WO2013012080A1 - Combine - Google Patents

Combine Download PDF

Info

Publication number
WO2013012080A1
WO2013012080A1 PCT/JP2012/068510 JP2012068510W WO2013012080A1 WO 2013012080 A1 WO2013012080 A1 WO 2013012080A1 JP 2012068510 W JP2012068510 W JP 2012068510W WO 2013012080 A1 WO2013012080 A1 WO 2013012080A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain
period
impact force
detected
sensor
Prior art date
Application number
PCT/JP2012/068510
Other languages
French (fr)
Japanese (ja)
Inventor
宮本 宗徳
浩一 庄司
一輝 金谷
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011172302A external-priority patent/JP5856777B2/en
Priority claimed from JP2012158024A external-priority patent/JP5893526B2/en
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN201280035977.6A priority Critical patent/CN103781345B/en
Priority to KR1020147002271A priority patent/KR101614343B1/en
Publication of WO2013012080A1 publication Critical patent/WO2013012080A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1275Control or measuring arrangements specially adapted for combines for the level of grain in grain tanks

Definitions

  • the present invention relates to a combine that can accurately detect the amount of recovered grains.
  • combine harvesters When harvesting in the field, combine harvesters are often used to harvest and thresh cereals and to recover grains.
  • the combine travels on the field with a crawler, and harvests the culm with a cutting blade during the travel, conveys the harvested culm to the handling cylinder, and threshes.
  • the chaff sheave arranged below the barrel is used to sort the cocoons and grains separated from the cereal grains, and the selected grains are allowed to leak from the chaff sheave and are transferred to the grain tank via the screw conveyor. to recover.
  • a slat for attaching the grain into the grain tank is attached, and a grain amount detection sensor for detecting the amount of grain introduced by the slat is provided in the grain tank. It is.
  • the grain amount detection sensor includes a piezoelectric element, and detects the grain amount based on the pressure when the grain comes into contact (for example, Patent Document 1).
  • the vibration of the engine and the vibration generated by traveling on the uneven field propagate to the grain amount detection sensor. These vibrations become disturbances and affect the output of the grain amount detection sensor.
  • Non-Patent Document 1 Japanese Patent Laid-Open No. 2005-24381 Koichi Shoji and two others, "On-site calibration method for yield sensor with nonlinear characteristics-About accuracy improvement by installing electromagnetic pickup", ISMAB 2010 FUKUOKA, April 5, 2010
  • the detected value from the grain quantity detection sensor during the contact period due to disturbances such as the temperature characteristics of the grain quantity detection sensor, wind pressure by the blades, and the inclination of the vehicle body May be output.
  • This invention is made
  • the combine according to the present invention includes a threshing device that threshs the harvested cereal, a storage unit that stores the grain threshed by the threshing device, and a conveyance that conveys the grain from the threshing device to the storage unit.
  • a combine comprising: a means; a detecting means for detecting an impact force caused by the grain conveyed by the conveying means; and a calculating means for calculating a grain amount based on the impact force detected by the detecting means.
  • the calculating means determines whether or not the impact force detected by the detecting means is greater than a preset threshold value, and calculates the detected impact force based on the determination result of the determination means. And determining means for determining whether or not to use for calculation in the calculating means.
  • the impact force detected by the detection means is compared with a preset threshold value. Based on the comparison result, it is determined whether or not to include the impact force in the calculation target. For example, when the impact force is smaller than the threshold value, it is removed from the target to be calculated.
  • the conveying means is a screw conveyor, and a blade plate is provided on the shaft portion at the end of the screw conveyor to inject the grain into the storage portion, and the detecting means is used as the blade plate. It is arranged to face each other.
  • the detection means is opposed to the slats, and the grains put in from the slats abut on the detection means reliably.
  • the calculating means has an integrating means for integrating the impact force detected during a period when the grain introduced from the blades should collide with the detecting means, and the integrated value is obtained. Based on the above, the grain amount is calculated, and the determination unit is configured to determine whether or not the impact force is greater than the threshold value in the period, and the determination unit includes the determination unit The impact force determined to be larger than the threshold value by the determination means is determined to be used for integration by the integration means.
  • the calculating means includes an integrating means for integrating the impact force detected during a period when the grain put in from the blades should collide with the detecting means, and the integrated value is obtained. Based on the above, the grain amount is calculated, and the determination unit is configured to determine whether or not the impact force is greater than the threshold value in the period, and the determination unit includes the determination unit When the determination means determines that the impact force detected at an arbitrary point in the period is greater than the threshold, the determination is made to use the impact force detected within the period for integration by the integration means. It is characterized by the above.
  • the combine according to the present invention comprises: a rotation speed detection means for detecting the rotation speed of the screw conveyor; and a means for obtaining a rotation period of the screw conveyor based on a detection result of the rotation speed detection means.
  • the period during which the grain input from the vehicle should collide with the detection means is included in one rotation cycle.
  • the determination is executed every one rotation period of the blades, and the disturbance is eliminated during the period.
  • the combine according to the present invention is characterized in that the calculating means has means for removing a steady deviation included in the integration result of the integrating means based on the impact force of the detecting means detected outside the period. To do.
  • the impact force detected during the non-contact period in which the grain thrown in from the blade is not in contact with the detection means is a steady deviation caused by vibration or the like, and is excluded from the integration result.
  • the transport unit includes a rotary input unit that inputs grains into the storage unit, and a rotation period detection unit that detects a rotation period of the input unit, and the rotation period detection unit Identifying means for specifying a point in time when the peak value of the impact force is detected by the detecting means during one rotation cycle detected in the above, and a point in time when the peak value is detected by the specifying means is one rotation cycle And an informing means for informing that the time is outside the predetermined time zone when the time is outside the predetermined time zone.
  • the peak value deviates from a predetermined time zone in one rotation cycle.
  • the amount of grain stored in the grain tank cannot be calculated accurately. Therefore, when the detection point of the peak value deviates from the predetermined time zone, the fact is notified to the user.
  • the combine according to the present invention is such that the calculating means calculates a grain amount based on a detection value detected by the detecting means during a predetermined calculation target period in the one rotation cycle, When the time point when the peak value is detected by the means is outside a predetermined time zone, the calculation target period is changed.
  • the calculation target period is changed, and the grain amount based on the impact force detected by the detecting means during the changed calculation target period Is calculated. Thereby, calculation of the amount of grains can be continued.
  • the combine according to the present invention is characterized by comprising change notification means for notifying that the change of the calculation target period is being executed when the calculation means changes the calculation target period.
  • the combine according to the present invention is characterized in that the charging section is a bucket rotating around a blade plate or a sprocket rotating around a rotation axis.
  • the peak value is detected from a predetermined time zone, regardless of whether the blade is provided in the tip of the screw conveyor or the rotary bucket is used for inputting the grain into the storage unit. The user can be notified of the departure.
  • the impact force detected by the detection means is compared with a preset threshold value. Based on the comparison result, it is determined whether or not to include the impact force in the calculation target. For example, when the impact force is smaller than the threshold value, it is removed from the target to be calculated. Therefore, especially when a small amount of grain is being conveyed (for example, when cutting at low speed or in the handling mode), the calculation accuracy of the grain amount can be improved. When the amount of grain transport is small, the influence of disturbance on the calculated amount of grain is greater than when the amount of grain transport is large.
  • the detection means is opposed to the slats, and the grains thrown in from the slats reliably contact the detection means. Even if disturbances such as wind pressure due to the slats affect the impact force, as long as it is designed to eliminate the detection value due to the disturbances, it can be placed at any position facing the slats. Is possible.
  • the impact force determined to be larger than the threshold value is accumulated during the period when the grain should collide with the detection means. Thereby, the disturbance can be accurately removed within the period.
  • the present invention when it is determined that the impact force detected at an arbitrary time point in the period is larger than the threshold value, all impact forces detected in the period are included in the integration target. Thereby, the disturbance can be accurately removed within the period.
  • the value detected during the period when the grain thrown in from the blade does not collide with the detection means is a steady deviation caused by vibration or the like, and by removing this from the integration result, the grain The amount detection accuracy can be further improved.
  • FIG. 1 is an external perspective view of a combine according to Embodiment 1.
  • FIG. It is side surface sectional drawing which outlines the internal structure of a threshing apparatus. It is a plane sectional view showing a grain tank roughly. It is a longitudinal cross-sectional view which outlines a grain tank. It is a transmission mechanism figure which shows the transmission path of the driving force of an engine schematically. It is a block diagram which shows the structure of a control part. It is a table which shows the relationship between the engine speed and the coefficient ⁇ . It is an example of the graph which shows the relationship between the detected value of a spout sensor, and the detected value of a pickup sensor. It is a flowchart which shows the grain amount calculation process by CPU.
  • Threshing device Grain tank (storage part) 4c Push-type switch 11 Handling cylinder 23 First screw conveyor (conveying means, screw conveyor, feeding part, rotating shaft) 23b Blades 40 Engine 44 Threshing clutch 51 Pickup sensor (rotational speed detection means) 83 Display section (notification means, change notification means) 86 Notification lamp (notification means) 100 control unit (calculation means, identification means) 100a CPU 100b ROM 100c RAM 100d EEPROM 100h LUT 144 Bucket type elevator 150 Leveling disc (loading part) 152 Blade 153 Rotating shaft 300 Throwing sensor (detection means) 503, 504 Sprocket 506 Bucket
  • FIG. 1 is an external perspective view of a combine.
  • reference numeral 1 denotes a traveling crawler, and an airframe 9 is provided above the traveling crawler 1.
  • a threshing device 2 is provided on the body 9.
  • a cutting unit 3 including a weed plate 3a for distinguishing between a reaped cereal and a non-reached cereal, a cutting blade 3b for reaping the cereal, and a raising device 3c for causing the cereal. It is.
  • a grain tank 4 On the right side of the threshing device 2 is provided a grain tank 4 for storing the grain, and on the left part of the threshing device 2 is provided a long feed chain 5 before and after conveying cereals.
  • the grain tank 4 is provided with a cylindrical discharge auger 4 a for discharging the grain from the grain tank 4, and a cabin 8 is provided on the front side of the grain tank 4.
  • the airframe 9 travels by driving the traveling crawler 1. As the machine body 9 travels, the cereals are taken into the mowing unit 3 and mowed. The harvested corn straw is conveyed to the threshing device 2 through the upper conveying device 7, the feed chain 5 and the clamping member 6, and threshed in the threshing device 2.
  • FIG. 2 is a side sectional view schematically showing the internal configuration of the threshing apparatus 2
  • FIG. 3 is a plan sectional view schematically showing the grain tank 4
  • FIG. 4 is a longitudinal sectional view schematically showing the grain tank 4.
  • a handling room 10 for threshing cereals is provided at the front upper part of the threshing device 2.
  • a cylindrical handling cylinder 11 whose axial direction is the longitudinal direction is mounted in the handling chamber 10, and the handling cylinder 11 is rotatable about the axis.
  • a large number of teeth 12, 12,... 12 are arranged in a spiral on the peripheral surface of the barrel 11.
  • On the lower side of the handling cylinder 11, a crimp net 15 is disposed for coping with the handling teeth 12, 12,.
  • the said handling cylinder 11 rotates with the driving force of the engine 40 mentioned later, and threshs a cereal.
  • a processing chamber 13 is connected to the rear of the handling chamber 10.
  • a cylindrical processing cylinder 13b whose axial direction is the longitudinal direction is mounted in the processing chamber 13, and the processing cylinder 13b is rotatable around the axis.
  • a large number of teeth 13c, 13c,..., 13c are arranged in a spiral on the peripheral surface of the processing cylinder 13b.
  • a treatment net 13d that disperses the ridges in cooperation with the teeth 13c, 13c,..., 13c is disposed below the treatment cylinder 13b.
  • the processing cylinder 13b is rotated by the driving force of the engine 40, and performs a process of separating the grain from the straw and the grain delivered from the handling chamber 10.
  • a discharge port 13 e is opened below the rear end of the processing chamber 13.
  • processing cylinder valves 13 a, 13 a, 13 a, 13 a are juxtaposed along the front-rear direction on the upper wall of the processing chamber 13, and the processing cylinder valves 13 a, 13 a, 13 a, 13 a go to the rear part of the processing chamber 13. Adjust the amount of straw and grains to be delivered.
  • a rocking sorting device 16 for sorting grains and straws is provided below the crimp net 15.
  • the rocking sorter 16 is provided on the back side of the rocking sorter 17 for making the grains and straws uniform and selecting the specific gravity, and for rough sorting of the grains and straws.
  • the Strollac 19 has a plurality of through holes (not shown).
  • a swing arm 21 is connected to the front portion of the swing sorter 17. The swing arm 21 is configured to swing back and forth. By the swinging of the swinging arm 21, the swing sorting device 16 swings, and selection of straw and grains is performed.
  • the swing sorting device 16 is provided below the chaff sheave 18 and further includes a grain sheave 20 that performs fine sorting of grains and straw.
  • a first grain plate 22 inclined with the front facing down is provided below the grain sheave 20, and on the front side of the first grain plate 22, a first screw conveyor 23 is provided below the grain sheave 20, and on the front side of the first grain plate 22, a first screw conveyor 23 is provided.
  • the first screw conveyor 23 takes in the grain that has slid down the first grain plate 22 and feeds it to the grain tank 4.
  • a rectangular blade plate 23 b is provided on the shaft portion 23 c at the upper end of the first screw conveyor 23.
  • the vane plate 23b protrudes in the radial direction about the shaft portion 23c.
  • the vane plate 23b rotates in synchronism with the screw conveyor 23.
  • the shaft portion 23 c and the blade plate 23 b are accommodated in the casing 140.
  • the casing 140 includes a U-shaped side surface 141 in plan view covering the periphery of the shaft portion 23c and the blade plate 23b.
  • the side surface 141 is opposed to the side surface (the spout 4b) of the grain tank 4 with the shaft portion 23c and the blade plate 23b interposed therebetween.
  • a push switch 4c is provided near the lower side of the spout 4b.
  • One end of the side surface 141 forms a guide surface 141a for guiding the grain.
  • the other end of the side surface 141 forms a non-guide surface 141b that faces the guide surface 141a.
  • the guide surface 141a is inclined at an acute angle with respect to the side surface of the grain tank 4, and extends in a direction opposite to the non-guide surface 141b.
  • the dimension between the first screw conveyor 23 and the guide surface 141a is larger than the dimension between the first screw conveyor 23 and the non-guide surface 141b.
  • L1 is a line located on the guide surface 141a and a surface obtained by extending the guide surface 141a.
  • L2 is the outermost tangent line of the screw conveyor 23 that intersects L1 at an angle of 30 degrees between the shaft portion 23c and the guide surface 141a.
  • the region sandwiched between L1 and L2 is defined as the first region (see the solid line hatching in FIG. 3), and the region opposite to the first region with respect to L2 is defined as the second region (FIG. 3).
  • a spout sensor 300 that detects an impact value of a grain that is input from the spout 4b to the grain tank 4 is disposed in the second region.
  • a support member 310 is suspended from the top surface of the grain tank 4, and the spout sensor 300 is fixed to the support member 310.
  • the spout sensor 300 is disposed above the lower edge of the spout 4b.
  • the grain tank 4 becomes full, it is located above the upper surface of the grain stored in the grain tank 4.
  • the spout sensor 300 is arranged at the vertical position and the depth position that are not buried in the grain when full.
  • the grains that move along the guide surface 141a, the grains that bounce off the guide surface 141a, and the like are continuously put into the grain tank 4.
  • a grain is thrown in and thrown in.
  • the grain is directly put into the grain tank 4 from the blade 23b. Therefore, the grain does not come into contact with the guide surface 141a unlike the grain thrown into the first region, so that the grain is hardly decelerated and is thrown at a high speed in a discrete state.
  • the upward force from the first screw conveyor 23 acts on the grain. As shown by the broken line arrow in FIG. 4, the grain moves obliquely upward by the combination of the upward force and the lateral force from the blade 23b.
  • the spout sensor 300 Since the spout sensor 300 is disposed in the second region, a small amount of discrete grains momentarily collide with the spout sensor 300. In addition, when the spout sensor 300 is arrange
  • the grain is intermittently charged into the grain tank 4 from the spout 4b by the rotation of the blade 23b.
  • a voltage is output from the strain gauge, and the amount of the grain is calculated based on the output voltage.
  • the spout sensor 300 only needs to have a configuration that can detect the impact value of the abutted grain.
  • a piezoelectric element may be provided instead of the strain gauge.
  • the angle formed by L1 and L2 is 30 degrees, but the angle formed by L1 and L2 is not limited to this.
  • L2 should just be a line which distinguishes the 1st area
  • the angle which L1 and L2 make is suitably according to design. Selected.
  • the grain that has dropped from the grain sieve 20 onto the first grain plate 22 slides down toward the first screw conveyor 23.
  • the dropped grain is conveyed by the screw conveyor 23 first. Centrifugal force acts on the grain, and the grain ascends along the outer periphery of the screw conveyor 23 first.
  • the blade 23b rotates from the non-guide surface 141b side toward the guide surface 141a side (rotates counterclockwise in FIG. 3).
  • the slat 23b pushes the grain toward the spout 4b.
  • an inclined plate 24 inclined downward toward the rear is connected to the rear portion of the first grain plate 22.
  • a second grain plate 25 inclined downward toward the front is connected to the rear end of the inclined plate 24.
  • a second screw conveyor 26 is provided on the upper side of the connecting portion between the second grain plate 25 and the inclined plate 24 to convey straw and grains.
  • the fallen object that has fallen onto the inclined plate 24 or the second grain plate 25 from the through hole of the Strollac 19 slides down toward the second screw conveyor 26.
  • the fallen fallen object is conveyed to the processing rotor 14 provided on the left side of the handling cylinder 11 by the second screw conveyor 26 and is threshed by the processing rotor 14.
  • a carp 27 for performing a wind-up operation is provided in front of the first screw conveyor 23 and below the swing sorter 17.
  • the wind generated by the wind-up operation of the carp 27 travels backward.
  • a rectifying plate 28 for sending the wind upward is disposed between the tang 27 and the first screw conveyor 23.
  • a passage plate 36 is connected to the rear end of the second grain plate 25.
  • a lower suction cover 30 is provided above the passage plate 36. Between the lower suction cover 30 and the passage plate 36 is an exhaust passage 37 through which dust is discharged.
  • An upper suction cover 31 is provided above the lower suction cover 30. Between the upper suction cover 31 and the lower suction cover 30, an axial fan 32 for sucking and discharging soot is disposed. A dust exhaust port 33 is provided behind the axial flow fan 32. The air flow generated by the operation of the tang 27 is rectified by the rectifying plates 28 and 28, then passes through the swing sorting device 16 and reaches the dust outlet 33 and the exhaust passage 37.
  • the exhaust port 33 and the exhaust passage 37 are respectively provided with discharge amount sensors 34 and 34 each including a piezoelectric element. Grains are discharged from the dust outlet 33 and the exhaust passage 37 and come into contact with the discharge sensors 34 and 34. At this time, voltage signals are output from the piezoelectric elements of the discharge amount sensors 34, 34, and the amount of grain (loss amount) discharged from the dust outlet 33 and the exhaust passage 37 per unit time is detected.
  • the discharge amount sensors 34 and 34 are not limited to sensors having a piezoelectric element, and an optical sensor having a light emitting element and a light receiving element is used as the discharge amount sensor 34, and the amount of grains passing between the light emitting element and the light receiving element. May be detected. Further, an ultrasonic sensor having a transmitter and a receiver may be used as the discharge amount sensor 34 to detect the amount of grain passing between the transmitter and the receiver.
  • a downcomer 35 inclined downward and forward is provided above the upper suction cover 31 and below the processing chamber 13. Exhaust discharged from the discharge port 13e of the processing chamber 13 slides down the downflow basin 35 and falls onto the Strollac 19.
  • FIG. 5 is a transmission mechanism diagram schematically showing the transmission path of the driving force of the engine 40.
  • the engine 40 is connected to a traveling mission 42 via an HST (Hydro Static Transmission) 41.
  • HST Hydro Static Transmission
  • an engine speed sensor 40a for detecting the engine speed is provided in the vicinity of the output shaft of the engine 40.
  • the engine speed sensor 40a is a magnetic sensor having a Hall element or the like, and detects the speed by passing through a magnetic material of the output shaft.
  • the HST 41 has a hydraulic pump (not shown), a mechanism (not shown) that adjusts the flow rate of hydraulic oil supplied to the hydraulic pump and the pressure of the hydraulic pump, and a transmission circuit 41a that controls the mechanism. ing.
  • the traveling mission 42 has a gear (not shown) that transmits a driving force to the traveling crawler 1.
  • the traveling mission 42 is provided with a vehicle speed sensor 43 having a hall element.
  • the vehicle speed sensor 43 detects the rotational speed of the gear and outputs a signal indicating the vehicle speed of the airframe corresponding to the rotational speed of the gear.
  • the engine 40 is connected to the handling cylinder 11 and the processing cylinder 13b through an electromagnetic threshing clutch 44, and is also connected to a transmission mechanism 50.
  • the transmission mechanism 50 is connected to the first screw conveyor 23.
  • a pickup sensor 51 is provided in the vicinity of the shaft connecting the transmission mechanism 50 and the first screw conveyor 23.
  • the pickup sensor 51 is a magnetic sensor having a Hall element and the like, and detects the number of rotations of the screw conveyor 23 by the passage of the magnetic material of the shaft.
  • the engine 40 is connected to an eccentric crank 45 through a threshing clutch 44.
  • the eccentric crank 45 is connected to the swing arm 21. As the eccentric crank 45 is driven, the swing sorting device 16 swings.
  • the engine 40 is connected to the tang 27 through a threshing clutch 44.
  • the engine 40 is connected to the reaping portion 3 via a threshing clutch 44 and an electromagnetic reaping clutch 46.
  • the driving force of the engine 40 is transmitted to the traveling crawler 1 via the traveling mission 42, and the aircraft travels. Further, the driving force of the engine 40 is transmitted to the cutting unit 3 via the cutting clutch 46, and the cereal is harvested by the cutting unit 3.
  • the driving force of the engine 40 is transmitted to the handling cylinder 11 via the threshing clutch 44, and the cereals are threshed by the handling cylinder 11. Further, the driving force of the engine 40 is transmitted to the processing cylinder 13b via the threshing clutch 44.
  • the processing cylinder 13b separates the grain from the processed product threshed by the handling cylinder 11.
  • the driving force of the engine 40 is transmitted to the swing sorting device 16 via the threshing clutch 44 and the eccentric crank 45, and discharged from the straw and grains leaked from the handling cylinder 11 and the discharge port 13e of the processing chamber 13. Sorting of the finished straw and grains is performed. Further, the driving force of the engine 40 is transmitted to the Kara 27 through the threshing clutch 44, and the soot selected by the swing sorting device 16 is discharged from the dust outlet 33 and the exhaust passage 37 by the wind action of the Kara 27.
  • FIG. 6 is a block diagram showing the configuration of the control unit
  • FIG. 7 is a table showing the relationship between the engine speed and the coefficient ⁇ .
  • the control unit 100 includes a CPU (Central Processing Unit) 100a, a ROM (Read Only Memory) 100b, a RAM (Random Access Memory) 100c, and an EEPROM (Electrically, Erasable Memory and Programmable Read Only Memory) 100d that are interconnected by an internal bus 100g. ing.
  • the CPU 100a reads the control program stored in the ROM 100b into the RAM 100c, and executes necessary control such as operation control of the dust feeding valve 10a and the processing cylinder valve 13a according to the control program.
  • the CPU 100a has a built-in timer.
  • the EEPROM 100d stores an LUT (Look Up Table) 100h.
  • the LUT 100h stores a table indicating the relationship between the engine speed and the coefficient ⁇ (see FIG. 7).
  • the table includes an “engine speed” field and a “coefficient ⁇ ” field, and each line of each field stores an engine speed and a value of a coefficient ⁇ corresponding to the engine speed ( ⁇ 1 to ⁇ 6).
  • the engine speed corresponds to the number of rotations of the screw conveyor 23.
  • a correction variable X is set in the EEPROM 100d, and a value is stored in the correction variable X as necessary. Further, a threshold value ⁇ for determining whether or not the detection value of the spout sensor 300 is included in the calculation target of the grain amount is set.
  • Control unit 100 outputs a connection signal to mowing clutch 46 and threshing clutch 44 via output interface 100f. Further, the control unit 100 outputs a display signal indicating that a predetermined video is displayed on the display unit 83 via the output interface 100f. Further, the control unit 100 outputs a lighting or extinguishing signal to the warning lamp 84 via the output interface 100f.
  • the output signals of the cutting switch 80, the index setting switch 81, the operation switch 82, the spout sensor 300, the push switch 4c, the pickup sensor 51, the engine speed sensor 40a, and the threshing switch 85 are input to the control unit 100 via the input interface 100e. Has been entered.
  • a dashboard panel (not shown) is provided in the cabin 8, and a cutting switch 80, an index setting switch 81, a plurality of operation switches 82 and a threshing switch 85 are provided on the dashboard panel, and a liquid crystal panel is provided.
  • a display portion 83 is provided.
  • a warning lamp 84 is provided in the cabin 8. In response to the on / off of the cutting switch 80, the cutting clutch 46 and the threshing clutch 44 are connected. Further, the threshing clutch 44 is disconnected in response to the on / off of the threshing switch 85.
  • the CPU 100a integrates the detection values related to the output signal of the spout sensor 300, and determines whether or not to include in the integration target by comparing with the threshold value ⁇ .
  • the detection value included in the integration target is stored in the EEPROM 100d in synchronization with the detection value related to the output signal of the pickup sensor 51.
  • FIG. 8 is an example of a graph showing the relationship between the detection value of the spout sensor 300 and the detection value of the pickup sensor 51.
  • FIG. 8A is a graph showing the relationship between time and the detection value of the spout sensor 300.
  • the detection value of the spout sensor 300 indicates the amount of distortion due to the collision of the grain, and is a moving average value at a predetermined sampling number.
  • FIG. 8B is a graph showing the relationship between time and the detection value of the pickup sensor 51.
  • the detection value of the pickup sensor 51 indicates the rotation start time and rotation end time in one rotation of the blade plate 23b. In the following description, the subscript of the period P in the figure is omitted as appropriate.
  • the detection value of the pickup sensor 51 is detected as a pulse wave, and the interval between the pulse waves corresponds to the cycle of one rotation of the screw conveyor 23, that is, the cycle P of one rotation of the blade plate 23b.
  • the CPU 100a takes in the detection value of the spout sensor 300 at a predetermined sampling period (for example, 100 [ms]) and stores it in the EEPROM 100d.
  • the CPU 100a creates a time stamp each time a pulse wave is input from the pickup sensor 51, and associates the time stamp with the detection value input from the spout sensor 300 when the pulse wave is input. To remember.
  • the detection value due to the collision of the grain is inputted from the spout sensor 300 to the CPU 100a between P / 4 to 3P / 4.
  • the detection value input from the spout sensor 300 to the CPU 100a between 0 to P / 4 and 3P / 4 to P is a detection value when the grain does not collide with the spout sensor 300.
