WO2013012276A2 - Hydrogen magnetic reaction gene regulator and gene regulating method - Google Patents

Hydrogen magnetic reaction gene regulator and gene regulating method Download PDF

Info

Publication number
WO2013012276A2
WO2013012276A2 PCT/KR2012/005790 KR2012005790W WO2013012276A2 WO 2013012276 A2 WO2013012276 A2 WO 2013012276A2 KR 2012005790 W KR2012005790 W KR 2012005790W WO 2013012276 A2 WO2013012276 A2 WO 2013012276A2
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnet
magnetic field
driving
electromagnets
base pair
Prior art date
Application number
PCT/KR2012/005790
Other languages
French (fr)
Korean (ko)
Other versions
WO2013012276A3 (en
Inventor
이석근
김연숙
이윤우
이정근
이홍근
이대성
이대관
Original Assignee
주식회사 진바이오시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 진바이오시스 filed Critical 주식회사 진바이오시스
Priority claimed from KR1020120078812A external-priority patent/KR101513997B1/en
Publication of WO2013012276A2 publication Critical patent/WO2013012276A2/en
Publication of WO2013012276A3 publication Critical patent/WO2013012276A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2999/00Further aspects of viruses or vectors not covered by groups C12N2710/00 - C12N2796/00 or C12N2800/00
    • C12N2999/005Biological teaching, e.g. a link between protein and disease, new virus causing pandemic

Definitions

  • the present invention relates to a hydrophilic response gene regulator and a gene control method, and more particularly, by using a magnetic field generated from a pair of electromagnets arranged in a circular shape, a hydrophobic reaction occurs on a hydrogen bond of a specific DNA double-strand base pair to generate a related gene. It relates to a hydrophobic response gene regulator for activating or deactivating and a method of using the same.
  • 1 is a schematic diagram showing an orbital motion of electrons generated by a magnetic field.
  • FIG. 2 is a schematic representation of the magnetic reaction of hydrogen atoms in a magnetic field that is not too strong, for example a weak magnetic field of 10 3 Gauss or less.
  • the magnetic field can change the orbital movement of the outer electrons in the hydrogen atoms. As a result, the hydrogen bonding force can be changed.
  • Korean Patent Publication No. 0384924 discloses a technique for controlling gene expression by affecting hydrogen bonding by applying a circulating magnetic field.
  • the invention is merely illustrative, and there is a lack of theoretical explanation, which limits the expression of genes.
  • the present invention uses a polar or semi-polar magnetic field generated in the electromagnet array of the circular structure to provide a hydrophobic reaction gene regulator and gene control method to control the gene expression by generating a hydrophobic reaction to the hydrogen bond of the DNA double helix base pair It is for.
  • the hydrophilic reaction gene regulator of the present invention has a polarity in which a polar magnetic field or a semipolar magnetic field corresponding to base pairs of an even number of electromagnets and target DNA double helixes arranged at equal intervals on a virtual circle is generated.
  • the electromagnet pair of the electromagnet may include an electromagnet driver for sequentially driving the base pair of the sense strand or the antisense strand in the base pair of the target DNA double helix.
  • the polar magnetic field is received by the base pair when the pyrimidine series is on the first pole side and the purine series is on the second pole side of the base pair. It is a magnetic field, and the semipolar magnetic field may be a magnetic field received by the base pair when the purine series is located at the first pole side and the pyrimidine series is at the second pole side of the base pair.
  • the driving time of the electromagnet pair may vary depending on the base pair of the target DNA double helix.
  • the driving time of the electromagnet pair is about 10 ⁇ 300msec, and varies depending on the activity of the target DNA, such as bacteria, plants, animals.
  • the ratio of the T (thymine): A (adenine) base pair to the C (cytosine): G (guanine) base pair constituting the target DNA base pair may have a driving time of about 1/2 to 3/4.
  • the driving time of an electromagnet pair may be rapidly progressed to 50 msec or less, and may be relatively slow to about 150 msec or less in an animal and about 300 msec or less in a plant.
  • the magnetic field formed in the center of the virtual circle by the pair of electromagnets may be more than 1T at about 50 ⁇ T (Tesla) of the Earth's magnetic field strength, depending on the purpose of use, the electromagnet drive unit drives only a pair of electromagnets facing at a temporary point You can.
  • the number of electromagnets is the number of base pairs arranged in one rotation section of the target DNA double helix, and may be 8 to 14 according to the shape change of the target DNA.
  • the electromagnet driver may drive the pair of electromagnets from the first base sequence to the last base sequence of the sense strand in a counterclockwise or clockwise direction with a polar magnetic field or a semipolar magnetic field corresponding to the sense strand base sequence, and then Rotate the pair of electromagnets from the first base sequence to the final base sequence of the antisense strand with a polar or semipolar magnetic field corresponding to the antisense strand sequence, starting with the electromagnet pair driven corresponding to the final sequence of the sense strand. It can be driven in the opposite direction.
  • the one-time driving of the target DNA may be performed for 4 to 100 base pairs in the target DNA double helix.
  • the electromagnet driving unit may repeat one drive for the target DNA by a set time.
  • the electromagnet drive unit repeats the one-time drive of the electromagnet pair by using a pair of electromagnets adjacent in the counterclockwise direction from the one-time drive start electromagnet pair after the repetition of the first drive. You can repeat as many times as you like.
  • auxiliary electromagnets are further disposed on both sides of the virtual line orthogonal to the virtual circle center, and the electromagnet driving unit drives the auxiliary electromagnet in a direction orthogonal to an array of electromagnet pairs arranged in a circle between the single drivings. You can.
  • the magnetic field among the electromagnetic fields generated by the pair of electromagnets is concentrated on the center of the circle, whereas most electric fields are radiated outwardly orthogonal to the direction of magnetic field in the coil region of the electromagnets.
  • the interference of the electric field can be minimized by installing an electric field shielding film using a nonmagnetic metal on the circle center.
  • the effect of the electric field is relatively very small in the dehydrogenase response gene regulator of the present invention can be carried out mainly through the effect of the magnetic field (magnetic effect).
  • the apparatus may further include an electromagnetic shielding film for shielding the magnetic field scattered from the electric field generated outside the imaginary circle among the electromagnetic fields generated by the electromagnets, and a cooling device for reducing heat generated by driving the electromagnet.
  • the method for regulating a hydrophilic reaction gene of the present invention is a polarity in which a polar magnetic field or a semipolar magnetic field corresponding to a base pair of a target DNA double helix is generated, and an electromagnet pair facing each other among an even number of electromagnets arranged at equal intervals on a virtual circle.
  • a driving step may be sequentially performed according to the base sequence of the sense strand or antisense strand in the base pair of the target DNA double helix.
  • hydrophilic response gene control method of the present invention can be recorded as a program executed in a computer on a computer readable medium.
  • the apoptotic-responsive gene regulator and gene regulation method of the present invention are a polar magnetic field or a semi-polar magnetic field corresponding to the base pair of the double helix of the target DNA in an even number of electromagnets arranged at equal intervals on the imaginary circle.
  • 1 is a schematic diagram showing an orbital motion of electrons generated by a magnetic field.
  • Figure 2 is a schematic diagram showing the change of the outer electron orbital movement of the hydrogen atom by the magnetic field.
  • Figure 3 is a schematic diagram showing the effect of the weak magnetic field on the hydrogen bond that the hydrogen atom of the hydrogen compound is made with the oxygen atom of the other compound.
  • Figure 4 is a schematic diagram showing the general structure of the hydrophilic response gene regulator of the present invention.
  • Figure 5 is a schematic diagram showing an example of the polar magnetic field driving for the base pair of the DNA double helix in the hydroreceptor gene regulator of the present invention.
  • FIG. 6 is a schematic diagram for explaining a polar magnetic field and a semipolar magnetic field.
  • Figure 7 is a schematic diagram for calculating the maximum efficiency capable of regulating the hydrophilic response gene of the present invention for DNA double helixes present randomly in three-dimensional space.
  • FIG. 8 is a graph showing experimental results of a polar magnetic field for oligo DNA double helix of 6T6A.6T6A and 11C1A.1T11G.
  • Figure 9 is a schematic diagram showing the results of experiments to know that the DNA cleavage function of the restriction enzyme is activated by hydrolysis of the pBluescript SK (-) plasmid DNA with XhoI DNA restriction enzyme.
  • FIG. 10 is a schematic diagram showing a state in which a progesterone-responsive gene regulator is applied to an early carcinoma in which a mass of about 3 mm in diameter is visually observed after implanting a human prostate carcinoma subcutaneously.
  • FIG. 11 shows randomized magnetic field (randome GR), reverse PEMF, and polar magnetic field (PEMF) irradiation groups of medium-term carcinomas grown in nude mice with a diameter of about 1 cm. Schematic diagram showing the results of experiments divided by.
  • FIG. 12 is a schematic diagram showing a state in which a prostate cancer cell (DU-145) is implanted in a shoulder subcutaneous tissue of a nude mouse to apply a hydrophobic response gene regulator to a terminal cancer mass grown to about 2 cm in diameter.
  • a prostate cancer cell DU-145
  • Figure 13 is a flow chart showing a method for controlling the hydrophilic response gene of the present invention.
  • the north pole and the south pole described in the present specification may be regarded as the polarity of the actual magnet.
  • the apoptotic response gene regulator may be abbreviated as a gene regulator.
  • FIG. 2 the polarization of hydrogen atoms in a weak magnetic field environment has been described.
  • a hydrophilic reaction occurring on a hydrogen atom in a weak magnetic field environment may affect related hydrogen bonds.
  • a single spin motion of the outer electrons of a hydrogen atom creates an empty electron hole, creating hydrogen bonds with various atoms such as O, N, F, and S.
  • the energy level of the outer electron orbit of a hydrogen atom is changed by a magnetic field, the corresponding hydrogen atom This will have a direct impact on the hydrogen bonds they form with other atoms.
  • FIG. 3 is a schematic diagram showing the effect of a weak magnetic field on the hydrogen bond that hydrogen atoms of hydrogen compounds form with oxygen atoms of other compounds.
  • the hydrogen bonding force may be increased or decreased due to the Zeman effect even by the polarity change of the weak magnetic field of less than about 1000 Gauss.
  • This change in hydrogen bonding force can be mainly calculated as the change in the spin orbital interaction momentum of the single outer electron of the hydrogen atom.
  • g Lande g factor and B is approximately 50 Gauss as the strength of the magnetic field.
  • ⁇ B is the Bohr magneton, which has a value of 5.788 x 10 -5 eV / T, and m j is the magnitude of the slitting caused by the weak magnetic field of the P 3/2 and P 1/2 states of the outer electrons.
  • the converted E value is about 0.579 ⁇ eV.
  • the above E value (about 0.579 ⁇ eV), although very small, can be amplified by repeated irradiation of the magnetic field if it can be used as an electrostatic charge in hydrogen bonds.
  • the phosphate group is easily activated by the close interaction between the ribose ring and the phosphate group in the DNA nucleic acid structure, the electrostatic charge generated at the hydrogen bond of the base pair may be transferred to and accumulated in the phosphate group.
  • the one-time driving of the E value (0.579 ⁇ eV) is repeatedly accumulated 200 times, it becomes about 120 ⁇ eV, and this force causes the outer electrons to perturb in the orthogonal direction to about 605 ⁇ eV, which is the intrinsic hydrogen bonding force of the DNA base pair, thereby causing the spin precession (
  • the distance between hydrogen bonders can be changed as shown in FIG.
  • the intrinsic hydrogen bonding force of the DNA base pair is about 605 ⁇ eV (a vector) and the converted E ⁇ value (120 ⁇ eV, b vector) are combined to change the distance between the hydrogen bonders with the force of the c vector value (about 617 ⁇ eV).
  • the increase in the hydrogen bonding force between the hydrogen bonds by the magnetic field is in the case of the direction of the magnetic field shown in FIG.
  • the magnetic field is irradiated in a direction parallel to the hydrogen bond, and the hydrogen atom is located on the S pole of the magnetic field.
  • is the distance between the hydrogen bonds created by the forces of c and c, which are attracted to each other by the spin-orbit interaction forces b and b ⁇ of the electrons in the direction of pulling each other for the hydrogen bond forces a and a ⁇ . Shorter (a, b, c are from hydrogen atoms, a, b, c are forces from oxygen atoms).
  • the polarization of the hydrogen atoms is greatly caused by the magnetic field, and the distance between the outermost electrons of the hydrogen atoms and the oxygen atoms is near.
  • the hydrogen bonding force is reduced between the hydrogen bonds by the hydrolysis reaction.
  • the magnetic field is irradiated in the parallel direction of the hydrogen bond, and the hydrogen atom is located on the N pole side of the magnetic field.
  • is the distance between the hydrogen bonds created by the forces of c and c ⁇ that are pushed together by the spin-orbit interaction forces b and b ⁇ of the electrons in the direction pushing against each other, a and a ⁇ . Longer (a, b, c are from hydrogen atoms, a, b, c are forces from oxygen atoms).
  • the distance between the hydrogen atoms and the outermost electrons of the oxygen atoms is increased by the magnetic field, so that the hydrogen bonding force is weakened, and the hydrogen atoms and oxygen atoms are polarized in opposite directions.
  • DNA double helix is a structure in which complementary sequences of opposite directions located on two DNA single strands are bonded by hydrogen bonds.
  • all nucleic acids are regularly linked as an phosphate ester structure.
  • the phosphate groups of DNA nucleic acids are located outside and the bases are located inside.
  • the bases inside the DNA double helix are hydrophobic in the aqueous solution by the strong hydrophobic pyrimidine ring, the purine ring, and the weakly hydrophobic ribose ring. Midines and purine bases can form stable hydrogen bonds in the center of a DNA double helix.
  • Hydrogen bonds generated between base pairs of DNA double helixes are hybrid states without electron transfer between hydrogen bonders.
  • electrostatic charge tends to increase as the hydrogen bond force increases.
  • the DNA sequence of the base sequence has a characteristic DNA structure that facilitates the binding of a specific transcription factor such as a DNA attachment protein.
  • DNA attachment proteins can be attached to DNA double helix selectively or competitively.
  • the base pair of the target DNA double helix can be activated or deactivated by using a polar magnetic field or a semipolar magnetic field for hydrogen bonding of the DNA base pair. Can effectively control structure and function.
  • DNA duplex segments are formed in DNA double helix due to the electron transport characteristics due to the complementary polarity of the DNA double helix base pair and the DNA base pair polarity in the 5 ⁇ to 3 ⁇ direction on both strands of the DNA double helix. Can be.
  • All DNA double helix codes can be divided into DNA double helix nodes, which accumulate a constant amount of electrostatic charge to form a stable DNA double helix structure and to perform the unique functions of a unique DNA double helix.
  • the electrostatic charge of the DNA double helix base pair generated by the gene regulator of the present invention can be accumulated in the target DNA double helix node to perform a desired gene control function.
  • Figure 4 is a schematic diagram showing the general structure of the hydroresponsive gene regulator of the present invention
  • Figure 5 is a schematic diagram showing a polar magnetic field driving example for the base pair of DNA double helix in the hydrophilic response gene regulator of the present invention.
  • the genetic regulator targets the pair of electromagnets facing each other in the electromagnet with polarities such that a polar magnetic field or a semipolar magnetic field corresponding to the base pair of the target DNA double helix and the even number of electromagnets 110 are arranged at equal intervals on the virtual circle. It includes an electromagnet drive unit 130 to sequentially drive in accordance with the base sequence of the sense strand or antisense strand in the base pair of the DNA double helix.
  • the base forming the base sequence of the target DNA includes a purine series and pyrimidine series.
  • the polar magnetic field has the pyrimidine series at the first pole side and the purine series at the second pole side in the DNA base pair.
  • the base pair receives the magnetic field, and the semipolar magnetic field is the magnetic field received by the base pair when the purine series is on the first pole side and the pyrimidine series is on the second pole side of the DNA base pair.
  • the first pole may be the N pole
  • the second pole may be the S pole
  • vice versa even if the direction of the magnetic field and the direction parallel to the hydrogen bond of the base pair differ in some degrees, for example, the angle difference within 30 degrees, it can be said to correspond to a polar magnetic field or a semipolar magnetic field.
  • the directions of the polar magnetic field or the semipolar magnetic field with respect to the base pair of the DNA double helix have mutually opposite magnetic field directions with respect to the base sequence of the sense strand and the constant base pair of the antisense strand.
  • Electromagnet 110 may be even numbered on the imaginary circle at equal intervals. Accordingly, opposing electromagnets are located on opposite sides of each electromagnet. In other words, assuming a reference circle crossing an imaginary circle center and an arc of the circle, the electromagnet is disposed at two intersection points of the reference line and the arc. At this time, the DNA double helix may be disposed in or near the virtual circle center, and the virtual circle center becomes the main reaction site.
  • DNA double helix is a structure in which complementary sequences of opposite directions located on two DNA single strands are bonded by hydrogen bonds.
  • the base pairs contained in the DNA are arranged in a double helix structure that rotates counterclockwise in both directions, wherein the arrangement direction of each base pair hydrogen bond is almost identical to the horizontal plane orthogonal to the DNA double helix.
  • the arrangement direction of base pairs can be equally spaced from adjacent base pairs as viewed from above, i.e., they have the same or similar angular spacing in plan view.
  • the polar magnetic field is a magnetic field that proceeds in a straight line from the pyrimidine series to the purine series in the DNA base pair
  • the pair of electromagnets facing each other is aligned in a straight line so as to match or approximate the planar angle of the rotating base pair. It must be arranged. For this purpose, an even number of electromagnets may be arranged on the virtual circle at equal intervals.
  • the number of electromagnets may be the number of base pairs arranged in one rotation section of the double helix formed by the target DNA.
  • the number of electromagnets may be 10 when the target DNA is B-type DNA, and 12 when the target DNA is Z-type DNA.
  • About 10.5 base pairs are arranged in one rotation section of the DNA double helix in type B DNA, and about 11.3 base pairs are arranged in one rotation section of the DNA double helix in Z type DNA.
  • the number of base pairs is 10.5, electromagnets cannot be placed in the number of decimal points, so if the decimal point is rounded up, the number is rounded up to 11, but the result is not even. The reason for doing this is that if one electromagnet is added to match an even number, a total of 12 electromagnets are generated.
  • electromagnets are arranged in a circle on the B-type DNA, and twelve electromagnets are arranged in a circle on the Z-type DNA.
  • the number of electromagnets may be six to fourteen. However, even in such a case, the number of electromagnets in the range of 6 to 12 is determined for the B-type DNA, and the number of electromagnets in the range of 10 to 14 is preferably determined for the Z-type DNA.
  • the S pole should be located on the Purine series side of the DNA base pair and the N pole on the pyrimidine series side.
  • two opposing electromagnets must be driven simultaneously with the opposite polarity according to the base pair sequence. This can be accomplished by driving two electromagnets facing each other, that is, electromagnet pairs connected in series or in parallel in the same electromagnet coil polarity direction as shown in FIG. 6.
  • the electromagnet driver 130 drives the electromagnet 110 by selecting a current direction to generate a polar magnetic field or a semipolar magnetic field.
  • each electromagnet pair may be connected in series or parallel in the same electromagnet coil polarity direction in the electromagnet pair facing each other as shown in FIG.
  • each sense strand sequence is sequentially driven by electromagnet numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and each antisense strand sequence is 12, Drive sequentially with, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.
  • the pairs of electromagnets facing each other, 1-7, 2-8, 3-9, 4-10, 5-11, 6-12 may generate a polar magnetic field or a semipolar magnetic field according to sense or antisense sequences. .
  • the base sequence of the same DNA has two sense strands and an antisense strand.
  • the nucleotide sequence of the sense strand and the antisense strand may be as follows.
  • Antisense Strand 3 '-A G T C G T G C T A C T-5'
  • the DNA double helix twisted in vivo is likely to be about 1-10 turns, so the DNA regulator can target a DNA double helix of about 100 base pairs in size, but in this example, the Z-type DNA double helix is 1
  • the target was a spinning DNA double helix about 12 base pairs in size.
  • DNA double helixes of 12 base pairs match the arrangement of 12 electromagnets, which can be easily described.
  • a magnetic field irradiation method for driving a polar magnetic field for the DNA double helix is shown as follows.
  • the direction in which the electromagnet pairs are sequentially driven may be clockwise or counterclockwise.
  • the electromagnet driving unit drives the electromagnet 1 to the N pole having the first polarity in the electromagnet pair 1-7 arbitrarily selected among electromagnets arranged in a circle.
  • the electromagnet 7 can be driven to the S pole opposite to the electromagnet 1 to drive the polar magnetic field of the T: A base pair.
  • the pair of electromagnets selected arbitrarily and driven for the first time is called a driving start electromagnet pair, and the electromagnet 2 is driven to the second polarity N pole and the electromagnet 8 is driven to the S pole from the electromagnets 2-8 adjacent to the driving start electromagnet pair counterclockwise.
  • the polar magnetic field of the C: G base pair can be driven.
  • the electromagnet 3 -9 adjacent to the electromagnet pair 2-8 in the counterclockwise direction is driven to the S pole which is the third polarity, and the electromagnet 9 is driven to the N pole to drive the polar magnetic field of the A: T base pair. can do.
  • the electromagnet drive unit is equipped with electromagnets 4, 5, 6 in the pairs 4-10, 5-11, 6-12, 7-1, 8-2, 9-3, 10-4, 11-5, and 12-6.
  • 7, 8, 9, 10, 11, 12 are sequentially driven to S, N, S, N, S, S, N, S, S poles.
  • the paired electromagnets 10, 11, 12, 1, 2, 3, 4, 5, and 6 are driven to the opposite polarities N, S, N, S, N, N, S, N and N poles.
  • the following driving method can be used to drive one rotation of the polar magnetic field for a DNA double helix consisting of 12 base sequences as described above using 12 electromagnets arranged uniformly in a circle.
  • the electromagnet driving unit flows a current in the direction of the electromagnet coil in the direction of the electromagnet coil in the direction of the electromagnet coil 7 for the first base sequence T, and generates an N pole in the electromagnet. S poles can be generated.
  • the current flows in the direction of the electromagnet coil 8 in the counterclockwise direction adjacent to C, the second base sequence of the sense strand, so that the N pole is generated in the electromagnet and the S pole is generated in the electromagnet.
  • the same A electromagnet pair as the first base sequence T is used for the seventh base sequence C of the sense strand.
  • the current flows in the direction of the electromagnet coil from the electromagnet coil in the direction of the electromagnet coil, thereby generating the N pole in the electromagnet and the S pole in the electromagnet.
  • the electromagnet drive unit sends current in the direction of the electromagnet coil from the electromagnet coil to the electromagnet coil, whereby the N pole is generated from the electromagnet and the S pole is Can produce
  • the first base of the antisense strand current can flow from the pair of electromagnets in the direction of 6 electromagnet coil to 12 electromagnet coil so that N pole is generated at 6 electromagnet and S pole is generated at electromagnet. have. This may be in the same current direction as A, the last nucleotide sequence of the sense strand.
  • the second base of the antisense strand In order to drive the polar magnetic field of C, the second base of the antisense strand, current flows from the pair of electromagnets adjacent to each other in the clockwise direction 5 from the electromagnet coil to the direction of the electromagnet coil. I can drive it.
  • the current is continuously flowed from 1 electromagnet coil in the direction of electromagnet coil 7 in the direction of electromagnet coil 1 1 N pole is generated from electromagnet and 7 electromagnet It can be driven by creating the S pole.
  • the magnetic field generated by the electromagnet pair thus driven becomes the polar magnetic field of the target DNA at the virtual circle center where the electromagnets are arranged. Therefore, if the target DNA is located at the virtual circle center, the target DNA is located in the polar magnetic field environment.
  • the number of electromagnets can be set within the range of 6 to 14 described above so that a desired effect is derived according to the structure of the DNA double helix.
  • the driving time of the electromagnet pair may be different depending on the DNA base pair.
  • the driving time of the electromagnet pairs driven simultaneously at the time point is the same, and the time may be selected within the range of 10 msec or more and 300 msec or less. In this case, the selected driving time may be equally applied to all electromagnets or may be differently applied.
  • the ratio of T (thymine): A (adenine) base pair to the C (cytosine): G (guanine) base pair constituting the target DNA base pair is 30 to about 3/4. It may have a: 60 or 60: 80msec drive time.
  • the driving time of the DNA base pairs may vary depending on the nucleotide sequence of the DNA double helix
  • a simple in vitro experiment using the target DNA double helix is used to select a DNA base pair driving time suitable for the target DNA nucleotide sequence before performing gene regulation. Can be.
  • the magnetic field generated from the plurality of electromagnets may be focused at a point on a virtual straight line perpendicular to the center of the circle in which the electromagnets are arranged.
  • the head of the human body is at the center of the circle, and the abdomen portion, which is the actual target position, may be protruded with respect to the center of the circle.
  • the abdominal region may be targeted by changing the orientation angle of the electromagnet to target the abdominal region.
  • the entire electromagnet may exhibit a funnel shape.
  • the direction angle change of the electromagnet may be made in the electromagnet driving unit or may be made in the electromagnet posture controller provided separately.
  • the polar magnetic field or the semipolar magnetic field generated by the hydrocephalus gene regulator of the present invention may be applied to an organism including the target DNA, and thus may have an intensity that does not harm the organism.
  • the intensity of the magnetic field generated at the center of each pair of electromagnets may be 50 ⁇ T to 1T.
  • 50 ⁇ T is the strength of weak magnetic field, it is enough to affect the hydrogen bond which is the actual target of polar magnetic field.
  • the magnetic field strength of 1T can be the magnetic field that can activate target DNA in a short time.
  • the electromagnet driver 130 sequentially drives the electromagnet pair in one of the clockwise or counterclockwise direction.
  • the electromagnet driving unit may drive only a pair of electromagnets at a time point, and may not drive other electromagnets.
  • the electromagnet drive unit delimits the pair of electromagnets with a polar or semipolar magnetic field corresponding to the base sequence of the first strand.
  • the polar magnetic field may drive the pair of electromagnets in the second direction from the first base sequence to the final base sequence of the second strand.
  • the first direction may be counterclockwise and the second direction may be clockwise. Of course, the opposite is also possible.
  • a strong polar magnetic field or a semipolar magnetic field environment for the target DNA is generated compared to the target strand of either the sense strand or the antisense strand.
  • the one-time continuous irradiation of the polar magnetic field or the semipolar magnetic field with respect to the sense strand and the antisense strand with respect to the same DNA double helix can be referred to as one-time driving.
  • the DNA double helix is distributed evenly in the upright or inverted direction.
  • the nucleotide sequences are arranged clockwise, and in the inverted DNAs, the nucleotide sequences are counterclockwise.
  • One driving start direction may include both the counterclockwise and clockwise directions of the DNA double helix.
  • the electromagnet drive unit may repeat the one-time driving of the target DNA a plurality of times. According to this, the effect of gene regulation can be enhanced by accumulating the electrostatic charge of the DNA base pair hydrogen bonds generated by the hydrolysis reaction in the target DNA nucleic acid.
  • the above one-time operation can be repeated for 1-100 minutes.
  • the polar magnetic field or the semi-polar magnetic field environment generated by the above configuration is located in an upright state in which the target DNA double helix shown in FIG. 7 is orthogonal to the virtual circle (xz plane) in which the electromagnet pairs are arranged, and the direction of each base pair is an electromagnet. It is assumed that it matches the direction of the pair. However, since the target DNA double helix can be located in various states, even if the target DNA is located in the imaginary circle center where the pairs of electromagnets are arranged, the polar magnetic field or the semipolar magnetic field environment generated by the above configuration may be a polar magnetic field or It may not be a semipolar magnetic field.
  • Genetic regulation may be performed by shifting the one-time driving position to a polar or semipolar magnetic field generated in an electromagnet pair to obtain a gene regulatory effect on a larger number of target DNAs.
  • the alignment directions may correspond to each other.
  • the base sequence TCAGCACGATGA of the target DNA is driven with the NNSSNSNSSNSS polarity starting from the electromagnet 1 assuming a state starting from the direction of the electromagnet 1, and the probability that the base sequence of the target DNA is arranged from the direction of the electromagnet 1 is Relatively low.
  • the electromagnet pairs 1-7 were arbitrarily selected as driving start electromagnet pairs.
  • the reason for arbitrarily selecting the driving start electromagnet pairs is that the starting position of the actual nucleotide sequence in the target DNA is unknown.
  • the electromagnet driver 130 starts a new drive of the pair of electromagnets that are adjacent to the previous drive initiation electromagnet pair in the counterclockwise or clockwise direction after the first drive on the target DNA.
  • the one-time driving may be repeated by the number of electromagnet pairs (half the number of electromagnets) as the electromagnet pairs. This allows gene regulation on more target DNAs.
  • the one time driving completion time may be the driving completion time of the electromagnet pair for one strand or the driving completion time of the electromagnet pair for both strands.
  • a new drive start electromagnet pair is selected after the set time elapses.
  • the driving start electromagnet pair is changed as follows.
  • the A electromagnet pair (1-7) is driven with respect to the DNA double helix, and once the drive is repeated for about 1-100 minutes, the B electromagnet pair (2-8) adjacent in the counterclockwise direction is newly replaced.
  • the said one time drive is performed by the same method as a drive start electromagnet pair.
  • the new electromagnetization starting electromagnet pair (3-9) is returned to the counterclockwise direction.
  • the single run is performed continuously in pairs for about 1-100 minutes.
  • the positional movement of the single drive may be equal to the number of electromagnet pairs.
  • the bases of the sense strand and the bases of the antisense strand have complementary nucleotide sequences, but the polar or semipolar fields of the base of the sense strand and the antisense strand in the DNA double helix base pair are always constant. .
  • the polar or semipolar magnetic field corresponding to the base sequence of the sense strand and the polar or semipolar magnetic field of the antisense strand are the same.
  • antisense that is complementary from the nucleic acid of the last nucleotide sequence of the sense strand is driven counterclockwise in the order of the polar or semipolar magnetic field corresponding to the sense strand nucleotide sequence of the target DNA double helix.
  • the base sequence can be driven sequentially in the clockwise direction with the same polar or semipolar magnetic field.
  • the sense base of the DNA base pair is connected to opposing electromagnets connected in series or in parallel along the polar direction of the same electromagnet coil.
  • Current direction should be used to create a magnetic field consistent with the polarity of the sequence and antisense sequence.
  • the current direction control of the electromagnet is made by the electromagnet driver.
  • the hydrogen bond which is an intermolecular bond
  • the hydrogen bond is excessively biased to one side.
  • an intermolecular secondary structure may occur due to memory phenomenon caused by excessively induced electrostatic charge.
  • the target DNA is continuously activated by the polar magnetic field, thereby reducing the inherent reducing power of DNA.
  • mRNA transcription may not occur due to specific transcription factors, DNA replication enzymes, or other DNA attachment proteins, and cation salts such as histones, polyamines, and Ca ++ and Mg ++ scattered around the target DNA are strongly attached. Rather, target DNA function can be inhibited.
  • the auxiliary electromagnet 150 is used for the generation and irradiation of the reducing magnetic field.
  • the genetic regulator as shown in FIG. 4 is a hypothetical orthogonal to the virtual circle center.
  • Two auxiliary electromagnets (vertical electromagnets) are further arranged on both sides of the line, and the electromagnet drive unit drives the auxiliary electromagnet so that a magnetic field is irradiated to the center of the pair of electromagnet pairs arranged in a circular shape after the single drive on the target DNA double helix. You can.
  • the distribution of the DNA double helix in three-dimensional space can be analyzed by a spherical coordinate system.
  • (X, y, z) (rsin ⁇ cos ⁇ , rsin ⁇ sin ⁇ , rcos ⁇ ), 0 ⁇ ⁇ ⁇ 2 ⁇ , 0 ⁇ ⁇ , r> 0.
  • r is the radius of the sphere
  • is the angle tilted from the Z axis
  • is the angle rotated from the X axis.
  • the DNA double helix has bidirectional polarity in the sense and antisense directions, and since both DNA strands are hybridized by base pairs, the genetic regulator has a polar or semipolar magnetic field for both the sense and antisense strands of the target DNA double helix. Performing a simulation can be effective.
  • the polar magnetic field can cause a proton spin of the hydrogen atoms in the base-pair hydrogen bonds, the proton spin phenomenon will disappear immediately after the magnetic field disappears.
  • the electron spin perturbation of the outer electrons caused by the proton spin causes the precession of electrons, and the change of the outer electron orbit appears as the molecular polarity change of the attached hydrogen compound by polarizing the hydrogen atom, which is the original state. It can not be recovered and is delayed for some time.
  • the time when the phase change of the hydrogen atom caused by the magnetic field in the molecular structure returns to its original state immediately after the disappearance of the magnetic field can be measured as the T2 relaxation time in the NMR measurement.
  • the T2 relaxation time of water molecules is about 0.25 seconds (about 250 msec).
  • the water molecules are in a very irregular arrangement, and since one water molecule has hydrogen bonds with two or three different water molecules, the hydrogen bonds act in combination.
  • the NMR values of water represent the mean T2 relaxation time of hydrogen atoms hydrogenated in various directions, so that the T2 relaxation time of hydrogen atoms in hydrogen bonds parallel to the magnetic field can be much higher than about 250 msec.
  • Base pair hydrogen bonds of DNA double helix can occur in aqueous solution. It is very difficult to measure T2 relaxation time of DNA double helix only in aqueous solution, so the T2 relaxation time of DNA double helix is about 0.3 seconds longer than that of water molecules. (About 300 msec) can be estimated.
  • the irradiation time period of the polar magnetic field for each DNA base pair should take into account the phase change of the hydrogen atoms for the front and back nucleotide sequences simultaneously in the DNA double helix. Therefore, the maximum irradiation time period should be approximately 0.3 seconds (the expected T2 relaxation time of the DNA double helix). About 300 msec), and the minimum time to create a polar magnetic field for the electromagnet coil to be set to 0.01 seconds (about 10 msec), and about 0.01-0.3 seconds (about 10-300 msec) for each target DNA sequence. Irradiation time periods may be used.
  • an electric field shielding film including a nonmagnetic metal By installing an electric field shielding film including a nonmagnetic metal on the imaginary circle center or around the base pair where the electromagnet pairs are disposed, interference of an electric field introduced from the outside or generated in the electromagnet driver may be minimized.
  • the effect of the electric field is relatively small in the hydrosensor response gene regulator can be performed mainly through the effect of the magnetic field (magnetic effect).
  • the electronic device may further include an electromagnetic field shielding film that shields a magnetic field scattered to the outside of the magnetic field generated by the electromagnet and shields an electric field flowing from the outside of the virtual circle.
  • it may further include a cooling device for reducing the heat generated by the electromagnet drive.
  • Oligo DNA double helix 6T6A, 6T6A and 11C1A ⁇ 1T11G were irradiated with a polar magnetic field corresponding to each nucleotide sequence.
  • the irradiation time period of the polar magnetic field was increased by 5 msec from 10 msec to 90 msec for 30 minutes, and the polar magnetic field coinciding with the oligo DNA double helix was examined.
  • the oligo DNA double helix was separated through HPLC using a Diol 300 (YMC, USA) column, and the absorbance of UV 260 was measured to analyze the size of the DNA peak.
  • the UV 260 absorbance at 6T6A and 6T6A increased gradually from the 10msec irradiation time period, resulting in maximum UV 260 absorbance at 50msec and then decreasing.
  • T: A base pairs are activated, the large major grooves of the DNA double helix and the small minor grooves become smaller, thus increasing the shape of the DNA double helix and increasing UV 260 absorbance.
  • 6T6A ⁇ 6T6A has the largest activation of DNA double helix due to polar magnetic field at 50msec irradiation period.
  • the UV 260 absorbance gradually increased from the 10 msec irradiation time period, and the maximum UV 260 absorbance was decreased after 80 msec. This can be seen that the base pair is activated by the polar magnetic field in 11C1A.1T11G to reduce the quadruple formation in the 80msec irradiation time period.
  • the ratio of the magnetic field irradiation time periods of the T: A base pair and the C: G base pair may be about 1/2 to 3/4. have.
  • T A base pair is arbitrarily selected using a polar magnetic field irradiation time period of about 30-60 msec and C: G base pair is approximately.
  • the polar magnetic field irradiation time period of about 60 ⁇ 90msec can be selected arbitrarily.
  • the structure and function of the DNA double helix can be regulated by activating the magnitude of the hydrogen bonding force of the base pairs regularly arranged in the center of the DNA double helix, and the corresponding gene can be activated or inactivated.
  • the polar magnetic field for the target DNA code can act nonspecifically on other DNA codes and a nonspecific magnetic field can be generated in the coils that form the electromagnets.
  • Figure 9 was carried out experiments to determine the effect of the gene regulatory action when cleaving the pBluescript SK (-), a plasmid DNA with XhoI DNA restriction enzyme.
  • pBluescript SK (-) was reacted with a XhoI enzyme in a buffer, and gene regulation using CTCGAG, which is an attachment sequence of XhoI, was performed.
  • CTCGAG which is an attachment sequence of XhoI
  • gene regulation using ACGTAC sequence not related to XhoI attachment sequence was performed, but no gene control was performed at all in the negative control group.
  • electrophoresis was performed using an agarose gel to confirm the cleaved DNA band by fluorescence reaction of ethidium bromide. Especially. When ethidium bromide is attached to the DNA, staining was observed before and after electrophoresis of DNA to discriminate errors due to nonspecific reactions (Fig. 9a).
  • the loose DNA produced when DNA restriction enzyme cuts the plasmid DNA has a higher absorbance (OD 260 ) in the ultraviolet spectrum than the twisted DNA. Quantitative analysis.
  • Figure 9b shows the standard increase pattern by HPLC analysis of the increase in absorbance (OD 260 ) of the ultraviolet spectrum generated when the DNA restriction enzyme cut the plasmid DNA
  • Figure 9c shows the restriction enzyme reaction in the experiment of Figure 9a of this experiment HPLC analysis of samples obtained at 10-minute intervals revealed that gene regulation (HMR-GR) was performed using CTCGAG, an XhoI-attached base sequence, or gene regulation was performed using ACGTAC, a random sequence. The DNA cleavage effect was faster and larger than in unregulated cases.
  • HMR-GR gene regulation
  • cancer cells generated in living organisms are inhibited by activating a plurality of cancer suppressor genes involved in the gene regulator of the present invention, ie, increasing expression, and inhibiting the growth of cancer cells by increasing the expression of apoptosis-related genes for cancer cells.
  • Animal experiments were conducted on obtaining cancer treatment effects by inducing their apoptosis.
  • chemotherapy was performed for prostate cancer in humans transplanted into nude mice.
  • Human prostate carcinoma (DU145, ATCC) was implanted in nude mice, and when cancer masses grew to about 5 mm, 10 mm and 20 mm in size, chemotherapy was performed with gene regulators, respectively.
  • the target DNA used for gene therapy is human p53, BAX, NOXA, TGF ⁇ , and PTEN.
  • p53 is an anticancer gene that inhibits the proliferation of cancer cells and BAX and NOXA apoptosis cancer cells.
  • TGF ⁇ can inhibit canceration by promoting cell differentiation of cancer cells
  • PTEN is a potent anticancer gene that regulates the signaling system.
  • the genBank database was searched to obtain about 2000bps of the promoter region of each target DNA, and the gene sequence was performed using a target DNA sequence of about 30-50bps.
  • 3-5 transcription factor attachment domains were found at the promoter region of a single gene, and gene regulators were applied by circulating the target DNA sequences in each gene in order.
  • mice were bred in a sterile filter breeding box in a conventional manner, and put into a plastic round barrel having a diameter of about 8cm and used a genetic regulator including up to an auxiliary electromagnet (150).
  • a genetic regulator including up to an auxiliary electromagnet (150).
  • nude mice are frequently moved in plastic barrels, so the nuds are not located in the center of the virtual circle where the lumps of electromagnets are arranged. That is, the gene regulator was driven for about 6-8 hours a day, and after about 10 days, the mass was extracted and histological observations were performed.
  • the nucleus size was significantly reduced in the nude mouse irradiated with the polarized magnetic field (PMF) after visual observation after applying the polar magnetic field using the BAX and NOXA genes as target DNA for 10 days. It became.
  • PMF polarized magnetic field
  • Figure 10 is a schematic diagram showing the experimental results of applying a gene regulator as the initial carcinoma of humans with a diameter of about 3 mm and the mass of the prostate carcinoma after implantation of human prostate carcinoma subcutaneously, such as nude mice.
  • Tissue specimens were cut and cut in half, and the specimens were prepared and examined under a microscope.
  • the random sequence GR was irradiated at low magnification, the cancer mass was filled with cancer cells, but the reverse PMF GR was examined. There was a significant reduction in the number of cancer cells in the mass, and when the polar magnetic field (PMF GR) was examined, some of the remaining cancer cells gathered in the center as the mass was almost extinguished and replaced with fibrous granulation tissue.
  • PMF GR polar magnetic field
  • the random magnetic field was highly malignant in cancer cells, causing severe proliferation and irregular nuclei.
  • the cancer cells were well distributed around the blood vessels in the mass, but the proliferation was slightly decreased, and the apoptosis was partially increased.
  • the polar magnetic field was examined, the malignancy of the remaining cancer cells was almost disappeared, but rather, the mononuclear shape and the distribution of the nucleus were similar to those of the benign tumor cells.
  • Figure 11 shows random GR, reverse PMF, and polar magnetic field (PMF) for mid-term carcinomas of about 1 cm in diameter in human prostate carcinomas implanted in nude mice. ) Schematic diagram showing the results of experiments divided into groups.
  • the nucleus of the nude mouse irradiated with the semipolar magnetic field did not increase significantly, but the proliferation of the mass was asymmetric.
  • the random magnetic field of the extracted cancer mass was filled with highly proliferative malignant cancer cells.
  • necrosis by partial apoptosis was frequently observed in cancer tissues, and malignant cancer cells were frequently observed.
  • Immunohistochemical staining of PCNA, p53, BAX, NOXA, and PARP showed positive responses in random and semipolar or polar magnetic fields. Compared to the random magnetic field, the positive polarity of p53, BAX, NOXA, and PARP was increased in the cancer cells in the site of necrosis caused by apoptosis. In the case of the polar magnetic field, p53, BAX, NOXA, and PARP were positively detected in the cancer cells of the cystic degeneration site with multiple apoptosis inside the cancer tissue.
  • the positive response of p53, BAX, and NOXA was stronger in the immunohistochemical staining than in the case of random and semipolar magnetic fields, which suppressed the growth of p53 / BAX / NOXA cancer cells. It is determined that the signaling pathway is activated.
  • Figure 12 is a schematic diagram showing a state in which a gene regulator is applied to a terminal cancer mass grown to a diameter of about 2 cm large by implanting human prostate cancer cells (DU-145) into the shoulder subcutaneous tissue of nude mice.
  • Figure 13 is a flow chart showing the gene regulation method of the present invention.
  • the gene regulation method shown in FIG. 13 can be described as the operation of the gene regulator shown in FIG. 5, in particular the electromagnet drive.
  • the driving step disclosed in FIG. 13 (S 520) is driven in a sequential order in a counterclockwise direction using a polar magnetic field or a semipolar magnetic field according to the polarity of the sense strand base sequence of the DNA double helix (S 520), and the sense strand base
  • the target DNA double helix further includes a reverse driving step (S 530) which is driven in sequence in the clockwise direction using a polar magnetic field or a semipolar magnetic field according to the polarity of the base sequence of the antisense strand from the completion of driving of the sequence. It may include the step of completing the one-turn drive for.
  • the one-time driving may be repeated for a predetermined time, and when the one-time driving repeat is completed, the driving step (S520) using an electromagnet adjacent to the driving start electromagnet in the driving step (S520) as a new driving start electromagnet. ) And repeating the reverse driving step (S 530) by the number of electromagnet pairs (S 540).
  • a selection step of selecting one of the polar magnetic field and the semi-polar magnetic field, and one or both of the sense strand and the antisense strand may be further included.
  • the number of repetitions or the driving time of one driving may be further selected.
  • the target DNA is uniformly distributed in the upright or inverted direction in the three-dimensional space, it is possible to select both the counterclockwise or clockwise direction in the S520 driving step.
  • the opposite direction of the S520 driving step should be selected.
  • the driving step [S510- (S520-Repeat-S530) -S540] disclosed in FIG. 13 is a method for one target DNA, and when the target DNA is plural, the driving step is first performed for each one driving. Can be repeated again.
  • the gene control method disclosed above can be recorded as a program through a computer-readable medium.
  • the gene regulator of the present invention can be applied to a device for activating or deactivating various genes of organisms composed of DNA / RNA including hydrogen bonds.
  • it can be used to treat various malignancies such as cancer, stem cell treatment, and endocrine genetic material control.
  • activation of the target DNA according to the present invention is independent of chemical action, it can be applied in parallel with various drugs or physicochemical methods that have little direct relation to the mechanism of action.
  • the gene regulation method When the gene regulation method is applied, it is very unlikely to cause genetic mutations, so it can be used safely. Since the magnetic field having high permeability to the object is used, the target site is easily accessible and non-destructive, so it can be used in a variety of ways and widely.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

