WO2013014855A1 - Transmission device, receiving device, transmission method, and receiving method - Google Patents

Transmission device, receiving device, transmission method, and receiving method Download PDF

Info

Publication number
WO2013014855A1
WO2013014855A1 PCT/JP2012/004044 JP2012004044W WO2013014855A1 WO 2013014855 A1 WO2013014855 A1 WO 2013014855A1 JP 2012004044 W JP2012004044 W JP 2012004044W WO 2013014855 A1 WO2013014855 A1 WO 2013014855A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
segments
segment
signal
control information
Prior art date
Application number
PCT/JP2012/004044
Other languages
French (fr)
Japanese (ja)
Inventor
白石 憲一
山岸 亨
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2013014855A1 publication Critical patent/WO2013014855A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/02Arrangements for generating broadcast information; Arrangements for generating broadcast-related information with a direct linking to broadcast information or to broadcast space-time; Arrangements for simultaneous generation of broadcast information and broadcast-related information
    • H04H60/07Arrangements for generating broadcast information; Arrangements for generating broadcast-related information with a direct linking to broadcast information or to broadcast space-time; Arrangements for simultaneous generation of broadcast information and broadcast-related information characterised by processes or methods for the generation

Definitions

  • the present invention relates to broadcasting technology, and more particularly, to a transmission device, a reception device, a transmission method, and a reception method that use an OFDM (Orthogonal Frequency Division Multiplexing) signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • TMCC Transmission and Multiplexing Configuration Control
  • Carriers for transmitting TMCC signals are randomly arranged in the frequency direction in order to reduce the influence of periodic dip of transmission path characteristics due to multipath.
  • one-segment broadcasting uses only one central segment among a plurality of segments (for example, Non-Patent Document 1).
  • Area one-segment broadcasting is a service that uses one-segment broadcasting, which is one of terrestrial digital broadcasting, to transmit content data limitedly to a narrow area with transmission power lower than the transmission power used by broadcasters. is there. Since mobile phone terminals are widely used as receiving devices compatible with one-segment broadcasting, the use of these devices is expected to spread area one-segment broadcasting. Mobile phone terminals compatible with current one-segment broadcasting are often designed on the assumption that one-segment broadcasting is broadcast together with terrestrial digital broadcasting (so-called full-segment broadcasting or 12-segment broadcasting). At present, there is no standard for operating only one-segment broadcasting apart from terrestrial digital broadcasting.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for receiving various types of receiving apparatuses while suppressing deterioration of frequency utilization efficiency.
  • a transmission device includes a generation unit that generates data using a part of a plurality of segments arranged continuously in a frequency domain, and a generation unit
  • the first acquisition unit that acquires the first control information indicating the number of segments larger than the number of segments used by the data generated by the data, and the number of segments indicated by the first control information acquired by the first acquisition unit Among the segments, a second acquisition unit that acquires a second control signal indicating that only a segment used by data generated by the generation unit is valid, data generated by the generation unit, and a first acquisition unit
  • a multiplexing unit that multiplexes the acquired first control information and the second control information acquired by the second acquisition unit, and a transmission unit that transmits a multiplexing result in the multiplexing unit.
  • the first control information and the second control information are transmitted even when data using some of the plurality of segments is transmitted, so that deterioration in frequency use efficiency is suppressed.
  • it can be received by various types of receiving devices.
  • Another aspect of the present invention is a receiving device.
  • This device is continuously arranged in the frequency domain from a receiving unit that receives a signal using a part of a plurality of segments arranged continuously in the frequency domain, and a signal received by the receiving unit.
  • An extractor for extracting the first control information indicating the number of segments, and a segment having a smaller number of segments than the number of segments indicated by the first control information extracted by the extractor in the signal received by the receiver
  • the reception unit includes a survey unit that investigates a segment other than a part of the segments used by the received signal.
  • the checking unit skips searching for a segment other than some of the segments used by the signal received by the receiving unit.
  • the execution of the investigation for another segment is determined according to the second control information, so that the processing can be executed efficiently.
  • the survey unit may perform the survey based on the number of segments used by the signal received by the reception unit. In this case, since the number of segments used by the signal received by the receiving unit is used as the unit of investigation, the signal to be received can be investigated.
  • Still another aspect of the present invention is a transmission method.
  • a step of generating data using a part of a plurality of segments arranged consecutively in the frequency domain and a number of segments larger than the number of segments used by the generated data are shown.
  • the generated data, the acquired first control information, the acquired second control information are multiplexed, and the multiplexing result is transmitted.
  • Still another aspect of the present invention is a receiving method.
  • This method includes a step of receiving a signal using a part of a plurality of segments continuously arranged in the frequency domain, and the number of segments continuously arranged in the frequency domain from the received signal. Extracting the indicated first control information, and indicating that only segments having a smaller number of segments than the number indicated by the extracted first control information are valid in the received signal. 2 If the control information is included, it includes a step of examining a segment other than a part of the segment used by the received signal. In the step of investigating, when the second control information is not included in the received signal, the investigation on the segment other than the one part segment used by the received signal is skipped.
  • various types of receiving apparatuses can receive signals while suppressing deterioration of frequency utilization efficiency.
  • FIGS. 1A to 1E are diagrams showing the arrangement of segments in an area one segment broadcasting system according to an embodiment of the present invention. It is a figure which shows the structure of the transmitter in the area one segment broadcast system of FIG. It is a figure which shows the bit allocation of the TMCC carrier produced
  • Embodiments of the present invention relate to a transmitting apparatus that transmits an OFDM signal including content data and a receiving apparatus that receives the OFDM signal in order to realize a content distribution service in area one-segment broadcasting.
  • the OFDM signal includes TMCC information as control information. Even if only one-segment broadcasting is performed so far, the transmission device includes information on the use of all segments in TMCC information, and arranges null data in the remaining segments other than the one segment where data should be arranged. ing.
  • the reception process is executed only for one segment.
  • the information on the use of all segments is information for making the receiving apparatus recognize that 13 segments are used. Under such circumstances, the transmitting device and the receiving device execute the following processing so as to improve the frequency utilization efficiency and operate other types of receiving devices normally.
  • the transmitting apparatus performs area one segment broadcasting using only the segment in which data is arranged, for example, the central one segment. Therefore, null data is not arranged.
  • the transmission device includes information on the use of all the segments in the TMCC information. As a result, a difference occurs between the contents of the TMCC information and the segments that are actually used, and a problem arises in other types of receiving apparatuses that perform reception processing based on the TMCC information.
  • the other type of receiving device is a receiving device that can receive signals of segments other than the central one segment.
  • the transmission apparatus includes information indicating that only the segment in which the data is arranged is valid (hereinafter referred to as “one segment use information”).
  • one segment use information information indicating that only the segment in which the data is arranged is valid.
  • other types of receiving apparatuses also recognize that data is not arranged in segments other than the central one segment.
  • the mobile phone terminal since the mobile phone terminal originally receives only the central one-segment data, it ignores the one-segment usage information.
  • FIGS. 1A to 1E show the arrangement of segments in the area one segment broadcasting system according to the embodiment of the present invention.
  • FIG. 1A shows the configuration of one channel used in this embodiment. The channel has a 5.7 MHz bandwidth. As shown in the figure, 13 segments are arranged in the channel, and each segment is given a segment number for identifying the segment, such as segment 0 to segment 12. Each segment has a bandwidth of about 429 kHz, which is the same as terrestrial digital broadcasting.
  • FIG. 1B shows a channel configuration when signals are transmitted using 13 segments, and is a channel configuration that has already been used so far.
  • a one-segment broadcast is transmitted in the center segment 0, and a digital broadcast is transmitted in the remaining segments 1 to segment 12.
  • a plurality of programs may be transmitted in the segment 1 to the segment 12, but a known technique may be used for this, and the description thereof is omitted here.
  • FIG. 1 (c) shows a channel configuration when only one-segment broadcasting is transmitted, and is a channel configuration that has already been used so far.
  • the one-segment broadcast is transmitted in the central segment 0, and null data is transmitted in the remaining segments 1 to 12.
  • FIG. 1 (d) shows a channel configuration when only one-segment broadcasting is transmitted in the present embodiment.
  • the one-segment broadcast is transmitted in the center segment 0, and no data is transmitted in the remaining segments.
  • the bandwidth occupied in FIG. 1 (d) is narrower than the bandwidth occupied in FIG. 1 (c), but the amount of data that can be substantially transmitted in FIG. 1 (d) is as shown in FIG. 1 (c). Is substantially equivalent to the amount of data that can be transmitted.
  • FIG. 1E shows a channel configuration obtained by expanding the channel configuration shown in FIG. As illustrated, a one-segment broadcast is transmitted in a plurality of segments. Therefore, a plurality of one segment broadcasts are transmitted in one channel.
  • the cellular phone terminal can receive the central one-segment signal in FIGS. 1B and 1C in terms of the above-described TMCC information.
  • the TMCC information should be configured so that the mobile phone terminal can receive the central one-segment signal in FIGS. 1 (d) and 1 (e). At that time, data is not transmitted in segment 1 or the like, but it is preferable that information on all segments is included in the TMCC information.
  • a receiving device that can receive a 13-segment signal (hereinafter referred to as a “full-segment receiving device”) can receive signals as shown in FIGS. 1B and 1C.
  • the full segment receiving apparatus executes the receiving process also in the segment 1 or the like. Reception fails. Therefore, it is preferable that the full segment receiving apparatus also receives the channels as shown in FIGS. 1 (d) and 1 (e).
  • a receiving device that can receive only one-segment broadcasting but can receive signals while moving to a segment other than segment 0 (hereinafter referred to as “multi-segment receiving device”) is also shown in FIGS. ) Can be received.
  • the multi-segment receiver Based on the TMCC information, the multi-segment receiver recognizes that one-segment broadcasting other than segment 0 is not included.
  • the segment 0 signal in FIGS. 1D and 1E is received, the multi-segment receiver needs to investigate whether the signal can be received in segments other than segment 0. That is, it is desirable for the multi-segment receiver to be able to distinguish between the cases of FIGS. 1B and 1C and the cases of FIGS. 1C and 1D.
  • FIG. 2 shows a configuration of the transmission device 100 in the area one segment broadcasting system.
  • the transmission device 100 includes a generation unit 10, a pilot signal generation unit 12, a first acquisition unit 14, a second acquisition unit 16, a TMCC signal generation unit 18, an AC signal generation unit 20, an OFDM frame configuration unit 22, an IFFT (Inverse Fast Fourier). (Transform) section 24, guard interval adding section 26, RF section 28, and antenna 30.
  • the generation unit 10 includes an encoding unit 34, a carrier modulation unit 36, a time interleaving unit 38, and a frequency interleaving unit 40.
  • the transmitting apparatus 100 transmits the signal having the channel configuration shown in FIG. 1D, but corresponds to the case of transmitting the segment 0 signal in the channel configuration shown in FIG.
  • the carrier modulation unit 36 performs bit interleaving on the data from the encoding unit 34 and also performs modulation mapping. Note that, when hierarchical transmission is performed, these processes are performed for each layer, but here, only data to be arranged in one segment is targeted, and thus description of hierarchical transmission is omitted.
  • the carrier modulation unit 36 uses any one of ⁇ / 4 shift DQPSK mapping, QPSK mapping, 16QAM mapping, and 64QAM mapping as modulation mapping.
  • the carrier modulation unit 36 outputs a plurality of bits of I-axis data and Q-axis data (hereinafter referred to as “data”) to the time interleaving unit 38 as a result of the modulation mapping.
  • the time interleaving unit 38 receives data from the carrier modulation unit 36 and executes time interleaving in units of modulation symbols, that is, I and Q axes. Temporal interleaving is performed to temporally disperse the modulated data and improve anti-fading performance. For example, convolutional interleaving is employed as a time interleaving configuration.
  • the time interleaving unit 38 outputs the data subjected to time interleaving (hereinafter also referred to as “data”) to the frequency interleaving unit 40.
  • the frequency interleaving unit 40 inputs data from the time interleaving unit 38 and executes frequency interleaving. Note that frequency interleaving may not be performed, and in that case, the frequency interleaving unit 40 may be omitted. As described above, the generation unit 10 generates data using some of the plurality of segments arranged continuously in the frequency domain. The generation unit 10 outputs the data to the OFDM frame configuration unit 22.
  • the TMCC signal generator 18 generates a TMCC signal.
  • the TMCC signal is transmitted on a specific subcarrier among segments composed of a plurality of subcarriers.
  • a subcarrier used for transmission of a TMCC signal is called a TMCC carrier.
  • the TMCC signal includes information related to a demodulation operation of a receiving apparatus (not shown) such as a hierarchical configuration and transmission parameters of each segment. Since such a TMCC signal specifies transmission parameters and controls a receiving device, it requires higher transmission reliability than a data signal. Therefore, a difference set cyclic code (273, 191) is used as an error correction code of a TMCC signal.
  • the abbreviated code (184, 102) is used.
  • DBPSK is used as modulation mapping.
  • FIG. 3 shows bit allocation of TMCC carriers generated in the TMCC signal generation unit 18.
  • a bit allocation column 210 and a content column 212 are included.