  • the threshold value ⁇ corresponds to a detection value detected by the spout sensor 300 due to disturbances such as temperature characteristics of the spout sensor 300, wind pressure by the blades 23b, and inclination of the airframe 9.
  • the detection value due to the collision of the grain is input from the spout sensor 300 to the CPU 100a during P / 4 to 3P / 4.
  • a detection value (threshold value ⁇ ) due to disturbance is input from the spout sensor 300 to the CPU 100a.
  • the CPU 100a compares the detection value input from the spout sensor 300 during the period P / 4 to 3P / 4 with the threshold value ⁇ . When the detected value includes a value exceeding the threshold value ⁇ , the CPU 100a determines that the detected value input between P / 4 to 3P / 4 is to be integrated (period P1 in FIG. 8A). , Area of broken line hatched portion at P2 and P5). The value to be integrated corresponds to the impulse by the collision of the grain with the spout sensor 300.
  • the CPU 100a excludes the detected value input between P / 4 to 3P / 4 from the objects to be integrated (in FIG. 8A, the period P3 And P4 part).
  • a value obtained by integrating the detection values of the spout sensor 300 between 0 to P / 4 and 3P / 4 to P corresponds to a steady deviation.
  • the steady deviation is caused by vibration of the engine 40, vibration propagated to the spout sensor 300 while traveling on a rough field, characteristics of the spout sensor 300, and the like.
  • the CPU 100a performs necessary processing on the value obtained by integrating the detection values of the spout sensor 300 between 0 to P / 4 and 3P / 4 to P in a predetermined cycle (for example, 1 [s]), and accesses the EEPROM 100d. And stored in the correction variable X.
  • a predetermined cycle for example, 1 [s]
  • the CPU 100a accesses the EEPROM 100d, refers to the time stamp, and integrates the detection values of the spout sensor 300 between P / 4 and 3P / 4. Then, the steady deviation included in the integrated value is removed using the value stored in the correction variable X. For example, the value stored in the correction variable X is subtracted from the integrated value.
  • CPU100a memorize
  • the grain is spouted between 0-P / 4 and 3P / 4-P. It should be considered that the sensor 300 does not collide or is not colliding. However, during 0 to P / 4 and 3P / 4 to P, the grains continuously collide with the spout sensor 300, and the detected values between 0 to P / 4 and 3P / 4 to P are It cannot be used for correction to remove steady-state deviation.
  • FIG. 9 is a flowchart showing the grain amount calculation processing by the CPU 100a.
  • the CPU 100a takes in a signal from the cutting switch 80, determines whether or not the cutting switch 80 is on (step S1), and waits until the cutting switch 80 is turned on (step S1: NO).
  • step S1: YES the CPU 100a takes in a signal from the engine speed sensor 40a (step S2).
  • the CPU 100a accesses the EEPROM 100d and refers to the LUT 100h (step S3), and determines a coefficient ⁇ ( ⁇ 1 to ⁇ 6) corresponding to the engine speed indicated by the signal fetched from the engine speed sensor 40a (step S4).
  • the CPU 100a takes in signals from the pickup sensor 51 and the spout sensor 300 (step S5) and integrates impulses between P / 4 to 3P / 4 (step S6).
  • the CPU 100a accesses the EEPROM 100d, refers to the time stamp, and integrates the detection values of the spout sensor 300 between P / 4 and 3P / 4.
  • the detection values are sequentially input from the spout sensor 300 to the control unit 100 at a constant sampling cycle, and the CPU 100a refers to the time stamp to input between P / 4 to 3P / 4.
  • the detected value can be recognized.
  • step S7 determines whether or not the detection value input between P / 4 to 3P / 4 includes a detection value that exceeds the threshold value ⁇ (step S7).
  • step S7: NO the CPU 100a advances the process to step S12.
  • step S7 When the detected value exceeding the threshold value ⁇ is included (step S7: YES), the CPU 100a accesses the EEPROM 100d, refers to the correction variable X (step S8), and corrects the calculated impulse with the correction variable X (Ste S9), a correction value D is obtained. For example, the CPU 100a subtracts the value stored in the correction variable X from the calculated impulse. Note that subtraction is an example of correction, and multiplication or division may be performed based on a value stored in the correction variable X.
  • the CPU 100a applies the coefficient ⁇ to the correction value D (step S10).
  • the correction value D is multiplied or added by the coefficient ⁇ .
  • the multiplication or addition of the coefficient ⁇ is an example of application of the coefficient ⁇ , and is not limited to this.
  • the CPU 100a integrates the correction value D after applying the coefficient ⁇ (step S11).
  • the integrated value in step S ⁇ b> 11 corresponds to the amount of grain stored in the grain tank 4.
  • the CPU 100a takes in a signal from the cutting switch 80 and determines whether or not the cutting switch 80 is off (step S12).
  • the cutting switch 80 is not off (step S12: NO)
  • the CPU 100a returns the process to step S2.
  • the cutting switch 80 is off (step S12: YES)
  • the CPU 100a ends the process.
  • the grain amount calculation process mentioned above can be performed as a real-time process performed within the period P.
  • the CPU 100a waits until the time until the grain processed in the handling cylinder 11 is carried out to the grain tank 4 after the cutting switch 80 is turned off after step S10, and the amount of grain The arithmetic processing may be terminated.
  • the determination in step S7 may be performed after step S5.
  • FIG. 10 is a flowchart showing correction value calculation processing by the CPU 100a.
  • the CPU 100a takes in a signal from the cutting switch 80, determines whether or not the cutting switch 80 is on (step S21), and waits until the cutting switch 80 is turned on (step S21: NO).
  • step S21: YES signals are acquired from the pickup sensor 51 and the spout sensor 300 (step S22), and the impulses between 0 to P / 4 and 3P / 4 to P are integrated.
  • Step S23 the CPU 100a accesses the EEPROM 100d, refers to the time stamp, and integrates the detection values of the spout sensor 300 between 0 to P / 4 and 3P / 4 to P.
  • the detection values are sequentially input from the spout sensor 300 to the control unit 100 at a constant sampling cycle, and the CPU 100a refers to the time stamp to determine between 0 to P / 4 and 3P / 4 to P. Can be recognized.
  • the CPU 100a performs a predetermined process on the accumulated value (step S24). For example, a predetermined function set in advance in the EEPROM 100 d is applied in accordance with an input from the operation switch 82 or by multiplying a coefficient considering the variation rate. Next, the CPU 100a stores the processed value in the correction variable X (step S25).
  • the CPU 100a starts to elapse with a built-in timer and waits until a predetermined time, for example, 1 [s] elapses (step S26: NO).
  • a predetermined time for example, 1 [s] elapses
  • the CPU 100a takes in a signal from the cutting switch 80 and determines whether or not the cutting switch 80 is off (step S27).
  • the CPU 100a resets the timer (step S28) and returns the process to step S22.
  • the cutting switch 80 is off (step S27: YES)
  • the CPU 100a ends the process.
  • the CPU 100a executes an alarm process when the push switch 4c is pressed by the stored grain, that is, when the push switch 4c is turned on.
  • FIG. 11 is a flowchart for explaining alarm processing by the CPU 100a.
  • the alarm process is executed as an interrupt process.
  • the CPU 100a takes in a signal from the push switch 4c and waits until the push switch 4c is turned on (step S31: NO).
  • step S31: YES a lighting signal is output to the warning lamp 84 (step S32).
  • step S33: NO the CPU 100a elapses with a timer and waits until a predetermined time elapses (step S33: NO).
  • step S33: YES the CPU 100a takes in signals from the cutting switch 80 and the threshing switch 85, and determines whether or not the threshing clutch 44 is disconnected (step S34).
  • the threshing clutch 44 When the off signal is input from the reaping switch 80 and the threshing switch 85, the threshing clutch 44 is disconnected, and when the on signal is input from the reaping switch 80 or the threshing switch 85, the threshing clutch 44 is connected. Match.
  • step S34 YES
  • the CPU 100a ends the process. In this case, it is considered that the user noticed that the grain tank 4 is full by turning on the warning lamp 84 and turned off the cutting switch 80 and the threshing switch 85.
  • step S34 When the threshing clutch 44 is engaged (step S34: NO), the CPU 100a outputs a disconnection signal to the threshing clutch 44 and the reaping clutch 46 (step S35). In addition, before performing step S35, you may output to the display part 83 the signal which displays that the threshing clutch 44 and the mowing clutch 46 are forcedly cut
  • the impact force detected by the spout sensor 300 is compared with a preset threshold value ⁇ . Based on the comparison result, it is determined whether or not to include the impact force in the calculation target. For example, when the impact force is smaller than the threshold value ⁇ , the impact force is removed from the target to be calculated. Therefore, especially when a small amount of grain is being conveyed (for example, when cutting at low speed or in the handling mode), the calculation accuracy of the grain amount can be improved. When the amount of grain transport is small, the influence of disturbance on the calculated amount of grain is greater than when the amount of grain transport is large.
  • the spout sensor 300 faces the blade plate 23b, and the grains thrown in from the blade plate 23b reliably come into contact with the spout sensor 300. Even if a disturbance such as wind pressure caused by the blade 23b affects the detection value of the outlet sensor 300, as long as the value due to the disturbance is designed to be removed, the outlet sensor 300 is placed at an arbitrary position facing the blade 23b. It is possible to arrange according to the specification.
  • the impact force detected at an arbitrary time point in the period P / 4 to 3P / 4 is larger than the threshold value ⁇
  • all the impact forces detected in the period P / 4 to 3P / 4 are targeted for integration. include.
  • the impact force detected by the collision of the grains can be included in the integration target without omission.
  • the impact force detected between 0 and P / 4 and 3P / 4 and P is a steady deviation caused by vibration, etc., and by removing this from the integration result, the detection accuracy of the grain amount is further improved. Can be made.
  • FIG. 12 is an example of a graph showing the relationship between the detection value of the spout sensor 300 and the detection value of the pickup sensor 51.
  • FIG. 12A is a graph showing the relationship between time and the detection value of the spout sensor 300.
  • the detection value of the spout sensor 300 indicates the amount of distortion due to the collision of the grain, and is a moving average value at a predetermined sampling number.
  • FIG. 12B is a graph showing the relationship between time and the detection value of the pickup sensor 51.
  • the detection value of the pickup sensor 51 indicates the rotation start time and rotation end time in one rotation of the blade plate 23b.
  • the CPU 100a compares the detection value input from the spout sensor 300 during the period P / 4 to 3P / 4 with the threshold value ⁇ .
  • the CPU 100a determines that the detection value exceeding the threshold ⁇ is to be integrated among the detection values input between P / 4 to 3P / 4 (the broken line hatched portions in the periods P1, P2 and P5 in FIG. 12A). area).
  • the value to be integrated corresponds to the impulse by the collision of the grain with the spout sensor 300.
  • the CPU 100a excludes detection values that do not exceed the threshold value ⁇ from targets to be integrated.
  • FIG. 13 is a flowchart showing the grain amount calculation processing by the CPU 100a.
  • the CPU 100a takes in a signal from the cutting switch 80, determines whether or not the cutting switch 80 is turned on (step S41), and waits until the cutting switch 80 is turned on (step S41: NO).
  • the CPU 100a takes in a signal from the engine speed sensor 40a (step S42).
  • the CPU 100a accesses the EEPROM 100d and refers to the LUT 100h (step S43), and determines a coefficient ⁇ ( ⁇ 1 to ⁇ 6) corresponding to the engine speed indicated by the signal fetched from the engine speed sensor 40a (step S44).
  • the CPU 100a takes in signals from the pickup sensor 51 and the spout sensor 300 (step S45) and integrates impulses between P / 4 to 3P / 4 (step S46).
  • the CPU 100a accesses the EEPROM 100d, refers to the time stamp, and integrates the detection values of the spout sensor 300 between P / 4 and 3P / 4.
  • the detection values are sequentially input from the spout sensor 300 to the control unit 100 at a constant sampling cycle, and the CPU 100a refers to the time stamp to input between P / 4 to 3P / 4.
  • the detected value can be recognized.
  • step S47 the CPU 100a determines whether or not the detection value input between P / 4 to 3P / 4 includes a detection value exceeding the threshold value ⁇ (step S47).
  • step S47: NO the CPU 100a advances the process to step S53.
  • step S47 When the detected value exceeding the threshold value ⁇ is included (step S47: YES), the CPU 100a extracts the impulse related to the detected value exceeding the threshold value ⁇ (step S48). Next, the CPU 100a accesses the EEPROM 100d, refers to the correction variable X (step S49), corrects the extracted impulse with the correction variable X (step S50), and obtains a correction value D. For example, the CPU 100a subtracts the value stored in the correction variable X from the extracted impulse. Note that subtraction is an example of correction, and multiplication or division may be performed based on a value stored in the correction variable X.
  • the CPU 100a applies the coefficient ⁇ to the correction value D (step S51).
  • the correction value D is multiplied or added by the coefficient ⁇ .
  • the multiplication or addition of the coefficient ⁇ is an example of application of the coefficient ⁇ , and is not limited to this.
  • the CPU 100a integrates the correction value D after applying the coefficient ⁇ (step S52).
  • the integrated value in step S52 corresponds to the amount of grain stored in the grain tank 4.
  • the CPU 100a takes in a signal from the cutting switch 80 and determines whether or not the cutting switch 80 is off (step S53). When the cutting switch 80 is not off (step S53: NO), that is, when the cutting switch 80 is on, the CPU 100a returns the process to step S42. When the cutting switch 80 is off (step S53: YES), the CPU 100a ends the process.
  • the grain amount calculation process mentioned above can be performed as a real-time process performed within the period P.
  • the CPU 100a waits until the time until the grain processed in the handling cylinder 11 is carried out to the grain tank 4 after the cutting switch 80 is turned off after step S52.
  • the arithmetic processing may be terminated. Moreover, you may perform the process of step S47 and S48 after step S45.
  • the detection value input from the spout sensor 300 is compared with the threshold value ⁇ , the detection value exceeding the threshold value ⁇ is extracted, and the impulse is obtained.
  • FIG. 14 is a longitudinal sectional view schematically showing the spout sensor 300.
  • FIG. 14A shows the spout sensor 300 at a proper position
  • FIG. 14B shows the spout sensor 300 at a position deviated from the proper position.
  • the spout sensor 300 includes a sensor main body 301 (fixed portion) including a strain gauge and a circuit board.
  • the sensor main body 301 has a housing, and a strain gauge, a circuit board, and the like are accommodated in the housing.
  • the housing rear surface of the sensor main body 301 is fixed to the support member 310 with a plurality of screws 311.
  • the sensor body 301 may be configured to be able to detect the impact value of the collided grain.
  • a piezoelectric element may be provided instead of the strain gauge.
  • a steel plate 302 is provided in front of the sensor body 301.
  • the steel plate 302 is provided with a collision plate 303 on which the grains collide.
  • the spout sensor 300 has the collision plate 303 facing the spout 4b side.
  • the collision plate 303 is made of an elastic member and made of polyurethane, rubber or elastomer.
  • the steel plate 302 is harder than the collision plate 303 and may be made of other metals such as aluminum or copper, or a resin such as polyethylene or vinyl chloride.
  • the collision plate 303 is provided with a plurality of through-holes 303 a that receive the heads of the screws 304.
  • the steel plate 302 is provided with a plurality of through holes 302a corresponding to the accommodation holes 303a.
  • the through hole 302a has a smaller diameter than the accommodation hole 303a.
  • the diameter of the screw portion of the screw 304 is slightly smaller than the diameter of the accommodation hole 303a.
  • the diameter of the head of the screw 304 is larger than the diameter of the through hole 302a and smaller than the accommodation hole 303a.
  • a plurality of screws 304 are inserted into the housing holes 303 a and the through holes 302 a and screwed into the front surface of the housing of the sensor main body 301.
  • the head of the screw 304 is locked to the peripheral portion of the through hole 302a.
  • a steel plate 302 is sandwiched between the head of the screw 304 and the sensor body 301.
  • the steel plate 302 is made of metal, and the stability of the spout sensor 300 is improved as compared with the case where a screw is locked to the collision plate 303 formed of an elastic member.
  • the spout sensor 300 When the vibration of the engine and the vibration due to traveling in the field propagate to the spout sensor 300 for a long time, the spout sensor 300 may be rattled. For example, the screws 304 and 311 may be loosened.
  • the collision plate 303 is inclined downward. The time when the grain collides with the collision plate 303 is deviated from the initial setting time based on the posture shown in FIG. 14A. In the case of FIG. 14B, the grain collides with the collision plate 303 at a time earlier than the initial setting time. Even when the position of the spout sensor 300 at the initial setting is deviated from an appropriate position, the time when the grain collides with the collision plate 303 deviates from the original collision time.
  • FIG. 15 is a block diagram showing the configuration of the control unit 100.
  • the control unit 100 includes the CPU 100a, the ROM 100b, the RAM 100c, and the EEPROM 100d that are connected to each other via the internal bus 100g.
  • the LUT 100h is stored in the EEPROM 100d. As described above, the LUT 100h stores a table indicating the relationship between the engine speed and the coefficient ⁇ (see FIG. 7). Further, a correction variable X and a threshold value ⁇ are set in the EEPROM 100d.
  • the control unit 100 outputs a lighting or extinguishing signal to the notification lamp 86 via the output interface 100f.
  • symbol in the control part 100 attaches
  • the CPU 100a integrates the detection values related to the output signal of the spout sensor 300, and determines whether or not to include in the integration target by comparing with the threshold value ⁇ (see FIG. 8).
  • FIG. 16 is an example of a graph showing the relationship between the detection value of the spout sensor 300 located in the first region and the detection value of the pickup sensor 51.
  • FIG. 16A is a graph showing the relationship between time and the detection value of the spout sensor 300.
  • the detection value of the spout sensor 300 indicates the amount of distortion due to the collision of the grain, and is a moving average value at a predetermined sampling number.
  • FIG. 16A shows the detection value of the spout sensor 300 located in the first region.
  • a broken line waveform indicates a detection value of the spout sensor 300 located in the second region.
  • FIG. 16B is a graph showing the relationship between time and the detection value of the pickup sensor 51.
  • the detection value of the pickup sensor 51 indicates the rotation start time and rotation end time in one rotation of the blade plate 23b. In the following description, the subscript of the period P in FIG. 16 is omitted as appropriate.
  • the detection values between 0 to P / 4 and 3P / 4 to P are indicated by two-dot chain lines. Larger than the detected value (the detected value of the spout sensor 300 located in the second region). This is because the grain collided between 0 to P / 4 and 3P / 4 to P, which should not have collided with the spout sensor 300.
  • the grain is spouted between 0-P / 4 and 3P / 4-P. It should be considered that the sensor 300 does not collide or is not colliding. However, during 0 to P / 4 and 3P / 4 to P, the grains continuously collide with the spout sensor 300, and the detected values between 0 to P / 4 and 3P / 4 to P are It cannot be used for correction to remove steady-state deviation.
  • FIG. 17 is an example of a graph showing the relationship between the detection value of the spout sensor 300 and the detection value of the pickup sensor 51 when the collision plate 303 is inclined downward.
  • FIG. 17A is a graph showing the relationship between time and the detection value of the spout sensor 300.
  • the solid line in FIG. 17A shows the detection value of the spout sensor 300 when the collision plate 303 is inclined downward.
  • a broken line waveform indicates a detection value of the spout sensor 300 when the spout sensor 300 is in an appropriate position. Note that two two-dot chain lines in FIG.
  • 17A indicate a time point delayed by ⁇ T / 2 and a time point advanced by ⁇ / 2 from the time point (P / 2) at which the peak value should come, and the time between the two-dot chain lines corresponds to time ⁇ T. Note that ⁇ T / 2 is smaller than P / 4.
  • FIG. 17B is a graph showing the relationship between time and the detection value of the pickup sensor 51.
  • the detection value of the pickup sensor 51 indicates the rotation start time and rotation end time in one rotation of the blade plate 23b.
  • the subscript of the period P in FIG. 17 is omitted as appropriate.
  • the peak value is detected at a time earlier than P / 2, for example, P / 4.
  • P / 4 the detected value due to the collision of the grain is input from the spout sensor 300 to the CPU 100a even between 0 and P / 4, and the detected value during this period should be the integration target.
  • the detected values between 0 to P / 4 and 3P / 4 to P are considered to correspond to steady deviations and are not subject to integration.
  • a detected value between 0 and P / 4 is regarded as a steady deviation, although it is a detected value due to a collision of grains. Therefore, a value that is not a steady-state deviation is also removed from the detection value (integration target) between P / 4 and 3P / 4. As a result, it is difficult to accurately calculate the grain amount.
  • FIG. 18 is a flowchart showing the grain amount calculation processing by the CPU 100a. After executing steps S61 to S65, the CPU 100a executes a peak value specifying process described later (step S66), and executes steps S67 to S73.
  • step S61 to step S65 and step S67 to step S73 is the same as the grain amount calculation processing (step S1 to step S13) in the first embodiment, and detailed description thereof will be omitted. Further, the CPU 100a executes the above-described correction value calculation process (see FIG. 10).
  • FIG. 19 is a flowchart showing the peak value specifying process by the CPU 100a.
  • the CPU 100a executes the peak value specifying process after executing the above-described process of step S65 (see step S66 in FIG. 18).
  • the CPU 100a takes in signals from the pickup sensor 51 and the spout sensor 300, and detects a point in time when a peak value between 0 and P is detected with reference to a timer (step S661). Next, the CPU 100a determines whether or not the magnitude of the difference between the target time (for example, P / 2) at which the peak value is to come and the detection time is equal to or smaller than ⁇ T / 2 (step S662).
  • the target time for example, P / 2
  • step S662 When the difference between the target time point and the detection time point is ⁇ T / 2 or less (step S662: YES), the CPU 100a advances the process to step S67 (see FIG. 18, step S67). At this time, the peak value is present in a predetermined time zone (a time zone of ⁇ ⁇ T / 2 with respect to P / 2), and it is considered that the detection time point of the peak value is not greatly deviated from the target time point.
  • a predetermined time zone a time zone of ⁇ ⁇ T / 2 with respect to P / 2
  • step S662 NO
  • the CPU 100a When the difference between the target time point and the detection time point is not equal to or smaller than ⁇ T / 2 (step S662: NO), the CPU 100a outputs a lighting signal to the notification lamp 86 (step S663).
  • the peak value does not exist in a predetermined time zone. For example, as shown in FIG. 14B, it is considered that the peak value detection time point is greatly deviated from the target time point because the collision plate 303 is inclined downward.
  • the CPU 100a outputs a lighting signal to the notification lamp 86 (step S663).
  • the CPU 100a changes the calculation target period (the period in which the grain collides with the spout sensor 300, in other words, between P / 4 and 3P / 4) (step S664).
  • the start time of the calculation target period is delayed or advanced by the magnitude of the difference between the detection time and the target time.
  • the difference is K
  • P / 4 ⁇ K is set as the start time
  • 3P / 4 ⁇ K is set as the end time.
  • the CPU 100a outputs a signal indicating that the calculation target period has been changed to the display unit 83 (step S665).
  • the display unit 83 displays that “the grain amount has been changed”. By this display, the user can easily recognize that the calculation target period has been changed. Then, the CPU 100a returns the process to step S67.
  • step S664 and step S665 may be omitted in the peak value specifying process, and the subsequent calculation of the grain amount may be stopped.
  • a warning such as “Is the position of the spout sensor misaligned?” Or “The calculation of the grain amount is stopped” is displayed on the display unit 83, and the spout sensor 300 of the service person Repairs may be encouraged.
  • the peak value is determined for a predetermined time.
  • the band time zone of ⁇ ⁇ T / 2 with respect to P / 2
  • the amount of grain stored in the grain tank 4 cannot be accurately calculated. Therefore, when the detection point of the peak value deviates from the predetermined time zone, the fact is notified to the user. As a result, the user can be prompted to repair or adjust the position of the spout sensor 300 by a service person.
  • the calculation target period is changed, and the grain amount is calculated based on the impact force detected by the spout sensor 300 during the changed calculation target period. . Thereby, calculation of the amount of grains can be continued.
  • the user is notified by turning on the notification lamp 86 or displaying on the display unit 83, and after the harvesting is completed, the serviceman repairs / positions the detection means. Can be encouraged.
  • the position of the spout sensor 300 deviates from the appropriate position as a factor that causes the detection time of the peak value by the spout sensor 300 to advance or delay from the time when the peak value should be detected.
  • the present invention is not limited to this case.
  • the blade 23b when the blade 23b is deformed, it can be cited as the above factor.
  • FIG. 20 is an enlarged plan sectional view schematically showing the deformed blade 23b.
  • the blade 23b may be deformed due to aging, and when foreign matter such as soil is taken in, excessive force may act on the blade 23b due to the foreign matter taken in and the blade 23b may be deformed.
  • the timing at which the grains are put into the grain tank 4 is delayed as compared with the case where the blades 23b are not curved.
  • the timing at which the grain is put into the grain tank 4 is earlier than when the slat 23b is not curved.
  • the detection value detected by the spout sensor 300 for each rotation period (one period) of the blade plate 23b may be stored in the EEPROM 100d, and the above determination may be executed with a plurality of periods as a unit.
  • FIG. 21 is an internal side configuration diagram schematically showing the bucket elevator 144 and the grain tank 4 in an enlarged manner.
  • the broken line arrow indicates the moving direction of the grain, and the round shape indicates the grain.
  • the bucket type elevator 144 is formed by the rear plate 500, the front plate 501, the left and right side plates 502, and the top plate 144a.
  • the front plate 501 facing the top plate 144a is a non-guide surface.
  • Sprockets 503 and 504 having axial centers in the left and right directions are respectively provided at the upper and lower portions inside the bucket elevator 144, and an endless chain 505 is wound around the sprockets 503 and 504.
  • a plurality of buckets 506, such as a substantially U-shape in a side view when viewed from the upper side, are attached to the chain 505 at appropriate intervals.
  • the driving force is transmitted to the sprocket 504 provided at the lower part of the bucket type elevator 144, and the chain 505 is driven with the rotation of the sprocket 504, and the sprocket 503 provided at the upper part of the bucket type elevator 144 is rotated.
  • a bucket 506 is circulated up and down along a chain 505 between a grain supply port (not shown) provided at the lower part of the bucket elevator 144 and a grain outlet 507 provided at the upper part of the bucket elevator 144.
  • the spout sensor 300 is disposed in the grain tank 4 between the top plate 144a and the grain outlet 507. The spout sensor 300 is separated from the top plate 144a.
  • a leveling disc 150 is provided in the vicinity of the grain outlet 507 to flip the grain.
  • the leveling disk 150 is supported by the grain tank 4 via a support member 154.
  • the support member 154 is provided with a rotatable rotary shaft 153 with the vertical direction as an axial direction.
  • the leveling disk 150 has a disk portion 151 with the vertical direction as the rotation axis direction, and a plurality of blades 152, 152,... Standing on the upper surface of the disk portion 151 and arranged radially around the center of rotation. , 152.
  • the rotation shaft 153 is connected to the center portion of the disk portion 151.
  • a motor 155 is provided below the support member 154, and an output shaft of the motor 155 is connected to the rotation shaft 153.
  • the grain input from the bucket 506 reaches the leveling disc 150 through the grain outlet 507.
  • the disk portion 151 is rotated by the drive of the motor 155, and the blades 152 bounce off the grains and deposit them in the grain tank 4 on average.
  • a pick-up sensor (not shown) is provided on a support plate (not shown) that supports the sprocket 503, and the pick-up sensor detects the period at which the bucket 506 rotates around the sprocket 503. Then, based on the detection values of the pickup sensor and the spout sensor 300, the calculation of the grain amount, the detection of the peak value, and the like are performed as in the third embodiment.
  • the spout sensor 300 may be provided in the grain tank 4.
  • FIG. 22 is an internal side view schematically showing an enlarged view of the grain tank 4 having the bucket type elevator 144 and the spout sensor 300 therein.
  • the spout sensor 300 is supported by a support portion (not shown) that hangs down from the top surface portion of the grain tank 4.
  • a guide surface (not shown) for guiding the grain is provided around the disk portion 151. Therefore, the first area and the second area exist in the grain tank 4.
  • the spout sensor 300 is disposed in the second region.
  • the calculation of the grain amount, the detection of the peak value, and the like are performed based on the detection values of the pickup sensor and the spout sensor 300 as in the third embodiment.
  • the introduction of the grain into the grain tank 4 is performed by the blade 23b provided at the front end of the screw conveyor 23 and the blade 152 provided on the disk portion 151. Even when any of the rotary buckets 156 is used, it is possible to notify the user that the detection point of the peak value has deviated from the predetermined time zone.