According to the present invention, a hydrogen magnetic reaction gene regulator comprises: even-numbered electromagnets arranged at equidistant intervals within a virtual circle so as to generate magnetic fields capable of simulating a DNA double helix structure; and an electromagnet driving unit which sequentially drives a pair of opposing electromagnets, from among said electromagnets, according to a base sequence of a sense strand or anti-sense strand in a base pair of a target DNA double helix, using a polarity which generates polar or semipolar magnetic fields corresponding to the base pair of the target DNA double helix. Thus, the regulator of the present invention may generate polar or semipolar magnetic fields capable of activating or inactivating genes.

Description

수소자기반응 유전자조절기 및 유전자조절 방법Suzy reactivity gene regulator and gene regulation method
본 발명은 수소자기반응 유전자조절기 및 유전자조절 방법에 관한 것으로서, 보다 상세하게는 원형으로 배열된 전자석쌍에서 생성되는 자기장을 이용하여 특정 DNA 이중나선 염기쌍의 수소결합에 수소자기반응을 일으켜서 관련 유전자를 활성화 또는 비활성화시키는 수소자기반응 유전자조절기 및 그 사용방법에 관한 것이다.The present invention relates to a hydrophilic response gene regulator and a gene control method, and more particularly, by using a magnetic field generated from a pair of electromagnets arranged in a circular shape, a hydrophobic reaction occurs on a hydrogen bond of a specific DNA double-strand base pair to generate a related gene. It relates to a hydrophobic response gene regulator for activating or deactivating and a method of using the same.
도 1은 자기장에 의해서 생기는 전자의 궤도운동을 나타낸 개략도이다.1 is a schematic diagram showing an orbital motion of electrons generated by a magnetic field.
살펴보면, 지나치게 강한 자기장의 환경에서 단일 전자는 자기장 진행 방향을 축으로 하여 회전하게 된다.In the case of an excessively strong magnetic field, a single electron rotates about its magnetic field direction.
도 2는 지나치게 강하지 않은 자기장, 예를 들어 103Gauss 이하의 약한 자기장에서의 수소원자의 자기반응을 나타낸 개략도이다.2 is a schematic representation of the magnetic reaction of hydrogen atoms in a magnetic field that is not too strong, for example a weak magnetic field of 10 3 Gauss or less.
약한 자기장 환경에서 수소원자의 양자를 구성하는 양성의 소립자(up quark, charm quark, top quark)는 자기장의 S극을 향하고, 음성의 소립자(down quark, strange quark, bottom quark)는 자기장의 N극을 향하는 경향이 있다.In a weak magnetic field environment, the positive small particles (up quark, charm quark, top quark) that make up both of the hydrogen atoms face the S pole of the magnetic field, and the negative ones (down quark, strange quark, bottom quark) are the N poles of the magnetic field. Tend to face
단일 양성자로 구성된 수소원자에는 한 개의 양성자만이 존재하므로 지만(Zeeman) 효과에 의해 자기반응이 뚜렷하게 나타난다. 약한 자기장 환경에서도 수소원자의 외곽 전자는 스핀-궤도 상호반응에 의해 궤도운동이 변화될 수 있다.Since only one proton exists in a hydrogen atom consisting of a single proton, the magnetic response is evident by the Zeeman effect. Even in a weak magnetic field, the outer electrons of hydrogen atoms can change their orbital motion by spin-orbit interactions.
수소화합물의 수소원자가 다른 화합물의 O, N, F, S 등의 원들과 반응해서 생기는 수소결합에서도 자기장에 의해서 수소원자에서 외곽 전자의 궤도운동 변화가 생길 수 있다. 결과적으로 수소결합력이 변화될 수 있다.Even in the hydrogen bonds formed by the reaction of hydrogen atoms of hydrogen compounds with O, N, F, S, etc. of other compounds, the magnetic field can change the orbital movement of the outer electrons in the hydrogen atoms. As a result, the hydrogen bonding force can be changed.
결과적으로, 수소원자의 경우 약한 자기장 환경에서도 자기반응에 의해서 양자와 전자의 운동 변화로 인하여 극성화가 이루어질 수 있다.As a result, in the case of hydrogen atoms, even in a weak magnetic field environment, polarization may be performed due to a change in the motion of protons and electrons by magnetic reaction.
한국등록특허공보 제0384924호에는 순환성 자기장을 적용함으로써 수소결합에 영향을 미쳐 유전자의 발현을 조절하는 기술이 개시되어 있다. 그러나, 자기장에 의한 수소자기반응의 극성 정의가 제시되지 않고 있으며 발명 내용이 예시적으로 표현되어 있을 뿐이고 이론적인 설명이 부족해서 유전자 발현 조절에 한계가 있다.Korean Patent Publication No. 0384924 discloses a technique for controlling gene expression by affecting hydrogen bonding by applying a circulating magnetic field. However, there is no definition of the polarity of the hydrophilic reaction by the magnetic field, the invention is merely illustrative, and there is a lack of theoretical explanation, which limits the expression of genes.
본 발명은 원형구조의 전자석 배열에서 생성되는 극성 자기장 또는 반극성 자기장을 이용하여 DNA 이중나선 염기쌍의 수소결합에 수소자기반응을 일으켜서 유전자발현을 조절하는 수소자기반응 유전자조절기 및 유전자조절 방법을 제공하기 위한 것이다.The present invention uses a polar or semi-polar magnetic field generated in the electromagnet array of the circular structure to provide a hydrophobic reaction gene regulator and gene control method to control the gene expression by generating a hydrophobic reaction to the hydrogen bond of the DNA double helix base pair It is for.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved by the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
상기의 목적을 달성하기 위한 본 발명의 수소자기반응 유전자조절기는 가상의 원 상에 등간격으로 배열되는 짝수개의 전자석 및 목표 DNA 이중나선의 염기쌍에 대응되는 극성 자기장 또는 반극성 자기장이 생성되는 극성으로 상기 전자석 중 마주보는 전자석쌍을 상기 목표 DNA 이중나선의 염기쌍에서 센스 가닥 또는 안티센스 가닥의 염기서열에 따라 순차적으로 구동시키는 전자석 구동부를 포함할 수 있다.In order to achieve the above object, the hydrophilic reaction gene regulator of the present invention has a polarity in which a polar magnetic field or a semipolar magnetic field corresponding to base pairs of an even number of electromagnets and target DNA double helixes arranged at equal intervals on a virtual circle is generated. The electromagnet pair of the electromagnet may include an electromagnet driver for sequentially driving the base pair of the sense strand or the antisense strand in the base pair of the target DNA double helix.
이때, 상기 전자석쌍에서 생성된 자기장이 제1 극에서 제2 극으로 진행할 때, 상기 극성 자기장은 상기 염기쌍에서 피리미딘 계열이 제1 극 쪽에 있고 퓨린 계열이 제2 극 쪽에 있을 때 상기 염기쌍이 받는 자기장이고, 상기 반극성 자기장은 상기 염기쌍에서 퓨린 계열이 제1 극 쪽에 있고 피리미딘 계열이 제2 극 쪽에 있을 때 상기 염기쌍이 받는 자기장일 수 있다.At this time, when the magnetic field generated in the pair of electromagnets proceeds from the first pole to the second pole, the polar magnetic field is received by the base pair when the pyrimidine series is on the first pole side and the purine series is on the second pole side of the base pair. It is a magnetic field, and the semipolar magnetic field may be a magnetic field received by the base pair when the purine series is located at the first pole side and the pyrimidine series is at the second pole side of the base pair.
또한, 상기 전자석쌍의 구동 시간은 상기 목표 DNA 이중나선의 염기쌍에 따라 달라질 수 있다.In addition, the driving time of the electromagnet pair may vary depending on the base pair of the target DNA double helix.
또한, 상기 전자석쌍의 구동 시간은 10~300msec 정도이며, 세균, 식물, 동물 등 목표 DNA의 활성도에 따라 차이가 있다. 상기 목표 DNA 염기쌍을 구성하는 C(시토신):G(구아닌) 염기쌍에 대해서 T(티민):A(아데닌) 염기쌍의 비율이 1/2에서 3/4 정도의 구동 시간을 가질 수 있다.In addition, the driving time of the electromagnet pair is about 10 ~ 300msec, and varies depending on the activity of the target DNA, such as bacteria, plants, animals. The ratio of the T (thymine): A (adenine) base pair to the C (cytosine): G (guanine) base pair constituting the target DNA base pair may have a driving time of about 1/2 to 3/4.
이때 생물체의 DNA에서 분자 신호전달 속도가 빠른 바이러스 또는 박테리아 등에서는 전자석쌍의 구동시간을 50msec 이하로 빠르게 진행하고, 동물에서는 약 150msec 이하 그리고 식물에서는 약 300msec 이하로 비교적 느리게 진행할 수 있다. At this time, in a virus or bacteria having a high molecular signal transmission rate in an organism's DNA, the driving time of an electromagnet pair may be rapidly progressed to 50 msec or less, and may be relatively slow to about 150 msec or less in an animal and about 300 msec or less in a plant.
또한, 상기 전자석쌍에 의해 상기 가상의 원의 중심에 형성된 자기장으로서 사용 목적에 따라 지구자기장 세기인 약 50μT(Tesla)에서 1T 이상일 수 있으며, 상기 전자석 구동부는 일시점에서 마주보는 전자석 한 쌍만을 구동시킬 수 있다.In addition, the magnetic field formed in the center of the virtual circle by the pair of electromagnets may be more than 1T at about 50μT (Tesla) of the Earth's magnetic field strength, depending on the purpose of use, the electromagnet drive unit drives only a pair of electromagnets facing at a temporary point You can.
또한, 상기 전자석의 개수는 상기 목표 DNA 이중나선의 1회전 구간에 배열된 염기쌍의 개수이고, 목표 DNA의 형태 변화에 따라 8개 내지 14개일 수 있다.In addition, the number of electromagnets is the number of base pairs arranged in one rotation section of the target DNA double helix, and may be 8 to 14 according to the shape change of the target DNA.
또한, 상기 전자석 구동부는, 상기 센스 가닥 염기서열에 대응하는 극성 자기장 또는 반극성 자기장으로 상기 전자석쌍을 상기 센스 가닥의 최초 염기서열부터 최종 염기서열까지 반시계 방향 또는 시계 방향으로 구동시킨 후, 상기 센스 가닥의 최종 염기서열에 대응하여 구동된 전자석쌍을 시작으로 하여 상기 안티센스 가닥 염기서열에 대응하는 극성 자기장 또는 반극성 자기장으로 상기 전자석쌍을 상기 안티센스 가닥의 최초 염기서열부터 최종 염기서열까지 이전 회전방향의 반대방향으로 구동시킬 수 있다.The electromagnet driver may drive the pair of electromagnets from the first base sequence to the last base sequence of the sense strand in a counterclockwise or clockwise direction with a polar magnetic field or a semipolar magnetic field corresponding to the sense strand base sequence, and then Rotate the pair of electromagnets from the first base sequence to the final base sequence of the antisense strand with a polar or semipolar magnetic field corresponding to the antisense strand sequence, starting with the electromagnet pair driven corresponding to the final sequence of the sense strand. It can be driven in the opposite direction.
여기서, 상기 목표 DNA에 대한 1회 구동은 상기 목표 DNA 이중나선에서 4개 내지 100개의 염기쌍에 대해 수행될 수 있다.Here, the one-time driving of the target DNA may be performed for 4 to 100 base pairs in the target DNA double helix.
또한, 상기 전자석 구동부는 상기 목표 DNA에 대한 1회 구동을 설정시간만큼 반복할 수 있다. 이때, 상기 전자석 구동부는 상기 1회 구동의 반복 후에 상기 1회 구동의 구동 개시 전자석쌍으로부터 반시계방향으로 인접하는 전자석쌍을 새로운 구동 개시 전자석쌍으로 하여 상기 1회 구동의 반복 구동을 전자석쌍의 개수만큼 반복할 수 있다.In addition, the electromagnet driving unit may repeat one drive for the target DNA by a set time. In this case, the electromagnet drive unit repeats the one-time drive of the electromagnet pair by using a pair of electromagnets adjacent in the counterclockwise direction from the one-time drive start electromagnet pair after the repetition of the first drive. You can repeat as many times as you like.
또한, 상기 가상의 원 중심에 직교하는 가상의 선 양쪽에 2개의 보조 전자석을 더 배치하고, 상기 전자석 구동부는 상기 1회 구동 간에 원형으로 배열된 전자석쌍 배열에 직교되는 방향으로 상기 보조 전자석을 구동시킬 수 있다.Further, two auxiliary electromagnets are further disposed on both sides of the virtual line orthogonal to the virtual circle center, and the electromagnet driving unit drives the auxiliary electromagnet in a direction orthogonal to an array of electromagnet pairs arranged in a circle between the single drivings. You can.
이때 전자석쌍에 의해 발생되는 전자기장 중에서 자기장은 상기 원 중심부위에 집중되는데 비해서 대부분의 전기장은 전자석들의 코일 부위에서 자기장의 진행방향에 직교되는 외부방향으로 방사된다.In this case, the magnetic field among the electromagnetic fields generated by the pair of electromagnets is concentrated on the center of the circle, whereas most electric fields are radiated outwardly orthogonal to the direction of magnetic field in the coil region of the electromagnets.
또한 상기 원 중심부위에는 비자성체 금속을 사용해서 전기장 차폐막을 설치함으로써 전기장의 간섭을 최소화시킬 수 있다. In addition, the interference of the electric field can be minimized by installing an electric field shielding film using a nonmagnetic metal on the circle center.
따라서 본 발명의 수소자기반응 유전자 조절기에서는 전기장(electric effect)의 효과는 상대적으로 매우 작으며 수소자기반응 유전자 조절은 주로 자기장(magnetic effect)에 의한 효과를 통해서 수행할 수 있다.Therefore, the effect of the electric field (electric effect) is relatively very small in the dehydrogenase response gene regulator of the present invention can be carried out mainly through the effect of the magnetic field (magnetic effect).
또한, 상기 전자석들에 의해 생성된 전자기장 중에서 상기 가상의 원 밖에서 발생된 전기장과 산란되는 자기장을 차폐시키는 전자기장 차폐막과 전자석 구동으로 생기는 발열을 감소시키기 위한 냉각 장치를 더 포함할 수 있다.The apparatus may further include an electromagnetic shielding film for shielding the magnetic field scattered from the electric field generated outside the imaginary circle among the electromagnetic fields generated by the electromagnets, and a cooling device for reducing heat generated by driving the electromagnet.
본 발명의 수소자기반응 유전자조절 방법은 목표 DNA 이중나선의 염기쌍에 대응되는 극성 자기장 또는 반극성 자기장이 생성되는 극성으로, 가상의 원 상에 등간격으로 배열되는 짝수개의 전자석 중 마주보는 전자석쌍을 상기 목표 DNA 이중나선의 염기쌍에서 센스 가닥 또는 안티센스 가닥의 염기서열에 따라 순차적으로 구동시키는 구동 단계를 포함할 수 있다.The method for regulating a hydrophilic reaction gene of the present invention is a polarity in which a polar magnetic field or a semipolar magnetic field corresponding to a base pair of a target DNA double helix is generated, and an electromagnet pair facing each other among an even number of electromagnets arranged at equal intervals on a virtual circle. A driving step may be sequentially performed according to the base sequence of the sense strand or antisense strand in the base pair of the target DNA double helix.
또한, 본 발명의 수소자기반응 유전자조절 방법은 컴퓨터로 읽을 수 있는 매체에 컴퓨터에서 실행되는 프로그램으로 기록될 수 있다.In addition, the hydrophilic response gene control method of the present invention can be recorded as a program executed in a computer on a computer readable medium.
이상에서 설명된 바와 같이 본 발명의 수소자기반응 유전자조절기 및 유전자조절 방법은 목표 DNA의 이중나선의 염기쌍에 대응되는 극성 자기장 또는 반극성 자기장으로 가상의 원 상에 등간격으로 배열된 짝수개의 전자석 중 마주하는 두개의 전자석을 순차적으로 구동시키고, 목표 DNA의 극성을 시뮬레이션함으로써, 목표 DNA 이중나선의 염기쌍을 활성화 또는 비활성화시키는 수소자기반응을 일으킬 수 있다.As described above, the apoptotic-responsive gene regulator and gene regulation method of the present invention are a polar magnetic field or a semi-polar magnetic field corresponding to the base pair of the double helix of the target DNA in an even number of electromagnets arranged at equal intervals on the imaginary circle. By sequentially driving two opposing electromagnets and simulating the polarity of the target DNA, a hydrophobic reaction can be induced to activate or deactivate base pairs of the target DNA double helix.
도 1은 자기장에 의해서 생기는 전자의 궤도운동을 나타낸 개략도.1 is a schematic diagram showing an orbital motion of electrons generated by a magnetic field.
도 2는 자기장에 의해서 수소원자의 외곽 전자 궤도운동의 변화를 나타낸 개략도.Figure 2 is a schematic diagram showing the change of the outer electron orbital movement of the hydrogen atom by the magnetic field.
도 3은 수소화합물의 수소원자가 다른 화합물의 산소원자와 만드는 수소결합에 약한 자기장이 미치는 영향을 나타낸 개략도.Figure 3 is a schematic diagram showing the effect of the weak magnetic field on the hydrogen bond that the hydrogen atom of the hydrogen compound is made with the oxygen atom of the other compound.
도 4는 본 발명의 수소자기반응 유전자조절기의 일반적인 구조를 나타낸 개략도.Figure 4 is a schematic diagram showing the general structure of the hydrophilic response gene regulator of the present invention.
도 5은 본 발명의 수소자기반응 유전자조절기에서 DNA 이중나선의 염기쌍들에 대한 극성 자기장 구동 예를 나타낸 개략도.Figure 5 is a schematic diagram showing an example of the polar magnetic field driving for the base pair of the DNA double helix in the hydroreceptor gene regulator of the present invention.
도 6은 극성 자기장과 반극성 자기장을 설명하기 위한 개략도.6 is a schematic diagram for explaining a polar magnetic field and a semipolar magnetic field.
도 7은 3차원 공간에서 무작위로 존재하는 DNA 이중나선들에 대한 본 발명의 수소자기반응 유전자조절이 가능한 최대 효율을 계산하기 위한 개략도.Figure 7 is a schematic diagram for calculating the maximum efficiency capable of regulating the hydrophilic response gene of the present invention for DNA double helixes present randomly in three-dimensional space.
도 8은 6T6A·6T6A와 11C1A·1T11G의 올리고 DNA 이중나선에 대한 극성 자기장의 실험 결과를 나타낸 그래프.8 is a graph showing experimental results of a polar magnetic field for oligo DNA double helix of 6T6A.6T6A and 11C1A.1T11G.
도 9는 프라스미드 DNA인 pBluescript SK(-)를 DNA 제한효소인 XhoI로 절단할 때 수소자기반응 유전자조절에 의해서 제한효소의 DNA 절단 기능이 활성화되는 것을 알기 위한 실험결과를 나타낸 개략도.Figure 9 is a schematic diagram showing the results of experiments to know that the DNA cleavage function of the restriction enzyme is activated by hydrolysis of the pBluescript SK (-) plasmid DNA with XhoI DNA restriction enzyme.
도 10은 사람의 전립선 암종을 누드마우스 등의 피하에 이식한 후에 지름이 약 3mm가 된 암덩어리가 육안으로 확인된 초기의 암종에 수소자기반응 유전자조절기를 적용한 상태를 나타낸 개략도.10 is a schematic diagram showing a state in which a progesterone-responsive gene regulator is applied to an early carcinoma in which a mass of about 3 mm in diameter is visually observed after implanting a human prostate carcinoma subcutaneously.
도 11은 누드마우스에 이식된 사람의 전립선 암종의 직경이 약 1cm 정도의 크기로 자란 중기의 암종을 무작위 자기장(randome GR), 반극성 자기장(reverse PEMF), 그리고 극성 자기장(PEMF) 조사군들로 나누어 실험을 진행한 결과를 나타낸 개략도.FIG. 11 shows randomized magnetic field (randome GR), reverse PEMF, and polar magnetic field (PEMF) irradiation groups of medium-term carcinomas grown in nude mice with a diameter of about 1 cm. Schematic diagram showing the results of experiments divided by.
도 12는 사람의 전립선 암세포(DU-145)를 누드마우스의 어깨 피하조직에 이식하여 직경이 약 2cm 정도로 크게 자란 말기의 암 덩어리를 대상으로 수소자기반응 유전자조절기를 적용한 상태를 나타낸 개략도.12 is a schematic diagram showing a state in which a prostate cancer cell (DU-145) is implanted in a shoulder subcutaneous tissue of a nude mouse to apply a hydrophobic response gene regulator to a terminal cancer mass grown to about 2 cm in diameter.
도 13은 본 발명의 수소자기반응 유전자조절 방법을 나타낸 흐름도.Figure 13 is a flow chart showing a method for controlling the hydrophilic response gene of the present invention.
이하, 본 발명의 수소자기반응 유전자조절기 및 유전자조절 방법에 대하여 도면을 참조하여 보다 상세하게 설명한다.Hereinafter, the apoptotic reaction gene regulator and gene regulation method of the present invention will be described in more detail with reference to the accompanying drawings.
참고로, 본 명세서에서 기술되는 N극과 S극은 실제 자석의 극성인 것으로 할 수 있다. 또한, 수소자기반응 유전자조절기는 유전자조절기로 약칭할 수 있다.For reference, the north pole and the south pole described in the present specification may be regarded as the polarity of the actual magnet. In addition, the apoptotic response gene regulator may be abbreviated as a gene regulator.
도 2에서 약한 자기장 환경에서 수소원자가 극성화되는 현상을 설명하였는데, 약한 자기장 환경에서의 수소원자에 생기는 수소자기반응은 관련되는 수소결합에 영향을 줄 수 있다. 수소원자의 외곽 전자의 단일 스핀운동에 의해 빈 전자홀이 생겨서 O, N, F, S 등 다양한 원자들과 수소결합을 만드는데 자기장에 의해 수소원자의 외곽 전자궤도의 에너지 준위가 바뀌게 되면 해당 수소원자가 다른 원자들과 만드는 수소결합에 직접적인 영향을 미치게 된다.In FIG. 2, the polarization of hydrogen atoms in a weak magnetic field environment has been described. However, a hydrophilic reaction occurring on a hydrogen atom in a weak magnetic field environment may affect related hydrogen bonds. A single spin motion of the outer electrons of a hydrogen atom creates an empty electron hole, creating hydrogen bonds with various atoms such as O, N, F, and S. When the energy level of the outer electron orbit of a hydrogen atom is changed by a magnetic field, the corresponding hydrogen atom This will have a direct impact on the hydrogen bonds they form with other atoms.
도 3은 수소화합물의 수소원자가 다른 화합물의 산소원자와 만드는 수소결합에 약한 자기장이 미치는 영향을 나타낸 개략도이다.3 is a schematic diagram showing the effect of a weak magnetic field on the hydrogen bond that hydrogen atoms of hydrogen compounds form with oxygen atoms of other compounds.
도 3은 수소결합을 이루는 수소원자에서 약한 자기장에 의해 생기는 현상으로써 약 1000 Gauss 이하의 약한 자기장의 극성변화에 의해서도 제만(Zeeman) 효과에 의해서 수소결합력이 커질 수도 있고 작아질 수 있다. 이와 같은 수소결합력의 변화는 주로 수소원자의 단일 외곽 전자의 스핀-궤도 상호반응 운동량(spin orbital interaction momentum)의 변화로 계산될 수 있다. 3 is a phenomenon caused by a weak magnetic field in the hydrogen atoms forming a hydrogen bond, the hydrogen bonding force may be increased or decreased due to the Zeman effect even by the polarity change of the weak magnetic field of less than about 1000 Gauss. This change in hydrogen bonding force can be mainly calculated as the change in the spin orbital interaction momentum of the single outer electron of the hydrogen atom.
일반적으로 낮은 자기장에 의해 수소원자의 단일 외곽 전자에 생기는 스핀-궤도 상호반응 운동량(E)은 E = gBμBmj 로 계산될 수 있다. 여기서 g는 Lande g factor 이고, B는 자기장의 세기로서 대체로 약 50 Gauss를 사용한다. μB는 Bohr magneton 으로 5.788 x 10-5 eV/T 의 값을 가지며, mj는 외곽 전자의 P3/2 와 P1/2 상태가 약한 자기장에 의해 생기는 갈라짐(slitting) 현상의 크기로 환산될 수 있다. 결과적으로 환산된 E 값은 약 0.579μeV 가 된다.In general, the spin-orbit interaction momentum (E) generated by a single outer electron of a hydrogen atom by a low magnetic field can be calculated as E = gBμ B m j . Where g is Lande g factor and B is approximately 50 Gauss as the strength of the magnetic field. μ B is the Bohr magneton, which has a value of 5.788 x 10 -5 eV / T, and m j is the magnitude of the slitting caused by the weak magnetic field of the P 3/2 and P 1/2 states of the outer electrons. Can be. As a result, the converted E value is about 0.579 μeV.
상기의 E 값 (약 0.579μeV)은 비록 매우 작지만 수소결합에서 정전기적 전하로 사용될 수 있으면 자기장을 반복해서 조사함으로써 증폭시킬 수 있다. 특히 DNA 핵산구조에서는 리보스 링과 인산기의 긴밀한 상호반응에 의해서 인산기가 쉽게 활성화되므로 염기쌍의 수소결합에서 발생된 정전기적 전하가 인산기로 이동되어서 축적될 수 있다.The above E value (about 0.579 μeV), although very small, can be amplified by repeated irradiation of the magnetic field if it can be used as an electrostatic charge in hydrogen bonds. In particular, since the phosphate group is easily activated by the close interaction between the ribose ring and the phosphate group in the DNA nucleic acid structure, the electrostatic charge generated at the hydrogen bond of the base pair may be transferred to and accumulated in the phosphate group.
