WO2013012119A1 - Method for manufacturing nanofiber coated with carbon nanotube - Google Patents

Method for manufacturing nanofiber coated with carbon nanotube Download PDF

Info

Publication number
WO2013012119A1
WO2013012119A1 PCT/KR2011/006155 KR2011006155W WO2013012119A1 WO 2013012119 A1 WO2013012119 A1 WO 2013012119A1 KR 2011006155 W KR2011006155 W KR 2011006155W WO 2013012119 A1 WO2013012119 A1 WO 2013012119A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
nanofibers
carbon nanotube
tartrate
carbon
Prior art date
Application number
PCT/KR2011/006155
Other languages
French (fr)
Korean (ko)
Inventor
김해원
신원상
김광진
Original Assignee
단국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 산학협력단 filed Critical 단국대학교 산학협력단
Publication of WO2013012119A1 publication Critical patent/WO2013012119A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/47Oxides or hydroxides of elements of Groups 5 or 15 of the Periodic Table; Vanadates; Niobates; Tantalates; Arsenates; Antimonates; Bismuthates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters

Definitions

  • the present invention relates to a method for producing carbon nanotube-coated nanofibers that can be used for culturing cells.
  • a method of culturing neurites outside the living body and implanting the same may be used, wherein a support for cell culture is used for external culture.
  • carbon nanotubes have a problem in that hydrophobicity is strong. Since the polymer support used for cell culture has a biocompatibility, it is often hydrophilic. However, the hydrophilic polymer support and the hydrophobic carbon nanotube have the problem that the coating is not performed well.
  • carbon nanotube-SbF 6 used in the present invention means a material in which the carbon nanotubes and SbF 6 are bonded.
  • 1-butyl-3-methyl-imidazolium undeca fluoroantimonate [bmim] [Sb 2 F 11 ]
  • THF tetrahydrofuran
  • the solvent is not limited as long as it dissolves carbon nanotube-tartrate.
  • ethanol may be used. At this time, it is preferable to further sonicate to promote dissolution.
  • the term 'nanofiber' refers to an ultrafine fiber composed of tens to hundreds of nanometers in diameter, and generally refers to a fiber produced by electrospinning a polymer.
  • the polymer that can be used at this time may be appropriately selected according to the use of the nanofibers, for example, PLCL and the like can be used, but is not limited thereto.
  • FIG. 2 is a graph showing the cell proliferation in the nanofibers according to the incubation time.
  • the modified carbon nanotubes (carbon nanotubes-SbF 6 ) prepared in step 1 were prepared as a dispersion, and potassium sodium tartrate was added thereto, followed by stirring for 3 hours. Next, the filtrate was washed with water and ethanol to prepare carbon nanotube-tartrate.
  • PC-12 cells were cultured in DMEM medium (Dulbecco's Modified Eagle Medium; Gibco, USA) fed with 10% FBS (fetal bovine serum). When the culture was about 80%, the cells were detached with 0.05% trypsin, and then the number of cells visually confirmed by trypsin blue assay was confirmed.
  • the nanofibers of the production example without carbon nanotubes and each of the nanofibers prepared in Example were placed on a 4-well plate, and the cells were placed in DMEM medium containing 0.5% FBS. Under conditions, seeding was performed at a density of 5 ⁇ 10 3 per nanofiber. The cells were treated with 50 ng / ml NGF on the 3rd, 6th and 9th days from the seeding day.
  • CCK-8 Dojindo Molecular Technologies, Inc., Japan
  • 10 ⁇ l of CCK-8 solution was added to each well and incubated at 37 ° C. for 3 hours.
  • Absorption at 450 nm of each well was measured by a microplate reader (Molecular Devices, Sunnyvale, CA), and the results are shown in FIG. 2.
  • Figure 3 shows an image of each neurite, and it can be seen that the length of the neurite in the nanofibers prepared in the example is longer enough to be visually confirmed.
  • the average value of the longest neurites was calculated and shown in FIG. The results were expressed as mean ⁇ standard error (SE).
  • SE standard error
  • the difference between the experimental group and the control group was evaluated by one-way analysis of variance (ANOVA) and Student's t-tests using SPSS software (SPSS, version 13.0). 0.05 was evaluated as an important difference.
  • ANOVA analysis of variance
  • SPSS SPSS software

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Plasma & Fusion (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for manufacturing nanofiber coated with a carbon nanotube for introducing a hydrophilic property to the surface of the nanofiber by effectively coating the carbon nanotube on the surface of the nanofiber, and for increasing the degree of cell adhesion and cultivation by increasing the surface area.

