the magnet body 30 by the elastic bodies 55 and 65. And abut. For this reason, a bending force biased in the width direction of the magnet body 30 acts by the blade 61 fixed to the upper mold 60 or the lower mold 50 or the protrusion 51 that contacts the lower surface on the tip side of the magnet body 30. Also, the elastic body 55 or 65 contacts the magnet body 30 from the opposite side evenly. As a result, the generation of the twisting action of bending the magnet body 30 in the width direction is alleviated. As a result, the occurrence of abnormal cracking of the magnet body 30 can be prevented, and the surface accuracy of the fractured surface can be improved.
 本実施形態においては、第1実施形態における効果(A)に加えて、以下に記載する効果を奏することができる。 In this embodiment, in addition to the effect (A) in the first embodiment, the following effects can be achieved.
 (D)下型50の当接部としての突条部51のうち、磁石片31として割断される先端側の下面に接触する突条部51と上型60の当接部としてのブレード61との少なくともいずれか一方の磁石体30に当接する先端部を弾性体55,65により形成した。このため、磁石体30自身の粗材平行度不良、粗材の反り、粗材の平面度不良(粗材表面の凹凸)等や異物が噛み込まれることにより、磁石体30の下面や上面が下型50や上型60に対して傾いた状態であっても、磁石体30の先端側に接触する突条部51とブレード61との少なくともいずれか一方は、磁石体30の下面若しくは上面に弾性体55,65を介してきめ細かく万遍なく当接する。このため、磁石体30に対する当接部(突条部51、ブレード61)の片当りを抑制して、磁石体30を幅方向に折曲げる捩り作用の発生を緩和して均一に割断荷重をかけることができ、磁石体30の異常割れの発生を防止することができ、割断面の面精度を向上させることができる。 (D) Of the protrusions 51 as the contact portions of the lower mold 50, the protrusions 51 that contact the lower surface of the tip side that is cleaved as the magnet piece 31, and the blade 61 as the contact portion of the upper mold 60, The tip part which contacts at least one of the magnet bodies 30 is formed by the elastic bodies 55 and 65. For this reason, the lower surface and the upper surface of the magnet body 30 are caused by the roughness of the magnet body 30 itself, the roughness of the rough material, the warpage of the rough material, the flatness of the rough material (roughness of the surface of the rough material), and foreign matter. Even when tilted with respect to the lower mold 50 and the upper mold 60, at least one of the protrusion 51 and the blade 61 contacting the tip side of the magnet body 30 is on the lower surface or the upper surface of the magnet body 30. It contacts finely and uniformly through the elastic bodies 55 and 65. For this reason, the contact of the abutting portion (the protruding portion 51 and the blade 61) with the magnet body 30 is suppressed, the generation of the twisting action that bends the magnet body 30 in the width direction is reduced, and the cleaving load is uniformly applied. Thus, the occurrence of abnormal cracking of the magnet body 30 can be prevented, and the surface accuracy of the fractured surface can be improved.
 本願は、2011年7月27日に日本国特許庁に出願された特願2011-164457に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2011-164457 filed with the Japan Patent Office on July 27, 2011, the entire contents of which are incorporated herein by reference.

Claims (6)

