WO2013011994A1 - Manual transmission - Google Patents

Manual transmission Download PDF

Info

Publication number
WO2013011994A1
WO2013011994A1 PCT/JP2012/068164 JP2012068164W WO2013011994A1 WO 2013011994 A1 WO2013011994 A1 WO 2013011994A1 JP 2012068164 W JP2012068164 W JP 2012068164W WO 2013011994 A1 WO2013011994 A1 WO 2013011994A1
Authority
WO
WIPO (PCT)
Prior art keywords
output shaft
electric motor
transmission
gears
gear
Prior art date
Application number
PCT/JP2012/068164
Other languages
French (fr)
Japanese (ja)
Inventor
周夜 佐藤
勇樹 枡井
智美 田中
Original Assignee
アイシン・エーアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エーアイ株式会社 filed Critical アイシン・エーアイ株式会社
Priority to DE112012003012.5T priority Critical patent/DE112012003012T5/en
Publication of WO2013011994A1 publication Critical patent/WO2013011994A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • B60K2006/4841Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range the gear provides shifting between multiple ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0047Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising five forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/089Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a manual transmission applied to a vehicle having an internal combustion engine and an electric motor as a power source, and more particularly, a friction clutch is interposed between an output shaft of the internal combustion engine and an input shaft of the manual transmission. It relates to what is applied to vehicles.
  • hybrid vehicle including an engine and an electric motor as power sources has been widely known (see, for example, Japanese Patent Application Laid-Open No. 2000-224710).
  • the hybrid vehicle a configuration in which the output shaft of the electric motor is connected to any of the output shaft of the internal combustion engine, the input shaft of the transmission, and the output shaft of the transmission can be employed.
  • the driving torque of the output shaft of the internal combustion engine is referred to as “internal combustion engine driving torque”
  • motor driving torque the driving torque of the output shaft of the electric motor
  • HV-MT vehicle a power transmission control device applied to a hybrid vehicle (hereinafter referred to as “HV-MT vehicle”) having a manual transmission and a friction clutch
  • the “manual transmission” referred to here is a transmission (so-called manual transmission, MT) that does not include a torque converter in which a gear position is selected according to a shift position of a shift lever operated by a driver.
  • the “friction clutch” referred to here is interposed between the output shaft of the internal combustion engine and the input shaft of the manual transmission, and the friction plate is operated according to the operation amount of the clutch pedal operated by the driver. This is a clutch whose joining state changes.
  • Hybrid vehicles capable of realizing "
  • the transmission in order to realize EV traveling in a state where the driver does not operate the clutch pedal (that is, a state where the clutch is engaged), the transmission is maintained while maintaining the state where the input shaft of the transmission is not rotated.
  • the output shaft must be driven by the motor driving torque.
  • the transmission in addition to the output shaft of the motor being connected to the output shaft of the transmission, the transmission is in a state where a power transmission system is not established between the input shaft of the transmission and the output shaft of the transmission. Needs to be maintained.
  • the power transmission stage between the input shaft and the output shaft of the transmission is used as the gear stage of the manual transmission.
  • the gear stage for HV traveling “the gear stage in which the transmission system is established”
  • the gear stage in which the power transmission system is not established between the input shaft and the output shaft of the transmission” for EV traveling (A gear stage different from neutral, hereinafter referred to as “EV travel gear stage”) needs to be provided.
  • the “shift ratio” between the input shaft and the output shaft is obtained by moving the shift lever to each HV traveling shift completion position corresponding to a plurality of HV traveling gear positions on the shift pattern. Is established, and the EV transmission shift completion position (neutral position is the neutral position) corresponding to the EV traveling gear position on the shift pattern is established. The power transmission system is not established between the input shaft and the output shaft.
  • the output shaft of the motor is always rotated integrally with the output shaft of the transmission.
  • the ratio of the rotational speed of the output shaft of the motor to the rotational speed of the output shaft of the transmission (and hence the vehicle speed) (hereinafter referred to as “motor speed ratio”) cannot be changed. Therefore, the motor gear ratio cannot be made different between HV traveling and EV traveling.
  • EV traveling is often used mainly at relatively low speed traveling such as when the vehicle starts.