Description

탄소나노튜브가 코팅된 나노섬유의 제조방법Manufacturing method of nanofiber coated with carbon nanotube
본 발명은 세포의 배양에 사용될 수 있는 탄소나노튜브가 코팅된 나노섬유의 제조방법에 관한 것이다.The present invention relates to a method for producing carbon nanotube-coated nanofibers that can be used for culturing cells.
신경조직의 손상을 치료하기 위해서는 신경조직의 재생이 필요한데, 이 때 중요하게 고려되는 것이 신경돌기의 재생이다. 이를 위하여 신경돌기를 생체 외부에서 배양하고 이를 이식하는 방법을 사용할 수 있는데, 이 때 외부 배양을 위해서 세포 배양을 위한 지지체가 사용된다. In order to treat the damage of the nerve tissue neural tissue regeneration, the important consideration is the regeneration of the neurite process. For this purpose, a method of culturing neurites outside the living body and implanting the same may be used, wherein a support for cell culture is used for external culture.
상기 지지체로는 고분자 지지체(polymer scaffold)가 사용될 수 있는데, 고분자 지지체는 세포의 부착 및 신경돌기의 성장에 적합하게 사용될 수 있음이 알려져 있다. 특히, 전기방사된 나노섬유 지지체(electrospun nanofibrous scaffolds)가 신경조직 재생에 사용될 수 있는 가능성이 제시되었고(Chew et al.; Adv Funct Mater 2007; 17: 1288-96), 상기 지지체가 세포의 부착을 용이하게 하고, 상기 섬유의 축을 따라 신경돌기가 성장될 수 있음 보고되고 있다((1) Lee et al.;Biomaterials 2005; 26: 1261-70, (2) Schnell et al.; Biomaterials 2007; 28: 3012-25). 또한, 상기 나노섬유의 직경이 수백 나노미터에서 수 마이크로미터인 경우, 신경돌기가 보다 효과적으로 성장한다는 것이 보고되고 있다((1) Corey et al.; Neurosci Res 1991; 30: 300-7; (2) Corey et al.; IEEE Trans Biomed Eng 1996; 43: 944-55; (3) Rajnicek et al.; J Cell Sci 289 1997; 110: 2905-13; (4) Wen et al.; J Biomed Mater Res A 2006; 76: 626-37).A polymer scaffold may be used as the support, and it is known that the polymer scaffold may be suitably used for cell attachment and growth of neurites. In particular, it has been suggested that electrospun nanofibrous scaffolds can be used for neural tissue regeneration (Chew et al .; Adv Funct Mater 2007; 17: 1288-96), which supports the attachment of cells. It has been reported that neurites can be grown along the axis of the fibers (1) Lee et al .; Biomaterials 2005; 26: 1261-70, (2) Schnell et al .; Biomaterials 2007; 28: 3012-25). In addition, it has been reported that neurites grow more effectively when the diameter of the nanofibers is from several hundred nanometers to several micrometers ((1) Corey et al .; Neurosci Res 1991; 30: 300-7; (2) Corey et al .; IEEE Trans Biomed Eng 1996; 43: 944-55; (3) Rajnicek et al .; J Cell Sci 289 1997; 110: 2905-13; (4) Wen et al .; J Biomed Mater Res A 2006; 76: 626-37).
한편, 상기 고분자 지지체에 PLCL(Poly (L-lactic acid-co-caprolactone)이 사용될 수 있는데, PLCL은 합성, 생적합성, 생분해성 공중합체로, 조직 재생을 위한 지지체로 사용될 수 있다. 또한, 탄소나노튜브는 그라핀(graphene)이 감겨있는 형태의 속이 빈 실린더 형태의 물질로서(Baughman et al.; Science 2002; 297: 787-92), 특징적인 구조, 전기적 및 기계적 특성을 가지고 있어 조직 재생에서도 많은 연구가 이루어지고 있는 물질이다. 일례로, 탄소나노튜브의 구조는 세포와 접촉시 세포의 부착과 성장을 가능하게 하는 것으로 보고되고 있다((1) Garibaldi et al.; Nanotechnology 2006; 17: 391-7; (2) Meng et al.; J Biomed Mater Res A 2006; 79: 298-306). 또한, 탄소나노튜브에서의 신경돌기의 성장 또한 보고되고 있다((1) Hu et al.; Nano Lett 2004; 4: 507-11; (2) Mattson et al.; J Mol Neurosci 2000; 14: 175-82). 탄소나노튜브는 감겨져 있는 층의 수에 따라 단일벽 탄소나노튜브, 이중벽 탄소나노튜브 또는 다중벽 탄소나노튜브로 구분될 수 있다. Meanwhile, PLCL (Polylactic Acid-co-caprolactone) may be used for the polymer support, and PLCL may be used as a support for tissue regeneration as a synthetic, biocompatible, and biodegradable copolymer. Nanotubes are hollow cylinder-like materials in which graphene is wound (Baughman et al .; Science 2002; 297: 787-92), which have characteristic structural, electrical, and mechanical properties. For example, the structure of carbon nanotubes has been reported to enable cell attachment and growth upon contact with cells (1) Garibaldi et al .; Nanotechnology 2006; 17: 391. (7) (2) Meng et al .; J Biomed Mater Res A 2006; 79: 298-306) In addition, the growth of neurites in carbon nanotubes has also been reported ((1) Hu et al .; Nano Lett 2004; 4: 507-11; (2) Mattson et al .; J Mol Neurosci 2000; 14: 175-82). Depending on the number of layers wound, it can be divided into single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes.
이에 고분자 지지체에 탄소나노튜브가 함께 포함될 경우, 특히 고분자 지지체의 표면에 탄소나노튜브를 코팅할 경우, 조직 재생에 더욱 적합하게 사용할 수 있을 것으로 기대된다. 일례로, 대한민국 등록특허 제10-0895631호 및 대한민국 등록특허 제10-0851431호에는 고분자를 전기방사하여 나노섬유를 제조하는 과정에서, 전기방사 이전에 고분자에 탄소나노튜브를 미리 혼합한 후, 이를 전기방사하여 탄소나노튜브가 포함된 고분자 지지체를 제조하는 방법을 개시하고 있다. 그러나, 이는 고분자 지지체의 표면에 코팅하는 것이 아니며, 특히 고분자에 탄소나노튜브를 혼합하는 과정에서 균일한 분산을 위하여 여러 조건이 필요하다는 문제점이 있다. 또한, 상기 방법에 의할 경우 탄소나노튜브가 표면에 코팅되는 것이 아니라 고분자 내부에 묻히기 때문에 탄소나노튜브가 지닌 뛰어난 전기적 특성 등이 감소될 수 있다는 문제점이 있다. When the carbon nanotubes are included in the polymer support, in particular, when the carbon nanotubes are coated on the surface of the polymer support, it is expected to be more suitable for tissue regeneration. For example, Republic of Korea Patent No. 10-0895631 and Republic of Korea Patent No. 10-0851431 in the process of producing nanofibers by electrospinning the polymer, before mixing the carbon nanotubes to the polymer before the electrospinning, Disclosed is a method of preparing a polymer support comprising electrospun carbon nanotubes. However, this is not a coating on the surface of the polymer support, in particular, there is a problem that various conditions are required for uniform dispersion in the process of mixing carbon nanotubes in the polymer. In addition, according to the above method, since the carbon nanotubes are not coated on the surface but buried inside the polymer, excellent electrical properties of the carbon nanotubes may be reduced.
고분자 지지체 표면에 탄소나노튜브를 코팅하기 위해서는, 고분자 지지체와 탄소나노튜브 간에 계면 상호작용이 필요하나, 실제 고분자와 탄소나노튜브 간에는 계면 상호작용이 극히 적기 때문에 코팅이 잘 되지 않는 문제점이 있다. 따라서, 고분자 지지체와 탄소나노튜브를 혼합한다고 하더라도, 탄소나노튜브는 고분자의 표면에 위치하지 않으며, 코팅이 거의 이루어지지 않는다. In order to coat the carbon nanotubes on the surface of the polymer support, an interface interaction is required between the polymer support and the carbon nanotubes, but there is a problem in that the coating is not performed well because the interface interaction between the polymer and the carbon nanotubes is very small. Therefore, even when the polymer support and the carbon nanotubes are mixed, the carbon nanotubes are not located on the surface of the polymer and the coating is hardly performed.