Abstract

The objective of the present invention is to provide a combine that can eliminate the effect of disturbance from grain quantity detection values, even during a period of contact in which grain contacts a sensor. The impact force detected by a discharging opening sensor is compared with a pre-set threshold (α). On the basis of the comparison results, it is determined whether or not the impact force is included in the subject of calculation. For example, if the impact force is less than the threshold (α), the impact force is removed from being a subject of calculation. As a result, particularly when a small quantity of grain is being conveyed (for example, in the case of harvesting work being performed at a low speed or the case of a hand-threshing mode), it is possible to improve the calculation precision of the amount of grain. If the amount of grain conveyed is small, the effect of disturbance on the calculated amount of grain is larger than when the amount of grain conveyed is large.

Description

コンバインCombine
 本発明は、回収した穀粒の量を精度良く検出することができるコンバインに関する。 The present invention relates to a combine that can accurately detect the amount of recovered grains.
 圃場での収穫作業を行う場合には、穀稈の刈取り及び脱穀並びに穀粒の回収を行うコンバインを使用することが多い。コンバインは、クローラにより圃場を走行し、この走行中に刈刃にて穀稈を刈取り、刈取った穀稈を扱胴へ搬送して脱穀する。そして扱胴の下方に配置してあるチャフシーブにて、穀稈から分離した稈及び穀粒の選別を行い、選別された穀粒をチャフシーブから漏下させて、スクリューコンベアを介して穀粒タンクに回収する。 When harvesting in the field, combine harvesters are often used to harvest and thresh cereals and to recover grains. The combine travels on the field with a crawler, and harvests the culm with a cutting blade during the travel, conveys the harvested culm to the handling cylinder, and threshes. Then, the chaff sheave arranged below the barrel is used to sort the cocoons and grains separated from the cereal grains, and the selected grains are allowed to leak from the chaff sheave and are transferred to the grain tank via the screw conveyor. to recover.
 スクリューコンベアの先端部には、穀粒を穀粒タンクに投入するための羽根板が取り付けてあり、該羽根板によって投入された穀粒量を検出する穀粒量検出センサが穀粒タンクに設けてある。穀粒量検出センサは圧電素子を備えており、穀粒が当接した場合の圧力に基づいて穀粒量を検出している(例えば特許文献1)。 At the tip of the screw conveyor, a slat for attaching the grain into the grain tank is attached, and a grain amount detection sensor for detecting the amount of grain introduced by the slat is provided in the grain tank. It is. The grain amount detection sensor includes a piezoelectric element, and detects the grain amount based on the pressure when the grain comes into contact (for example, Patent Document 1).
 穀粒量検出センサには、エンジンの振動及び凹凸を有する圃場を走行することによって発生した振動などが伝播する。これらの振動は外乱となって穀粒量検出センサの出力に影響する。 The vibration of the engine and the vibration generated by traveling on the uneven field propagate to the grain amount detection sensor. These vibrations become disturbances and affect the output of the grain amount detection sensor.
 近年では穀粒量検出センサの検出周期を設定し、検出周期に含まれる穀粒が当接すべき当接期間に検出された検出値を、非当接期間にて検出された検出値に基づいて補正し、外乱の影響を除去する発明が提案されている(非特許文献1参照)。
特開2005-24381号公報 庄司 浩一他2名、「非線形特性をもつ収量センサの現場較正法-電磁ピックアップを搭載することによる精度向上について」、ISMAB 2010 FUKUOKA、2010年4月5日
In recent years, the detection period of the grain amount detection sensor is set, and the detection value detected in the contact period in which the grains included in the detection period should contact is based on the detection value detected in the non-contact period. Has been proposed (see Non-Patent Document 1).
Japanese Patent Laid-Open No. 2005-24381 Koichi Shoji and two others, "On-site calibration method for yield sensor with nonlinear characteristics-About accuracy improvement by installing electromagnetic pickup", ISMAB 2010 FUKUOKA, April 5, 2010
 スクリューコンベアによって穀粒が搬送されていない場合であっても、穀粒量検出センサの温度特性、羽根板による風圧及び車体の傾きなどの外乱によって、当接期間に穀粒量検出センサから検出値が出力されることがある。 Even if the grain is not being conveyed by the screw conveyor, the detected value from the grain quantity detection sensor during the contact period due to disturbances such as the temperature characteristics of the grain quantity detection sensor, wind pressure by the blades, and the inclination of the vehicle body May be output.
 本発明は斯かる事情に鑑みてなされたものであり、当接期間においても、穀粒量の検出値から外乱の影響を除去することができるコンバインを提供することを目的とする。 This invention is made | formed in view of such a situation, and it aims at providing the combine which can remove the influence of a disturbance from the detected value of a grain amount also in a contact period.
 本発明に係るコンバインは、刈取られた穀稈を脱穀する脱穀装置と、該脱穀装置にて脱穀された穀粒を貯留する貯留部と、前記脱穀装置から前記貯留部へ穀粒を搬送する搬送手段と、該搬送手段にて搬送された穀粒による衝撃力を検出する検出手段と、該検出手段にて検出した衝撃力に基づいて、穀粒量を算出する算出手段とを備えるコンバインにおいて、前記算出手段は、前記検出手段にて検出された衝撃力が予め設定した閾値よりも大きいか否かを判定する判定手段と、該判定手段での判定結果に基づいて、検出された衝撃力を前記算出手段での算出に使用するか否かを決定する決定手段とを備えることを特徴とする。 The combine according to the present invention includes a threshing device that threshs the harvested cereal, a storage unit that stores the grain threshed by the threshing device, and a conveyance that conveys the grain from the threshing device to the storage unit. A combine comprising: a means; a detecting means for detecting an impact force caused by the grain conveyed by the conveying means; and a calculating means for calculating a grain amount based on the impact force detected by the detecting means. The calculating means determines whether or not the impact force detected by the detecting means is greater than a preset threshold value, and calculates the detected impact force based on the determination result of the determination means. And determining means for determining whether or not to use for calculation in the calculating means.
 本発明においては、検出手段にて検出された衝撃力を予め設定した閾値と比較する。比較結果に基づいて、衝撃力を算出対象に含めるか否かを決定する。例えば衝撃力が閾値よりも小さい場合、算出すべき対象から除去する。 In the present invention, the impact force detected by the detection means is compared with a preset threshold value. Based on the comparison result, it is determined whether or not to include the impact force in the calculation target. For example, when the impact force is smaller than the threshold value, it is removed from the target to be calculated.
 本発明に係るコンバインは、前記搬送手段はスクリューコンベアであり、該スクリューコンベアの端部における軸部分に前記貯留部へ穀粒を投入する羽根板が設けてあり、前記検出手段を前記羽根板に対向させて配置してあることを特徴とする。 In the combine according to the present invention, the conveying means is a screw conveyor, and a blade plate is provided on the shaft portion at the end of the screw conveyor to inject the grain into the storage portion, and the detecting means is used as the blade plate. It is arranged to face each other.
 本発明においては、検出手段は羽根板に対向しており、羽根板から投入された穀粒は検出手段に確実に当接する。 In the present invention, the detection means is opposed to the slats, and the grains put in from the slats abut on the detection means reliably.
 本発明に係るコンバインは、前記算出手段は、前記羽根板から投入された穀粒が前記検出手段に衝突すべき期間に検出された衝撃力を積算する積算手段を有し、積算した積算値に基づいて、穀粒量を算出するようにしてあり、前記判定手段は、前記期間にて、前記衝撃力が前記閾値よりも大きいか否かを判定するようにしてあり、前記決定手段は、前記判定手段にて前記閾値よりも大きいと判定した衝撃力を前記積算手段での積算に使用する決定をするようにしてあることを特徴とする。 In the combine according to the present invention, the calculating means has an integrating means for integrating the impact force detected during a period when the grain introduced from the blades should collide with the detecting means, and the integrated value is obtained. Based on the above, the grain amount is calculated, and the determination unit is configured to determine whether or not the impact force is greater than the threshold value in the period, and the determination unit includes the determination unit The impact force determined to be larger than the threshold value by the determination means is determined to be used for integration by the integration means.
 本発明においては、穀粒が前記検出手段に衝突すべき期間において、閾値よりも大きいと判定した衝撃力のみを積算する。これにより、前記期間内における外乱の影響を除去する。 In the present invention, only the impact force determined to be greater than the threshold value is integrated during the period when the grain should collide with the detection means. Thereby, the influence of the disturbance in the said period is removed.
 本発明に係るコンバインは、前記算出手段は、前記羽根板から投入された穀粒が前記検出手段に衝突すべき期間に検出された衝撃力を積算する積算手段を有し、積算した積算値に基づいて、穀粒量を算出するようにしてあり、前記判定手段は、前記期間にて、前記衝撃力が前記閾値よりも大きいか否かを判定するようにしてあり、前記決定手段は、前記判定手段にて前記期間の任意の時点に検出された衝撃力が前記閾値よりも大きいと判定した場合に、前記期間内に検出された衝撃力を前記積算手段での積算に使用する決定をするようにしてあることを特徴とする。
In the combine according to the present invention, the calculating means includes an integrating means for integrating the impact force detected during a period when the grain put in from the blades should collide with the detecting means, and the integrated value is obtained. Based on the above, the grain amount is calculated, and the determination unit is configured to determine whether or not the impact force is greater than the threshold value in the period, and the determination unit includes the determination unit When the determination means determines that the impact force detected at an arbitrary point in the period is greater than the threshold, the determination is made to use the impact force detected within the period for integration by the integration means. It is characterized by the above.
 本発明においては、前記期間の任意の時点に検出された衝撃力が前記閾値よりも大きいと判定した場合に、前記期間内に検出された衝撃力全てを積算対象に含める。これにより、前記期間内における外乱の影響を除去する。 In the present invention, when it is determined that the impact force detected at an arbitrary time point in the period is larger than the threshold value, all impact forces detected in the period are included in the accumulation target. Thereby, the influence of the disturbance in the said period is removed.
 本発明に係るコンバインは、前記スクリューコンベアの回転数を検出する回転数検出手段と、該回転数検出手段の検出結果に基づいて、前記スクリューコンベアの回転周期を求める手段とを備え、前記羽根板から投入された穀粒が前記検出手段に衝突すべき期間は1回転周期に含まれることを特徴とする。 The combine according to the present invention comprises: a rotation speed detection means for detecting the rotation speed of the screw conveyor; and a means for obtaining a rotation period of the screw conveyor based on a detection result of the rotation speed detection means. The period during which the grain input from the vehicle should collide with the detection means is included in one rotation cycle.
 本発明においては、羽根板の1回転周期毎に前記判定を実行し、前記期間における外乱の除去を実現する。 In the present invention, the determination is executed every one rotation period of the blades, and the disturbance is eliminated during the period.
 本発明に係るコンバインは、前記算出手段は、前記期間外に検出された前記検出手段の衝撃力に基づいて、前記積算手段の積算結果に含まれる定常偏差を除去する手段を有することを特徴とする。 The combine according to the present invention is characterized in that the calculating means has means for removing a steady deviation included in the integration result of the integrating means based on the impact force of the detecting means detected outside the period. To do.
 本発明においては、羽根板から投入された穀粒が検出手段に当接しない非当接期間に検出された衝撃力は、振動などによって生じる定常偏差であり、これを積算結果から除外する。 In the present invention, the impact force detected during the non-contact period in which the grain thrown in from the blade is not in contact with the detection means is a steady deviation caused by vibration or the like, and is excluded from the integration result.
 本発明に係るコンバインは、前記搬送手段は、穀粒を前記貯留部へ投入する回転式の投入部を含み、前記投入部の回転周期を検出する回転周期検出手段と、該回転周期検出手段にて検出された一回転周期の間に、前記検出手段にて衝撃力のピーク値が検出された時点を特定する特定手段と、該特定手段にて前記ピーク値が検出された時点が一回転周期における所定時間帯外である場合に、前記時点が所定時間帯外であることを報知する報知手段とを備えることを特徴とする。 In the combine according to the present invention, the transport unit includes a rotary input unit that inputs grains into the storage unit, and a rotation period detection unit that detects a rotation period of the input unit, and the rotation period detection unit Identifying means for specifying a point in time when the peak value of the impact force is detected by the detecting means during one rotation cycle detected in the above, and a point in time when the peak value is detected by the specifying means is one rotation cycle And an informing means for informing that the time is outside the predetermined time zone when the time is outside the predetermined time zone.
 本発明においては、衝撃力のピーク値が検出された時点の前後において穀粒が検出手段に当接していると考えられるので、ピーク値が一回転周期における予め定めた所定時間帯から逸脱した場合、穀粒タンクに貯留した穀粒量を正確に演算することができない。そのためピーク値の検出時点が所定時間帯から逸脱した場合に、その旨をユーザに報知する。 In the present invention, since it is considered that the grain is in contact with the detecting means before and after the peak value of the impact force is detected, the peak value deviates from a predetermined time zone in one rotation cycle. The amount of grain stored in the grain tank cannot be calculated accurately. Therefore, when the detection point of the peak value deviates from the predetermined time zone, the fact is notified to the user.
 本発明に係るコンバインは、前記算出手段は、前記一回転周期における予め定めた算出対象期間に前記検出手段にて検出された検出値に基づいて穀粒量を算出するようにしてあり、前記特定手段にて前記ピーク値が検出された時点が所定時間帯外である場合に、前記算出対象期間を変更するようにしてあることを特徴とする。 The combine according to the present invention is such that the calculating means calculates a grain amount based on a detection value detected by the detecting means during a predetermined calculation target period in the one rotation cycle, When the time point when the peak value is detected by the means is outside a predetermined time zone, the calculation target period is changed.
 本発明においては、前記ピーク値の検出時点が所定時間帯から逸脱した場合に、算出対象期間を変更し、変更後の算出対象期間に検出手段にて検出された衝撃力に基づいて穀粒量を算出する。これにより穀粒量の算出を継続することができる。 In the present invention, when the detection time of the peak value deviates from the predetermined time zone, the calculation target period is changed, and the grain amount based on the impact force detected by the detecting means during the changed calculation target period Is calculated. Thereby, calculation of the amount of grains can be continued.
 本発明に係るコンバインは、前記算出手段が前記算出対象期間を変更した場合に、前記算出対象期間の変更が実行されていることを報知する変更報知手段を備えることを特徴とする。 The combine according to the present invention is characterized by comprising change notification means for notifying that the change of the calculation target period is being executed when the calculation means changes the calculation target period.
 本発明においては、算出対象期間の変更が行われている場合に、その旨ユーザに報知し、収穫終了後にサービスマンによる検出手段の修理・位置調整等を行うように促すことができる。 In the present invention, when the calculation target period is changed, it is possible to notify the user to that effect and prompt the serviceman to repair or adjust the detection means after the harvesting is completed.
 本発明に係るコンバインは、前記投入部は、回転軸回りに回転する羽根板又はスプロケットの回りを回転するバケットであることを特徴とする。 The combine according to the present invention is characterized in that the charging section is a bucket rotating around a blade plate or a sprocket rotating around a rotation axis.
 本発明においては、穀粒の貯留部への投入を、スクリューコンベアの先端に設けた羽根板又は回転式のバケットのいずれを使用する場合であっても、ピーク値の検出時点が所定時間帯から逸脱したことをユーザに報知することができる。 In the present invention, the peak value is detected from a predetermined time zone, regardless of whether the blade is provided in the tip of the screw conveyor or the rotary bucket is used for inputting the grain into the storage unit. The user can be notified of the departure.
 本発明にあっては、検出手段にて検出された衝撃力を予め設定した閾値と比較する。比較結果に基づいて、衝撃力を算出対象に含めるか否かを決定する。例えば衝撃力が閾値よりも小さい場合、算出すべき対象から除去する。そのため、特に少量の穀粒が搬送されている場合(例えば低速で刈取作業を行っている場合又は手扱モードの場合)において、穀粒量の算出精度を向上させることができる。穀粒の搬送量が少ない場合、穀粒の搬送量が多い場合に比べて、算出された穀粒量に対する外乱の影響が大きくなる。 In the present invention, the impact force detected by the detection means is compared with a preset threshold value. Based on the comparison result, it is determined whether or not to include the impact force in the calculation target. For example, when the impact force is smaller than the threshold value, it is removed from the target to be calculated. Therefore, especially when a small amount of grain is being conveyed (for example, when cutting at low speed or in the handling mode), the calculation accuracy of the grain amount can be improved. When the amount of grain transport is small, the influence of disturbance on the calculated amount of grain is greater than when the amount of grain transport is large.
 本発明にあっては、検出手段は羽根板に対向しており、羽根板から投入された穀粒は検出手段に確実に当接する。羽根板による風圧などの外乱が衝撃力に影響を与えても、外乱による検出値を除去するように設計する限り、羽根板に対向する任意の位置に配することができ、仕様に応じた配置が可能となる。 In the present invention, the detection means is opposed to the slats, and the grains thrown in from the slats reliably contact the detection means. Even if disturbances such as wind pressure due to the slats affect the impact force, as long as it is designed to eliminate the detection value due to the disturbances, it can be placed at any position facing the slats. Is possible.
 本発明にあっては、穀粒が前記検出手段に衝突すべき期間において、閾値よりも大きいと判定した衝撃力のみを積算する。これにより、前記期間内において外乱を精度良く除去することができる。 In the present invention, only the impact force determined to be larger than the threshold value is accumulated during the period when the grain should collide with the detection means. Thereby, the disturbance can be accurately removed within the period.
 本発明にあっては、前記期間の任意の時点に検出された衝撃力が前記閾値よりも大きいと判定した場合に、前記期間内に検出された衝撃力全てを積算対象に含める。これにより、前記期間内において外乱を精度良く除去することができる。 In the present invention, when it is determined that the impact force detected at an arbitrary time point in the period is larger than the threshold value, all impact forces detected in the period are included in the integration target. Thereby, the disturbance can be accurately removed within the period.
 本発明にあっては、羽根板の1回転周期毎に前記判定を実行し、穀粒が前記検出手段に衝突すべき期間における外乱の除去を精度良く実現することができる。 In the present invention, it is possible to accurately perform the removal of disturbance during a period in which the grain should collide with the detection means by executing the determination every rotation cycle of the blades.
 本発明にあっては、羽根板から投入された穀粒が検出手段に衝突しない期間に検出された値は、振動などによって生じる定常偏差であり、これを積算結果から除外することで、穀粒量の検出精度を更に向上させることができる。 In the present invention, the value detected during the period when the grain thrown in from the blade does not collide with the detection means is a steady deviation caused by vibration or the like, and by removing this from the integration result, the grain The amount detection accuracy can be further improved.
実施の形態1に係るコンバインの外観斜視図である。1 is an external perspective view of a combine according to Embodiment 1. FIG. 脱穀装置の内部構成を略示する側面断面図である。It is side surface sectional drawing which outlines the internal structure of a threshing apparatus. 穀粒タンクを略示する平面断面図である。It is a plane sectional view showing a grain tank roughly. 穀粒タンクを略示する縦断面図である。It is a longitudinal cross-sectional view which outlines a grain tank. エンジンの駆動力の伝達経路を略示する伝動機構図である。It is a transmission mechanism figure which shows the transmission path of the driving force of an engine schematically. 制御部の構成を示すブロック図である。It is a block diagram which shows the structure of a control part. エンジンの回転数及び係数βの関係を示すテーブルである。It is a table which shows the relationship between the engine speed and the coefficient β. 投口センサの検出値とピックアップセンサの検出値との関係を示すグラフの一例である。It is an example of the graph which shows the relationship between the detected value of a spout sensor, and the detected value of a pickup sensor. CPUによる穀粒量演算処理を示すフローチャートである。It is a flowchart which shows the grain amount calculation process by CPU. CPUによる補正値算出処理を示すフローチャートである。It is a flowchart which shows the correction value calculation process by CPU. CPUによる警報処理を説明するフローチャートである。It is a flowchart explaining the alarm process by CPU. 実施の形態2に係るコンバインにおける投口センサの検出値とピックアップセンサの検出値との関係を示すグラフの一例である。It is an example of the graph which shows the relationship between the detected value of the spout sensor in the combine which concerns on Embodiment 2, and the detected value of a pickup sensor. CPUによる穀粒量演算処理を示すフローチャートである。It is a flowchart which shows the grain amount calculation process by CPU. 実施の形態3に係るコンバインにおける投口センサを略示する縦断面図である。It is a longitudinal cross-sectional view which shows schematically the spout sensor in the combine which concerns on Embodiment 3. FIG. 制御部の構成を示すブロック図である。It is a block diagram which shows the structure of a control part. 第1領域に位置する投口センサの検出値とピックアップセンサの検出値との関係を示すグラフの一例である。It is an example of the graph which shows the relationship between the detected value of the spout sensor located in a 1st area | region, and the detected value of a pickup sensor. 衝突板が下向きに傾斜した場合における投口センサの検出値とピックアップセンサの検出値との関係を示すグラフの一例である。It is an example of the graph which shows the relationship between the detection value of a spout sensor, and the detection value of a pickup sensor when a collision board inclines downward. CPUによる穀粒量演算処理を示すフローチャートである。It is a flowchart which shows the grain amount calculation process by CPU. CPUによるピーク値特定処理を示すフローチャートである。It is a flowchart which shows the peak value specific process by CPU. 変形した羽根板を略示する拡大平面断面図である。It is an expanded plane sectional view which shows the deformed blade board schematically. 実施の形態4に係るコンバインのバケット式昇降機及び穀粒タンクを拡大して略示する内部側面構成図である。It is an internal side surface block diagram which expands and schematically shows the bucket type elevator and grain tank of the combine which concerns on Embodiment 4. FIG. バケット式昇降機及び投口センサを内部に有する穀粒タンクを拡大して略示する内部側面構成図である。It is an internal side block diagram which expands and schematically shows the grain tank which has a bucket type elevator and a spout sensor inside.
 2 脱穀装置
 4 穀粒タンク(貯留部)
 4c 押圧式スイッチ
 11 扱胴
 23 一番スクリューコンベア(搬送手段、スクリューコンベア、投入部、回転軸)
 23b 羽根板
 40 エンジン
 44 脱穀クラッチ
 51 ピックアップセンサ(回転数検出手段)
 83 表示部(報知手段、変更報知手段)
 86 報知ランプ(報知手段)
 100 制御部(算出手段、特定手段)
 100a CPU
 100b ROM
 100c RAM
 100d EEPROM
 100h LUT
 144 バケット式昇降機
 150 レベリングディスク(投入部)
 152 羽根板
 153 回転軸
 300 投口センサ(検出手段)
 503、504 スプロケット
 506 バケット
2 Threshing device 4 Grain tank (storage part)
4c Push-type switch 11 Handling cylinder 23 First screw conveyor (conveying means, screw conveyor, feeding part, rotating shaft)
23b Blades 40 Engine 44 Threshing clutch 51 Pickup sensor (rotational speed detection means)
83 Display section (notification means, change notification means)
86 Notification lamp (notification means)
100 control unit (calculation means, identification means)
100a CPU
100b ROM
100c RAM
100d EEPROM
100h LUT
144 Bucket type elevator 150 Leveling disc (loading part)
152 Blade 153 Rotating shaft 300 Throwing sensor (detection means)
503, 504 Sprocket 506 Bucket
 (実施の形態1)
 以下本発明を実施の形態1に係るコンバインを示す図面に基づいて詳述する。図1はコンバインの外観斜視図である。
(Embodiment 1)
Hereinafter, the present invention will be described in detail based on the drawings showing the combine according to the first embodiment. FIG. 1 is an external perspective view of a combine.
 図において1は走行クローラであり、該走行クローラ1の上側に機体9が設けてある。該機体9の上には脱穀装置2が設けてある。該脱穀装置2の前側に、刈取り穀稈と非刈取り穀稈とを区別する分草板3a、穀稈を刈取る刈刃3b、及び穀稈を引き起こす引起し装置3cを備える刈取部3が設けてある。前記脱穀装置2の右側には穀粒を収容する穀粒タンク4が設けてあり、前記脱穀装置2の左部には、穀稈を搬送する前後に長いフィードチェン5が設けてある。 In the figure, reference numeral 1 denotes a traveling crawler, and an airframe 9 is provided above the traveling crawler 1. A threshing device 2 is provided on the body 9. On the front side of the threshing device 2, there is provided a cutting unit 3 including a weed plate 3a for distinguishing between a reaped cereal and a non-reached cereal, a cutting blade 3b for reaping the cereal, and a raising device 3c for causing the cereal. It is. On the right side of the threshing device 2 is provided a grain tank 4 for storing the grain, and on the left part of the threshing device 2 is provided a long feed chain 5 before and after conveying cereals.
 該フィードチェン5の上側に、穀稈を挟持する挟持部材6が設けてあり、該挟持部材6とフィードチェン5とが対向している。前記フィードチェン5の前端部付近には上部搬送装置7を配設してある。また前記穀粒タンク4には、穀粒タンク4から穀粒を排出する筒状の排出オーガ4aを取り付けてあり、穀粒タンク4の前側にはキャビン8を設けてある。 On the upper side of the feed chain 5, there is provided a clamping member 6 that clamps the cereal grains, and the clamping member 6 and the feed chain 5 face each other. In the vicinity of the front end portion of the feed chain 5, an upper transport device 7 is disposed. The grain tank 4 is provided with a cylindrical discharge auger 4 a for discharging the grain from the grain tank 4, and a cabin 8 is provided on the front side of the grain tank 4.
 走行クローラ1の駆動によって機体9は走行する。機体9の走行によって刈取部3に穀稈が取り込まれ、刈り取られる。刈り取られた穀稈は上部搬送装置7、フィードチェン5及び挟持部材6を介して脱穀装置2に搬送され、脱穀装置2内にて脱穀される。 The airframe 9 travels by driving the traveling crawler 1. As the machine body 9 travels, the cereals are taken into the mowing unit 3 and mowed. The harvested corn straw is conveyed to the threshing device 2 through the upper conveying device 7, the feed chain 5 and the clamping member 6, and threshed in the threshing device 2.
 図2は脱穀装置2の内部構成を略示する側面断面図、図3は穀粒タンク4を略示する平面断面図、図4は穀粒タンク4を略示する縦断面図である。
 図2に示すように、脱穀装置2の前側上部に穀稈を脱穀するための扱室10が設けてある。該扱室10内に、前後方向を軸長方向とした円筒形の扱胴11が軸架してあり、該扱胴11は軸回りに回動可能となっている。扱胴11の周面には多数の扱歯12、12、・・・12が螺旋状に並んでいる。前記扱胴11の下側に、前記扱歯12、12、・・・12と協働して稈を揉みほぐすクリンプ網15が配置してある。前記扱胴11は後述するエンジン40の駆動力によって回動し、穀稈を脱穀する。
2 is a side sectional view schematically showing the internal configuration of the threshing apparatus 2, FIG. 3 is a plan sectional view schematically showing the grain tank 4, and FIG. 4 is a longitudinal sectional view schematically showing the grain tank 4.
As shown in FIG. 2, a handling room 10 for threshing cereals is provided at the front upper part of the threshing device 2. A cylindrical handling cylinder 11 whose axial direction is the longitudinal direction is mounted in the handling chamber 10, and the handling cylinder 11 is rotatable about the axis. A large number of teeth 12, 12,... 12 are arranged in a spiral on the peripheral surface of the barrel 11. On the lower side of the handling cylinder 11, a crimp net 15 is disposed for coping with the handling teeth 12, 12,. The said handling cylinder 11 rotates with the driving force of the engine 40 mentioned later, and threshs a cereal.
 前記扱室10の上壁に四つの送塵弁10a、10a、10a、10aが前後方向に並設してあり、該送塵弁は扱室10の後部へ送出する稈及び穀粒の量を調節する。 Four dust feed valves 10 a, 10 a, 10 a, 10 a are juxtaposed in the front-rear direction on the upper wall of the handling chamber 10, and the dust feed valves control the amount of straw and grains sent to the rear part of the handling chamber 10. Adjust.
 扱室10の後部には処理室13が連設してある。該処理室13内に、前後方向を軸長方向とした円筒形の処理胴13bが軸架してあり、該処理胴13bは軸回りに回動可能となっている。処理胴13bの周面には多数の扱歯13c、13c、・・・、13cが螺旋状に並んでいる。前記処理胴13bの下側には扱歯13c、13c、・・・、13cと協働して稈を揉みほぐす処理網13dを配置してある。前記処理胴13bはエンジン40の駆動力によって回動し、扱室10から送出された稈及び穀粒から穀粒を分離する処理を行う。処理室13の後端部下側には排出口13eを開設してある。 A processing chamber 13 is connected to the rear of the handling chamber 10. A cylindrical processing cylinder 13b whose axial direction is the longitudinal direction is mounted in the processing chamber 13, and the processing cylinder 13b is rotatable around the axis. A large number of teeth 13c, 13c,..., 13c are arranged in a spiral on the peripheral surface of the processing cylinder 13b. A treatment net 13d that disperses the ridges in cooperation with the teeth 13c, 13c,..., 13c is disposed below the treatment cylinder 13b. The processing cylinder 13b is rotated by the driving force of the engine 40, and performs a process of separating the grain from the straw and the grain delivered from the handling chamber 10. A discharge port 13 e is opened below the rear end of the processing chamber 13.
 前記処理室13の上壁に四つの処理胴弁13a、13a、13a、13aが前後方向に沿って並設してあり、該処理胴弁13a、13a、13a、13aは処理室13の後部へ送出する稈及び穀粒の量を調節する。 Four processing cylinder valves 13 a, 13 a, 13 a, 13 a are juxtaposed along the front-rear direction on the upper wall of the processing chamber 13, and the processing cylinder valves 13 a, 13 a, 13 a, 13 a go to the rear part of the processing chamber 13. Adjust the amount of straw and grains to be delivered.
 前記クリンプ網15の下側には、穀粒及び稈の選別を行う揺動選別装置16を設けてある。該揺動選別装置16は、穀粒及び稈を均一化すると共に比重選別を行う揺動選別盤17と、該揺動選別盤17の後側に設けてあり、穀粒及び稈の粗選別を行うチャフシーブ18と、該チャフシーブ18の後側に設けてあり、稈に混入した穀粒を落下させるためのストローラック19とを備える。該ストローラック19は図示しない複数の透孔を有している。また前記揺動選別盤17の前部には揺動アーム21が連結してある。該揺動アーム21は前後に揺動するように構成されている。この揺動アーム21の揺動によって揺動選別装置16は揺動し、稈及び穀粒の選別が行われる。 A rocking sorting device 16 for sorting grains and straws is provided below the crimp net 15. The rocking sorter 16 is provided on the back side of the rocking sorter 17 for making the grains and straws uniform and selecting the specific gravity, and for rough sorting of the grains and straws. A chaff sheave 18 to be performed, and a stroller rack 19 provided on the rear side of the chaff sheave 18 for dropping the grains mixed in the straw. The Strollac 19 has a plurality of through holes (not shown). A swing arm 21 is connected to the front portion of the swing sorter 17. The swing arm 21 is configured to swing back and forth. By the swinging of the swinging arm 21, the swing sorting device 16 swings, and selection of straw and grains is performed.
