WO2013013538A1 - Method and system for implementing pcfich mapping - Google Patents

Method and system for implementing pcfich mapping Download PDF

Info

Publication number
WO2013013538A1
WO2013013538A1 PCT/CN2012/076652 CN2012076652W WO2013013538A1 WO 2013013538 A1 WO2013013538 A1 WO 2013013538A1 CN 2012076652 W CN2012076652 W CN 2012076652W WO 2013013538 A1 WO2013013538 A1 WO 2013013538A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcfich
reg
mapped
frequency domain
subframe
Prior art date
Application number
PCT/CN2012/076652
Other languages
French (fr)
Chinese (zh)
Inventor
袁明
毕峰
吴栓栓
杨瑾
梁枫
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013013538A1 publication Critical patent/WO2013013538A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0066Requirements on out-of-channel emissions

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for implementing a Physical Control Format Indicator Channel (PCFICH) mapping.
  • PCFICH Physical Control Format Indicator Channel
  • LTE Long Term Evolution
  • LTE-Advanced Advanced Long Term Evolution
  • IMT-Advanced International Mobile Telecommunication Advanced
  • a subframe consists of 2 slots.
  • normal Cyclic Prefix Normal CP
  • each slot consists of 7 OFDM symbols.
  • Extended Cyclic Prefix Extended CP
  • Each slot consists of 6 OFDM symbols.
  • the physical downlink control channel (PDCCH) of all user equipments (UEs) is fully interleaved and mapped to the first 1 or 2 or 3 of the first slot of each subframe. Or on 4 OFDM symbols.
  • the 2-bit Control Format Indicator (CFI) information uploaded by the PCFICH (Physical Control Format Indicator Channel, PCFICH) can be used to notify the UE of the number of OFDM symbols occupied by the PDCCH.
  • the specific values of the 2-bit CFI are 1, 2, and 3, respectively.
  • the number of OFDM symbols that the PDCCH can occupy is 1, 2, or 3, that is, CFI;
  • the number of OFDM symbols that the PDCCH can occupy is 2, 3, or 4, that is, CFI+1.
  • the physical layer processing procedure of the PCFICH is:
  • the 2-bit original CFI is subjected to block coding of (32, 2) to become a 32-bit CFI codeword ⁇ b0, bl, ..., b31> (ie, information bits).
  • the specific coding rule is : PCFICH uses a (3, 2) simplex code to add two system bits after 10 repetitions, as shown in Table 1.
  • each of the four REs is combined into one group in order, that is, the PCFICH is composed of four Resource Element Groups (REGs), which are recorded as REGO to REG3. After that, it is mapped to physical time-frequency resources according to certain rules.
  • the specific rules are as follows:
  • the four REGs are located on the first OFDM symbol of the first slot of the subframe.
  • the positions of the four REGs are obtained by the following four formulas:
  • REG1 is mapped to consecutive 4 REs starting from ⁇ + ⁇ / 2 ′′ 7 ⁇ / 2 ;
  • is the number of subcarriers in the resource block, which is the physical-layer cell identity (PCID).
  • the link between the base station and the RN is called a relay link (Backhaul Link, or Un Link), and between the RN and the UE under its coverage.
  • the link is called an access link (Access Link, or Uu Link), and the link between the base station and the UE under its coverage is called Direct Link.
  • the RN is equivalent to the UE; for the UE, the RN is equivalent to the base station.
  • the base station can be an evolved base station (eNB).
  • Relay nodes can be divided into two types, namely, in-band relay nodes and out-of-band relay nodes.
  • Un Link and Uu Link use the same frequency band. As shown in Figure 1, both Un Link and Uu Link are used. In order to avoid the RN's own transmission and reception interference, the RN cannot simultaneously perform transmission and reception operations on the same frequency resource.
  • the RN sends downlink control information to the subordinate UE, the downlink control information from the eNB is not received. Therefore, during downlink transmission, the RN first sends downlink control information to the subordinate UEs on the first 1 or 2 OFDM symbols, and then performs handover from transmission to reception within a period of time. After the handover is completed, the following OFDM symbols are completed.
  • Receiving data from the eNB including a relay physical downlink control channel (R-PDCCH) and a physical downlink shared channel (PDSCH), that is, an R-PDCCH transmitted by the eNB to the RN Yes 7
  • R-PDCCH relay physical downlink control channel
  • PDSCH physical downlink shared channel
  • Un Link and Uu Link occupy two completely different frequency bands. As shown in Figure 2, Un Link uses f, and Uu Link. Therefore, belt The outer RN can receive (transmit) on the same while transmitting (receiving) without interference between them.
  • MR Mobile Relay
  • the mobile relay is in a high-speed scene, because high-speed mobile will generate a large Doppler frequency offset, and the OFDM system is highly susceptible to frequency offset, that is, a very d, frequency offset will destroy between subcarriers. Orthogonality, which makes it difficult for users to receive data correctly.
  • the increase of Doppler frequency offset also makes the channel coherence time shorter, which leads to rapid changes in the wireless channel, which also seriously affects the correct reception of data. Summary of the invention
  • the main object of the present invention is to provide a method and system for implementing PCFICH mapping to ensure correct reception of the PCFICH by an out-of-band mobile relay in a high-speed mobile scenario.
  • the present invention provides a method for implementing physical control format indication channel PCFICH mapping, including:
  • the resource unit group REG Based on the resource unit group REG, respectively mapped to the first 1 or 2 or 3 orthogonal frequency division multiplexing OFDM symbols of the 1st slot of each subframe in the time domain; the position mapped in the frequency domain by the total number of REGs And determining, by the PCFICH, the number of symbols, the system bandwidth, the number of subcarriers in the resource block, and the physical layer identifier of the cell;
  • the application of the REG constitutes a PCFICH according to the time domain and the mapping position on the frequency domain.
  • the number of the REGs is N, and the N is: any integer from 4 to 10.
  • the PCFICH in the time domain, is only mapped to the first OFDM symbol of the first slot of each subframe; or, in the time domain, the PCFICH is mapped to the first slot of each subframe.
  • the REG is mapped to the first time of each subframe.
  • k (N ⁇ /2) - «' mod 2 )
  • the PCFICH is mapped to the first time slot of each subframe On 2 or the first 3 OFDM symbols, in the time domain:
  • the number of REGs used to carry the PCFICH on OFDM symbol I is "'; where / is the index number of the OFDM symbol; in the frequency domain: OFDM symbol /
  • the first REG used to carry the PCFICH is denoted as REG '.
  • d 3 0, «o .
  • mapping manners for the N REGs that make up the PCFICH are: the mapping mode of the first-time domain and the post-frequency domain, or the mapping mode of the pre-frequency domain and the time domain.
  • the number of symbols occupied by the PCFICH is notified to the receiving end by the network side through high layer signaling.
  • the number of symbols occupied by the PCFICH is obtained by blind detection at the receiving end.
  • the process of performing the blind detection includes: the receiving end performs blind detection on a specific number of symbols to obtain a true value thereof, and does not perform high layer signaling notification.
  • the number of symbols occupied by the PCFICH in the subframe is dynamically variable.
  • the receiving end includes an outband relay and/or a later version of the user equipment.
  • the network side includes at least one of the following: a base station, a relay node RN, and a network.
  • Off GW Mobility Management Entity MME, Evolved Universal Terrestrial Radio Access Network EUTRAN, Operations Management and Maintenance OAM Manager.
  • the present invention also provides a system for implementing PCFICH mapping, including a mapping location decision unit and a PCFICH constituent unit;
  • the mapping location decision unit is configured to map to the first 1 or 2 or 3 OFDM symbols of the first slot of each subframe in the time domain based on the REG; the location of the mapping in the frequency domain by the total number of REGs And determining, by the PCFICH, the number of symbols, the system bandwidth, the number of subcarriers in the resource block, and the physical layer identifier of the cell;
  • the PCFICH component is configured to apply a REG to form a PCFICH according to the mapping location in the time domain and the frequency domain.
  • the technology for implementing PCFICH mapping in the present invention can well solve the problem of transmission reliability of the PCFICH of the out-of-band mobile relay in the high-speed mobile scenario, and improve the accuracy of receiving the PCFICH by the out-of-band relay (or a later version of the terminal).
  • the error rate of data transmission is reduced, the anti-interference ability of PCFICH is increased, and the transmission efficiency of the entire communication system is improved.
  • Figure 1 is a system architecture diagram after introducing an in-band relay node
  • FIG. 2 is a system architecture diagram after introducing an outband relay node
  • FIG. 3 is a schematic flowchart of implementing PCFICH mapping according to an embodiment of the present invention.
  • FIG. 4 is a system diagram of implementing PCFICH mapping according to an embodiment of the present invention. detailed description
  • the PCFICH may be composed of N (N is a positive integer greater than or equal to 4) REGs, which are respectively mapped to the first 1 or 2 of the 1st slot of each subframe in the time domain or On the three OFDM symbols, the position mapped in the frequency domain is determined by the total number of REGs, the number of symbols occupied by the PCFICH, the system bandwidth, the number of subcarriers in the resource block, and the physical layer identifier of the cell.
  • One of the lesser decisions such as: the total number of REGs, the number of symbols occupied by the PCFICH, the system bandwidth, the number of subcarriers in the resource block, and the d, the physical layer identification of the zone, and the like.
  • N 4, 5, 6, 7, 8, 9, or 10, that is, any integer from 4 to 10.
  • the PCFICH is only mapped to the first OFDM symbol of the first slot of each subframe, for example, the N REGs are mapped to the first OFDM of the first slot of each subframe.
  • N is a positive integer greater than or equal to 5.
  • the PCFICH maps to the first 2 or the first 3 of the 1st time slot of each subframe.
  • the number of REGs used to carry the PCFICH on the OFDM symbol I is .
  • / is the index number of the OFDM symbol.
  • the first REG used to carry the PCFICH on the OFDM symbol I is denoted as REG '.
  • N is a positive integer greater than or equal to 4
  • the number of symbols occupied by the PCFICH is notified to the receiving end by the base station through high layer signaling, and the number of symbols can be Semi-static change.
  • the receiving end needs to blindly detect the specific number of symbols to obtain the true value, and no high-level signaling is needed at this time.
  • Embodiment 1 The base station fixedly configures the PCFICH on the first OFDM symbol of the first slot of each subframe.
  • REG'' ⁇ 1 ' 2 '"" is mapped on the frequency domain to consecutive 4 REs starting from L ⁇ /Nj ⁇ / 2 , where
  • Embodiment 2 The base station fixedly configures the PCFICH in the first two slots of the first slot of each subframe. On the OFDM symbol.
  • the location of the frequency domain in which REG is located is: consecutive 4 REs starting from ⁇ Q+LO ⁇ 7 ⁇ / 2 .
  • the frequency domain location of the REG ⁇ p REG i used to carry the PCFICH is: REG 1 .
  • REG0 is mapped to REG , which in turn is: REG1 is mapped to REG i° and REG2 is mapped to REG1 . ,
  • REG3 is mapped to REG L. If the pre-frequency domain is used, the time domain mapping method is adopted, and REG0 is mapped to
  • REG i° maps to REG ;
  • REG2 maps to REG , and
  • REG3 maps to REC ⁇ 1 . .
  • Embodiment 3 The base station fixedly configures the PCFICH on the first two OFDM symbols of the first slot of each subframe.
  • REG / 1
  • REG ; REGl 2 and the frequency domain locations are:
  • REG 1 The location in the frequency domain is: The continuous 4 REs of the starting position are considered.
  • fc . 606 is the last 4 REs of the starting position
  • REG ⁇ f is in the frequency domain
  • REG0 is mapped to REG , which in turn is: REG1 is mapped to REG i° and REG2 is mapped to REG °2.
  • REG3 is mapped to REGl .
  • REG4 maps to REG i
  • REG5 maps to REC ⁇ 1 2
  • REG6 maps to
  • REG 3 0 uses the mapping method of the time domain after the frequency domain, and REG0 maps to REG1 .
  • REG1 maps to REG i°
  • REG2 maps to REG
  • REG3 maps to REC ⁇
  • REG4 maps to REGl 2
  • REG5 maps to RE ⁇ ⁇
  • REG6 maps to REC ⁇ 1 3 .
  • ". ⁇ "/ 2 is the last 4 REs of the starting position.
  • REG i and REGl 2 are located:
  • the frequency domain position is: 4 consecutive REs starting from ⁇ +L'OJ' ⁇ / 2 .
  • REG o and REG . 2 is offset in the frequency direction with respect to RE ⁇ ⁇ .
  • REG0 is mapped to REG
  • REG1 is mapped to REG i°
  • REG2 is mapped to REG °2
  • REG3 is mapped to REC ⁇ 1 .
  • ERG4 mapped to REG 1, REG5 mapped to REC ⁇ 1 2, REG6 mapped to REG o, REG7 mapped to REG i 2, REG8 mapped to REG ⁇ , REG9 ⁇ mapped to REG.
  • the mapping mode of the time domain after the frequency domain is adopted, and REG0 is mapped to the REG , the sequence is: REG1 is mapped to REG1 . , REG2 is mapped to REG . 2 , REG3 maps to REG i° , ERG4 maps to REG ; , REG5 maps to REG i 2 , REG6 maps to REG °2 , REG7 maps to REC ⁇ 1 2 , REG8 maps to
  • REG ⁇ , REG9 maps to REG 3 2 .
  • Embodiment 5 The number of symbols occupied by the PCFICH is semi-statically variable.
  • the base station uses the high-level signaling to pre-configure the number of symbols occupied by the PCFICH in the initial access phase of the receiving end, for example: configuring the first two OFDM symbols of the first time slot of each subframe for the PCFICH, and maintaining for a period of time Unchanged, that is, the out-of-band mobile relay is only in front for a period of time.
  • the PCFICH is received on 2 OFDM symbols.
  • the base station will utilize high-level signaling (for example, configuration update message). Reconfiguring the receiver so that the PCFICH occupies only the 1st OFDM symbol of the 1st slot of each subframe. After receiving the high layer signaling, the receiving end receives the PCFICH only on the first OFDM symbol in the next period of time.
  • high-level signaling for example, configuration update message
  • the base station uses the high layer signaling (such as: configuration update message) to reconfigure the receiver, so that the PCFICH occupies every The first 3 OFDM symbols of the 1st slot of the subframe.
  • the receiving end receives the PCFICH on the first 3 OFDM symbols in the next period of time.
  • Embodiment 6 The number of symbols occupied by the PCFICH is dynamically variable.
  • Step 310 Based on the REG, respectively mapping to the first 1 or 2 or 3 OFDM symbols of the first slot of each subframe in the time domain; the location of the mapping in the frequency domain by the total number of REGs and the PCFICH The number, the system bandwidth, the number of subcarriers in the resource block, and at least one of the cell physical layer identifiers are determined.
  • Step 320 Apply a REG to form a PCFICH according to the time domain and the mapping position on the frequency domain.
  • the number of the REGs is N, and the N is: any integer from 4 to 10.
  • the PCFICH maps only to the first OFDM of the first slot of each subframe. Symbolic; or,
  • the PCFICH is mapped to the first 2 or first 3 OFDM symbols of the 1st slot of each subframe.
  • the REG is mapped to the first slot of the first slot of each subframe.
  • the number of REGs used to carry the PCFICH on the OFDM symbol I is "'; where / is the index number of the OFDM symbol; in the frequency domain: OFDM symbol / the first REG used to carry the PCFICH, denoted as REG '.
  • the value of / is:
  • the PCFICH is mapped to the 1st of each subframe
  • Nmod 3 l
  • the first REG (ie, REG '.) used to carry the PCFICH on different OFDM symbols is in the same frequency domain position, that is, when ⁇ ⁇ 0, different Used on the 0FDM symbol
  • the first REG (ie REG '.) carrying the PCFICH is located in a different frequency domain position, that is, offset in the frequency direction;
  • mapping manners for the N REGs that make up the PCFICH are: the mapping mode of the first-time domain and the post-frequency domain, or the mapping mode of the pre-frequency domain and the time domain.
  • the number of symbols occupied by the PCFICH is notified to the receiving end by the network side through high layer signaling.
  • the number of symbols occupied by the PCFICH is obtained by blind detection at the receiving end.
  • the process of performing the blind detection includes: the receiving end performs blind detection on a specific number of symbols to obtain a real value thereof, and does not perform high layer signaling notification.
  • the receiving end includes an out-of-band relay and/or a later version of the user equipment.
  • the network side includes at least one of the following:
  • Base station Base station, RN, GW, MME, EUTRAN, OAM manager.
  • FIG. 4 is a system diagram of implementing PCFICH mapping according to an embodiment of the present invention, where the system includes a connected mapping location decision unit and a PCFICH constituent unit.
  • the mapping location decision unit can be mapped to the first 1 or 2 or 3 OFDM symbols of the first slot of each subframe in the time domain based on the REG; the mapping position in the frequency domain is The total number of REGs, the number of symbols occupied by the PCFICH, the system bandwidth, the number of subcarriers in the resource block, and at least one of the physical layer identifiers of the cells are determined.
  • the PCFICH constituting unit can apply the REG to form the PCFICH according to the mapping locations in the time domain and the frequency domain.
  • the number of the REGs is N, and the N is: any integer from 4 to 10.
  • the PCFICH is mapped only to the first OFDM symbol of the first slot of each subframe.
  • the PCFICH is mapped to the first 2 or first 3 OFDM symbols of the 1st slot of each subframe.
  • the REG is mapped to the first slot of the first slot of each subframe.
  • the number of REGs used to carry the PCFICH on the OFDM symbol I is "'; where / is the index number of the OFDM symbol; in the frequency domain: the first REG used to carry the PCFICH on the OFDM symbol / REG '.
  • the value of / is:
  • mapping manners for the N REGs that make up the PCFICH are: the mapping mode of the first-time domain and the post-frequency domain, or the mapping mode of the pre-frequency domain and the time domain.
  • the number of symbols occupied by the PCFICH is notified to the receiving end by the network side through high layer signaling.
  • the number of symbols occupied by the PCFICH is obtained by blind detection at the receiving end.
  • the receiving end is configured to: perform blind detection on a specific number of symbols to Get its true value and do not perform high-level signaling.
  • the receiving end includes an out-of-band relay and/or a later version of the user equipment.
  • the network side includes at least one of the following:
  • Base station Base station, RN, GW, MME, EUTRAN, OAM manager.
  • the method for implementing PCFICH mapping in the present invention can solve the problem of transmission reliability of the PCFICH of the out-of-band mobile relay in the high-speed mobile scenario, and improve the out-of-band relay (or The higher version of the terminal) receives the accuracy of the PCFICH, reduces the bit error rate of the data transmission, increases the anti-interference ability of the PCFICH, and improves the transmission efficiency of the entire communication system.