따라서, 상기 E값(0.579μeV)의 상기 1회 구동을 200회 반복해서 축적시키면 약 120μeV가 되고 이 힘이 DNA 염기쌍의 고유 수소결합력인 약 605μeV에 직교 방향으로 외곽전자를 섭동시켜서 스핀 세차운동(spin precession)을 일으킴으로써 도 3에서 보이는 것처럼 수소결합자 간의 거리를 변화시킬 수 있다. 이때 DNA 염기쌍의 고유 수소결합력인 약 605μeV(a 벡터)와 환산된 E`값(120μeV, b 벡터)이 합해져서 c 벡터값(약 617μeV)의 힘으로 수소결합자 간의 거리를 변화시킬 수 있다.Therefore, if the one-time driving of the E value (0.579 μeV) is repeatedly accumulated 200 times, it becomes about 120 μeV, and this force causes the outer electrons to perturb in the orthogonal direction to about 605 μeV, which is the intrinsic hydrogen bonding force of the DNA base pair, thereby causing the spin precession ( By generating spin precession, the distance between hydrogen bonders can be changed as shown in FIG. At this time, the intrinsic hydrogen bonding force of the DNA base pair is about 605 μeV (a vector) and the converted E` value (120 μeV, b vector) are combined to change the distance between the hydrogen bonders with the force of the c vector value (about 617 μeV).
도 3의 (a)는 정상적인 수소원자와 산소원자 사이의 수소결합을 나타내고 있다. α는 수소결합력인 a와 a`의해 만들어진 수소결합자 간의 거리이다.3 (a) shows a hydrogen bond between a normal hydrogen atom and an oxygen atom. α is the distance between hydrogen bonds a and hydrogen bonds.
자기장에 의해서 수소결합자 사이에 수소결합력이 증가되는 것은 도 3의 (b)에서 보이는 자기장의 방향의 경우이다. 수소결합에 평행되는 방향으로 자기장의 조사가 진행되며 수소원자가 자기장의 S극 쪽에 위치하고 있다.The increase in the hydrogen bonding force between the hydrogen bonds by the magnetic field is in the case of the direction of the magnetic field shown in FIG. The magnetic field is irradiated in a direction parallel to the hydrogen bond, and the hydrogen atom is located on the S pole of the magnetic field.
β는 수소결합력인 a와 a`에 대하여 서로 잡아당기는 방향으로 전자의 스핀-궤도 상호반응력인 b와 b`가 작용해서 서로 잡아당기는 c와 c`의 힘이 생겨 만들어진 수소결합자 간의 거리로서 α보다 짧아졌다(a, b, c는 수소원자에서 생기고, a`, b`, c`는 산소원자에서 생긴 힘이다).β is the distance between the hydrogen bonds created by the forces of c and c, which are attracted to each other by the spin-orbit interaction forces b and b` of the electrons in the direction of pulling each other for the hydrogen bond forces a and a`. Shorter (a, b, c are from hydrogen atoms, a, b, c are forces from oxygen atoms).
이 경우에 자기장에 의해서 수소원자의 극성화가 크게 생기면서 수소원자와 산소원자들의 최외곽 전자들 사이의 거리가 가까워진 상태이다.In this case, the polarization of the hydrogen atoms is greatly caused by the magnetic field, and the distance between the outermost electrons of the hydrogen atoms and the oxygen atoms is near.
이에 비해서 도 3의 (c)에서는 수소자기반응에 의해서 수소결합자 사이에 수소 결합력이 감소되는 경우이다. 수소결합의 평행 방향으로 자기장의 조사가 진행되며, 수소원자가 자기장의 N극 쪽에 위치하고 있다.On the contrary, in FIG. 3C, the hydrogen bonding force is reduced between the hydrogen bonds by the hydrolysis reaction. The magnetic field is irradiated in the parallel direction of the hydrogen bond, and the hydrogen atom is located on the N pole side of the magnetic field.
γ는 수소결합력인 a와 a`에 대하여 서로 밀치는 방향으로 전자의 스핀-궤도 상호반응력인 b와 b`가 작용해서 서로 밀치는 c와 c`의 힘이 생겨 만들어진 수소결합자 간의 거리로서 α보다 길어졌다(a, b, c는 수소원자에서 생기고, a`, b`, c`는 산소원자에서 생긴 힘이다).γ is the distance between the hydrogen bonds created by the forces of c and c` that are pushed together by the spin-orbit interaction forces b and b` of the electrons in the direction pushing against each other, a and a`. Longer (a, b, c are from hydrogen atoms, a, b, c are forces from oxygen atoms).
이 경우에 자기장에 의해서 수소원자와 산소원자들의 최외곽 전자들 사이의 거리가 멀어져서 수소결합력이 약해지면서 수소원자와 산소원자가 서로 반대방향으로 극성화된다.In this case, the distance between the hydrogen atoms and the outermost electrons of the oxygen atoms is increased by the magnetic field, so that the hydrogen bonding force is weakened, and the hydrogen atoms and oxygen atoms are polarized in opposite directions.
위에서 설명된 자기장에 따른 수소결합력의 변화가 생물체의 유전정보를 갖고 있는 DNA 이중나선 구조에 영향을 미칠 수 있다.Changes in hydrogen bonding forces due to the magnetic fields described above can affect the DNA double-helix structure that holds the genetic information of an organism.
DNA 이중나선은 두 개의 DNA 단일 가닥 상에 위치하는 서로 반대방향의 상보적인 염기서열들이 수소결합에 의해 결합된 구조이다. DNA 단일 가닥은 모든 핵산들이 인산 에스텔 구조로서 규칙적으로 연결되어 있다.DNA double helix is a structure in which complementary sequences of opposite directions located on two DNA single strands are bonded by hydrogen bonds. In a single strand of DNA, all nucleic acids are regularly linked as an phosphate ester structure.
DNA 이중나선에서 DNA 핵산의 인산기는 바깥쪽에 위치하고 염기는 안쪽에 위치한다. DNA 이중나선의 내부에 있는 염기는 강한 소수성인 피리미딘 링(pyrimidine ring)과 퓨린 링(purine ring), 그리고 약한 소수성인 리보스 링(ribose ring)에 의해서 수용액 내에서 소수성반응을 일으켜서 서로 상보하는 피리미딘과 퓨린 염기들이 DNA 이중나선 중심부에서 안정적인 수소결합을 이룰 수 있다.In the DNA double helix, the phosphate groups of DNA nucleic acids are located outside and the bases are located inside. The bases inside the DNA double helix are hydrophobic in the aqueous solution by the strong hydrophobic pyrimidine ring, the purine ring, and the weakly hydrophobic ribose ring. Midines and purine bases can form stable hydrogen bonds in the center of a DNA double helix.
DNA 이중나선의 염기쌍 사이에 생기는 수소결합에는 수소결합자 사이에 전자 이동이 없는 하이브리드 상태로서 수소결합자 사이에는 특징적으로 수소결합력이 증가될수록 정전기적 전하가 커지는 경향을 보인다.Hydrogen bonds generated between base pairs of DNA double helixes are hybrid states without electron transfer between hydrogen bonders. Among hydrogen bonders, electrostatic charge tends to increase as the hydrogen bond force increases.
DNA 이중나선의 형태가 단조로운 이중나선 구조에서 염기서열이 갖는 특징적인 DNA 구조를 갖게 되면 특정 전사인자 등의 DNA 부착 단백질의 결합이 쉬워지고 DNA 이중나선의 특징적인 극성구조에 의해서 특정 전사인자 등의 DNA 부착 단백질들이 선택적 또는 경쟁적으로 DNA 이중나선에 부착될 수 있다.When the DNA double helix has a monovalent double helix structure, the DNA sequence of the base sequence has a characteristic DNA structure that facilitates the binding of a specific transcription factor such as a DNA attachment protein. DNA attachment proteins can be attached to DNA double helix selectively or competitively.
본 유전자조절기에서는 DNA 염기쌍의 수소결합에 대한 극성 자기장 또는 반극성 자기장을 사용해서 목표 DNA 이중나선의 염기쌍들을 활성화 또는 비활성화시킬 수 있는데, 목표 DNA 이중나선의 염기서열을 입체적으로 시뮬레이션 함으로써 DNA 이중나선의 구조와 기능을 효과적으로 조절할 수 있다.In this gene controller, the base pair of the target DNA double helix can be activated or deactivated by using a polar magnetic field or a semipolar magnetic field for hydrogen bonding of the DNA base pair. Can effectively control structure and function.
유전자조절기로 목표 DNA 이중나선을 시뮬레이션 할 때 목표 DNA 이중나선의 4-100 염기쌍을 염기서열에 따라 순차적으로 구동하는 1회 구동을 반복해서 시뮬레이션 할 수 있다.When simulating the target DNA double helix with a gene regulator, it is possible to repeatedly simulate one-time driving that sequentially drives 4-100 base pairs of the target DNA double helix according to the nucleotide sequence.
DNA 이중나선 염기쌍의 서로 상보되는 극성과 DNA 이중나선의 양가닥에서 5`에서 3`방향으로 나타나는 DNA 염기쌍 극성에 의한 전자이동 특성에 의해서 DNA 이중나선에는 DNA 이중나선 마디(DNA duplex segment)가 형성될 수 있다.DNA duplex segments are formed in DNA double helix due to the electron transport characteristics due to the complementary polarity of the DNA double helix base pair and the DNA base pair polarity in the 5` to 3` direction on both strands of the DNA double helix. Can be.
모든 DNA 이중나선 코드는 DNA 이중나선 마디로 나누어질 수 있는데 이 DNA 이중나선 마디는 일정한 크기의 정전기적 전하를 축적함으로써 안정적인 DNA 이중나선 구조를 이루고 특이한 DNA 이중나선의 고유기능을 수행할 수 있는 DNA 이중나선의 기본단위이다.All DNA double helix codes can be divided into DNA double helix nodes, which accumulate a constant amount of electrostatic charge to form a stable DNA double helix structure and to perform the unique functions of a unique DNA double helix. Basic unit of double helix.
따라서 본 발명의 유전자조절기에서 일으키는 DNA 이중나선 염기쌍의 정전기적 전하는 목표 DNA 이중나선 마디에 축적되어 소망하는 유전자조절 기능을 수행할 수 있다.Therefore, the electrostatic charge of the DNA double helix base pair generated by the gene regulator of the present invention can be accumulated in the target DNA double helix node to perform a desired gene control function.
도 4는 본 발명의 수소자기반응 유전자조절기의 일반적인 구조를 나타낸 개략도이고, 도 5은 본 발명의 수소자기반응 유전자조절기에서 DNA 이중나선의 염기쌍들에 대한 극성 자기장 구동 예를 나타낸 개략도이다.Figure 4 is a schematic diagram showing the general structure of the hydroresponsive gene regulator of the present invention, Figure 5 is a schematic diagram showing a polar magnetic field driving example for the base pair of DNA double helix in the hydrophilic response gene regulator of the present invention.
유전자조절기는 가상의 원 상에 등간격으로 배열되는 짝수개의 전자석(110) 및 목표 DNA 이중나선의 염기쌍에 대응되는 극성 자기장 또는 반극성 자기장이 생성되는 극성으로 상기 전자석 중 마주보는 전자석쌍을 상기 목표 DNA 이중나선의 염기쌍에서 센스 가닥 또는 안티센스 가닥의 염기서열에 따라 순차적으로 구동시키는 전자석 구동부(130)를 포함하고 있다.The genetic regulator targets the pair of electromagnets facing each other in the electromagnet with polarities such that a polar magnetic field or a semipolar magnetic field corresponding to the base pair of the target DNA double helix and the even number of electromagnets 110 are arranged at equal intervals on the virtual circle. It includes an electromagnet drive unit 130 to sequentially drive in accordance with the base sequence of the sense strand or antisense strand in the base pair of the DNA double helix.
이때, 목표 DNA의 염기서열을 형성하는 염기는 퓨린 계열과 피리미딘 계열을 포함한다. 도 6에 도시된 바와 같이 전자석쌍에서 생성된 자기장이 제1 극에서 제2 극으로 진행할 때, 극성 자기장은 DNA 염기쌍에서 피리미딘 계열이 제1 극 측에 있고 퓨린 계열이 제2 극 측에 있을 때 상기 염기쌍이 받는 자기장이고, 반극성 자기장은 DNA 염기쌍에서 퓨린 계열이 제1 극 측에 있고 피리미딘 계열이 제2 극 측에 있을 때 염기쌍이 받는 자기장이다.At this time, the base forming the base sequence of the target DNA includes a purine series and pyrimidine series. As shown in FIG. 6, when the magnetic field generated in the pair of electromagnets proceeds from the first pole to the second pole, the polar magnetic field has the pyrimidine series at the first pole side and the purine series at the second pole side in the DNA base pair. The base pair receives the magnetic field, and the semipolar magnetic field is the magnetic field received by the base pair when the purine series is on the first pole side and the pyrimidine series is on the second pole side of the DNA base pair.
이때, 제1 극은 N극이고, 제2 극은 S극일 수 있으며, 이 반대도 가능하다. 또한, 자기장의 방향과 염기쌍의 수소결합에 평행되는 방향이 일부 차이, 예를 들어 30도 이내의 각도 차이가 나더라도 극성 자기장 또는 반극성 자기장에 해당하는 것으로 할 수 있다.In this case, the first pole may be the N pole, the second pole may be the S pole, and vice versa. In addition, even if the direction of the magnetic field and the direction parallel to the hydrogen bond of the base pair differ in some degrees, for example, the angle difference within 30 degrees, it can be said to correspond to a polar magnetic field or a semipolar magnetic field.
결과적으로 DNA 이중나선의 염기쌍에 대한 극성 자기장 또는 반극성 자기장의 방향은 센스 가닥의 염기서열과 안티센스 가닥의 염기서열의 일정한 염기쌍에 대하여 각각 서로 상반되는 자기장 방향을 갖게 된다.As a result, the directions of the polar magnetic field or the semipolar magnetic field with respect to the base pair of the DNA double helix have mutually opposite magnetic field directions with respect to the base sequence of the sense strand and the constant base pair of the antisense strand.
전자석(110)은 가상의 원 상에 등간격으로 짝수개가 배열될 수 있다. 이에 따라 각 전자석의 반대편에는 마주하는 전자석이 위치하게 된다. 즉, 가상의 원 중심과 상기 원의 호를 가로지르는 기준 직선을 가정할 경우 전자석은 기준 직선과 원호의 교차점 두 곳에 배치된다. 이때, 가상의 원 중심 또는 그 근방에 DNA 이중나선이 배치될 수 있으며, 가상의 원 중심이 주요 반응 부위가 된다. Electromagnet 110 may be even numbered on the imaginary circle at equal intervals. Accordingly, opposing electromagnets are located on opposite sides of each electromagnet. In other words, assuming a reference circle crossing an imaginary circle center and an arc of the circle, the electromagnet is disposed at two intersection points of the reference line and the arc. At this time, the DNA double helix may be disposed in or near the virtual circle center, and the virtual circle center becomes the main reaction site.
DNA 이중나선은 두 개의 DNA 단일 가닥 상에 위치하는 서로 반대방향의 상보적인 염기서열들이 수소결합에 의해 결합된 구조이다. DNA에 포함된 염기쌍들은 양방향에서 반시계방향으로 회전하는 형태의 이중나선구조로 배열되어 있으며, 이때 각 염기쌍 수소결합의 배열방향은 DNA 이중나선에 직교하는 수평면과 거의 일치한다.DNA double helix is a structure in which complementary sequences of opposite directions located on two DNA single strands are bonded by hydrogen bonds. The base pairs contained in the DNA are arranged in a double helix structure that rotates counterclockwise in both directions, wherein the arrangement direction of each base pair hydrogen bond is almost identical to the horizontal plane orthogonal to the DNA double helix.
염기쌍의 배열 방향은 위에서 보았을 때, 즉 평면상으로 동일 또는 유사한 각도 간격을 가지므로 평면상 각 염기쌍은 인접한 염기쌍과 등간격이 될 수 있다.The arrangement direction of base pairs can be equally spaced from adjacent base pairs as viewed from above, i.e., they have the same or similar angular spacing in plan view.
극성 자기장은 DNA 염기쌍에서 피리미딘 계열로부터 퓨린 계열로 일직선으로 진행하는 자기장이므로 이러한 극성 자기장을 구현하기 위해서는 회전하는 형태의 염기쌍의 평면상 각도와 일치 또는 근사하도록, 서로 마주보는 전자석 쌍을 일직선 상에 배치하여야 한다. 이와 같은 목적을 위해 전자석은 가상의 원 상에 등간격으로 짝수개가 배열될 수 있다.Since the polar magnetic field is a magnetic field that proceeds in a straight line from the pyrimidine series to the purine series in the DNA base pair, in order to realize such a polar magnetic field, the pair of electromagnets facing each other is aligned in a straight line so as to match or approximate the planar angle of the rotating base pair. It must be arranged. For this purpose, an even number of electromagnets may be arranged on the virtual circle at equal intervals.
이때, 전자석의 개수는 목표 DNA가 형성하는 이중나선의 1회전 구간에 배열된 염기쌍의 개수일 수 있다. 예를 들어 전자석의 개수는 목표 DNA가 B형 DNA인 경우 10개이며, 상기 목표 DNA가 Z형 DNA인 경우 12개일 수 있다. B형 DNA에서 DNA 이중나선의 1회전 구간에는 약 10.5개의 염기쌍이 배열되고, Z형 DNA에서 DNA 이중나선의 1회전 구간에는 약 11.3개의 염기쌍이 배열된다. 염기쌍의 개수가 10.5개일 때 전자석을 소수점 개수로 배치할 수 없으므로 우선 소수점 이하를 올림하면 11개가 산출되나 짝수가 아니므로 결과적으로 소수점 이하를 버림하여 10개가 산출된다. 이와 같이 하는 이유는 짝수를 맞추기 위한 전자석 1개를 추가하면 총 12개가 되어 잉여 전자석이 생기기 때문이다.In this case, the number of electromagnets may be the number of base pairs arranged in one rotation section of the double helix formed by the target DNA. For example, the number of electromagnets may be 10 when the target DNA is B-type DNA, and 12 when the target DNA is Z-type DNA. About 10.5 base pairs are arranged in one rotation section of the DNA double helix in type B DNA, and about 11.3 base pairs are arranged in one rotation section of the DNA double helix in Z type DNA. When the number of base pairs is 10.5, electromagnets cannot be placed in the number of decimal points, so if the decimal point is rounded up, the number is rounded up to 11, but the result is not even. The reason for doing this is that if one electromagnet is added to match an even number, a total of 12 electromagnets are generated.
염기쌍의 개수가 11.3개일 때는 소수점 이하를 올림한 결과가 12개이므로 짝수를 만족한다. 따라서 12개의 전자석을 배열한다.When the number of base pairs is 11.3, the result is rounded up to 12 decimal places, and the even number is satisfied. Thus, 12 electromagnets are arranged.
결과적으로 B형 DNA에는 10개의 전자석이 원형으로 배치되고, Z형 DNA에 12개의 전자석이 원형으로 배치되는 것이 바람직하다.As a result, it is preferable that ten electromagnets are arranged in a circle on the B-type DNA, and twelve electromagnets are arranged in a circle on the Z-type DNA.
그런데, 전자석의 개수에서 미량의 차이가 있더라도 궁극적으로 원하는 효과가 일부 나타남을 실험적으로 확인할 수 있었다. 이와 같은 이유는 염기쌍의 배열 방향과 전자석 각도가 일부 다르더라도 극성 자기장 또는 반극성 자기장이 수소결합에 영향을 미치기 때문인 것으로 파악된다.By the way, even if there is a slight difference in the number of electromagnets, it was confirmed experimentally that the desired effect ultimately appears. The reason for this is that the polar magnetic field or the semi-polar magnetic field affects the hydrogen bond even if the arrangement direction of the base pair and the angle of the electromagnet are different.
따라서, 전자석의 개수는 6개 내지 14개일 수 있다. 그러나 이와 같은 경우라 하더라도, B형 DNA에 대해서는 6개 내지 12개의 범위 내에서 전자석의 개수가 결정되고, Z형 DNA에 대해서는 10개 내지 14개의 범위 내에서 전자석의 개수가 결정되는 것이 좋다.Therefore, the number of electromagnets may be six to fourteen. However, even in such a case, the number of electromagnets in the range of 6 to 12 is determined for the B-type DNA, and the number of electromagnets in the range of 10 to 14 is preferably determined for the Z-type DNA.
염기쌍의 배열 방향에 맞게 적절한 개수의 전자석이 배열되었다 하더라도 전자석 쌍에 적절한 극성이 부여되어야만 극성 자기장 또는 반극성 자기장이 생성된다.Even if an appropriate number of electromagnets are arranged in the direction of the base pair arrangement, an appropriate polarity is given to the electromagnet pair to generate a polar magnetic field or a semipolar magnetic field.
즉, 배열된 전자석에 의해 극성 자기장이 생성되기 위해서는 DNA 염기쌍의 퓨린 계열 측에 S극이 위치해야 하고 피리미딘 계열 측에 N극이 위치해야 한다.That is, in order for the polar magnetic field to be generated by the arranged electromagnets, the S pole should be located on the Purine series side of the DNA base pair and the N pole on the pyrimidine series side.
결과적으로 극성 자기장이 전자석쌍의 장방향 축을 지나게 하기 위해서는 서로 마주하는 전자석 2개가 염기쌍의 계열에 따라 반대 극성으로 동시에 구동되도록 해야 한다. 이는 도 6에 도시된 바와 같이 서로 마주하는 전자석 2개, 즉 전자석쌍을 동일한 전자석코일 극성방향으로 직렬로 또는 병렬로 연결시킨 상태로 구동시킴으로써 달성될 수 있다.As a result, in order for the polar magnetic field to pass through the longitudinal axis of the electromagnet pair, two opposing electromagnets must be driven simultaneously with the opposite polarity according to the base pair sequence. This can be accomplished by driving two electromagnets facing each other, that is, electromagnet pairs connected in series or in parallel in the same electromagnet coil polarity direction as shown in FIG. 6.
전자석 구동부(130)는 극성 자기장 또는 반극성 자기장이 생성되도록 전류 방향을 선택해서 전자석(110)을 구동시킨다.The electromagnet driver 130 drives the electromagnet 110 by selecting a current direction to generate a polar magnetic field or a semipolar magnetic field.
원형으로 균등하게 배열된 12개의 전자석의 번호를 반시계방향으로 ①에서 ⑫로 정할 때 목표 DNA 염기서열로 센스 가닥의 염기서열을 선택한 경우 전자석 구동부는 극성 자기장을 생성하기 위해 다음과 같은 극성 순서로 전자석쌍(A:①-⑦, B:②-⑧, C:③-⑨, D:④-⑩, E:⑤-⑪, F:⑥-⑫)을 구동시킨다. 이때 원하는 극성으로 전자석쌍을 구동시키기 위해 각 전자석쌍은 도 6과 같이 서로 마주보는 전자석쌍에서 동일한 전자석코일 극성방향으로 직렬 또는 병렬로 연결될 수 있다.When the numbers of twelve electromagnets uniformly arranged in a circle are selected from ① to 반 in the counterclockwise direction, when the base of the sense strand is selected as the target DNA sequence, the electromagnet drive unit is arranged in the following polarity order to generate the polar magnetic field. Drive the electromagnet pair (A: ①-⑦, B: ②-⑧, C: ③-⑨, D: ④-⑩, E: ⑤-⑪, F: ⑥-⑫). At this time, in order to drive the electromagnet pair with the desired polarity, each electromagnet pair may be connected in series or parallel in the same electromagnet coil polarity direction in the electromagnet pair facing each other as shown in FIG.
예를 들면, 각각 센스 가닥 염기서열은 전자석번호 ①, ②, ③, ④, ⑤, ⑥, ⑦, ⑧, ⑨, ⑩, ⑪, ⑫로 순차적으로 구동하고, 각각의 안티센스 가닥 염기서열은 ⑫, ⑪, ⑩, ⑨, ⑧, ⑦, ⑥, ⑤, ④, ③, ②, ①로 순차적으로 구동한다. 이때 서로 마주보는 전자석쌍들, ①-⑦, ②-⑧, ③-⑨, ④-⑩, ⑤-⑪, ⑥-⑫는 센스 또는 안티센스 염기서열에 따라 극성 자기장 또는 반극성 자기장을 생성할 수 있다.For example, each sense strand sequence is sequentially driven by electromagnet numbers ①, ②, ③, ④, ⑤, ⑥, ⑦, ⑧, ⑨, ⑩, ⑪, ⑫, and each antisense strand sequence is ⑫, Drive sequentially with, ⑩, ⑨, ⑧, ⑦, ⑥, ⑤, ④, ③, ②, ①. At this time, the pairs of electromagnets facing each other, ①-⑦, ②-⑧, ③-⑨, ④-⑩, ⑤-⑪, ⑥-⑫, may generate a polar magnetic field or a semipolar magnetic field according to sense or antisense sequences. .
DNA가 이중나선구조를 갖고 있기 때문에 동일 DNA의 염기서열은 센스 가닥과 안티센스 가닥 2개가 존재한다. 예를 들어 센스 가닥의 염기서열과 안티센스 가닥의 염기서열은 다음과 같을 수 있다.Since the DNA has a double helix structure, the base sequence of the same DNA has two sense strands and an antisense strand. For example, the nucleotide sequence of the sense strand and the antisense strand may be as follows.
센스 가닥 : 5' - T C A G C A C G A T G A - 3'Sense strand: 5 '-T C A G C A C G A T G A-3'
안티센스 가닥 : 3' - A G T C G T G C T A C T - 5'Antisense Strand: 3 '-A G T C G T G C T A C T-5'
생체 내에서 꼬여서 감겨져 있는 DNA 이중나선은 약 1-10회전이 될 가능성이 크므로 유전자조절기에서는 약 100 염기쌍 크기의 DNA 이중나선을 목표로 할 수 있으나, 본 예에서는 Z-type DNA 이중나선이 1회전하는 약 12 염기쌍 크기의 DNA 이중나선을 목표로 하였다.The DNA double helix twisted in vivo is likely to be about 1-10 turns, so the DNA regulator can target a DNA double helix of about 100 base pairs in size, but in this example, the Z-type DNA double helix is 1 The target was a spinning DNA double helix about 12 base pairs in size.
12 염기쌍 크기의 DNA 이중나선은 12개의 전자석 배열과 일치하므로 설명이 용이할 수 있다. 상기 DNA 이중나선에 대한 극성 자기장을 구동시키기 위한 자기장 조사 방법을 도식화하면 다음과 같다.DNA double helixes of 12 base pairs match the arrangement of 12 electromagnets, which can be easily described. A magnetic field irradiation method for driving a polar magnetic field for the DNA double helix is shown as follows.
Figure PCTKR2012005790-appb-I000001
Figure PCTKR2012005790-appb-I000001
순차적으로 전자석쌍이 구동되는 방향은 시계 방향 또는 반시계 방향일 수 있다. 예를 들어 전자석쌍이 순차적으로 반시계 방향으로 구동될 경우 도 3에 도시된 바와 같이 전자석 구동부는 원형으로 배열된 전자석 중 임의로 선택된 전자석쌍 ①-⑦에서 전자석 ①을 첫 번째 극성인 N극으로 구동한다. 전자석 ⑦은 전자석 ①과 반대인 S극으로 구동해서 T:A 염기쌍의 극성 자기장을 구동할 수 있다.The direction in which the electromagnet pairs are sequentially driven may be clockwise or counterclockwise. For example, when the electromagnet pairs are sequentially driven counterclockwise, as shown in FIG. 3, the electromagnet driving unit drives the electromagnet ① to the N pole having the first polarity in the electromagnet pair ①-⑦ arbitrarily selected among electromagnets arranged in a circle. . The electromagnet ⑦ can be driven to the S pole opposite to the electromagnet ① to drive the polar magnetic field of the T: A base pair.