 揺動選別装置16は、前記チャフシーブ18の下側に設けてあり、穀粒及び稈の精選別を行うグレンシーブ20を更に備える。該グレンシーブ20の下方に、前方を下として傾斜した一番穀粒板22が設けてあり、該一番穀粒板22の前側に、一番スクリューコンベア23が設けてある。該一番スクリューコンベア23は、一番穀粒板22を滑落した穀粒を取り込み、穀粒タンク4へ送給する。 The swing sorting device 16 is provided below the chaff sheave 18 and further includes a grain sheave 20 that performs fine sorting of grains and straw. Below the grain sheave 20, a first grain plate 22 inclined with the front facing down is provided, and on the front side of the first grain plate 22, a first screw conveyor 23 is provided. The first screw conveyor 23 takes in the grain that has slid down the first grain plate 22 and feeds it to the grain tank 4.
 図3に示すように、一番スクリューコンベア23の上端部の軸部分23cには、矩形の羽根板23bが設けてある。該羽根板23bは、軸部分23cを中心として放射方向に突出している。該羽根板23bは、一番スクリューコンベア23に同期して回転する。 As shown in FIG. 3, a rectangular blade plate 23 b is provided on the shaft portion 23 c at the upper end of the first screw conveyor 23. The vane plate 23b protrudes in the radial direction about the shaft portion 23c. The vane plate 23b rotates in synchronism with the screw conveyor 23.
 軸部分23c及び羽根板23bは、ケーシング140に収容してある。ケーシング140は、軸部分23c及び羽根板23bの周囲を覆う平面視U形の側面141を備える。該側面141は、軸部分23c及び羽根板23bを間にして、穀粒タンク4の側面(投口4b)に対向している。穀粒タンク4内において、投口4bの下側近傍に押圧式スイッチ4cが設けてある。
 側面141の一端部は、穀粒を案内する案内面141aをなす。側面141の他端部は、案内面141aに対向した非案内面141bをなす。案内面141aは、穀粒タンク4の側面に対して鋭角に傾斜しており、非案内面141bと反対方向に延びている。一番スクリューコンベア23及び案内面141aの間の寸法は、一番スクリューコンベア23及び非案内面141bの間の寸法よりも大きい。
The shaft portion 23 c and the blade plate 23 b are accommodated in the casing 140. The casing 140 includes a U-shaped side surface 141 in plan view covering the periphery of the shaft portion 23c and the blade plate 23b. The side surface 141 is opposed to the side surface (the spout 4b) of the grain tank 4 with the shaft portion 23c and the blade plate 23b interposed therebetween. In the grain tank 4, a push switch 4c is provided near the lower side of the spout 4b.
One end of the side surface 141 forms a guide surface 141a for guiding the grain. The other end of the side surface 141 forms a non-guide surface 141b that faces the guide surface 141a. The guide surface 141a is inclined at an acute angle with respect to the side surface of the grain tank 4, and extends in a direction opposite to the non-guide surface 141b. The dimension between the first screw conveyor 23 and the guide surface 141a is larger than the dimension between the first screw conveyor 23 and the non-guide surface 141b.
 図3に示すように、L1は、案内面141a及び案内面141aを延長した面上に位置する線である。L2は、軸部分23c及び案内面141aの間においてL1に30度の角度で交差した、一番スクリューコンベア23の外周接線である。穀粒タンク4内において、L1及びL2にて挟まれる領域を第1領域とし(図3における実線ハッチング参照)、L2を基準にして第1領域と反対側の領域を第2領域とする(図3における破線ハッチング参照)。 As shown in FIG. 3, L1 is a line located on the guide surface 141a and a surface obtained by extending the guide surface 141a. L2 is the outermost tangent line of the screw conveyor 23 that intersects L1 at an angle of 30 degrees between the shaft portion 23c and the guide surface 141a. In the grain tank 4, the region sandwiched between L1 and L2 is defined as the first region (see the solid line hatching in FIG. 3), and the region opposite to the first region with respect to L2 is defined as the second region (FIG. 3).
 図3に示すように、第2領域内に、投口4bから穀粒タンク4へ投入される穀粒の衝撃値を検出する投口センサ300が配置してある。図4に示すように、穀粒タンク4の天面から支持部材310が垂下しており、該支持部材310に投口センサ300が固定してある。該投口センサ300は、投口4bの下縁部よりも上側に配置してある。また穀粒タンク4が満杯になった場合に、穀粒タンク4に貯留された穀粒の上面よりも上側に位置する。換言すれば、満杯時に、穀粒に埋没しない上下位置及び奥行き位置に投口センサ300を配置してある。 As shown in FIG. 3, a spout sensor 300 that detects an impact value of a grain that is input from the spout 4b to the grain tank 4 is disposed in the second region. As shown in FIG. 4, a support member 310 is suspended from the top surface of the grain tank 4, and the spout sensor 300 is fixed to the support member 310. The spout sensor 300 is disposed above the lower edge of the spout 4b. Moreover, when the grain tank 4 becomes full, it is located above the upper surface of the grain stored in the grain tank 4. In other words, the spout sensor 300 is arranged at the vertical position and the depth position that are not buried in the grain when full.
 図3において、案内面141a付近の破線矢印及び円形にて示すように、押し出された穀粒の大部分は案内面141aに沿って移動し、穀粒タンク4内の第1領域に、横広がりに連続した帯状になって投入される。図3において、一番スクリューコンベア23付近の破線矢印及び円形にて示すように、残りの穀粒は穀粒タンク4内の第2領域に離散して投入される。 In FIG. 3, most of the extruded grain moves along the guide surface 141a and spreads horizontally in the first region in the grain tank 4 as indicated by the broken arrow and the circle near the guide surface 141a. It is put in a continuous belt shape. In FIG. 3, as shown by the dashed arrow and the circle in the vicinity of the first screw conveyor 23, the remaining grains are discretely thrown into the second region in the grain tank 4.
 第1領域においては、案内面141aに沿って移動する穀粒及び案内面141aに衝突して跳ね返った穀粒などが連続的に穀粒タンク4に投入される。なお案内面141aに接触するので、穀粒は減速して投入される。一方第2領域においては、穀粒は羽根板23bから穀粒タンク4に直接投入される。そのため穀粒は第1領域に投入される穀粒のように案内面141aに接触しないので、ほとんど減速せず、離散した状態で高速投入される。 In the first region, the grains that move along the guide surface 141a, the grains that bounce off the guide surface 141a, and the like are continuously put into the grain tank 4. In addition, since it contacts the guide surface 141a, a grain is thrown in and thrown in. On the other hand, in the second region, the grain is directly put into the grain tank 4 from the blade 23b. Therefore, the grain does not come into contact with the guide surface 141a unlike the grain thrown into the first region, so that the grain is hardly decelerated and is thrown at a high speed in a discrete state.
 また一番スクリューコンベア23による上方向の力が穀粒に作用する。図4の破線矢印にて示すように、上方向の力と羽根板23bからの横方向の力との合成により、穀粒は斜め上方向に移動する。 Also, the upward force from the first screw conveyor 23 acts on the grain. As shown by the broken line arrow in FIG. 4, the grain moves obliquely upward by the combination of the upward force and the lateral force from the blade 23b.
 投口センサ300は第2領域に配置してあるので、離散した少量の穀粒が投口センサ300に瞬間的に衝突する。なお投口センサ300が第1領域に配置してある場合、横広がりに連続した穀粒が投口センサ300に継続的に衝突する。 Since the spout sensor 300 is disposed in the second region, a small amount of discrete grains momentarily collide with the spout sensor 300. In addition, when the spout sensor 300 is arrange | positioned in the 1st area | region, the grain continuously spread horizontally collides with the spout sensor 300. FIG.
 穀粒は投口4bから、羽根板23bの回転によって間欠的に穀粒タンク4へ投入される。投入された穀粒が投口センサ300に衝突することによって歪みゲージから電圧が出力され、出力された電圧に基づいて穀粒量が算出される。なお投口センサ300は、当接した穀粒の衝撃値を検出することができる構成であればよい。例えば歪みゲージに代えて、圧電素子を備えてもよい。 The grain is intermittently charged into the grain tank 4 from the spout 4b by the rotation of the blade 23b. When the input grain collides with the spout sensor 300, a voltage is output from the strain gauge, and the amount of the grain is calculated based on the output voltage. The spout sensor 300 only needs to have a configuration that can detect the impact value of the abutted grain. For example, a piezoelectric element may be provided instead of the strain gauge.
 なお図3において、L1及びL2のなす角度は30度であるが、L1及びL2のなす角度はこれに限定されない。L2は、投口センサ300に穀粒が連続的に衝突する第1領域と瞬間的に衝突する第2領域とを区別する線であればよく、L1及びL2のなす角度は設計に応じて適宜選択される。 In FIG. 3, the angle formed by L1 and L2 is 30 degrees, but the angle formed by L1 and L2 is not limited to this. L2 should just be a line which distinguishes the 1st area | region where a grain collides with the spout sensor 300 continuously, and the 2nd area | region which collides instantaneously, The angle which L1 and L2 make is suitably according to design. Selected.
 前記グレンシーブ20から一番穀粒板22に落下した穀粒は前記一番スクリューコンベア23に向けて滑落する。滑落した穀粒は一番スクリューコンベア23よって搬送される。穀粒に遠心力が作用し、穀粒は一番スクリューコンベア23の外周に沿って上昇する。図3の実線矢印によって示すように、羽根板23bは非案内面141b側から案内面141a側へ向けて回転する(図3において反時計回りに回転する)。羽根板23bは穀粒を投口4bへ向けて押し出す。 The grain that has dropped from the grain sieve 20 onto the first grain plate 22 slides down toward the first screw conveyor 23. The dropped grain is conveyed by the screw conveyor 23 first. Centrifugal force acts on the grain, and the grain ascends along the outer periphery of the screw conveyor 23 first. As indicated by the solid line arrow in FIG. 3, the blade 23b rotates from the non-guide surface 141b side toward the guide surface 141a side (rotates counterclockwise in FIG. 3). The slat 23b pushes the grain toward the spout 4b.
 図3の破線矢印によって示すように、投入された穀粒が投口センサ300に当接することによって歪みゲージから電圧が出力され、出力された電圧に基づいて投口量が検出される。 As shown by the broken line arrows in FIG. 3, when the input grain comes into contact with the spout sensor 300, a voltage is output from the strain gauge, and the spout amount is detected based on the output voltage.
 図2に示すように、前記一番穀粒板22の後部に、後方に向けて下降傾斜した傾斜板24が連設してある。該傾斜板24の後端部に、前方に向けて下降傾斜した二番穀粒板25が連設してある。該二番穀粒板25と前記傾斜板24との連結部分の上側に稈及び穀粒を搬送する二番スクリューコンベア26が設けてある。 As shown in FIG. 2, an inclined plate 24 inclined downward toward the rear is connected to the rear portion of the first grain plate 22. A second grain plate 25 inclined downward toward the front is connected to the rear end of the inclined plate 24. A second screw conveyor 26 is provided on the upper side of the connecting portion between the second grain plate 25 and the inclined plate 24 to convey straw and grains.
 前記ストローラック19の透孔から傾斜板24又は二番穀粒板25に落下した落下物は前記二番スクリューコンベア26に向けて滑落する。滑落した落下物は、二番スクリューコンベア26によって前記扱胴11の左側に設けてある処理ロータ14に搬送され、処理ロータ14にて脱穀処理される。 The fallen object that has fallen onto the inclined plate 24 or the second grain plate 25 from the through hole of the Strollac 19 slides down toward the second screw conveyor 26. The fallen fallen object is conveyed to the processing rotor 14 provided on the left side of the handling cylinder 11 by the second screw conveyor 26 and is threshed by the processing rotor 14.
 前記一番スクリューコンベア23よりも前方であって、前記揺動選別盤17よりも下方に、起風動作を行う唐箕27が設けてある。前記唐箕27の起風動作によって発生した風は、後方へ進行する。唐箕27と前記一番スクリューコンベア23との間に、風を上向きに送り出す整流板28を配設してある。 A carp 27 for performing a wind-up operation is provided in front of the first screw conveyor 23 and below the swing sorter 17. The wind generated by the wind-up operation of the carp 27 travels backward. A rectifying plate 28 for sending the wind upward is disposed between the tang 27 and the first screw conveyor 23.
 前記二番穀粒板25の後端部に通路板36が連ねてある。該通路板36の上方には下部吸引カバー30が設けてある。該下部吸引カバー30及び通路板36の間は塵埃が排出される排気通路37になっている。 A passage plate 36 is connected to the rear end of the second grain plate 25. A lower suction cover 30 is provided above the passage plate 36. Between the lower suction cover 30 and the passage plate 36 is an exhaust passage 37 through which dust is discharged.
 下部吸引カバー30の上方に上部吸引カバー31が設けてある。該上部吸引カバー31及び下部吸引カバー30の間に、稈を吸引排出する軸流ファン32を配設してある。該軸流ファン32の後方には排塵口33を設けてある。前記唐箕27の動作によって発生した気流は、前記整流板28、28によって整流された後に、前記揺動選別装置16を通過して、前記排塵口33及び排気通路37に至る。 An upper suction cover 31 is provided above the lower suction cover 30. Between the upper suction cover 31 and the lower suction cover 30, an axial fan 32 for sucking and discharging soot is disposed. A dust exhaust port 33 is provided behind the axial flow fan 32. The air flow generated by the operation of the tang 27 is rectified by the rectifying plates 28 and 28, then passes through the swing sorting device 16 and reaches the dust outlet 33 and the exhaust passage 37.
 排塵口33及び排気通路37には、圧電素子を備える排出量センサ34、34がそれぞれ配してある。排塵口33及び排気通路37から、穀粒が排出され、排出量センサ34、34に当接する。このとき排出量センサ34、34の圧電素子から電圧信号が出力され、排塵口33及び排気通路37から排出される単位時間あたりの穀粒量(ロス量)が検出される。 The exhaust port 33 and the exhaust passage 37 are respectively provided with discharge amount sensors 34 and 34 each including a piezoelectric element. Grains are discharged from the dust outlet 33 and the exhaust passage 37 and come into contact with the discharge sensors 34 and 34. At this time, voltage signals are output from the piezoelectric elements of the discharge amount sensors 34, 34, and the amount of grain (loss amount) discharged from the dust outlet 33 and the exhaust passage 37 per unit time is detected.
 なお排出量センサ34、34は圧電素子を有するセンサに限るものではなく、発光素子及び受光素子を有する光センサを排出量センサ34として使用し、発光素子及び受光素子の間を通過する穀粒量を検出しても良い。また発信器及び受信機を有する超音波センサを排出量センサ34として使用し、発信器及び受信機の間を通過する穀粒量を検出しても良い。 The discharge amount sensors 34 and 34 are not limited to sensors having a piezoelectric element, and an optical sensor having a light emitting element and a light receiving element is used as the discharge amount sensor 34, and the amount of grains passing between the light emitting element and the light receiving element. May be detected. Further, an ultrasonic sensor having a transmitter and a receiver may be used as the discharge amount sensor 34 to detect the amount of grain passing between the transmitter and the receiver.
 前記上部吸引カバー31の上側であって、前記処理室13の下方に、前方に下降傾斜した流下樋35が設けてある。前記処理室13の排出口13eから排出された排出物は流下樋35を滑落して前記ストローラック19に落下する。 A downcomer 35 inclined downward and forward is provided above the upper suction cover 31 and below the processing chamber 13. Exhaust discharged from the discharge port 13e of the processing chamber 13 slides down the downflow basin 35 and falls onto the Strollac 19.
 前述した走行クローラ1の駆動、刈取部3の刈取動作、扱胴11の回動、処理胴13bの回動、揺動選別装置16の揺動及び一番スクリューコンベア23の回転動作などはエンジン40の駆動力によって行われる。図5はエンジン40の駆動力の伝達経路を略示する伝動機構図である。 The driving of the traveling crawler 1, the cutting operation of the cutting unit 3, the rotation of the handling cylinder 11, the rotation of the processing cylinder 13 b, the swinging of the swing sorting device 16, the rotating operation of the first screw conveyor 23, etc. The driving force is used. FIG. 5 is a transmission mechanism diagram schematically showing the transmission path of the driving force of the engine 40.
 図5に示すように、エンジン40はHST(Hydro Static Transmission)41を介して走行ミッション42に連結してある。エンジン40の出力軸の近傍には、エンジンの回転数を検出するエンジン回転数センサ40aが設けてある。エンジン回転数センサ40aはホール素子などを有する磁気センサであり、出力軸が有する磁性体の通過によって回転数を検出する。 As shown in FIG. 5, the engine 40 is connected to a traveling mission 42 via an HST (Hydro Static Transmission) 41. In the vicinity of the output shaft of the engine 40, an engine speed sensor 40a for detecting the engine speed is provided. The engine speed sensor 40a is a magnetic sensor having a Hall element or the like, and detects the speed by passing through a magnetic material of the output shaft.
 HST41は油圧ポンプ(図示せず)と、該油圧ポンプに供給される作動油の流量及び油圧ポンプの圧力を調整する機構(図示せず)と、該機構を制御する変速回路41aとを有している。 The HST 41 has a hydraulic pump (not shown), a mechanism (not shown) that adjusts the flow rate of hydraulic oil supplied to the hydraulic pump and the pressure of the hydraulic pump, and a transmission circuit 41a that controls the mechanism. ing.
 走行ミッション42は、前記走行クローラ1に駆動力を伝達するギヤ(図示せず)を有している。走行ミッション42には、ホール素子を有する車速センサ43を設けてある。該車速センサ43は前記ギヤの回転数を検出して、ギヤの回転数に対応する機体の車速を示す信号を出力するようにしてある。 The traveling mission 42 has a gear (not shown) that transmits a driving force to the traveling crawler 1. The traveling mission 42 is provided with a vehicle speed sensor 43 having a hall element. The vehicle speed sensor 43 detects the rotational speed of the gear and outputs a signal indicating the vehicle speed of the airframe corresponding to the rotational speed of the gear.
 前記エンジン40は電磁式の脱穀クラッチ44を介して、前記扱胴11及び処理胴13bに連結してあり、また伝動機構50に連結してある。伝動機構50は前記一番スクリューコンベア23に連結してある。伝動機構50と一番スクリューコンベア23とを連結する軸の近傍にピックアップセンサ51が設けてある。該ピックアップセンサ51は、ホール素子などを有する磁気センサであり、前記軸が有する磁性体の通過によって、一番スクリューコンベア23の回転数を検出する。 The engine 40 is connected to the handling cylinder 11 and the processing cylinder 13b through an electromagnetic threshing clutch 44, and is also connected to a transmission mechanism 50. The transmission mechanism 50 is connected to the first screw conveyor 23. A pickup sensor 51 is provided in the vicinity of the shaft connecting the transmission mechanism 50 and the first screw conveyor 23. The pickup sensor 51 is a magnetic sensor having a Hall element and the like, and detects the number of rotations of the screw conveyor 23 by the passage of the magnetic material of the shaft.
 またエンジン40は脱穀クラッチ44を介して偏心クランク45に連結してある。該偏心クランク45は前記揺動アーム21に連結してある。偏心クランク45の駆動により前記揺動選別装置16が揺動する。また前記エンジン40は脱穀クラッチ44を介して前記唐箕27に連結してある。また前記エンジン40は脱穀クラッチ44及び電磁式の刈取クラッチ46を介して前記刈取部3に連結してある。 The engine 40 is connected to an eccentric crank 45 through a threshing clutch 44. The eccentric crank 45 is connected to the swing arm 21. As the eccentric crank 45 is driven, the swing sorting device 16 swings. The engine 40 is connected to the tang 27 through a threshing clutch 44. The engine 40 is connected to the reaping portion 3 via a threshing clutch 44 and an electromagnetic reaping clutch 46.
 走行ミッション42を介してエンジン40の駆動力が走行クローラ1に伝達され、機体が走行する。また刈取クラッチ46を介して刈取部3にエンジン40の駆動力が伝達し、刈取部3にて穀稈が刈取られる。 The driving force of the engine 40 is transmitted to the traveling crawler 1 via the traveling mission 42, and the aircraft travels. Further, the driving force of the engine 40 is transmitted to the cutting unit 3 via the cutting clutch 46, and the cereal is harvested by the cutting unit 3.
 脱穀クラッチ44を介して前記扱胴11にエンジン40の駆動力が伝達し、扱胴11にて穀稈は脱穀される。また脱穀クラッチ44を介して処理胴13bにエンジン40の駆動力が伝達する。処理胴13bは、扱胴11にて脱穀処理された処理物から穀粒を分離する。 The driving force of the engine 40 is transmitted to the handling cylinder 11 via the threshing clutch 44, and the cereals are threshed by the handling cylinder 11. Further, the driving force of the engine 40 is transmitted to the processing cylinder 13b via the threshing clutch 44. The processing cylinder 13b separates the grain from the processed product threshed by the handling cylinder 11.
 また前記揺動選別装置16には、脱穀クラッチ44及び偏心クランク45を介してエンジン40の駆動力が伝達し、扱胴11から漏下した稈及び穀粒並びに処理室13の排出口13eから排出された稈及び穀粒の選別が行われる。また脱穀クラッチ44を介して前記唐箕27にエンジン40の駆動力が伝達し、揺動選別装置16にて選別された稈が唐箕27の起風作用によって排塵口33及び排気通路37から排出される。 In addition, the driving force of the engine 40 is transmitted to the swing sorting device 16 via the threshing clutch 44 and the eccentric crank 45, and discharged from the straw and grains leaked from the handling cylinder 11 and the discharge port 13e of the processing chamber 13. Sorting of the finished straw and grains is performed. Further, the driving force of the engine 40 is transmitted to the Kara 27 through the threshing clutch 44, and the soot selected by the swing sorting device 16 is discharged from the dust outlet 33 and the exhaust passage 37 by the wind action of the Kara 27. The
 前記投口センサ300、エンジン回転数センサ40a及びピックアップセンサ51からの出力に基づいて、穀粒タンク4に貯留する穀粒量を演算する制御部がコンバインに搭載されている。図6は制御部の構成を示すブロック図、図7はエンジンの回転数及び係数βの関係を示すテーブルである。 A control unit that calculates the amount of grain stored in the grain tank 4 based on outputs from the spout sensor 300, the engine speed sensor 40a, and the pickup sensor 51 is mounted on the combine. FIG. 6 is a block diagram showing the configuration of the control unit, and FIG. 7 is a table showing the relationship between the engine speed and the coefficient β.
 制御部100は内部バス100gにより相互に接続されたCPU(Central Processing Unit)100a、ROM(Read Only Memory)100b、RAM(Random Access Memory)100c及びEEPROM(Electrically Erasable and Programmable Read Only Memory)100dを備えている。CPU100aはROM100bに記憶された制御プログラムをRAM100cに読み込み、該制御プログラムに従って、送塵弁10a及び処理胴弁13aの動作制御など必要な制御を実行する。なおCPU100aはタイマを内蔵している。 The control unit 100 includes a CPU (Central Processing Unit) 100a, a ROM (Read Only Memory) 100b, a RAM (Random Access Memory) 100c, and an EEPROM (Electrically, Erasable Memory and Programmable Read Only Memory) 100d that are interconnected by an internal bus 100g. ing. The CPU 100a reads the control program stored in the ROM 100b into the RAM 100c, and executes necessary control such as operation control of the dust feeding valve 10a and the processing cylinder valve 13a according to the control program. The CPU 100a has a built-in timer.
 EEPROM100dには、LUT(Look Up Table) 100hが格納してある。
 LUT100hには、エンジンの回転数及び係数βの関係を示すテーブルが記憶されている(図7参照)。該テーブルは、「エンジン回転数」欄及び「係数β」欄を備えており、各欄の各行には、エンジン回転数と、エンジン回転数に対応した係数βの値(β1~β6)が格納されている。なおエンジン回転数の大小は、一番スクリューコンベア23の回転数の大小に対応している。
The EEPROM 100d stores an LUT (Look Up Table) 100h.
The LUT 100h stores a table indicating the relationship between the engine speed and the coefficient β (see FIG. 7). The table includes an “engine speed” field and a “coefficient β” field, and each line of each field stores an engine speed and a value of a coefficient β corresponding to the engine speed (β1 to β6). Has been. The engine speed corresponds to the number of rotations of the screw conveyor 23.
 またEEPROM100dには、補正変数Xが設定してあり、該補正変数Xには必要に応じて値が格納される。また、投口センサ300の検出値を穀粒量の算出対象に含めるか否かを判定するための閾値αが設定してある。 Further, a correction variable X is set in the EEPROM 100d, and a value is stored in the correction variable X as necessary. Further, a threshold value α for determining whether or not the detection value of the spout sensor 300 is included in the calculation target of the grain amount is set.
 制御部100は出力インタフェース100fを介して、刈取クラッチ46及び脱穀クラッチ44に継断信号を出力する。また制御部100は出力インタフェース100fを介して、表示部83に所定の映像を表示することを示す表示信号を出力する。また制御部100は出力インタフェース100fを介して、警告ランプ84に点灯又は消灯信号を出力する。 Control unit 100 outputs a connection signal to mowing clutch 46 and threshing clutch 44 via output interface 100f. Further, the control unit 100 outputs a display signal indicating that a predetermined video is displayed on the display unit 83 via the output interface 100f. Further, the control unit 100 outputs a lighting or extinguishing signal to the warning lamp 84 via the output interface 100f.
 刈取スイッチ80、指標設定スイッチ81、操作スイッチ82、投口センサ300、押圧式スイッチ4c、ピックアップセンサ51、エンジン回転数センサ40a及び脱穀スイッチ85の各出力信号は入力インタフェース100eを介して制御部100に入力されている。 The output signals of the cutting switch 80, the index setting switch 81, the operation switch 82, the spout sensor 300, the push switch 4c, the pickup sensor 51, the engine speed sensor 40a, and the threshing switch 85 are input to the control unit 100 via the input interface 100e. Has been entered.
 なお前記キャビン8内には図示しないダッシュボードパネルが設けてあり、該ダッシュボードパネルに、刈取スイッチ80、指標設定スイッチ81、複数の操作スイッチ82及び脱穀スイッチ85が設けてあり、また液晶パネルを有する表示部83が設けてある。また前記キャビン8内には、警告ランプ84が設けてある。なお刈取スイッチ80のオンオフに対応して、刈取クラッチ46及び脱穀クラッチ44が継断される。また脱穀スイッチ85のオンオフに対応して、脱穀クラッチ44が継断される。 In addition, a dashboard panel (not shown) is provided in the cabin 8, and a cutting switch 80, an index setting switch 81, a plurality of operation switches 82 and a threshing switch 85 are provided on the dashboard panel, and a liquid crystal panel is provided. A display portion 83 is provided. A warning lamp 84 is provided in the cabin 8. In response to the on / off of the cutting switch 80, the cutting clutch 46 and the threshing clutch 44 are connected. Further, the threshing clutch 44 is disconnected in response to the on / off of the threshing switch 85.
 CPU100aは、投口センサ300の出力信号に係る検出値を積算し、閾値αと比較して積算対象に含めるか否かを判定する。そして積算対象に含める検出値をピックアップセンサ51の出力信号に係る検出値に同期させてEEPROM100dに記憶する。図8は投口センサ300の検出値とピックアップセンサ51の検出値との関係を示すグラフの一例である。 The CPU 100a integrates the detection values related to the output signal of the spout sensor 300, and determines whether or not to include in the integration target by comparing with the threshold value α. The detection value included in the integration target is stored in the EEPROM 100d in synchronization with the detection value related to the output signal of the pickup sensor 51. FIG. 8 is an example of a graph showing the relationship between the detection value of the spout sensor 300 and the detection value of the pickup sensor 51.
 図8Aは、時間と投口センサ300の検出値との関係を示すグラフである。投口センサ300の検出値は穀粒の衝突による歪み量を示しており、所定のサンプリング数における移動平均値である。図8Bは、時間とピックアップセンサ51の検出値との関係を示すグラフである。ピックアップセンサ51の検出値は、羽根板23bの一回転における回転開始時点及び回転終了時点を示している。なお以下の説明において図中の周期Pの添字は適宜省略する。 FIG. 8A is a graph showing the relationship between time and the detection value of the spout sensor 300. The detection value of the spout sensor 300 indicates the amount of distortion due to the collision of the grain, and is a moving average value at a predetermined sampling number. FIG. 8B is a graph showing the relationship between time and the detection value of the pickup sensor 51. The detection value of the pickup sensor 51 indicates the rotation start time and rotation end time in one rotation of the blade plate 23b. In the following description, the subscript of the period P in the figure is omitted as appropriate.
 ピックアップセンサ51の検出値は、パルス波として検出され、パルス波の間隔が一番スクリューコンベア23の一回転の周期、すなわち羽根板23bの一回転の周期Pに相当する。CPU100aは、所定のサンプリング周期(例えば100[ms])で投口センサ300の検出値を取り込み、EEPROM100dに記憶する。またCPU100aは、ピックアップセンサ51からパルス波が入力される都度、タイムスタンプを作成し、該タイムスタンプを、パルス波が入力された時に投口センサ300から入力された検出値に紐付けて、EEPROM100dに記憶する。 The detection value of the pickup sensor 51 is detected as a pulse wave, and the interval between the pulse waves corresponds to the cycle of one rotation of the screw conveyor 23, that is, the cycle P of one rotation of the blade plate 23b. The CPU 100a takes in the detection value of the spout sensor 300 at a predetermined sampling period (for example, 100 [ms]) and stores it in the EEPROM 100d. The CPU 100a creates a time stamp each time a pulse wave is input from the pickup sensor 51, and associates the time stamp with the detection value input from the spout sensor 300 when the pulse wave is input. To remember.
 図8において、穀粒が羽根板23bによって穀粒タンク4に投入されている場合、P/4~3P/4の間に、投口センサ300からCPU100aに穀粒の衝突による検出値が入力される。0~P/4及び3P/4~Pの間に投口センサ300からCPU100aに入力された検出値は、穀粒が投口センサ300に衝突していない場合の検出値である。 In FIG. 8, when the grain is put into the grain tank 4 by the blade 23b, the detection value due to the collision of the grain is inputted from the spout sensor 300 to the CPU 100a between P / 4 to 3P / 4. The The detection value input from the spout sensor 300 to the CPU 100a between 0 to P / 4 and 3P / 4 to P is a detection value when the grain does not collide with the spout sensor 300.
 図8Aにおいて、閾値αは、投口センサ300の温度特性、羽根板23bによる風圧及び機体9の傾きなどの外乱によって、投口センサ300にて検出される検出値に相当する。穀粒が羽根板23bによって穀粒タンク4に投入されていない場合、理想的には、P/4~3P/4の間に、投口センサ300からCPU100aに穀粒の衝突による検出値は入力されない。しかし実際は、投口センサ300からCPU100aに外乱(例えば羽根板23bによる風圧)による検出値(閾値α)が入力される。 8A, the threshold value α corresponds to a detection value detected by the spout sensor 300 due to disturbances such as temperature characteristics of the spout sensor 300, wind pressure by the blades 23b, and inclination of the airframe 9. When the grain is not put into the grain tank 4 by the blade 23b, ideally, the detection value due to the collision of the grain is input from the spout sensor 300 to the CPU 100a during P / 4 to 3P / 4. Not. However, actually, a detection value (threshold value α) due to disturbance (for example, wind pressure by the blade 23b) is input from the spout sensor 300 to the CPU 100a.
 CPU100aは、P/4~3P/4の間に投口センサ300から入力された検出値と閾値αとを比較する。該検出値に、閾値αを超過する値が含まれている場合、CPU100aは、P/4~3P/4の間に入力された検出値を積算すべき対象に決定する(図8Aの周期P1 、P2 及びP5 における破線ハッチング部分の面積)。積算すべき値は、投口センサ300への穀粒の衝突による力積に相当する。 The CPU 100a compares the detection value input from the spout sensor 300 during the period P / 4 to 3P / 4 with the threshold value α. When the detected value includes a value exceeding the threshold value α, the CPU 100a determines that the detected value input between P / 4 to 3P / 4 is to be integrated (period P1 in FIG. 8A). , Area of broken line hatched portion at P2 and P5). The value to be integrated corresponds to the impulse by the collision of the grain with the spout sensor 300.
 検出値に、閾値αを超過する値が含まれていない場合、CPU100aは、P/4~3P/4の間に入力された検出値を積算すべき対象から除外する(図8Aにおいて、周期P3 及びP4 部分)。 When the detected value does not include a value that exceeds the threshold value α, the CPU 100a excludes the detected value input between P / 4 to 3P / 4 from the objects to be integrated (in FIG. 8A, the period P3 And P4 part).