  1.  磁石体の幅方向に延びるよう下型に配置された当接部に磁石体を載置して、前記下型の当接部と平行に配置された上型の当接部を磁石体の上部に接触させて押圧することにより磁石体を割断する界磁極用磁石体の製造装置において、
     前記下型の当接部と上型の当接部との少なくともいずれか一方は、磁石体の表面形状に追従して変位可能である界磁極用磁石体の製造装置。
    The magnet body is placed on the abutting portion disposed in the lower mold so as to extend in the width direction of the magnet body, and the upper mold abutting portion disposed in parallel with the abutting portion of the lower mold is placed on the upper portion of the magnet body. In the field pole magnet body manufacturing apparatus that breaks the magnet body by contacting and pressing the magnet body,
    A field pole magnet body manufacturing apparatus in which at least one of the lower mold contact section and the upper mold contact section can be displaced following the surface shape of the magnet body.
  2.  請求項1に記載の界磁極用磁石体の製造装置において、
     前記下型に配置された当接部は、磁石長さ方向に離間した一対の当接部であって、
     前記上型の当接部は、前記磁石体の前記下型の一対の当接部間に位置する部位に接触する界磁極用磁石体の製造装置。
    In the manufacturing apparatus of the magnetic body for field poles of Claim 1,
    The contact portions arranged in the lower mold are a pair of contact portions spaced apart in the magnet length direction,
    The upper mold contact portion is a field pole magnet body manufacturing apparatus that contacts a portion of the magnet body located between the pair of lower mold contact portions.
  3.  請求項1または2に記載の界磁極用磁石体の製造装置において、
     前記下型の当接部のうちの磁石片として割断される先端側の下面に接触する当接部と、上型の当接部との少なくともいずれか一方は、下型若しくは上型から分離して、その幅方向中央部が下型若しくは上型に支持されて、下型若しくは上型に対して揺動可能である界磁極用磁石体の製造装置。
    In the manufacturing apparatus of the field pole magnet body according to claim 1 or 2,
    At least one of the abutment portion that contacts the lower surface on the tip side that is cleaved as the magnet piece and the abutment portion of the upper mold is separated from the lower mold or the upper mold. An apparatus for manufacturing a field pole magnet body whose center in the width direction is supported by a lower mold or an upper mold and is swingable with respect to the lower mold or the upper mold.
  4.  請求項1または2に記載の界磁極用磁石体の製造装置において、
     前記下型の当接部のうちの磁石片として割断される先端側の下面に接触する当接部と、上型の当接部との少なくともいずれか一方は、下型若しくは上型から分離して、その幅方向において複数に分割されて、下型若しくは上型に対して上下に浮動状態に支持される界磁極用磁石体の製造装置。
    In the manufacturing apparatus of the field pole magnet body according to claim 1 or 2,
    At least one of the abutment portion that contacts the lower surface on the tip side that is cleaved as the magnet piece and the abutment portion of the upper mold is separated from the lower mold or the upper mold. The field pole magnet body is divided into a plurality of pieces in the width direction and is supported in a floating state up and down with respect to the lower mold or the upper mold.
  5.  請求項1または2に記載の界磁極用磁石体の製造装置において、
     前記下型の当接部のうちの磁石片として割断される先端側の下面に接触する当接部と、上型の当接部との少なくともいずれか一方の、磁石体に当接する先端部は、弾性体により形成されている界磁極用磁石体の製造装置。
    In the manufacturing apparatus of the field pole magnet body according to claim 1 or 2,
    At least one of the abutting portion that contacts the lower surface of the tip side that is cleaved as a magnet piece among the abutting portions of the lower mold and the abutting portion of the upper mold is a tip portion that abuts on the magnet body. An apparatus for producing a field pole magnet body formed of an elastic body.
  6.  磁石体の幅方向に延びるよう下型に平行配置された当接部に磁石体を載置して、前記下型の当接部と平行に配置された上型の当接部を磁石体の上部に接触させて押圧することにより磁石体を割断する界磁極用磁石体の製造方法において、
     前記下型の当接部と上型の当接部との少なくともいずれか一方は、磁石体の表面形状に追従して変位可能であり、
     下型の当接部に磁石体を載置するステップと、
     上型の当接部を磁石体の上部に接触させて押圧するステップと、
     磁石体の表面形状に追従変位した、下型の当接部若しくは上型の当接部による支持状態の磁石体を割断するステップと、
    を含む界磁極用磁石体の製造方法。
    The magnet body is placed on the abutting portion arranged in parallel with the lower mold so as to extend in the width direction of the magnet body, and the abutting portion of the upper die arranged in parallel with the abutting portion of the lower mold is placed on the magnet body. In the manufacturing method of the magnetic body for field poles, which breaks the magnet body by pressing in contact with the upper part,
    At least one of the lower mold contact portion and the upper mold contact portion can be displaced following the surface shape of the magnet body,
    Placing the magnet body on the lower mold contact portion;
    Contacting and pressing the upper mold contact portion with the upper part of the magnet body;
    Cleaving the magnet body supported by the lower mold contact portion or the upper mold contact portion, which is displaced following the surface shape of the magnet body;
    A method for manufacturing a field pole magnet body including:
PCT/JP2012/065866 2011-07-27 2012-06-21 Device for producing field-pole magnet and method for producing same WO2013015053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-164457 2011-07-27
JP2011164457A JP5935257B2 (en) 2011-07-27 2011-07-27 Field pole magnet body manufacturing apparatus and method