이렇게 임의로 선택되어 최초로 구동된 전자석쌍을 구동 개시 전자석쌍이라 하며 구동 개시 전자석쌍에 반시계 방향으로 인접한 전자석 ②-⑧에서 전자석 ②를 두 번째 극성인 N극으로 구동하고 전자석 ⑧을 S극으로 구동해서, C:G 염기쌍의 극성 자기장을 구동할 수 있다.The pair of electromagnets selected arbitrarily and driven for the first time is called a driving start electromagnet pair, and the electromagnet ② is driven to the second polarity N pole and the electromagnet ⑧ is driven to the S pole from the electromagnets ②-⑧ adjacent to the driving start electromagnet pair counterclockwise. Thus, the polar magnetic field of the C: G base pair can be driven.
다음으로, 전자석쌍 ②-⑧에 반시계 방향으로 인접한 전자석 ③-⑨에서 전자석 ③을 3번째 극성인 S극으로 구동하고, 전자석 ⑨를 N극으로 구동해서, A:T 염기쌍의 극성 자기장을 구동할 수 있다.Next, the electromagnet ③ -⑨ adjacent to the electromagnet pair ②-⑧ in the counterclockwise direction is driven to the S pole which is the third polarity, and the electromagnet ⑨ is driven to the N pole to drive the polar magnetic field of the A: T base pair. can do.
전자석 구동부는 이런 식으로 전자석쌍 ④-⑩, ⑤-⑪, ⑥-⑫, ⑦-①, ⑧-②, ⑨-③, ⑩-④, ⑪-⑤, ⑫-⑥에서 전자석 ④, ⑤, ⑥, ⑦, ⑧, ⑨, ⑩, ⑪, ⑫를 S, N, S, N, S, S, N, S, S극으로 순차적으로 구동시킨다. 이에 대응하여 쌍을 이루는 전자석 ⑩, ⑪, ⑫, ①, ②, ③, ④, ⑤, ⑥을 반대 극성인 N, S, N, S, N, N, S, N, N극으로 구동시킨다.In this way, the electromagnet drive unit is equipped with electromagnets ④, ⑤, ⑥ in the pairs ④-⑩, ⑤-⑪, ⑥-⑫, ⑦-①, ⑧-②, ⑨-③, ⑩-④, ⑪-⑤, and ⑫-⑥. , ⑦, ⑧, ⑨, ⑩, ⑪, ⑫ are sequentially driven to S, N, S, N, S, S, N, S, S poles. Correspondingly, the paired electromagnets ⑩, ⑪, ⑫, ①, ②, ③, ④, ⑤, and ⑥ are driven to the opposite polarities N, S, N, S, N, N, S, N and N poles.
도 6과 같이 각 전자석쌍이 동일한 전자석코일의 극성방향으로 직렬 또는 병렬로 연결된 경우를 가정한다면, A 전자석쌍에서 전류를 ①전자석 코일에서 ⑦전자석 코일 방향으로 흘려 보낼 때 ①과 ⑦의 전자석들 사이에서는 ①에서 ⑦쪽으로, 즉 N극에서 S극으로 자기장이 흐른다고 할 수 있다.Assuming that each pair of electromagnets are connected in series or in parallel in the polarity direction of the same electromagnet coil as shown in FIG. 6, when electromagnets in A pair flow current from the electromagnet coil in the direction of the electromagnet coil ⑦ Magnetic field flows from ① to ⑦, from N pole to S pole.
예를 들어 원형으로 균등하게 배열된 12개의 전자석을 사용해서 상기와 같이 12개의 염기서열로 이루어진 DNA 이중나선에 대한 극성 자기장을 1회전 구동시키기 위해서는 다음과 같은 구동방법을 사용할 수 있다.For example, the following driving method can be used to drive one rotation of the polar magnetic field for a DNA double helix consisting of 12 base sequences as described above using 12 electromagnets arranged uniformly in a circle.
전자석쌍이 순차적으로 반시계 방향으로 구동될 경우 도 5에 도시된 바와 같이 전자석 구동부는 첫 번째 염기서열인 T에 대해 ①전자석 코일에서 ⑦전자석 코일 방향으로 전류를 흘려서 ①전자석에서 N극이 생기고 ⑦전자석에 S극이 생기게 할 수 있다.When the electromagnet pairs are sequentially driven in the counterclockwise direction, as shown in FIG. 5, the electromagnet driving unit flows a current in the direction of the electromagnet coil in the direction of the electromagnet coil in the direction of the electromagnet coil ⑦ for the first base sequence T, and generates an N pole in the electromagnet. S poles can be generated.
센스 가닥의 두 번째 염기서열인 C에 대해 반시계방향으로 인접하는 ②전자석 코일에서 ⑧전자석 코일 방향으로 전류를 흘려서 ②전자석에서 N극이 생기고 ⑧전자석에 S극이 생기게 구동할 수 있다.The current flows in the direction of the electromagnet coil ⑧ in the counterclockwise direction adjacent to C, the second base sequence of the sense strand, so that the N pole is generated in the electromagnet and the S pole is generated in the electromagnet.
그리고 센스 가닥의 일곱 번째 염기서열인 C에 대해 첫 번째 염기서열인 T와 동일한 A 전자석쌍을 사용하게 된다. 이 경우에는 극성 자기장의 방향이 첫 번째 염기서열인 T와는 반대가 되므로 ⑦전자석 코일에서 ①전자석 코일 방향으로 전류를 흘려서 ⑦전자석에서 N극이 생기고 ①전자석에 S극이 생기게 할 수 있다.Then, for the seventh base sequence C of the sense strand, the same A electromagnet pair as the first base sequence T is used. In this case, since the direction of the polar magnetic field is opposite to the first base sequence T, the current flows in the direction of the electromagnet coil from the electromagnet coil in the direction of the electromagnet coil, thereby generating the N pole in the electromagnet and the S pole in the electromagnet.
센스 가닥의 마지막 염기서열로서 12번째 염기서열인 A에 대한 극성 자기장을 생성하기 위해 전자석 구동부는 ⑥전자석 코일에서 ⑫전자석 코일 방향으로 전류를 흘려 보내서 ⑥전자석에서 N극이 생기고 ⑫전자석에 S극이 생기게 할 수 있다.In order to generate the polar magnetic field for the 12th base sequence A as the last base of the sense strand, the electromagnet drive unit sends current in the direction of the electromagnet coil from the electromagnet coil to the electromagnet coil, whereby the N pole is generated from the electromagnet and the S pole is Can produce
센스 가닥의 마지막 염기서열에 대한 구동이 끝난 다음에는 바로 안티센스 가닥의 첫 번째 염기서열에 대한 극성 자기장을 구동시키기 위해서 센스 가닥의 마지막 염기서열인 A에 대한 자기장을 생성한 전자석쌍부터 시작할 수 있다.Immediately after driving the last nucleotide sequence of the sense strand, we can start with the pair of electromagnets that generate the magnetic field for A, the last nucleotide sequence of the sense strand, to drive the polar magnetic field for the first nucleotide sequence of the antisense strand.
안티센스 가닥의 첫 번째 염기서열인 T에 대한 극성 자기장 구동을 위해서 F 전자석쌍에서 전류를 ⑥전자석 코일에서 ⑫전자석 코일 방향으로 흘려 보내서 ⑥전자석에서 N극이 생기고 ⑫전자석에 S극이 생기게 구동할 수 있다. 이는 센스 가닥의 마지막 염기서열인 A와 같은 전류방향일 수 있다.In order to drive the polar magnetic field for T, the first base of the antisense strand, current can flow from the pair of electromagnets in the direction of ⑥ electromagnet coil to ⑫ electromagnet coil so that N pole is generated at ⑥ electromagnet and S pole is generated at electromagnet. have. This may be in the same current direction as A, the last nucleotide sequence of the sense strand.
안티센스 가닥의 두 번째 염기서열인 C의 극성 자기장을 구동시키기 위해서 시계방향으로 인접하는 E 전자석쌍에서 전류를 ⑤전자석 코일에서 ⑪전자석 코일 방향으로 흘려서 ⑤전자석에서 N극이 생기고 ⑪전자석에 S극이 생기게 구동할 수 있다.In order to drive the polar magnetic field of C, the second base of the antisense strand, current flows from the pair of electromagnets adjacent to each other in the clockwise direction ⑤ from the electromagnet coil to the direction of the electromagnet coil. I can drive it.
마찬가지 방법으로 안티센스 가닥의 마지막 염기서열인 A의 극성 자기장을 구동시키기 위해서 계속적으로 시계방향으로 인접하는 A 전자석쌍에서 전류를 ①전자석 코일에서 ⑦전자석 코일 방향으로 흘려서 ①전자석에서 N극이 생기고 ⑦전자석에 S극이 생기게 구동할 수 있다.In the same way, in order to drive the polar magnetic field of A, the last base sequence of the antisense strand, the current is continuously flowed from ① electromagnet coil in the direction of electromagnet coil ⑦ in the direction of electromagnet coil ① ① N pole is generated from electromagnet and ⑦ electromagnet It can be driven by creating the S pole.
이와 같이 구동되는 전자석쌍에 의해 생성되는 자기장은 전자석이 배열되는 가상의 원 중심에서 목표 DNA의 극성 자기장이 된다. 따라서 목표 DNA를 가상의 원 중심에 위치시키면 목표 DNA는 극성 자기장의 환경에 위치하게 된다.The magnetic field generated by the electromagnet pair thus driven becomes the polar magnetic field of the target DNA at the virtual circle center where the electromagnets are arranged. Therefore, if the target DNA is located at the virtual circle center, the target DNA is located in the polar magnetic field environment.
만약, 이상에서 설명된 전자석쌍의 극성을 반대로 하면 목표 DNA의 반극성 자기장이 형성된다. 안티센스 가닥에 대해 시계방향으로 전자석쌍을 구동하는 구성을 역구동이라 칭하기로 한다.If the polarity of the pair of electromagnets described above is reversed, a semipolar magnetic field of the target DNA is formed. The configuration of driving the electromagnet pair clockwise with respect to the antisense strand will be referred to as reverse driving.
이와 같이 구동되면 평면상에서 B형 DNA 이중나선의 각 염기쌍의 배열 각도에 접근하는 각도로 자기장이 생성될 수 있다. 따라서, DNA 이중나선의 구조에 따라 소망하는 효과가 도출되도록 전자석의 개수는 앞에서 설명된 6개 내지 14개의 범위 내에서 설정될 수 있다.When driven in this manner, a magnetic field can be generated at an angle approaching the arrangement angle of each base pair of the B-type DNA double helix on the plane. Therefore, the number of electromagnets can be set within the range of 6 to 14 described above so that a desired effect is derived according to the structure of the DNA double helix.
한편, 극성 자기장 또는 반극성 자기장으로 DNA 염기쌍의 수소 결합력에 효과적으로 영향을 미치게 하기 위해서는 DNA 염기쌍에 따라 전자석쌍의 구동 시간이 서로 다를 수 있다.On the other hand, in order to effectively affect the hydrogen bonding capacity of the DNA base pair with a polar magnetic field or a semipolar magnetic field, the driving time of the electromagnet pair may be different depending on the DNA base pair.
일시점에서 동시에 구동되는 전자석쌍의 구동 시간은 서로 동일하며, 그 시간은 10msec 이상 300msec 이하의 범위 내에서 선택될 수 있다. 이때 선택된 구동 시간은 모든 전자석에 대해 동일하게 적용될 수도 있으며, 다르게 적용될 수도 있다.The driving time of the electromagnet pairs driven simultaneously at the time point is the same, and the time may be selected within the range of 10 msec or more and 300 msec or less. In this case, the selected driving time may be equally applied to all electromagnets or may be differently applied.
예를 들면, 동물에서는 상기 목표 DNA 염기쌍을 구성하는 C(시토신):G(구아닌) 염기쌍에 대해서 T(티민):A(아데닌) 염기쌍의 비율이 1/2에서 3/4 정도의 비율인 30:60 또는 60:80msec 구동 시간을 가질 수 있다.For example, in animals, the ratio of T (thymine): A (adenine) base pair to the C (cytosine): G (guanine) base pair constituting the target DNA base pair is 30 to about 3/4. It may have a: 60 or 60: 80msec drive time.
이와 같은 생물체의 종류에 따라 서로 다른 구동 시간의 설정은 본 실험 이전에 보조 실험을 통해서 획득할 수 있으며 대체로 C(시토신):G(구아닌) 염기쌍에 대해서 T(티민):A(아데닌) 염기쌍의 비율이 1/2에서 3/4 정도의 비율 내에서 소망하는 효과가 현저하게 나타나는 구동 시간을 선택할 수 있다.Depending on the type of organisms, different run times can be obtained through secondary experiments prior to this experiment, and the T (thymine): A (adenine) base pairs are generally used for the C (cytosine): G (guanine) base pairs. It is possible to select a driving time in which the ratio is remarkable within a ratio of 1/2 to 3/4.
상기의 DNA 염기쌍들의 구동시간은 DNA 이중나선의 염기서열에 따라 다를 수 있으므로 유전자조절을 수행하기 전에 목표 DNA 이중나선을 사용하는 간단한 시험관 내 실험을 통하여 목표 DNA 염기서열에 적합한 DNA 염기쌍 구동 시간을 선택할 수 있다.Since the driving time of the DNA base pairs may vary depending on the nucleotide sequence of the DNA double helix, a simple in vitro experiment using the target DNA double helix is used to select a DNA base pair driving time suitable for the target DNA nucleotide sequence before performing gene regulation. Can be.
한편, 복수의 전자석에서 생성된 자기장은 전자석이 배치된 원의 중심에 직교하는 가상의 직선 상의 한 점에 포커싱될 수 있다.Meanwhile, the magnetic field generated from the plurality of electromagnets may be focused at a point on a virtual straight line perpendicular to the center of the circle in which the electromagnets are arranged.
상황에 따라 목표 DNA가 있는 세포나 조직을 원형으로 배치된 전자석의 중심에 위치시키기 어려울 수 있다. 예를 들어, 인체의 머리 부분이 원의 중심에 있고, 실 타겟 위치인 복부 부위는 원의 중심에 대해 돌출된 상태일 수 있다. 이러한 경우 복부 부위를 타겟팅하기 위해 전자석의 지향 각도를 변경시키는 것으로 복부 부위를 타겟팅 할 수 있다. 이때, 전자석 전체는 깔대기 형상을 나타낼 수 있다.In some situations, it may be difficult to locate cells or tissues with target DNA in the center of an electromagnet placed in a circle. For example, the head of the human body is at the center of the circle, and the abdomen portion, which is the actual target position, may be protruded with respect to the center of the circle. In this case, the abdominal region may be targeted by changing the orientation angle of the electromagnet to target the abdominal region. At this time, the entire electromagnet may exhibit a funnel shape.
전자석의 지향 각도 변경은 전자석 구동부에 이루어지거나 별도로 마련된 전자석 자세 제어부에서 이루어질 수 있다.The direction angle change of the electromagnet may be made in the electromagnet driving unit or may be made in the electromagnet posture controller provided separately.
본 발명의 수소자기반응 유전자조절기에서 생성되는 극성 자기장 또는 반극성 자기장은 목표 DNA를 포함하는 생물체에 가해질 수 있으므로 생물체에 위해를 주지 않는 세기를 가질 수 있다.The polar magnetic field or the semipolar magnetic field generated by the hydrocephalus gene regulator of the present invention may be applied to an organism including the target DNA, and thus may have an intensity that does not harm the organism.
예를 들어 각 전자석쌍들의 중앙 부위, 즉 전자석쌍이 배열된 가상의 원의 중심에 생성되는 자기장의 세기는 50μT ~ 1T 일 수 있다. 50μT는 비록 약한 자기장의 세기이지만 극성 자기장의 실질적 목표가 되는 수소결합에 충분한 영향을 줄 수 있는 세기이며 1T의 자기장 세기는 짧은 시간 내에 목표 DNA를 활성화 시킬 수 있는 자기장이 될 수 있다.For example, the intensity of the magnetic field generated at the center of each pair of electromagnets, that is, at the center of the virtual circle in which the pair of electromagnets is arranged, may be 50 μT to 1T. Although 50μT is the strength of weak magnetic field, it is enough to affect the hydrogen bond which is the actual target of polar magnetic field. The magnetic field strength of 1T can be the magnetic field that can activate target DNA in a short time.
한편, 전자석 구동부(130)는 전자석쌍을 시계 방향 또는 반시계 방향 중 한 방향으로 순차적으로 구동시킨다. 이때 전자석 구동부는 일시점에서 전자석 한쌍만을 구동시키고, 그 외의 전자석을 구동시키지 않을 수 있다.On the other hand, the electromagnet driver 130 sequentially drives the electromagnet pair in one of the clockwise or counterclockwise direction. In this case, the electromagnet driving unit may drive only a pair of electromagnets at a time point, and may not drive other electromagnets.
염기쌍의 센스 가닥과 안티센스 가닥 중 하나를 제1 가닥으로 정의하고, 다른 하나를 제2 가닥으로 정의할 때 전자석 구동부는 제1 가닥의 염기서열에 대응하는 극성 자기장 또는 반극성 자기장으로 전자석쌍을 제1 가닥의 최초 염기서열부터 최종 염기서열까지 제1 방향으로 구동시킨 후, 제1 가닥의 최종 염기서열에 대응하여 구동된 전자석쌍을 시작으로 하여 제2 가닥의 염기서열에 대응하는 극성 자기장 또는 반극성 자기장으로 상기 전자석쌍을 제2 가닥의 최초 염기서열부터 최종 염기서열까지 제2 방향으로 구동시킬 수 있다.When defining one of the sense strand and the antisense strand of the base pair as the first strand, and the other as the second strand, the electromagnet drive unit delimits the pair of electromagnets with a polar or semipolar magnetic field corresponding to the base sequence of the first strand. A polar magnetic field or half corresponding to the nucleotide sequence of the second strand, starting from the first nucleotide sequence of one strand to the nucleotide sequence in the first direction, starting with an electromagnet pair driven corresponding to the final nucleotide sequence of the first strand. The polar magnetic field may drive the pair of electromagnets in the second direction from the first base sequence to the final base sequence of the second strand.
제1 방향은 반시계 방향이고, 제2 방향은 시계방향일 수 있다. 물론 이 반대도 가능하다.The first direction may be counterclockwise and the second direction may be clockwise. Of course, the opposite is also possible.
이와 같이 목표 DNA를 이루는 센스 가닥과 안티센스 가닥 모두에 대해서 극성 자기장 또는 반극성 자기장을 생성하면 센스 가닥 또는 안티센스 중 하나의 가닥을 대상으로 한 것에 비하여 목표 DNA에 대하여 강한 극성 자기장 또는 반극성 자기장 환경을 제공할 수 있다.As such, when a polar magnetic field or a semipolar magnetic field is generated for both the sense strand and the antisense strand constituting the target DNA, a strong polar magnetic field or a semipolar magnetic field environment for the target DNA is generated compared to the target strand of either the sense strand or the antisense strand. Can provide.
상기와 같이 동일 DNA 이중나선에 대하여 센스 가닥과 안티센스 가닥에 대한 극성 자기장 또는 반극성 자기장을 1번씩 연속 조사하는 것을 1회 구동이라 할 수 있다.As described above, the one-time continuous irradiation of the polar magnetic field or the semipolar magnetic field with respect to the sense strand and the antisense strand with respect to the same DNA double helix can be referred to as one-time driving.
실제로 입체구조에서 DNA 이중나선은 정립방향 또는 도립방향으로 균등하게 분포하고 있는데 정립방향 DNA들에서는 염기서열이 시계방향으로 배열하고 도립방향 DNA들에서는 염기서열이 반시계방향으로 배열하고 있으므로, 상기의 1회 구동개시 방향은 DNA 이중나선의 반시계방향과 시계방향 모두 포함할 수 있다.In fact, in the three-dimensional structure, the DNA double helix is distributed evenly in the upright or inverted direction. In the upright DNAs, the nucleotide sequences are arranged clockwise, and in the inverted DNAs, the nucleotide sequences are counterclockwise. One driving start direction may include both the counterclockwise and clockwise directions of the DNA double helix.
전자석 구동부는 목표 DNA에 대한 상기 1회 구동을 일정시간 복수로 반복할 수 있다. 이에 따르면 수소자기반응에 의해 생긴 DNA 염기쌍 수소결합의 정전기적 전하를 목표 DNA 핵산에 축적함으로써 유전자조절의 효과를 증대시킬 수 있다.The electromagnet drive unit may repeat the one-time driving of the target DNA a plurality of times. According to this, the effect of gene regulation can be enhanced by accumulating the electrostatic charge of the DNA base pair hydrogen bonds generated by the hydrolysis reaction in the target DNA nucleic acid.
목표 DNA 이중나선에 극성 자기장 또는 반극성 자기장의 수소자기반응 효과를 높이기 위해서 상기와 같은 1회 구동을 1-100분 동안 지속적으로 반복할 수 있다.In order to enhance the effect of hydrophobic or semipolar magnetic field reaction on the target DNA double helix, the above one-time operation can be repeated for 1-100 minutes.
이상의 구성에 의해 생성된 극성 자기장 또는 반극성 자기장 환경은 전자석쌍이 배열된 가상의 원 면(x-z평면)에 도 7에 도시된 목표 DNA 이중나선이 직교하는 정립상태로 위치하고, 각 염기쌍의 방향이 전자석쌍의 방향과 일치하는 것을 전제로 한 것이다. 그러나 목표 DNA 이중나선은 다양한 상태로 위치할 수 있기 때문에 전자석쌍이 배열되는 가상의 원 중심에 목표 DNA가 위치한다고 하더라도 이상의 구성에 의해 생성되는 극성 자기장 또는 반극성 자기장 환경이 목표 DNA에 대한 극성 자기장 또는 반극성 자기장이 아닐 수도 있다.The polar magnetic field or the semi-polar magnetic field environment generated by the above configuration is located in an upright state in which the target DNA double helix shown in FIG. 7 is orthogonal to the virtual circle (xz plane) in which the electromagnet pairs are arranged, and the direction of each base pair is an electromagnet. It is assumed that it matches the direction of the pair. However, since the target DNA double helix can be located in various states, even if the target DNA is located in the imaginary circle center where the pairs of electromagnets are arranged, the polar magnetic field or the semipolar magnetic field environment generated by the above configuration may be a polar magnetic field or It may not be a semipolar magnetic field.
전자석쌍에서 생성된 극성 자기장 또는 반극성 자기장으로 보다 많은 수의 목표 DNA들에 대한 유전자조절 효과를 얻기 위해서 상기 1회 구동 위치를 이동시키면서 유전자조절을 수행할 수 있다.Genetic regulation may be performed by shifting the one-time driving position to a polar or semipolar magnetic field generated in an electromagnet pair to obtain a gene regulatory effect on a larger number of target DNAs.
일 예로 목표 DNA 이중나선이 가상의 원면에 직교한 정립상태를 전제할 때 목표 염기쌍의 배열방향과 전자석쌍의 배열방향의 오차가 30° 이내인 경우 배열방향이 서로 일치하는 것으로 볼 수 있다.As an example, when the target DNA double helix is assumed to be orthogonal to an imaginary plane, when the error between the alignment direction of the target base pair and the alignment direction of the electromagnet pair is within 30 °, the alignment directions may correspond to each other.
도 5에서는 목표 DNA의 염기서열 TCAGCACGATGA가 전자석 ①의 방향부터 시작되는 상태를 가정하여 전자석 ①부터 NNSSNSNSSNSS 극성으로 구동시킨 것인데, 목표 DNA의 염기서열이 전자석 ①의 방향부터 시작되는 상태로 배치될 확률은 상대적으로 낮다.In FIG. 5, the base sequence TCAGCACGATGA of the target DNA is driven with the NNSSNSNSSNSS polarity starting from the electromagnet ① assuming a state starting from the direction of the electromagnet ①, and the probability that the base sequence of the target DNA is arranged from the direction of the electromagnet ① is Relatively low.
앞에서 전자석쌍 ①-⑦을 임의로 선택된 구동 개시 전자석쌍이라 하였는데, 이와 같이 구동 개시 전자석쌍을 임의로 선택하는 이유는 목표 DNA에서 실제 염기서열의 시작 위치를 알 수 없기 때문이다.Previously, the electromagnet pairs ①-⑦ were arbitrarily selected as driving start electromagnet pairs. The reason for arbitrarily selecting the driving start electromagnet pairs is that the starting position of the actual nucleotide sequence in the target DNA is unknown.
염기쌍의 방향과 전자석쌍의 방향을 일치시키기 위해 전자석 구동부(130)는 목표 DNA에 대한 상기 1회 구동 후에, 바로 이전의 구동 개시 전자석쌍에 반시계 방향 또는 시계 방향으로 인접한 전자석쌍을 새로운 구동 개시 전자석쌍으로 하여 상기 1회 구동을 전자석쌍의 개수(전자석 개수의 절반)만큼 반복되도록 할 수 있다. 이에 따르면 보다 많은 목표 DNA들에 유전자조절을 수행할 수 있다.In order to match the direction of the base pair with the direction of the electromagnet pair, the electromagnet driver 130 starts a new drive of the pair of electromagnets that are adjacent to the previous drive initiation electromagnet pair in the counterclockwise or clockwise direction after the first drive on the target DNA. The one-time driving may be repeated by the number of electromagnet pairs (half the number of electromagnets) as the electromagnet pairs. This allows gene regulation on more target DNAs.
여기서, 역구동까지 수행되는 구성이라면 1회 구동은 역구동까지 포함한다. 따라서, 1회 구동 완료 시점은 어느 한 가닥에 대한 전자석쌍의 구동 완료 시점 또는 두 가닥 모두에 대한 전자석쌍의 구동 완료 시점이 될 수 있다.Here, if the configuration is performed up to reverse drive, one drive includes up to reverse drive. Accordingly, the one time driving completion time may be the driving completion time of the electromagnet pair for one strand or the driving completion time of the electromagnet pair for both strands.
만약, 1회 구동이 동일한 구동 개시 전자석쌍을 기준으로 설정시간 반복(1사이클 구동)되는 경우라면 새로운 구동 개시 전자석쌍은 상기 설정시간 경과 후에 선정된다.If the one time drive is repeated for a set time (one cycle drive) based on the same drive start electromagnet pair, a new drive start electromagnet pair is selected after the set time elapses.
이때 구동 개시 전자석쌍은 예를 들어 다음과 같이 변경된다.At this time, the driving start electromagnet pair is changed as follows.