 一方0~P/4及び3P/4~Pの間における投口センサ300の検出値を積算した値(図8Aの実線ハッチング部分の面積)は定常偏差に相当する。該定常偏差は、エンジン40の振動、凹凸のある圃場を走行中に投口センサ300に伝播した振動及び投口センサ300の特性などに起因する。 On the other hand, a value obtained by integrating the detection values of the spout sensor 300 between 0 to P / 4 and 3P / 4 to P (area of the solid line hatched portion in FIG. 8A) corresponds to a steady deviation. The steady deviation is caused by vibration of the engine 40, vibration propagated to the spout sensor 300 while traveling on a rough field, characteristics of the spout sensor 300, and the like.
 CPU100aは、所定の周期(例えば1[s])で、0~P/4及び3P/4~Pの間における投口センサ300の検出値を積算した値に必要な処理を行い、EEPROM100dにアクセスして、補正変数Xに格納する。 The CPU 100a performs necessary processing on the value obtained by integrating the detection values of the spout sensor 300 between 0 to P / 4 and 3P / 4 to P in a predetermined cycle (for example, 1 [s]), and accesses the EEPROM 100d. And stored in the correction variable X.
 CPU100aは、EEPROM100dにアクセスしてタイムスタンプを参照し、P/4~3P/4の間における投口センサ300の検出値を積算する。そして積算した値に含まれる定常偏差を補正変数Xに格納された値を用いて除去する。例えば積算した値から、補正変数Xに格納された値を減算する。 The CPU 100a accesses the EEPROM 100d, refers to the time stamp, and integrates the detection values of the spout sensor 300 between P / 4 and 3P / 4. Then, the steady deviation included in the integrated value is removed using the value stored in the correction variable X. For example, the value stored in the correction variable X is subtracted from the integrated value.
 CPU100aは、定常偏差を除去した補正値DをRAM100cに記憶する。そして補正値Dに係数βを適用して、穀粒タンク4に貯留した穀粒量を求める。 CPU100a memorize | stores the correction value D which removed the stationary deviation in RAM100c. And the coefficient (beta) is applied to the correction value D, and the grain quantity stored in the grain tank 4 is calculated | required.
 なお案内面141a側(第1領域)に投口センサ300を配置した場合、周期Pの全期間に亘って穀粒が投口センサ300に衝突するため、定常偏差を除去することができない。 In addition, when the spout sensor 300 is arrange | positioned at the guide surface 141a side (1st area | region), since a grain collides with the spout sensor 300 over the whole period P, a steady-state deviation cannot be removed.
 図3に示すように、穀粒タンク4内の第1領域には、横広がりに連続した帯状の穀粒群が投入されている。そのため第1領域に投口センサ300を配置した場合、周期Pの間継続して投口センサ300に穀粒が衝突する。換言すれば、穀粒が投口センサ300に衝突していないはずの0~P/4及び3P/4~Pの間に、穀粒が衝突する。 As shown in FIG. 3, in the first region in the grain tank 4, a band-like grain group that is continuous in a lateral direction is input. Therefore, when the spout sensor 300 is arranged in the first region, the grain collides with the spout sensor 300 continuously during the period P. In other words, the grains collide between 0 to P / 4 and 3P / 4 to P, which should not have collided with the spout sensor 300.
 0~P/4及び3P/4~Pの間の検出値を、定常偏差を除去する補正に使用するためには、0~P/4及び3P/4~Pの間に穀粒が投口センサ300に衝突していない又は衝突していないとみなせる必要がある。しかし0~P/4及び3P/4~Pの間に、穀粒が投口センサ300に連続的に衝突しており、0~P/4及び3P/4~Pの間の検出値を、定常偏差を除去する補正に使用することはできない。 In order to use the detected values between 0-P / 4 and 3P / 4-P for correction to remove the steady-state deviation, the grain is spouted between 0-P / 4 and 3P / 4-P. It should be considered that the sensor 300 does not collide or is not colliding. However, during 0 to P / 4 and 3P / 4 to P, the grains continuously collide with the spout sensor 300, and the detected values between 0 to P / 4 and 3P / 4 to P are It cannot be used for correction to remove steady-state deviation.
 次にCPU100aによる穀粒量演算処理について説明する。図9は、CPU100aによる穀粒量演算処理を示すフローチャートである。 Next, the grain amount calculation processing by the CPU 100a will be described. FIG. 9 is a flowchart showing the grain amount calculation processing by the CPU 100a.
 CPU100aは、刈取スイッチ80から信号を取り込み、刈取スイッチ80がオンであるか否か判定し(ステップS1)、刈取スイッチ80がオンになるまで待機する(ステップS1:NO)。刈取スイッチ80がオンである場合(ステップS1:YES)、CPU100aは、エンジン回転数センサ40aから信号を取り込む(ステップS2)。そしてCPU100aは、EEPROM100dにアクセスしてLUT100hを参照し(ステップS3)、エンジン回転数センサ40aから取り込んだ信号が示すエンジン回転数に対応する係数β(β1~β6)を決定する(ステップS4)。 The CPU 100a takes in a signal from the cutting switch 80, determines whether or not the cutting switch 80 is on (step S1), and waits until the cutting switch 80 is turned on (step S1: NO). When the cutting switch 80 is on (step S1: YES), the CPU 100a takes in a signal from the engine speed sensor 40a (step S2). Then, the CPU 100a accesses the EEPROM 100d and refers to the LUT 100h (step S3), and determines a coefficient β (β1 to β6) corresponding to the engine speed indicated by the signal fetched from the engine speed sensor 40a (step S4).
 そしてCPU100aは、ピックアップセンサ51及び投口センサ300から信号を取り込み(ステップS5)、P/4~3P/4の間の力積を積算する(ステップS6)。このとき、CPU100aは、EEPROM100dにアクセスしてタイムスタンプを参照し、P/4~3P/4の間における投口センサ300の検出値を積算する。なお投口センサ300から制御部100には、検出値が一定のサンプリング周期で順次入力されており、CPU100aは、タイムスタンプを参照することによって、P/4~3P/4の間に入力された検出値を認識することができる。 Then, the CPU 100a takes in signals from the pickup sensor 51 and the spout sensor 300 (step S5) and integrates impulses between P / 4 to 3P / 4 (step S6). At this time, the CPU 100a accesses the EEPROM 100d, refers to the time stamp, and integrates the detection values of the spout sensor 300 between P / 4 and 3P / 4. The detection values are sequentially input from the spout sensor 300 to the control unit 100 at a constant sampling cycle, and the CPU 100a refers to the time stamp to input between P / 4 to 3P / 4. The detected value can be recognized.
 次にCPU100aは、P/4~3P/4の間に入力された検出値に、閾値αを超過した検出値が含まれるか否かを判定する(ステップS7)。閾値αを超過した検出値が含まれない場合(ステップS7:NO)、CPU100aは、ステップS12へ処理を進める。 Next, the CPU 100a determines whether or not the detection value input between P / 4 to 3P / 4 includes a detection value that exceeds the threshold value α (step S7). When the detected value exceeding the threshold value α is not included (step S7: NO), the CPU 100a advances the process to step S12.
 閾値αを超過した検出値が含まれる場合(ステップS7:YES)、CPU100aは、EEPROM100dにアクセスして補正変数Xを参照し(ステップS8)、算出した力積を補正変数Xにて補正し(ステップS9)、補正値Dを求める。例えばCPU100aは、算出した力積から補正変数Xに格納された値を減算する。なお減算は補正の一例であり、補正変数Xに格納された値に基づいて、乗算又は除算してもよい。 When the detected value exceeding the threshold value α is included (step S7: YES), the CPU 100a accesses the EEPROM 100d, refers to the correction variable X (step S8), and corrects the calculated impulse with the correction variable X ( Step S9), a correction value D is obtained. For example, the CPU 100a subtracts the value stored in the correction variable X from the calculated impulse. Note that subtraction is an example of correction, and multiplication or division may be performed based on a value stored in the correction variable X.
 そしてCPU100aは、補正値Dに係数βを適用する(ステップS10)。例えば補正値Dに係数βを乗算するか又は加算する。なお係数βの乗算又は加算は、係数βの適用の例示であってこれに限定されるものではない。次にCPU100aは、係数β適用後の補正値Dを積算する(ステップS11)。なおステップS11における積算値が穀粒タンク4に貯留した穀粒量に相当する。そしてCPU100aは、刈取スイッチ80から信号を取り込み、刈取スイッチ80がオフであるか否か判定する(ステップS12)。刈取スイッチ80がオフでない場合(ステップS12:NO)、すなわち、刈取スイッチ80がオンである場合、CPU100aはステップS2へ処理を戻す。刈取スイッチ80がオフである場合(ステップS12:YES)、CPU100aは処理を終了する。なお上述した穀粒量演算処理は、周期P以内に実行されるリアルタイム処理として実行することができる。 Then, the CPU 100a applies the coefficient β to the correction value D (step S10). For example, the correction value D is multiplied or added by the coefficient β. The multiplication or addition of the coefficient β is an example of application of the coefficient β, and is not limited to this. Next, the CPU 100a integrates the correction value D after applying the coefficient β (step S11). Note that the integrated value in step S <b> 11 corresponds to the amount of grain stored in the grain tank 4. Then, the CPU 100a takes in a signal from the cutting switch 80 and determines whether or not the cutting switch 80 is off (step S12). When the cutting switch 80 is not off (step S12: NO), that is, when the cutting switch 80 is on, the CPU 100a returns the process to step S2. When the cutting switch 80 is off (step S12: YES), the CPU 100a ends the process. In addition, the grain amount calculation process mentioned above can be performed as a real-time process performed within the period P.
 なおCPU100aは、ステップS10の後に、刈取スイッチ80がオフになった後、扱胴11で処理された穀粒が穀粒タンク4に搬出されるまでの時間が経過するまで待機し、穀粒量演算処理を終了してもよい。またステップS7の判定は、ステップS5の次に実行してもよい。 The CPU 100a waits until the time until the grain processed in the handling cylinder 11 is carried out to the grain tank 4 after the cutting switch 80 is turned off after step S10, and the amount of grain The arithmetic processing may be terminated. The determination in step S7 may be performed after step S5.
 次にCPU100aによる補正値算出処理について説明する。図10はCPU100aによる補正値算出処理を示すフローチャートである。 Next, correction value calculation processing by the CPU 100a will be described. FIG. 10 is a flowchart showing correction value calculation processing by the CPU 100a.
 CPU100aは、刈取スイッチ80から信号を取り込み、刈取スイッチ80がオンであるか否か判定し(ステップS21)、刈取スイッチ80がオンになるまで待機する(ステップS21:NO)。刈取スイッチ80がオンである場合(ステップS21:YES)、ピックアップセンサ51及び投口センサ300から信号を取り込み(ステップS22)、0~P/4及び3P/4~Pの間における力積を積算する(ステップS23)。このとき、CPU100aは、EEPROM100dにアクセスしてタイムスタンプを参照し、0~P/4及び3P/4~Pの間における投口センサ300の検出値を積算する。なお投口センサ300から制御部100には、検出値が一定のサンプリング周期で順次入力されており、CPU100aは、タイムスタンプを参照することによって、0~P/4及び3P/4~Pの間に入力された検出値を認識することができる。 The CPU 100a takes in a signal from the cutting switch 80, determines whether or not the cutting switch 80 is on (step S21), and waits until the cutting switch 80 is turned on (step S21: NO). When the cutting switch 80 is on (step S21: YES), signals are acquired from the pickup sensor 51 and the spout sensor 300 (step S22), and the impulses between 0 to P / 4 and 3P / 4 to P are integrated. (Step S23). At this time, the CPU 100a accesses the EEPROM 100d, refers to the time stamp, and integrates the detection values of the spout sensor 300 between 0 to P / 4 and 3P / 4 to P. The detection values are sequentially input from the spout sensor 300 to the control unit 100 at a constant sampling cycle, and the CPU 100a refers to the time stamp to determine between 0 to P / 4 and 3P / 4 to P. Can be recognized.
 そしてCPU100aは、積算した値に所定の処理を実行する(ステップS24)。例えば、変動率を考慮した係数を乗算するか又は前記操作スイッチ82からの入力に応じて、予めEEPROM100dに設定した所定の関数を適用する。次にCPU100aは、処理を施した値を補正変数Xに格納する(ステップS25)。 Then, the CPU 100a performs a predetermined process on the accumulated value (step S24). For example, a predetermined function set in advance in the EEPROM 100 d is applied in accordance with an input from the operation switch 82 or by multiplying a coefficient considering the variation rate. Next, the CPU 100a stores the processed value in the correction variable X (step S25).
 そしてCPU100aは、内蔵するタイマにて経時を開始し、所定時間、例えば1[s]が経過するまで待機する(ステップS26:NO)。所定時間が経過した場合(ステップS26:YES)、CPU100aは、刈取スイッチ80から信号を取り込み、刈取スイッチ80がオフであるか否か判定する(ステップS27)。刈取スイッチ80がオンである場合(ステップS27:NO)、CPU100aは、タイマをリセットし(ステップS28)、ステップS22へ処理を戻す。刈取スイッチ80がオフである場合(ステップS27:YES)、CPU100aは処理を終了する。 The CPU 100a starts to elapse with a built-in timer and waits until a predetermined time, for example, 1 [s] elapses (step S26: NO). When the predetermined time has elapsed (step S26: YES), the CPU 100a takes in a signal from the cutting switch 80 and determines whether or not the cutting switch 80 is off (step S27). When the cutting switch 80 is on (step S27: NO), the CPU 100a resets the timer (step S28) and returns the process to step S22. When the cutting switch 80 is off (step S27: YES), the CPU 100a ends the process.
 CPU100aは、押圧式スイッチ4cが貯留した穀粒に押圧された場合、すなわち押圧式スイッチ4cがオンになった場合に、警報処理を実行する。図11は、CPU100aによる警報処理を説明するフローチャートである。なお警報処理は、割込処理として実行される。 The CPU 100a executes an alarm process when the push switch 4c is pressed by the stored grain, that is, when the push switch 4c is turned on. FIG. 11 is a flowchart for explaining alarm processing by the CPU 100a. The alarm process is executed as an interrupt process.
 CPU100aは、押圧式スイッチ4cから信号を取り込み、押圧式スイッチ4cがオンするまで待機する(ステップS31:NO)。押圧式スイッチ4cがオンである場合(ステップS31:YES)、警告ランプ84に点灯信号を出力する(ステップS32)。そしてCPU100aは、タイマにて経時を行い、所定時間が経過するまで待機する(ステップS33:NO)。所定時間経過後(ステップS33:YES)、CPU100aは、刈取スイッチ80及び脱穀スイッチ85から信号を取り込み、脱穀クラッチ44が切断されているか否かを判定する(ステップS34)。刈取スイッチ80及び脱穀スイッチ85からオフ信号が入力されている場合は、脱穀クラッチ44は切断されており、刈取スイッチ80又は脱穀スイッチ85からオン信号が入力されている場合は、脱穀クラッチ44は継合している。 The CPU 100a takes in a signal from the push switch 4c and waits until the push switch 4c is turned on (step S31: NO). When the push switch 4c is on (step S31: YES), a lighting signal is output to the warning lamp 84 (step S32). Then, the CPU 100a elapses with a timer and waits until a predetermined time elapses (step S33: NO). After a predetermined time has elapsed (step S33: YES), the CPU 100a takes in signals from the cutting switch 80 and the threshing switch 85, and determines whether or not the threshing clutch 44 is disconnected (step S34). When the off signal is input from the reaping switch 80 and the threshing switch 85, the threshing clutch 44 is disconnected, and when the on signal is input from the reaping switch 80 or the threshing switch 85, the threshing clutch 44 is connected. Match.
 脱穀クラッチ44が切断されている場合(ステップS34:YES)、すなわち刈取スイッチ80及び脱穀スイッチ85がオフである場合、CPU100aは処理を終了する。この場合、ユーザは警告ランプ84の点灯によって、穀粒タンク4が満杯であることに気付き、刈取スイッチ80及び脱穀スイッチ85をオフ操作したものと考えられる。 When the threshing clutch 44 is disconnected (step S34: YES), that is, when the reaping switch 80 and the threshing switch 85 are off, the CPU 100a ends the process. In this case, it is considered that the user noticed that the grain tank 4 is full by turning on the warning lamp 84 and turned off the cutting switch 80 and the threshing switch 85.
 脱穀クラッチ44が継合している場合(ステップS34:NO)、CPU100aは、脱穀クラッチ44及び刈取クラッチ46に切断信号を出力する(ステップS35)。なおステップS35を実行する前に、脱穀クラッチ44及び刈取クラッチ46を強制的に切断することを表示させる信号を表示部83に出力してもよい。なおステップS32において、ブザーから警報音を発してもよいし、表示部83に穀粒タンク4が満杯である旨を表示させてもよい。 When the threshing clutch 44 is engaged (step S34: NO), the CPU 100a outputs a disconnection signal to the threshing clutch 44 and the reaping clutch 46 (step S35). In addition, before performing step S35, you may output to the display part 83 the signal which displays that the threshing clutch 44 and the mowing clutch 46 are forcedly cut | disconnected. In step S32, an alarm sound may be emitted from the buzzer, or the display unit 83 may display that the grain tank 4 is full.
 実施の形態1に係るコンバインにあっては、投口センサ300にて検出された衝撃力を予め設定した閾値αと比較する。比較結果に基づいて、衝撃力を算出対象に含めるか否かを決定する。例えば衝撃力が閾値αよりも小さい場合、算出すべき対象から除去する。そのため、特に少量の穀粒が搬送されている場合(例えば低速で刈取作業を行っている場合又は手扱モードの場合)において、穀粒量の算出精度を向上させることができる。穀粒の搬送量が少ない場合、穀粒の搬送量が多い場合に比べて、算出された穀粒量に対する外乱の影響が大きくなる。 In the combine according to the first embodiment, the impact force detected by the spout sensor 300 is compared with a preset threshold value α. Based on the comparison result, it is determined whether or not to include the impact force in the calculation target. For example, when the impact force is smaller than the threshold value α, the impact force is removed from the target to be calculated. Therefore, especially when a small amount of grain is being conveyed (for example, when cutting at low speed or in the handling mode), the calculation accuracy of the grain amount can be improved. When the amount of grain transport is small, the influence of disturbance on the calculated amount of grain is greater than when the amount of grain transport is large.
 また投口センサ300は羽根板23bに対向しており、羽根板23bから投入された穀粒は投口センサ300に確実に当接する。羽根板23bによる風圧などの外乱が投口センサ300の検出値に影響を与えても、外乱による値を除去するように設計する限り、投口センサ300を羽根板23bに対向する任意の位置に配することができ、仕様に応じた配置が可能となる。 Further, the spout sensor 300 faces the blade plate 23b, and the grains thrown in from the blade plate 23b reliably come into contact with the spout sensor 300. Even if a disturbance such as wind pressure caused by the blade 23b affects the detection value of the outlet sensor 300, as long as the value due to the disturbance is designed to be removed, the outlet sensor 300 is placed at an arbitrary position facing the blade 23b. It is possible to arrange according to the specification.
 また期間P/4~3P/4の任意の時点に検出された衝撃力が閾値αよりも大きいと判定した場合に、期間P/4~3P/4に検出された衝撃力全てを積算対象に含める。これにより、穀粒の衝突によって検出された衝撃力を積算対象に漏れなく含めることができる。その結果、期間P/4~3P/4における外乱の除去及び漏れのない検出を両立させることができ、検出精度を向上させることができる。 Further, when it is determined that the impact force detected at an arbitrary time point in the period P / 4 to 3P / 4 is larger than the threshold value α, all the impact forces detected in the period P / 4 to 3P / 4 are targeted for integration. include. Thereby, the impact force detected by the collision of the grains can be included in the integration target without omission. As a result, it is possible to achieve both removal of disturbance and detection without leakage in the periods P / 4 to 3P / 4, and the detection accuracy can be improved.
 また0~P/4及び3P/4~Pの間に検出された衝撃力は、振動などによって生じる定常偏差であり、これを積算結果から除外することで、穀粒量の検出精度を更に向上させることができる。 In addition, the impact force detected between 0 and P / 4 and 3P / 4 and P is a steady deviation caused by vibration, etc., and by removing this from the integration result, the detection accuracy of the grain amount is further improved. Can be made.
 (実施の形態2)
 以下本発明を実施の形態2に係るコンバインを示す図面に基づいて詳述する。図12は投口センサ300の検出値とピックアップセンサ51の検出値との関係を示すグラフの一例である。図12Aは、時間と投口センサ300の検出値との関係を示すグラフである。投口センサ300の検出値は穀粒の衝突による歪み量を示しており、所定のサンプリング数における移動平均値である。図12Bは、時間とピックアップセンサ51の検出値との関係を示すグラフである。ピックアップセンサ51の検出値は、羽根板23bの一回転における回転開始時点及び回転終了時点を示している。
(Embodiment 2)
Hereinafter, the present invention will be described in detail with reference to the drawings showing the combine according to the second embodiment. FIG. 12 is an example of a graph showing the relationship between the detection value of the spout sensor 300 and the detection value of the pickup sensor 51. FIG. 12A is a graph showing the relationship between time and the detection value of the spout sensor 300. The detection value of the spout sensor 300 indicates the amount of distortion due to the collision of the grain, and is a moving average value at a predetermined sampling number. FIG. 12B is a graph showing the relationship between time and the detection value of the pickup sensor 51. The detection value of the pickup sensor 51 indicates the rotation start time and rotation end time in one rotation of the blade plate 23b.
 CPU100aは、P/4~3P/4の間に投口センサ300から入力された検出値と閾値αとを比較する。CPU100aは、P/4~3P/4の間に入力された検出値において、閾値αを超過した検出値を積算すべき対象に決定する(図12Aの周期P1 、P2 及びP5 における破線ハッチング部分の面積)。積算すべき値は、投口センサ300への穀粒の衝突による力積に相当する。CPU100aは、閾値αを超過していない検出値を積算すべき対象から除外する。 The CPU 100a compares the detection value input from the spout sensor 300 during the period P / 4 to 3P / 4 with the threshold value α. The CPU 100a determines that the detection value exceeding the threshold α is to be integrated among the detection values input between P / 4 to 3P / 4 (the broken line hatched portions in the periods P1, P2 and P5 in FIG. 12A). area). The value to be integrated corresponds to the impulse by the collision of the grain with the spout sensor 300. The CPU 100a excludes detection values that do not exceed the threshold value α from targets to be integrated.
 次にCPU100aによる穀粒量演算処理について説明する。図13は、CPU100aによる穀粒量演算処理を示すフローチャートである。 Next, the grain amount calculation processing by the CPU 100a will be described. FIG. 13 is a flowchart showing the grain amount calculation processing by the CPU 100a.
 CPU100aは、刈取スイッチ80から信号を取り込み、刈取スイッチ80がオンであるか否か判定し(ステップS41)、刈取スイッチ80がオンになるまで待機する(ステップS41:NO)。刈取スイッチ80がオンである場合(ステップS41:YES)、CPU100aは、エンジン回転数センサ40aから信号を取り込む(ステップS42)。そしてCPU100aは、EEPROM100dにアクセスしてLUT100hを参照し(ステップS43)、エンジン回転数センサ40aから取り込んだ信号が示すエンジン回転数に対応する係数β(β1~β6)を決定する(ステップS44)。 The CPU 100a takes in a signal from the cutting switch 80, determines whether or not the cutting switch 80 is turned on (step S41), and waits until the cutting switch 80 is turned on (step S41: NO). When the cutting switch 80 is on (step S41: YES), the CPU 100a takes in a signal from the engine speed sensor 40a (step S42). Then, the CPU 100a accesses the EEPROM 100d and refers to the LUT 100h (step S43), and determines a coefficient β (β1 to β6) corresponding to the engine speed indicated by the signal fetched from the engine speed sensor 40a (step S44).
 そしてCPU100aは、ピックアップセンサ51及び投口センサ300から信号を取り込み(ステップS45)、P/4~3P/4の間の力積を積算する(ステップS46)。このとき、CPU100aは、EEPROM100dにアクセスしてタイムスタンプを参照し、P/4~3P/4の間における投口センサ300の検出値を積算する。なお投口センサ300から制御部100には、検出値が一定のサンプリング周期で順次入力されており、CPU100aは、タイムスタンプを参照することによって、P/4~3P/4の間に入力された検出値を認識することができる。 Then, the CPU 100a takes in signals from the pickup sensor 51 and the spout sensor 300 (step S45) and integrates impulses between P / 4 to 3P / 4 (step S46). At this time, the CPU 100a accesses the EEPROM 100d, refers to the time stamp, and integrates the detection values of the spout sensor 300 between P / 4 and 3P / 4. The detection values are sequentially input from the spout sensor 300 to the control unit 100 at a constant sampling cycle, and the CPU 100a refers to the time stamp to input between P / 4 to 3P / 4. The detected value can be recognized.
 次にCPU100aは、P/4~3P/4の間に入力された検出値に、閾値αを超過した検出値が含まれるか否かを判定する(ステップS47)。閾値αを超過した検出値が含まれない場合(ステップS47:NO)、CPU100aは、ステップS53へ処理を進める。 Next, the CPU 100a determines whether or not the detection value input between P / 4 to 3P / 4 includes a detection value exceeding the threshold value α (step S47). When the detected value exceeding the threshold value α is not included (step S47: NO), the CPU 100a advances the process to step S53.
 閾値αを超過した検出値が含まれる場合(ステップS47:YES)、CPU100aは、閾値αを超過した検出値に係る力積を抽出する(ステップS48)。次にCPU100aは、EEPROM100dにアクセスして補正変数Xを参照し(ステップS49)、抽出した力積を補正変数Xにて補正し(ステップS50)、補正値Dを求める。例えばCPU100aは、抽出した力積から補正変数Xに格納された値を減算する。なお減算は補正の一例であり、補正変数Xに格納された値に基づいて、乗算又は除算してもよい。 When the detected value exceeding the threshold value α is included (step S47: YES), the CPU 100a extracts the impulse related to the detected value exceeding the threshold value α (step S48). Next, the CPU 100a accesses the EEPROM 100d, refers to the correction variable X (step S49), corrects the extracted impulse with the correction variable X (step S50), and obtains a correction value D. For example, the CPU 100a subtracts the value stored in the correction variable X from the extracted impulse. Note that subtraction is an example of correction, and multiplication or division may be performed based on a value stored in the correction variable X.
 そしてCPU100aは、補正値Dに係数βを適用する(ステップS51)。例えば補正値Dに係数βを乗算するか又は加算する。なお係数βの乗算又は加算は、係数βの適用の例示であってこれに限定されるものではない。次にCPU100aは、係数β適用後の補正値Dを積算する(ステップS52)。なおステップS52における積算値が穀粒タンク4に貯留した穀粒量に相当する。そしてCPU100aは、刈取スイッチ80から信号を取り込み、刈取スイッチ80がオフであるか否か判定する(ステップS53)。刈取スイッチ80がオフでない場合(ステップS53:NO)、すなわち、刈取スイッチ80がオンである場合、CPU100aはステップS42へ処理を戻す。刈取スイッチ80がオフである場合(ステップS53:YES)、CPU100aは処理を終了する。なお上述した穀粒量演算処理は、周期P以内に実行されるリアルタイム処理として実行することができる。 Then, the CPU 100a applies the coefficient β to the correction value D (step S51). For example, the correction value D is multiplied or added by the coefficient β. The multiplication or addition of the coefficient β is an example of application of the coefficient β, and is not limited to this. Next, the CPU 100a integrates the correction value D after applying the coefficient β (step S52). The integrated value in step S52 corresponds to the amount of grain stored in the grain tank 4. Then, the CPU 100a takes in a signal from the cutting switch 80 and determines whether or not the cutting switch 80 is off (step S53). When the cutting switch 80 is not off (step S53: NO), that is, when the cutting switch 80 is on, the CPU 100a returns the process to step S42. When the cutting switch 80 is off (step S53: YES), the CPU 100a ends the process. In addition, the grain amount calculation process mentioned above can be performed as a real-time process performed within the period P.
 なおCPU100aは、ステップS52の後に、刈取スイッチ80がオフになった後、扱胴11で処理された穀粒が穀粒タンク4に搬出されるまでの時間が経過するまで待機し、穀粒量演算処理を終了してもよい。またステップS47及びS48の処理は、ステップS45の次に実行してもよい。この場合、投口センサ300から入力された検出値と閾値αとを比較し、閾値αを超過した検出値を抽出して、力積を求める。 The CPU 100a waits until the time until the grain processed in the handling cylinder 11 is carried out to the grain tank 4 after the cutting switch 80 is turned off after step S52. The arithmetic processing may be terminated. Moreover, you may perform the process of step S47 and S48 after step S45. In this case, the detection value input from the spout sensor 300 is compared with the threshold value α, the detection value exceeding the threshold value α is extracted, and the impulse is obtained.
 実施の形態2に係るコンバインにあっては、期間P/4~3P/4の間において、閾値αよりも大きいと判定した衝撃力のみを積算する。これにより、期間P/4~3P/4における衝撃力から外乱の影響を精度良く、確実に除去することができる。 In the combine according to the second embodiment, only the impact force determined to be greater than the threshold value α is integrated during the period P / 4 to 3P / 4. As a result, the influence of the disturbance can be accurately and reliably removed from the impact force in the periods P / 4 to 3P / 4.
 実施の形態2に係る構成の内、実施の形態1と同様な構成については同じ符号を付し、その詳細な説明を省略する。 Of the configurations according to the second embodiment, the same reference numerals are given to the same configurations as those of the first embodiment, and detailed description thereof is omitted.
 (実施の形態3)
 以下本発明を実施の形態3に係るコンバインを示す図面に基づいて詳述する。図14は投口センサ300を略示する縦断面図である。図14Aは適正な位置での投口センサ300を示しており、図14Bは適正な位置から偏倚した位置での投口センサ300を示している。
(Embodiment 3)
Hereinafter, the present invention will be described in detail with reference to the drawings showing a combine according to a third embodiment. FIG. 14 is a longitudinal sectional view schematically showing the spout sensor 300. FIG. 14A shows the spout sensor 300 at a proper position, and FIG. 14B shows the spout sensor 300 at a position deviated from the proper position.
 投口センサ300は、歪みゲージ及び回路基板などを備えるセンサ本体301(固定部)を備える。センサ本体301は筐体を有し、該筐体に歪みゲージ及び回路基板などを収容する。センサ本体301の筐体背面を、複数のねじ311によって支持部材310に固定してある。なおセンサ本体301は、衝突した穀粒の衝撃値を検出することができる構成であればよい。例えば歪みゲージに代えて、圧電素子を備えてもよい。 The spout sensor 300 includes a sensor main body 301 (fixed portion) including a strain gauge and a circuit board. The sensor main body 301 has a housing, and a strain gauge, a circuit board, and the like are accommodated in the housing. The housing rear surface of the sensor main body 301 is fixed to the support member 310 with a plurality of screws 311. The sensor body 301 may be configured to be able to detect the impact value of the collided grain. For example, a piezoelectric element may be provided instead of the strain gauge.
 センサ本体301の正面に、鋼鈑302が設けてある。該鋼鈑302には、穀粒が衝突する衝突板303が設けてある。投口センサ300は、衝突板303を投口4b側に向けている。 A steel plate 302 is provided in front of the sensor body 301. The steel plate 302 is provided with a collision plate 303 on which the grains collide. The spout sensor 300 has the collision plate 303 facing the spout 4b side.
 衝突板303は弾性部材からなり、ポリウレタン、ゴム又はエラストマーなどからなる。なお鋼鈑302は衝突板303よりも高硬度であり、アルミニウム若しくは銅などのその他の金属又はポリエチレン若しくは塩化ビニルなどの樹脂によって構成してもよい。衝突板303を弾性部材で構成することによって、穀粒の衝突に対する耐摩耗性が向上する。また衝突時における穀粒の損傷を防止する。 The collision plate 303 is made of an elastic member and made of polyurethane, rubber or elastomer. The steel plate 302 is harder than the collision plate 303 and may be made of other metals such as aluminum or copper, or a resin such as polyethylene or vinyl chloride. By configuring the collision plate 303 with an elastic member, the wear resistance against the collision of the grains is improved. It also prevents grain damage during a collision.
 衝突板303には、ねじ304の頭部を収容する貫通した複数の収容孔303aが設けてある。鋼鈑302には、収容孔303aに対応する複数の貫通孔302aが設けてある。貫通孔302aは収容孔303aよりも小径である。ねじ304のねじ部分の直径は、収容孔303aの直径よりも僅かに小さい。ねじ304の頭部の直径は、貫通孔302aの直径よりも大きく、収容孔303aよりも小さい。 The collision plate 303 is provided with a plurality of through-holes 303 a that receive the heads of the screws 304. The steel plate 302 is provided with a plurality of through holes 302a corresponding to the accommodation holes 303a. The through hole 302a has a smaller diameter than the accommodation hole 303a. The diameter of the screw portion of the screw 304 is slightly smaller than the diameter of the accommodation hole 303a. The diameter of the head of the screw 304 is larger than the diameter of the through hole 302a and smaller than the accommodation hole 303a.