  • Information indicating the content shown in the content column 212 is assigned to the bit shown in the bit allocation column 210.
  • the synchronization signal is used to establish TMCC signal synchronization and OFDM frame synchronization.
  • the segment type identification is a 3-bit word used to identify the segment type, but the description is omitted here.
  • the TMCC information includes information such as system identification, transmission parameter switching index, emergency warning broadcast activation flag, current information, and next information, and is information for assisting demodulation and decoding operations of the receiving device.
  • Current information indicates the current hierarchical configuration and transmission parameters, and next information indicates the transmission parameters after switching.
  • FIG. 4 shows details of TMCC information.
  • a bit allocation column 220 and a content column 222 are included.
  • the system identification indicates the system being used.
  • the system identification is composed of 2 bits. “00” is set when the system is compatible with the digital terrestrial television broadcasting system, and “01” is set when the transmission system is a common terrestrial digital audio broadcast. The remaining values are reserved.
  • a digital terrestrial television broadcasting system is premised on the use of 13 segments, and a digital terrestrial audio broadcasting is premised on the use of fewer segments than the 13 segments, for example, one segment.
  • “00” is set as the system identification. Therefore, the system identification can be said to be information indicating the number of segments “13” larger than the number of segments “1” actually used for data transmission.
  • the transmission parameter switching index is used to notify the receiving device of the switching timing when switching transmission parameters. More specifically, the transmission parameter switching index is normally set to a value of “1111”, and when switching transmission parameters, 1 is subtracted for each frame from 15 frames before switching.
  • the emergency alert broadcast activation flag indicates whether or not activation control for the receiving device is performed in the emergency alert broadcast. The activation flag is set to “1” when activation control for the receiving apparatus is performed, and the activation flag is set to “0” when activation control is not performed.
  • the partial reception flag indicates whether the segment at the center of the transmission band is set for partial reception.
  • the partial reception flag is set to “1”, which corresponds to the case where the segment 0 is used as shown in FIGS. If it is not set, the partial reception flag is set to “0”.
  • the layer is defined as layer A.
  • transmission parameter information is acquired so that information on all segments is included regardless of the segments used for the transmission of significant data so that the mobile phone terminal can recognize TMCC information.
  • Bits B110 to B121 are reserved as reserves.
  • “use information only for the central segment” is arranged in B110.
  • the center segment only use information corresponds to the above-described one segment use information, and is used to notify that the segment is used only in one segment broadcast (that is, only broadcast in the A layer). That is, it is used to distinguish between the cases of FIGS. 1B and 1C and the cases of FIGS. 1D and 1E.
  • the “use information only at the center segment” is set to “0”.
  • the “use information only for the central segment” is set to “1”. Note that “1” is set in the other reserved bits.
  • the first acquisition unit 14 acquires system identification, transmission parameter switching index, emergency warning broadcast activation flag, current information, next information, and linked transmission phase correction amount from TMCC information.
  • the current information and the next information include transmission parameter information. Therefore, the first acquisition unit 14 obtains the number of segments used by the data generated by the generation unit 10, for example, the system identification and transmission parameter information indicating the number of segments larger than “1”, for example “13”. get.
  • the first acquisition unit 14 outputs the acquired information to the TMCC signal generation unit 18.
  • the second acquisition unit 16 acquires usage information for only the central segment, and outputs this to the TMCC signal generation unit 18.
  • the usage information of the central segment is only the segment used by the data generated by the generation unit 10 among the segments of the number of segments indicated by the system identification and transmission parameter information acquired by the first acquisition unit 14. Is information that has been shown to be valid.
  • the pilot signal generation unit 12 generates a continuous pilot and a scattered pilot and outputs them to the OFDM frame configuration unit 22.
  • the values of the continuous pilot and the scattered pilot and the subcarrier position to be inserted are defined in advance.
  • the continuous pilot and the scattered pilot are collectively referred to as “pilot signals”.
  • the AC signal generation unit 20 generates an AC (Auxiliary Channel) as additional information related to broadcasting.
  • the additional information related to broadcasting is additional information related to transmission control of modulated waves or earthquake motion warning information.
  • the AC modulation signal is arranged at signal points (+ 4 / 3,0) and ( ⁇ 4 / 3,0) with respect to information “0, 1” after differential encoding, and there is no additional information related to broadcasting. In this case, information “1” is inserted as a stuffing bit.
  • the AC signal generation unit 20 outputs the AC signal to the OFDM frame configuration unit 22.
  • the OFDM frame configuration unit 22 receives the data generated by the generation unit 10, the pilot signal generated by the pilot signal generation unit 12, the TMCC signal generated by the TMCC signal generation unit 18, and the AC signal generated by the AC signal generation unit 2. .
  • the OFDM frame configuration unit 22 generates a frequency-domain OFDM signal as an OFDM frame by multiplexing data, pilot signals, TMCC signals, and AC signals.
  • the TMCC signal and the AC signal are randomly arranged in the frequency direction in order to reduce the influence of the periodic dip of the transmission path characteristic due to multipath. Note that the subcarriers on which these are arranged are determined in advance.
  • the OFDM frame configuration unit 22 outputs the frequency domain OFDM to the IFFT unit 24.
  • the IFFT unit 24 receives the frequency domain OFDM signal from the OFDM frame configuration unit 22 and performs an IFFT on the frequency domain OFDM signal to generate a time domain OFDM signal.
  • the IFFT unit 24 outputs the time-domain OFDM signal to the guard interval adding unit 26.
  • the guard interval adding unit 26 inputs the time domain OFDM signal from the IFFT unit 24.
  • the guard interval adding unit 26 generates a guard interval by adding data of a specified time length as it is before a valid symbol from the time side in the time domain OFDM signal.
  • the guard interval adding unit 26 outputs the time domain OFDM signal to which the guard interval is added (hereinafter also referred to as “time domain OFDM signal”) to the RF unit 28.
  • the RF unit 28 receives the OFDM signal in the time domain from the guard interval adding unit 26.
  • the RF unit 28 performs frequency conversion and amplification, and then transmits the resultant signal from the antenna 30.
  • the control unit 32 controls the operation timing of the transmission device 100.
  • This configuration can be realized in terms of hardware by a CPU, memory, or other LSI of any computer, and in terms of software, it can be realized by a program loaded in the memory, but here it is realized by their cooperation.
  • Draw functional blocks Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
  • FIG. 5 shows a configuration of the receiving device 200 in the area one segment broadcasting system.
  • the receiving apparatus 200 includes an antenna 50, an RF unit 52, a guard interval removing unit 54, an FFT unit 56, an OFDM frame decomposing unit 58, a data processing unit 60, a TMCC signal processing unit 62, an extracting unit 64, and a control unit 66.
  • the data processing unit 60 includes a frequency deinterleaving unit 68, a time deinterleaving unit 70, a carrier demodulating unit 72, and a decoding unit 74. This corresponds to the multi-segment receiver described above.
  • the RF unit 52 receives a signal from a transmission device (not shown) via the antenna 50.
  • the channel configuration of the received signal is one of FIGS. 1B to 1E. 1B to 1E, since the segment 0 is used for one-segment broadcasting, the RF unit 52 receives only the signal arranged in the segment 0 in the initial state. Therefore, it can be said that the received signal is a signal using a part of segments among a plurality of segments continuously arranged in the frequency domain.
  • the RF unit 52 performs amplification and frequency conversion on the received signal, and then outputs the result (hereinafter referred to as “time-domain OFDM signal”) to the guard interval removal unit 54.
  • the guard interval removing unit 54 receives the time domain OFDM signal from the RF unit 52 and removes the guard interval from the time domain OFDM signal. This corresponds to the reverse process of the guard interval adding unit 26 in FIG.
  • the guard interval removing unit 54 outputs the time domain OFDM signal from which the guard interval is removed (hereinafter also referred to as “time domain OFDM signal”) to the FFT unit 56.
  • the FFT unit 56 receives the time-domain OFDM signal from the guard interval removal unit 54 and performs FFT on the time-domain OFDM signal to generate a frequency-domain OFDM signal.
  • the FFT unit 56 outputs the frequency domain OFDM signal to the OFDM frame decomposition unit 58.
  • the OFDM frame decomposition unit 58 inputs the frequency domain OFDM signal from the FFT unit 56.
  • the OFDM frame decomposing unit 58 acquires data, a pilot signal, a TMCC signal, and an AC signal from the OFDM signal in the frequency domain by executing a process reverse to that of the OFDM frame configuration unit 22 in FIG.
  • the OFDM frame decomposition unit 58 outputs data to the data processing unit 60 and outputs a TMCC signal to the TMCC signal processing unit 62. Description of other signals is omitted.
  • the TMCC signal processing unit 62 inputs the TMCC signal from the OFDM frame decomposition unit 58. Although description of the processing of the TMCC signal processing unit 62 is omitted, the system identification and transmission parameters shown in FIG.
  • the extraction unit 64 extracts system identification and transmission parameters from the TMCC information. Here, “00” is set as the system identification, which indicates that the system is compatible with the digital terrestrial television broadcasting system as described above.
  • extracting the system identification of “00” is information indicating the number of segments “13” continuously arranged in the frequency domain. It corresponds to extracting. Further, the extraction unit 64 confirms that information for all segments is included by confirming the content of the transmission parameter information. This also corresponds to extracting information indicating the number of segments “13” arranged continuously in the frequency domain. When confirming these contents, the TMCC signal processing unit 62 notifies the control unit 66 that the reception process is possible. On the other hand, when the system identification of “00” is extracted but the transmission parameter information for all segments cannot be confirmed, the TMCC signal processing unit 62 notifies the control unit 66 that reception processing is impossible.
  • the control unit 66 controls the operation of the data processing unit 60 based on the TMCC information processed in the TMCC signal processing unit 62. Specifically, the control unit 66 instructs the data processing unit 60 to process data based on the TMCC information processed in the TMCC signal processing unit 62.
  • the control unit 66 includes only the one-segment broadcast signal as shown in FIG. 1 (d) or (e). Identify that the channel is As described above, the fact that only the central segment includes usage information indicates that only a segment having a smaller number of segments than the number of segments “13” indicated by the system identification or transmission parameter information is valid. It corresponds to that.
  • the control unit 66 causes the RF unit 52 to change the segment to be received.
  • the control unit 66 causes the guard interval removal unit 54, the FFT unit 56, the OFDM frame decomposition unit 58, the TMCC signal processing unit 62, and the extraction unit 64 to execute the same processing as before. This is equivalent to investigating a segment other than segment 0, and particularly equivalent to investigating the number of segments “1” used by the received signal as a unit.
  • the TMCC information arranged in the segments 5 and 6 in FIG. FIG. 6 shows bit allocation of TMCC information transmitted in segment 5 and segment 6 of FIG.
  • a bit allocation column 220 and a content column 222 are included.
  • the system identification is the same as in FIG. 4, but “01” is set when the transmission method is terrestrial digital audio broadcasting. Therefore, the use of one segment is assumed. Therefore, unlike FIG. 4, only the central segment usage information is not included in the reserve. Description of other contents is omitted.
  • the controller 66 When the usage information is included only in the central segment, the controller 66 receives a signal other than the one-segment broadcast in a segment other than the segment 0 as shown in FIG. 1B or 1C. Identify that. In this case, the control unit 66 skips an investigation for a segment other than the segment 0. In addition, when notified from the extraction unit 64 that the reception process is impossible, the control unit 66 stops the process.
  • the frequency deinterleave unit 68 inputs data from the OFDM frame decomposition unit 58.
  • the frequency deinterleaver 68 performs frequency deinterleave on the data. This corresponds to the reverse process of the process in the frequency interleave unit 40 of FIG.
  • the frequency deinterleaving unit 68 skips processing.
  • the time deinterleave unit 70 inputs data from the frequency deinterleave unit 68.
  • the time deinterleaving unit 70 performs time deinterleaving on the data. This corresponds to the reverse process of the process in the time interleaving unit 38 of FIG.
  • the carrier demodulator 72 receives data from the time deinterleaver 70.
  • the carrier demodulator 72 demodulates data. Since the modulation mapping is any one of ⁇ / 4 shift DQPSK mapping, QPSK mapping, 16QAM mapping, and 64QAM mapping, the carrier demodulation unit 72 performs demodulation corresponding thereto. Note that the carrier demodulator 72 may use a pilot signal during demodulation.
  • the decoding unit 74 decodes the data demodulated by the decoding unit 74. When the data is punctured, the decoding unit 74 also executes depuncture.
  • the decoding unit 74 executes, for example, a Viterbi algorithm as decoding.
  • FIG. 7 is a flowchart illustrating a procedure of reception processing by the reception device 200.
  • the control unit 66 causes the data processing unit 60 to execute data reception processing (S16). If only the central segment is used (Y in S14), the control unit 66 causes other segments to be investigated (S18). If a signal in the central segment is not received (N in S10), or if information for 13 segments is not acquired (N in S12), the process is terminated.
  • the use of the 13 segments is notified by system identification and transmission parameter information. Can also be received.
  • 13 segments are used in system identification and transmission parameter information, only the central segment is notified of usage information, so that there is no data other than the central segment.
  • reception can also be performed in a full segment receiving apparatus or a multi-segment receiving apparatus.
  • one segment is used for area one segment broadcasting or the like.
  • the present invention is not limited to this.
  • a plurality of segments such as three segments may be used. That is, it is only necessary to use a smaller number of segments than the number of all segments “13”. According to this modification, the degree of freedom in designing area one-segment broadcasting can be improved.
  • various types of receiving apparatuses can receive signals while suppressing deterioration of frequency utilization efficiency.