  • HV traveling is also used during relatively high-speed traveling in which a high-speed side gear is used. That is, the vehicle speed range during HV traveling is different from the vehicle speed range during EV traveling. Therefore, from the viewpoint of stably adjusting the rotation speed of the electric motor within an appropriate range during HV traveling and EV traveling, it is necessary to make the motor gear ratio different between HV traveling and EV traveling.
  • An object of the present invention is a manual transmission provided with a plurality of “HV travel shift speeds” and “EV travel shift speeds”, in which the rotational speed of an electric motor is stabilized and appropriately controlled during HV travel and EV travel.
  • the object is to provide an easily adjustable range.
  • a feature of the manual transmission according to the present invention is that a connection switching mechanism for changing a connection state between the output shaft of the electric motor and the output shaft of the transmission is provided.
  • This connection switching mechanism includes a “first connection state in which an EV traveling fixed gear provided on the output shaft of the transmission so as not to rotate relative to the output shaft of the electric motor and an output shaft of the electric motor are connected so as to be able to transmit power”, and “a plurality of HV A second idle connection state in which a specific idler gear provided on the output shaft of the transmission and the output shaft of the motor are connected so as to be able to transmit power is selectively realized. Configured to do.
  • the “first connection state” when the position of the shift operation member is at the EV travel shift completion position, the “first connection state” can be realized, and the position of the shift operation member is any of the plurality of HV travel shift completion positions.
  • the “second connection state” can be realized. That is, the motor gear ratio can be made different between EV traveling and HV traveling.
  • a “specific idle gear” for example, a 2-speed idle gear
  • a corresponding fixed gear for example, a 2-speed fixed gear
  • the rotational speed of the “specific idle gear” with respect to the same (certain) vehicle speed becomes higher as the selected speed stage among the plurality of HV traveling speed stages is higher. (Thus, the rotational speed of the electric motor) is reduced.
  • a “non-connection state in which the output shaft of the transmission and the output shaft of the motor are not connected so as to transmit power” is selectively performed. It is preferable that the configuration is realized. According to this, when the position of the shift operation member is at any one of the plurality of HV travel shift completion positions, the “second connection state” and the “non-connection state” can be selectively realized.
  • the “disconnected state” a state in which the vehicle travels using only the internal combustion engine drive torque (hereinafter referred to as “EG travel”) is realized.
  • HV traveling is realized when the “second connection state” is selected
  • EG traveling is performed when the “non-connection state” is selected.
  • the selection between the “second connection state” and the “non-connection state” may be performed using the driving force of the actuator based on the detection result of the vehicle running state (vehicle speed, accelerator opening, etc.).
  • the operation may be performed using the operation force of the switching member, the driving force of the actuator, or the like based on the operation of the switching member operated by a driver other than the shift operation member.
  • FIG. 1 is a schematic configuration diagram in a state where an N position of a power transmission control device for an HV-MT vehicle according to an embodiment of the present invention is selected.
  • FIG. It is the schematic diagram which showed the positional relationship of the S & S shaft and the some fork shaft in the state where N position was selected. It is the schematic diagram which showed the engagement state of a "sleeve and a fork shaft" and a S & S shaft. It is the figure which showed the detail of the shift pattern.
  • FIG. 2 is a diagram corresponding to FIG. 1 in a state where an EV position is selected.
  • FIG. 3 is a diagram corresponding to FIG. 2 in a state where an EV position is selected.
  • the present apparatus is “a manual transmission M / T having an engine E / G and a motor generator M / G as a power source and not having a torque converter, a friction clutch C / T, This is applied to the “vehicle equipped with the vehicle”, that is, the “HV-MT vehicle”.
  • the “HV-MT vehicle” may be a front wheel drive vehicle, a rear wheel drive vehicle, or a four wheel drive vehicle.
  • the engine E / G is a well-known internal combustion engine, for example, a gasoline engine that uses gasoline as fuel, or a diesel engine that uses light oil as fuel.
  • the manual transmission M / T is a transmission (so-called manual transmission) that does not include a torque converter that selects a gear position according to the shift position of the shift lever SL operated by the driver.
  • M / T includes an input shaft Ai that receives power from the output shaft Ae of the E / G, an output shaft Ao that outputs power to the drive wheels of the vehicle, and an MG shaft Am that receives power from the M / G. .
  • the input shaft Ai, the output shaft Ao, and the MG axis Am are arranged in parallel to each other. Details of the configuration of the M / T will be described later.