 複数のねじ304を収容孔303a及び貫通孔302aに挿入し、センサ本体301の筐体正面に螺合してある。ねじ304の頭部は貫通孔302aの周縁部分に係止している。ねじ304の頭部及びセンサ本体301の間で、鋼鈑302が挟持されている。鋼鈑302は金属製であり、弾性部材によって構成された衝突板303にねじを係止する場合に比べて、投口センサ300の安定性は向上する。 A plurality of screws 304 are inserted into the housing holes 303 a and the through holes 302 a and screwed into the front surface of the housing of the sensor main body 301. The head of the screw 304 is locked to the peripheral portion of the through hole 302a. A steel plate 302 is sandwiched between the head of the screw 304 and the sensor body 301. The steel plate 302 is made of metal, and the stability of the spout sensor 300 is improved as compared with the case where a screw is locked to the collision plate 303 formed of an elastic member.
 エンジンの振動及び圃場の走行による振動が長期間投口センサ300に伝搬した場合、投口センサ300にガタツキが発生することがある。例えばねじ304、311が緩む場合がある。この場合、例えば図14Bに示すように、衝突板303が下向きに傾斜する。衝突板303に穀粒が衝突する時点は、図14Aに示す姿勢に基づいた当初の設定時点から偏倚する。図14Bの場合で言えば、当初の設定時点よりも早い時点で穀粒は衝突板303に衝突する。なおセッティング当初の投口センサ300の位置が適正な位置から偏倚している場合においても、衝突板303に穀粒が衝突する時点は本来の衝突時点から偏倚する。 When the vibration of the engine and the vibration due to traveling in the field propagate to the spout sensor 300 for a long time, the spout sensor 300 may be rattled. For example, the screws 304 and 311 may be loosened. In this case, for example, as shown in FIG. 14B, the collision plate 303 is inclined downward. The time when the grain collides with the collision plate 303 is deviated from the initial setting time based on the posture shown in FIG. 14A. In the case of FIG. 14B, the grain collides with the collision plate 303 at a time earlier than the initial setting time. Even when the position of the spout sensor 300 at the initial setting is deviated from an appropriate position, the time when the grain collides with the collision plate 303 deviates from the original collision time.
 図15は制御部100の構成を示すブロック図である。制御部100は前述したように内部バス100gにより相互に接続されたCPU100a、ROM100b、RAM100c及びEEPROM100dを備えている。 FIG. 15 is a block diagram showing the configuration of the control unit 100. As described above, the control unit 100 includes the CPU 100a, the ROM 100b, the RAM 100c, and the EEPROM 100d that are connected to each other via the internal bus 100g.
 EEPROM100dには、LUT100hが格納してある。前述したようにLUT100hには、エンジンの回転数及び係数βの関係を示すテーブルが記憶されている(図7参照)。またEEPROM100dには、補正変数X及び閾値αが設定してある。 The LUT 100h is stored in the EEPROM 100d. As described above, the LUT 100h stores a table indicating the relationship between the engine speed and the coefficient β (see FIG. 7). Further, a correction variable X and a threshold value α are set in the EEPROM 100d.
 制御部100は出力インタフェース100fを介して報知ランプ86に点灯又は消灯信号を出力する。なお制御部100におけるその他の構成は、実施の形態1又は2に記載のコンバインと同じ符号を付し、その詳細な説明を省略する。 The control unit 100 outputs a lighting or extinguishing signal to the notification lamp 86 via the output interface 100f. In addition, the other code | symbol in the control part 100 attaches | subjects the same code | symbol as the combine described in Embodiment 1 or 2, and the detailed description is abbreviate | omitted.
 CPU100aは、前述したように、投口センサ300の出力信号に係る検出値を積算し、閾値αと比較して積算対象に含めるか否かを判定する(図8参照)。 As described above, the CPU 100a integrates the detection values related to the output signal of the spout sensor 300, and determines whether or not to include in the integration target by comparing with the threshold value α (see FIG. 8).
 投口センサ300を第2領域に配置した場合、定常偏差を除去する補正を実行することができる。投口センサ300を第1領域に配置した場合、定常偏差を除去する補正を実行することができない。以下その理由を説明する。 When the spout sensor 300 is arranged in the second region, it is possible to execute correction for removing the steady deviation. When the spout sensor 300 is arranged in the first region, it is impossible to execute correction for removing the steady deviation. The reason will be described below.
 図16は第1領域に位置する投口センサ300の検出値とピックアップセンサ51の検出値との関係を示すグラフの一例である。図16Aは、時間と投口センサ300の検出値との関係を示すグラフである。投口センサ300の検出値は穀粒の衝突による歪み量を示しており、所定のサンプリング数における移動平均値である。 FIG. 16 is an example of a graph showing the relationship between the detection value of the spout sensor 300 located in the first region and the detection value of the pickup sensor 51. FIG. 16A is a graph showing the relationship between time and the detection value of the spout sensor 300. The detection value of the spout sensor 300 indicates the amount of distortion due to the collision of the grain, and is a moving average value at a predetermined sampling number.
 図16Aの実線の波形が第1領域に位置する投口センサ300の検出値を示す。破線の波形は、第2領域に位置する投口センサ300の検出値を示す。図16Bは、時間とピックアップセンサ51の検出値との関係を示すグラフである。ピックアップセンサ51の検出値は、羽根板23bの一回転における回転開始時点及び回転終了時点を示している。なお以下の説明において図16の周期Pの添字は適宜省略する。 16A shows the detection value of the spout sensor 300 located in the first region. A broken line waveform indicates a detection value of the spout sensor 300 located in the second region. FIG. 16B is a graph showing the relationship between time and the detection value of the pickup sensor 51. The detection value of the pickup sensor 51 indicates the rotation start time and rotation end time in one rotation of the blade plate 23b. In the following description, the subscript of the period P in FIG. 16 is omitted as appropriate.
 図3に示すように、穀粒タンク4内の第1領域には、横広がりに連続した帯状の穀粒群が投入されている。そのため第1領域に投口センサ300を配置した場合、周期Pの間継続して投口センサ300に穀粒が衝突する。換言すれば、穀粒が投口センサ300に衝突していないはずの0~P/4及び3P/4~Pの間に、穀粒が衝突する。 As shown in FIG. 3, in the first region in the grain tank 4, a band-like grain group that is continuous in a lateral direction is input. Therefore, when the spout sensor 300 is arranged in the first region, the grain collides with the spout sensor 300 continuously during the period P. In other words, the grains collide between 0 to P / 4 and 3P / 4 to P, which should not have collided with the spout sensor 300.
 図16に示すように、穀粒タンク4に穀粒が投入されている各周期P1 、P2 、P5 において、0~P/4及び3P/4~Pの間の検出値は、2点鎖線にて示した検出値(第2領域に位置する投口センサ300の検出値)よりも大きい。これは穀粒が投口センサ300に衝突していないはずの0~P/4及び3P/4~Pの間に、穀粒が衝突したためである。 As shown in FIG. 16, in each period P1, P2, and P5 in which the grain is put into the grain tank 4, the detection values between 0 to P / 4 and 3P / 4 to P are indicated by two-dot chain lines. Larger than the detected value (the detected value of the spout sensor 300 located in the second region). This is because the grain collided between 0 to P / 4 and 3P / 4 to P, which should not have collided with the spout sensor 300.
 0~P/4及び3P/4~Pの間の検出値を、定常偏差を除去する補正に使用するためには、0~P/4及び3P/4~Pの間に穀粒が投口センサ300に衝突していない又は衝突していないとみなせる必要がある。しかし0~P/4及び3P/4~Pの間に、穀粒が投口センサ300に連続的に衝突しており、0~P/4及び3P/4~Pの間の検出値を、定常偏差を除去する補正に使用することはできない。 In order to use the detected values between 0-P / 4 and 3P / 4-P for correction to remove the steady-state deviation, the grain is spouted between 0-P / 4 and 3P / 4-P. It should be considered that the sensor 300 does not collide or is not colliding. However, during 0 to P / 4 and 3P / 4 to P, the grains continuously collide with the spout sensor 300, and the detected values between 0 to P / 4 and 3P / 4 to P are It cannot be used for correction to remove steady-state deviation.
 また投口センサ300の位置が適正な位置から偏倚している場合、穀粒量を精度良く演算することは難しい。以下その理由を説明する。例えば図14Bに示すように、衝突板303が下向きに傾斜している場合、図14Aに示す姿勢に基づいた当初の設定時点よりも早い時点で穀粒は衝突板303に衝突する。 Also, when the position of the spout sensor 300 is deviated from an appropriate position, it is difficult to calculate the grain amount with high accuracy. The reason will be described below. For example, as shown in FIG. 14B, when the collision plate 303 is inclined downward, the grain collides with the collision plate 303 at a time earlier than the initial setting time based on the posture shown in FIG. 14A.
 図17は衝突板303が下向きに傾斜した場合における投口センサ300の検出値とピックアップセンサ51の検出値との関係を示すグラフの一例である。図17Aは、時間と投口センサ300の検出値との関係を示すグラフである。図17Aの実線が衝突板303が下向きに傾斜した場合における投口センサ300の検出値を示す。破線の波形は、投口センサ300が適正な位置にある場合における投口センサ300の検出値を示す。なお図17Aにおける二つの二点鎖線は、ピーク値が来るべき時点(P/2)からΔT/2遅れた時点及びΔ/2進んだ時点を示し、二点鎖線間は時間ΔTに相当する。なおΔT/2の大きさはP/4よりも小さい。 FIG. 17 is an example of a graph showing the relationship between the detection value of the spout sensor 300 and the detection value of the pickup sensor 51 when the collision plate 303 is inclined downward. FIG. 17A is a graph showing the relationship between time and the detection value of the spout sensor 300. The solid line in FIG. 17A shows the detection value of the spout sensor 300 when the collision plate 303 is inclined downward. A broken line waveform indicates a detection value of the spout sensor 300 when the spout sensor 300 is in an appropriate position. Note that two two-dot chain lines in FIG. 17A indicate a time point delayed by ΔT / 2 and a time point advanced by Δ / 2 from the time point (P / 2) at which the peak value should come, and the time between the two-dot chain lines corresponds to time ΔT. Note that ΔT / 2 is smaller than P / 4.
 図17Bは、時間とピックアップセンサ51の検出値との関係を示すグラフである。ピックアップセンサ51の検出値は、羽根板23bの一回転における回転開始時点及び回転終了時点を示している。なお以下の説明において図17の周期Pの添字は適宜省略する。 FIG. 17B is a graph showing the relationship between time and the detection value of the pickup sensor 51. The detection value of the pickup sensor 51 indicates the rotation start time and rotation end time in one rotation of the blade plate 23b. In the following description, the subscript of the period P in FIG. 17 is omitted as appropriate.
 図17Aに示すように、衝突板303が下向きに傾斜した場合に、ピーク値はP/2よりも早い時点、例えばP/4において検出される。この場合、0~P/4の間においても投口センサ300からCPU100aに穀粒の衝突による検出値が入力されていると考えられ、この間の検出値を積算対象とすべきである。しかし前述したように、当初の設定では0~P/4及び3P/4~Pの間の検出値は定常偏差に相当するとみなされ、積算対象とならない。 As shown in FIG. 17A, when the collision plate 303 is inclined downward, the peak value is detected at a time earlier than P / 2, for example, P / 4. In this case, it is considered that the detected value due to the collision of the grain is input from the spout sensor 300 to the CPU 100a even between 0 and P / 4, and the detected value during this period should be the integration target. However, as described above, in the initial setting, the detected values between 0 to P / 4 and 3P / 4 to P are considered to correspond to steady deviations and are not subject to integration.
 更に0~P/4の間の検出値は、穀粒の衝突による検出値であるにも拘わらず、定常偏差とみなされる。そのためP/4~3P/4の間の検出値(積算対象)から定常偏差でない値をも除去する。その結果、穀粒量を精度良く演算することは困難となる。 Furthermore, a detected value between 0 and P / 4 is regarded as a steady deviation, although it is a detected value due to a collision of grains. Therefore, a value that is not a steady-state deviation is also removed from the detection value (integration target) between P / 4 and 3P / 4. As a result, it is difficult to accurately calculate the grain amount.
 次にCPU100aによる穀粒量演算処理について説明する。図18はCPU100aによる穀粒量演算処理を示すフローチャートである。CPU100aは、ステップS61~ステップS65を実行した後、後述するピーク値特定処理を実行し(ステップS66)、ステップS67~ステップS73を実行する。 Next, the grain amount calculation processing by the CPU 100a will be described. FIG. 18 is a flowchart showing the grain amount calculation processing by the CPU 100a. After executing steps S61 to S65, the CPU 100a executes a peak value specifying process described later (step S66), and executes steps S67 to S73.
 なおステップS61~ステップS65、ステップS67~ステップS73の処理は、実施の形態1における穀粒量演算処理(ステップS1~ステップS13)と同様であり、その詳細な説明を省略する。またCPU100aは、前述した補正値算出処理を実行する(図10参照)。 Note that the processing of step S61 to step S65 and step S67 to step S73 is the same as the grain amount calculation processing (step S1 to step S13) in the first embodiment, and detailed description thereof will be omitted. Further, the CPU 100a executes the above-described correction value calculation process (see FIG. 10).
 次にCPU100aによるピーク値特定処理について説明する。図19はCPU100aによるピーク値特定処理を示すフローチャートである。CPU100aは前述したステップS65の処理を実行した後、ピーク値特定処理を実行する(図18、ステップS66参照)。 Next, the peak value specifying process by the CPU 100a will be described. FIG. 19 is a flowchart showing the peak value specifying process by the CPU 100a. The CPU 100a executes the peak value specifying process after executing the above-described process of step S65 (see step S66 in FIG. 18).
 CPU100aは、ピックアップセンサ51及び投口センサ300から信号を取り込み、0~Pの間におけるピーク値を検出した時点をタイマを参照して検出する(ステップS661)。次に、CPU100aは、ピーク値が来るべき目標時点(例えばP/2の時点)と検出時点との差分の大きさがΔT/2以下であるか否かを判定する(ステップS662)。 The CPU 100a takes in signals from the pickup sensor 51 and the spout sensor 300, and detects a point in time when a peak value between 0 and P is detected with reference to a timer (step S661). Next, the CPU 100a determines whether or not the magnitude of the difference between the target time (for example, P / 2) at which the peak value is to come and the detection time is equal to or smaller than ΔT / 2 (step S662).
 目標時点及び検出時点との差分の大きさがΔT/2以下である場合(ステップS662:YES)、CPU100aは処理をステップS67へ進める(図18、ステップS67参照)。このときピーク値は予め定めた所定時間帯(P/2を基準にして±ΔT/2の時間帯)に存在し、ピーク値の検出時点は目標時点から大きく偏倚していないと考えられる。 When the difference between the target time point and the detection time point is ΔT / 2 or less (step S662: YES), the CPU 100a advances the process to step S67 (see FIG. 18, step S67). At this time, the peak value is present in a predetermined time zone (a time zone of ± ΔT / 2 with respect to P / 2), and it is considered that the detection time point of the peak value is not greatly deviated from the target time point.
 目標時点及び検出時点との差分の大きさがΔT/2以下でない場合(ステップS662:NO)、CPU100aは報知ランプ86に点灯信号を出力する(ステップS663)。このときピーク値は予め定めた所定時間帯に存在しない。例えば図14Bに示すように、衝突板303が下向きに傾斜している等の理由によって、ピーク値の検出時点が目標時点から大きく偏倚していると考えられる。 When the difference between the target time point and the detection time point is not equal to or smaller than ΔT / 2 (step S662: NO), the CPU 100a outputs a lighting signal to the notification lamp 86 (step S663). At this time, the peak value does not exist in a predetermined time zone. For example, as shown in FIG. 14B, it is considered that the peak value detection time point is greatly deviated from the target time point because the collision plate 303 is inclined downward.
 次にCPU100aは報知ランプ86に点灯信号を出力する(ステップS663)。報知ランプ86の点灯によって、ユーザはピーク値の検出時点が目標時点から大きく偏倚していることを認識することができる。そしてCPU100aは算出対象期間(投口センサ300に穀粒が衝突していると推定される期間、換言すればP/4~3P/4の間)を変更する(ステップS664)。具体的には、算出対象期間の開始時点を検出時点及び目標時点との差分の大きさだけ遅延させるか又は早める。本実施例の場合、例えば前記差分がKの場合、P/4±Kを開始時点とし、3P/4±Kを終了時点とする。 Next, the CPU 100a outputs a lighting signal to the notification lamp 86 (step S663). By turning on the notification lamp 86, the user can recognize that the detection time point of the peak value is greatly deviated from the target time point. Then, the CPU 100a changes the calculation target period (the period in which the grain collides with the spout sensor 300, in other words, between P / 4 and 3P / 4) (step S664). Specifically, the start time of the calculation target period is delayed or advanced by the magnitude of the difference between the detection time and the target time. In the case of the present embodiment, for example, when the difference is K, P / 4 ± K is set as the start time, and 3P / 4 ± K is set as the end time.
 次にCPU100aは表示部83に、算出対象期間を変更したことを表示する信号を出力する(ステップS665)。例えば「穀粒量の変更処理を行いました」と表示部83に表示する。この表示によって算出対象期間が変更されたことをユーザは容易に認識することができる。そしてCPU100aは処理をステップS67に戻す。 Next, the CPU 100a outputs a signal indicating that the calculation target period has been changed to the display unit 83 (step S665). For example, the display unit 83 displays that “the grain amount has been changed”. By this display, the user can easily recognize that the calculation target period has been changed. Then, the CPU 100a returns the process to step S67.
 なおピーク値特定処理においてステップS664及びステップS665を省略し、その後の穀粒量の演算を停止してもよい。この場合、表示部83に、「投口センサの位置がずれていませんか?」又は「穀粒量の演算を停止しています」等の警告を表示し、サービスマンによる投口センサ300の修理を促してもよい。 It should be noted that step S664 and step S665 may be omitted in the peak value specifying process, and the subsequent calculation of the grain amount may be stopped. In this case, a warning such as “Is the position of the spout sensor misaligned?” Or “The calculation of the grain amount is stopped” is displayed on the display unit 83, and the spout sensor 300 of the service person Repairs may be encouraged.
 実施の形態3に係るコンバインにあっては、衝撃力のピーク値が検出された時点の前後において穀粒が投口センサ300に当接していると考えられるので、ピーク値が予め定めた所定時間帯(P/2を基準にして±ΔT/2の時間帯)から逸脱した場合、穀粒タンク4に貯留した穀粒量を正確に演算することができない。そのためピーク値の検出時点が所定時間帯から逸脱した場合に、その旨をユーザに報知する。これにより、サービスマンによる投口センサ300の修理・位置調整等を行うようにユーザに促すことができる。 In the combine according to the third embodiment, since the grain is considered to be in contact with the spout sensor 300 before and after the peak value of the impact force is detected, the peak value is determined for a predetermined time. When deviating from the band (time zone of ± ΔT / 2 with respect to P / 2), the amount of grain stored in the grain tank 4 cannot be accurately calculated. Therefore, when the detection point of the peak value deviates from the predetermined time zone, the fact is notified to the user. As a result, the user can be prompted to repair or adjust the position of the spout sensor 300 by a service person.
 またピーク値の検出時点が所定時間帯から逸脱した場合に、算出対象期間を変更し、変更後の算出対象期間に投口センサ300にて検出された衝撃力に基づいて穀粒量を算出する。これにより穀粒量の算出を継続することができる。 In addition, when the detection time of the peak value deviates from the predetermined time zone, the calculation target period is changed, and the grain amount is calculated based on the impact force detected by the spout sensor 300 during the changed calculation target period. . Thereby, calculation of the amount of grains can be continued.
 また算出対象期間の変更が行われている場合に、報知ランプ86の点灯又は表示部83における表示によって、その旨ユーザに報知し、収穫終了後にサービスマンによる検出手段の修理・位置調整等を行うように促すことができる。 In addition, when the calculation target period is changed, the user is notified by turning on the notification lamp 86 or displaying on the display unit 83, and after the harvesting is completed, the serviceman repairs / positions the detection means. Can be encouraged.
 なお上述した実施の形態3においては、投口センサ300によるピーク値の検出時点が、ピーク値が検出されるべき時点から進むか又は遅れる要因として、投口センサ300の位置が適正な位置から偏倚している場合を取り上げているが、この場合に限定されるものではない。例えば羽根板23bが変形した場合も上記要因として挙げることができる。 In the third embodiment described above, the position of the spout sensor 300 deviates from the appropriate position as a factor that causes the detection time of the peak value by the spout sensor 300 to advance or delay from the time when the peak value should be detected. However, the present invention is not limited to this case. For example, when the blade 23b is deformed, it can be cited as the above factor.
 図20は変形した羽根板23bを略示する拡大平面断面図である。羽根板23bは経年劣化によって変形する場合があり、また土などの異物を取り込んだ場合に、取り込んだ異物によって過大な力が羽根板23bに作用し、羽根板23bが変形する場合がある。 FIG. 20 is an enlarged plan sectional view schematically showing the deformed blade 23b. The blade 23b may be deformed due to aging, and when foreign matter such as soil is taken in, excessive force may act on the blade 23b due to the foreign matter taken in and the blade 23b may be deformed.
 例えば図20に示すように、羽根板23bが回転方向と逆向きに湾曲した場合、穀粒が穀粒タンク4に投入されるタイミングは、羽根板23bが湾曲していない場合よりも遅れる。なお羽根板23bが回転方向と同じ向きに湾曲した場合、穀粒が穀粒タンク4に投入されるタイミングは、羽根板23bが湾曲していない場合よりも早くなる。 For example, as shown in FIG. 20, when the blades 23b are curved in the direction opposite to the rotation direction, the timing at which the grains are put into the grain tank 4 is delayed as compared with the case where the blades 23b are not curved. In addition, when the slat 23b curves in the same direction as the rotation direction, the timing at which the grain is put into the grain tank 4 is earlier than when the slat 23b is not curved.
 この場合においても、上述したピーク値特定処理を実行することによって、ピーク値を検出する時点の遅延又は進みを検出し、ユーザに報知するか又は遅延又は進みを補正することができる。この場合、表示部83に、「羽根板が変形していませんか?」という警告を表示し、サービスマンによる羽根板23bの修理を促してもよい。 Also in this case, by executing the above-described peak value specifying process, it is possible to detect a delay or advance at the time of detecting the peak value and notify the user or correct the delay or advance. In this case, a warning “Are the blades deformed?” May be displayed on the display unit 83 to prompt the serviceman to repair the blades 23b.
 実施の形態3に係る構成の内、実施の形態1又は2と同様な構成については同じ符号を付し、その詳細な説明を省略する。 Of the configurations according to the third embodiment, configurations similar to those of the first or second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 実施の形態1~3は、羽根板23bの回転周期(1周期)毎に、投口センサ300にて検出された検出値を使用して積算を行うか否かを決定しているが、複数周期(例えば2又は3周期)の検出値をEEPROM100dに記憶し、複数周期を一単位として上記決定を実行してもよい。 In the first to third embodiments, it is determined whether or not to perform integration using the detection value detected by the spout sensor 300 for each rotation period (one period) of the blade plate 23b. The detection value of the period (for example, 2 or 3 periods) may be stored in the EEPROM 100d, and the above determination may be executed with a plurality of periods as a unit.
 (実施の形態4)
 以下本発明を実施の形態4に係るコンバインを示す図面に基づいて詳述する。
(Embodiment 4)
Hereinafter, the present invention will be described in detail with reference to the drawings showing a combine according to a fourth embodiment.
 実施の形態4に係るコンバインは、スクリューコンベアに代えて、バケット式昇降機144を穀粒の搬送に使用する。その他の構成は実施の形態1~3と同様な構成である。図21はバケット式昇降機144及び穀粒タンク4を拡大して略示する内部側面構成図である。図21において、破線矢印は穀粒の移動方向を示し、丸形は穀粒を示す。 The combine which concerns on Embodiment 4 uses the bucket type elevator 144 for conveyance of a grain instead of a screw conveyor. Other configurations are the same as those in the first to third embodiments. FIG. 21 is an internal side configuration diagram schematically showing the bucket elevator 144 and the grain tank 4 in an enlarged manner. In FIG. 21, the broken line arrow indicates the moving direction of the grain, and the round shape indicates the grain.
 バケット式昇降機144は、後板500と前板501、左右側板502及び天面板144aにより形成される。なお天面板144aに対向する前板501は非案内面となる。 The bucket type elevator 144 is formed by the rear plate 500, the front plate 501, the left and right side plates 502, and the top plate 144a. The front plate 501 facing the top plate 144a is a non-guide surface.
 バケット式昇降機144内部の上部と下部には軸心が左右方向のスプロケット503、504がそれぞれ設けられ、このスプロケット503と504に無端状のチェーン505が巻装される。このチェーン505には適宜間隔を開けて複数の上開き側面視略U字型などのバケット506が取り付けられる。 Sprockets 503 and 504 having axial centers in the left and right directions are respectively provided at the upper and lower portions inside the bucket elevator 144, and an endless chain 505 is wound around the sprockets 503 and 504. A plurality of buckets 506, such as a substantially U-shape in a side view when viewed from the upper side, are attached to the chain 505 at appropriate intervals.
 駆動力が、バケット式昇降機144の下部に有するスプロケット504に伝達され、このスプロケット504の回転とともにチェーン505が駆動し、バケット式昇降機144の上部に有するスプロケット503が回転する。バケット式昇降機144の下部に備えられた穀粒供給口(不図示)とバケット式昇降機144の上部に備えられた穀粒排出口507との間をチェーン505に沿ってバケット506が上下に周回される。 The driving force is transmitted to the sprocket 504 provided at the lower part of the bucket type elevator 144, and the chain 505 is driven with the rotation of the sprocket 504, and the sprocket 503 provided at the upper part of the bucket type elevator 144 is rotated. A bucket 506 is circulated up and down along a chain 505 between a grain supply port (not shown) provided at the lower part of the bucket elevator 144 and a grain outlet 507 provided at the upper part of the bucket elevator 144. The
 投口センサ300は、穀粒タンク4内において、天面板144aと穀粒排出口507との間に配置してある。また投口センサ300は天面板144aから離隔している。 The spout sensor 300 is disposed in the grain tank 4 between the top plate 144a and the grain outlet 507. The spout sensor 300 is separated from the top plate 144a.
 穀粒タンク4内にて、穀粒排出口507の近傍に穀粒を弾き飛ばすレベリングディスク150が設けてある。レベリングディスク150は、支持部材154を介して穀粒タンク4に支持されている。 In the grain tank 4, a leveling disc 150 is provided in the vicinity of the grain outlet 507 to flip the grain. The leveling disk 150 is supported by the grain tank 4 via a support member 154.
 支持部材154には、上下方向を軸方向とした回転可能な回転軸153が立設している。レベリングディスク150は、上下方向を回転軸方向としたディスク部151と、該ディスク部151の上面に立設し、回転中心の周囲に放射状に配された複数の羽根板152、152、・・・、152とを備える。回転軸153は、ディスク部151の中心部に連結している。支持部材154の下側にモータ155が設けてあり、該モータ155の出力軸は回転軸153に連結している。 The support member 154 is provided with a rotatable rotary shaft 153 with the vertical direction as an axial direction. The leveling disk 150 has a disk portion 151 with the vertical direction as the rotation axis direction, and a plurality of blades 152, 152,... Standing on the upper surface of the disk portion 151 and arranged radially around the center of rotation. , 152. The rotation shaft 153 is connected to the center portion of the disk portion 151. A motor 155 is provided below the support member 154, and an output shaft of the motor 155 is connected to the rotation shaft 153.
 バケット506から投入された穀粒は、穀粒排出口507を通って、レベリングディスク150に至る。モータ155の駆動によってディスク部151は回転し、羽根板152は穀粒を弾き飛ばし、穀粒タンク4内に平均的に堆積させる。 The grain input from the bucket 506 reaches the leveling disc 150 through the grain outlet 507. The disk portion 151 is rotated by the drive of the motor 155, and the blades 152 bounce off the grains and deposit them in the grain tank 4 on average.
 図21に示すように、天面板144a付近の破線矢印及び円形にて示すように、押し出された穀粒の大部分は天面板144aに沿って移動し、穀粒タンク4内に連続した状態で投入される。図21において、スプロケット503付近の破線矢印及び円形にて示すように、残りの穀粒は穀粒タンク4内に離散して投入される。投口センサ300には、離散した穀粒が瞬間的に衝突する。 As shown in FIG. 21, most of the extruded grain moves along the top panel 144 a and continues in the grain tank 4 as indicated by the broken-line arrows and the circle near the top panel 144 a. It is thrown. In FIG. 21, as shown by broken arrows and a circle in the vicinity of the sprocket 503, the remaining grains are thrown into the grain tank 4 in a discrete manner. A discrete grain instantaneously collides with the spout sensor 300.
 天面板144aから投口センサ300を離隔させることによって、少量の穀粒が投口センサ300に衝突し、穀粒は穀粒タンク4内に平均的に堆積する。 By separating the spout sensor 300 from the top plate 144a, a small amount of grains collide with the spout sensor 300, and the grains are deposited in the grain tank 4 on average.
 またスプロケット503を支持する支持板(不図示)には、ピックアップセンサ(不図示)が設けてあり、該ピックアップセンサによってバケット506がスプロケット503の周囲を回転する周期を検出するようにしてある。そしてピックアップセンサ及び投口センサ300の検出値に基づいて、実施の形態3と同様に穀粒量の演算及びピーク値の検出等を行う。 Also, a pick-up sensor (not shown) is provided on a support plate (not shown) that supports the sprocket 503, and the pick-up sensor detects the period at which the bucket 506 rotates around the sprocket 503. Then, based on the detection values of the pickup sensor and the spout sensor 300, the calculation of the grain amount, the detection of the peak value, and the like are performed as in the third embodiment.
 なお投口センサ300は穀粒タンク4内に設けてもよい。図22はバケット式昇降機144及び投口センサ300を内部に有する穀粒タンク4を拡大して略示する内部側面構成図である。 The spout sensor 300 may be provided in the grain tank 4. FIG. 22 is an internal side view schematically showing an enlarged view of the grain tank 4 having the bucket type elevator 144 and the spout sensor 300 therein.
 図22に示すように、投口センサ300は穀粒タンク4の天面部から垂下した支持部(不図示)によって支持されている。ディスク部151の周囲には、実施の形態3に係るコンバインの側面141と同様に、穀粒を案内する案内面(不図示)が設けてある。そのため穀粒タンク4内において第1領域及び第2領域が存在する。投口センサ300は第2領域に配してある。 As shown in FIG. 22, the spout sensor 300 is supported by a support portion (not shown) that hangs down from the top surface portion of the grain tank 4. As with the side surface 141 of the combine according to the third embodiment, a guide surface (not shown) for guiding the grain is provided around the disk portion 151. Therefore, the first area and the second area exist in the grain tank 4. The spout sensor 300 is disposed in the second region.
 この場合においても、ピックアップセンサ及び投口センサ300の検出値に基づいて、実施の形態3と同様に穀粒量の演算及びピーク値の検出等を行う。 Also in this case, the calculation of the grain amount, the detection of the peak value, and the like are performed based on the detection values of the pickup sensor and the spout sensor 300 as in the third embodiment.
 実施の形態3及び4に係る発明にあっては、穀粒の穀粒タンク4への投入を、一番スクリューコンベア23の先端に設けた羽根板23b、ディスク部151上に設けた羽根板152又は回転式のバケット156のいずれを使用する場合であっても、ピーク値の検出時点が所定時間帯から逸脱したことをユーザに報知することができる。 In the inventions according to Embodiments 3 and 4, the introduction of the grain into the grain tank 4 is performed by the blade 23b provided at the front end of the screw conveyor 23 and the blade 152 provided on the disk portion 151. Even when any of the rotary buckets 156 is used, it is possible to notify the user that the detection point of the peak value has deviated from the predetermined time zone.
 実施の形態4に係る構成の内、実施の形態1~3と同様な構成については、その詳細な説明を省略する。 Of the configurations according to the fourth embodiment, the detailed description of the same configurations as the first to third embodiments will be omitted.