Abstract

A generation unit (10) generates, from a plurality of segments which are positioned contiguously in a frequency region, data wherein some segments are used. A first acquisition unit (14) acquires first control information whereby a segment number greater than a segment number which is used by the generated data is denoted. A second acquisition unit (16) acquires a second control signal whereby, from the segments of the segment number denoted by the first control information, only the segment which is used by the generated data is denoted as being active. An OFDM frame configuration unit (22) multiplexes the data, the first control information, and the second control information. An RF unit (28) transmits the result of the multiplexing.

Description

送信装置、受信装置、送信方法、受信方法Transmitting device, receiving device, transmitting method, receiving method
 本発明は、放送技術に関し、特にOFDM(Orthogonal Frequency Division Multiplexing)信号を使用する送信装置、受信装置、送信方法、受信方法に関する。 The present invention relates to broadcasting technology, and more particularly, to a transmission device, a reception device, a transmission method, and a reception method that use an OFDM (Orthogonal Frequency Division Multiplexing) signal.
 地上デジタル放送では、ひとつのチャンネル内に複数のセグメントが周波数分割多重されている。このような地上デジタル放送において階層伝送を行う場合、階層情報の指定に沿った並列処理がなされた後、処理結果が合成される。移動受信における電界変動やマルチパス妨害に対して、誤り訂正符号化の能力を有効に発揮させるために、合成結果には時間インタリーブおよび周波数インタリーブがなされる。複数の伝送パラメータが混在する階層伝送に対して受信機の復調・復号を補助するため、制御情報としてTMCC(Transmission and Multiplexing Configuration Control)信号が、各セグメント中の特定のキャリアを用いて伝送される。TMCC信号を伝送するためのキャリアは、マルチパスによる伝送路特性の周期的なディップの影響を軽減するために、周波数方向にランダムに配置されている。また、ワンセグメント放送は、複数のセグメントのうち、中央のひとつのセグメントだけを使用する(例えば、非特許文献1)。 In terrestrial digital broadcasting, multiple segments are frequency division multiplexed within one channel. When performing hierarchical transmission in such terrestrial digital broadcasting, parallel processing is performed in accordance with the designation of hierarchical information, and then the processing results are synthesized. In order to make effective use of the error correction coding capability against electric field fluctuations and multipath interference in mobile reception, the synthesis result is subjected to time interleaving and frequency interleaving. TMCC (Transmission and Multiplexing Configuration Control) signal is transmitted as control information using a specific carrier in each segment in order to assist demodulation and decoding of the receiver for hierarchical transmission in which multiple transmission parameters are mixed . Carriers for transmitting TMCC signals are randomly arranged in the frequency direction in order to reduce the influence of periodic dip of transmission path characteristics due to multipath. In addition, one-segment broadcasting uses only one central segment among a plurality of segments (for example, Non-Patent Document 1).
 エリアワンセグメント放送とは、地上デジタル放送のひとつであるワンセグメント放送を利用し、放送事業者によって使用される送信電力よりも低い送信電力によって、狭いエリアに限定的にコンテンツデータを送信するサービスである。ワンセグメント放送に対応した受信装置として携帯電話端末が普及しているので、それを使用することによって、エリアワンセグメント放送の普及も期待される。現在のワンセグメント放送に対応した携帯電話端末は、地上デジタル放送(所謂フルセグ放送または12セグ放送)とともにワンセグメント放送が放送されていることを前提として設計されている場合が多い。また、現時点においては地上デジタル放送とは別にワンセグメント放送のみを運用する規格がない。以上のような状況から、現在のワンセグメント放送に対応した携帯電話端末は、受信した信号から抽出したTMCC信号にすべてのセグメントに関する情報が含まれていること確認した場合に、携帯電話端末は受信したワンセグメント放送の信号に対する処理を開始するものが多い。 Area one-segment broadcasting is a service that uses one-segment broadcasting, which is one of terrestrial digital broadcasting, to transmit content data limitedly to a narrow area with transmission power lower than the transmission power used by broadcasters. is there. Since mobile phone terminals are widely used as receiving devices compatible with one-segment broadcasting, the use of these devices is expected to spread area one-segment broadcasting. Mobile phone terminals compatible with current one-segment broadcasting are often designed on the assumption that one-segment broadcasting is broadcast together with terrestrial digital broadcasting (so-called full-segment broadcasting or 12-segment broadcasting). At present, there is no standard for operating only one-segment broadcasting apart from terrestrial digital broadcasting. Based on the above situation, when a mobile phone terminal supporting current one-segment broadcasting confirms that information on all segments is included in the TMCC signal extracted from the received signal, the mobile phone terminal receives it. Many start processing on the one-segment broadcast signals.
 一方、ワンセグメント放送で使用するセグメント以外のセグメントでの信号も受信可能な受信装置も存在する。そのため、TMCC信号に含まれた情報の内容と、実際に送信されている信号とは、一致している必要がある。これらを考慮して、携帯電話端末にワンセグメント放送だけを伝送する場合、他のセグメントでの送信は本来不要であるにもかかわらず、TMCC信号との整合性を図るために、他のセグメントにおいてもダミーとしてヌルデータが送信される。ヌルデータとは、空値のことである。従って、他のセメントにおいてはデータのない変調波のみが送信される。
 周波数資源を有効に活用するためには、ヌルデータは送信されない方が望ましい。
On the other hand, there is a receiving apparatus that can also receive signals in segments other than the segment used in one-segment broadcasting. For this reason, the content of information included in the TMCC signal needs to match the signal that is actually transmitted. Considering these, when transmitting only one-segment broadcasting to a mobile phone terminal, in order to ensure consistency with the TMCC signal, transmission in other segments is not necessary in other segments. Null data is transmitted as a dummy. Null data is a null value. Therefore, only other modulated waves without data are transmitted in other cements.
In order to effectively use frequency resources, it is desirable that null data is not transmitted.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、周波数利用効率の悪化を抑制しながら、さまざまなタイプの受信装置に受信させる技術を提供することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for receiving various types of receiving apparatuses while suppressing deterioration of frequency utilization efficiency.
 上記課題を解決するために、本発明のある態様の送信装置は、周波数領域において連続して配置された複数のセグメントのうち、一部のセグメントを使用したデータを生成する生成部と、生成部が生成したデータによって使用されたセグメント数よりも大きなセグメント数が示された第1制御情報を取得する第1取得部と、第1取得部が取得した第1制御情報によって示されたセグメント数のセグメントのうち、生成部が生成したデータによって使用されたセグメントだけが有効であることが示された第2制御信号を取得する第2取得部と、生成部が生成したデータ、第1取得部が取得した第1制御情報、第2取得部が取得した第2制御情報を多重化する多重化部と、多重化部における多重化結果を送信する送信部と、を備える。 In order to solve the above problems, a transmission device according to an aspect of the present invention includes a generation unit that generates data using a part of a plurality of segments arranged continuously in a frequency domain, and a generation unit The first acquisition unit that acquires the first control information indicating the number of segments larger than the number of segments used by the data generated by the data, and the number of segments indicated by the first control information acquired by the first acquisition unit Among the segments, a second acquisition unit that acquires a second control signal indicating that only a segment used by data generated by the generation unit is valid, data generated by the generation unit, and a first acquisition unit A multiplexing unit that multiplexes the acquired first control information and the second control information acquired by the second acquisition unit, and a transmission unit that transmits a multiplexing result in the multiplexing unit.
 この態様によると、複数のセグメントのうち、一部のセグメントを使用したデータを送信する場合であっても、第1制御情報と第2制御情報を送信するので、周波数利用効率の悪化を抑制しながら、さまざまなタイプの受信装置に受信させることができる。 According to this aspect, the first control information and the second control information are transmitted even when data using some of the plurality of segments is transmitted, so that deterioration in frequency use efficiency is suppressed. However, it can be received by various types of receiving devices.
 本発明の別の態様は、受信装置である。この装置は、周波数領域において連続して配置された複数のセグメントのうち、一部のセグメントを使用した信号を受信する受信部と、受信部が受信した信号から、周波数領域において連続して配置されたセグメント数が示された第1制御情報を抽出する抽出部と、受信部が受信した信号の中に、抽出部が抽出した第1制御情報によって示されたセグメント数よりも小さなセグメント数のセグメントだけが有効であることが示された第2制御情報が含まれている場合、受信部が受信した信号によって使用された一部のセグメントとは別のセグメントを調査する調査部とを備える。調査部は、受信部が受信した信号の中に第2制御情報が含まれない場合、受信部が受信した信号によって使用された一部のセグメントとは別のセグメントに対する調査をスキップする。 Another aspect of the present invention is a receiving device. This device is continuously arranged in the frequency domain from a receiving unit that receives a signal using a part of a plurality of segments arranged continuously in the frequency domain, and a signal received by the receiving unit. An extractor for extracting the first control information indicating the number of segments, and a segment having a smaller number of segments than the number of segments indicated by the first control information extracted by the extractor in the signal received by the receiver In the case where the second control information that is only valid is included, the reception unit includes a survey unit that investigates a segment other than a part of the segments used by the received signal. When the second control information is not included in the signal received by the receiving unit, the checking unit skips searching for a segment other than some of the segments used by the signal received by the receiving unit.
 この態様によると、第2制御情報に応じて、別のセグメントに対する調査の実行を決定するので、処理を効率的に実行できる。 According to this aspect, the execution of the investigation for another segment is determined according to the second control information, so that the processing can be executed efficiently.
 調査部は、受信部が受信した信号によって使用されたセグメント数を単位として、調査を実行してもよい。この場合、受信部が受信した信号によって使用されたセグメント数を調査の単位とするので、受信すべき信号を調査できる。 The survey unit may perform the survey based on the number of segments used by the signal received by the reception unit. In this case, since the number of segments used by the signal received by the receiving unit is used as the unit of investigation, the signal to be received can be investigated.
 本発明のさらに別の態様は、送信方法である。この方法は、周波数領域において連続して配置された複数のセグメントのうち、一部のセグメントを使用したデータを生成するステップと、生成したデータによって使用されたセグメント数よりも大きなセグメント数が示された第1制御情報を取得するステップと、取得した第1制御情報によって示されたセグメント数のセグメントのうち、生成したデータによって使用されたセグメントだけが有効であることが示された第2制御信号を取得するステップと、生成したデータ、取得した第1制御情報、取得した第2制御情報を多重化するステップと、多重化結果を送信するステップと、を含む。 Still another aspect of the present invention is a transmission method. In this method, a step of generating data using a part of a plurality of segments arranged consecutively in the frequency domain and a number of segments larger than the number of segments used by the generated data are shown. A step of acquiring the first control information, and a second control signal indicating that only the segment used by the generated data is valid among the number of segments indicated by the acquired first control information. , The generated data, the acquired first control information, the acquired second control information are multiplexed, and the multiplexing result is transmitted.
 本発明のさらに別の態様は、受信方法である。この方法は、周波数領域において連続して配置された複数のセグメントのうち、一部のセグメントを使用した信号を受信するステップと、受信した信号から、周波数領域において連続して配置されたセグメント数が示された第1制御情報を抽出するステップと、受信した信号の中に、抽出した第1制御情報によって示されたセグメント数よりも小さなセグメント数のセグメントだけが有効であることが示された第2制御情報が含まれている場合、受信した信号によって使用された一部のセグメントとは別のセグメントを調査するステップとを含む。調査するステップは、受信した信号の中に第2制御情報が含まれない場合、受信した信号によって使用された一部のセグメントとは別のセグメントに対する調査をスキップする。 Still another aspect of the present invention is a receiving method. This method includes a step of receiving a signal using a part of a plurality of segments continuously arranged in the frequency domain, and the number of segments continuously arranged in the frequency domain from the received signal. Extracting the indicated first control information, and indicating that only segments having a smaller number of segments than the number indicated by the extracted first control information are valid in the received signal. 2 If the control information is included, it includes a step of examining a segment other than a part of the segment used by the received signal. In the step of investigating, when the second control information is not included in the received signal, the investigation on the segment other than the one part segment used by the received signal is skipped.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above-described components and a conversion of the expression of the present invention between a method, an apparatus, a system, a recording medium, a computer program, etc. are also effective as an aspect of the present invention.
 本発明によれば、周波数利用効率の悪化を抑制しながら、さまざまなタイプの受信装置に受信させることができる。 According to the present invention, various types of receiving apparatuses can receive signals while suppressing deterioration of frequency utilization efficiency.
図1(a)-(e)は、本発明の実施例に係るエリアワンセグメント放送システムにおけるセグメントの配置を示す図である。FIGS. 1A to 1E are diagrams showing the arrangement of segments in an area one segment broadcasting system according to an embodiment of the present invention. 図1のエリアワンセグメント放送システムにおける送信装置の構成を示す図である。It is a figure which shows the structure of the transmitter in the area one segment broadcast system of FIG. 図2のTMCC信号生成部において生成されるTMCCキャリアのビット割当てを示す図である。It is a figure which shows the bit allocation of the TMCC carrier produced | generated in the TMCC signal generation part of FIG. 図3のTMCC情報の詳細を示す図である。It is a figure which shows the detail of the TMCC information of FIG. 図1のエリアワンセグメント放送システムにおける受信装置の構成を示す図である。It is a figure which shows the structure of the receiver in the area one segment broadcasting system of FIG. 図1(e)のセグメント5およびセグメント6において送信されるTMCC情報のビット割当てを示す図である。It is a figure which shows the bit allocation of the TMCC information transmitted in the segment 5 and the segment 6 of FIG.1 (e). 図5の受信装置による受信処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the reception process by the receiver of FIG.
