WO2013013488A1 - Structure de système optique d'un télémètre laser - Google Patents

Structure de système optique d'un télémètre laser Download PDF

Info

Publication number
WO2013013488A1
WO2013013488A1 PCT/CN2012/000421 CN2012000421W WO2013013488A1 WO 2013013488 A1 WO2013013488 A1 WO 2013013488A1 CN 2012000421 W CN2012000421 W CN 2012000421W WO 2013013488 A1 WO2013013488 A1 WO 2013013488A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
objective lens
toroidal
optical system
free
Prior art date
Application number
PCT/CN2012/000421
Other languages
English (en)
Chinese (zh)
Inventor
杜鑫
乔佰文
李灿成
Original Assignee
江苏徕兹光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏徕兹光电科技有限公司 filed Critical 江苏徕兹光电科技有限公司
Publication of WO2013013488A1 publication Critical patent/WO2013013488A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Definitions

  • the present invention relates to a laser range finder, and more particularly to an optical system structure of a laser range finder. Background technique
  • the Shuguang range finder is widely used in engineering measurement, building measurement and home decoration.
  • Commonly used laser range finder is generally based on the principle of phase measurement and the principle of pulse phase measurement. These measuring instruments measure distances from a few millimeters to hundreds of meters, and the measurement accuracy is above the millimeter level.
  • the optical system structure of a typical laser range finder in the prior art includes a laser emitting light source 1, a collimating objective lens 2, a measuring target 3, a receiving objective lens 4, a light receiver 5, and a light receiver.
  • the collimating objective lens 2 and the receiving objective lens 4 are parallel to the optical axis.
  • the light receiving surface 6 of the light receiver 5 is located at the focus A of the receiving objective 4.
  • the reflected light is incident on the receiving objective lens 4 in parallel light, and then concentrated at the focus A of the receiving objective lens, that is, the light receiving surface 6 of the light receiver 5.
  • the reflected light is obliquely incident on the receiving objective lens 4 with the off-axis light, and has an angle with the optical axis of the receiving objective lens 4, so that the image is off-centered from the main optical axis of the receiving objective lens and located in the vicinity of the focus A, thereby enabling light reception. Face 6 cannot receive reflected measurement light, and measurement cannot be performed.
  • the technical solution of the present invention is an optical system structure of a laser range finder, comprising a laser emitting light source, a collimating objective lens placed before the laser emitting light source, a light receiver, and a receiving objective lens for collecting reflected light to the light receiver, wherein
  • the receiving objective lens is a free-form optical element composed of an aspherical portion and a toroidal portion, wherein infinity reflected light is focused on the optical receiver through an aspherical curved portion of the free-form receiving objective lens
  • the near-distance reflected light passes over the surface of the photoreceiver through the toroidal portion of the free-form surface receiving objective lens.
  • the free-form surface receiving objective lens is a composite objective lens composed of an aspherical curved surface portion and a toroidal curved surface portion.
  • the free-form surface receiving objective lens includes mutually independent aspheric curved lenses and a toroidal lens.
  • the free-form surface receiving objective lens is a combined lens in which an aspherical curved lens and a toroidal lens are glued together.
  • the toroidal lens type partial toroidal lens is described.
  • the invention has the beneficial effects that the laser ranging optical system of the invention can meet the high-precision measurement in the long distance and the short distance, and has the advantages of simple structure, good measurement stability, superior cost performance than the general measuring device, and is advantageous for miniaturization. .
  • FIG. 2 is an optical system diagram of a prior art using a curved mirror to deflect short-range reflection measurement light onto a surface of a light receiver;
  • FIG. 3 is an optical system diagram of a prior art using a prism to deflect close-range reflection measurement light onto a surface of a light receiver;
  • 4A and 4B are optical system diagrams for solving close distance measurement using a dual focal length combined receiving lens and a special shape light receiver in the prior art
  • FIG. 5 is an optical system diagram of a free-form surface receiving objective lens according to the present invention
  • 6 and FIG. 7 are perspective perspective views and views of a typical toroidal lens according to the present invention
  • Fig. 8 is a view showing an optical system of a preferred embodiment of the optical system structure according to the present invention.
  • xoy is the solitary plane
  • yoz is the meridian plane
  • the optical system structure of the laser range finder of the present invention comprises a laser emitting light source, a collimating objective lens placed before the laser emitting light source, a light receiver and a receiving objective lens for collecting reflected light to the light receiver, wherein the receiving objective lens is a free-form surface optical element comprising an aspherical curved surface portion and a toroidal curved portion, wherein infinity reflected light is focused on the optical receiver through an aspherical curved portion of the free curved surface receiving objective lens, at a close distance The reflected light passes through the toroidal portion of the free-form surface receiving objective lens to cover the surface of the light receiver.
  • the aspherical curved surface portion and the toroidal curved surface portion may be combined to form a composite objective lens.
  • the aspherical curved lens and the toroidal lens may also be independent of each other.
  • the aspherical curved lens and the toroidal lens may be glued together to form a combined lens.
  • the toroidal lens is a partial toroidal lens.
  • the optical system structure of the laser range finder of the present invention comprises: an aspherical curved surface plus a super-ring combined free-form surface lens 14, a light receiver 5, a light receiving surface 6 of the light receiver 5, collimating Lens 2, revolving from the standard 3 and the laser light source 1.
  • the emitted light from the laser emitting light source 1 is collimated by the collimating objective lens 2 and then emitted to the measuring target 3, at which time the light beam is diffusely reflected on the measuring target 3, and the light reflected at various angles is concentrated by the receiving objective lens.
  • the receiving objective lens in Fig. 5 is a free-form surface lens 14 having an aspherical surface plus a toroidal combination.
  • the reflected measurement light is incident on the free-form surface combining lens 14 in parallel light, and is focused onto the surface of the light receiver 5 through the aspherical curved surface portion.
  • the reflected measurement light is incident on the free-form lens 14, and they are covered by the toroidal portion into a fan-shaped beam to cover the surface of the photoreceiver 5.
  • FIG. 6 a perspective view and a view of a typical partial toroidal lens according to the present invention are shown.
  • the beam passes through the toroidal lens, it diverge in the form of a fan in the meridian plane of the lens (i.e., the yoz plane in Figure 6).
  • the sagittal plane of the lens i.e., the xoy face in Fig. 6
  • it also diverge in the form of a fan.
  • Different fan-shaped angular beams can be obtained by using different parameters of the toroidal lens, such as the effective focal length, the deflection angle, the radius of curvature on the meridional plane, the radius of curvature on the sagittal plane, the center height, the material, and the like.
  • the size of the fan angle and its spatial position should also match the aspheric surface of the freeform surface.
  • the receiving objective lens is a typical free-form optical element which is a composite lens in which the aspherical curved surface portion 16 and the toroidal lens portion 15 are glued together.
  • the reflected measurement light is incident on the receiving objective lens in parallel light, and is focused by the aspherical curved lens 16 onto the light receiving surface 6 of the light receiver 5, and the light passing through the toroidal lens 15 is not covered.
  • the light receiving surface 5 of the light receiver 5 is such that no interference occurs.
  • the beam passing through the toroidal partial lens 15 of the free-form lens forms a fan beam on the meridional plane and the sagittal plane, covering the light receiving surface 6 of the photoreceiver 5.
  • the curvature on the meridional plane is relatively small, and the curvature on the sagittal plane is relatively large, and the formed three-dimensional fan beam is covered on the light receiving surface 6. In this way, the theoretical measurement range can be from millimeters to infinity.
  • the aspherical surface according to the present invention refers to a surface shape which cannot be defined by a spherical surface, that is, a surface shape which cannot be determined by only one radius.
  • the aspherical surface includes a variety of shapes, including a rotationally symmetric aspherical surface and a non-rotationally symmetric aspherical surface.
  • the two-axis symmetrical surface shape is arranged in a regular array of microstructures, including diffraction structure optics.
  • the surface also includes a strange free-form surface. Free-form surface optics is based on the requirements of modern optoelectronic systems for signal reception, conversion, storage, transmission, etc., to construct optical surfaces and design methods of any shape.