도 5에서 DNA 이중나선에 대하여 A전자석쌍(①-⑦)을 구동 개시 전자석쌍으로 1회 구동을 약 1-100분 동안 반복한 후에 반시계 방향으로 인접한 B전자석쌍(②-⑧)을 새로운 구동 개시 전자석쌍으로 하여 마찬가지 방법으로 상기 1회 구동을 수행한다. B전자석쌍(②-⑧)을 구동 개시 전자석쌍으로 하여 약 1-100분 동안 지속해서 상기 1회 구동이 완료되면, 다시 반시계 방향으로 인접한 C전자석쌍(③-⑨)를 새로운 구동 개시 전자석쌍으로 하여 약 1-100분 동안 지속해서 상기 1회 구동을 수행한다.In FIG. 5, the A electromagnet pair (①-⑦) is driven with respect to the DNA double helix, and once the drive is repeated for about 1-100 minutes, the B electromagnet pair (②-⑧) adjacent in the counterclockwise direction is newly replaced. The said one time drive is performed by the same method as a drive start electromagnet pair. When the first drive is completed continuously for about 1-100 minutes by using the B electromagnet pair (②-⑧) as the driving start electromagnet pair, the new electromagnetization starting electromagnet pair (③-⑨) is returned to the counterclockwise direction. The single run is performed continuously in pairs for about 1-100 minutes.
전자석 구동부(130)에서 상기 1회 구동에 대한 위치 이동은 전자석쌍의 개수와 동일할 수 있다.In the electromagnet drive unit 130, the positional movement of the single drive may be equal to the number of electromagnet pairs.
DNA 이중나선에서 센스 가닥의 염기서열들과 안티센스 가닥의 염기서열들은 상보적으로 서로 다른 염기서열을 갖지만 DNA 이중나선 염기쌍에서 센스 가닥과 안티센스 가닥의 염기서열의 극성 자기장 또는 반극성 자기장은 항상 일정하다.In the DNA double helix, the bases of the sense strand and the bases of the antisense strand have complementary nucleotide sequences, but the polar or semipolar fields of the base of the sense strand and the antisense strand in the DNA double helix base pair are always constant. .
예를 들어 DNA 이중나선에서 센스 가닥의 염기서열에 해당하는 극성 자기장 또는 반극성 자기장과 안티센스 가닥의 극성 자기장 또는 반극성 자기장의 방향은 동일하다.For example, in the DNA double helix, the polar or semipolar magnetic field corresponding to the base sequence of the sense strand and the polar or semipolar magnetic field of the antisense strand are the same.
따라서 목표 DNA 이중나선의 센스 가닥 염기서열에 대응되는 극성 자기장 또는 반극성 자기장의 순차대로 반시계방향으로 구동하고 센스 가닥 염기서열이 완료된 후에 센스 가닥의 마지막 염기서열의 핵산부터 상보적으로 대응되는 안티센스 염기서열을 동일한 극성 자기장 또는 반극성 자기장으로 시계방향으로 순차적으로 구동할 수 있다.Therefore, antisense that is complementary from the nucleic acid of the last nucleotide sequence of the sense strand is driven counterclockwise in the order of the polar or semipolar magnetic field corresponding to the sense strand nucleotide sequence of the target DNA double helix. The base sequence can be driven sequentially in the clockwise direction with the same polar or semipolar magnetic field.
이때 각각의 DNA 염기쌍에 대한 센스 염기서열과 안티센스 염기서열에서 동일한 극성 자기장 또는 반극성 자기장을 만들기 위해서는 동일한 전자석코일의 극성방향에 따라 직렬 또는 병렬로 연결되어 있는 마주보는 전자석들에 DNA 염기쌍의 센스 염기서열과 안티센스 염기서열의 극성에 일치하는 자기장을 형성시키는 전류 방향을 사용하여야 한다. 이러한 전자석의 전류방향 조절은 전자석 구동부에 의해 이루어진다.At this time, in order to make the same polar magnetic field or the anti-polar magnetic field in the sense base and the antisense base for each DNA base pair, the sense base of the DNA base pair is connected to opposing electromagnets connected in series or in parallel along the polar direction of the same electromagnet coil. Current direction should be used to create a magnetic field consistent with the polarity of the sequence and antisense sequence. The current direction control of the electromagnet is made by the electromagnet driver.
극성 자기장 또는 반극성 자기장에 의해 발생되는 DNA 염기쌍의 수소결합력 변화가 동일한 극성으로 장시간 계속되면 분자간 결합인 수소결합은 지나치게 한쪽으로 편중화 된다. 이에 따라 과다하게 유도된 정전기적 전하에 의한 기억(memory) 현상으로 분자간 2차 구조가 생길 수 있다.If the hydrogen bonding force change of the DNA base pair generated by the polar magnetic field or the semipolar magnetic field continues for a long time with the same polarity, the hydrogen bond, which is an intermolecular bond, is excessively biased to one side. As a result, an intermolecular secondary structure may occur due to memory phenomenon caused by excessively induced electrostatic charge.
그리고, 극성 자기장에 의해 목표 DNA가 지속적으로 활성화되어 메모리화된 상태에서 DNA 고유의 환원력이 감소될 수 있다. 이로 인해 특정 전사인자, DNA 복제효소, 기타 DNA 부착 단백질 등에 의해 mRNA 전사작용이 일어나지 않을 수 있으며, 목표 DNA 주위에 산재되어 있는 히스톤, 폴리아민 들이나 Ca++, Mg++ 등의 양이온 염류들이 강하게 부착되어 오히려 목표 DNA 기능이 억제될 수 있다.In addition, the target DNA is continuously activated by the polar magnetic field, thereby reducing the inherent reducing power of DNA. As a result, mRNA transcription may not occur due to specific transcription factors, DNA replication enzymes, or other DNA attachment proteins, and cation salts such as histones, polyamines, and Ca ++ and Mg ++ scattered around the target DNA are strongly attached. Rather, target DNA function can be inhibited.
따라서, 극성 자기장을 통해 목표 DNA를 효과적으로 활성화 또는 비활성화시키기 위해서는 목표 DNA뿐 아니라 유전자발현에 필요한 세포학적인 조건들이 함께 활성화 또는 비활성화되어야 한다. 이를 위해서 극성 자기장을 지속적으로 조사하는 대신 이들의 메모리 현상을 상쇄시켜 주는 자기장의 조사가 필요하다.Therefore, in order to effectively activate or deactivate the target DNA through the polar magnetic field, not only the target DNA but also the cytological conditions required for gene expression must be activated or deactivated together. To do this, instead of continuously examining polar magnetic fields, it is necessary to investigate magnetic fields that cancel their memory phenomena.
이렇게 동일한 극성 자기장이 평면상에서 회전하면서 장시간 조사되어 발생된 DNA 염기쌍 수소결합의 비특이적 변형을 원래 상태로 환원시키기 위해서는 이들 극성 자기장의 수직 방향에서 환원용 자기장을 조사할 필요가 있다. 이때 환원용 자기장의 생성 및 조사에 보조 전자석(150)이 이용된다.In order to reduce the non-specific modification of the DNA base pair hydrogen bonds generated by irradiating the same polar magnetic field for a long time while rotating in a plane, it is necessary to irradiate the reducing magnetic field in the vertical direction of these polar magnetic fields. At this time, the auxiliary electromagnet 150 is used for the generation and irradiation of the reducing magnetic field.
목표 DNA 이중나선에 대한 극성 자기장의 지속적인 반복 구동이 목표 DNA 염기쌍 수소결합에 생길 수 있는 비특이적 변형을 원래 상태로 환원시키기 위해서는 도 4에 도시된 바와 같이 유전자조절기는 가상의 원 중심에 직교하는 가상의 선 양쪽에 2개의 보조 전자석 (수직방향 전자석)을 더 배치하고, 상기 전자석 구동부는 목표 DNA 이중나선에 대한 상기 1회 구동 후에 원형으로 배열된 전자석쌍들의 중앙부위로 자기장이 조사되도록 상기 보조 전자석을 구동시킬 수 있다.In order to reduce the non-specific modifications that can occur to the target DNA base pair hydrogen bonds to the original state by the continuous repetitive driving of the polar magnetic field for the target DNA double helix, the genetic regulator as shown in FIG. 4 is a hypothetical orthogonal to the virtual circle center. Two auxiliary electromagnets (vertical electromagnets) are further arranged on both sides of the line, and the electromagnet drive unit drives the auxiliary electromagnet so that a magnetic field is irradiated to the center of the pair of electromagnet pairs arranged in a circular shape after the single drive on the target DNA double helix. You can.
이상에서는 전자석과 전자석 구동부를 통하여 극성 자기장을 생성하는 구성에 대하여 설명하였다. 이렇게 생성된 극성 자기장을 통해 유전자가 어떻게 활성화 또는 비활성화될 수 있는지에 대해서 부연 설명한다.In the above, the structure which produces | generates a polar magnetic field through an electromagnet and an electromagnet drive part was demonstrated. The polar magnetic field thus generated explains how genes can be activated or inactivated.
도 7과 같이 입체공간에서 DNA 이중나선이 분포하는 양상은 구형좌표계(spherical coordinate system)로 분석할 수 있다. 즉, (x, y, z) = (rsinφcosθ, rsinφsinθ, rcosφ), 0≤θ≤2π, 0<φ<π, r>0. 여기서 r은 구(球)의 반지름이고, φ는 Z축으로부터 기울어진 각도이며 θ는 X축으로부터 회전한 각도이다.As shown in FIG. 7, the distribution of the DNA double helix in three-dimensional space can be analyzed by a spherical coordinate system. (X, y, z) = (rsinφcosθ, rsinφsinθ, rcosφ), 0 ≦ θ ≦ 2π, 0 <φ <π, r> 0. Where r is the radius of the sphere, φ is the angle tilted from the Z axis, and θ is the angle rotated from the X axis.
이러한 구형좌표계에서 DNA 이중나선이 Z축에 평행한 정립방향으로 위치한다고 가정할 때, DNA 이중나선이 정립위치에 있으면 XY-평면과 평행하게 조사되는 수평자기장에 대한 DNA 염기쌍 수소자기반응의 효율은 1이다. 한편, DNA 이중나선이 정립방향에서 반대로 뒤집혀 있거나 또는 XY-평면과 평행하게 위치하면 DNA 염기쌍 수소자기반응의 효율이 0이 된다. DNA 이중나선이 Z축으로부터 기울어진 각도를 φ라고 할 때, 일반적으로 DNA 염기쌍 수소자기반응의 효율은 다음의 수학식 1과 같다.Assuming that the DNA double helix is located in the upright direction parallel to the Z axis in this spherical coordinate system, the efficiency of the DNA base pair hydrophilic reaction for the horizontal magnetic field irradiated parallel to the XY-plane when the DNA double helix is in the upright position 1 On the other hand, if the DNA double helix is reversed in the upright direction or positioned parallel to the XY-plane, the efficiency of the DNA base pair hydrophilic group reaction becomes zero. When the angle of inclination of the DNA double helix from the Z axis is φ, the efficiency of the DNA base pair hydrophilic group reaction is generally expressed by Equation 1 below.
수학식 1
Figure PCTKR2012005790-appb-M000001
Equation 1
Figure PCTKR2012005790-appb-M000001
따라서, 무작위로 배열된 DNA 이중나선들이 XY-평면에 평행으로 조사되는 수평자기장에 대한 DNA 염기쌍 시뮬레이션의 최대 효율은 다음의 수학식 2와 같이 계산된다.Therefore, the maximum efficiency of the DNA base pair simulation for the horizontal magnetic field in which randomly arranged DNA double helices are irradiated parallel to the XY-plane is calculated as in Equation 2 below.
수학식 2
Figure PCTKR2012005790-appb-M000002
Equation 2
Figure PCTKR2012005790-appb-M000002
여기서, 0≤θ≤2π, 0<φ<π, r>0이다.Here, 0 ≦ θ ≦ 2π, 0 <φ <π, r> 0.
결과적으로, 상기 1회 구동이 무작위로 배열된 목표 DNA를 시뮬레이션 할 수 있는 확률은 최대 25%(=1/4)가 될 수 있다.As a result, the probability of simulating the randomly arranged target DNA can be up to 25% (= 1/4).
DNA 이중나선은 센스방향과 안티센스 방향으로 양방향 극성을 갖고 있으며, DNA 양가닥들이 염기쌍들에 의해서 하이브리드 되어 있으므로 유전자조절기에서는 목표 DNA 이중나선의 센스 가닥과 안티센스 가닥 모두에 대한 극성 자기장 또는 반극성 자기장의 시뮬레이션을 수행하는 것이 효과적일 수 있다.The DNA double helix has bidirectional polarity in the sense and antisense directions, and since both DNA strands are hybridized by base pairs, the genetic regulator has a polar or semipolar magnetic field for both the sense and antisense strands of the target DNA double helix. Performing a simulation can be effective.
전자석쌍 구동 단계에서 T(티민):A(아데닌) 염기쌍과 C(시토신):G(구아닌) 염기쌍에 대한 구동 시간을 결정하기 위하여 다음과 같은 실험을 수행하였다.In order to determine the driving time for the T (thymine): A (adenine) base pair and the C (cytosine): G (guanine) base pair in the electromagnet pair driving step, the following experiment was performed.
극성자기장의 특성을 살펴보면, 극성 자기장은 염기쌍 수소결합에서 수소원자의 양성자 스핀을 일으킬 수 있는데 양성자 스핀 현상은 자기장이 소멸되면 곧 바로 소멸된다. 그러나 양성자 스핀과 함께 생긴 외곽전자의 전자 스핀 섭동(perturbation)은 전자의 세차운동을 일으키고 이러한 외곽 전자궤도의 변화는 수소원자를 극성화 시켜서 부속되어 있는 수소 화합물의 분자극성변화로 나타나며 이는 곧바로 원래 상태로 회복되지 못하고 일정시간 지체된다.Looking at the characteristics of the polar magnetic field, the polar magnetic field can cause a proton spin of the hydrogen atoms in the base-pair hydrogen bonds, the proton spin phenomenon will disappear immediately after the magnetic field disappears. However, the electron spin perturbation of the outer electrons caused by the proton spin causes the precession of electrons, and the change of the outer electron orbit appears as the molecular polarity change of the attached hydrogen compound by polarizing the hydrogen atom, which is the original state. It can not be recovered and is delayed for some time.
실제로, 분자구조 내에서 자기장에 의해서 생긴 수소원자의 위상변화가 자기장의 소멸 직후부터 수소원자의 원래 상태로 되돌아가는 시간을 NMR 계측에서 T2 이완(relaxation) 시간으로 계측될 수 있다.In fact, the time when the phase change of the hydrogen atom caused by the magnetic field in the molecular structure returns to its original state immediately after the disappearance of the magnetic field can be measured as the T2 relaxation time in the NMR measurement.
예를 들면, 대부분이 수소결합으로 이루어져 있는 물 분자들의 T2 이완시간은 약 0.25초 (약 250msec) 정도이다. 물 분자들은 매우 불규칙한 배열을 하고 한 개의 물 분자가 2-3개의 서로 다른 물 분자들과 수소결합을 하고 있으므로 수소결합들이 서로 복합적으로 작용한다. 실제로 물의 NMR 수치는 다양한 방향으로 수소결합 되어 있는 수소원자들의 평균 T2 이완시간으로 나타나므로 자기장에 평행한 방향의 수소결합에 있는 수소원자들의 T2 이완시간은 약 250msec 보다 훨씬 증가할 수 있다.For example, the T2 relaxation time of water molecules, mostly composed of hydrogen bonds, is about 0.25 seconds (about 250 msec). The water molecules are in a very irregular arrangement, and since one water molecule has hydrogen bonds with two or three different water molecules, the hydrogen bonds act in combination. Indeed, the NMR values of water represent the mean T2 relaxation time of hydrogen atoms hydrogenated in various directions, so that the T2 relaxation time of hydrogen atoms in hydrogen bonds parallel to the magnetic field can be much higher than about 250 msec.
이에 비하여 DNA 이중나선에서는 염기쌍 수소결합이 비교적 규칙적으로 배열하고 정확하게 T:A와 C:G의 결합을 하므로 유전자조절기가 목표하는 DNA 이중나선의 T2 이완시간은 물 분자들보다 다소 증가될 것으로 추정된다.On the other hand, in DNA double helix, base pair hydrogen bonds are arranged relatively regularly and T: A and C: G are precisely bonded, so that T2 relaxation time of DNA double helix targeted by the gene regulator is expected to be slightly increased than water molecules. .
DNA 이중나선의 염기쌍 수소결합은 수용액 안에서 생길 수 있는데 수용액 상태에서 DNA 이중나선만의 T2 이완시간을 측정하는 것은 매우 어렵기 때문에 DNA 이중나선의 T2 이완시간을 물 분자들의 값보다 약간 긴 약 0.3초(약 300msec) 정도로 추정할 수 있다.Base pair hydrogen bonds of DNA double helix can occur in aqueous solution. It is very difficult to measure T2 relaxation time of DNA double helix only in aqueous solution, so the T2 relaxation time of DNA double helix is about 0.3 seconds longer than that of water molecules. (About 300 msec) can be estimated.
각 DNA 염기쌍에 대한 극성 자기장의 조사시간 주기는 DNA 이중나선에서 앞뒤의 염기서열에 대한 수소원자의 위상변화를 동시에 고려하여야 하므로 최대 조사시간 주기를 DNA 이중나선의 예상 T2 이완시간인 약 0.3초 (약 300msec)로 설정하고, 전자석 코일이 구분되는 극성 자기장을 만들 수 있는 최소 시간을 0.01초 (약 10msec)로 설정해서 각 목표 DNA 염기서열에 대하여 약 0.01-0.3초 (약 10-300msec) 정도의 조사시간 주기를 사용할 수 있다.The irradiation time period of the polar magnetic field for each DNA base pair should take into account the phase change of the hydrogen atoms for the front and back nucleotide sequences simultaneously in the DNA double helix. Therefore, the maximum irradiation time period should be approximately 0.3 seconds (the expected T2 relaxation time of the DNA double helix). About 300 msec), and the minimum time to create a polar magnetic field for the electromagnet coil to be set to 0.01 seconds (about 10 msec), and about 0.01-0.3 seconds (about 10-300 msec) for each target DNA sequence. Irradiation time periods may be used.
전자석쌍들이 배치되는 가상의 원 중심부위 또는 염기쌍의 주변에는 비자성체 금속를 포함하는 전기장 차폐막을 설치함으로써 외부로부터 유입되거나 전자석 구동부에서 생성된 전기장의 간섭을 최소화시킬 수 있다.By installing an electric field shielding film including a nonmagnetic metal on the imaginary circle center or around the base pair where the electromagnet pairs are disposed, interference of an electric field introduced from the outside or generated in the electromagnet driver may be minimized.
따라서 수소자기반응 유전자 조절기에서는 전기장(electric effect)의 효과는 상대적으로 매우 작으며 수소자기반응 유전자 조절은 주로 자기장(magnetic effect)에 의한 효과를 통해서 수행할 수 있다.Therefore, the effect of the electric field (electrical effect) is relatively small in the hydrosensor response gene regulator can be performed mainly through the effect of the magnetic field (magnetic effect).
또한, 전자석에 의해 생성된 자기장 중 외부로 산란되는 자기장을 차폐시키고, 가상의 원 밖으로부터 유입되는 전기장을 차폐시키는 전자기장 차폐막을 더 포함할 수 있다.The electronic device may further include an electromagnetic field shielding film that shields a magnetic field scattered to the outside of the magnetic field generated by the electromagnet and shields an electric field flowing from the outside of the virtual circle.
또한, 전자석 구동으로 생기는 발열을 감소시키기 위한 냉각 장치를 더 포함할 수 있다.In addition, it may further include a cooling device for reducing the heat generated by the electromagnet drive.
도 8에서는 극성 자기장이 DNA 이중나선의 염기쌍에 미치는 영향을 알기 위해서 6T6A·6T6A와 11C1A·1T11G의 올리고 DNA 이중나선을 사용하여 DNA 이중나선에 대한 극성 자기장을 실험한 결과를 나타냈다.In FIG. 8, in order to know the effect of the polar magnetic field on the base pair of the DNA double helix, the results of the experiment of the polar magnetic field with respect to the DNA double helix using oligo DNA double helix of 6T6A.6T6A and 11C1A.1T11G were shown.
6T6A·6T6A와 11C1A·1T11G에 대해 각각 두 가닥씩의 상보적인 올리고 ssDNA를 합성해서 각각 100μL 0.1M NaCl용액에 10mM씩 용해시키고 90℃에서 20분 동안 가열하여 올리고 ssDNA 가닥들의 이차구조를 풀어 헤친 다음, 약 3시간 동안 서서히 30℃ 정도로 식히면서 각각의 올리고 DNA 이중나선을 하이브리드화 시켰다.Synthesizing two complementary oligo ssDNAs for 6T6A, 6T6A and 11C1A · 1T11G, respectively, dissolved 10 mM in 100 μL 0.1M NaCl solution and heated at 90 ° C. for 20 minutes to solve the secondary structure of the oligossDNA strands. , While slowly cooling to about 30 ° C. for about 3 hours, each oligo DNA double helix was hybridized.
올리고 DNA 이중나선인 6T6A·6T6A와 11C1A·1T11G에 각각의 염기서열에 일치하는 극성 자기장을 조사하였다. 극성 자기장의 조사시간 주기는 10msec부터 90msec까지 5msec씩 증가시키면서 30분 동안 올리고 DNA 이중나선에 일치하는 극성 자기장을 조사하였다.Oligo DNA double helix 6T6A, 6T6A and 11C1A · 1T11G were irradiated with a polar magnetic field corresponding to each nucleotide sequence. The irradiation time period of the polar magnetic field was increased by 5 msec from 10 msec to 90 msec for 30 minutes, and the polar magnetic field coinciding with the oligo DNA double helix was examined.
극성 자기장 조사 후(後)에 바로 Diol 300(YMC, USA) 칼럼을 사용하는 HPLC를 통해서 올리고 DNA 이중나선을 분리하고 UV260의 흡광도를 측정해서 DNA 피크의 크기를 분석하였다.Immediately after polar magnetic field irradiation (iii), the oligo DNA double helix was separated through HPLC using a Diol 300 (YMC, USA) column, and the absorbance of UV 260 was measured to analyze the size of the DNA peak.
결과적으로 6T6A·6T6A에서는 UV260 흡광도가 10msec 조사시간 주기에서부터 점점 커져서 50msec에서 최대 UV260 흡광도를 보이고 그 후에는 감소 되었다. T:A 염기쌍들이 활성화되면 DNA 이중나선의 큰 고랑(major groove)이 커지고 작은 고랑(minor groove)이 작아져서 올리고 DNA 이중나선의 형태가 길게 펼쳐지면서 UV260 흡광도가 증가한다. 이와 관련하여 살펴보면 6T6A·6T6A는 50msec의 조사시간 주기에서 극성 자기장에 의한 DNA 이중나선의 활성화가 가장 크게 일어나는 것으로 파악될 수 있다.As a result, the UV 260 absorbance at 6T6A and 6T6A increased gradually from the 10msec irradiation time period, resulting in maximum UV 260 absorbance at 50msec and then decreasing. When the T: A base pairs are activated, the large major grooves of the DNA double helix and the small minor grooves become smaller, thus increasing the shape of the DNA double helix and increasing UV 260 absorbance. In this regard, it can be seen that 6T6A · 6T6A has the largest activation of DNA double helix due to polar magnetic field at 50msec irradiation period.
한편, 11C1A·1T11G에서는 연속되는 C:G 염기쌍에 의해서 올리고 DNA 이중나선이 4중복합체(quadruplex)를 형성하므로 DNA 이중나선의 형태를 측정하기 어렵다. DNA 이중나선에서 동일한 C:G 염기쌍들이 활성화되면 DNA 이중나선의 작은 고랑이 커지고 큰 고랑이 작아지는 경향을 보이므로 DNA 이중나선의 큰 고랑과 작은 고랑의 크기 차이가 작아짐에 따라 DNA 이중나선의 굽힘성이 증가된다.On the other hand, in 11C1A.1T11G, since the oligo DNA double helix forms a quadruplex by successive C: G base pairs, it is difficult to measure the shape of the DNA double helix. When the same C: G base pairs are activated in the DNA double helix, the small double furrows of the DNA double helix tend to become larger and the larger furrows become smaller, so the DNA double helix bends as the size difference between the large and small furrows of the DNA double helix decreases. Sex is increased.
11C1A·1T11G에 극성 자기장을 조사한 경우에는 UV260 흡광도가 10msec 조사시간 주기에서부터 점점 커져서 80msec에서 최대 UV260 흡광도를 보이고 그 후에는 감소되었다. 이는 11C1A·1T11G에서 극성 자기장에 의해서 염기쌍들이 활성화되어 4중복합체 형성을 감소시키는 효과가 80msec의 조사시간 주기에서 가장 크게 나타난 것으로 파악될 수 있다.When the polar magnetic field was irradiated to 11C1A.1T11G, the UV 260 absorbance gradually increased from the 10 msec irradiation time period, and the maximum UV 260 absorbance was decreased after 80 msec. This can be seen that the base pair is activated by the polar magnetic field in 11C1A.1T11G to reduce the quadruple formation in the 80msec irradiation time period.
이상의 내용을 살펴보면, 목표 DNA 염기쌍에 작용하는 자기장 조사시간 주기를 위한 실험에서 T:A 염기쌍과 C:G 염기쌍의 자기장 조사시간 주기의 비율이 약 1/2 ~ 3/4 정도로 서로 차이가 날 수 있다.As described above, in the experiment for the magnetic field irradiation time period acting on the target DNA base pair, the ratio of the magnetic field irradiation time periods of the T: A base pair and the C: G base pair may be about 1/2 to 3/4. have.
예를 들면, 올리고 DNA 이중나선을 위한 유전자조절 작용을 위해서는 도 8의 그래프를 참조하여 T:A 염기쌍은 대략 30~60msec 정도의 극성 자기장 조사시간 주기를 임의로 선택하여 사용하고 C:G 염기쌍은 대략 60~90msec 정도의 극성 자기장 조사시간 주기를 임의로 선택하여 사용할 수 있다.For example, for the gene regulation action for oligo DNA double helix, T: A base pair is arbitrarily selected using a polar magnetic field irradiation time period of about 30-60 msec and C: G base pair is approximately. The polar magnetic field irradiation time period of about 60 ~ 90msec can be selected arbitrarily.
정리하면, DNA 이중나선의 중심부에 규칙적으로 배열되어 있는 염기쌍들의 수소결합력의 크기를 변화시킴으로써 DNA 이중나선의 구조와 기능을 조절할 수 있으며 이에 해당되는 유전자를 활성화 또는 비활성화시킬 수 있다.In summary, the structure and function of the DNA double helix can be regulated by activating the magnitude of the hydrogen bonding force of the base pairs regularly arranged in the center of the DNA double helix, and the corresponding gene can be activated or inactivated.
유전자조절기를 목표 DNA에 적용할 경우, 목표 DNA의 현재 위치와 방향을 예측하기가 어려우므로 극성 자기장이 DNA들에 비특이적으로 작용할 수 있다.When a gene regulator is applied to a target DNA, it is difficult to predict the current position and orientation of the target DNA, so a polar magnetic field may act nonspecifically to the DNAs.