Claims (10)

  1.  刈取られた穀稈を脱穀する脱穀装置と、該脱穀装置にて脱穀された穀粒を貯留する貯留部と、前記脱穀装置から前記貯留部へ穀粒を搬送する搬送手段と、該搬送手段にて搬送された穀粒による衝撃力を検出する検出手段と、該検出手段にて検出した衝撃力に基づいて、穀粒量を算出する算出手段とを備えるコンバインにおいて、
     前記算出手段は、
     前記検出手段にて検出された衝撃力が予め設定した閾値よりも大きいか否かを判定する判定手段と、
     該判定手段での判定結果に基づいて、検出された衝撃力を前記算出手段での算出に使用するか否かを決定する決定手段と
     を備えることを特徴とするコンバイン。
    Threshing device for threshing the harvested cereal, a storage unit for storing the grain threshed by the threshing device, a transport unit for transporting the grain from the threshing device to the storage unit, and the transport unit In a combine provided with a detecting means for detecting the impact force caused by the conveyed grain and a calculating means for calculating the grain amount based on the impact force detected by the detecting means,
    The calculating means includes
    Determination means for determining whether or not the impact force detected by the detection means is greater than a preset threshold;
    A combiner comprising: a determining unit that determines whether or not the detected impact force is used for calculation by the calculating unit based on a determination result by the determining unit.
  2.  前記搬送手段はスクリューコンベアであり、
     該スクリューコンベアの端部における軸部分に前記貯留部へ穀粒を投入する羽根板が設けてあり、
     前記検出手段を前記羽根板に対向させて配置してあること
     を特徴とする請求項1に記載のコンバイン。
    The conveying means is a screw conveyor;
    A blade plate is provided in the shaft portion at the end of the screw conveyor to feed the grain into the storage section,
    The combine according to claim 1, wherein the detecting means is arranged to face the blades.
  3.  前記算出手段は、
     前記羽根板から投入された穀粒が前記検出手段に衝突すべき期間に検出された衝撃力を積算する積算手段を有し、
     積算した積算値に基づいて、穀粒量を算出するようにしてあり、
     前記判定手段は、前記期間にて、前記衝撃力が前記閾値よりも大きいか否かを判定するようにしてあり、
     前記決定手段は、前記判定手段にて前記閾値よりも大きいと判定した衝撃力を前記積算手段での積算に使用する決定をするようにしてあること
     を特徴とする請求項2に記載のコンバイン。
    The calculating means includes
    Having a summing means for summing up the impact force detected during a period when the grains thrown from the blades should collide with the detecting means;
    Based on the accumulated value, the amount of grain is calculated,
    The determination means determines whether or not the impact force is larger than the threshold during the period,
    The combine according to claim 2, wherein the determining means determines to use the impact force determined by the determining means to be larger than the threshold value for integration by the integrating means.
  4.  前記算出手段は、
     前記羽根板から投入された穀粒が前記検出手段に衝突すべき期間に検出された衝撃力を積算する積算手段を有し、
     積算した積算値に基づいて、穀粒量を算出するようにしてあり、
     前記判定手段は、前記期間にて、前記衝撃力が前記閾値よりも大きいか否かを判定するようにしてあり、
     前記決定手段は、前記判定手段にて前記期間の任意の時点に検出された衝撃力が前記閾値よりも大きいと判定した場合に、前記期間内に検出された衝撃力を前記積算手段での積算に使用する決定をするようにしてあること
     を特徴とする請求項2に記載のコンバイン。
    The calculating means includes
    Having a summing means for summing up the impact force detected during a period when the grains thrown from the blades should collide with the detecting means;
    Based on the accumulated value, the amount of grain is calculated,
    The determination means determines whether or not the impact force is larger than the threshold during the period,
    When the determination unit determines that the impact force detected at an arbitrary point in the period is greater than the threshold, the determination unit integrates the impact force detected within the period with the integration unit. The combine according to claim 2, wherein the combine is determined to be used.
  5.  前記スクリューコンベアの回転数を検出する回転数検出手段と、
     該回転数検出手段の検出結果に基づいて、前記スクリューコンベアの回転周期を求める手段とを備え、
     前記羽根板から投入された穀粒が前記検出手段に衝突すべき期間は1回転周期に含まれること
     を特徴とする請求項3又は4に記載のコンバイン。
    A rotational speed detection means for detecting the rotational speed of the screw conveyor;
    Means for obtaining a rotation period of the screw conveyor based on a detection result of the rotation speed detection means;
    The combine according to claim 3 or 4, wherein a period in which the grain put in from the blades should collide with the detection means is included in one rotation cycle.
  6.  前記算出手段は、前記期間外に検出された前記検出手段の衝撃力に基づいて、前記積算手段の積算結果に含まれる定常偏差を除去する手段を有することを特徴とする請求項3から5のいずれか一つに記載のコンバイン。 The said calculating means has a means to remove the stationary deviation contained in the integration result of the said integration means based on the impact force of the said detection means detected outside the said period of Claim 3-5 Combine according to any one of the above.
  7.  前記搬送手段は、穀粒を前記貯留部へ投入する回転式の投入部を含み、
     前記投入部の回転周期を検出する回転周期検出手段と、
     該回転周期検出手段にて検出された一回転周期の間に、前記検出手段にて衝撃力のピーク値が検出された時点を特定する特定手段と、
     該特定手段にて前記ピーク値が検出された時点が一回転周期における所定時間帯外である場合に、前記時点が所定時間帯外であることを報知する報知手段と
     を備えること
     を特徴とする請求項1に記載のコンバイン。
    The transport means includes a rotary input unit that inputs grains into the storage unit,
    A rotation period detecting means for detecting a rotation period of the charging unit;
    A specifying means for specifying a point in time when the peak value of the impact force is detected by the detection means during one rotation period detected by the rotation period detection means;
    Informing means for notifying that the time point is outside the predetermined time zone when the peak value is detected by the specifying means is outside the predetermined time zone in one rotation cycle. The combine according to claim 1.
  8.  前記算出手段は、前記一回転周期における予め定めた算出対象期間に前記検出手段にて検出された検出値に基づいて穀粒量を算出するようにしてあり、
     前記特定手段にて前記ピーク値が検出された時点が所定時間帯外である場合に、前記算出対象期間を変更するようにしてあること
     を特徴とする請求項7に記載のコンバイン。
    The calculation means is configured to calculate a grain amount based on a detection value detected by the detection means during a predetermined calculation target period in the one rotation cycle,
    The combine according to claim 7, wherein the calculation target period is changed when the point in time when the peak value is detected by the specifying means is outside a predetermined time zone.
  9.  前記算出手段が前記算出対象期間を変更した場合に、前記算出対象期間の変更が実行されていることを報知する変更報知手段を備えることを特徴とする請求項8に記載のコンバイン。 The combine according to claim 8, further comprising: a change notification unit that notifies that the change of the calculation target period is being executed when the calculation unit changes the calculation target period.
  10.  前記投入部は、回転軸回りに回転する羽根板又はスプロケットの回りを回転するバケットであることを特徴とする請求項7から9のいずれか一つに記載のコンバイン。 The combine according to any one of claims 7 to 9, wherein the charging unit is a blade rotating around a rotation axis or a bucket rotating around a sprocket.
PCT/JP2012/068510 2011-07-20 2012-07-20 Combine WO2013012080A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280035977.6A CN103781345B (en) 2011-07-20 2012-07-20 Combine
KR1020147002271A KR101614343B1 (en) 2011-07-20 2012-07-20 Combine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-159408 2011-07-20
JP2011159408 2011-07-20
JP2011172302A JP5856777B2 (en) 2011-07-20 2011-08-05 Combine
JP2011-172302 2011-08-05
JP2012158024A JP5893526B2 (en) 2012-07-13 2012-07-13 Combine
JP2012-158024 2012-07-13