Abstract

La présente invention concerne une structure de système optique d'un télémètre laser, comprenant une source de lumière d'émission laser (1), un objectif de collimation (2) situé devant la source de lumière d'émission laser (1), un récepteur optique (5) et un objectif de réception (14) faisant converger les rayons de lumière réfléchis vers le récepteur optique (5). L'objectif de réception (14) est un élément optique à surface de forme libre, formée par une partie de surface asphérique (16) et une partie toroïdale (15). Ces rayons de lumière réfléchis à l'infini passent à travers la partie de surface asphérique (16) de l'objectif de réception (14) pour se focaliser sur le récepteur optique (5) ; et ces rayons de lumière réfléchis de courte portée traversent la partie toroïdale (15) de l'objectif de réception (14) pour couvrir une zone de réception de lumière (6) du récepteur optique (5). La structure de système optique du télémètre laser permet ainsi des mesures de longue distance et de courte portée, avec une structure simple et une bonne stabilité de mesure, ce qui est avantageux pour réaliser une miniaturisation.
PCT/CN2012/000421 2011-07-22 2012-03-31 Structure de système optique d'un télémètre laser WO2013013488A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110211264.8 2011-07-22
CN201110211264.8A CN102313882B (zh) 2011-07-22 2011-07-22 激光测距仪的光学系统结构