  • the friction clutch C / T is interposed between the E / G output shaft Ae and the M / T input shaft Ai.
  • C / T rotates integrally with Ai with respect to the state of engagement of the friction plates (more specifically, the flywheel that rotates integrally with Ae) according to the operation amount (depression amount) of the clutch pedal CP operated by the driver.
  • This is a known clutch in which the axial position of the friction plate changes.
  • the C / T joined state (the axial position of the friction plate) is mechanically controlled according to the operation amount of the CP using a link mechanism or the like that mechanically connects the clutch pedal CP and the C / T (friction plate). Or may be adjusted electrically (in a so-called by-wire method) using the driving force of an actuator that operates based on the detection result of a sensor (sensor P1 to be described later) that detects the amount of operation of the CP. May be.
  • the motor generator M / G has one of known configurations (for example, an AC synchronous motor), and, for example, a rotor (not shown) rotates integrally with the output shaft Ao. That is, a power transmission system is always established between the M / G output shaft and the M / T output shaft Ao.
  • EG torque the drive torque of the E / G output shaft Ae
  • MG torque the drive torque of the M / G output shaft (output shaft Ao)
  • this device has a clutch operation amount sensor P1 that detects an operation amount (depression amount, clutch stroke, etc.) of the clutch pedal CP, and a brake operation amount that detects an operation amount (stepping force, presence / absence of operation, etc.) of the brake pedal BP.
  • a sensor P2 an accelerator operation amount sensor P3 that detects the operation amount (accelerator opening) of the accelerator pedal AP, and a shift position sensor P4 that detects the position of the shift lever SL are provided.
  • this device includes an electronic control unit ECU.
  • the ECU controls the EG torque by controlling the fuel injection amount of the E / G (the opening degree of the throttle valve) based on the information from the sensors P1 to P4 and the other sensors, and the inverter.
  • the MG torque is controlled by controlling (not shown).
  • M / T includes sleeves S1, S2, S3, and Sm.
  • S1, S2, and S3 are sleeves for “second speed” and “third speed—fourth speed” respectively fitted to corresponding hubs that rotate integrally with the output shaft Ao so that they cannot rotate relative to each other and can move relative to each other in the axial direction.
  • Sm is a sleeve for switching the connection state of the MG shaft Am, which is fitted to a hub that rotates integrally with the MG shaft Am so that it cannot rotate relative to the MG shaft Am and can move relatively in the axial direction.
  • the sleeves S1, S2, and S3 are integrally connected to the fork shafts FS1, FS2, and FS3 (via the forks), respectively.
  • FS1, FS2, and FS3 (and therefore S1, S2, and S3) are axially (see FIG. 2) by an inner lever IL (see FIGS. 2 and 3) provided on the S & S shaft that is interlocked with the operation of the shift lever SL. Is driven in the vertical direction, and in the horizontal direction in FIGS.
  • the shift lever SL is shifted in the axial direction by a shift operation (up and down operation in FIGS. 1 and 4) and the shift lever SL is selected (in FIGS. 1 and 4).
  • “Select rotation type” is shown that rotates about the axis by the left and right direction operation, but “shift rotation” that rotates about the axis by the SL shift operation and translates in the axial direction by the SL selection operation.
  • a “type” may be used.
  • shift heads H1, H2, and H3 are integrally provided in FS1, FS2, and FS3, respectively. Even if the position of the SL is moved from the “neutral range” by the shift operation (operation in the vehicle front-rear direction) to any direction on the vehicle front side or rear side, that is, the axial position of the inner lever IL (the left-right direction in FIG. 3). Position) moves in any direction from the reference position corresponding to the “neutral range” of SL, and IL presses any one selected from H1, H2, and H3 in the axial direction. , FS1, FS2, and FS3 (accordingly, S1, S2, and S3) are moved from the “neutral position”. Thereby, as will be described later, the corresponding gear stage is realized.
  • connection state of the MG shaft is switched by driving the sleeve Sm to change the axial position of Sm.
  • the MG shaft Am is provided with a first idle gear Gm1 and a second idle gear Gm2.
  • the first idle gear Gm1 always meshes with a fixed gear Gev provided on the output shaft Ao.
  • the second idle gear Gm2 always meshes with a second-speed idle gear G2o (corresponding to “specific idle gear”) provided on the output shaft Ao.