Abstract

Disclosed are a method and a system for implementing PCFICH mapping. The method comprises: performing mapping to first one, two or three OFDM symbols of a first time slot of each sub-frame in a time domain on the basis of an REG, a mapping position in a frequency domain being determined by at least one of the total number of REGs, the number of symbols occupied by the PCFICH, the system bandwidth, the number of sub-carriers in a resource block, and a cell physical layer identifier; and according to the mapping positions in the time domain and frequency domain, applying the REGs to form the PCFICH. The present invention implements the technology of PCFICH mapping, and can solve the problem of transmission reliability of PCFICH of an out-of-band relay in a high-speed mobile scenario, thereby increasing the accuracy of the out-of-band relay (or a terminal of a higher version) receiving the PCFICH, reducing the bit error rate of data transmission, increasing the anti-interference capability of the PCFICH, and improving the transmission efficiency of the whole communication system.

Description

一种实现 PCFICH映射的方法和系统 技术领域  Method and system for realizing PCFICH mapping
本发明涉及通信领域, 具体涉及一种实现物理控制格式指示信道 ( Physical Control Format Indicator Channel , PCFICH ) 映射的方法和系统。 背景技术  The present invention relates to the field of communications, and in particular, to a method and system for implementing a Physical Control Format Indicator Channel (PCFICH) mapping. Background technique
长期演进 ( Long Term Evolution , LTE ) 系统、 高级长期演进 ( LTE- Advanced, LTE-A ) 系统和高级国际移动通信 ( International Mobile Telecommunication Advanced , IMT- Advanced ) 系统都是以正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM )技术为基础, OFDM 系统为时频两维的数据形式。 1个子帧 (subframe ) 由 2个时隙 (slot )组 成, 正常循环前缀 ( Normal Cyclic Prefix, Normal CP ) 时, 每个 slot由 7 个 OFDM符号组成; 扩展循环前缀( Extended Cyclic Prefix, Extended CP ) 时, 每个 slot由 6个 OFDM符号组成。  Long Term Evolution (LTE) systems, Advanced Long Term Evolution (LTE-Advanced) systems, and International Mobile Telecommunication Advanced (IMT-Advanced) systems are all Orthogonal Frequency Division Multiplexing ( Based on the Orthogonal Frequency Division Multiplexing (OFDM) technology, the OFDM system is a time-frequency two-dimensional data format. A subframe consists of 2 slots. When the normal Cyclic Prefix (Normal CP) is used, each slot consists of 7 OFDM symbols. Extended Cyclic Prefix (Extended CP) Each slot consists of 6 OFDM symbols.
在每个子帧中, 所有用户终端(User Equipment, UE )的物理下行控制 信道( Physical Downlink Control Channel, PDCCH )进行完全交织后映射在 每个子帧的第 1个时隙的前 1或 2或 3或 4个 OFDM符号上。可应用 PCFICH ( Physical Control Format Indicator Channel, PCFICH )上 载的 2比特的控 制格式指示 ( Control Format Indicator, CFI )信息, 通知 UE PDCCH所占 用的 OFDM符号数量。 其中, 2比特的 CFI的具体取值为 1 , 2和 3 , 分别 代表 PDCCH占用了子帧的第 1个时隙的前 1、 2和 3个 OFDM符号, 而 CFI = 4的情况被保留不用。 具体的:  In each subframe, the physical downlink control channel (PDCCH) of all user equipments (UEs) is fully interleaved and mapped to the first 1 or 2 or 3 of the first slot of each subframe. Or on 4 OFDM symbols. The 2-bit Control Format Indicator (CFI) information uploaded by the PCFICH (Physical Control Format Indicator Channel, PCFICH) can be used to notify the UE of the number of OFDM symbols occupied by the PDCCH. The specific values of the 2-bit CFI are 1, 2, and 3, respectively. The PDCCH occupies the first 1, 2, and 3 OFDM symbols of the first slot of the subframe, and the CFI = 4 is reserved. . specific:
当下行系统带宽 Ν^ > 1()时, PDCCH可以占用的 OFDM符号的个数为 1、 2或 3 , 即 CFI; 当下行系统带宽 N ≤1Q时, PDCCH可以占用的 OFDM符号的个数为 2、 3或 4, 即 CFI+1。 When the downlink system bandwidth Ν ^ > 1() , the number of OFDM symbols that the PDCCH can occupy is 1, 2, or 3, that is, CFI; When the downlink system bandwidth N ≤ 1Q , the number of OFDM symbols that the PDCCH can occupy is 2, 3, or 4, that is, CFI+1.
在 LTE/LTE- A系统中, PCFICH的物理层处理过程为:  In the LTE/LTE-A system, the physical layer processing procedure of the PCFICH is:
首先, 将 2比特的原始 CFI进行 ( 32, 2 )的块编码, 变成长度为 32比 特的 CFI码字 < b0, bl, ..., b31 >(即信息比特 ),具体的编码规则为: PCFICH 采用 (3, 2 )单形码经过 10次重复后再附加两个系统比特, 如表 1所示。  First, the 2-bit original CFI is subjected to block coding of (32, 2) to become a 32-bit CFI codeword <b0, bl, ..., b31> (ie, information bits). The specific coding rule is : PCFICH uses a (3, 2) simplex code to add two system bits after 10 repetitions, as shown in Table 1.
Figure imgf000004_0001
Figure imgf000004_0001
表 1  Table 1
其次, 对上述 32比特的 CFI码字 < b0, bl, b31〉进行加扰, 然后调 制, 采用四相相移键控 ( Quaternary Phase Shift Keying, QPSK ) 的调制方 式, 最终得到 16个调制符号, 即 16个资源单元(Resource Element, RE )。  Secondly, the above 32-bit CFI codewords <b0, bl, b31> are scrambled, then modulated, and modulated by Quaternary Phase Shift Keying (QPSK), and finally 16 modulation symbols are obtained. That is, 16 resource elements (Resource Element, RE).
最后, 将上述 16个 RE经过层映射和预编码后, 按顺序将每 4个 RE 结合为一组, 即 PCFICH共由 4个资源单元组 ( Resource Element Group, REG )构成, 记为 REGO至 REG3; 之后, 按照一定的规则映射到物理时频 资源上。 具体规则如下:  Finally, after the 16 REs are layer mapped and precoded, each of the four REs is combined into one group in order, that is, the PCFICH is composed of four Resource Element Groups (REGs), which are recorded as REGO to REG3. After that, it is mapped to physical time-frequency resources according to certain rules. The specific rules are as follows:
时域上,所述 4个 REG位于子帧的第 1个时隙的第 1个 OFDM符号上。 频域上, 所述 4个 REG的位置由以下 4个公式得到:  In the time domain, the four REGs are located on the first OFDM symbol of the first slot of the subframe. In the frequency domain, the positions of the four REGs are obtained by the following four formulas:
REG0映射到 ν Λ = Έ为起始位置的连续 4个 RE上;  REG0 is mapped to ν Λ = Έ as the starting position of 4 consecutive REs;
REG1映射到以 ^ +^^/2」'7^/2为起始位置的连续 4个 RE上; REG2映射到以 fc = "L27 /2」' ^B/2为起始位置的连续 4个 RE上; REG3映射到以 fc = fc +L3A^/2」' B/2为起始位置的连续 4个 RE上。 从上述 4个公式中直接算出的 k值,需要再进行 k = k mod N^N -后方能 得到最终的 i^ « /2) ' «l md 2 L ) , 为系统下行资源块的数量, REG1 is mapped to consecutive 4 REs starting from ^ +^^/ 2 ′′ 7 ^/ 2 ; REG2 is mapped to continuous position starting from fc = "L 27 / 2 "' ^ B / 2 4 REs; REG3 is mapped to consecutive 4 REs starting from fc = fc + L 3A ^/ 2 "' B / 2 . The k value directly calculated from the above four formulas needs to be further k = k mod N ^ N - to obtain the final i ^ « / 2 ) ' « lm . d 2 L ) , which is the number of downlink resource blocks in the system,
^为资源块中子载波的数量, 为小区物理层标识 ( physical-layer cell identity, PCID )。 ^ is the number of subcarriers in the resource block, which is the physical-layer cell identity (PCID).
在引入中继结点 (Relay Node, RN ) 的移动通信系统中, 基站与 RN 之间的链路称为中继链路 ( Backhaul Link, 或 Un Link ), RN与其覆盖范围 下的 UE之间的链路称为接入链路 ( Access Link, 或 Uu Link ), 基站与其 覆盖范围下的 UE之间的链路称之为直传链路( Direct Link )。 对基站来说, RN就相当于 UE; 对 UE来说, RN就相当于基站。 所述基站可以为演进基 站( eNB )。  In a mobile communication system that introduces a relay node (RN), the link between the base station and the RN is called a relay link (Backhaul Link, or Un Link), and between the RN and the UE under its coverage. The link is called an access link (Access Link, or Uu Link), and the link between the base station and the UE under its coverage is called Direct Link. For the base station, the RN is equivalent to the UE; for the UE, the RN is equivalent to the base station. The base station can be an evolved base station (eNB).
中继节点可分为两种类型, 即带内中继节点和带外中继节点。  Relay nodes can be divided into two types, namely, in-band relay nodes and out-of-band relay nodes.
对带内中继节点 ( in-band RN ) 而言, Un Link和 Uu Link使用相同的 频带, 如图 1所示, Un Link和 Uu Link均使用 。 为了避免 RN自身的收 发干扰, RN不能在同一频率资源上同时进行发送和接收的操作。 当 RN给 下属 UE发送下行控制信息时, 就收不到来自 eNB的下行控制信息。 因此, 在下行传输时, RN首先在前 1或 2个 OFDM符号上给下属的 UE发送下行 控制信息, 然后在一段时间范围内进行从发射到接收的切换, 切换完成后, 在后面的 OFDM符号上接收来自 eNB的数据,其中包括中继本身的下行控 制信道( Relay Physical Downlink Control Channel , R-PDCCH )和物理下行 共享信道( Physical Downlink Shared Channel, PDSCH ), 即 eNB给 RN发 送的 R-PDCCH是 7|载在物理资源块或物理资源块对上的。  For in-band RNs, Un Link and Uu Link use the same frequency band. As shown in Figure 1, both Un Link and Uu Link are used. In order to avoid the RN's own transmission and reception interference, the RN cannot simultaneously perform transmission and reception operations on the same frequency resource. When the RN sends downlink control information to the subordinate UE, the downlink control information from the eNB is not received. Therefore, during downlink transmission, the RN first sends downlink control information to the subordinate UEs on the first 1 or 2 OFDM symbols, and then performs handover from transmission to reception within a period of time. After the handover is completed, the following OFDM symbols are completed. Receiving data from the eNB, including a relay physical downlink control channel (R-PDCCH) and a physical downlink shared channel (PDSCH), that is, an R-PDCCH transmitted by the eNB to the RN Yes 7| is carried on a physical resource block or a physical resource block pair.
对带外中继节点( out-band RN )而言, Un Link和 Uu Link占用完全不 同的两个频段, 如图 2所示, Un Link使用 f、 , Uu Link使用 。 因此, 带 外 RN可以在 上发送(接收) 的同时在 上接收(发送), 相互之间不会 产生干扰。 For out-band RNs, Un Link and Uu Link occupy two completely different frequency bands. As shown in Figure 2, Un Link uses f, and Uu Link. Therefore, belt The outer RN can receive (transmit) on the same while transmitting (receiving) without interference between them.
在版本( Rel ) 10的固定带内 RN中, 由于 R-PDCCH是承载在 PDSCH 上的, 同时为了减少开销和复杂度, 因此, 最后决定不引入 PCFICH, 而是 通过高层信令半静态方式配置了 R-PDCCH的起始位置和结束位置。  In the fixed-band RN of the version (Rel) 10, since the R-PDCCH is carried on the PDSCH and at the same time, in order to reduce the overhead and complexity, it is finally decided not to introduce the PCFICH, but to configure the semi-static mode through the high-level signaling. The start position and end position of the R-PDCCH.
在 3GPP讨论中, 移动中继( Mobile Relay, MR ) 已经成为一个热点问 题。如果移动中继是带外的,那么它可以收到 eNB在每个子帧的任意 OFDM 符号上发送的信息。 因此可以重用 PCFICH 以指示带外移动中继的下行控 制信道实际所占用的 OFDM符号的个数。  In the 3GPP discussion, Mobile Relay (MR) has become a hot issue. If the mobile relay is out-of-band, it can receive information that the eNB sends on any OFDM symbol for each subframe. Therefore, the PCFICH can be reused to indicate the number of OFDM symbols actually occupied by the downlink control channel of the out-of-band mobile relay.
然而, 移动中继处于高速场景, 由于高速移动会产生较大的多普勒频 偏, 而 OFDM系统又极易受到频偏的影响, 即一个很 d、的频偏都会破坏子 载波之间的正交性, 从而导致用户很难正确接收数据。 此外, 多普勒频偏 的增大还使得信道相干时间变短, 即导致无线信道产生快速变化, 同样严 重影响数据的正确接收。 发明内容  However, the mobile relay is in a high-speed scene, because high-speed mobile will generate a large Doppler frequency offset, and the OFDM system is highly susceptible to frequency offset, that is, a very d, frequency offset will destroy between subcarriers. Orthogonality, which makes it difficult for users to receive data correctly. In addition, the increase of Doppler frequency offset also makes the channel coherence time shorter, which leads to rapid changes in the wireless channel, which also seriously affects the correct reception of data. Summary of the invention
有鉴于此, 本发明的主要目的在于提供一种实现 PCFICH映射的方法 和系统, 保证高速移动场景下带外移动中继对 PCFICH的正确接收。  In view of this, the main object of the present invention is to provide a method and system for implementing PCFICH mapping to ensure correct reception of the PCFICH by an out-of-band mobile relay in a high-speed mobile scenario.
为达到上述目的, 本发明的技术方案是这样实现的:  In order to achieve the above object, the technical solution of the present invention is achieved as follows:
本发明提供了一种实现物理控制格式指示信道 PCFICH映射的方法, 包括:  The present invention provides a method for implementing physical control format indication channel PCFICH mapping, including:
基于资源单元组 REG, 在时域上分别映射到每个子帧的第 1个时隙的 前 1或 2或 3个正交频分复用 OFDM符号上;在频域上映射的位置由 REG 总数、 PCFICH所占的符号个数、 系统带宽、 资源块中子载波的数量以及小 区物理层标识中至少之一决定;  Based on the resource unit group REG, respectively mapped to the first 1 or 2 or 3 orthogonal frequency division multiplexing OFDM symbols of the 1st slot of each subframe in the time domain; the position mapped in the frequency domain by the total number of REGs And determining, by the PCFICH, the number of symbols, the system bandwidth, the number of subcarriers in the resource block, and the physical layer identifier of the cell;
根据所述时域以及频域上的映射位置, 应用 REG组成 PCFICH。 上述方案中, 所述 REG的数目为 N, 所述 N为: 4至 10中的任意整 数。 The application of the REG constitutes a PCFICH according to the time domain and the mapping position on the frequency domain. In the above solution, the number of the REGs is N, and the N is: any integer from 4 to 10.
上述方案中,在时域上, PCFICH只映射到每个子帧的第 1个时隙的第 1个 OFDM符号上; 或者, 在时域上, PCFICH映射到每个子帧的第 1个时 隙的前 2个或前 3个 OFDM符号上。  In the above solution, in the time domain, the PCFICH is only mapped to the first OFDM symbol of the first slot of each subframe; or, in the time domain, the PCFICH is mapped to the first slot of each subframe. The first 2 or the first 3 OFDM symbols.
上述方案中,在时域上, PCFICH只映射到每个子帧的第 1个时隙的第 1个 OFDM符号上时, 在时域上: 所述 REG都映射到每个子帧的第 1个时 隙的第 1个 OFDM符号上, 其中 N为大于等于 5的正整数; 在频域上: 所 述 REG中的 REG0映射到以 = 为起始位置的连续 4个 RE上;所述 REG 中的 REG'' ^1,2, - "在频域上映射到以 fc = + L'''2 VN」'Nr/2 (或者 fc = fc+L'N^Vs /N」 ) 为起始位置的连续 4 个 RE 上, 其中 , k =(N^ /2) - «' mod 2 ), k = k mod N . 在时域上, PCFICH映射到每个子帧的第 1个时隙的前 2个或前 3个 OFDM符号上时, 在时域上: OFDM符号 I上用于承载 PCFICH的 REG的 个数为 "'; 其中, /为 OFDM符号的索引号; 在频域上: OFDM符号 /上用 于承载 PCFICH的第 1个 REG,记为 REG'。所在频域位置为: 以 为起始 位置的连续 4个 RE上; OFDM符号 I上用于承载 PCFICH的第 i个 REG, 记为 REG; ('' = 1,2,...,«「1)所在频域位置为: 以 ψ''20'」' Β/2 (或 者 = +^'Λ^Λ^Α¾」 ) 为起始位置的连续 4 个 RE 上; 其中, =(Nr/2).( m0d2 ), = ,, = 1,2 = m0dN 。 上述方案中, 所述 /的取值为: 当 PCFICH映射到每个子帧的第 1个时 隙的前 2个 OFDM符号上时, 对应 / = 0和 1; 当 PCFICH映射到每个子帧 的第 1个时隙的前 3个 OFDM符号上时, 对应 / = 0, 1和 2; 所述 的取值为: 当 PCFICH映射到每个子帧的第 1个时隙的前 2个 OFDM符号上时, "。= /2」或者"。=「^2,,
Figure imgf000008_0001
当 PCFICH映射到 每个子帧的第 1 个时隙的前 3 个 OFDM 符号上时, Nm。d3 = 0时, «o . 或者
Figure imgf000008_0002
In the above solution, when the PCFICH is mapped only to the first OFDM symbol of the first slot of each subframe in the time domain, in the time domain: the REG is mapped to the first time of each subframe. On the first OFDM symbol of the slot, where N is a positive integer greater than or equal to 5; in the frequency domain: REG0 in the REG is mapped to consecutive 4 REs starting from =; in the REG REG'' ^ 1 , 2 , - "Map in the frequency domain to start with fc = + L''' 2 VN"'Nr/ 2 (or fc = fc+L'N^V s /N) ) On the consecutive 4 REs of the position, where k = (N^ /2) - «' mod 2 ), k = k mod N . In the time domain, the PCFICH is mapped to the first time slot of each subframe On 2 or the first 3 OFDM symbols, in the time domain: The number of REGs used to carry the PCFICH on OFDM symbol I is "'; where / is the index number of the OFDM symbol; in the frequency domain: OFDM symbol / The first REG used to carry the PCFICH is denoted as REG '. The location in the frequency domain is: 4 consecutive REs as the starting position; the ith REG used to carry the PCFICH on the OFDM symbol I, recorded as REG; ('' = 1,2,...,«"1) The frequency domain location is: ψ'' 2 0'"' Β / 2 (or = + ^'Λ^Λ^Α3⁄4") is the starting 4 consecutive REs; where =(Nr/2).( m 0 d2 ), = ,, = 1,2 = m 0 dN . In the above solution, the value of the / is: when the PCFICH is mapped to the first 2 OFDM symbols of the first slot of each subframe, corresponding to / = 0 and 1; when the PCFICH is mapped to the first subframe When the first 3 OFDM symbols of 1 slot are on, corresponding to / = 0, 1 and 2; The value is: when the PCFICH is mapped to the first two OFDM symbols of the first slot of each subframe, ".= / 2 " or ".="^ 2 ,,
Figure imgf000008_0001
Nm when the PCFICH is mapped onto the first 3 OFDM symbols of the 1st slot of each subframe. When d 3 = 0, «o .
Figure imgf000008_0002
W。=W2=LN/3」,;¾= ^— 2丄^3」;或者 =;¾4^3」, w2=N— 2 N/3」; Nmd3 = 2 时, " ="2=^/3, 或 者 =?¾=剛,
Figure imgf000008_0003
针对所述 (Ζ = 12) , 当 =()时, 不同 OFDM 符号上用于承载 PCFICH 的第 1 个 REG ( 即 REG'。 ) 所在的频域位置均相同, 即 =^;=^"2=(Ns /2).(A m0d2NR D B L); 当 Δ 0时, 不同 0FDM符号上用于 承载 PCFICH的第 1个 REG (即 REG'。 )所在的频域位置各不相同, 即在频 率方向上进行了偏移;
W. = W 2 = LN / 3 ',; ¾ = ^ - 2 ^ Shang 3 "; or =; ¾ 4 ^ 3", w 2 = N- 2 N / 3 "; Nm. When d3 = 2 , "="2=^/3, or =? 3⁄4 = just,
Figure imgf000008_0003
For the above ( Ζ = 1 , 2 ), when =() , the first REG (ie REG '.) used to carry the PCFICH on different OFDM symbols is in the same frequency domain position, ie =^;=^ " 2 =(N s /2).(A m 0 d2N R D B L ) ; when Δ 0, the frequency domain of the first REG (ie REG '.) used to carry the PCFICH on different 0FDM symbols The positions are different, that is, offset in the frequency direction;
针对组成 PCFICH的 N个 REG的映射方式为:先时域后频域的映射方 式, 或者先频域后时域的映射方式。  The mapping manners for the N REGs that make up the PCFICH are: the mapping mode of the first-time domain and the post-frequency domain, or the mapping mode of the pre-frequency domain and the time domain.
上述方案中, 所述 PCFICH所占的符号数, 是由网络侧通过高层信令 告知接收端的。  In the above solution, the number of symbols occupied by the PCFICH is notified to the receiving end by the network side through high layer signaling.
上述方案中, 所述 PCFICH所占的符号数是由接收端盲检测获得的。 上述方案中, 进行所述盲检测的过程包括: 所述接收端对具体的符号 数进行盲检测以获得其真实值, 并且不进行高层信令通知。  In the above solution, the number of symbols occupied by the PCFICH is obtained by blind detection at the receiving end. In the above solution, the process of performing the blind detection includes: the receiving end performs blind detection on a specific number of symbols to obtain a true value thereof, and does not perform high layer signaling notification.
上述方案中, 进行所述盲检测时, 子帧中 PCFICH所占的符号数是动 态可变的。  In the above solution, when the blind detection is performed, the number of symbols occupied by the PCFICH in the subframe is dynamically variable.
上述方案中, 所述接收端包括带外中继和 /或更高版本的用户设备。 上述方案中, 所述网络侧包括以下至少之一: 基站、 中继节点 RN、 网 关 GW、移动性管理实体 MME、 演进型通用陆地无线接入网 EUTRAN、操 作管理及维护 OAM管理器。 In the above solution, the receiving end includes an outband relay and/or a later version of the user equipment. In the above solution, the network side includes at least one of the following: a base station, a relay node RN, and a network. Off GW, Mobility Management Entity MME, Evolved Universal Terrestrial Radio Access Network EUTRAN, Operations Management and Maintenance OAM Manager.
本发明还提供了一种实现 PCFICH映射的系统, 包括映射位置决策单 元、 PCFICH构成单元; 其中,  The present invention also provides a system for implementing PCFICH mapping, including a mapping location decision unit and a PCFICH constituent unit;
所述映射位置决策单元, 用于基于 REG, 在时域上分别映射到每个子 帧的第 1个时隙的前 1或 2或 3个 OFDM符号上; 在频域上映射的位置由 REG总数、 PCFICH所占的符号个数、 系统带宽、 资源块中子载波的数量 以及小区物理层标识中至少之一决定;  The mapping location decision unit is configured to map to the first 1 or 2 or 3 OFDM symbols of the first slot of each subframe in the time domain based on the REG; the location of the mapping in the frequency domain by the total number of REGs And determining, by the PCFICH, the number of symbols, the system bandwidth, the number of subcarriers in the resource block, and the physical layer identifier of the cell;
所述 PCFICH构成单元, 用于根据所述时域以及频域上的映射位置, 应用 REG组成 PCFICH。  The PCFICH component is configured to apply a REG to form a PCFICH according to the mapping location in the time domain and the frequency domain.
本发明实现 PCFICH映射的技术, 可以很好地解决高速移动场景下带 外移动中继的 PCFICH 的传输可靠性问题, 提高了带外中继 (或者更高版 本的终端)接收 PCFICH 的准确度, 降低了数据传输的误码率, 增加了 PCFICH的抗干扰能力, 进而提高了整个通信系统的传输效率。 附图说明  The technology for implementing PCFICH mapping in the present invention can well solve the problem of transmission reliability of the PCFICH of the out-of-band mobile relay in the high-speed mobile scenario, and improve the accuracy of receiving the PCFICH by the out-of-band relay (or a later version of the terminal). The error rate of data transmission is reduced, the anti-interference ability of PCFICH is increased, and the transmission efficiency of the entire communication system is improved. DRAWINGS
图 1为引入带内中继节点后的系统构架图;  Figure 1 is a system architecture diagram after introducing an in-band relay node;
图 2为引入带外中继节点后的系统构架图;  2 is a system architecture diagram after introducing an outband relay node;
图 3为本发明实施例实现 PCFICH映射的流程简图;  FIG. 3 is a schematic flowchart of implementing PCFICH mapping according to an embodiment of the present invention;
图 4为本发明实施例实现 PCFICH映射的系统图。 具体实施方式  FIG. 4 is a system diagram of implementing PCFICH mapping according to an embodiment of the present invention. detailed description
在实际应用中, PCFICH可以由 N ( N为大于等于 4的正整数)个 REG 组成,所述 N个 REG在时域上分别映射到每个子帧的第 1个时隙的前 1或 2或 3个 OFDM符号上, 在频域上映射的位置由 REG总数、 PCFICH所占 的符号个数、 系统带宽、 资源块中子载波的数量以及小区物理层标识中至 少之一决定, 如: 由 REG总数、 PCFICH所占的符号个数、 系统带宽、 资 源块中子载波的数量以及 d、区物理层标识等参数共同决定。 In practical applications, the PCFICH may be composed of N (N is a positive integer greater than or equal to 4) REGs, which are respectively mapped to the first 1 or 2 of the 1st slot of each subframe in the time domain or On the three OFDM symbols, the position mapped in the frequency domain is determined by the total number of REGs, the number of symbols occupied by the PCFICH, the system bandwidth, the number of subcarriers in the resource block, and the physical layer identifier of the cell. One of the lesser decisions, such as: the total number of REGs, the number of symbols occupied by the PCFICH, the system bandwidth, the number of subcarriers in the resource block, and the d, the physical layer identification of the zone, and the like.
需要说明的是, 所述 N的优选值为: 4、 5、 6、 7、 8、 9或 10, 即 4至 10中的任意整数。  It should be noted that the preferred value of N is: 4, 5, 6, 7, 8, 9, or 10, that is, any integer from 4 to 10.
在时域上, PCFICH只映射到每个子帧的第 1个时隙的第 1个 OFDM 符号上,如:所述 N个 REG都映射到每个子帧的第 1个时隙的第 1个 OFDM 符号上, 其中 N为大于等于 5的正整数。  In the time domain, the PCFICH is only mapped to the first OFDM symbol of the first slot of each subframe, for example, the N REGs are mapped to the first OFDM of the first slot of each subframe. In the symbol, where N is a positive integer greater than or equal to 5.
在频域上:  In the frequency domain:
REG0映射到 νΛ = Έ为起始位置的连续 4个 RE上;  REG0 is mapped to νΛ = Έ as the starting position of 4 consecutive REs;
REG"'' = 1,2,...,N- D在频域上映射到以 L 2 VN」.N /2 (或者
Figure imgf000010_0001
) 为起始位置的连续 4 个 上, 其中 , ( /2) · ( ' mod 2 ), k = k mod N 。 在时域上, PCFICH映射到每个子帧的第 1个时隙的前 2个或前 3个
R E G"'' = 1, 2 ,...,N-D maps to L 2 VN".N / 2 in the frequency domain (or
Figure imgf000010_0001
) for the consecutive four positions of the starting position, where ( /2) · ( ' mod 2 ), k = k mod N . In the time domain, the PCFICH maps to the first 2 or the first 3 of the 1st time slot of each subframe.
OFDM符号上,如: OFDM符号 I上用于承载 PCFICH的 REG的个数为 。 其中, /为 OFDM符号的索引号。 On the OFDM symbol, for example, the number of REGs used to carry the PCFICH on the OFDM symbol I is . Where / is the index number of the OFDM symbol.
在频域上:  In the frequency domain:
OFDM符号 I上用于承载 PCFICH的第 1个 REG记为 REG'。,其所在频 域位置为: 以 = '为起始位置的连续 4个 RE上; The first REG used to carry the PCFICH on the OFDM symbol I is denoted as REG '. The location of the frequency domain is: 4 consecutive REs with the starting position of = ';
OFDM 符号 I 上用 于承载 PCFICH 的第 i 个 REG 记为 REG; ('' = 1,2,...,«;- 1), 其所在频域位置为: 以 L''.20'」. /2 (或 k〖=kl +^^≤^ /"'」 ) 为起始位置的连续 4个 RE上。 The ith REG used to carry the PCFICH on OFDM symbol I is denoted REG; ('' = 1,2,...,« ; - 1), where the frequency domain location is: L''. 2 0' /2 (or k 〖 =kl +^^ ≤^ /"'") is the continuous 4 REs of the starting position.
其中, t, 1 = ,2 kl =k N 。Where t , 1 = , 2 kl =k N .
Figure imgf000010_0002
Figure imgf000010_0002