또한, 탄소나노튜브는 강한 응집현상이 있다. 탄소나노튜브를 코팅하기 위해서는 용매 등에 탄소나노튜브를 분산하여 사용하여야 하는데, 응집현상 때문에 탄소나노튜브가 용매에 잘 분산되지 않으며, 이에 따라 코팅이 된다하더라도 고분자 지지체의 표면이 고르게 분포하는 것이 아니라 특정 위치에만 집중적으로 코팅이 되는 경향이 있다.In addition, carbon nanotubes have a strong agglomeration phenomenon. In order to coat the carbon nanotubes, the carbon nanotubes should be dispersed and used in a solvent. However, due to the coagulation phenomenon, the carbon nanotubes are not dispersed well in the solvent. There is a tendency for the coating to concentrate only on the location.
또한, 탄소나노튜브는 소수성이 강하다는 문제점이 있다. 세포 배양에 사용되는 고분자 지지체는 생적합성을 가지므로 친수성을 띠는 경우가 많은데, 친수성의 고분자 지지체와 소수성의 탄소나노튜브가 그 성질이 반대되어 코팅이 잘 이루어지지 않는다는 문제점이 있다. In addition, carbon nanotubes have a problem in that hydrophobicity is strong. Since the polymer support used for cell culture has a biocompatibility, it is often hydrophilic. However, the hydrophilic polymer support and the hydrophobic carbon nanotube have the problem that the coating is not performed well.
이에 본 발명자는, 나노섬유의 표면에 탄소나노튜브를 코팅하는 방법을 연구하던 중, 탄소나노튜브를 이온 개질법을 이용할 경우, 탄소나노튜브를 나노섬유의 표면에 코팅할 수 있는 방법을 확인하였고, 이에 따라 제조된 나노섬유는 세포의 증식 및 신경세포의 성장에 유용하게 사용할 수 있음을 확인하고 본 발명을 완성하였다. Therefore, the inventors of the present invention, while studying a method of coating the carbon nanotubes on the surface of the nanofibers, when the carbon nanotubes using the ion reforming method, it was confirmed that the method of coating carbon nanotubes on the surface of the nanofibers, The nanofibers prepared according to the present invention have been found to be useful for the proliferation of cells and the growth of nerve cells.
본 발명은 탄소나노튜브를 나노섬유의 표면에 효과적으로 코팅시킴으로서, 이에 따라 나노섬유의 표면에 친수성을 도입하고, 또한 표면적을 넓힘으로서, 세포의 부착 및 배양 정도를 증가시킬 수 있는 탄소나노튜브가 코팅된 나노섬유의 제조방법을 제공하기 위한 것이다. The present invention effectively coated the carbon nanotubes on the surface of the nanofibers, thereby introducing hydrophilicity on the surface of the nanofibers, and also increasing the surface area, thereby coating the carbon nanotubes that can increase the degree of cell adhesion and culture. It is to provide a method for producing a nanofiber.
상기 과제를 해결하기 위하여, 본 발명은 탄소나노튜브를 1-부틸-3-메틸-이미다졸륨 운데카 플루오로안티모네이트 및 테트라하이드로퓨란과 반응시켜, 탄소나노튜브-SbF6를 제조하는 단계(단계 1); 상기 탄소나노튜브-SbF6를 포타슘 소디움 타르트레이트와 반응시켜 탄소나노튜브-타르트레이트를 제조하는 단계(단계 2); 상기 탄소나노튜브-타르트레이트를 용매에 녹여 탄소나노튜브-타르트레이트 용액을 제조하는 단계(단계 3); 및 나노섬유를 상기 탄소나노튜브-타르트레이트 용액에 침지시켜 탄소나노튜브를 나노섬유 표면에 코팅하는 단계(단계 4)를 포함하는 탄소나노튜브가 코팅된 나노섬유의 제조방법을 제공한다. In order to solve the above problems, the present invention is the step of reacting carbon nanotubes with 1-butyl-3-methyl-imidazolium undeca fluoroantimonate and tetrahydrofuran to prepare carbon nanotubes-SbF 6 (Step 1); Preparing carbon nanotube-tartrate by reacting the carbon nanotube-SbF 6 with potassium sodium tartrate (step 2); Dissolving the carbon nanotube-tartrate in a solvent to prepare a carbon nanotube-tartrate solution (step 3); And immersing the nanofibers in the carbon nanotube-tartrate solution to coat the carbon nanotubes on the surface of the nanofibers (step 4).
상기 단계 1은, 탄소나노튜브에 SbF6를 결합시키기 위한 단계로서, 탄소나노튜브를 1-부틸-3-메틸-이미다졸륨 운데카 플루오로안티모네이트와 반응시켜, 탄소나노튜브-SbF6를 제조하는 단계이다. Step 1 is a step for bonding SbF 6 to the carbon nanotubes, and reacting the carbon nanotubes with 1-butyl-3-methyl-imidazolium undeca fluoroantimonate to form carbon nanotubes-SbF 6 To prepare.
본 발명에서 사용되는 용어 '탄소나노튜브'는, 하나의 탄소원자가 3개의 다른 탄소원자와 sp2 결합을 이루고, 육각형 벌집무늬 구조를 갖고 있으며, 직경이 수 나노미터에서 수십 마이크로미터인 물질을 의미한다. 탄소나노튜브는 우수한 기계적 및 전기적 특성을 가지고 있으며, 본 발명은 나노섬유의 표면에 이러한 탄소나노튜브를 코팅하기 위한 것이다. 본 발명에 사용할 수 있는 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브 또는 다중벽 탄소나노튜브를 사용할 수 있으며, 바람직하게는 다중벽 탄소나노튜브를 사용할 수 있다.As used herein, the term 'carbon nanotube' refers to a material in which one carbon atom forms an sp2 bond with three other carbon atoms, has a hexagonal honeycomb structure, and has a diameter of several nanometers to several tens of micrometers. . Carbon nanotubes have excellent mechanical and electrical properties, and the present invention is for coating such carbon nanotubes on the surface of nanofibers. Carbon nanotubes that can be used in the present invention may be used single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes, preferably multi-walled carbon nanotubes.
본 발명에서 사용되는 용어 "탄소나노튜브-SbF6"는, 상기 탄소나노튜브와 SbF6가 결합된 물질을 의미한다. 탄소나노튜브에 SbF6를 결합시키기 위하여, 1-부틸-3-메틸-이미다졸륨 운데카 플루오로안티모네이트([bmim][Sb2F11]) 및 테트라하이드로퓨란(tetrahydrofuran; THF)를 사용하는데, 이는 루이스 산의 역할을 하고, 탄소나노튜브는 루이스 염기의 역할을 하게 되므로, 탄소나노튜브와 1-부틸-3-메틸-이미다졸륨 운데카 플루오로안티모네이트가 반응하면 SbF6가 탄소나노튜브와 결합할 수 있다. The term "carbon nanotube-SbF 6 " used in the present invention means a material in which the carbon nanotubes and SbF 6 are bonded. In order to bind SbF 6 to carbon nanotubes, 1-butyl-3-methyl-imidazolium undeca fluoroantimonate ([bmim] [Sb 2 F 11 ]) and tetrahydrofuran (THF) were added. It acts as a Lewis acid, and carbon nanotubes act as Lewis bases, so SbF 6 reacts with carbon nanotubes and 1-butyl-3-methyl-imidazolium undeca fluoroantimonate. Can be combined with carbon nanotubes.
상기 단계 1의 반응에서, 1-부틸-3-메틸-이미다졸륨 운데카 플루오로안티모네이트 및 THF는 탄소나노튜브의 C6의 몰에 대하여 각각 0.5-1.5 : 1의 몰 비로 사용하는 것이 바람직하며, 보다 바람직하게는 1 : 1의 몰 비로 사용할 수 있다. 또한, 상기 단계 1의 반응은 디클로로메탄 용매하에 수행하는 것이 바람직하다. In the reaction of step 1, 1-butyl-3-methyl-imidazolium undeca fluoroantimonate and THF is used in a molar ratio of 0.5-1.5: 1 relative to the mole of C 6 of the carbon nanotubes, respectively. It is preferable and it can use more preferably in molar ratio of 1: 1. In addition, the reaction of Step 1 is preferably carried out in a dichloromethane solvent.
상기 단계 2는, 탄소나노튜브에 타르트산을 결합시키는 반응으로서, 상기 단계 1에서 제조된 탄소나노튜브-SbF6를 포타슘 소디움 타르트레이트와 반응시켜 탄소나노튜브-타르트레이트를 제조하는 단계이다. Step 2 is a reaction of binding tartic acid to carbon nanotubes, wherein the carbon nanotube-SbF 6 prepared in step 1 is reacted with potassium sodium tartrate to prepare carbon nanotube-tartrate.