  • the driving force for driving the sleeve Sm in the axial direction includes a driving force of an actuator ACT (see FIG. 1) controlled by the ECU and a switching member (not shown) operated by a driver other than the shift lever SL. ) Can be used.
  • the selection of the position of the sleeve Sm (and hence the selection of the connection state of the MG shaft) can be performed based on the operation of the switching member by the driver.
  • the driving force for driving the sleeve Sm the driving force of the actuator ACT and the operating force of the switching member by the driver can be used.
  • the selection of the position of Sm can be performed based on the detection result of the running state of the vehicle (vehicle speed, accelerator opening, etc.).
  • the driving force of the actuator ACT can be used as the driving force for driving the sleeve Sm.
  • the sleeve Sm is controlled to the “neutral position”. Therefore, a power transmission system is not established between the MG shaft Am and the output shaft Ao.
  • the MG torque is maintained at “zero”. As described above, in the state where SL is in the “N position” (more accurately, the neutral region), neither the EG torque nor the MG torque is transmitted to the drive wheels.
  • the MG torque in the forward direction is converted to the drive wheel by using the power transmission system established through “Gm1 and Gev” between the MG shaft Am and the output shaft Ao. Is transmitted to. That is, when “EV” is selected, the vehicle travels using only the MG torque while maintaining the E / G in the stopped state (the state where the rotation of the output shaft Ae of the E / G is stopped) (ie, , "EV traveling") is realized. That is, in this vehicle, by selecting “EV”, it is possible to start forward by EV traveling.
  • the MG torque is adjusted to a value in the forward direction having a magnitude corresponding to the accelerator opening.
  • EV traveling can be realized by controlling Sm to the “first connection position”, similarly to the case where “EV” is selected. That is, by selecting “R”, it is possible to start backward by EV traveling.
  • the “N position” (neutral region) and “EV position” (and “R position”) are identified by, for example, the detection result of the shift position sensor P4 and the detection of the sensor that detects the position of the S & S shaft. It can be achieved on the basis of the result or the like.
  • EV (and “R”) is a shift stage for EV travel
  • 2nd speed” to “5th speed” are shift stages for HV travel.
  • MT speed reduction ratio the ratio of the rotational speed of Ai to the rotational speed of Ao
  • N the number of teeth / the number of teeth of GNi
  • the axial positions of the sleeves S1 to S3 are determined by using a link mechanism (S & S shaft and fork shaft) that mechanically connects the shift lever SL and the sleeves S1 to S3. It is mechanically adjusted according to the shift position.
  • the axial positions of the sleeves S1 to S3 may be adjusted electrically (in a so-called by-wire system) using the driving force of the actuator that operates based on the detection result of the shift position sensor P4. .
  • E / G control The E / G control by this apparatus is generally performed as follows.
  • E / G When the vehicle is stopped or “N” or “EV” (or “R”) is selected, E / G is maintained in a stopped state (a state where fuel injection is not performed).
  • the E / G stop state the E / G is started (fuel injection is started based on the selection of a gear position for HV traveling (any one of “2nd speed” to “5th speed”)).
  • EG torque is controlled based on the accelerator opening and the like.
  • the E / G is maintained in the stopped state again based on the selection of “N” or “EV” (or “R”) or the stop of the vehicle.
  • the MG torque is It is adjusted to a value for HV traveling based on the opening degree, the clutch stroke, etc. (MG torque control for HV traveling)
  • the magnitude of the MG torque to be adjusted differs between the EV traveling MG torque control and the HV traveling MG torque control. Then, based on the selection of “N” or the stop of the vehicle, the M / G is maintained in the stop state again.
  • the “first connection state” is realized when the gear position for EV travel (“EV”) is selected, and the MG is set via “Gm1 and Gev”. A power transmission system is established between the shaft Am and the output shaft Ao.
  • the gear position for HV traveling any one of “2nd speed” to “5th speed”
  • the “second connection state” is realized and “Gm2 and G2o” (or “Gm2 and A power transmission system is established between the MG shaft Am and the output shaft Ao via the gear train including G2o ”).
  • the “ratio of Am rotational speed to Ao rotational speed” (MG reduction ratio) can be made different between EV traveling and HV traveling. Therefore, the M / G rotational speed can be stably adjusted within an appropriate range during both HV traveling and EV traveling in different vehicle speed ranges.