当 PCFICH映射到每个子帧的第 1个时隙的前 个 OFDM符号上时, 对应 / = 0和 1; When the PCFICH is mapped to the previous OFDM symbol of the first slot of each subframe, Corresponding to / = 0 and 1;
当 PCFICH映射到每个子帧的第 1个时隙的前 3个 OFDM符号上时, 对应 / = 0, 1和 2。 针对所述"'的取值, 其中的 N为大于等于 4的正整数, 当 PCFICH映 射到每个子帧的第 1 个时隙的前 2 个 OFDM符号上时: "。=LN/2」或者When the PCFICH is mapped to the first 3 OFDM symbols of the 1st slot of each subframe, it corresponds to / = 0, 1 and 2. For the value of '', where N is a positive integer greater than or equal to 4, when the PCFICH is mapped to the first 2 OFDM symbols of the 1st time slot of each subframe: ". =L N / 2 ” or
¾=ΓΝ/2Ί, Α = Ν- 。 当 PCFICH映射到每个子帧的第 1个时隙的前 3个 OFDM符号上时: Nmod3 = 0时, »o = »1 =«2 =N/3. 3⁄4=Γ Ν / 2 Ί, Α = Ν- . When the PCFICH is mapped to the first 3 OFDM symbols of the 1st time slot of each subframe: When Nmod3 = 0, »o = »1 =« 2 =N/3.
Nmod3 = l时 , ="2 =LN/3」, "。 =Ν— 2.「Ν/3」 . 或者 n0 =n2= [N/3J ,
Figure imgf000011_0001
When Nmod3 = l, =" 2 = L N /3", ". =Ν - 2. "Ν/3". Or n 0 =n 2 = [N/3J ,
Figure imgf000011_0001
Nmod3 = 2时, A ="2 =「N/3,, "。 =N— 2.「N/3, . 或者 n0 =/¾ =「N/3] , f =N-2-[ N/3]. 或者 "2 = N - 2.「N/3 。 针对所述 (Z = 12) , Δ '=()代表不同 OFDM 符号上用于承载 PCFICH 的第 1 个 REG ( 即 REG'。 ) 所在的频域位置均相同, 即 ^= =( /2).( m0d2NRDB L ) ; ≠0代表不同 0FDM符号上用于承 载 PCFICH的第 1个 REG (即 REG0 )所在的频域位置各不相同, 即在频率 方向上进行了偏移, 目的是为了提高频率选择性增益。 When Nmod3 = 2, A = 2 = "N/3,,". =N— 2. “N/3, . or n 0 =/3⁄4 = “N/3] , f =N-2-[ N/3]. or “ 2 = N - 2. “N/3 . The ( Z = 1 , 2 ) , Δ ' = () represents the same frequency domain location on the different OFDM symbols used to carry the PCFICH (ie REG '.), ie ^= =( /2 (m 0d2 N R D B L ) ; ≠ 0 represents that the first REG (ie, REG 0 ) used to carry the PCFICH on different OFDM symbols has different frequency domain positions, that is, the frequency direction is biased. The purpose of shifting is to increase the frequency selective gain.
组成 PCFICH 的 N ( N 大于等于 4 的正整数) 个 REG, 即 REG; (; = 0,1,2,...,N-1) 中 , 从 REG0 开 始 依 次 映 射 到 N (N is a positive integer greater than or equal to 4) REGs that constitute PCFICH, that is, REG; (; = 0,1,2,...,N-1), mapped from REG0 to
REG,' ( = 0,1,2,...,^-1, / = 0,l,2)o 在映射过程中, 可以采用先时域后频域的映 射方式, 也可以釆用先频域后时域的映射方式; 并且 REG0 可以从 REG; ( = 0,1,2,···,《「1, Ζ = 0,1,2)中的任意一个开始, 但是优选 REG^ REG,' ( = 0,1,2,...,^-1, / = 0,l,2) o In the mapping process, you can use the mapping method of the time domain after the frequency domain, or you can use the first The mapping of the time domain in the frequency domain; and REG0 can start from any of REG; ( = 0,1,2,···, "1, Ζ = 0,1,2), but preferably REG^
PCFICH所占的符号数由基站通过高层信令告知接收端,该符号数可以 半静态改变。 The number of symbols occupied by the PCFICH is notified to the receiving end by the base station through high layer signaling, and the number of symbols can be Semi-static change.
如果每个子帧中 PCFICH所占的符号数是动态可变的, 那么接收端需 要对具体的符号数进行盲检测以获得其真实值, 此时无需高层信令通知。  If the number of symbols occupied by the PCFICH in each subframe is dynamically variable, the receiving end needs to blindly detect the specific number of symbols to obtain the true value, and no high-level signaling is needed at this time.
下面, 应用具体实施例对本发明进行详细描述。  Hereinafter, the present invention will be described in detail using specific embodiments.
实施例 1:基站将 PCFICH固定配置在每个子帧的第 1个时隙的第 1个 OFDM符号上。  Embodiment 1: The base station fixedly configures the PCFICH on the first OFDM symbol of the first slot of each subframe.
假设系统带宽为 20MHz, 则^^ =100 , =12, ' =240 o pCFICH 由 N ( N为大于等于 5的正整数)个 REG组成,假设 N = 8,则该 8个 REG 在频域上的位置由以下公式决定: Assuming that the system bandwidth is 20MHz, ^^ =100, =12, ' =240 o p CFICH consists of N (N is a positive integer greater than or equal to 5) REGs. Assuming N = 8, the 8 REGs are in the frequency domain. The position above is determined by the following formula:
REG0映射到 vy、k = 为起始位置的连续 4个 RE上;  REG0 is mapped to vy, k = consecutive 4 REs at the starting position;
REG'' ^1'2'"""在频域上映射到以 L ^ /Nj^ /2为起始位置 的连续 4个 RE上, 其中,
Figure imgf000012_0001
REG'' ^ 1 ' 2 '""" is mapped on the frequency domain to consecutive 4 REs starting from L ^ /Nj^ / 2 , where
Figure imgf000012_0001
k = k mod « = k mod 1200 由上述内容可以得出: k = k mod « = k mod 1200 From the above, we can get:
REG0映射到以 k = 24为起始位置的连续 4个 RE上;  REG0 is mapped to consecutive 4 REs starting from k = 24;
= (k+ [i .2N^ /N」 . Ns /2) mod 1200 = (k+ [i .2N^ /N" . N s /2) mod 1200
REG1映射到以 =(24 + L200/8」'12/2)modl200 = 174为起始位置的连续 4个 RE上; REG1 is mapped to consecutive 4 REs starting from =( 24 + L 200 / 8 "' 12 / 2 ) modl200 = 174 ;
k = kmod N^N^  k = kmod N^N^
= (k+ [i .2N^ /N」 . Ns /2) mod 1200 REG2映射到以 = (24 + L40()/8」'12/2)m°dl200 = 324为起始位置的连续 4个 RE上; = (k+ [i .2N^ /N" . N s /2) mod 1200 REG2 maps to a continuous position with = ( 24 + L 40() / 8 ′′ ' 12 / 2 ) m ° dl200 = 324 4 REs;
以此类推。  And so on.
实施例 2:基站将 PCFICH固定配置在每个子帧的第 1个时隙的前 2个 OFDM符号上。 Embodiment 2: The base station fixedly configures the PCFICH in the first two slots of the first slot of each subframe. On the OFDM symbol.
假设系统带宽为 10MHz, N^=50, ^B=12, ^eU=350 o PCFICH由 N ( N为大于等于 4的正整数)个 REG组成, ¾殳 N = 4。 Suppose the system bandwidth is 10MHz, N ^= 50 , ^ B=12 , ^ eU=350 o PCFICH consists of N (N is a positive integer greater than or equal to 4) REGs, 3⁄4殳N = 4.
/ = 0和 / = 1时,用于承载 PCFICH的 REG的个数均为 2个,即 "。 = "i =2When / = 0 and / = 1, the number of REGs used to carry the PCFICH is two, that is, ". = "i = 2" .
/ = 0时, 用于承载 PCFICH的 REREG?所在的频域位置分别为:When / = 0, the frequency domain locations where the RE and REG pins used to carry the PCFICH are:
REGS所在频域位置为: 以^= 为起始位置的连续 4个 RE上。 The location of the frequency domain in which REG S is located is: consecutive 4 REs with ^ = as the starting position.
REG所在频域位置为: 以 ^^Q+L O^7^/2为起始位置的连续 4 个 RE上。 The location of the frequency domain in which REG is located is: consecutive 4 REs starting from ^^Q+LO^ 7 ^/ 2 .
其 中 , 。
Figure imgf000013_0001
= 6.(350mOdl00) = 30 , k0 = k0 mod « = k0 mod 600
among them, .
Figure imgf000013_0001
= 6.(350m O dl00) = 30 , k 0 = k 0 mod « = k 0 mod 600
/= 1时, 用于承载 PCFICH的 REG^pREGi所在的频域位置分别为: REG1。所在频域位置为: 以 = 为起始位置的连续 4个 RE上。 When /= 1, the frequency domain location of the REG ^p REG i used to carry the PCFICH is: REG 1 . The location in the frequency domain is: 4 consecutive REs with the starting position as =.
REGi所在频域位置为: 以 fc'=^+L'''20^ B/2为起始位置的连续 4 个 RE上。 The location of the frequency domain in which REG i is located is: 4 consecutive REs starting from fc ' = ^+L''' 2 0^ B / 2 .
其中, = ιη。(1600。当 Δ = 0时,说明 REGU
Figure imgf000013_0002
Where = ιη. (1600. When Δ = 0 , the description REGU
Figure imgf000013_0002
和 REG所在的频域位置相同; 当 A '≠0时, 说明 REG^相对于 REG^在频率 方向上进行了偏移。 4叚设 =1()(), 由此得出: The same frequency domain position as the REG is located; when A '≠0, it indicates that REG^ is offset in the frequency direction with respect to REG^. 4 set = 1 () () , which leads to:
RE<^所在频域位置为: 以 fc=3Q为起始位置的连续 4个 RE上;
Figure imgf000013_0003
RE< ^ is located in the frequency domain: with fc . =3Q is the continuous 4 REs of the starting position;
Figure imgf000013_0003
= ( +[i- 2 Αο」 · Ns /2) mod 600 = ( +[i- 2 Αο" · N s /2) mod 600
RE 所在频域位置为: 以 =(30 + 50xl2/2)mod600 = 330 为起始位置的 连续 4个 RE上; k, =k, mod N^N^ The position of the frequency domain in which R E is located is: consecutive 4 REs starting from =( 3 0 + 5 0xl 2 / 2 ) mod 6 00 = 33 0; k, =k, mod N^N^
= ^ mod 600 = {k0 + Affset ) mod 600 = ^ mod 600 = {k 0 + A ffset ) mod 600
REG1。所在频域位置为:以 =(30 + 100)m。d600 = l30 为起始位置的连 续 4个 RE上; REG 1 . The location in the frequency domain is: = ( 3 0 + 100) m. d 6 00 = l 3 0 is the continuous 4 REs of the starting position;
k, =k, mod N^N^  k, =k, mod N^N^
= ( + [ί· 2 B L /n,」 . B 12、 mod 600 = ( + [ί· 2 B L /n," . B 12, mod 600
REG;所在频域位置为: 以 =(l30 + 50xl2/2)mod600 = 430 为起始位置的 连续 4个 RE上。 R EG ; The position in the frequency domain is: 4 consecutive REs starting from = (l 3 0 + 5 0xl 2 / 2 ) mod 6 00 = 43 0 .
最后, 将组成 PCFICH的 4个 REG, 即 REGO, REG1, REG2和 REG3 分别映射到1 ^} ('' = ()1()1)上。 若采用先时域后频域的映射方式, 并且Finally, the four REGs that make up the PCFICH, namely REGO, REG1, REG2 and REG3, are mapped to 1 ^ } ('' = () , 1 , () , 1 ) respectively. If the first time domain is used, the frequency domain mapping method is adopted, and
REG0映射到 REG , 则依次为: REG1映射到 REGi° , REG2映射到 REGl。,REG0 is mapped to REG , which in turn is: REG1 is mapped to REG i° and REG2 is mapped to REG1 . ,
REG3映射到 REGL 若采用先频域后时域的映射方式, 并且 REG0映射到REG3 is mapped to REG L. If the pre-frequency domain is used, the time domain mapping method is adopted, and REG0 is mapped to
REGi° , 则 REG1映射到 REG; , REG2映射到 REG , REG3映射到 REC}1。。 REG i° , then REG1 maps to REG ; , REG2 maps to REG , and REG3 maps to REC}1 . .
实施例 3:基站将 PCFICH固定配置在每个子帧的第 1个时隙的前 2个 OFDM符号上。  Embodiment 3: The base station fixedly configures the PCFICH on the first two OFDM symbols of the first slot of each subframe.
假设系统带宽为 15MHz, L=75, ^B=12, ' = 401 0 PCFICH由 N ( N为大于等于 4的正整数)个 REG组成, 支设 N = 7。 Suppose the system bandwidth is 15MHz, L=75 , ^ B=12 , ' = 401 0 PCFICH consists of N (N is a positive integer greater than or equal to 4) REGs, and N = 7 is supported.
/ = 0时, 用于承载 PCFICH的 REG的个数: "。 =LN/2」 = L7/2」 =3; 1=1 时, 用于承载 PCFICH的 REG的个数: N-«。 =7-3 = 4。 When / = 0, the number of REGs used to carry PCFICH: ". =L N / 2 " = L 7 / 2 ′′ = 3 ; When 1=1, the number of REGs used to carry PCFICH: N-« . =7-3 = 4.
/ = 0时,用于承载 PCFICH的1^^、 REGi pREG°2所在的频域位置分别 为: When / = 0, the frequency domain locations where 1 ^^ and REG ip REG °2 are used to carry PCFICH are:
RE<^所在频域位置为: 以^= 。为起始位置的连续 4个 RE上。 REG? ('· = 1,2)所在频域位置为: 以 ^+^2^。」.^3/2为起始位置 的连续 4个 RE上。 其 中 , 。 = 6.(401mOdl50) = 606 ,
Figure imgf000015_0001
k0 = k0 mod « = k0 mod 900。
The location of the frequency domain where RE< ^ is located is: ^= . It is the continuous 4 REs of the starting position. REG? ( '· = 1, 2) is located in the frequency domain: ^^^ 2 ^. ".^ 3 / 2 is the continuous 4 REs of the starting position. among them, . = 6.(401 mO dl50) = 606
Figure imgf000015_0001
k 0 = k 0 mod « = k 0 mod 900.
/=1时, 用于承载 PCFICH的 REGl。、 REG;、 REGl 2和 所在的频域 位置分别为: /=1, REGl used to carry PCFICH. , REG ;, REGl 2 and the frequency domain locations are:
REG1。所在频域位置为: 以 为起始位置的连续 4个 RE上。 REG 1 . The location in the frequency domain is: The continuous 4 REs of the starting position are considered.
REG; ('· = 1,2,3)所在频域位置为: 以^ L OJ^s /2为起始位置 的连续 4个 RE上。 REG; ('· = 1, 2 , 3 ) is located in the frequency domain: 4 consecutive REs starting from ^ L OJ^s / 2 .
其中, 。+ 。ffse , k, =fei modN°B LN =^mod900。当 =0时,说明 REG。0 和 REG1。所在的频域位置相同; 当 '≠()时, 说明 REGl。相对于1^^在频率 方向上进行了偏移。 4叚设 =_2()(), 由此得出: among them, . + . Ffse , k, =fe im odN° B L N =^mod900. When =0, the REG is explained. 0 and REG 1 . The location of the frequency domain is the same; when ' ≠() , it indicates REGl . The offset is made in the frequency direction with respect to 1 ^^. 4 set =_2 () () , which leads to:
REG所在频域位置为 : 以 fc=606为起始位置的连续 4个 RE上;The location of the frequency domain in which R EG is located is: fc . =606 is the last 4 REs of the starting position;
Figure imgf000015_0002
Figure imgf000015_0002
= ( + L,'.2 /"。」. /2)mOd900 = ( + L,'.2 /".". /2)m O d900
. 以 =(606 + L2><75/3」.6)mOd900 = 6 为起始位置的. In = (6 0 6 + L 2 ><75/3 ". 6) m O d 9 00 = 6 is the initial position of
REG^f在频域位置为 REG ^f is in the frequency domain
连续 4个 RE上;4 consecutive REs;
Figure imgf000015_0003
Figure imgf000015_0003
= (ξψ··2θ。」·Λ^/2)η χ!900  = (ξψ··2θ.”·Λ^/2)η χ!900
REG° . 以 =(606 + L4x75/3」.6)m。d900 = 306 为起始位置的 在频域位置为 REG ° . to = (606 + L4x75/3".6) m. D900 = 306 is the starting position in the frequency domain position
连续 4个 RE上。 Continuous 4 REs.
k, = k, mod N^N^  k, = k, mod N^N^
= k, mod 900 = ( ξ + Α'φι„ ) mod 900 = k, mod 900 = ( ξ + Α' φι „ ) mod 900