본 발명에서 사용되는 용어 "탄소나노튜브-타르트레이트"는, 탄소나노튜브와 타르트산이 결합된 물질을 의미한다. 상기 반응에 사용되는 포타슘 소디움 타르트레이트은 타르트산을 제공하기 위하여 사용되며, 탄소나노튜브에 결합된 SbF6와 이온교환이 일어나, 탄소나노튜브에 타르트산이 결합된다. 이 때, 포타슘 소디움 타르트레이트는 탄소나노튜브-SbF6의 SbF6 -의 5배 내지 15배의 당량비로 반응시키는 것이 바람직하다. As used herein, the term “carbon nanotube-tartrate” refers to a material in which carbon nanotubes and tartic acid are combined. Potassium sodium tartrate used in the reaction is used to provide tart acid, and ion exchange occurs with SbF 6 bonded to carbon nanotubes, thereby binding tartic acid to carbon nanotubes. At this time, potassium sodium tartrate is SbF 6 carbon nanotube -SbF 6 - is preferably reacted in an equivalent ratio of 5 times to 15 times.
상기 단계 2에서 탄소나노튜브-타르트레이트를 제조한 후, 추가적으로 여과, 물 및 에탄올로 세척, 및 건조하는 것이 바람직하며, 이에 따라 탄소나노튜브-타르트레이트를 고순도로 제조할 수 있다. After preparing the carbon nanotube tartrate in step 2, it is preferable to additionally filter, wash with water and ethanol, and dry, thus, can be produced in high purity carbon nanotube-tartrate.
상기 단계 3은, 나노섬유를 침지시키기 위한 탄소나노튜브-타르트레이트 용액을 제조하는 단계로서, 상기 단계 1에서 제조된 탄소나노튜브-타르트레이트를 용매에 녹여 탄소나노튜브-타르트레이트 용액을 제조하는 단계이다. Step 3 is to prepare a carbon nanotube-tartrate solution for immersing the nanofibers, dissolving the carbon nanotube-tartrate prepared in step 1 in a solvent to prepare a carbon nanotube-tartrate solution Step.
상기 용매로는 탄소나노튜브-타르트레이트를 용해시키는 것이면 제한되지 않으며, 바람직하게는 에탄올이 사용될 수 있다. 이 때, 용해를 촉진하기 위하여 추가적으로 초음파 처리하는 것이 바람직하다. The solvent is not limited as long as it dissolves carbon nanotube-tartrate. Preferably, ethanol may be used. At this time, it is preferable to further sonicate to promote dissolution.
상기 단계 4는, 나노섬유의 표면에 탄소나노튜브를 코팅하기 위한 단계로서, 나노섬유를 상기 탄소나노튜브-타르트레이트 용액에 침지시켜 탄소나노튜브를 나노섬유 표면에 코팅하는 단계이다. Step 4 is a step for coating the carbon nanotubes on the surface of the nanofibers, the step of coating the carbon nanotubes on the surface of the nanofibers by immersing the nanofibers in the carbon nanotube-tartrate solution.
본 발명에서 사용되는 용어 '나노섬유'는, 지름이 수십에서 수백 나노미터로 구성된 초극세 섬유를 의미하는 것으로, 일반적으로는 고분자를 전기방사법으로 제조한 섬유를 의미한다. 이 때 사용될 수 있는 고분자로는 나노섬유의 사용용도에 따라 적절히 선택할 수 있으며, 일례로 PLCL 등을 사용할 수 있으나 이에 한정되지 않는다. As used herein, the term 'nanofiber' refers to an ultrafine fiber composed of tens to hundreds of nanometers in diameter, and generally refers to a fiber produced by electrospinning a polymer. The polymer that can be used at this time may be appropriately selected according to the use of the nanofibers, for example, PLCL and the like can be used, but is not limited thereto.
일반적으로, 나노섬유를 탄소나노튜브가 포함된 용액에 침지시킨다 하더라도, 나노섬유와 탄소나노튜브 사이에 계면 상호작용이 약하기 때문에 탄소나노튜브를 나노섬유에 효과적으로 코팅시킬 수 없다. 그러나, 본 발명에서는 탄소나노튜브의 타르트레이트를 이용하는 것이 때문에, 나노섬유와 탄소나노튜브 사이의 계면 상호작용을 높일 수 있으며, 이에 따라 탄소나노튜브를 나노섬유에 효과적으로 코팅할 수 있다는 특징이 있다. Generally, even if the nanofibers are immersed in a solution containing carbon nanotubes, the carbon nanotubes cannot be effectively coated on the nanofibers because the interfacial interaction between the nanofibers and the carbon nanotubes is weak. However, in the present invention, since the tartrate of carbon nanotubes is used, the interfacial interaction between the nanofibers and the carbon nanotubes can be enhanced, and thus the carbon nanotubes can be effectively coated on the nanofibers.
상기 나노섬유의 침지시간은 1초 내지 60초인 것이 바람직하다. 또한, 상기 제조된 탄소나노튜브가 코팅된 나노섬유는 추가적으로 에탄올로 세척 및 건조하는 것이 바람직하다. The immersion time of the nanofibers is preferably 1 second to 60 seconds. In addition, the prepared carbon nanotube coated nanofibers are preferably washed and dried with ethanol.
상기 제조방법에 따르면, 탄소나노튜브를 나노섬유에 코팅하기 위하여 탄소나노튜브에 타르트산을 결합시키고 이를 나노섬유와 접촉시킴으로써, 탄소나노튜브를 나노섬유에 코팅시킬 수 있다는 특징이 있다. 상기 제조방법에 의하여 종래 탄소나노튜브와 나노섬유 간의 계면 상호작용이 낮아 코팅이 잘 되지 않았던 문제점을 해소할 수 있다. 또한, 코팅 시간이 수 초만으로도 가능하기 때문에 코팅시간을 획기적으로 단축시킬 수 있다는 특징이 있다. 나아가, 나노섬유의 표면에 효과적인 코팅이 가능하므로, 나노섬유에 탄소나노튜브의 기능을 도입할 수 있어, 나노섬유의 응용범위를 확장할 수 있다는 특징이 있다. According to the manufacturing method, in order to coat carbon nanotubes on the nanofibers, the carbon nanotubes may be coated on the nanofibers by combining tartic acid with the carbon nanotubes and contacting the nanofibers. By the manufacturing method, the interface interaction between the conventional carbon nanotubes and the nanofibers is low, which can solve the problem of poor coating. In addition, since the coating time is only a few seconds, the coating time can be significantly shortened. Furthermore, since an effective coating is possible on the surface of the nanofibers, the function of the carbon nanotubes can be introduced into the nanofibers, thereby extending the application range of the nanofibers.
또한, 상기 제조된 나노섬유는 세포의 부착 및 성장이 용이하다는 특징이 있다. 나노섬유는 생체의 조직구조와 유사한 네트워크망을 가지고 있어, 세포의 성장을 위한 지지체로 사용하는 경우가 많은데, 상기 제조된 나노섬유의 표면에는 탄소나노튜브가 코팅되어, 나노섬유의 표면에 친수성을 도입하고, 또한 표면적을 넓힘으로서, 세포의 부착 및 성장을 증가시킬 수 있다는 특징이 있다. 본 발명의 일 실시예에 따르면, 탄소나노튜브가 코팅된 나노섬유와 그렇지 않은 경우에 대한 세포의 부착 및 배양 정도를 비교한 결과, 탄소나노튜브가 코팅된 나노섬유가 보다 효과적임을 확인하였다. 따라서, 본 발명에 따라 제조된 탄소나노튜브가 코팅된 나노섬유는 세포의 배양에도 응용할 수 있다. In addition, the prepared nanofibers are characterized by easy attachment and growth of cells. Nanofibers have a network similar to the tissue structure of a living body, and are often used as a support for cell growth. The surface of the prepared nanofibers is coated with carbon nanotubes, and the hydrophilicity of the nanofibers is increased. By introducing and increasing the surface area, the adhesion and growth of cells can be increased. According to one embodiment of the present invention, comparing the carbon nanotubes coated nanofibers and the degree of adhesion and culture of the cells to the other case, it was confirmed that the carbon nanotubes coated nanofibers are more effective. Therefore, the nanofibers coated with carbon nanotubes prepared according to the present invention can be applied to culture of cells.
본 발명의 제조방법에 따라, 나노섬유의 표면에 탄소나노튜브가 효과적으로 코팅될 수 있으며, 이에 따라 나노섬유의 표면에 친수성을 도입하고, 또한 표면적을 넓힘으로서, 세포의 부착 및 배양 정도를 증가시킬 수 있다.According to the production method of the present invention, the carbon nanotubes can be effectively coated on the surface of the nanofibers, thereby introducing hydrophilicity to the surface of the nanofibers, and also increasing the surface area, thereby increasing the degree of cell adhesion and culture. Can be.