Publications (1)

Publication Number Publication Date
WO2013012080A1 true WO2013012080A1 (en) 2013-01-24

Family

ID=47558254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068510 WO2013012080A1 (en) 2011-07-20 2012-07-20 Combine

Country Status (1)

Country Link
WO (1) WO2013012080A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156387A1 (en) * 2013-03-27 2014-10-02 株式会社クボタ Combine
US10989833B2 (en) 2019-09-24 2021-04-27 Deere & Company Systems and methods for monitoring grain loss
US11197417B2 (en) 2018-09-18 2021-12-14 Deere & Company Grain quality control system and method
US11606902B2 (en) * 2018-03-06 2023-03-21 Cnh Industrial America Llc Rotary spreader for dispersing harvested crops within on-board storage of an agricultural harvester
US11818982B2 (en) 2018-09-18 2023-11-21 Deere & Company Grain quality control system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196123A (en) * 1984-03-19 1985-10-04 株式会社クボタ Reaming harvester
JPS6152222U (en) * 1984-09-11 1986-04-08
JP2005024381A (en) * 2003-07-02 2005-01-27 Yanmar Agricult Equip Co Ltd Grain detector
JP2011223959A (en) * 2010-04-22 2011-11-10 Yanmar Co Ltd Combine harvester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196123A (en) * 1984-03-19 1985-10-04 株式会社クボタ Reaming harvester
JPS6152222U (en) * 1984-09-11 1986-04-08
JP2005024381A (en) * 2003-07-02 2005-01-27 Yanmar Agricult Equip Co Ltd Grain detector
JP2011223959A (en) * 2010-04-22 2011-11-10 Yanmar Co Ltd Combine harvester

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOICHI SHOJI ET AL.: "IN-SITU NON-LINEAR CALIBRATION OF GRAIN-YIELD SENSOR -INCREASING THE ACCURACY OF THE SENSOR BY MOUNTING MAGNETIC PICKUP", PROGRAM ISMAB 2010, 5 April 2010 (2010-04-05), JAPAN *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156387A1 (en) * 2013-03-27 2014-10-02 株式会社クボタ Combine
US9820436B2 (en) 2013-03-27 2017-11-21 Kubota Corporation Combine for measuring the weight of grain retained in a grain tank
US10143132B2 (en) 2013-03-27 2018-12-04 Kubota Corporation Combine
US10945367B2 (en) 2013-03-27 2021-03-16 Kubota Corporation Combine having a temporary retention unit and a shutter
US11606902B2 (en) * 2018-03-06 2023-03-21 Cnh Industrial America Llc Rotary spreader for dispersing harvested crops within on-board storage of an agricultural harvester
US11197417B2 (en) 2018-09-18 2021-12-14 Deere & Company Grain quality control system and method
US11818982B2 (en) 2018-09-18 2023-11-21 Deere & Company Grain quality control system and method
US10989833B2 (en) 2019-09-24 2021-04-27 Deere & Company Systems and methods for monitoring grain loss

Similar Documents

Publication Publication Date Title
JP5856777B2 (en) Combine
WO2013012080A1 (en) Combine
JP5512372B2 (en) Combine
JP5809871B2 (en) Combine
JP6338434B2 (en) Combine
KR101614342B1 (en) Combine
JP6033002B2 (en) Combine
JP5945221B2 (en) Combine
JP6208538B2 (en) Combine
CN110602944B (en) Combine harvester
JP5893526B2 (en) Combine
KR101902671B1 (en) Combine
JP6289405B2 (en) Combine
WO2013012073A1 (en) Combine
JP6279960B2 (en) Combine
KR20140043454A (en) Combine
JP5512373B2 (en) Combine
JP2014008014A (en) Combine
JP6208537B2 (en) Combine
JP2018011545A (en) combine
JP5891135B2 (en) Combine
JP6279965B2 (en) Combine
JP2015037388A (en) Combine
JP2015008700A (en) Combine
JP6578112B2 (en) Threshing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147002271

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12814406

Country of ref document: EP

Kind code of ref document: A1