: 以 =(606- 200)mod900 = 406  : to =(606- 200)mod900 = 406
REG 在频域位置为 为起始位置的连 续 4个 RE上; k, =k, mod N^N^ REG is in the frequency domain position as the continuous 4 REs of the starting position; k, =k, mod N^N^
= ( + [i- 2NR D B L /n,」 · Ns /2) mod 900 = ( + [i- 2N R D B L /n," · N s /2) mod 900
REGi所在频域位置为: 以 =(406 + L2x75/4」x6)mod 900 = 628为起始位置的 连续 4个 RE上; The location of the frequency domain in which REG i is located is: consecutive 4 REs starting from =(406 + L2x75/4"x6) mod 900 = 628;
= ( + [i- 2 L In,」 · Ns /2) mod 900 = ( + [i- 2 L In," · N s /2) mod 900
RE<¾所在频域位置为: 以 =(406 + L4x75/4」x6)mcxi 900 = 856为起始位置的 连续 4个 RE上; The position of the frequency domain in which RE< 3⁄4 is located is: consecutive 4 REs starting from =(406 + L4x75/4"x6)mcxi 900 = 856;
= ( + [i- 2NR D B L 」 · Ns /2) mod 900 = ( + [i- 2N R D B L ” · N s /2) mod 900
REGl3所在频域位置为: 以 =(4646><75/4」><6 0 = 为起始位置的 连续 4个 RE上。 The position of the frequency domain of REGl 3 is: 4 consecutive REs with the starting position of =( 4 . 6 4 6 >< 75 / 4 ">>< 6 0 =.
最后 , 将组成 PCFICH 的 7 个 REQ/C/ = 0,1,2"..,6) 映射到 REG (Z=0,i = 0,l,2 andZ= = 0,l,2,3)。 若采用先时域后频域的映射方式, 并且 Finally, map the 7 REQ/C/ = 0,1,2"..,6) that make up the PCFICH to REG (Z=0,i = 0,l,2 an dZ= = 0,l,2,3 If the first time domain is used, the frequency domain mapping method is adopted, and
REG0映射到 REG , 则依次为: REG1映射到 REGi° , REG2映射到 REG°2 ,REG0 is mapped to REG , which in turn is: REG1 is mapped to REG i° and REG2 is mapped to REG °2.
REG3映射到 REGl。, REG4映射到 REGi , REG5映射到 REC}12 , REG6映射到REG3 is mapped to REGl . , REG4 maps to REG i , REG5 maps to REC}1 2 , REG6 maps to
REG30 若采用先频域后时域的映射方式, 并且 REG0映射到 REGl。, 则依次 为: REG1映射到 REGi° , REG2映射到 REG; , REG3映射到 REC^ , REG4映 射到 REGl2 , REG5映射到 RE<^ , REG6映射到 REC}13。 或者, / = 0时,用于承载 PCFICH的 REG的个数为 "。 =「N/2^ =「7/2^ = 4 REG 3 0 uses the mapping method of the time domain after the frequency domain, and REG0 maps to REG1 . , in order: REG1 maps to REG i° , REG2 maps to REG ; REG3 maps to REC ^ , REG4 maps to REGl 2 , REG5 maps to RE< ^ , REG6 maps to REC}1 3 . Or, when / = 0, the number of REGs used to carry PCFICH is ". = " N/2 ^ = " 7/2 ^ = 4 ;
/=1时, 用于 载 PCFICH的 REG的个数为" ι = Ν _"。=7_4 = 3。 具体的频 域位置计算方法与上述相关内容相同, 不再赘述。 When /=1, the number of REGs used to carry PCFICH is " ι = Ν _ ". =7_4 = 3 . The specific frequency domain position calculation method is the same as the above related content, and will not be described again.
实施例 4:基站将 PCFICH固定配置在每个子帧的第 1个时隙的前 3个 OFDM符号上。 假设系统带宽为 20MHz, 则^^=100, ^=12, ' = 240 0 PCFICH 由 N (N为大于等于 5的正整数)个 REG组成, 4叚设 N=10。 Embodiment 4: The base station fixedly configures the PCFICH on the first three OFDM symbols of the first slot of each subframe. Assuming that the system bandwidth is 20MHz, ^^ =100 , ^ =12 , ' = 240 0 PCFICH consists of N (N is a positive integer greater than or equal to 5) REGs, and 4 is N=10.
由于 Nmod3 = 10mod3 = l, 因此, / = 0和/=1时, 用于承载 PCFICH的 Since Nmod3 = 10mod3 = l, therefore, when / = 0 and /=1, it is used to carry PCFICH.
REG的个数: "。^ /3」^10/3」:3; / = 2时, 用于承载 PCFICH的 REG 的个数: "2 = N- 2.LN/3」 = 10- 6 = 4。或者, /=1和/ = 2时,用于承载 PCFICH 的 REG的个数: = "2 = LN/3」 = L1(V3」 = 3; z = o时,用于承载 PCFICH的 REG 的个数: "。=N- 2'LN/3」 = 10- 6 = 4。或者, / = 0/ = 2时,用于承载 PCFICH 的 REG的个数: "。="2=LN/3」 = L1(V3= 3; / = 0时, 用于承载 PCFICH的 REG的个数: A=N- 2'LN/3」 = 10- 6 = 4。) / = 0时,用于承载 PCFICH的 REGREG^pREG°2所在的频域位置分别 为: Number of REGs: ".^ / 3 "^ 10 / 3 ": 3 ; / = 2, the number of REGs used to carry PCFICH: " 2 = N- 2.LN/3" = 10- 6 = 4. Or, when /= 1 and / = 2 , the number of REGs used to carry the PCFICH : = " 2 = L N / 3 " = L 1 ( V 3 ′ = 3; when z = o, used to carry the PCFICH Number of REGs: ".=N- 2'LN/3" = 10- 6 = 4. Or, / = 0 and / = 2 , the number of REGs used to carry PCFICH: ". = " 2 = L N /3" = L 1( V 3 ′′ = 3 ; / = 0, the number of REGs used to carry PCFICH: A=N- 2'LN/3” = 10- 6 = 4.) / = At 0, the frequency domain locations of REG and REG ^p REG °2 used to carry PCFICH are:
REGo所在频域位置为: 以 k" = ^为起始位置的连续 4个 RE上。 The location of the frequency domain in which REG o is located is: consecutive 4 REs starting from k " = ^.
REG? ('· = 1,2)所在频域位置为: 以 =^4''.20。」.^"/2为起始位置 的连续 4个 RE上。 REG? ( '· = 1, 2) is located in the frequency domain: = ^4''. 2 0. ".^"/ 2 is the last 4 REs of the starting position.
^( /2)'( mod2A )  ^( /2)'( mod2A )
其中 =6-(240mod200) = 24 , k0 = k()
Figure imgf000017_0001
= k0 mod 1200
Where =6-(240mod200) = 24 , k 0 = k ()
Figure imgf000017_0001
= k 0 mod 1200
/=1时, 用于承载 PCFICH的 REGl。、 REGi和 REGl2所在的频域位置分别 为: /=1, REGl used to carry PCFICH. The frequency domain locations where REG i and REGl 2 are located are:
REG1。所在频域位置为: 以 = 为起始位置的连续 4个 RE上。 REG; ('· ,2)所在频域位置为: 以 ^+L' OJ'^/2为起始位置的 连续 4个 RE上。 REG 1 . The location in the frequency domain is: 4 consecutive REs with the starting position as =. REG; ( '· , 2) The frequency domain position is: 4 consecutive REs starting from ^+L'OJ'^/ 2 .
其中, + ffset, = 1^(1^^^= 1^(11200。 / = 2时, REG2REG12、 和 REG32所在的频域位置分别为: Where + ff set , = 1^(1^^^= 1^(11200. / = 2, REG . 2 , REG 1 2 , and REG 3 2 are located in the frequency domain:
REG2所在频域位置为: 以^ = 为起始位置的连续 4个 RE上。 REG . 2 The frequency domain location is: 4 consecutive REs with ^ = as the starting position.
REG'2 " ,23)所在频域位置为: 以 =^4'·'202」' Β/2为起始位置 的连续 4个 RE上。 The position of the frequency domain of R EG ' 2 " , 2 , 3 ) is: 4 consecutive REs with the starting position of = ^4'·' 2 0 2 ′′ Β /2.
其中, , fe2 = fe2 m。d NR D B LNs = fe2 m。dl200。 当 = 0(Z = 1, 2)时, 说明 REG REGl。和 REC ^所在的频域位置相同; 当 ≠(^ = 12)时, 说明Where, , fe 2 = fe 2 m. d N R D B L N s = fe 2 m. Dl200. When = 0 (Z = 1, 2), REG REGl is explained . Same as the frequency domain location where REC ^ is located; when ≠ ( ^ = 1 , 2 ), the description
REGo和 REG2相对于 RE<^在频率方向上进行了偏移。 REG o and REG . 2 is offset in the frequency direction with respect to RE< ^.
最后 , 将组成 PCFICH 的 10 个 REQ/ C/ = 0,l,2,—,9) 映射到 REG Z = 0, = 0,l,2 and Z = 2,i = 0,l,2, 。 若采用先时域后频域的映射方式, 并 且 REG0映射到 REG , 则依次为: REG1映射到 REGi° , REG2映射到 REG°2 , REG3映射到 REC}1。, ERG4映射到 REG1 , REG5映射到 REC}12 , REG6映射到 REGo , REG7映射到 REGi2 , REG8映射到 REG〖, REG9映射到 REG〖。 若采 用先频域后时域的映射方式, 并且 REG0 映射到 REG 则依次为: REG1 映射到 REGl。, REG2映射到 REG2 , REG3映射到 REGi° , ERG4映射到 REG; , REG5映射到 REGi2 , REG6映射到 REG°2 , REG7映射到 REC}12 , REG8映射到Finally, map 10 REQ/ C/ = 0,l,2,-,9) constituting PCFICH to REG Z = 0, = 0,l,2 a n d Z = 2,i = 0,l,2 , . If the mapping mode of the first-time domain and the frequency domain is adopted, and REG0 is mapped to REG , then: REG1 is mapped to REG i° , REG2 is mapped to REG °2, and REG3 is mapped to REC}1 . , ERG4 mapped to REG 1, REG5 mapped to REC} 1 2, REG6 mapped to REG o, REG7 mapped to REG i 2, REG8 mapped to REG 〖, REG9 〖mapped to REG. If the mapping mode of the time domain after the frequency domain is adopted, and REG0 is mapped to the REG , the sequence is: REG1 is mapped to REG1 . , REG2 is mapped to REG . 2 , REG3 maps to REG i° , ERG4 maps to REG ; , REG5 maps to REG i 2 , REG6 maps to REG °2 , REG7 maps to REC}1 2 , REG8 maps to
REG〖, REG9映射到 REG32 REG 〖, REG9 maps to REG 3 2 .
实施例 5: PCFICH所占用的符号数是半静态可变的。  Embodiment 5: The number of symbols occupied by the PCFICH is semi-statically variable.
基站利用高层信令在接收端初始接入阶段预先配置好 PCFICH所占用 的符号数, 例如: 配置每个子帧的第 1 个时隙的前 2个 OFDM符号用于 PCFICH, 并在一段时间内保持不变, 即带外移动中继在一段时间内只在前 The base station uses the high-level signaling to pre-configure the number of symbols occupied by the PCFICH in the initial access phase of the receiving end, for example: configuring the first two OFDM symbols of the first time slot of each subframe for the PCFICH, and maintaining for a period of time Unchanged, that is, the out-of-band mobile relay is only in front for a period of time.
2个 OFDM符号上接收 PCFICH。 The PCFICH is received on 2 OFDM symbols.
当接收端的移动速度降低时, 应用上述 2个 OFDM符号传输 PCFICH 会产生一定的浪费, 此时, 基站会利用高层信令(如: 配置更新的消息) 为接收端重新配置, 使 PCFICH只占用每个子帧的第 1 个时隙的第 1 个 OFDM 符号。 接收端收到所述高层信令后, 在下一段时间内只在第 1 个 OFDM符号上接收 PCFICH。 When the mobile terminal speed decreases, applying the above 2 OFDM symbols to transmit PCFICH will cause some waste. At this time, the base station will utilize high-level signaling (for example, configuration update message). Reconfiguring the receiver so that the PCFICH occupies only the 1st OFDM symbol of the 1st slot of each subframe. After receiving the high layer signaling, the receiving end receives the PCFICH only on the first OFDM symbol in the next period of time.
同理, 当接收端的移动速度增加时, 应用上述 2个 OFDM符号传输 PCFICH可能不够用, 此时, 基站会利用高层信令(如: 配置更新的消息) 为接收端重新配置,使 PCFICH占用每个子帧的第 1个时隙的前 3个 OFDM 符号。 接收端收到所述高层信令后, 在下一段时间内在前 3个 OFDM符号 上接收 PCFICH。  Similarly, when the mobile terminal speed increases, it may not be sufficient to transmit the PCFICH by using the above two OFDM symbols. At this time, the base station uses the high layer signaling (such as: configuration update message) to reconfigure the receiver, so that the PCFICH occupies every The first 3 OFDM symbols of the 1st slot of the subframe. After receiving the high layer signaling, the receiving end receives the PCFICH on the first 3 OFDM symbols in the next period of time.
实施例 6: PCFICH所占用的符号数是动态可变的。  Embodiment 6: The number of symbols occupied by the PCFICH is dynamically variable.
每个子帧中 PCFICH所占的符号数是动态可变的, 接收端需要对其进 行盲检测。 假设 PCFICH由 N = 6个 REG组成, 接收端首先检测 6个 REG 只映射在第 1个 OFDM符号上的情况, 如果未检测成功, 那么接下来再检 测 6个 REG映射在前 2个 OFDM符号上的情况,如果仍未检测成功,那么 接下来再检测 6个 REG映射在前 3个 OFDM符号上的情况。在盲检过程中, 一旦接收端检测出了 PCFICH, 则停止检测。  The number of symbols occupied by the PCFICH in each subframe is dynamically variable, and the receiver needs to perform blind detection on it. Assuming that the PCFICH is composed of N = 6 REGs, the receiving end first detects that 6 REGs are mapped only on the 1st OFDM symbol. If the detection is not successful, then 6 REGs are next detected on the first 2 OFDM symbols. In the case, if the detection is still not successful, then the case where 6 REGs are mapped on the first 3 OFDM symbols is detected. In the blind detection process, once the receiving end detects the PCFICH, the detection is stopped.
结合以上各实施例可见, 本发明实现 PCFICH映射的操作思路可以表 示如图 3所示的流程, 该流程包括以下步驟:  As shown in the above embodiments, the operation of the present invention for implementing PCFICH mapping can be expressed as shown in Figure 3, and the process includes the following steps:
步驟 310: 基于 REG, 在时域上分别映射到每个子帧的第 1个时隙的 前 1或 2或 3个 OFDM符号上;在频域上映射的位置由 REG总数、 PCFICH 所占的符号个数、 系统带宽、 资源块中子载波的数量以及小区物理层标识 中至少之一决定。  Step 310: Based on the REG, respectively mapping to the first 1 or 2 or 3 OFDM symbols of the first slot of each subframe in the time domain; the location of the mapping in the frequency domain by the total number of REGs and the PCFICH The number, the system bandwidth, the number of subcarriers in the resource block, and at least one of the cell physical layer identifiers are determined.
步驟 320: 根据所述时域以及频域上的映射位置, 应用 REG 组成 PCFICH。  Step 320: Apply a REG to form a PCFICH according to the time domain and the mapping position on the frequency domain.
所述 REG的数目为 N, 所述 N为: 4至 10中的任意整数。  The number of the REGs is N, and the N is: any integer from 4 to 10.
在时域上, PCFICH只映射到每个子帧的第 1个时隙的第 1个 OFDM 符号上; 或者, In the time domain, the PCFICH maps only to the first OFDM of the first slot of each subframe. Symbolic; or,
在时域上, PCFICH映射到每个子帧的第 1个时隙的前 2个或前 3个 OFDM符号上。  In the time domain, the PCFICH is mapped to the first 2 or first 3 OFDM symbols of the 1st slot of each subframe.
在时域上, PCFICH只映射到每个子帧的第 1个时隙的第 1个 OFDM 符号上时, 在时域上: 所述 REG都映射到每个子帧的第 1个时隙的第 1个 OFDM符号上, 其中 N为大于等于 5的正整数; 在频域上: 所述 REG中的 REG0 映射到以 = 为起始位置的连续 4 个 RE 上; 所述 REG 中的 REG ^l,2,...^- 在频域上映射到以
Figure imgf000020_0001
( 或者
Figure imgf000020_0002
) 为起始位置的连续 4 个 RE 上, 其中 ,