도 1은, 나노섬유의 SEM 이미지를 나타낸 것이다. 도 1A와 도 1B는 탄소나노튜브가 코팅되지 않은 제조예의 나노섬유의 SEM 이미지를 나타낸 것이고, 도 1C와 도 1D는 본 발명의 일 실시예에서 제조된 나노섬유의 SEM 이미지를 나타낸 것이다.1 shows an SEM image of nanofibers. 1A and 1B show SEM images of nanofibers of the present invention without carbon nanotubes coated, and FIGS. 1C and 1D show SEM images of nanofibers prepared in one embodiment of the present invention.
도 2는, 나노섬유에서의 세포증식을 배양시간에 따른 그래프로 나타낸 것이다. 2 is a graph showing the cell proliferation in the nanofibers according to the incubation time.
도 3은, 나노섬유에서의 신경돌기의 이미지를 나타낸 것이다. 도 3에서 D3, D6, D9는 각각 세포의 씨딩 후 3일, 6일, 9일 후를 의미한다. 또한, A-E의 scale bar는 20 ㎛를 의미하며, F의 scale bar는 50 ㎛를 의미한다.3 shows an image of neurites in nanofibers. In Figure 3, D3, D6, D9 means 3 days, 6 days, 9 days after the seeding of the cells, respectively. In addition, the scale bar of A-E means 20 μm, and the scale bar of F means 50 μm.
도 4는, 탄소나노튜브가 코팅되지 않은 제조예의 나노섬유 및 본 발명의 일 실시예에서 제조된 나노섬유 상의 신경돌기의 평균값을 그래프로 나타낸 것이다.Figure 4 is a graph showing the average value of the nanofibers of the production example is not coated with carbon nanotubes and neurites on the nanofibers prepared in one embodiment of the present invention.
이하,본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 더욱 쉽게 이해하기 위하여 제공되는 것일 뿐,실시예에 의하여 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be presented to assist in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the examples.
제조예: 나노섬유의 제조Preparation Example: Preparation of Nanofibers
먼저, PLCL 1.87g을 용매(3 ml 20% 에탄올 및 15 ml 80% 디클로로메탄)에 용해하여 PLCL 용액(12.5% w/v)을 제조하였다. 전기방사기(제조: 나노엔씨)를 사용하여 전기방사하였으며, 상기 용액을 21G 블런티드 스테인리스 스틸 니들(blunted stainless steel needle)에 부착된 10 ml 주사기(syringe)에 주사기 펌프(syringe pump)를 이용하여 0.4 ml/h의 속도로 주입하고 13 kV를 가하였다. 4000 rpm으로 회전하는 실린더를 사용하여 나노섬유를 제조하였고, 나노섬유를 니들 끝과 15 cm 떨어진 알루미늄 호일에 수집하였다. 상기 제조된 나노섬유는 진공하에 상온에서 건조시켰다.First, PLCL solution (12.5% w / v) was prepared by dissolving 1.87 g of PLCL in solvent (3 ml 20% ethanol and 15 ml 80% dichloromethane). Electrospinning was performed using an electrospinner (manufactured by NanoNC), and the solution was added to a 10 ml syringe attached to a 21G blunted stainless steel needle by using a syringe pump. Inject at a rate of ml / h and add 13 kV. Nanofibers were prepared using a cylinder rotating at 4000 rpm, and the nanofibers were collected in aluminum foil 15 cm from the needle tip. The prepared nanofibers were dried at room temperature under vacuum.
실시예: 탄소나노튜브가 코팅된 나노섬유의 제조Example: Preparation of Carbon Fiber Coated Nanofibers
단계 1 Step 1
다중벽 탄소나노튜브(multi-walled carbon nanotube; MWCNT, 일진나노텍, 순도>95%) 200 mg을 반응기에 투입하고, 감압건조한 후 아르곤(Ar) 가스를 반응기에 채웠다. 용매로 디클로로메탄을 넣어주고, 1-부틸-3-메틸-이미다졸륨 운데카플루오로안티모네이트를 넣은 다음 초음파기를 이용해 고르게 분산시켰다. 초음파기 작동하에 30분 동안 테트라하이드로퓨란을 천천히 첨가하였다. 이 때 1-부틸-3-메틸-이미다졸륨 운데카플루오로안티모네이트와 테트라하이드로퓨란은 탄소나노튜브의 기본단위인 C6 단위를 기준으로 각각 1.0 당량씩 사용하였다. 반응온도는 25℃, 반응시간은 15분으로 하였다. 반응 후, 소량의 물을 반응혼합물에 첨가하여 반응을 종결하였다. 여과지 위에서 반응 혼합액 중 개질 탄소나노튜브를 분리하였다. 여과지 위에 모인 개질 탄소나노튜브를 우선 아세톤으로 여러 차례 세척하였고, 디클로로메탄으로 다시 반복적으로 여러 차례 세척하였다. 세척된 생성물은 감압하에 완전히 건조하였다. 수득한 개질 탄소나노튜브(탄소나노튜브-SbF6)은 371.2 mg이었다.200 mg of multi-walled carbon nanotubes (MWCNT, Iljin Nanotech, purity> 95%) were added to the reactor, and dried under reduced pressure, and then argon (Ar) gas was charged into the reactor. Dichloromethane was added as a solvent, 1-butyl-3-methyl-imidazolium undecafluoroantimonate was added, and then evenly dispersed using an ultrasonic wave. Tetrahydrofuran was added slowly for 30 minutes under sonicator operation. At this time, 1-butyl-3-methyl-imidazolium undecafluoroantimonate and tetrahydrofuran were used in the amount of 1.0 equivalent each based on the C 6 unit which is the basic unit of carbon nanotubes. Reaction temperature was 25 degreeC and reaction time was 15 minutes. After the reaction, a small amount of water was added to the reaction mixture to terminate the reaction. The modified carbon nanotubes in the reaction mixture were separated on the filter paper. The modified carbon nanotubes collected on the filter paper were first washed several times with acetone, and then repeatedly washed several times with dichloromethane. The washed product was dried completely under reduced pressure. The obtained modified carbon nanotube (carbon nanotube-SbF 6 ) was 371.2 mg.
단계 2Step 2
상기 단계 1에서 제조된 개질 탄소나노튜브(탄소나노튜브-SbF6)를 분산액으로 제조하고, 여기에 포타슘 소디움 타르트레이트를 첨가한 후 3시간 동안 교반하였다. 다음으로, 여과한 후 물과 에탄올로 세척하여 탄소나노튜브-타르트레이트를 제조하였다. The modified carbon nanotubes (carbon nanotubes-SbF 6 ) prepared in step 1 were prepared as a dispersion, and potassium sodium tartrate was added thereto, followed by stirring for 3 hours. Next, the filtrate was washed with water and ethanol to prepare carbon nanotube-tartrate.
단계 3 Step 3
상기 단계 2에서 제조된 탄소나노튜브-타르트레이트를 에탄올에 첨가한 후 3분간 초음파 처리하여 탄소나노튜브-타르트레이트 용액(0.1 mg/ml)을 제조하였다. Carbon nanotube-tartrate prepared in step 2 was added to ethanol and sonicated for 3 minutes to prepare a carbon nanotube-tartrate solution (0.1 mg / ml).
단계 4Step 4
상기 단계 3에서 제조된 탄소나노튜브-타르트레이트 용액에, 상기 제조예에서 제조된 나노섬유를 약 1초간 침지하여 탄소나노튜브를 코팅시킨 후, 나노섬유를 에탄올로 수 회 세척하고 상온에서 건조시켰다. In the carbon nanotube tartrate solution prepared in step 3, the nanofibers prepared in the preparation example were immersed for about 1 second to coat the carbon nanotubes, and the nanofibers were washed several times with ethanol and dried at room temperature. .
실험예 1: 탄소나노튜브가 코팅된 나노섬유의 SEM 확인Experimental Example 1: SEM confirmation of nanofibers coated with carbon nanotubes
상기 실시예에서 제조된 탄소나노튜브가 코팅된 나노섬유를 SEM(scanning electron microscopy; Hitachi 3000, Japan)으로 확인하기 위하여 하기의 실험을 수행하였다.The following experiment was performed to confirm the nanofibers coated with the carbon nanotubes prepared in the above example by scanning electron microscopy (Hitachi 3000, Japan).
먼저, 탄소나노튜브가 코팅되지 않은 제조예의 나노섬유와, 실시예에서 제조된 나노섬유를 PBS 용액(글루타르알데하이드 2.5%)에 상온에서 10분간 고정시킨 후, 에탄올(75%, 95% 및 100%로 농도를 순차적으로 높임)로 5분간 탈수한 후 건조하였다. 탄소나노튜브에 얇은 금 박막을 코팅한 후, 15 kV에서 SEM을 확인하였으며(나노섬유의 직경은 SEM 이미지로부터 계산하였다), 그 결과를 도 1에 나타내었다. First, the nanofibers of the preparation example without the coating of carbon nanotubes and the nanofibers prepared in the example were fixed in PBS solution (glutaraldehyde 2.5%) for 10 minutes at room temperature, followed by ethanol (75%, 95% and 100%). The concentration was sequentially increased to%) and dried for 5 minutes. After coating a thin gold thin film on the carbon nanotubes, the SEM was confirmed at 15 kV (the diameter of the nanofibers was calculated from the SEM image), and the results are shown in FIG. 1.