실제로, 목표 DNA 코드에 대한 극성 자기장이 다른 DNA 코드에 비특이적으로 작용할 수 있고 전자석을 형성하는 코일에서 비특이적인 자기장이 발생될 수 있다.Indeed, the polar magnetic field for the target DNA code can act nonspecifically on other DNA codes and a nonspecific magnetic field can be generated in the coils that form the electromagnets.
이로 인하여 유전자의 활성화가 억제되는 효과가 상존할 것으로 우려하였으나, 실제로 반복된 다양한 실험들에서 목표 DNA에 대한 반복적인 극성 자기장 조사에 의해서 축적된 유전자조절 효과를 확인할 수 있었다.Because of this, there was a concern that the effect of inhibiting gene activation would remain, but in practice, various repeated experiments could confirm the gene regulation effect accumulated by repeated polar magnetic field irradiation on the target DNA.
다음의 실험들에서 본 발명의 유전자조절을 통하여 목표하는 DNA의 기능이 활성화되었음을 간단히 설명할 수 있다.In the following experiments it can be briefly explained that the function of the target DNA is activated through the gene regulation of the present invention.
도 9는 프라스미드 DNA인 pBluescript SK(-)를 DNA 제한효소인 XhoI으로 절단할 때 유전자조절 작용이 미치는 영향을 알기 위한 실험을 수행하였다.Figure 9 was carried out experiments to determine the effect of the gene regulatory action when cleaving the pBluescript SK (-), a plasmid DNA with XhoI DNA restriction enzyme.
pBluescript SK(-)를 완충액 내에서 XhoI 효소를 반응시키면서 XhoI의 부착 염기서열인 CTCGAG를 사용하는 유전자조절을 수행하였다. 이에 비해서 양성 대조군으로는 XhoI의 부착 염기서열과 관련이 없는 ACGTAC 염기서열을 사용한 유전자조절을 수행하였으며 음성 대조군에서는 전혀 유전자조절을 수행하지 않았다.pBluescript SK (-) was reacted with a XhoI enzyme in a buffer, and gene regulation using CTCGAG, which is an attachment sequence of XhoI, was performed. On the other hand, as a positive control, gene regulation using ACGTAC sequence not related to XhoI attachment sequence was performed, but no gene control was performed at all in the negative control group.
실험 후에 아가로즈 젤을 사용해서 전기영동 시켜서 ethidium bromide의 형광발색 반응으로 절단된 DNA 밴드를 확인하였다. 특히. DNA에 ethidium bromide 가 부착할 때 비특이적인 반응에 의한 오차를 감별하기 위해서 DNA를 전기영동 하기 전(前)과 전기영동 한 후에 각각 염색하여 비교 관찰하였다(도 9a).After the experiment, electrophoresis was performed using an agarose gel to confirm the cleaved DNA band by fluorescence reaction of ethidium bromide. Especially. When ethidium bromide is attached to the DNA, staining was observed before and after electrophoresis of DNA to discriminate errors due to nonspecific reactions (Fig. 9a).
결과적으로, 도 9a에서 보이듯이 XhoI 부착 염기서열인 CTCGAG를 사용해서 유전자조절 (HMR-GR)을 수행한 경우에 무작위 염기서열인 ACGTAC를 사용해서 유전자조절을 수행한 경우나 전혀 유전자조절을 하지 않은 경우들에 비해서 절단된 DNA 밴드가 현저하게 크게 나타났다.As a result, as shown in FIG. 9A, when gene regulation (HMR-GR) was performed using CTCGAG, which is an XhoI attachment base sequence, gene regulation was performed using ACGTAC, which is a random sequence, or no gene regulation was performed. Compared to the cases, the cleaved DNA bands were markedly larger.
한편, DNA 제한효소가 프라스미드 DNA를 자를 때 생긴 선상의 풀어진 DNA는 원형으로 꼬인 DNA에 비해서 자외선 스펙트럼의 흡광도(OD260)가 커지는 현상을 이용해서 DNA 제한효소의 프라스미드 DNA 절단효과를 HPLC로 정량분석 하였다.On the other hand, the loose DNA produced when DNA restriction enzyme cuts the plasmid DNA has a higher absorbance (OD 260 ) in the ultraviolet spectrum than the twisted DNA. Quantitative analysis.
도 9b는 DNA 제한효소가 프라스미드 DNA를 자를 때 생기는 자외선 스펙트럼의 흡광도(OD260) 증가 현상을 HPLC로 분석한 표준 증가양상을 나타내고, 도 9c는 본 실험의 도 9a의 실험에서 제한효소 반응 후에 10분 간격으로 얻은 표본을 HPLC로 분석한 결과 XhoI 부착 염기서열인 CTCGAG를 사용해서 유전자조절 (HMR-GR)을 수행한 경우에 무작위 염기서열인 ACGTAC를 사용해서 유전자조절을 수행한 경우나 전혀 유전자조절을 하지 않은 경우들에 비해서 DNA 절단 효과가 더 신속하고 크게 나타났다.Figure 9b shows the standard increase pattern by HPLC analysis of the increase in absorbance (OD 260 ) of the ultraviolet spectrum generated when the DNA restriction enzyme cut the plasmid DNA, Figure 9c shows the restriction enzyme reaction in the experiment of Figure 9a of this experiment HPLC analysis of samples obtained at 10-minute intervals revealed that gene regulation (HMR-GR) was performed using CTCGAG, an XhoI-attached base sequence, or gene regulation was performed using ACGTAC, a random sequence. The DNA cleavage effect was faster and larger than in unregulated cases.
도 10에서는 생물체에 생긴 암세포들을 본 발명의 유전자조절기를 통해 관련되는 다수의 암억제 유전자들을 활성화, 즉 발현을 증가시키고, 암세포에 대한 세포자멸사 관련 유전자의 발현을 증가시킴으로써 암세포의 성장을 억제하고 암세포들의 세포자멸사를 유도시킴으로써 암치료 효과를 얻는 것에 대한 동물실험을 수행하였다.In FIG. 10, cancer cells generated in living organisms are inhibited by activating a plurality of cancer suppressor genes involved in the gene regulator of the present invention, ie, increasing expression, and inhibiting the growth of cancer cells by increasing the expression of apoptosis-related genes for cancer cells. Animal experiments were conducted on obtaining cancer treatment effects by inducing their apoptosis.
구체적으로 누드생쥐에 이식한 사람의 전립선암에 대한 항암치료를 수행하였다. 사람의 전립선 암종(DU145, ATCC)을 누드 생쥐에 이식한 후 암덩어리가 자라서 크기가 약 5mm, 10mm, 20mm 정도 된 경우에 각각 유전자조절기로 항암유전자 치료를 수행하였다. 유전자 치료에 사용된 목표 DNA는 사람의 p53, BAX, NOXA, TGFβ, 그리고 PTEN으로 각각 특징적인 항암 유전자들이다.Specifically, chemotherapy was performed for prostate cancer in humans transplanted into nude mice. Human prostate carcinoma (DU145, ATCC) was implanted in nude mice, and when cancer masses grew to about 5 mm, 10 mm and 20 mm in size, chemotherapy was performed with gene regulators, respectively. The target DNA used for gene therapy is human p53, BAX, NOXA, TGFβ, and PTEN.
p53은 암세포의 증식을 억제시키고 BAX와 NOXA는 암세포를 세포자멸사 시키는 항암유전자이다. TGFβ는 암세포의 세포분화를 촉진시켜서 암화를 억제시킬 수 있고, PTEN은 신호전달체계를 조절하는 강력한 항암 유전자이다.p53 is an anticancer gene that inhibits the proliferation of cancer cells and BAX and NOXA apoptosis cancer cells. TGFβ can inhibit canceration by promoting cell differentiation of cancer cells, and PTEN is a potent anticancer gene that regulates the signaling system.
GenBank Database를 검색하여 각각의 목표 DNA의 프로모터 부위 약 2000bps를 얻었으며 주요한 전사인자 부착 도메인의 염기서열을 찾아서 약 30-50bps의 목표 DNA 염기서열을 사용하여 유전자 치료를 수행하였다.The genBank database was searched to obtain about 2000bps of the promoter region of each target DNA, and the gene sequence was performed using a target DNA sequence of about 30-50bps.
대체로 단일 유전자의 프로모터 부위에서 3-5 곳의 전사인자 부착 도메인들이 발견되었으며 각각의 유전자들에서 목표 DNA 염기서열들을 순서대로 순환하여 유전자조절기를 적용하였다.Generally, 3-5 transcription factor attachment domains were found at the promoter region of a single gene, and gene regulators were applied by circulating the target DNA sequences in each gene in order.
누드마우스는 통상적인 방법으로 무균 휠터 사육상자에서 사육하였으며 지름이 8cm 정도되는 플라스틱 원형 통에 넣고 보조 전자석(150)까지 포함하는 유전자조절기를 사용하였다.Nude mice were bred in a sterile filter breeding box in a conventional manner, and put into a plastic round barrel having a diameter of about 8cm and used a genetic regulator including up to an auxiliary electromagnet (150).
플라스틱 통에서 누드마우스가 자주 움직여서 암덩어리가 전자석이 배열된 가상의 원 중심에 누드마우스가 위치하지 않는 경우가 많으므로 극성 자기장 전체 조사시간을 비교적 장시간 유지하였다. 즉, 하루에 약 6-8 시간 동안 유전자조절기를 구동하였으며 약 10일 후에 암덩어리를 적출해서 조직학적인 관찰을 수행하였다.Nude mice are frequently moved in plastic barrels, so the nuds are not located in the center of the virtual circle where the lumps of electromagnets are arranged. That is, the gene regulator was driven for about 6-8 hours a day, and after about 10 days, the mass was extracted and histological observations were performed.
결과적으로 10일 동안 BAX와 NOXA 유전자를 목표 DNA로 하여 극성 자기장을 적용한 후의 육안관찰에서 극성 자기장(polarized magnetic field, PMF)를 조사한 누드마우스에서 다른 누드마우스들에 비해 암덩어리의 크기가 현저하게 감소되었다.As a result, the nucleus size was significantly reduced in the nude mouse irradiated with the polarized magnetic field (PMF) after visual observation after applying the polar magnetic field using the BAX and NOXA genes as target DNA for 10 days. It became.
도 10은 사람의 전립선 암종을 누드마우스 등의 피하에 이식한 후에 지름이 약 3mm가 되어 암덩어리가 육안으로 확인된 초기의 암종으로서 유전자조절기를 적용한 실험결과를 나타낸 개략도이다.Figure 10 is a schematic diagram showing the experimental results of applying a gene regulator as the initial carcinoma of humans with a diameter of about 3 mm and the mass of the prostate carcinoma after implantation of human prostate carcinoma subcutaneously, such as nude mice.
누드 생쥐에서 암종의 크기가 지름이 약 5mm 정도인 경우에는 암종의 크기가 1/3 정도로 감소되었다. 조직검사에서 암종이 대부분 소멸되었고 섬유성 반흔조직 내에 일부의 암세포들이 흩어져 있었고 암세포의 세포악성의 특징이 사라지고 암세포들이 단일한 형태의 양성을 보였다 (도 10 내지 도 12).In nude mice, when the size of the carcinoma was about 5 mm in diameter, the size of the carcinoma was reduced to about one-third. In the biopsy, most of the carcinomas disappeared, some cancer cells were scattered in the fibrous scar tissue, and the cell malignant characteristics of the cancer cells disappeared and the cancer cells showed a single positive form (FIGS. 10 to 12).
적출된 암덩어리를 절반으로 자른 후에 조직표본을 제작하여 현미경 관찰하였는데 저배율에서 무작위 자기장(random sequence GR)을 조사한 경우에는 암덩어리 안에 암세포들로 가득 채워져 있었는데 반극성 자기장(reverse PMF GR)을 조사한 경우에는 암덩어리 안에 들어 있는 암세포의 수가 상당히 감소되어 있었으며 극성 자기장(PMF GR)을 조사한 경우에는 암덩어리가 거의 소멸되어 섬유성 육아조직으로 대체되면서 일부 남아 있는 암세포들이 중앙에 모여 있었다.Tissue specimens were cut and cut in half, and the specimens were prepared and examined under a microscope. When the random sequence GR was irradiated at low magnification, the cancer mass was filled with cancer cells, but the reverse PMF GR was examined. There was a significant reduction in the number of cancer cells in the mass, and when the polar magnetic field (PMF GR) was examined, some of the remaining cancer cells gathered in the center as the mass was almost extinguished and replaced with fibrous granulation tissue.
고배율 관찰에서 무작위 자기장을 조사한 경우 암세포의 악성도가 높아서 심한 증식성과 불규칙한 핵질이 비대되어 있었다. 반극성 자기장을 조사한 경우에는 암덩어리 안에 암세포들이 혈관 주위로 잘 분포되어 있었는데 증식성이 다소 감소되었으며 부분적으로 세포자멸사 양상이 증가하였다. 이에 비하여, 극성 자기장을 조사한 경우에는 남아있는 암세포들의 악성도가 거의 사라지고 오히려 양성 종양세포처럼 단조로운 핵 모양과 고른 핵질의 분포를 보였다.In the high magnification observation, the random magnetic field was highly malignant in cancer cells, causing severe proliferation and irregular nuclei. In the case of the antipolar magnetic field, the cancer cells were well distributed around the blood vessels in the mass, but the proliferation was slightly decreased, and the apoptosis was partially increased. On the contrary, when the polar magnetic field was examined, the malignancy of the remaining cancer cells was almost disappeared, but rather, the mononuclear shape and the distribution of the nucleus were similar to those of the benign tumor cells.
이와 같은 결과들은 유전자조절기를 사용해서 BAX와 NOXA 유전자 발현을 증가, 즉 유전자를 활성화시킨 결과로 누드마우스에 이식한 사람의 전립선 암세포들의 세포자멸사가 증가되어 암덩어리의 크기가 크게 작아지고 암세포의 악성도가 소멸되었음을 의미한다.These results suggest that the use of a gene regulator increases BAX and NOXA gene expression, that is, the activation of the gene results in increased apoptosis of prostate cancer cells in humans transplanted into nude mice, resulting in significantly smaller cancer masses and malignant cancer cells. Means that the road has been destroyed.
도 11은 누드마우스에 이식된 사람의 전립선 암종의 직경이 약 1cm 정도의 크기로 자란 중기(中期)의 암종에 대하여 무작위 자기장(random GR), 반극성 자기장(reverse PMF), 그리고 극성 자기장(PMF) 조사군들로 나누어 실험을 진행한 결과를 나타낸 개략도이다.Figure 11 shows random GR, reverse PMF, and polar magnetic field (PMF) for mid-term carcinomas of about 1 cm in diameter in human prostate carcinomas implanted in nude mice. ) Schematic diagram showing the results of experiments divided into groups.
도 11의 실험에서는 p53과 BAX 그리고 NOXA를 목표 유전자로 선택하였으며 유전자조절기를 하루에 약 6-8시간 동안 구동하였으며 4주 동안 실험을 지속한 후에 암덩어리를 적출해서 면역조직화학 염색을 통해서 유전물질 발현을 검색하였다.In the experiment of FIG. 11, p53, BAX, and NOXA were selected as target genes, and the gene regulator was driven for about 6-8 hours per day. After continuing the experiment for 4 weeks, the mass was extracted and the genetic material was obtained through immunohistochemical staining. Expression was searched.
결과적으로 4주 동안의 실험 후에 무작위 자기장을 조사한 경우에는 암덩어리의 직경이 2cm 이상으로 커졌으며 암덩어리 모양이 울퉁불퉁해졌고 암덩어리의 과다증식으로 누드마우스가 허약해지고 몸이 크게 수척해졌다.As a result, when the random magnetic field was examined after 4 weeks of experiment, the diameter of the mass was increased to 2 cm or more, the shape of the mass was lumpy, and the overgrowth of the mass was weakened by the nude mouse and greatly prevailed.
반극성 자기장을 조사한 누드마우스의 암덩어리가 크게 증가하지는 않았으나 암덩어리의 증식형태가 비대칭형으로 나타났다.The nucleus of the nude mouse irradiated with the semipolar magnetic field did not increase significantly, but the proliferation of the mass was asymmetric.
반면에 극성 자기장을 조사한 경우에는 암덩어리의 크기가 직경이 5mm 정도로 작아졌으며 암덩어리가 흑적색으로 변하고 낭종성으로 부드러운 탄력성을 보이며 주로 용액으로 채워져 있었다.On the other hand, when the polar magnetic field was irradiated, the size of the rock mass was reduced to 5 mm in diameter, and the rock mass turned black and red, and the cyst showed soft elasticity.
적출된 암덩어리의 조직소견에서 무작위 자기장을 조사한 경우에는 증식성이 심한 악성의 암세포들이 채워져 있었다. 반극성 자기장을 조사한 경우에는 암조직 내에 부분적으로 세포자멸사에 의한 괴사현상이 자주 관찰되었으며 악성도가 있는 암세포들이 흔하게 관찰되었다.The random magnetic field of the extracted cancer mass was filled with highly proliferative malignant cancer cells. In the case of semipolar magnetic field, necrosis by partial apoptosis was frequently observed in cancer tissues, and malignant cancer cells were frequently observed.
이에 비하여 극성 자기장을 조사한 경우에는 암조직 내에 다수의 암세포들이 세포자멸사에 의해 소멸되면서 다수의 미세 낭종들을 만들었으며 미세 낭종들이 합해져서 점차로 커다란 낭종화가 생겼으며, 암세포들은 주로 일정한 형태의 둥근 핵 모양을 보이면서 형태학적으로 악성도가 낮아지고 양성 종양세포와 비슷해지는 경향이 뚜렷했다.On the other hand, when irradiated with a polar magnetic field, a large number of microcysts were formed as a large number of cancer cells disappeared by apoptosis, and microcysts merged to form a large cyst gradually. There was a clear morphologically low malignancy and a tendency to resemble benign tumor cells.
PCNA, p53, BAX, NOXA, 그리고 PARP의 면역조직화학 염색에서 무작위 자기장과 반극성 자기장 또는 극성 자기장 조사의 경우들에서 양성반응의 양상이 서로 다르게 나타났다. 무작위 자기장을 조사한 경우에 비해서 반극성 자기장을 조사한 경우에는 암조직 내부에서 세포자멸사 현상으로 괴사되는 부위의 암세포들에서 p53, BAX, NOXA, 그리고 PARP의 양성반응이 증가되었다. 그리고 극성 자기장을 조사한 경우에는 암조직 내부에서 다발성으로 세포자멸사 되면서 낭종성 변성을 일으키는 부위의 암세포들에서 p53, BAX, NOXA, 그리고 PARP의 양성반응이 강하게 관찰되었다.Immunohistochemical staining of PCNA, p53, BAX, NOXA, and PARP showed positive responses in random and semipolar or polar magnetic fields. Compared to the random magnetic field, the positive polarity of p53, BAX, NOXA, and PARP was increased in the cancer cells in the site of necrosis caused by apoptosis. In the case of the polar magnetic field, p53, BAX, NOXA, and PARP were positively detected in the cancer cells of the cystic degeneration site with multiple apoptosis inside the cancer tissue.
그러므로 유전자조절기에 의한 극성 자기장을 사용하면 p53, BAX, NOXA 등의 유전자발현이 증가됨을 확인할 수 있다. 그 결과 누드마우스에 이식한 사람의 전립선 암종의 증식이 억제되고 암세포가 세포자멸사 되는 현상이 뚜렷하게 나타났다.Therefore, using a polar magnetic field by the gene regulator can be confirmed that the gene expression of p53, BAX, NOXA, etc. is increased. As a result, the proliferation of prostate carcinoma of human transplanted to nude mouse was inhibited and the cancer cell apoptosis was clearly observed.
또한 면역조직화학 염색에서 무작위 자기장과 반극성 자기장을 조사한 경우들에 비해 극성 자기장을 조사한 경우에서 p53, BAX, NOXA의 양성반응이 강하게 나타나므로 이는 극성 자기장에 의해서 p53/BAX/NOXA의 암세포 증식 억제 신호전달경로가 활성화된 것으로 판단된다.In addition, the positive response of p53, BAX, and NOXA was stronger in the immunohistochemical staining than in the case of random and semipolar magnetic fields, which suppressed the growth of p53 / BAX / NOXA cancer cells. It is determined that the signaling pathway is activated.
도 12는 사람의 전립선 암세포(DU-145)를 누드마우스의 어깨 피하조직에 이식하여 생긴 직경이 약 2cm 정도로 크게 자란 말기의 암 덩어리를 대상으로 유전자조절기를 적용한 상태를 나타낸 개략도이다.Figure 12 is a schematic diagram showing a state in which a gene regulator is applied to a terminal cancer mass grown to a diameter of about 2 cm large by implanting human prostate cancer cells (DU-145) into the shoulder subcutaneous tissue of nude mice.
사람의 항암 유전자로 알려진 p53, BAX, NOXA, PTEN 유전자들의 유전물질의 발현을 증가시킨 결과 약 2개월 후에 암 덩어리의 크기가 지름이 약 5mm 이하로 작아지고 약 3개월 후에는 반흔상의 조직을 남기고 암세포들이 거의 소멸되었다.Increased expression of the genetic material of the p53, BAX, NOXA, and PTEN genes, known as human anticancer genes, resulted in a small cancer mass of less than about 5 mm in diameter after about two months and scar tissue after about three months. Cancer cells are almost gone.
도 13은 본 발명의 유전자조절 방법을 나타낸 흐름도이다. 도 13에 도시된 유전자조절 방법은 도 5에 도시된 유전자조절기, 특히 전자석 구동부의 동작으로서 설명될 수 있다.Figure 13 is a flow chart showing the gene regulation method of the present invention. The gene regulation method shown in FIG. 13 can be described as the operation of the gene regulator shown in FIG. 5, in particular the electromagnet drive.
도 13에 개시된 구동 단계(S 520)는 DNA 이중나선의 센스 가닥 염기서열의 극성에 따라 극성 자기장 또는 반극성 자기장을 사용해서 반시계방향으로 염기서열 순서대로 구동하고 (S 520), 센스 가닥 염기서열에 대한 구동이 완료 시점부터 안티센스 가닥의 염기서열의 극성에 따라 극성 자기장 또는 반극성 자기장을 사용해서 시계방향으로 염기서열 순서대로 구동하는 역구동 단계(S 530)를 더 포함해서 목표 DNA 이중나선에 대한 1회전 구동이 완료되는 단계를 포함할 수 있다.The driving step disclosed in FIG. 13 (S 520) is driven in a sequential order in a counterclockwise direction using a polar magnetic field or a semipolar magnetic field according to the polarity of the sense strand base sequence of the DNA double helix (S 520), and the sense strand base The target DNA double helix further includes a reverse driving step (S 530) which is driven in sequence in the clockwise direction using a polar magnetic field or a semipolar magnetic field according to the polarity of the base sequence of the antisense strand from the completion of driving of the sequence. It may include the step of completing the one-turn drive for.
상기 1회 구동은 일정시간 반복할 수 있고 1회 구동의 반복이 완료되면, 구동 단계(S 520)에서의 구동 개시 전자석에 반시계방향으로 인접한 전자석을 새로운 구동 개시 전자석으로 하여 구동 단계(S 520)와 역구동 단계(S 530)를 전자석쌍의 수만큼 반복하는 단계(S 540)를 더 포함할 수 있다.The one-time driving may be repeated for a predetermined time, and when the one-time driving repeat is completed, the driving step (S520) using an electromagnet adjacent to the driving start electromagnet in the driving step (S520) as a new driving start electromagnet. ) And repeating the reverse driving step (S 530) by the number of electromagnet pairs (S 540).
이때, 상기 구동 단계 이전에, 상기 극성 자기장과 반극성 자기장에서 하나를 선택하고, 상기 센스 가닥과 안티센스 가닥 중에서 하나 또는 양쪽 모두를 선택하는 선택 단계(S 510)를 더 포함할 수 있다. 이때의 선택 단계에서 1회 구동의 반복 회수나 구동 시간 등이 추가로 선택될 수 있다.In this case, before the driving step, a selection step of selecting one of the polar magnetic field and the semi-polar magnetic field, and one or both of the sense strand and the antisense strand may be further included. In the selection step at this time, the number of repetitions or the driving time of one driving may be further selected.
실제로 입체공간에서 목표 DNA가 정립방향 또는 도립방향으로 균등하게 분포하므로 S520 구동 단계에서 반시계방향 또는 시계방향을 모두 선택할 수 있다. 단, S530 구동 단계에서는 S520 구동 단계의 반대방향을 선택하여야 한다.In fact, since the target DNA is uniformly distributed in the upright or inverted direction in the three-dimensional space, it is possible to select both the counterclockwise or clockwise direction in the S520 driving step. However, in the S530 driving step, the opposite direction of the S520 driving step should be selected.
도 13에서 개시된 구동 단계 [S510-(S520-반복-S530)-S540]는 하나의 목표 DNA에 대한 방법이며, 목표 DNA가 다수인 경우에는 각각의 상기 1회 구동을 위해서 상기의 구동 단계를 처음부터 다시 반복할 수 있다.The driving step [S510- (S520-Repeat-S530) -S540] disclosed in FIG. 13 is a method for one target DNA, and when the target DNA is plural, the driving step is first performed for each one driving. Can be repeated again.
한편, 이상에 개시된 유전자조절 방법은 컴퓨터로 읽을 수 있는 매체를 통해서 프로그램으로 기록될 수 있다.On the other hand, the gene control method disclosed above can be recorded as a program through a computer-readable medium.
한편, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.On the other hand, those skilled in the art will appreciate that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. Therefore, the embodiments described above are to be understood as illustrative and not restrictive in all aspects. The scope of the present invention is shown by the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.
본 발명의 유전자조절기는 수소결합을 포함하는 DNA/RNA로 구성되는 생물들의 각종 유전자를 활성화 또는 비활성화시키는 장치에 적용될 수 있다. 특히, 암 등의 각종 악성 종양처치, 줄기세포 처치, 및 내분비 유전물질 조절 등에 이용될 수 있다.The gene regulator of the present invention can be applied to a device for activating or deactivating various genes of organisms composed of DNA / RNA including hydrogen bonds. In particular, it can be used to treat various malignancies such as cancer, stem cell treatment, and endocrine genetic material control.
더욱이 본 발명에 의한 목표 DNA의 활성화는 화학적 작용과는 무관하므로 작용기전에 직접적인 관련성이 적은 각종 약물이나 물리화학적 방법들과 병행하여 적용할 수 있다.Furthermore, since activation of the target DNA according to the present invention is independent of chemical action, it can be applied in parallel with various drugs or physicochemical methods that have little direct relation to the mechanism of action.
유전자조절 방법의 적용시에는 유전자변이를 일으킬 가능성이 매우 낮으므로 안전하게 사용할 수 있으며, 물체에 대한 투과성이 높은 자기장을 이용하므로 목표 부위의 접근이 용이하고 비파괴적이어서 비교적 다양하고 광범위하게 사용할 수 있다.When the gene regulation method is applied, it is very unlikely to cause genetic mutations, so it can be used safely. Since the magnetic field having high permeability to the object is used, the target site is easily accessible and non-destructive, so it can be used in a variety of ways and widely.