In the time domain, when the PCFICH is mapped only to the first OFDM symbol of the first slot of each subframe, in the time domain: the REG is mapped to the first slot of the first slot of each subframe. On the OFDM symbols, where N is a positive integer greater than or equal to 5; in the frequency domain: REG0 in the REG is mapped to consecutive 4 REs starting from =; REG ^l in the REG, 2 ,...^- map to the frequency domain
Figure imgf000020_0001
(or
Figure imgf000020_0002
) for the starting position of 4 consecutive REs, where
在时域上, PCFICH映射到每个子帧的第 1个时隙的前 2个或前 3个 OFDM符号上时, 在时域上: OFDM符号 I上用于承载 PCFICH的 REG的 个数为 "'; 其中, /为 OFDM符号的索引号; 在频域上: OFDM符号 /上用 于承载 PCFICH的第 1个 REG,记为 REG'。所在频域位置为: 以^= '为起始 位置的连续 4个 RE上; OFDM符号 /上用于承载 PCFICH的第 i个 REG , 记为 REG; (,' = 1,2,···,^)所在频域位置为: 以 L 2 V"'」' B/2 (或 者 = +^''Λ^Λ^Α¾」 ) 为起始位置的连续 4 个 RE 上; 其中, =( B/2)'( mod2A ), kt =k0 + Al offiet, I = 1,2 kl=k N 。 所述 /的取值为: In the time domain, when the PCFICH is mapped to the first 2 or the first 3 OFDM symbols of the first slot of each subframe, in the time domain: the number of REGs used to carry the PCFICH on the OFDM symbol I is "'; where / is the index number of the OFDM symbol; in the frequency domain: OFDM symbol / the first REG used to carry the PCFICH, denoted as REG '. The location of the frequency domain is: starting with ^= ' Continuation of 4 REs; OFDM symbol / ith REG for carrying PCFICH, denoted REG; (, ' = 1, 2, ···, ^) where the frequency domain location is: L 2 V"'"' B /2 (or = + ^''Λ^Λ^Α3⁄4") is the starting 4 consecutive REs; where =( B /2)'( mod2A ), k t =k 0 + A l offiet , I = 1,2 kl =k N . The value of / is:
当 PCFICH映射到每个子帧的第 1个时隙的前 2个 OFDM符号上时, 对应 / = 0和 1; 当 PCFICH映射到每个子帧的第 1个时隙的前 3个 OFDM 符号上时, 对应 / = 0, 1和 2;  When the PCFICH is mapped to the first 2 OFDM symbols of the 1st slot of each subframe, corresponding to / = 0 and 1; when the PCFICH is mapped to the first 3 OFDM symbols of the 1st slot of each subframe , corresponding to / = 0, 1 and 2;
所述" '的取值为: 当 PCFICH映射到每个子帧的第 1个时隙的前 2个 OFDM符号上时, "。= /2」或者"。=「^ n1 =N-n0. 当 PCFICH映射到每个子帧的第 1个时 隙的前 3个 OFDM符号上时, Nm。d3 = 0时, «o=«i=¾ = N/3. Nmod3 = l时, ni =n2 = [N/3J ? ¾ = N-2-LN/3j . 或者 w。 =[Ν/3」, Wl = N-2-[N/3j . 或者 /3,; .
Figure imgf000021_0001
针对所述 (Z = U) , 当 =()时, 不同 OFDM 符号上用于承载 PCFICH 的第 1 个 REG ( 即 REG'。 ) 所在的频域位置均相同, 即 当 Δ 0时, 不同 0FDM符号上用于
Figure imgf000021_0002
承载 PCFICH的第 1个 REG (即 REG'。 )所在的频域位置各不相同, 即在频 率方向上进行了偏移;
The value of the "' is: When the PCFICH is mapped to the first 2 OFDM symbols of the 1st slot of each subframe, ".= / 2 " or ". = "^ n 1 = Nn 0 . When the PCFICH is mapped to the 1st of each subframe When the first 3 OFDM symbols of the time slot are Nm.d3 = 0, «o=«i= 3⁄4 = N/3. When Nmod 3 = l, ni =n 2 = [N/3J ? 3⁄4 = N -2-LN/3j . or w. =[Ν/3", Wl = N-2-[N/3j . or /3,; .
Figure imgf000021_0001
For the ( Z = U ), when =() , the first REG (ie, REG '.) used to carry the PCFICH on different OFDM symbols is in the same frequency domain position, that is, when Δ 0, different Used on the 0FDM symbol
Figure imgf000021_0002
The first REG (ie REG '.) carrying the PCFICH is located in a different frequency domain position, that is, offset in the frequency direction;
针对组成 PCFICH的 N个 REG的映射方式为:先时域后频域的映射方 式, 或者先频域后时域的映射方式。  The mapping manners for the N REGs that make up the PCFICH are: the mapping mode of the first-time domain and the post-frequency domain, or the mapping mode of the pre-frequency domain and the time domain.
所述 PCFICH所占的符号数, 是由网络侧通过高层信令告知接收端的。 所述 PCFICH所占的符号数是由接收端盲检测获得的。  The number of symbols occupied by the PCFICH is notified to the receiving end by the network side through high layer signaling. The number of symbols occupied by the PCFICH is obtained by blind detection at the receiving end.
进行所述盲检测的过程包括: 所述接收端对具体的符号数进行盲检测 以获得其真实值, 并且不进行高层信令通知。  The process of performing the blind detection includes: the receiving end performs blind detection on a specific number of symbols to obtain a real value thereof, and does not perform high layer signaling notification.
进行所述盲检测时, 子帧中 PCFICH所占的符号数是动态可变的。 所述接收端包括带外中继和 /或更高版本的用户设备。  When the blind detection is performed, the number of symbols occupied by the PCFICH in the subframe is dynamically variable. The receiving end includes an out-of-band relay and/or a later version of the user equipment.
所述网络侧包括以下至少之一:  The network side includes at least one of the following:
基站、 RN、 GW、 MME、 EUTRAN、 OAM管理器。  Base station, RN, GW, MME, EUTRAN, OAM manager.
为了保证上述各实施例以及操作思路的顺利实现, 可以进行如图 4所 示的设置。 参见图 4, 图 4为本发明实施例实现 PCFICH映射的系统图, 该 系统包括相连的映射位置决策单元、 PCFICH构成单元。 在实际应用时, 映射位置决策单元, 能够基于 REG, 在时域上分别映 射到每个子帧的第 1个时隙的前 1或 2或 3个 OFDM符号上; 在频域上映 射的位置由 REG总数、 PCFICH所占的符号个数、 系统带宽、 资源块中子 载波的数量以及小区物理层标识中至少之一决定。 PCFICH构成单元则能够 根据所述时域以及频域上的映射位置, 应用 REG组成 PCFICH。 In order to ensure the smooth implementation of the above embodiments and operational ideas, the settings shown in FIG. 4 can be performed. Referring to FIG. 4, FIG. 4 is a system diagram of implementing PCFICH mapping according to an embodiment of the present invention, where the system includes a connected mapping location decision unit and a PCFICH constituent unit. In practical applications, the mapping location decision unit can be mapped to the first 1 or 2 or 3 OFDM symbols of the first slot of each subframe in the time domain based on the REG; the mapping position in the frequency domain is The total number of REGs, the number of symbols occupied by the PCFICH, the system bandwidth, the number of subcarriers in the resource block, and at least one of the physical layer identifiers of the cells are determined. The PCFICH constituting unit can apply the REG to form the PCFICH according to the mapping locations in the time domain and the frequency domain.
所述 REG的数目为 N, 所述 N为: 4至 10中的任意整数。  The number of the REGs is N, and the N is: any integer from 4 to 10.
在时域上, PCFICH只映射到每个子帧的第 1个时隙的第 1个 OFDM 符号上; 或者,  In the time domain, the PCFICH is mapped only to the first OFDM symbol of the first slot of each subframe; or
在时域上, PCFICH映射到每个子帧的第 1个时隙的前 2个或前 3个 OFDM符号上。  In the time domain, the PCFICH is mapped to the first 2 or first 3 OFDM symbols of the 1st slot of each subframe.
在时域上, PCFICH只映射到每个子帧的第 1个时隙的第 1个 OFDM 符号上时, 在时域上: 所述 REG都映射到每子帧的第 1个时隙的第 1个 OFDM符号上, 其中 N为大于等于 5的正整数; 在频域上: 所述 REG中的 REG0 映射到以 = 为起始位置的连续 4 个 RE 上; 所述 REG 中的 REG" = 1, 2,..., N - 在频域上映射到以 L 2 /N」'^/2 ( 或者 ^ fc +^' A A /Nj ) 为起始位置的连续 4 个 RE 上, 其中 , k = ( /2) . «' mod 2A ) , k = k mod N . 在时域上, PCFICH映射到每个子帧的第 1个时隙的前 2个或前 3个 OFDM符号上时, 在时域上: OFDM符号 I上用于承载 PCFICH的 REG的 个数为 "'; 其中, /为 OFDM符号的索引号; 在频域上: OFDM符号 /上用 于承载 PCFICH的第 1个 REG,记为 REG'。所在频域位置为: 以 为起始 位置的连续 4个 RE上; OFDM符号 I上用于承载 PCFICH的第 i个 REG, 记为 REG; (,' = 1,2,···,^)所在频域位置为: 以 L 2 V"'」' B/2 (或 者 :^ ^ +^^^^3/"'」 ) 为起始位置的连续 4 个 RE 上; 其中, =( B/2)'( mod2A ), kt =k0 + Al offiet, I = 1,2 kl=k N 。 所述 /的取值为: In the time domain, when the PCFICH is mapped only to the first OFDM symbol of the first slot of each subframe, in the time domain: the REG is mapped to the first slot of the first slot of each subframe. On the OFDM symbols, where N is a positive integer greater than or equal to 5; in the frequency domain: REG0 in the REG is mapped to consecutive 4 REs starting from =; REG" = 1 in the REG , 2 ,..., N - maps to 4 consecutive REs starting from L 2 / N ′′′^/ 2 (or ^ fc +^' AA /Nj ) in the frequency domain, where k = ( /2) . «' mod 2A ) , k = k mod N . In the time domain, when the PCFICH is mapped to the first 2 or first 3 OFDM symbols of the 1st slot of each subframe, at the time On the domain: the number of REGs used to carry the PCFICH on the OFDM symbol I is "'; where / is the index number of the OFDM symbol; in the frequency domain: the first REG used to carry the PCFICH on the OFDM symbol / REG '. The location of the frequency domain is: the consecutive 4 REs of the starting position; the ith REG used to carry the PCFICH on the OFDM symbol I, denoted REG; (, ' = 1,2,··· , ^) The frequency domain location is: L 2 V"'"' B /2 (or: ^ ^ +^^^^ 3 /"'" ) is the starting position of 4 consecutive REs; =( B /2)'( mod2A ), k t =k 0 + A l offiet , I = 1,2 kl =k N . The value of / is:
当 PCFICH映射到每个子帧的第 1个时隙的前 2个 OFDM符号上时, 对应 / = 0和 1; 当 PCFICH映射到每个子帧的第 1个时隙的前 3个 OFDM 符号上时, 对应 / = 0, 1和 2;  When the PCFICH is mapped to the first 2 OFDM symbols of the 1st slot of each subframe, corresponding to / = 0 and 1; when the PCFICH is mapped to the first 3 OFDM symbols of the 1st slot of each subframe , corresponding to / = 0, 1 and 2;
所述" '的取值为:  The value of the " ' is:
当 PCFICH映射到每个子帧的第 1个时隙的前 2个 OFDM符号上时, "。= /2」或者"。=「 2 , n1 =N-n0. 当 PCFICH映射到每个子帧的第 1个时 隙的前 3个 OFDM符号上时, Nm。d3 = 0时, «o=«i=¾ = N/3. Nmod3 = l时, ni=n2= [N/3J ? ¾ = N-2-LN/3j . 或者 "。 ="2 =「Ν/3」, = Ν_2.「Ν/3」; 或者 /3,; .
Figure imgf000023_0001
针对所述 (Z = U) , 当 =()时, 不同 OFDM 符号上用于承载 PCFICH 的第 1 个 REG ( 即 REG'。 ) 所在的频域位置均相同, 即 当 Δ 0时, 不同 0FDM符号上用于
Figure imgf000023_0002
承载 PCFICH的第 1个 REG (即 REG'。 )所在的频域位置各不相同, 即在频 率方向上进行了偏移;
When the PCFICH is mapped to the first 2 OFDM symbols of the 1st slot of each subframe, ".= / 2 " or ". = " 2 , n 1 = Nn 0 . When the PCFICH is mapped to the first of each subframe When the first 3 OFDM symbols of 1 time slot are Nm.d3 = 0, «o=«i= 3⁄4 = N/3. When Nmod 3 = l, ni =n 2 = [N/3J ? 3⁄4 = N-2-LN/3j . Or ". =" 2 = "Ν/3", = Ν_2. "Ν/3"; or /3,;
Figure imgf000023_0001
For the ( Z = U ), when =() , the first REG (ie, REG '.) used to carry the PCFICH on different OFDM symbols is in the same frequency domain position, that is, when Δ 0, different Used on the 0FDM symbol
Figure imgf000023_0002
The first REG (ie REG '.) carrying the PCFICH is located in a different frequency domain position, that is, offset in the frequency direction;
针对组成 PCFICH的 N个 REG的映射方式为:先时域后频域的映射方 式, 或者先频域后时域的映射方式。  The mapping manners for the N REGs that make up the PCFICH are: the mapping mode of the first-time domain and the post-frequency domain, or the mapping mode of the pre-frequency domain and the time domain.
所述 PCFICH所占的符号个数, 是由网络侧通过高层信令告知接收端 的。  The number of symbols occupied by the PCFICH is notified to the receiving end by the network side through high layer signaling.
所述 PCFICH所占的符号数, 是由接收端盲检测获得的。  The number of symbols occupied by the PCFICH is obtained by blind detection at the receiving end.
进行所述盲检测时, 所述接收端用于: 对具体的符号数进行盲检测以 获得其真实值, 并且不进行高层信令通知。 When performing the blind detection, the receiving end is configured to: perform blind detection on a specific number of symbols to Get its true value and do not perform high-level signaling.
进行所述盲检测时, 子帧中 PCFICH所占的符号数是动态可变的。 所述接收端包括带外中继和 /或更高版本的用户设备。  When the blind detection is performed, the number of symbols occupied by the PCFICH in the subframe is dynamically variable. The receiving end includes an out-of-band relay and/or a later version of the user equipment.
所述网络侧包括以下至少之一:  The network side includes at least one of the following:
基站、 RN、 GW、 MME、 EUTRAN、 OAM管理器。  Base station, RN, GW, MME, EUTRAN, OAM manager.
综上所述可见, 无论是方法还是系统, 本发明实现 PCFICH映射的技 术, 可以很好地解决高速移动场景下带外移动中继的 PCFICH的传输可靠 性问题, 提高了带外中继 (或者更高版本的终端)接收 PCFICH的准确度, 降低了数据传输的误码率, 增加了 PCFICH 的抗干扰能力, 进而提高了整 个通信系统的传输效率。  In summary, the method for implementing PCFICH mapping in the present invention can solve the problem of transmission reliability of the PCFICH of the out-of-band mobile relay in the high-speed mobile scenario, and improve the out-of-band relay (or The higher version of the terminal) receives the accuracy of the PCFICH, reduces the bit error rate of the data transmission, increases the anti-interference ability of the PCFICH, and improves the transmission efficiency of the entire communication system.
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。  The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention.