도 1A와 도 1B는 탄소나노튜브가 코팅되지 않은 제조예의 나노섬유의 SEM 이미지이고, 도 1C와 도 1D는 실시예에서 제조된 나노섬유의 SEM 이미지이다. 탄소나노튜브가 코팅되지 않은 제조예의 나노섬유의 직경은 1.45±0.58 ㎛이고, 실시예에서 제조된 나노섬유의 직경은 1.30±0.46 ㎛으로 관찰되었다. 1A and 1B are SEM images of nanofibers of the preparation example without the carbon nanotubes coated, and FIGS. 1C and 1D are SEM images of the nanofibers prepared in the examples. The diameter of the nanofibers of the preparation example without the carbon nanotubes coated was 1.45 ± 0.58 μm, and the diameters of the nanofibers prepared in the examples were observed to be 1.30 ± 0.46 μm.
또한, 도 1C 및 도 1D에서 확인할 수 있는 바와 같이, 탄소나노튜브가 균일하게 나노섬유의 표면에 코팅되어 있음을 확인할 수 있다. TGA 분석으로부터 탄소나노튜브의 코팅량은 전체 나노섬유에서 8 중량%로 측정되었다. In addition, as can be seen in Figures 1C and 1D, it can be seen that the carbon nanotubes are uniformly coated on the surface of the nanofibers. The coating amount of carbon nanotubes from the TGA analysis was determined to be 8% by weight in the total nanofibers.
실험예 2: 세포의 배양 및 신경돌기의 성장 측정Experimental Example 2: Measurement of Cell Culture and Neurites
PC-12 세포를 10% FBS(fetal bovine serum)가 공급된 DMEM 배지(Dulbecco's Modified Eagle Medium; Gibco, USA)에서 배양하였다. 약 80%의 배양이 되었을때, 상기 세포를 0.05% 트립신으로 탈착시킨 후, 트립신 블루 에세이로 육안으로 확인되는 세포의 수를 확인하였다. 신경돌기의 성장을 평가하기 위하여, 탄소나노튜브가 코팅되지 않은 제조예의 나노섬유와, 실시예에서 제조된 나노섬유 각각을 4-well plate에 위치시킨 후, 상기 세포를 0.5% FBS를 포함한 DMEM 배지 조건 하에, 나노섬유 당 5×103의 밀도로 씨딩하였다. 상기 세포는 씨딩한 날부터 3일, 6일, 9일째 되는 날에 50 ng/ml NGF로 처리되었다. PC-12 cells were cultured in DMEM medium (Dulbecco's Modified Eagle Medium; Gibco, USA) fed with 10% FBS (fetal bovine serum). When the culture was about 80%, the cells were detached with 0.05% trypsin, and then the number of cells visually confirmed by trypsin blue assay was confirmed. In order to evaluate the growth of neurites, the nanofibers of the production example without carbon nanotubes and each of the nanofibers prepared in Example were placed on a 4-well plate, and the cells were placed in DMEM medium containing 0.5% FBS. Under conditions, seeding was performed at a density of 5 × 10 3 per nanofiber. The cells were treated with 50 ng / ml NGF on the 3rd, 6th and 9th days from the seeding day.
세포증식은 kit-8(CCK-8; Dojindo Molecular Technologies, Inc., Japan)로 측정하였다. 각 배양기간 동안, 10 μl의 CCK-8 용액을 각 well에 첨가하고, 37℃에서 3시간 동안 배양하였다. 각 well의 450 nm에서의 흡수정도는 microplate reader(Molecular Devices, Sunnyvale, CA)로 측정하였으며, 그 결과를 도 2에 나타내었다. Cell proliferation was measured by kit-8 (CCK-8; Dojindo Molecular Technologies, Inc., Japan). During each incubation period, 10 μl of CCK-8 solution was added to each well and incubated at 37 ° C. for 3 hours. Absorption at 450 nm of each well was measured by a microplate reader (Molecular Devices, Sunnyvale, CA), and the results are shown in FIG. 2.
도 2에 나타난 바와 같이, 탄소나노튜브가 코팅되지 않은 제조예의 나노섬유에 비하여, 실시예에서 제조된 나노섬유에서 세포증식이 보다 활발하다는 것을 확인할 수 있었다.As shown in Figure 2, compared with the nanofibers of the production example is not coated with carbon nanotubes, it was confirmed that the cell proliferation is more active in the nanofibers prepared in the example.
또한, 신경돌기의 성장에 대해서도 다음과 같이 확인하였다. 씨딩한 날부터 3일, 6일, 9일째 되는 날에 세포를 4% 파라포름알데하이드로 고정시키고, 0.2% Triton X-100로 처리한 후, 비특정 단백질의 결합을 방지하기 위하여 1% (w/v) BSA(bovine serum albumin)을 포함하는 PBS에서 30분간 처리하였다. 다음으로, 30분간 PBS에 희석된 20 nM Alexa Fluor 546-conjugated phalloidin으로 배양하였다. 이미지는 DP-72 디지털 카메라가 구비된 도립현미경(inverted microscope; IX-71; Olympus, Tokyo, Japan)으로 얻었다. 10개의 이미지를 각 조건에서 적어도 3개의 나노섬유 각각에서 비작위적으로 선택한 영역에서 얻었다. 각 실험에서 최소 250개의 세포를 평가하였다. 신경돌기의 성장을 정량화하기 위하여, 각 세포의 가장 긴 신경돌기를 이미지 분석 소프트웨어(DP2-BSW, Olympus Co.)로 측정하였고, 이의 평균값을 계산하였다. 상기의 결과를 각각 도 3 및 4에 나타내었다. In addition, the growth of neurites was confirmed as follows. On the 3rd, 6th and 9th day from the seeding, the cells were fixed with 4% paraformaldehyde, treated with 0.2% Triton X-100, and then treated with 1% (w / v) was treated for 30 minutes in PBS containing bovine serum albumin (BSA). Next, incubated with 20 nM Alexa Fluor 546-conjugated phalloidin diluted in PBS for 30 minutes. Images were obtained with an inverted microscope (IX-71; Olympus, Tokyo, Japan) equipped with a DP-72 digital camera. Ten images were obtained at randomly selected areas on each of at least three nanofibers under each condition. At least 250 cells were evaluated in each experiment. In order to quantify the growth of neurites, the longest neurites of each cell were measured by image analysis software (DP2-BSW, Olympus Co.) and their mean values were calculated. The results are shown in FIGS. 3 and 4, respectively.
도 3은, 각 신경돌기의 이미지를 나타낸 것이며, 육안으로 확인할 수 있을 정도로, 실시예에서 제조된 나노섬유에서 신경돌기의 길이가 더 길다는 것을 확인할 수 있었다. 또한, 가장 긴 신경돌기의 평균값을 계산하여 도 4에 나타내었다. 결과는 mean±standard error(SE)로 나타내었으며, 실험군과 대조군의 차이는 SPSS 소프트웨어(SPSS, version 13.0)를 사용하여 ANOVA(one-way analysis of variance) 및 Student's t-tests로 평가하였고, P < 0.05를 중요한 차이점으로 평가하였다. 도 4에 나타난 바와 같이, 실시예에서 제조된 나노섬유에서 신경돌기의 길이가 더 길다는 것을 정량적으로 확인할 수 있었다. 또한, 배양기간이 길어질수록 그 차이가 증가함을 확인할 수 있었다. Figure 3 shows an image of each neurite, and it can be seen that the length of the neurite in the nanofibers prepared in the example is longer enough to be visually confirmed. In addition, the average value of the longest neurites was calculated and shown in FIG. The results were expressed as mean ± standard error (SE). The difference between the experimental group and the control group was evaluated by one-way analysis of variance (ANOVA) and Student's t-tests using SPSS software (SPSS, version 13.0). 0.05 was evaluated as an important difference. As shown in Figure 4, it was confirmed that the length of the neurites longer in the nanofibers prepared in the example was quantitative. In addition, the longer the culture period was confirmed that the difference increases.