 本発明を具体的に説明する前に、まず概要を述べる。本発明の実施例は、エリアワンセグメント放送におけるコンテンツ配信サービスを実現するために、コンテンツデータが含まれたOFDM信号を送信する送信装置と、OFDM信号を受信する受信装置に関する。OFDM信号には、制御情報としてTMCC情報が含まれている。これまでワンセグメント放送のみを実行する場合であっても、送信装置は、すべてのセグメントの使用に関する情報をTMCC情報に含めるとともに、データを配置すべきワンセグメント以外の残りのセグメントにヌルデータを配置させている。携帯電話端末では、すべてのセグメントの使用に関する情報がTMCC情報に含まれていることを確認してから、ワンセグメントのみに対して受信処理を実行している。すべてのセグメントの使用に関する情報とは、13セグメントが使用されていることを受信装置に認識させるための情報である。このような状況下において、周波数利用効率を向上させ、かつ他のタイプの受信装置も正常に動作するように、送信装置と受信装置は、次の処理を実行する。 Before describing the present invention specifically, an outline will be given first. Embodiments of the present invention relate to a transmitting apparatus that transmits an OFDM signal including content data and a receiving apparatus that receives the OFDM signal in order to realize a content distribution service in area one-segment broadcasting. The OFDM signal includes TMCC information as control information. Even if only one-segment broadcasting is performed so far, the transmission device includes information on the use of all segments in TMCC information, and arranges null data in the remaining segments other than the one segment where data should be arranged. ing. In the mobile phone terminal, after confirming that the information regarding the use of all segments is included in the TMCC information, the reception process is executed only for one segment. The information on the use of all segments is information for making the receiving apparatus recognize that 13 segments are used. Under such circumstances, the transmitting device and the receiving device execute the following processing so as to improve the frequency utilization efficiency and operate other types of receiving devices normally.
 本実施例に係る送信装置は、データを配置させたセグメント、例えば、中央のワンセグメントのみを使用してエリアワンセグメント放送を実行する。そのため、ヌルデータは、配置させない。一方、携帯電話端末にも受信させるために、送信装置は、すべてのセグメントの使用に関する情報をTMCC情報に含める。これより、TMCC情報の内容と、実際に使用されているセグメントに差異が生じ、TMCC情報をもとに受信処理を実行する他のタイプの受信装置に問題が生じる。他のタイプの受信装置とは、携帯電話端末とは異なり、中央のワンセグメント以外のセグメントの信号を受信可能な受信装置である。これに対応するために、送信装置は、データが配置されたセグメントのみが有効であることを示した情報(以下、「ワンセグメント使用情報」という)を含める。その結果、他のタイプの受信装置も、中央のワンセグメント以外のセグメントにデータが配置されていないことを認識する。一方、携帯電話端末は、元々中央のワンセグメントのデータしか受信しないので、ワンセグメント使用情報を無視する。 The transmitting apparatus according to the present embodiment performs area one segment broadcasting using only the segment in which data is arranged, for example, the central one segment. Therefore, null data is not arranged. On the other hand, in order for the mobile phone terminal to receive the information, the transmission device includes information on the use of all the segments in the TMCC information. As a result, a difference occurs between the contents of the TMCC information and the segments that are actually used, and a problem arises in other types of receiving apparatuses that perform reception processing based on the TMCC information. Unlike the mobile phone terminal, the other type of receiving device is a receiving device that can receive signals of segments other than the central one segment. In order to cope with this, the transmission apparatus includes information indicating that only the segment in which the data is arranged is valid (hereinafter referred to as “one segment use information”). As a result, other types of receiving apparatuses also recognize that data is not arranged in segments other than the central one segment. On the other hand, since the mobile phone terminal originally receives only the central one-segment data, it ignores the one-segment usage information.
 図1(a)-(e)は、本発明の実施例に係るエリアワンセグメント放送システムにおけるセグメントの配置を示す。図1(a)は、本実施例において使用されるひとつのチャンネルの構成を示す。チャンネルは、5.7MHz帯域幅を有する。図示のごとく、チャンネルの中に13個のセグメントが配置されており、各セグメントには、セグメント0からセグメント12のように、セグメントを識別するためのセグメント番号が付与される。各セグメントは、約429kHzの帯域を有し、これは地上デジタル放送と同一である。 FIGS. 1A to 1E show the arrangement of segments in the area one segment broadcasting system according to the embodiment of the present invention. FIG. 1A shows the configuration of one channel used in this embodiment. The channel has a 5.7 MHz bandwidth. As shown in the figure, 13 segments are arranged in the channel, and each segment is given a segment number for identifying the segment, such as segment 0 to segment 12. Each segment has a bandwidth of about 429 kHz, which is the same as terrestrial digital broadcasting.
 図1(b)は、13個のセグメントを使用して信号を送信する場合のチャンネル構成であり、これまでに既に使用されているチャンネル構成である。ここでは、中央のセグメント0にてワンセグメント放送が送信され、残りのセグメント1からセグメント12にてデジタル放送が送信される。なお、セグメント1からセグメント12において複数の番組が送信されてもよいが、それには公知の技術が使用されればよいので、ここでは説明を省略する。 FIG. 1B shows a channel configuration when signals are transmitted using 13 segments, and is a channel configuration that has already been used so far. Here, a one-segment broadcast is transmitted in the center segment 0, and a digital broadcast is transmitted in the remaining segments 1 to segment 12. A plurality of programs may be transmitted in the segment 1 to the segment 12, but a known technique may be used for this, and the description thereof is omitted here.
 図1(c)は、ワンセグメント放送だけを送信する場合のチャンネル構成であり、これまでに既に使用されているチャンネル構成である。ここでは、中央のセグメント0にてワンセグメント放送が送信され、残りのセグメント1からセグメント12にてヌルデータが送信されている。 FIG. 1 (c) shows a channel configuration when only one-segment broadcasting is transmitted, and is a channel configuration that has already been used so far. Here, the one-segment broadcast is transmitted in the central segment 0, and null data is transmitted in the remaining segments 1 to 12.
 図1(d)は、本実施例におけるワンセグメント放送だけを送信する場合のチャンネル構成である。図示のごとく、中央のセグメント0にてワンセグメント放送が送信され、残りのセグメントではデータが送信されない。図1(d)において占有される帯域幅は、図1(c)において占有される帯域幅よりも狭いが、図1(d)において実質的に送信可能なデータ量は、図1(c)において実質的に送信可能なデータ量と同等である。図1(e)は、図1(d)に示されたチャンネル構成を拡張させたチャンネル構成である。図示のごとく、複数のセグメントにおいて、ワンセグメント放送が送信される。そのため、ひとつのチャンネル内において、複数のワンセグメント放送が送信される。 FIG. 1 (d) shows a channel configuration when only one-segment broadcasting is transmitted in the present embodiment. As shown in the figure, the one-segment broadcast is transmitted in the center segment 0, and no data is transmitted in the remaining segments. The bandwidth occupied in FIG. 1 (d) is narrower than the bandwidth occupied in FIG. 1 (c), but the amount of data that can be substantially transmitted in FIG. 1 (d) is as shown in FIG. 1 (c). Is substantially equivalent to the amount of data that can be transmitted. FIG. 1E shows a channel configuration obtained by expanding the channel configuration shown in FIG. As illustrated, a one-segment broadcast is transmitted in a plurality of segments. Therefore, a plurality of one segment broadcasts are transmitted in one channel.
 このような状況下において、さまざまな種類の受信装置が想定される。例えば、携帯電話端末は、前述のTMCC情報の点において、図1(b)と(c)における中央のワンセグメントの信号を受信可能である。一方、携帯電話端末が図1(d)と(e)における中央のワンセグメントの信号を受信できるように、TMCC情報が構成されるべきである。その際、セグメント1等ではデータが送信されていないが、すべてのセグメントに対する情報がTMCC情報に含まれるようになっていることが好ましい。 In this situation, various types of receiving devices are assumed. For example, the cellular phone terminal can receive the central one-segment signal in FIGS. 1B and 1C in terms of the above-described TMCC information. On the other hand, the TMCC information should be configured so that the mobile phone terminal can receive the central one-segment signal in FIGS. 1 (d) and 1 (e). At that time, data is not transmitted in segment 1 or the like, but it is preferable that information on all segments is included in the TMCC information.
 また、13セグメントの信号を受信可能な受信装置(以下、「フルセグメント受信装置」という)は、図1(b)と(c)のような信号を受信可能である。一方、図1(d)と(e)において、使用されていないセグメントに対する情報がTMCC情報に含まれていれば、フルセグメント受信装置は、セグメント1等においても受信処理を実行してしまうので、受信が失敗する。そのため、フルセグメント受信装置に対しても、図1(d)と(e)のようなチャンネルを受信させることが好ましい。 Further, a receiving device that can receive a 13-segment signal (hereinafter referred to as a “full-segment receiving device”) can receive signals as shown in FIGS. 1B and 1C. On the other hand, in FIG. 1D and FIG. 1E, if the information about the unused segment is included in the TMCC information, the full segment receiving apparatus executes the receiving process also in the segment 1 or the like. Reception fails. Therefore, it is preferable that the full segment receiving apparatus also receives the channels as shown in FIGS. 1 (d) and 1 (e).
 さらに、ワンセグメント放送のみを受信可能であるが、セグメント0以外のセグメントへ移動しながら信号を受信可能な受信装置(以下、「マルチセグメント受信装置」という)も、図1(b)と(c)のような信号を受信可能である。マルチセグメント受信装置は、TMCC情報をもとに、セグメント0以外にワンセグメント放送が含まれていないことを認識する。一方、図1(d)や(e)のセグメント0の信号を受信した場合、マルチセグメント受信装置では、セグメント0以外のセグメントにおいて信号を受信可能であるかを調査する必要がある。つまり、マルチセグメント受信装置には、図1(b)と(c)の場合と、図1(c)と(d)の場合とを区別できることが望まれる。 Furthermore, a receiving device that can receive only one-segment broadcasting but can receive signals while moving to a segment other than segment 0 (hereinafter referred to as “multi-segment receiving device”) is also shown in FIGS. ) Can be received. Based on the TMCC information, the multi-segment receiver recognizes that one-segment broadcasting other than segment 0 is not included. On the other hand, when the segment 0 signal in FIGS. 1D and 1E is received, the multi-segment receiver needs to investigate whether the signal can be received in segments other than segment 0. That is, it is desirable for the multi-segment receiver to be able to distinguish between the cases of FIGS. 1B and 1C and the cases of FIGS. 1C and 1D.
 図2は、エリアワンセグメント放送システムにおける送信装置100の構成を示す。送信装置100は、生成部10、パイロット信号生成部12、第1取得部14、第2取得部16、TMCC信号生成部18、AC信号生成部20、OFDMフレーム構成部22、IFFT(Inverse Fast Fourier Transform)部24、ガードインターバル付加部26、RF部28、アンテナ30を含む。生成部10は、符号化部34、キャリア変調部36、時間インタリーブ部38、周波数インタリーブ部40を含む。送信装置100は、図1(d)に示されたチャンネル構成の信号を送信するが、図1(e)に示されたチャンネル構成のうちのセグメント0の信号を送信する場合にも対応する。 FIG. 2 shows a configuration of the transmission device 100 in the area one segment broadcasting system. The transmission device 100 includes a generation unit 10, a pilot signal generation unit 12, a first acquisition unit 14, a second acquisition unit 16, a TMCC signal generation unit 18, an AC signal generation unit 20, an OFDM frame configuration unit 22, an IFFT (Inverse Fast Fourier). (Transform) section 24, guard interval adding section 26, RF section 28, and antenna 30. The generation unit 10 includes an encoding unit 34, a carrier modulation unit 36, a time interleaving unit 38, and a frequency interleaving unit 40. The transmitting apparatus 100 transmits the signal having the channel configuration shown in FIG. 1D, but corresponds to the case of transmitting the segment 0 signal in the channel configuration shown in FIG.
 符号化部34は、入力したデータに対して畳込み符号化を実行する。例えば、拘束長k=7、符号化率1/2をマザーコードとするパンクチャード畳込み符号化がなされ、マザーコードの生成多項式が、G1=171OCT、G2=133OCTである。キャリア変調部36は、符号化部34からのデータに対して、ビットインタリーブを実行するとともに、変調マッピングを実行する。なお、階層伝送がなされる場合、これらの処理は各階層についてなされるが、ここでは、ひとつのセグメントに配置すべきデータのみを対象にするので、階層伝送の説明を省略する。 The encoding unit 34 performs convolutional encoding on the input data. For example, punctured convolutional coding with a constraint length k = 7 and an encoding rate of 1/2 as the mother code is performed, and the generator polynomial of the mother code is G1 = 171 OCT and G2 = 133 OCT . The carrier modulation unit 36 performs bit interleaving on the data from the encoding unit 34 and also performs modulation mapping. Note that, when hierarchical transmission is performed, these processes are performed for each layer, but here, only data to be arranged in one segment is targeted, and thus description of hierarchical transmission is omitted.
 キャリア変調部36は、変調マッピングとして、π/4シフトDQPSKのマッピング、QPSKのマッピング、16QAMのマッピング、64QAMのマッピングのいずれかを使用する。キャリア変調部36は、変調マッピングの結果として、複数ビットのI軸データおよびQ軸データ(以下、これらを「データ」という)を時間インタリーブ部38に出力する。 The carrier modulation unit 36 uses any one of π / 4 shift DQPSK mapping, QPSK mapping, 16QAM mapping, and 64QAM mapping as modulation mapping. The carrier modulation unit 36 outputs a plurality of bits of I-axis data and Q-axis data (hereinafter referred to as “data”) to the time interleaving unit 38 as a result of the modulation mapping.
 時間インタリーブ部38は、キャリア変調部36からのデータを入力し、変調シンボル単位、つまりI、Q軸単位で時間インタリーブを実行する。時間インタリーブは、変調後のデータを時間的に分散させ、耐フェージング性能を改善するために施される。例えば、時間インタリーブの構成として畳込みインタリーブが採用される。時間インタリーブ部38は、時間インタリーブがなされたデータ(以下、これも「データ」という)を周波数インタリーブ部40に出力する。 The time interleaving unit 38 receives data from the carrier modulation unit 36 and executes time interleaving in units of modulation symbols, that is, I and Q axes. Temporal interleaving is performed to temporally disperse the modulated data and improve anti-fading performance. For example, convolutional interleaving is employed as a time interleaving configuration. The time interleaving unit 38 outputs the data subjected to time interleaving (hereinafter also referred to as “data”) to the frequency interleaving unit 40.
 周波数インタリーブ部40は、時間インタリーブ部38からのデータを入力し、周波数インタリーブを実行する。なお、周波数インタリーブはなされなくてもよく、その際、周波数インタリーブ部40は、省略されてもよい。このように生成部10は、周波数領域において連続して配置された複数のセグメントのうち、一部のセグメントを使用したデータを生成する。生成部10は、データをOFDMフレーム構成部22に出力する。 The frequency interleaving unit 40 inputs data from the time interleaving unit 38 and executes frequency interleaving. Note that frequency interleaving may not be performed, and in that case, the frequency interleaving unit 40 may be omitted. As described above, the generation unit 10 generates data using some of the plurality of segments arranged continuously in the frequency domain. The generation unit 10 outputs the data to the OFDM frame configuration unit 22.
 TMCC信号生成部18は、TMCC信号を生成する。TMCC信号は、複数のサブキャリアで構成されたセグメントのうち、特定のサブキャリアにて伝送される。TMCC信号の伝送に使用されるサブキャリアは、TMCCキャリアと呼ばれる。TMCC信号は、階層構成や各セグメントの伝送パラメータ等、図示しない受信装置の復調動作に関わる情報を含む。このようなTMCC信号は、伝送パラメータの指定や受信装置の制御を行うため、データ信号より高い伝送信頼性が必要であるので、TMCC信号の誤り訂正符号には差集合巡回符号(273,191)の短縮符号(184,102)が使用される。また、変調マッピングとして、DBPSKが使用される。 The TMCC signal generator 18 generates a TMCC signal. The TMCC signal is transmitted on a specific subcarrier among segments composed of a plurality of subcarriers. A subcarrier used for transmission of a TMCC signal is called a TMCC carrier. The TMCC signal includes information related to a demodulation operation of a receiving apparatus (not shown) such as a hierarchical configuration and transmission parameters of each segment. Since such a TMCC signal specifies transmission parameters and controls a receiving device, it requires higher transmission reliability than a data signal. Therefore, a difference set cyclic code (273, 191) is used as an error correction code of a TMCC signal. The abbreviated code (184, 102) is used. DBPSK is used as modulation mapping.