Claims

权利要求书 Claim
1、 一种实现物理控制格式指示信道 PCFICH映射的方法, 包括: 基于资源单元组 REG, 在时域上分别映射到每个子帧的第 1个时隙的 前 1或 2或 3个正交频分复用 OFDM符号上;在频域上映射的位置由 REG 总数、 PCFICH所占的符号个数、 系统带宽、 资源块中子载波的数量以及小 区物理层标识中至少之一决定;  A method for implementing physical control format indication channel PCFICH mapping, comprising: mapping, according to a resource unit group REG, to a first one or two or three orthogonal frequencies of a first time slot of each subframe in a time domain Sub-multiplexed OFDM symbols; the position mapped in the frequency domain is determined by at least one of a total number of REGs, a number of symbols occupied by the PCFICH, a system bandwidth, a number of subcarriers in the resource block, and a physical layer identifier of the cell;
根据所述时域以及频域上的映射位置, 应用 REG组成 PCFICH。  According to the time domain and the mapping position on the frequency domain, the REG is applied to form a PCFICH.
2、 根据权利要求 1所述的方法, 其中, 所述 REG的数目为 N, 所述 N 为: 4至 10中的任意整数。  2. The method according to claim 1, wherein the number of the REGs is N, and the N is: any integer from 4 to 10.
3、 根据权利要求 1或 2所述的方法, 其中,  3. The method according to claim 1 or 2, wherein
在时域上, PCFICH只映射到每个子帧的第 1个时隙的第 1个 OFDM 符号上; 或者,  In the time domain, the PCFICH is mapped only to the first OFDM symbol of the first slot of each subframe; or
在时域上, PCFICH映射到每个子帧的第 1个时隙的前 2个或前 3个 OFDM符号上。  In the time domain, the PCFICH is mapped to the first 2 or first 3 OFDM symbols of the 1st slot of each subframe.
4、 根据权利要求 3所述的方法, 其中,  4. The method according to claim 3, wherein
在时域上, PCFICH只映射到每个子帧的第 1个时隙的第 1个 OFDM 符号上时, 在时域上: 所述 REG都映射到每个子帧的第 1个时隙的第 1个 OFDM符号上, 其中 N为大于等于 5的正整数; 在频域上: 所述 REG中的 REG0 映射到以 = 为起始位置的连续 4 个 RE 上; 所述 REG 中的 REG" = 1, 2,..., N - 在频域上映射到以 L 2 /N」'^/2 ( 或者
Figure imgf000025_0001
) 为起始位置的连续 4 个 RE 上, 其中 , k = ( /2) . «' mod 2A ) , k = k mod N . 在时域上, PCFICH映射到每个子帧的第 1个时隙的前 2个或前 3个 OFDM符号上时, 在时域上: OFDM符号 I上用于承载 PCFICH的 REG的 个数为 "'; 其中, /为 OFDM符号的索引号; 在频域上: OFDM符号 /上用 于承载 PCFICH的第 1个 REG,记为 REG'。所在频域位置为: 以 = '为起始 位置的连续 4个 RE上; OFDM符号 I上用于承载 PCFICH的第 i个 REG, 记为 REG; ('' = U,..^-1)所在频域位置为: 以 ξψ·'2 ν"'」' Β/2 (或 者 =^+^^≤^ /"'」 ) 为起始位置的连续 4 个 RE 上; 其中, 0 + Al o//sei, / = l,2 fe, =fe,modN 。
In the time domain, when the PCFICH is mapped only to the first OFDM symbol of the first slot of each subframe, in the time domain: the REG is mapped to the first slot of the first slot of each subframe. On the OFDM symbols, where N is a positive integer greater than or equal to 5; in the frequency domain: REG0 in the REG is mapped to consecutive 4 REs starting from =; REG" = 1 in the REG , 2 ,..., N - map to L 2 / N ′′′^/ 2 in the frequency domain (or
Figure imgf000025_0001
) is the starting position of 4 consecutive REs, where k = ( /2) . «' mod 2A ) , k = k mod N . In the time domain, the PCFICH is mapped to the 1st time slot of each subframe On the first 2 or first 3 OFDM symbols, in the time domain: OFDM symbol I is used to carry the REG of the PCFICH The number is "'; where / is the index number of the OFDM symbol; in the frequency domain: OFDM symbol / the first REG used to carry the PCFICH, denoted as REG '. The frequency domain location is: = ' The last 4 REs of the starting position; the ith REG used to carry the PCFICH on the OFDM symbol I, denoted as REG; ('' = U, ..^-1) where the frequency domain location is: ξψ·' 2 ν"'"' Β / 2 (or = ^+^^ ≤^ /"'" ) is the starting 4 consecutive REs; where 0 + A l o//sei , / = l, 2 Fe, =fe, mo dN .
Figure imgf000026_0001
Figure imgf000026_0001
5、 根据权利要求 4所述的方法, 其中,  5. The method according to claim 4, wherein
所述 /的取值为:  The value of / is:
当 PCFICH映射到每个子帧的第 1个时隙的前 2个 OFDM符号上时, 对应 / = 0和 1; 当 PCFICH映射到每个子帧的第 1个时隙的前 3个 OFDM 符号上时, 对应 / = 0, 1和 2;  When the PCFICH is mapped to the first 2 OFDM symbols of the 1st slot of each subframe, corresponding to / = 0 and 1; when the PCFICH is mapped to the first 3 OFDM symbols of the 1st slot of each subframe , corresponding to / = 0, 1 and 2;
所述" '的取值为:  The value of the " ' is:
当 PCFICH映射到每个子帧的第 1个时隙的前 2个 OFDM符号上时, "。= /2」或者"。=「 2 , n1 =N-n0. 当 PCFICH映射到每个子帧的第 1个时 隙的前 3个 OFDM符号上时, Nm。d3 = 0时, «o=«i=¾ = N/3. Nmod3 = l时, ni =n2 = [N/3J ? ¾ = N-2-LN/3j. 或者 w。 =[Ν/3」, Wl = N-2-[N/3j . 或者 /3,; .
Figure imgf000026_0002
针对所述 (Z = U) , 当 =()时, 不同 OFDM 符号上用于承载 PCFICH 的第 1 个 REG ( 即 REG'。 ) 所在的频域位置均相同, 即 当 Δ 0时, 不同 0FDM符号上用于
Figure imgf000026_0003
承载 PCFICH的第 1个 REG (即 REG'。 )所在的频域位置各不相同, 即在频 率方向上进行了偏移;
When the PCFICH is mapped to the first 2 OFDM symbols of the 1st slot of each subframe, ".= / 2 " or ". = " 2 , n 1 = Nn 0 . When the PCFICH is mapped to the first of each subframe When the first 3 OFDM symbols of 1 time slot are Nm.d3 = 0, «o=«i= 3⁄4 = N/3. When Nmod 3 = l, ni =n 2 = [N/3J ? 3⁄4 = N-2-LN/3j. or w. =[Ν/3", Wl = N-2-[N/3j . or /3,; .
Figure imgf000026_0002
For the ( Z = U ), when =() , the first REG (ie, REG '.) used to carry the PCFICH on different OFDM symbols is in the same frequency domain position, that is, when Δ 0, different Used on the 0FDM symbol
Figure imgf000026_0003
The first REG (that is, REG '.) carrying the PCFICH is located in a different frequency domain location, that is, in the frequency The rate is shifted in the direction;
针对组成 PCFICH的 N个 REG的映射方式为:先时域后频域的映射方 式, 或者先频域后时域的映射方式。  The mapping manners for the N REGs that make up the PCFICH are: the mapping mode of the first-time domain and the post-frequency domain, or the mapping mode of the pre-frequency domain and the time domain.
6、 根据权利要求 1或 2所述的方法, 其中, 所述 PCFICH所占的符号 数, 是由网络侧通过高层信令告知接收端的。  The method according to claim 1 or 2, wherein the number of symbols occupied by the PCFICH is notified to the receiving end by the network side through high layer signaling.
7、 根据权利要求 1或 2所述的方法, 其中, 所述 PCFICH所占的符号 数是由接收端盲检测获得的。  The method according to claim 1 or 2, wherein the number of symbols occupied by the PCFICH is obtained by blind detection by the receiving end.
8、 根据权利要求 7所述的方法, 其中, 进行所述盲检测的过程包括: 所述接收端对具体的符号数进行盲检测以获得其真实值, 并且不进行高层 信令通知。  8. The method according to claim 7, wherein the performing the blind detection comprises: the receiving end blindly detecting a specific number of symbols to obtain a true value thereof, and not performing high layer signaling.
9、 根据权利要求 8 所述的方法, 其中, 进行所述盲检测时, 子帧中 PCFICH所占的符号数是动态可变的。  9. The method according to claim 8, wherein, when the blind detection is performed, the number of symbols occupied by the PCFICH in the subframe is dynamically variable.
10、 根据权利要求 8所述的方法, 其中, 所述接收端包括带外中继和 / 或更高版本的用户设备。  10. The method according to claim 8, wherein the receiving end comprises an out-of-band relay and/or a later version of the user equipment.
11、 根据权利要求 1 所述的方法, 其中, 所述网络侧包括以下至少之 基站、 中继节点 RN、 网关 GW、 移动性管理实体 MME、 演进型通用 陆地无线接入网 EUTRAN、 操作管理及维护 OAM管理器。  The method according to claim 1, wherein the network side comprises at least a base station, a relay node RN, a gateway GW, a mobility management entity MME, an evolved universal terrestrial radio access network EUTRAN, operation management, and Maintain the OAM Manager.
12、 一种实现 PCFICH映射的系统, 包括映射位置决策单元、 PCFICH 构成单元; 其中,  12. A system for implementing PCFICH mapping, comprising a mapping location decision unit and a PCFICH constituent unit; wherein
所述映射位置决策单元, 用于基于 REG, 在时域上分别映射到每个子 帧的第 1个时隙的前 1或 2或 3个 OFDM符号上; 在频域上映射的位置由 REG总数、 PCFICH所占的符号个数、 系统带宽、 资源块中子载波的数量 以及小区物理层标识中至少之一决定;  The mapping location decision unit is configured to map to the first 1 or 2 or 3 OFDM symbols of the first slot of each subframe in the time domain based on the REG; the location of the mapping in the frequency domain by the total number of REGs And determining, by the PCFICH, the number of symbols, the system bandwidth, the number of subcarriers in the resource block, and the physical layer identifier of the cell;
所述 PCFICH构成单元, 用于根据所述时域以及频域上的映射位置, 应用 REG组成 PCFICH。 The PCFICH component unit is configured to: according to the mapping location in the time domain and the frequency domain, Apply REG to form PCFICH.
13、 根据权利要求 12所述的系统, 其中, 所述 REG的数目为 N, 所 述 N为: 4至 10中的任意整数。  13. The system according to claim 12, wherein the number of the REGs is N, and the N is: any integer from 4 to 10.
14、 根据权利要求 12或 13所述的系统, 其中,  14. The system according to claim 12 or 13, wherein
在时域上, PCFICH只映射到每个子帧的第 1个时隙的第 1个 OFDM 符号上; 或者,  In the time domain, the PCFICH is mapped only to the first OFDM symbol of the first slot of each subframe; or
在时域上, PCFICH映射到每个子帧的第 1个时隙的前 2个或前 3个 OFDM符号上。  In the time domain, the PCFICH is mapped to the first 2 or first 3 OFDM symbols of the 1st slot of each subframe.
15、 根据权利要求 14所述的系统, 其中,  15. The system according to claim 14, wherein
在时域上, PCFICH只映射到每个子帧的第 1个时隙的第 1个 OFDM 符号上时, 在时域上: 所述 REG都映射到每子帧的第 1个时隙的第 1个 OFDM符号上, 其中 N为大于等于 5的正整数; 在频域上: 所述 REG中的 REG0 映射到以 = 为起始位置的连续 4 个 RE 上; 所述 REG 中的 REG" = 1, 2,..., N - 在频域上映射到以 L 2 /N」'^/2 ( 或者
Figure imgf000028_0001
) 为起始位置的连续 4 个 RE 上, 其中 , k = ( /2) . «' mod 2A ) , k = k mod N . 在时域上, PCFICH映射到每个子帧的第 1个时隙的前 2个或前 3个 OFDM符号上时, 在时域上: OFDM符号 I上用于承载 PCFICH的 REG的 个数为 "'; 其中, /为 OFDM符号的索引号; 在频域上: OFDM符号 /上用 于承载 PCFICH的第 1个 REG,记为 REG'。所在频域位置为: 以 = 为起始 位置的连续 4个 RE上; OFDM符号 I上用于承载 PCFICH的第 i个 REG, 记为 REG; ('' = U,.. ^ -1)所在频域位置为: 以 ξ ψ·'2 ν"'」' Β/2 (或 者 :^ ^ +^^^^3/"'」 ) 为起始位置的连续 4 个 RE 上; 其中, =( B/2)'( mod2A ), kt =k0 + Al offiet, I = 1,2 kl=k N 。