Claims (11)

  1. 탄소나노튜브를 1-부틸-3-메틸-이미다졸륨 운데카 플루오로안티모네이트 및 테트라하이드로퓨란과 반응시켜, 탄소나노튜브-SbF6를 제조하는 단계(단계 1);Reacting the carbon nanotubes with 1-butyl-3-methyl-imidazolium undeca fluoroantimonate and tetrahydrofuran to prepare carbon nanotubes-SbF 6 (step 1);
    상기 탄소나노튜브-SbF6를 포타슘 소디움 타르트레이트와 반응시켜 탄소나노튜브-타르트레이트를 제조하는 단계(단계 2);Preparing carbon nanotube-tartrate by reacting the carbon nanotube-SbF 6 with potassium sodium tartrate (step 2);
    상기 탄소나노튜브-타르트레이트를 용매에 녹여 탄소나노튜브-타르트레이트 용액을 제조하는 단계(단계 3); 및Dissolving the carbon nanotube-tartrate in a solvent to prepare a carbon nanotube-tartrate solution (step 3); And
    나노섬유를 상기 탄소나노튜브-타르트레이트 용액에 침지시켜 탄소나노튜브를 나노섬유 표면에 코팅하는 단계(단계 4)Coating carbon nanotubes on the surface of nanofibers by dipping nanofibers in the carbon nanotube-tartrate solution (step 4)
    를 포함하는 탄소나노튜브가 코팅된 나노섬유의 제조방법.Carbon nanotubes coated with a method for producing a nanofiber comprising a.
  2. 제1항에 있어서, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브 또는 다중벽 탄소나노튜브인 것을 특징으로 하는 제조방법The method of claim 1, wherein the carbon nanotubes are single-walled carbon nanotubes, double-walled carbon nanotubes, or multi-walled carbon nanotubes.
  3. 제1항에 있어서, 상기 단계 1의 1-부틸-3-메틸-이미다졸륨 운데카 플루오로안티모네이트 및 테트라하이드로퓨란은 상기 탄소나노튜브의 C6의 몰에 대하여 각각 0.5-1.5 : 1의 몰 비로 반응시키는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the 1-butyl-3-methyl-imidazolium undeca fluoroantimonate and tetrahydrofuran of step 1 are each 0.5-1.5: 1 based on the mole of C 6 of the carbon nanotubes. Method for producing a reaction by the molar ratio of.
  4. 제1항에 있어서, 상기 단계 2)의 포타슘 소디움 타르트레이트는 상기 탄소나노튜브-SbF6의 SbF6 -의 5배 내지 15배의 당량비로 반응시키는 것을 특징으로 하는 제조방법.The method of claim 1 wherein the potassium sodium tartrate of step 2) is SbF 6 of the carbon nanotube -SbF 6 - production method, comprising a step of reacting an equivalent ratio of 5 times to 15 times of.
  5. 제1항에 있어서, 상기 단계 2의 제조된 탄소나노튜브-타르트레이트는 추가적으로 여과, 물 및 에탄올로 세척, 및 건조하는 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the prepared carbon nanotube-tartrate of step 2 is additionally filtered, washed with water and ethanol, and dried.
  6. 제1항에 있어서, 상기 단계 3의 용매는 에탄올인 것을 특징으로 하는 제조방법.The method of claim 1, wherein the solvent of step 3 is ethanol.
  7. 제6항에 있어서, 상기 단계 3의 용매는 추가적으로 초음파 처리하는 것을 특징으로 하는 제조방법.The method of claim 6, wherein the solvent of step 3 is further sonicated.
  8. 제1항에 있어서, 상기 단계 4의 침지 시간은 1초 내지 60초인 것을 특징으로 하는 제조방법.The method of claim 1, wherein the immersion time of step 4 is 1 second to 60 seconds.
  9. 제1항에 있어서, 상기 단계 4에서 제조된 탄소나노튜브가 코팅된 나노섬유는 추가적으로 에탄올로 세척 및 건조하는 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the carbon nanotubes coated with the nanofibers prepared in step 4 are additionally washed and dried with ethanol.
  10. 제1항에 있어서, 상기 단계 4의 나노섬유는 전기방사법에 의하여 제조된 것을 특징으로 하는 제조방법.The method of claim 1, wherein the nanofibers of step 4 are manufactured by electrospinning.
  11. 제10항에 있어서, 상기 나노섬유는 PLCL을 전기방사법에 의하여 제조된 것을 특징으로 하는 제조방법.The method of claim 10, wherein the nanofibers are produced by electrospinning PLCL.
PCT/KR2011/006155 2011-07-15 2011-08-19 Method for manufacturing nanofiber coated with carbon nanotube WO2013012119A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110070629A KR101323427B1 (en) 2011-07-15 2011-07-15 Preparation method of nanofiber coated with carbon nano tube
KR10-2011-0070629 2011-07-15