Claims (20)

  1. 가상의 원 상에 배열되는 복수의 전자석; 및A plurality of electromagnets arranged on an imaginary circle; And
    목표 DNA 이중나선의 염기쌍에 대응되는 자기장이 생성되는 극성으로 상기 전자석을 구동시키는 전자석 구동부;An electromagnet driver for driving the electromagnet with a polarity in which a magnetic field corresponding to a base pair of a target DNA double helix is generated;
    를 포함하는 수소자기반응 유전자조절기.Susugi reaction gene regulator comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 전자석에서 생성된 자기장이 제1 극에서 제2 극으로 진행할 때 상기 염기쌍에 대응되는 자기장은,When the magnetic field generated in the electromagnet proceeds from the first pole to the second pole, the magnetic field corresponding to the base pair is
    상기 염기쌍을 구성하는 피리미딘 계열이 제1 극 측에 있고 퓨린 계열이 제2 극 측에 있을 때 상기 염기쌍이 받는 극성 자기장이거나,A polar magnetic field received by the base pair when the pyrimidine series constituting the base pair is on the first pole side and the purine series is on the second pole side, or
    상기 염기쌍을 구성하는 퓨린 계열이 제1 극 측에 있고 피리미딘 계열이 제2 극 측에 있을 때 상기 염기쌍이 받는 반극성 자기장인 수소자기반응 유전자조절기.A hydrophobic response gene regulator which is a semipolar magnetic field received when the purine series constituting the base pair is on the first pole side and the pyrimidine series is on the second pole side.
  3. 제1항에 있어서,The method of claim 1,
    상기 전자석 구동부는 상기 염기쌍을 구성하는 센스 가닥 또는 안티센스 가닥의 염기서열에 따라 상기 전자석을 순차적으로 구동시키는 수소자기반응 유전자조절기.The electromagnet driving unit is a hydrophilic reaction gene regulator for sequentially driving the electromagnet according to the base sequence of the sense strand or antisense strand constituting the base pair.
  4. 제1항에 있어서,The method of claim 1,
    상기 전자석은 짝수개로 배열되고,The electromagnets are arranged in an even number,
    상기 전자석 구동부는 상기 염기쌍의 염기서열에 따라 상기 전자석 중 마주보는 전자석쌍을 순차적으로 구동시켜 상기 목표 DNA 이중나선의 염기쌍에 대응되는 자기장을 생성하는 수소자기반응 유전자 조절기.The electromagnet driver generates a magnetic field corresponding to the base pair of the target DNA double helix by sequentially driving optoelectronic pairs of the electromagnets according to the base sequence of the base pair.
  5. 제1항에 있어서,The method of claim 1,
    상기 전자석은 등간격으로 배열되고,The electromagnets are arranged at equal intervals,
    상기 전자석 구동부는 일시점에서 상기 전자석 중 마주보는 전자석 한쌍만을 구동시키는 것을 특징으로 하는 수소자기반응 유전자조절기.The electromagnet drive unit is a hydrophobic response gene regulator, characterized in that for driving only one pair of electromagnets of the electromagnet at a time point.
  6. 제1항에 있어서,The method of claim 1,
    상기 전자석의 구동 시간은 상기 목표 DNA 이중나선의 염기쌍에 따라 달라지는 수소자기반응 유전자조절기,The driving time of the electromagnet is a hydrophobic response gene regulator which varies depending on the base pair of the target DNA double helix,
  7. 제1항에 있어서,The method of claim 1,
    상기 전자석의 구동 시간은 10~300msec이고,The driving time of the electromagnet is 10 ~ 300msec,
    상기 염기쌍을 구성하는 C(시토신):G(구아닌) 염기쌍의 구동 시간을 기준으로 T(티민):A(아데닌) 염기쌍의 구동 시간은 1/2 ~ 3/4 비율인 수소자기반응 유전자조절기.The driving time of the T (thymine): A (adenine) base pairs based on the driving time of the C (cytosine): G (guanine) base pairs constituting the base pair is a hydrophobic response gene regulator having a ratio of 1/2 to 3/4.
  8. 제1항에 있어서,The method of claim 1,
    상기 전자석에 의해 상기 가상의 원의 중심에 형성된 자기장의 세기는 50μT ~ 1T인 수소자기반응 유전자조절기.The magnetic field response gene regulator of the magnetic field formed in the center of the imaginary circle by the electromagnet is 50μT ~ 1T.
  9. 제1항에 있어서,The method of claim 1,
    상기 전자석의 개수는 상기 목표 DNA 이중나선의 1회전 구간에 배열된 염기쌍의 개수인 수소자기반응 유전자조절기.Wherein the number of electromagnets is the number of base pairs arranged in one rotation section of the target DNA double helix.
  10. 제1항에 있어서,The method of claim 1,
    상기 전자석의 개수는 상기 목표 DNA의 형태 변화에 따라 6개 내지 14개인 수소자기반응 유전자조절기.The number of the electromagnet is 6 to 14 depending on the shape change of the target DNA hydrophilic response gene regulator.
  11. 제1항에 있어서,The method of claim 1,
    상기 염기쌍의 센스 가닥과 안티센스 가닥 중 하나를 제1 가닥으로 정의하고, 다른 하나를 제2 가닥으로 정의할 때,When defining one of the sense strand and the antisense strand of the base pair as the first strand and the other as the second strand,
    상기 전자석 구동부는,The electromagnet drive unit,
    상기 제1 가닥의 염기서열에 대응하는 자기장으로 상기 전자석을 상기 제1 가닥의 최초 염기서열부터 최종 염기서열까지 제1 방향으로 구동시키고,The electromagnet is driven in a first direction from the first base sequence to the final base sequence of the first strand by a magnetic field corresponding to the base sequence of the first strand,
    상기 제1 가닥의 최종 염기서열에 대응하여 구동된 전자석을 시작으로 하여 상기 제2 가닥의 염기서열에 대응하는 자기장으로 상기 전자석을 상기 제2 가닥의 최초 염기서열부터 최종 염기서열까지 제2 방향으로 구동시키는 수소자기반응 유전자조절기.The electromagnet is a magnetic field corresponding to the nucleotide sequence of the second strand, starting with an electromagnet driven corresponding to the final nucleotide sequence of the first strand, in the second direction from the first nucleotide sequence of the second strand to the final nucleotide sequence. Powered gene response regulator.
  12. 제1항에 있어서,The method of claim 1,
    상기 전자석 구동부는 4개 내지 100개의 상기 염기쌍에 대해 상기 전자석을 구동시키는 수소자기반응 유전자조절기.The electromagnet driving unit is a hydrophilic response gene regulator for driving the electromagnet for 4 to 100 of the base pair.
  13. 제1항에 있어서,The method of claim 1,
    상기 전자석 구동부는 상기 염기쌍에 대한 1회 구동을 설정시간만큼 반복하는 수소자기반응 유전자조절기.The electromagnet driving unit repeats the one-time driving on the base pair by a set time.
  14. 제13항에 있어서,The method of claim 13,
    상기 전자석 구동부는 상기 1회 구동을 반복하는 1사이클 구동 후에 상기 1회 구동의 구동 개시 전자석으로부터 제1 방향으로 인접하는 전자석을 새로운 구동 개시 전자석으로 하여 상기 1사이클 구동을 전자석의 개수의 절반만큼 반복하는 것을 특징으로 하는 수소자기반응 유전자조절기.The electromagnet drive unit repeats the one cycle drive by half of the number of electromagnets by using the electromagnet adjacent in the first direction as a new drive start electromagnet after the one cycle drive of repeating the first drive. Suzy reactivity gene regulator, characterized in that.
  15. 제1항에 있어서,The method of claim 1,
    상기 가상의 원 중심에 직교하는 가상의 선 양쪽에 배치되는 2개의 보조 전자석;을 포함하고,And two auxiliary electromagnets disposed on both sides of the virtual line orthogonal to the virtual circle center.
    상기 전자석 구동부는 상기 가상의 원 상에 배열된 복수의 전자석을 구동시킨 후 상기 보조 전자석을 구동시키는 수소자기반응 유전자조절기.The electromagnet driving unit is a hydrophobic response gene controller for driving the auxiliary electromagnet after driving a plurality of electromagnets arranged on the virtual circle.
  16. 제1항에 있어서,The method of claim 1,
    상기 전자석에 의해 생성된 자기장 중 외부로 산란되는 자기장을 차폐시키고, 상기 가상의 원 밖으로부터 유입되는 전기장을 차폐시키는 전자기장 차폐막;을 더 포함하는 수소자기반응 유전자조절기.And an electromagnetic field shielding film for shielding the magnetic field scattered to the outside of the magnetic field generated by the electromagnet and shielding the electric field flowing from the outside of the imaginary circle.
  17. 제1항에 있어서,The method of claim 1,
    상기 복수의 전자석에서 생성된 자기장은 상기 원의 중심에 직교하는 가상의 직선 상의 한 점에 포커싱되는 수소자기반응 유전자조절기.And a magnetic field generated by the plurality of electromagnets is focused on a point on an imaginary straight line orthogonal to the center of the circle.
  18. 제1항에 있어서,The method of claim 1,
    상기 전자석 구동부를 냉각시키는 냉각부;를 포함하는 수소자기반응 유전자조절기.A water device reaction gene regulator comprising a; cooling unit for cooling the electromagnet drive unit.
  19. 제1항에 있어서,The method of claim 1,
    상기 염기쌍의 주변에 설치되는 것으로, 외부로부터 유입되거나 상기 전자석 구동부에서 생성된 자기장을 차폐시키는 전기장 차폐막;을 포함하는 수소자기반응 유전자 조절기.And a field shielding membrane installed around the base pair and shielding the magnetic field introduced from the outside or generated by the electromagnet driving unit.
  20. 목표 DNA 이중나선의 염기쌍에 대응되는 극성 자기장 또는 반극성 자기장이 생성되는 극성으로, 가상의 원 상에 등간격으로 배열되는 짝수개의 전자석 중 마주보는 전자석쌍을 상기 목표 DNA 이중나선의 염기쌍에서 센스 가닥 또는 안티센스 가닥의 염기서열에 따라 순차적으로 구동시키는 구동 단계를 포함하는 수소자기반응 유전자조절 방법.A polarity generating a polar magnetic field or a semipolar magnetic field corresponding to the base pair of the target DNA double helix; Or a driving step of driving sequentially according to the base sequence of the antisense strand.
PCT/KR2012/005790 2011-07-19 2012-07-19 Hydrogen magnetic reaction gene regulator and gene regulating method WO2013012276A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0071392 2011-07-19
KR20110071392 2011-07-19
KR1020120078812A KR101513997B1 (en) 2012-07-19 2012-07-19 Apparatus for controlling gene expression
KR10-2012-0078812 2012-07-19