Publications (1)

Publication Number Publication Date
WO2013015053A1 true WO2013015053A1 (en) 2013-01-31

Family

ID=47600912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065866 WO2013015053A1 (en) 2011-07-27 2012-06-21 Device for producing field-pole magnet and method for producing same

Country Status (2)

Country Link
JP (1) JP5935257B2 (en)
WO (1) WO2013015053A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156001A (en) * 2013-02-18 2014-08-28 Toyota Motor Corp Magnet cutting apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142928A (en) * 1989-10-30 1991-06-18 Disco Abrasive Syst Ltd Cutting-out of wafer
JP2008244222A (en) * 2007-03-28 2008-10-09 Laser Solutions Co Ltd Plate material dividing device and plate material dividing method
JP2010259231A (en) * 2009-04-24 2010-11-11 Nissan Motor Co Ltd Permanent magnet for magnetic field pole, manufacturing method thereof, permanent-magnet type rotating electric machine equipped with permanent magnet for magnetic field pole

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018797A (en) * 2000-06-29 2002-01-22 Nisshinbo Ind Inc Dividing method for fragile material board and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142928A (en) * 1989-10-30 1991-06-18 Disco Abrasive Syst Ltd Cutting-out of wafer
JP2008244222A (en) * 2007-03-28 2008-10-09 Laser Solutions Co Ltd Plate material dividing device and plate material dividing method
JP2010259231A (en) * 2009-04-24 2010-11-11 Nissan Motor Co Ltd Permanent magnet for magnetic field pole, manufacturing method thereof, permanent-magnet type rotating electric machine equipped with permanent magnet for magnetic field pole

Also Published As

Publication number Publication date
JP2013031264A (en) 2013-02-07
JP5935257B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP6393019B2 (en) Field pole magnet body manufacturing apparatus and method
JP5614096B2 (en) Permanent magnet embedded in rotor core of rotating electrical machine and method for manufacturing the same
US9251951B2 (en) Method of manufacturing magnet segment of field pole magnet body
WO2013015047A1 (en) Device for producing field-pole magnet and method for producing same
WO2013015053A1 (en) Device for producing field-pole magnet and method for producing same
JP6079887B2 (en) Cleaving method and cleaving apparatus for manufacturing a magnet piece constituting a field pole magnet body disposed in a rotating electrical machine
WO2013125513A1 (en) Method and device for manufacturing magnet pieces for field-pole magnet
WO2013129641A1 (en) Cutting method for manufacturing magnet pieces constituting field pole magnet provided in rotating electric machine by cutting permanent magnet, and cutting device
JP5862156B2 (en) Field pole magnet body manufacturing apparatus and method
JP5867102B2 (en) Field pole magnet body manufacturing apparatus and method
JP5919888B2 (en) A cleaving method and a cleaving apparatus for cleaving a permanent magnet body into a magnet piece constituting a field pole magnet body disposed in a rotating electrical machine
JP5935378B2 (en) Magnet piece manufacturing apparatus constituting field pole magnet body
JP5761383B2 (en) Method for manufacturing field pole magnet body
JP5929310B2 (en) Manufacturing method of magnet piece constituting magnetic body for field pole
WO2013115301A1 (en) Device for manufacturing magnet pieces for forming field-pole magnets
JP5906768B2 (en) Magnet piece manufacturing apparatus constituting field pole magnet body and manufacturing method thereof
JP5994447B2 (en) Magnet piece manufacturing apparatus constituting field pole magnet body and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817131

Country of ref document: EP

Kind code of ref document: A1