Publications (1)

Publication Number Publication Date
WO2013012119A1 true WO2013012119A1 (en) 2013-01-24

Family

ID=47558281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006155 WO2013012119A1 (en) 2011-07-15 2011-08-19 Method for manufacturing nanofiber coated with carbon nanotube

Country Status (2)

Country Link
KR (1) KR101323427B1 (en)
WO (1) WO2013012119A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111893752A (en) * 2020-06-23 2020-11-06 华南理工大学 Super-hydrophilic fabric with oil-water separation and copper ion adsorption effects and preparation method and application thereof
KR20210069760A (en) * 2019-12-03 2021-06-14 단국대학교 천안캠퍼스 산학협력단 scaffold comprising cabon nanotube interfaced biopolymer nanofiber and preparation method thereof
CN115715824A (en) * 2022-10-12 2023-02-28 杭州洛兮生物科技有限公司 Bone scaffold material based on modified single-walled carbon nanotubes and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11404222B2 (en) * 2017-11-13 2022-08-02 Korea Advanced Institute Of Science And Technology Apparatus for generating electrical energy based on hydrophilic fiber membrane and method of fabricating same
KR102105762B1 (en) * 2018-08-20 2020-04-29 한국과학기술원 Hydroscopic material incorporated carbon layer coated hydrophilic fiber membrane based self-powered electrical energy generator and manufacturing method thereof
KR102626742B1 (en) * 2021-11-08 2024-01-19 한국과학기술원 Energy generator added by asymmetrically coated two dimensional hygroscopic nanoclay and manufacturing method for the energy generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584671B1 (en) * 2004-01-14 2006-05-30 (주)케이에이치 케미컬 Process for the preparation of carbon nanotube or carbon nanofiber electrodes by using sulfur or metal nanoparticle as a binder and electrode prepared thereby
KR20080036590A (en) * 2005-07-28 2008-04-28 주식회사 브레인가드 Carbon nanotubes serving as stem cell scaffold

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584671B1 (en) * 2004-01-14 2006-05-30 (주)케이에이치 케미컬 Process for the preparation of carbon nanotube or carbon nanofiber electrodes by using sulfur or metal nanoparticle as a binder and electrode prepared thereby
KR20080036590A (en) * 2005-07-28 2008-04-28 주식회사 브레인가드 Carbon nanotubes serving as stem cell scaffold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210069760A (en) * 2019-12-03 2021-06-14 단국대학교 천안캠퍼스 산학협력단 scaffold comprising cabon nanotube interfaced biopolymer nanofiber and preparation method thereof
KR102392174B1 (en) * 2019-12-03 2022-05-02 단국대학교 천안캠퍼스 산학협력단 scaffold comprising cabon nanotube interfaced biopolymer nanofiber and preparation method thereof
CN111893752A (en) * 2020-06-23 2020-11-06 华南理工大学 Super-hydrophilic fabric with oil-water separation and copper ion adsorption effects and preparation method and application thereof
CN115715824A (en) * 2022-10-12 2023-02-28 杭州洛兮生物科技有限公司 Bone scaffold material based on modified single-walled carbon nanotubes and preparation method thereof

Also Published As

Publication number Publication date
KR101323427B1 (en) 2013-10-29
KR20130009476A (en) 2013-01-23

Similar Documents

Publication Publication Date Title
WO2013012119A1 (en) Method for manufacturing nanofiber coated with carbon nanotube
Shrestha et al. Electrodeless coating polypyrrole on chitosan grafted polyurethane with functionalized multiwall carbon nanotubes electrospun scaffold for nerve tissue engineering
Yadav et al. Recent advances in carbon nanofibers and their applications–a review
Xie et al. Electrospun nanofibers for neural tissue engineering
Abzan et al. Development of three-dimensional piezoelectric polyvinylidene fluoride-graphene oxide scaffold by non-solvent induced phase separation method for nerve tissue engineering
Gutiérrez-Hernández et al. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration
Rodrigues et al. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers
Edwards et al. Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering
Tu et al. Effects of surface charges of graphene oxide on neuronal outgrowth and branching
Gautam et al. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method
Luo et al. Electrospun nanofibers facilitate better alignment, differentiation, and long-term culture in an in vitro model of the neuromuscular junction (NMJ)
Sorkin et al. Process entanglement as a neuronal anchorage mechanism to rough surfaces
Niu et al. Enhancing neural differentiation of induced pluripotent stem cells by conductive graphene/silk fibroin films
Liao et al. Electrospun aligned PLLA/PCL/functionalised multiwalled carbon nanotube composite fibrous membranes and their bio/mechanical properties
Kuzmenko et al. Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds
Aval et al. Nano-featured poly (lactide-co-glycolide)-graphene microribbons as a promising substrate for nerve tissue engineering
WO2018043842A1 (en) Nanofiber-nanowire composite and preparation method therefor
Xu et al. Fibro-porous PLLA/gelatin composite membrane doped with cerium oxide nanoparticles as bioactive scaffolds for future angiogenesis
Jin et al. Effect of carbon nanotube coating of aligned nanofibrous polymer scaffolds on the neurite outgrowth of PC‐12 cells
Wang et al. Optimizing the electrical conductivity of polyacrylonitrile/polyaniline with nickel nanoparticles for the enhanced electrostimulation of Schwann cells proliferation
Rajasekaran et al. Role of nanofibers on MSCs fate: Influence of fiber morphologies, compositions and external stimuli
Zhang et al. Silk fibroin/reduced graphene oxide composite mats with enhanced mechanical properties and conductivity for tissue engineering
Shalumon et al. Hierarchically designed electrospun tubular scaffolds for cardiovascular applications
Nazeri et al. Novel electro-conductive nanocomposites based on electrospun PLGA/CNT for biomedical applications
Lee et al. Carbon nanotubes as substrates/scaffolds for neural cell growth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869729

Country of ref document: EP

Kind code of ref document: A1