 図3は、TMCC信号生成部18において生成されるTMCCキャリアのビット割当てを示す。図示のごとく、ビット割当て欄210、内容欄212が含まれる。ビット割当て欄210に示されたビットに、内容欄212に示された内容を示した情報が割り当てられる。B~B16には、16ビットのワードで構成された同期信号が含まれる。同期信号として、w0=0011010111101110とそれをビット反転したw1=1100101000010001の2種類が規定されており、フレーム毎にw0とw1が交互に使用される。同期信号は、TMCC信号の同期およびOFDMのフレーム同期を確立するために使用される。セグメント形式識別は、セグメント形式を識別するために使用される3ビットのワードであるが、ここでは説明を省略する。TMCC情報は、システム識別、伝送パラメータ切り替え指標、緊急警報放送用起動フラグ、カレント情報、ネクスト情報などを含み、受信装置の復調と復号動作を補助するための情報である。カレント情報は現在の階層構成および伝送パラメータを示し、ネクスト情報には切り替え後の伝送パラメータを示す。 FIG. 3 shows bit allocation of TMCC carriers generated in the TMCC signal generation unit 18. As shown, a bit allocation column 210 and a content column 212 are included. Information indicating the content shown in the content column 212 is assigned to the bit shown in the bit allocation column 210. B 1 to B 16 include a synchronization signal composed of 16-bit words. Two types of synchronization signals are defined: w0 = 001101101101110 and w1 = 110010010000010001 obtained by bit-inversion thereof, and w0 and w1 are alternately used for each frame. The synchronization signal is used to establish TMCC signal synchronization and OFDM frame synchronization. The segment type identification is a 3-bit word used to identify the segment type, but the description is omitted here. The TMCC information includes information such as system identification, transmission parameter switching index, emergency warning broadcast activation flag, current information, and next information, and is information for assisting demodulation and decoding operations of the receiving device. Current information indicates the current hierarchical configuration and transmission parameters, and next information indicates the transmission parameters after switching.
 図4は、TMCC情報の詳細を示す。図示のごとく、ビット割当て欄220、内容欄222が含まれる。システム識別は、使用されているシステムを示す。システム識別は、2ビットで構成される。地上デジタルテレビジョン放送システムに対応したシステムである場合に「00」が設定され、伝送方式が共通な地上デジタル音声放送である場合に「01」が設定される。残りの値はリザーブとされる。一般的に、地上デジタルテレビジョン放送システムは、13セグメントの使用を前提とし、地上デジタル音声放送は、13セグメントよりも少ないセグメント、例えば、1セグメントの使用を前提とする。ここでは、システム識別として「00」が設定される。そのため、システム識別は、実際にデータの伝送に使用されるセグメント数「1」よりも大きなセグメント数「13」が示された情報といえる。 FIG. 4 shows details of TMCC information. As shown, a bit allocation column 220 and a content column 222 are included. The system identification indicates the system being used. The system identification is composed of 2 bits. “00” is set when the system is compatible with the digital terrestrial television broadcasting system, and “01” is set when the transmission system is a common terrestrial digital audio broadcast. The remaining values are reserved. In general, a digital terrestrial television broadcasting system is premised on the use of 13 segments, and a digital terrestrial audio broadcasting is premised on the use of fewer segments than the 13 segments, for example, one segment. Here, “00” is set as the system identification. Therefore, the system identification can be said to be information indicating the number of segments “13” larger than the number of segments “1” actually used for data transmission.
 伝送パラメータ切り替え指標は、伝送パラメータを切り替える場合の切り替えタイミングを受信装置に通知するために使用される。具体的に説明すると、伝送パラメータ切り替え指標は、通常、「1111」の値に設定され、伝送パラメータを切り替える場合に、切り替える15フレーム前からフレーム毎に1ずつ減算される。緊急警報放送用起動フラグは、緊急警報放送において受信装置への起動制御がなされているか否かを示す。受信装置への起動制御が行われている場合には起動フラグが「1」に設定され、起動制御が行われていない場合には起動フラグが「0」に設定される。 The transmission parameter switching index is used to notify the receiving device of the switching timing when switching transmission parameters. More specifically, the transmission parameter switching index is normally set to a value of “1111”, and when switching transmission parameters, 1 is subtracted for each frame from 15 frames before switching. The emergency alert broadcast activation flag indicates whether or not activation control for the receiving device is performed in the emergency alert broadcast. The activation flag is set to “1” when activation control for the receiving apparatus is performed, and the activation flag is set to “0” when activation control is not performed.
 部分受信フラグは、伝送帯域中央のセグメントが部分受信用に設定されているか否かを示す。設定される場合には、部分受信フラグが「1」に設定されるが、これは、図1(b)から(e)のようにセグメント0が使用される場合に相当する。設定されない場合には、部分受信フラグが「0」に設定される。部分受信用にセグメント0が設定される場合、その階層はA階層として規定される。 The partial reception flag indicates whether the segment at the center of the transmission band is set for partial reception. When set, the partial reception flag is set to “1”, which corresponds to the case where the segment 0 is used as shown in FIGS. If it is not set, the partial reception flag is set to “0”. When segment 0 is set for partial reception, the layer is defined as layer A.
 前述のごとく、携帯電話端末でもTMCC情報を認識可能にするために、有意なデータの伝送に使用されているセグメントに関係なく、すべてのセグメントに関する情報が含まれるように、伝送パラメータ情報が取得される。つまり、セグメント0に関する情報が取得されているとともに、他のセグメントに関する情報も取得されている。これは、システム識別「00」に対応する。そのため、伝送パラメータ情報も、実際にデータの伝送に使用されるセグメント数よりも大きなセグメント数が示された情報といえる。 As described above, transmission parameter information is acquired so that information on all segments is included regardless of the segments used for the transmission of significant data so that the mobile phone terminal can recognize TMCC information. The That is, information on segment 0 is acquired, and information on other segments is also acquired. This corresponds to the system identification “00”. Therefore, it can be said that the transmission parameter information is information indicating the number of segments larger than the number of segments actually used for data transmission.
 B110からB121のビットは、リザーブとして確保される。ここでは、B110が「中央セグメントのみ使用情報」が配置される。中央セグメントのみ使用情報は、前述のワンセグメント使用情報に相当し、ワンセグメント放送のみ(すなわちA階層での放送のみ)でセグメントが使用されることを通知するために使用される。つまり、図1(b)と(c)との場合と、図1(d)と(e)との場合とを識別するために使用される。ワンセグメント放送のみでセグメントが使用されている場合、つまり図1(d)と(e)との場合、「中央セグメントのみ使用情報」は「0」に設定される。一方、ワンセグメント放送以外でもセグメントが使用されている場合、つまり図1(b)と(c)との場合、「中央セグメントのみ使用情報」は「1」に設定される。なお、他のリザーブビットには、「1」が設定される。図2に戻る。 Bits B110 to B121 are reserved as reserves. Here, “use information only for the central segment” is arranged in B110. The center segment only use information corresponds to the above-described one segment use information, and is used to notify that the segment is used only in one segment broadcast (that is, only broadcast in the A layer). That is, it is used to distinguish between the cases of FIGS. 1B and 1C and the cases of FIGS. 1D and 1E. When the segment is used only in the one-segment broadcasting, that is, in the case of FIGS. 1D and 1E, the “use information only at the center segment” is set to “0”. On the other hand, when the segment is used other than the one-segment broadcast, that is, in the case of FIGS. 1B and 1C, the “use information only for the central segment” is set to “1”. Note that “1” is set in the other reserved bits. Returning to FIG.
 第1取得部14は、TMCC情報のうち、システム識別、伝送パラメータ切り替え指標、緊急警報放送用起動フラグ、カレント情報、ネクスト情報、連結送信位相補正量を取得する。ここで、カレント情報やネクスト情報には、伝送パラメータ情報が含まれる。そのため、第1取得部14は、生成部10が生成したデータによって使用されたセグメント数、例えば、「1」よりも大きなセグメント数、例えば「13」が示されたシステム識別と伝送パラメータ情報とを取得する。第1取得部14は、取得した情報をTMCC信号生成部18に出力する。 The first acquisition unit 14 acquires system identification, transmission parameter switching index, emergency warning broadcast activation flag, current information, next information, and linked transmission phase correction amount from TMCC information. Here, the current information and the next information include transmission parameter information. Therefore, the first acquisition unit 14 obtains the number of segments used by the data generated by the generation unit 10, for example, the system identification and transmission parameter information indicating the number of segments larger than “1”, for example “13”. get. The first acquisition unit 14 outputs the acquired information to the TMCC signal generation unit 18.
 第2取得部16は、中央セグメントのみ使用情報を取得し、これをTMCC信号生成部18に出力する。前述のごとく、中央セグメントの使用情報とは、第1取得部14が取得したシステム識別と伝送パラメータ情報によって示されたセグメント数のセグメントのうち、生成部10が生成したデータによって使用されたセグメントだけが有効であることが示された情報である。 The second acquisition unit 16 acquires usage information for only the central segment, and outputs this to the TMCC signal generation unit 18. As described above, the usage information of the central segment is only the segment used by the data generated by the generation unit 10 among the segments of the number of segments indicated by the system identification and transmission parameter information acquired by the first acquisition unit 14. Is information that has been shown to be valid.
 パイロット信号生成部12は、コンティニュアルパイロットやスキャッタードパイロットを生成し、これらをOFDMフレーム構成部22に出力する。コンティニュアルパイロットやスキャッタードパイロットの値や挿入されるサブキャリア位置は予め規定されている。以下では、コンティニュアルパイロットとスキャッタードパイロットとを「パイロット信号」と総称する。AC信号生成部20は、放送に関する付加情報としてのAC(Auxiliary Channel)を生成する。放送に関する付加情報とは、変調波の伝送制御に関する付加情報、または地震動警報情報である。ACの変調信号は、差動符号化後の情報「0、1」に対して(+4/3,0)と(-4/3,0)の信号点に配置され、放送に関する付加情報がない場合に、スタッフィングビットとして情報「1」が挿入される。AC信号生成部20は、AC信号をOFDMフレーム構成部22に出力する。 The pilot signal generation unit 12 generates a continuous pilot and a scattered pilot and outputs them to the OFDM frame configuration unit 22. The values of the continuous pilot and the scattered pilot and the subcarrier position to be inserted are defined in advance. Hereinafter, the continuous pilot and the scattered pilot are collectively referred to as “pilot signals”. The AC signal generation unit 20 generates an AC (Auxiliary Channel) as additional information related to broadcasting. The additional information related to broadcasting is additional information related to transmission control of modulated waves or earthquake motion warning information. The AC modulation signal is arranged at signal points (+ 4 / 3,0) and (−4 / 3,0) with respect to information “0, 1” after differential encoding, and there is no additional information related to broadcasting. In this case, information “1” is inserted as a stuffing bit. The AC signal generation unit 20 outputs the AC signal to the OFDM frame configuration unit 22.
 OFDMフレーム構成部22は、生成部10が生成したデータ、パイロット信号生成部12が生成したパイロット信号、TMCC信号生成部18が生成したTMCC信号、AC信号生成部2が生成したAC信号を入力する。OFDMフレーム構成部22は、データ、パイロット信号、TMCC信号、AC信号を多重化することによって、OFDMフレームとして、周波数領域のOFDM信号を生成する。ここで、TMCC信号、AC信号は、マルチパスによる伝送路特性の周期的なディップの影響を軽減するために、周波数方向にランダムに配置されている。なお、これらが配置されるサブキャリアは予め定められている。OFDMフレーム構成部22は、周波数領域のOFDMをIFFT部24に出力する。 The OFDM frame configuration unit 22 receives the data generated by the generation unit 10, the pilot signal generated by the pilot signal generation unit 12, the TMCC signal generated by the TMCC signal generation unit 18, and the AC signal generated by the AC signal generation unit 2. . The OFDM frame configuration unit 22 generates a frequency-domain OFDM signal as an OFDM frame by multiplexing data, pilot signals, TMCC signals, and AC signals. Here, the TMCC signal and the AC signal are randomly arranged in the frequency direction in order to reduce the influence of the periodic dip of the transmission path characteristic due to multipath. Note that the subcarriers on which these are arranged are determined in advance. The OFDM frame configuration unit 22 outputs the frequency domain OFDM to the IFFT unit 24.
 IFFT部24は、OFDMフレーム構成部22から周波数領域のOFDM信号を入力し、周波数領域のOFDM信号にIFFTを実行することによって、時間領域のOFDM信号を生成する。IFFT部24は、時間領域のOFDM信号をガードインターバル付加部26に出力する。ガードインターバル付加部26は、IFFT部24から時間領域のOFDM信号を入力する。ガードインターバル付加部26は、時間領域のOFDM信号のうち、時間的に後側から、指定された時間長のデータを有効シンボルの前にそのまま付加することによって、ガードインターバルを生成する。ガードインターバル付加部26は、ガードインターバルが付加された時間領域のOFDM信号(以下、これも「時間領域のOFDM信号」という)をRF部28に出力する。RF部28は、ガードインターバル付加部26から時間領域のOFDM信号を受けつける。RF部28は、周波数変換、増幅を実行した後、その結果の信号をアンテナ30から送信する。制御部32は、送信装置100の動作タイミングを制御する。 The IFFT unit 24 receives the frequency domain OFDM signal from the OFDM frame configuration unit 22 and performs an IFFT on the frequency domain OFDM signal to generate a time domain OFDM signal. The IFFT unit 24 outputs the time-domain OFDM signal to the guard interval adding unit 26. The guard interval adding unit 26 inputs the time domain OFDM signal from the IFFT unit 24. The guard interval adding unit 26 generates a guard interval by adding data of a specified time length as it is before a valid symbol from the time side in the time domain OFDM signal. The guard interval adding unit 26 outputs the time domain OFDM signal to which the guard interval is added (hereinafter also referred to as “time domain OFDM signal”) to the RF unit 28. The RF unit 28 receives the OFDM signal in the time domain from the guard interval adding unit 26. The RF unit 28 performs frequency conversion and amplification, and then transmits the resultant signal from the antenna 30. The control unit 32 controls the operation timing of the transmission device 100.
 この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。 This configuration can be realized in terms of hardware by a CPU, memory, or other LSI of any computer, and in terms of software, it can be realized by a program loaded in the memory, but here it is realized by their cooperation. Draw functional blocks. Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
 図5は、エリアワンセグメント放送システムにおける受信装置200の構成を示す。受信装置200は、アンテナ50、RF部52、ガードインターバル除去部54、FFT部56、OFDMフレーム分解部58、データ処理部60、TMCC信号処理部62、抽出部64、制御部66を含む。データ処理部60は、周波数デインタリーブ部68、時間デインタリーブ部70、キャリア復調部72、復号部74を含む。これは、前述のマルチセグメント受信装置に相当する。 FIG. 5 shows a configuration of the receiving device 200 in the area one segment broadcasting system. The receiving apparatus 200 includes an antenna 50, an RF unit 52, a guard interval removing unit 54, an FFT unit 56, an OFDM frame decomposing unit 58, a data processing unit 60, a TMCC signal processing unit 62, an extracting unit 64, and a control unit 66. The data processing unit 60 includes a frequency deinterleaving unit 68, a time deinterleaving unit 70, a carrier demodulating unit 72, and a decoding unit 74. This corresponds to the multi-segment receiver described above.
 RF部52は、アンテナ50を介して、図示しない送信装置からの信号を受信する。受信した信号のチャンネル構成は、図1(b)-(e)のいずれかである。図1(b)-(e)では、いずれもセグメント0がワンセグメント放送に使用されているので、RF部52は、初期の状態において、セグメント0に配置された信号だけを受信する。そのため、受信した信号は、周波数領域において連続して配置された複数のセグメントのうち、一部のセグメントを使用した信号であるといえる。RF部52は、受信した信号に対して、増幅、周波数変換を実行した後、その結果(以下、「時間領域のOFDM信号」という)をガードインターバル除去部54に出力する。 The RF unit 52 receives a signal from a transmission device (not shown) via the antenna 50. The channel configuration of the received signal is one of FIGS. 1B to 1E. 1B to 1E, since the segment 0 is used for one-segment broadcasting, the RF unit 52 receives only the signal arranged in the segment 0 in the initial state. Therefore, it can be said that the received signal is a signal using a part of segments among a plurality of segments continuously arranged in the frequency domain. The RF unit 52 performs amplification and frequency conversion on the received signal, and then outputs the result (hereinafter referred to as “time-domain OFDM signal”) to the guard interval removal unit 54.