Publications (2)

Publication Number Publication Date
WO2013012276A2 true WO2013012276A2 (en) 2013-01-24
WO2013012276A3 WO2013012276A3 (en) 2013-06-13

Family

ID=47558630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005790 WO2013012276A2 (en) 2011-07-19 2012-07-19 Hydrogen magnetic reaction gene regulator and gene regulating method

Country Status (1)

Country Link
WO (1) WO2013012276A2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764473A (en) * 1983-05-13 1988-08-16 Kerforshungsanlage Julich Chamber for the treatment of cells in an electrical field
JPH0239880A (en) * 1988-07-29 1990-02-08 Shimadzu Corp Cell-treatment chamber
US5686271A (en) * 1994-06-09 1997-11-11 Gamera Bioscience Corporation Apparatus for performing magnetic cycle reaction
US5993611A (en) * 1997-09-24 1999-11-30 Sarnoff Corporation Capacitive denaturation of nucleic acid
KR100384924B1 (en) * 2000-10-12 2003-05-22 이석근 The device and method for the regulation of gene expression with cyclic electromagnetic field

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764473A (en) * 1983-05-13 1988-08-16 Kerforshungsanlage Julich Chamber for the treatment of cells in an electrical field
JPH0239880A (en) * 1988-07-29 1990-02-08 Shimadzu Corp Cell-treatment chamber
US5686271A (en) * 1994-06-09 1997-11-11 Gamera Bioscience Corporation Apparatus for performing magnetic cycle reaction
US5993611A (en) * 1997-09-24 1999-11-30 Sarnoff Corporation Capacitive denaturation of nucleic acid
KR100384924B1 (en) * 2000-10-12 2003-05-22 이석근 The device and method for the regulation of gene expression with cyclic electromagnetic field

Also Published As

Publication number Publication date
WO2013012276A3 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
Potter et al. Transfection by electroporation
Wigler et al. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor
AU2018247306B2 (en) Inducible dna binding proteins and genome perturbation tools and applications thereof
AU2016249955B2 (en) Nuclease-mediated genome editing
Navaratnam et al. Apolipoprotein B mRNA editing is associated with UV crosslinking of proteins to the editing site.
Potter et al. Transfection by electroporation
Zhang et al. PUMA is a novel target of miR-221/222 in human epithelial cancers
Alkhatib et al. The nucleosome remodeling factor
Guo et al. Optimizing conditions for calcium phosphate mediated transient transfection
Niu et al. Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker
Potter et al. Transfection by electroporation
Heiner et al. HnRNP L-mediated regulation of mammalian alternative splicing by interference with splice site recognition
Cayrou et al. Programming DNA replication origins and chromosome organization
Bonofiglio et al. Peroxisome proliferator-activated receptor g inhibits follicular and anaplastic thyroid carcinoma cells growth by upregulating p21Cip1/WAF1 gene in a Sp1-dependent manner
WO2013012276A2 (en) Hydrogen magnetic reaction gene regulator and gene regulating method
Wu et al. Conditional gene silencing via a CRISPR system in cerebellar Purkinje cells
Brizhik Biological effects of pulsating magnetic fields: role of solitons
Shukla et al. U4 small nuclear RNA can function in both the major and minor spliceosomes
Chen et al. Transcription factor HBP1: A regulator of senescence and apoptosis of preadipocytes
Lauber et al. Regulation of CYP11A gene expression in bovine ovarian granulosa cells in primary culture by cAMP and phorbol esters is conferred by a common cis-acting element
Law et al. A nuclear protein associated with human cancer cells binds preferentially to a human repetitive DNA sequence.
Ren et al. Purification and identification of a tissue-specific repressor involved in serum amyloid A1 gene expression
Nguyen et al. EXTH-45. DELTA-24-RGDOX ACTIVATION OF THE IDO-KYN-AHR CASCADE IN GLIOBLASTOMA: OLD TARGETS FOR A NEW THERAPY
WO2002091926A2 (en) Inhibitors of dna methyltransferase isoforms
KR101513997B1 (en) Apparatus for controlling gene expression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815044

Country of ref document: EP

Kind code of ref document: A2

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 10-2011-0071392

Country of ref document: KR

Date of ref document: 20140114

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

122 Ep: pct application non-entry in european phase

Ref document number: 12815044

Country of ref document: EP

Kind code of ref document: A2