Publications (1)

Publication Number Publication Date
WO2013013488A1 true WO2013013488A1 (fr) 2013-01-31

Family

ID=45427211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000421 WO2013013488A1 (fr) 2011-07-22 2012-03-31 Structure de système optique d'un télémètre laser

Country Status (2)

Country Link
CN (1) CN102313882B (fr)
WO (1) WO2013013488A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013020572A1 (de) * 2013-12-13 2015-06-18 Balluff Gmbh Optoelektronischer Sensor
DE102015119668B3 (de) * 2015-11-13 2017-03-09 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung eines Objekts
JP2021047141A (ja) * 2019-09-20 2021-03-25 株式会社デンソーウェーブ レーザレーダ装置及びレーザレーダ装置用レンズ

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313882B (zh) * 2011-07-22 2015-07-29 江苏徕兹光电科技有限公司 激光测距仪的光学系统结构
JP6003121B2 (ja) * 2012-03-15 2016-10-05 オムロン株式会社 反射型光電センサ
CN102645738B (zh) * 2012-04-23 2014-07-30 南京德朔实业有限公司 激光测距仪及适用其接收光线的聚光镜
CN103293529B (zh) * 2012-06-04 2015-04-08 南京德朔实业有限公司 激光测距装置
CN104035099B (zh) * 2013-03-08 2017-02-01 江苏徕兹测控科技有限公司 基于双发双收相位测量的校准方法及其测距装置
CN104457689B (zh) * 2013-09-25 2017-06-20 北京航天计量测试技术研究所 一种用于近距离激光测距仪的光学接发结构
CN104833966A (zh) * 2015-05-22 2015-08-12 南京爱立光电有限公司 激光测距光学系统
DE102016208713B4 (de) 2016-05-20 2022-12-22 Ifm Electronic Gmbh Optoelektronischer Sensor
US10634770B2 (en) * 2016-06-29 2020-04-28 Apple Inc. Optical systems for remote sensing receivers
CN113030910A (zh) * 2019-12-09 2021-06-25 觉芯电子(无锡)有限公司 一种激光雷达系统
CN111491444B (zh) * 2020-05-19 2021-07-27 常州纵慧芯光半导体科技有限公司 一种测距传感器发射模组以及测距传感器
CN112269161B (zh) * 2020-09-08 2022-12-23 上海大学 光学空间定位系统及其空间定位方法
CN112612014A (zh) * 2020-11-27 2021-04-06 西安知微传感技术有限公司 一种高效能mems激光雷达接收系统
CN113721250A (zh) * 2021-08-30 2021-11-30 中国电子科技集团公司第四十四研究所 一种离散视场激光近程探测前端装置
CN113655487A (zh) * 2021-09-16 2021-11-16 中国电子科技集团公司第四十四研究所 一种连续视场激光近程探测前端装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703351A (en) * 1996-11-18 1997-12-30 Eastman Kodak Company Autofocus module having a diffractively achromatized toroidal lens
DE10220037A1 (de) * 2002-05-04 2003-11-20 Sick Ag Vorrichtung zum Detektieren von Objekten
CN2779424Y (zh) * 2005-03-24 2006-05-10 南京德朔实业有限公司 测距装置
CN2811945Y (zh) * 2005-08-08 2006-08-30 南京德朔实业有限公司 光学测距装置
CN1912648A (zh) * 2005-08-10 2007-02-14 亚洲光学股份有限公司 激光尺光学系统
CN2872301Y (zh) * 2005-08-18 2007-02-21 南京德朔实业有限公司 光学测距装置
US20080130005A1 (en) * 2006-02-20 2008-06-05 Sick Ag Optoelectronic apparatus and a method for its operation
CN201622345U (zh) * 2010-03-24 2010-11-03 北京握奇数据系统有限公司 一种激光测距装置
CN102313882A (zh) * 2011-07-22 2012-01-11 江苏徕兹光电科技有限公司 激光测距仪的光学系统结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4316348A1 (de) * 1993-05-15 1994-11-17 Wild Heerbrugg Ag Vorrichtung zur Distanzmessung
JPH1184287A (ja) * 1997-09-08 1999-03-26 Ricoh Co Ltd 光走査装置
JP2001188188A (ja) * 1999-12-28 2001-07-10 Ricoh Co Ltd マルチビーム走査装置
CN1677126A (zh) * 2004-04-01 2005-10-05 亚洲光学股份有限公司 激光测距仪的光学系统
US7936493B2 (en) * 2005-06-21 2011-05-03 Ricoh Company, Ltd. Dot position correcting apparatus, optical scanning apparatus, imaging apparatus, and color imaging apparatus
CN101093275A (zh) * 2007-07-13 2007-12-26 中国科学院上海光学精密机械研究所 大口径激光成像镜头
CN101446490B (zh) * 2008-12-25 2010-11-10 常州市新瑞得仪器有限公司 激光测距仪
CN202196168U (zh) * 2011-07-22 2012-04-18 江苏徕兹光电科技有限公司 激光测距仪的光学系统结构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703351A (en) * 1996-11-18 1997-12-30 Eastman Kodak Company Autofocus module having a diffractively achromatized toroidal lens
DE10220037A1 (de) * 2002-05-04 2003-11-20 Sick Ag Vorrichtung zum Detektieren von Objekten
CN2779424Y (zh) * 2005-03-24 2006-05-10 南京德朔实业有限公司 测距装置
CN2811945Y (zh) * 2005-08-08 2006-08-30 南京德朔实业有限公司 光学测距装置
CN1912648A (zh) * 2005-08-10 2007-02-14 亚洲光学股份有限公司 激光尺光学系统
CN2872301Y (zh) * 2005-08-18 2007-02-21 南京德朔实业有限公司 光学测距装置
US20080130005A1 (en) * 2006-02-20 2008-06-05 Sick Ag Optoelectronic apparatus and a method for its operation
CN201622345U (zh) * 2010-03-24 2010-11-03 北京握奇数据系统有限公司 一种激光测距装置
CN102313882A (zh) * 2011-07-22 2012-01-11 江苏徕兹光电科技有限公司 激光测距仪的光学系统结构