 ガードインターバル除去部54は、RF部52から時間領域のOFDM信号を入力し、時間領域のOFDM信号からガードインターバルを除去する。これは、図2のガードインターバル付加部26と逆の処理に相当する。ガードインターバル除去部54は、ガードインターバルを除去した時間領域のOFDM信号(以下、これも「時間領域のOFDM信号」という)をFFT部56に出力する。FFT部56は、ガードインターバル除去部54から時間領域のOFDM信号を入力し、時間領域のOFDM信号にFFTを実行することによって、周波数領域のOFDM信号を生成する。FFT部56は、周波数領域のOFDM信号をOFDMフレーム分解部58に出力する。 The guard interval removing unit 54 receives the time domain OFDM signal from the RF unit 52 and removes the guard interval from the time domain OFDM signal. This corresponds to the reverse process of the guard interval adding unit 26 in FIG. The guard interval removing unit 54 outputs the time domain OFDM signal from which the guard interval is removed (hereinafter also referred to as “time domain OFDM signal”) to the FFT unit 56. The FFT unit 56 receives the time-domain OFDM signal from the guard interval removal unit 54 and performs FFT on the time-domain OFDM signal to generate a frequency-domain OFDM signal. The FFT unit 56 outputs the frequency domain OFDM signal to the OFDM frame decomposition unit 58.
 OFDMフレーム分解部58は、FFT部56から周波数領域のOFDM信号を入力する。OFDMフレーム分解部58は、図2のOFDMフレーム構成部22と逆の処理を実行することによって、周波数領域のOFDM信号から、データ、パイロット信号、TMCC信号、AC信号を取得する。OFDMフレーム分解部58は、特に、データをデータ処理部60に出力し、TMCC信号をTMCC信号処理部62に出力する。それ以外の信号については、説明を省略する。 The OFDM frame decomposition unit 58 inputs the frequency domain OFDM signal from the FFT unit 56. The OFDM frame decomposing unit 58 acquires data, a pilot signal, a TMCC signal, and an AC signal from the OFDM signal in the frequency domain by executing a process reverse to that of the OFDM frame configuration unit 22 in FIG. In particular, the OFDM frame decomposition unit 58 outputs data to the data processing unit 60 and outputs a TMCC signal to the TMCC signal processing unit 62. Description of other signals is omitted.
 TMCC信号処理部62は、OFDMフレーム分解部58からTMCC信号を入力する。TMCC信号処理部62の処理の説明は省略するが、図4に示したシステム識別、伝送パラメータは、抽出部64によって抽出される。抽出部64は、TMCC情報の中からシステム識別、伝送パラメータを抽出する。ここでは、システム識別として「00」が設定されており、これは、前述のごとく、地上デジタルテレビジョン放送システムに対応したシステムであることを示す。 The TMCC signal processing unit 62 inputs the TMCC signal from the OFDM frame decomposition unit 58. Although description of the processing of the TMCC signal processing unit 62 is omitted, the system identification and transmission parameters shown in FIG. The extraction unit 64 extracts system identification and transmission parameters from the TMCC information. Here, “00” is set as the system identification, which indicates that the system is compatible with the digital terrestrial television broadcasting system as described above.
 地上デジタルテレビジョン放送システムは、13セグメントの使用を前提としているので、「00」のシステム識別を抽出することは、周波数領域において連続して配置されたセグメント数「13」が示された情報を抽出することに相当する。また、抽出部64は、伝送パラメータ情報の内容を確認することによって、すべてのセグメントに対する情報が含まれていることを確認する。これも、周波数領域において連続して配置されたセグメント数「13」が示された情報を抽出することに相当する。TMCC信号処理部62は、これらの内容を確認した場合、制御部66に対して受信処理が可能であることを通知する。一方、TMCC信号処理部62は、「00」のシステム識別を抽出したものの、すべてのセグメントに対する伝送パラメータ情報を確認できない場合、制御部66に対して受信処理が不可能であることを通知する。 Since the terrestrial digital television broadcasting system is premised on the use of 13 segments, extracting the system identification of “00” is information indicating the number of segments “13” continuously arranged in the frequency domain. It corresponds to extracting. Further, the extraction unit 64 confirms that information for all segments is included by confirming the content of the transmission parameter information. This also corresponds to extracting information indicating the number of segments “13” arranged continuously in the frequency domain. When confirming these contents, the TMCC signal processing unit 62 notifies the control unit 66 that the reception process is possible. On the other hand, when the system identification of “00” is extracted but the transmission parameter information for all segments cannot be confirmed, the TMCC signal processing unit 62 notifies the control unit 66 that reception processing is impossible.
 制御部66は、受信処理が可能であることを抽出部64から通知された場合、TMCC信号処理部62において処理されたTMCC情報をもとに、データ処理部60の動作を制御する。具体的に説明すると、制御部66は、TMCC信号処理部62において処理されたTMCC情報をもとに、データを処理することをデータ処理部60に指示する。また、制御部66は、TMCC情報の中に、中央セグメントのみ使用情報が含まれている場合、受信した信号が図1(d)あるいは(e)のごとく、ワンセグメント放送の信号のみが含まれたチャンネルであることを特定する。前述のごとく、中央セグメントのみ使用情報が含まれていることは、システム識別あるいは伝送パラメータ情報によって示されたセグメント数「13」よりも小さなセグメント数のセグメントだけが有効であることが示されていることに相当する。 When notified from the extraction unit 64 that the reception process is possible, the control unit 66 controls the operation of the data processing unit 60 based on the TMCC information processed in the TMCC signal processing unit 62. Specifically, the control unit 66 instructs the data processing unit 60 to process data based on the TMCC information processed in the TMCC signal processing unit 62. When the TMCC information includes usage information for only the central segment, the control unit 66 includes only the one-segment broadcast signal as shown in FIG. 1 (d) or (e). Identify that the channel is As described above, the fact that only the central segment includes usage information indicates that only a segment having a smaller number of segments than the number of segments “13” indicated by the system identification or transmission parameter information is valid. It corresponds to that.
 この場合、チャンネル構成が図1(e)である可能性も残っているので、制御部66は、RF部52に対して、受信すべきセグメントを変更させる。その結果、制御部66は、ガードインターバル除去部54、FFT部56、OFDMフレーム分解部58、TMCC信号処理部62、抽出部64に対して、これまでと同一の処理を実行させる。これは、セグメント0とは別のセグメントを調査することに相当し、特に受信した信号によって使用されたセグメント数「1」を単位として調査することに相当する。 In this case, since the possibility that the channel configuration is that shown in FIG. 1E remains, the control unit 66 causes the RF unit 52 to change the segment to be received. As a result, the control unit 66 causes the guard interval removal unit 54, the FFT unit 56, the OFDM frame decomposition unit 58, the TMCC signal processing unit 62, and the extraction unit 64 to execute the same processing as before. This is equivalent to investigating a segment other than segment 0, and particularly equivalent to investigating the number of segments “1” used by the received signal as a unit.
 ここでは、例えば、図1(e)のセグメント5や6に配置されたTMCC情報を説明する。図6は、図1(e)のセグメント5およびセグメント6において送信されるTMCC情報のビット割当てを示す。図示のごとく、ビット割当て欄220、内容欄222が含まれる。システム識別は、図4と同様であるが、伝送方式が共通な地上デジタル音声放送である場合の「01」が設定される。そのため、1セグメントの使用が前提とされる。そのため、図4とは異なり、中央セグメントのみ使用情報がリザーブ中に含まれない。他の内容についての説明は省略する。図5に戻る。 Here, for example, the TMCC information arranged in the segments 5 and 6 in FIG. FIG. 6 shows bit allocation of TMCC information transmitted in segment 5 and segment 6 of FIG. As shown, a bit allocation column 220 and a content column 222 are included. The system identification is the same as in FIG. 4, but “01” is set when the transmission method is terrestrial digital audio broadcasting. Therefore, the use of one segment is assumed. Therefore, unlike FIG. 4, only the central segment usage information is not included in the reserve. Description of other contents is omitted. Returning to FIG.
 制御部66は、中央セグメントのみ使用情報が含まれている場合、受信した信号が図1(b)あるいは(c)のごとく、セグメント0以外のセグメントに、ワンセグメント放送以外の信号が含まれていることを特定する。この場合、制御部66は、セグメント0とは別のセグメントに対する調査をスキップする。また、制御部66は、受信処理が不可能であることを抽出部64から通知された場合、処理を中止する。 When the usage information is included only in the central segment, the controller 66 receives a signal other than the one-segment broadcast in a segment other than the segment 0 as shown in FIG. 1B or 1C. Identify that. In this case, the control unit 66 skips an investigation for a segment other than the segment 0. In addition, when notified from the extraction unit 64 that the reception process is impossible, the control unit 66 stops the process.
 周波数デインタリーブ部68は、OFDMフレーム分解部58からデータを入力する。周波数デインタリーブ部68は、データに対して周波数デインタリーブを実行する。これは、図2の周波数インタリーブ部40における処理の逆の処理に対応する。なお、周波数インタリーブがなされない場合、周波数デインタリーブ部68は、処理をスキップする。時間デインタリーブ部70は、周波数デインタリーブ部68からデータを入力する。時間デインタリーブ部70は、データに対して時間デインタリーブを実行する。これは、図2の時間インタリーブ部38における処理の逆の処理に対応する。 The frequency deinterleave unit 68 inputs data from the OFDM frame decomposition unit 58. The frequency deinterleaver 68 performs frequency deinterleave on the data. This corresponds to the reverse process of the process in the frequency interleave unit 40 of FIG. When frequency interleaving is not performed, the frequency deinterleaving unit 68 skips processing. The time deinterleave unit 70 inputs data from the frequency deinterleave unit 68. The time deinterleaving unit 70 performs time deinterleaving on the data. This corresponds to the reverse process of the process in the time interleaving unit 38 of FIG.
 キャリア復調部72は、時間デインタリーブ部70からデータを入力する。キャリア復調部72は、データを復調する。なお、変調マッピングは、π/4シフトDQPSKのマッピング、QPSKのマッピング、16QAMのマッピング、64QAMのマッピングのいずれかであるので、キャリア復調部72は、それに対応した復調を実行する。なお、キャリア復調部72は、復調の際にパイロット信号を使用してもよい。復号部74は、復号部74において復調したデータを復号する。データに対してパンクチャードがなされている場合、復号部74は、デパンクチャードも実行する。復号部74は、復号として、例えばビタビアルゴリズムを実行する。 The carrier demodulator 72 receives data from the time deinterleaver 70. The carrier demodulator 72 demodulates data. Since the modulation mapping is any one of π / 4 shift DQPSK mapping, QPSK mapping, 16QAM mapping, and 64QAM mapping, the carrier demodulation unit 72 performs demodulation corresponding thereto. Note that the carrier demodulator 72 may use a pilot signal during demodulation. The decoding unit 74 decodes the data demodulated by the decoding unit 74. When the data is punctured, the decoding unit 74 also executes depuncture. The decoding unit 74 executes, for example, a Viterbi algorithm as decoding.
 以上の構成による受信装置200の動作を説明する。図7は、受信装置200による受信処理の手順を示すフローチャートである。RF部52が、中央セグメントでの信号を受信しており(S10のY)、抽出部64が、13セグメント分の情報を取得した場合(S12のY)、中央セグメントのみ使用でなければ(S14のN)、制御部66は、データ処理部60にデータの受信処理を実行させる(S16)。中央セグメントのみ使用であれば(S14のY)、制御部66は、他のセグメントを調査させる(S18)。中央セグメントでの信号を受信されていない場合(S10のN)、あるいは13セグメント分の情報を取得しない場合(S12のN)、処理は終了される。 The operation of the receiving apparatus 200 having the above configuration will be described. FIG. 7 is a flowchart illustrating a procedure of reception processing by the reception device 200. When the RF unit 52 receives a signal in the central segment (Y in S10) and the extraction unit 64 acquires information for 13 segments (Y in S12), only the central segment is not used (S14). N), the control unit 66 causes the data processing unit 60 to execute data reception processing (S16). If only the central segment is used (Y in S14), the control unit 66 causes other segments to be investigated (S18). If a signal in the central segment is not received (N in S10), or if information for 13 segments is not acquired (N in S12), the process is terminated.
 本発明の実施例によれば、13セグメントのうち、ひとつのセグメントを使用したデータを送信する場合であっても、システム識別や伝送パラメータ情報にて13セグメントの使用を通知するので、携帯電話端末においても受信を可能にできる。また、システム識別や伝送パラメータ情報にて13セグメントの使用したときに、中央セグメントのみ使用情報を通知するので、中央セグメント以外にデータがないことを通知できる。また、中央セグメント以外にデータがないことが通知されるので、フルセグメント受信装置やマルチセグメント受信装置においても受信を可能にできる。 According to the embodiment of the present invention, even when data using one of the 13 segments is transmitted, the use of the 13 segments is notified by system identification and transmission parameter information. Can also be received. In addition, when 13 segments are used in system identification and transmission parameter information, only the central segment is notified of usage information, so that there is no data other than the central segment. In addition, since it is notified that there is no data other than in the central segment, reception can also be performed in a full segment receiving apparatus or a multi-segment receiving apparatus.
 また、携帯電話端末、フルセグメント受信装置、マルチセグメント受信装置での受信を可能にするので、さまざまなタイプの受信装置に受信させることができる。また、中央のワンセグメントのみを送信に使用するので、周波数利用効率の悪化を抑制できる。また、中央セグメントのみ使用情報が有効である場合に、別のセグメントに対する調査を決定し、無効である場合に、別のセグメントに対する調査をスキップするので、処理を効率的に実行できる。また、ひとつのセグメント数を調査の単位とするので、受信すべき信号を調査できる。 In addition, since reception by a mobile phone terminal, a full segment receiving device, and a multi-segment receiving device is possible, various types of receiving devices can receive the data. In addition, since only the central one segment is used for transmission, it is possible to suppress deterioration in frequency utilization efficiency. In addition, when the usage information is valid only in the central segment, the survey for another segment is determined, and when the usage information is invalid, the survey for another segment is skipped, so that the processing can be executed efficiently. In addition, since the number of segments is the unit of investigation, the signal to be received can be investigated.
 以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to the combination of each component and each processing process, and such modifications are also within the scope of the present invention. .
 本発明の実施例において、エリアワンセグメント放送等して、ひとつのセグメントが使用される場合を想定している。しかしながらこれに限らず例えば、3セグメントのような複数のセグメントが使用されてもよい。つまり、すべてのセグメント数「13」よりも小さい数のセグメントが使用されればよい。本変形例によれば、エリアワンセグメント放送の設計の自由度を向上できる。 In the embodiment of the present invention, it is assumed that one segment is used for area one segment broadcasting or the like. However, the present invention is not limited to this. For example, a plurality of segments such as three segments may be used. That is, it is only necessary to use a smaller number of segments than the number of all segments “13”. According to this modification, the degree of freedom in designing area one-segment broadcasting can be improved.
 10 生成部、 12 パイロット信号生成部、 14 第1取得部、 16 第2取得部、 18 TMCC信号生成部、 20 AC信号生成部、 22 OFDMフレーム構成部、 24 IFFT部、 26 ガードインターバル付加部、 28 RF部、 30 アンテナ、 32 制御部、 34 符号化部、 36 キャリア変調部、 38 時間インタリーブ部、 40 周波数インタリーブ部、 50 アンテナ、 52 RF部、 54 ガードインターバル除去部、 56 FFT部、 58 OFDMフレーム分解部、 60 データ処理部、 62 TMCC信号処理部、 64 抽出部、 66 制御部、 68 周波数デインタリーブ部、 70 時間デインタリーブ部、 72 キャリア復調部、 74 復号部、 100 送信装置、 200 受信装置。 10 generation unit, 12 pilot signal generation unit, 14 first acquisition unit, 16 second acquisition unit, 18 TMCC signal generation unit, 20 AC signal generation unit, 22 OFDM frame configuration unit, 24 IFFT unit, 26 guard interval addition unit, 28 RF unit, 30 antenna, 32 control unit, 34 encoding unit, 36 carrier modulation unit, 38 time interleaving unit, 40 frequency interleaving unit, 50 antenna, 52 RF unit, 54 guard interval removal unit, 56 FFT unit, 58 OFDM Frame decomposition unit, 60 data processing unit, 62 TMCC signal processing unit, 64 extraction unit, 66 control unit, 68 frequency deinterleaving unit, 70 time deinterleaving unit, 72 carrier demodulation unit, 74 Decoding unit, 100 transmission device, 200 receiving device.
 本発明によれば、周波数利用効率の悪化を抑制しながら、さまざまなタイプの受信装置に受信させることができる。 According to the present invention, various types of receiving apparatuses can receive signals while suppressing deterioration of frequency utilization efficiency.