In the time domain, when the PCFICH is mapped only to the first OFDM symbol of the first slot of each subframe, in the time domain: the REG is mapped to the first slot of the first slot of each subframe. On the OFDM symbols, where N is a positive integer greater than or equal to 5; in the frequency domain: REG0 in the REG is mapped to consecutive 4 REs starting from =; REG" = 1 in the REG , 2 ,..., N - map to L 2 / N ′′′^/ 2 in the frequency domain (or
Figure imgf000028_0001
) is the starting position of 4 consecutive REs, where k = ( /2) . «' mod 2A ) , k = k mod N . In the time domain, the PCFICH is mapped to the 1st time slot of each subframe On the first 2 or the first 3 OFDM symbols, in the time domain: The number of REGs used to carry the PCFICH on OFDM symbol I is "'; where / is the index number of the OFDM symbol; in the frequency domain: The first REG used to carry the PCFICH on the OFDM symbol/ is denoted as REG '. The location in the frequency domain is: consecutive 4 REs with the starting position of =; the ith symbol for carrying the PCFICH on the OFDM symbol I REG, denoted REG; ('' = U,.. ^ -1) where the frequency domain is located: ξ ψ·' 2 ν"'"' Β / 2 (or: ^ ^ +^^^^ 3 / "'") is the starting position of 4 consecutive REs; =( B /2)'( mod2A ), k t =k 0 + A l offiet , I = 1,2 kl =k N .
16、 根据权利要求 15所述的系统, 其中, 16. The system of claim 15 wherein
所述 /的取值为:  The value of / is:
当 PCFICH映射到每个子帧的第 1个时隙的前 2个 OFDM符号上时, 对应 / = 0和 1; 当 PCFICH映射到每个子帧的第 1个时隙的前 3个 OFDM 符号上时, 对应 / = 0, 1和 2;  When the PCFICH is mapped to the first 2 OFDM symbols of the 1st slot of each subframe, corresponding to / = 0 and 1; when the PCFICH is mapped to the first 3 OFDM symbols of the 1st slot of each subframe , corresponding to / = 0, 1 and 2;
所述" '的取值为:  The value of the " ' is:
当 PCFICH映射到每个子帧的第 1个时隙的前 2个 OFDM符号上时, "。= /2」或者"。=「^ n1 =N-n0. 当 PCFICH映射到每个子帧的第 1个时 隙的前 3个 OFDM符号上时, Nm。d3 = 0时, «o = «i = «2 = N/3. Nmod3 = l时, ni=n2= [N/3J ? ¾ = N-2-LN/3j. 或者 "。 ="2 =「Ν/3」, = Ν_2.「Ν/3」; 或者 /3] ;
Figure imgf000029_0001
. 针对所述 (Z = U) , 当 =()时, 不同 OFDM 符号上用于承载 PCFICH 的第 1 个 REG ( 即 REG'。 ) 所在的频域位置均相同, 即 当 Δ 0时, 不同 0FDM符号上用于
Figure imgf000029_0002
承载 PCFICH的第 1个 REG (即 REG'。 )所在的频域位置各不相同, 即在频 率方向上进行了偏移;
When the PCFICH is mapped to the first 2 OFDM symbols of the 1st slot of each subframe, ".= / 2 " or ". = "^ n 1 = Nn 0 . When the PCFICH is mapped to the 1st of each subframe When the first 3 OFDM symbols of the time slot are on Nm.d3 = 0, «o = «i = «2 = N/3. When Nmod 3 = l, ni =n 2 = [N/3J ? 3⁄4 = N-2-LN/3j. or ". =" 2 = "Ν/3", = Ν_2. "Ν/3"; or /3] ;
Figure imgf000029_0001
For the ( Z = U ), when =() , the first REG (ie, REG '.) used to carry the PCFICH on different OFDM symbols is in the same frequency domain position, that is, when Δ 0, Used on different 0FDM symbols
Figure imgf000029_0002
The first REG (ie REG '.) carrying the PCFICH is located in a different frequency domain position, that is, offset in the frequency direction;
针对组成 PCFICH的 N个 REG的映射方式为:先时域后频域的映射方 式, 或者先频域后时域的映射方式。  The mapping manners for the N REGs that make up the PCFICH are: the mapping mode of the first-time domain and the post-frequency domain, or the mapping mode of the pre-frequency domain and the time domain.
17、 根据权利要求 12或 13所述的系统, 其中, 所述 PCFICH所占的 符号个数, 是由网络侧通过高层信令告知接收端的。  The system according to claim 12 or 13, wherein the number of symbols occupied by the PCFICH is notified to the receiving end by the network side through high layer signaling.
18、 根据权利要求 12或 13所述的系统, 其中, 所述 PCFICH所占的 符号数, 是由接收端盲检测获得的。 The system according to claim 12 or 13, wherein the PCFICH occupies The number of symbols is obtained by blind detection at the receiving end.
19、 根据权利要求 18所述的系统, 其中, 进行所述盲检测时, 所述接 收端用于: 对具体的符号数进行盲检测以获得其真实值, 并且不进行高层 信令通知。  The system according to claim 18, wherein, when the blind detection is performed, the receiving end is configured to: perform blind detection on a specific number of symbols to obtain a true value thereof, and perform high-level signaling notification.
20、 根据权利要求 19所述的系统, 其中, 进行所述盲检测时, 子帧中 PCFICH所占的符号数是动态可变的。  20. The system according to claim 19, wherein, when the blind detection is performed, the number of symbols occupied by the PCFICH in the subframe is dynamically variable.
21、 根据权利要求 19所述的系统, 其中, 所述接收端包括带外中继和 /或更高版本的用户设备。  21. The system of claim 19, wherein the receiving end comprises an out-of-band relay and/or a later version of the user equipment.
22、 根据权利要求 12所述的系统, 其中, 所述网络侧包括以下至少之 基站、 RN、 GW、 MME、 EUTRAN、 OAM管理器。  22. The system according to claim 12, wherein the network side comprises at least a base station, an RN, a GW, an MME, an EUTRAN, an OAM manager.
PCT/CN2012/076652 2011-07-26 2012-06-08 Method and system for implementing pcfich mapping WO2013013538A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011102105678A CN102904851A (en) 2011-07-26 2011-07-26 Method and system for mapping PCFICH (physical control format indicator channel)
CN201110210567.8 2011-07-26

Publications (1)

Publication Number Publication Date
WO2013013538A1 true WO2013013538A1 (en) 2013-01-31

Family

ID=47576893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076652 WO2013013538A1 (en) 2011-07-26 2012-06-08 Method and system for implementing pcfich mapping

Country Status (2)

Country Link
CN (1) CN102904851A (en)
WO (1) WO2013013538A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017100076A1 (en) 2017-01-04 2018-07-05 Sennheiser Electronic Gmbh & Co. Kg Method for low-latency audio transmission in an LTE network
CN110324134B (en) * 2017-08-30 2021-12-10 中国信息通信研究院 Method and device for configuring search space of downlink control channel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090015443A1 (en) * 2007-07-12 2009-01-15 Jianzhong Zhang Transmit methods for CCFI/PCFICH in a wireless communication system
CN102026393A (en) * 2009-09-10 2011-04-20 华为技术有限公司 Resource allocation indicating method of relay link, allocation information obtaining method and device thereof
CN102106096A (en) * 2008-07-25 2011-06-22 Lg电子株式会社 Method and apparatus of receiving data in wireless communication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443641B1 (en) * 2007-12-12 2014-09-23 엘지전자 주식회사 Method for Physical control format indicator channel mapping
CN101895854B (en) * 2009-05-21 2014-07-02 中兴通讯股份有限公司 Method and device for transmitting control format indicating information of relay link

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090015443A1 (en) * 2007-07-12 2009-01-15 Jianzhong Zhang Transmit methods for CCFI/PCFICH in a wireless communication system
CN102106096A (en) * 2008-07-25 2011-06-22 Lg电子株式会社 Method and apparatus of receiving data in wireless communication system
CN102026393A (en) * 2009-09-10 2011-04-20 华为技术有限公司 Resource allocation indicating method of relay link, allocation information obtaining method and device thereof

Also Published As

Publication number Publication date
CN102904851A (en) 2013-01-30

Similar Documents

Publication Publication Date Title
KR102349241B1 (en) Narrowband time-division duplex frame structure for narrowband communications
JP6896865B2 (en) Systems and methods for selecting or transmitting frequency domain patterns for phase tracking reference signals
CN110495129B (en) Sharing a single CORESET bandwidth across multiple user equipment
CN110447202B (en) Scheduling requests for one or more uplink transmissions using narrowband communications
TWI698143B (en) Narrowband time-division duplex frame structure for narrowband communications
JP6599535B2 (en) Reference signal and signaling design for non-orthogonal multiple access using legacy user equipment as base layer
TWI770242B (en) Methods and apparatus related to demodulation reference signal design and related signaling
CA3016573C (en) Techniques for sparse code multiple access (scma) codebook design
JP5415629B2 (en) Apparatus and method for relay transition time
CN112262543A (en) Method and apparatus for indicating semi-persistent sounding reference signal as neighbor cell reference signal in next generation mobile communication system
EP3566318B1 (en) Low latency encoding and decoding of bit-reversed polar codes
CN109952749B (en) Communication method and apparatus for low PAPR DFT waveform using spectral shaping
TW201703564A (en) Dynamic signaling of LTE-TDD configurations in the presence of D2D transmissions
CN107637106A (en) Unicast in the direct device-to-device communications of ProSe is supported
WO2011137696A1 (en) Transmission method and system for relay physical downlink control channel
CN109891766B (en) DCI design for multi-user superposition transmission
US20230050029A1 (en) Method and device used for wireless communication
WO2013013538A1 (en) Method and system for implementing pcfich mapping
CN113498075B (en) Method and device used in user equipment and base station for wireless communication
George et al. Physical Layer Frame Structure in 4G LTE/LTE-A Downlink based on LTE System Toolbox
WO2024099209A1 (en) Method and apparatus for use in wireless communication node
WO2024088393A1 (en) Method and apparatus used in node for wireless communication
WO2024093880A1 (en) Method and device used in node for wireless communication
KR20230000769A (en) Apparatus and method for performing a local re-routing in a wireless communication system
KR20210138820A (en) Method and apparatus for transmitting and receiving signal based on layered division multiplexing in communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817344

Country of ref document: EP

Kind code of ref document: A1