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013020572A1 (de) * 2013-12-13 2015-06-18 Balluff Gmbh Optoelektronischer Sensor
DE102013020572B4 (de) * 2013-12-13 2016-11-17 Balluff Gmbh Optoelektronischer Sensor
DE102015119668B3 (de) * 2015-11-13 2017-03-09 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung eines Objekts
US10761193B2 (en) 2015-11-13 2020-09-01 Sick Ag Optoelectronic sensor and method for detecting an object
JP2021047141A (ja) * 2019-09-20 2021-03-25 株式会社デンソーウェーブ レーザレーダ装置及びレーザレーダ装置用レンズ
JP7354716B2 (ja) 2019-09-20 2023-10-03 株式会社デンソーウェーブ レーザレーダ装置及びレーザレーダ装置用レンズ

Also Published As

Publication number Publication date
CN102313882A (zh) 2012-01-11
CN102313882B (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
WO2013013488A1 (fr) Structure de système optique d'un télémètre laser
US10126415B2 (en) Probe that cooperates with a laser tracker to measure six degrees of freedom
TWI649578B (zh) 用於遠端感測接收器之中程光學系統
CN105157578B (zh) 测量离轴抛物面主反射镜离轴量和离轴角的系统及方法
CN102679912B (zh) 基于差动比较原理的自准直仪
JP2021510814A (ja) レーザレーダ及びその作動方法
US20180017668A1 (en) Ranging system, integrated panoramic reflector and panoramic collector
CN107015237A (zh) 一种回波探测光学系统
JP6095911B2 (ja) レーザ変位計測装置
WO2021168832A1 (fr) Système de détection laser et véhicule associé
CN107817482A (zh) 激光雷达光学系统
JP2019124649A (ja) 光放射装置、物体情報検知装置、光路調整方法、物体情報検知方法、及び、光変調ユニット
CN104748720A (zh) 空间测角装置及测角方法
WO2020142870A1 (fr) Dispositif de mesure de distance
CN209979845U (zh) 一种测距装置及移动平台
CN1912648B (zh) 激光尺光学系统
RU2470258C1 (ru) Углоизмерительный прибор
WO2013013349A1 (fr) Structure de système optique de télémètre laser
CN111263898A (zh) 一种光束扫描系统、距离探测装置及电子设备
CN202196168U (zh) 激光测距仪的光学系统结构
CN100582678C (zh) 离轴旋转对称型激光三角位移传感器
CN205027896U (zh) 一种用于激光测距仪的光学结构
RU2554599C1 (ru) Углоизмерительный прибор
CN108226952A (zh) 一种激光扫描成像系统
US9109878B2 (en) Optical system for measurement of orientation and position comprising a point source, central mask, photosensitive matrix sensor and corner cube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817498

Country of ref document: EP

Kind code of ref document: A1