Claims (5)

  1.  周波数領域において連続して配置された複数のセグメントのうち、一部のセグメントを使用したデータを生成する生成部と、
     前記生成部が生成したデータによって使用されたセグメント数よりも大きなセグメント数が示された第1制御情報を取得する第1取得部と、
     前記第1取得部が取得した第1制御情報によって示されたセグメント数のセグメントのうち、前記生成部が生成したデータによって使用されたセグメントだけが有効であることが示された第2制御信号を取得する第2取得部と、
     前記生成部が生成したデータ、前記第1取得部が取得した第1制御情報、前記第2取得部が取得した第2制御情報を多重化する多重化部と、
     前記多重化部における多重化結果を送信する送信部と、
     を備えることを特徴とする送信装置。
    A generating unit that generates data using a part of a plurality of segments continuously arranged in the frequency domain;
    A first acquisition unit that acquires first control information indicating a larger number of segments than the number of segments used by the data generated by the generation unit;
    The second control signal indicating that only the segment used by the data generated by the generation unit is valid among the number of segments indicated by the first control information acquired by the first acquisition unit. A second acquisition unit to acquire;
    A multiplexing unit that multiplexes the data generated by the generation unit, the first control information acquired by the first acquisition unit, and the second control information acquired by the second acquisition unit;
    A transmission unit for transmitting a multiplexing result in the multiplexing unit;
    A transmission device comprising:
  2.  周波数領域において連続して配置された複数のセグメントのうち、一部のセグメントを使用した信号を受信する受信部と、
     前記受信部が受信した信号から、周波数領域において連続して配置されたセグメント数が示された第1制御情報を抽出する抽出部と、
     前記受信部が受信した信号の中に、前記抽出部が抽出した第1制御情報によって示されたセグメント数よりも小さなセグメント数のセグメントだけが有効であることが示された第2制御情報が含まれている場合、前記受信部が受信した信号によって使用された一部のセグメントとは別のセグメントを調査する調査部とを備え、
     前記調査部は、前記受信部が受信した信号の中に第2制御情報が含まれない場合、前記受信部が受信した信号によって使用された一部のセグメントとは別のセグメントに対する調査をスキップすることを特徴とする受信装置。
    A receiving unit that receives a signal using a part of a plurality of segments continuously arranged in the frequency domain;
    An extraction unit that extracts, from the signal received by the reception unit, first control information indicating the number of segments continuously arranged in the frequency domain;
    The signal received by the receiving unit includes second control information indicating that only a segment having a smaller number of segments than the number of segments indicated by the first control information extracted by the extracting unit is valid. And a survey unit that investigates a segment different from some of the segments used by the signal received by the receiver,
    If the second control information is not included in the signal received by the receiving unit, the checking unit skips searching for a segment other than a part of the segments used by the signal received by the receiving unit. A receiving apparatus.
  3.  前記調査部は、前記受信部が受信した信号によって使用されたセグメント数を単位として、調査を実行することを特徴とする請求項2に記載の受信装置。 The receiving device according to claim 2, wherein the survey unit performs a survey in units of the number of segments used by the signal received by the receiving unit.
  4.  周波数領域において連続して配置された複数のセグメントのうち、一部のセグメントを使用したデータを生成するステップと、
     生成したデータによって使用されたセグメント数よりも大きなセグメント数が示された第1制御情報を取得するステップと、
     取得した第1制御情報によって示されたセグメント数のセグメントのうち、生成したデータによって使用されたセグメントだけが有効であることが示された第2制御信号を取得するステップと、
     生成したデータ、取得した第1制御情報、取得した第2制御情報を多重化するステップと、
     多重化結果を送信するステップと、
     を含むことを特徴とする送信方法。
    Generating data using a part of a plurality of segments arranged continuously in the frequency domain;
    Obtaining first control information indicating a larger number of segments than the number of segments used by the generated data;
    Acquiring a second control signal indicating that only the segment used by the generated data is valid among the number of segments indicated by the acquired first control information;
    Multiplexing the generated data, the acquired first control information, and the acquired second control information;
    Transmitting the multiplexing result; and
    The transmission method characterized by including.
  5.  周波数領域において連続して配置された複数のセグメントのうち、一部のセグメントを使用した信号を受信するステップと、
     受信した信号から、周波数領域において連続して配置されたセグメント数が示された第1制御情報を抽出するステップと、
     受信した信号の中に、抽出した第1制御情報によって示されたセグメント数よりも小さなセグメント数のセグメントだけが有効であることが示された第2制御情報が含まれている場合、受信した信号によって使用された一部のセグメントとは別のセグメントを調査するステップとを含み、
     前記調査するステップは、受信した信号の中に第2制御情報が含まれない場合、受信した信号によって使用された一部のセグメントとは別のセグメントに対する調査をスキップすることを特徴とする受信方法。
    Receiving a signal using a part of a plurality of segments arranged continuously in the frequency domain;
    Extracting from the received signal first control information indicating the number of segments arranged continuously in the frequency domain;
    If the received signal includes second control information indicating that only a segment having a smaller number of segments than the number of segments indicated by the extracted first control information is included, the received signal Investigating a segment other than some of the segments used by
    In the receiving method, when the second control information is not included in the received signal, the searching for a segment other than a part of the segment used by the received signal is skipped. .
PCT/JP2012/004044 2011-07-22 2012-06-22 Transmission device, receiving device, transmission method, and receiving method WO2013014855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-161204 2011-07-22
JP2011161204A JP5673415B2 (en) 2011-07-22 2011-07-22 Receiving device and receiving method

Publications (1)

Publication Number Publication Date
WO2013014855A1 true WO2013014855A1 (en) 2013-01-31

Family

ID=47600733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004044 WO2013014855A1 (en) 2011-07-22 2012-06-22 Transmission device, receiving device, transmission method, and receiving method

Country Status (2)

Country Link
JP (1) JP5673415B2 (en)
WO (1) WO2013014855A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6204803B2 (en) * 2013-11-22 2017-09-27 日本放送協会 OFDM modulation transmission device, reception device, and transmission method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245028A (en) * 2005-04-18 2005-09-08 Sony Corp Ofdm transmission apparatus and method
JP2005341195A (en) * 2004-05-27 2005-12-08 Nippon Television Network Corp Gap filler device, and retransmission method of digital broadcast signal
JP2006020128A (en) * 2004-07-02 2006-01-19 Nippon Television Network Corp Method for transmitting and receiving digital broadcast signal and its transceiver
JP2008131352A (en) * 2006-11-21 2008-06-05 N H K Itec:Kk One-segment signal generation apparatus and program
JP2010118987A (en) * 2008-11-14 2010-05-27 Panasonic Corp Wireless transmitting apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044453A (en) * 2007-08-08 2009-02-26 Kenwood Corp Receiver with emergency warning broadcast receiving function, video-audio providing system, and emergency warning broadcast receiving method
JP2010118903A (en) * 2008-11-13 2010-05-27 Hitachi Kokusai Electric Inc Broadcast system
JP5361481B2 (en) * 2009-03-19 2013-12-04 アルパイン株式会社 In-vehicle terrestrial digital broadcast receiver and channel search method thereof
JP5399279B2 (en) * 2010-01-21 2014-01-29 アルパイン株式会社 Digital broadcast receiving apparatus and digital broadcast receiving method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341195A (en) * 2004-05-27 2005-12-08 Nippon Television Network Corp Gap filler device, and retransmission method of digital broadcast signal
JP2006020128A (en) * 2004-07-02 2006-01-19 Nippon Television Network Corp Method for transmitting and receiving digital broadcast signal and its transceiver
JP2005245028A (en) * 2005-04-18 2005-09-08 Sony Corp Ofdm transmission apparatus and method
JP2008131352A (en) * 2006-11-21 2008-06-05 N H K Itec:Kk One-segment signal generation apparatus and program
JP2010118987A (en) * 2008-11-14 2010-05-27 Panasonic Corp Wireless transmitting apparatus

Also Published As

Publication number Publication date
JP5673415B2 (en) 2015-02-18
JP2013026918A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
KR101759957B1 (en) A method and apparatus for transmitting/receiving broadcast siganls
KR101290950B1 (en) Ofdm transmitter device, ofdm transmission method, ofdm receiver device, and ofdm reception method
US8842223B2 (en) Transmitter apparatus, information processing method, program, and transmitter system
EP3429084B1 (en) Device and method for removing dummy data and parity bits of concatenated bch/ldpc code
EP3231146B1 (en) Method and apparatus for transmitting a-priori information in a communication system
JP2011129974A (en) Receiving apparatus and method, program, and receiving system
JP5673311B2 (en) Receiving device, receiving method, and program
JP4731442B2 (en) Squelch device
US8537933B2 (en) Receiving device, receiving method, and program
US8599015B2 (en) Receiving device, information processing method, program, and semiconductor chip
TWI440326B (en) Signal receiving apparatus, method, program and system
JP6300480B2 (en) Transmitting device, receiving device, and chip
JP5673415B2 (en) Receiving device and receiving method
JP6240462B2 (en) Transmission system
JP2023129750A (en) Transmission device, transmission method, reception device, and reception method
US20210297991A1 (en) Transmission device, transmission method, reception device, and reception method
US8885107B2 (en) Signal processing device, signal processing method, and program for selectively processing a desired broadcast signal from a plurality of received broadcast signals
JP2019201404A (en) Control signal encoder, control signal decoder, transmission device, and reception device
JP2015070277A (en) Transmission device, reception device, chip, and digital broadcasting system
JP7214910B2 (en) Receiving device and receiving method
JP6204803B2 (en) OFDM modulation transmission device, reception device, and transmission method
WO2016067939A1 (en) Receiving device and method
JP2015211309A (en) Wireless transmitter, wireless receiver and wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817908

Country of ref document: EP

Kind code of ref document: A1