  • the ratio of the rotational speed of the M / G to the vehicle speed is relatively large when the low speed side gear is selected, and the M / G of the vehicle speed is selected when the high speed side gear is selected.
  • the rate of rotation speed becomes relatively small. This means that the fluctuation range of the rotational speed of M / G becomes small from the time of relatively low speed travel where the low speed side gear is selected to the time of relatively high speed travel where the high speed side gear is selected.
  • the M / G rotation speed can be stably adjusted within an appropriate range from this viewpoint.
  • the gear meshing with the idle gear Gm2 is an idle gear (in this example, “2nd speed” idle gear G2o) of the HV traveling speed stage (any one of “2nd speed” to “5th speed”).
  • a gear that meshes with Gm2 is a second fixed gear dedicated to HV travel (other than Gev) provided on the output shaft Ao. There may be.
  • the output shaft Ao in addition to G2o and Gev, it is necessary to further provide a second fixed gear dedicated to HV traveling.
  • the present invention is not limited to the above embodiment, and various modifications can be employed within the scope of the present invention.
  • the sleeves S1 to S3 are all provided on the output shaft Ao, but some of the sleeves S1 to S3 (including the sleeve that engages with the “specific idle gear”) are included.
  • the remainder on the output shaft Ao may be provided on the input shaft Ai.
  • the position of the sleeve Sm is “second connection position” (for HV traveling). Response) and “neutral position” (corresponding to EG traveling), but when one of the gears for HV traveling (“2nd speed” to “5th speed”) is selected, the sleeve The position of Sm may be controlled to the “first connection position” (corresponding to HV traveling).
  • the idle gear Gm2 provided on the MG shaft Am is in mesh with the “2nd speed” idle gear G2o.
  • the idle gear Gm2 is “5”. It may be meshed with the “speed” idle gear G5o.
  • the idle gear Gm2 may mesh with the “3rd speed” or “4th speed” idle gear G3o or G4o.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Structure Of Transmissions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This manual transmission is provided with: an input shaft (Ai) to which motive power is input from an internal combustion engine (E/G) via a clutch (C/T); an output shaft (Ao) that transmits motive power to a drive wheel; and an output shaft (Am) of an electric motor (M/G). The transmission includes a transmission stage (EV) for EV travel in which a motive power transmitting system is not established between the Ai and the Ao (different from neutral), and a plurality of transmission stages (2nd to 5th speeds) for HV travel in which a motive power transmitting system is established between the Ai and the Ao. When "EV" is selected, a fixed gear (Gev) provided to the Ao and dedicated for EV travel and the Am are connected in a motive power transmittable manner. When the 2nd to the 5th speeds are selected, an idler gear (G2o) provided to the Ao for a specific transmission stage and the Am are connected in a motive power transmittable manner. Thus, in the manual transmission provided with the plurality of HV travel transmission stages and the EV travel transmission stage, the rotating speed of the electric motor can be stably adjusted within an appropriate range during HV travel and EV travel.

Description

手動変速機Manual transmission
 本発明は、動力源として内燃機関と電動機とを備えた車両に適用される手動変速機に関し、特に、内燃機関の出力軸と手動変速機の入力軸との間に摩擦クラッチが介装された車両に適用されるものに係わる。 The present invention relates to a manual transmission applied to a vehicle having an internal combustion engine and an electric motor as a power source, and more particularly, a friction clutch is interposed between an output shaft of the internal combustion engine and an input shaft of the manual transmission. It relates to what is applied to vehicles.
 従来より、動力源としてエンジンと電動機とを備えた所謂ハイブリッド車両が広く知られている(例えば、特開2000-224710号公報を参照)。ハイブリット車両では、電動機の出力軸が、内燃機関の出力軸、変速機の入力軸、及び変速機の出力軸の何れかに接続される構成が採用され得る。以下、内燃機関の出力軸の駆動トルクを「内燃機関駆動トルク」と呼び、電動機の出力軸の駆動トルクを「電動機駆動トルク」と呼ぶ。 Conventionally, a so-called hybrid vehicle including an engine and an electric motor as power sources has been widely known (see, for example, Japanese Patent Application Laid-Open No. 2000-224710). In the hybrid vehicle, a configuration in which the output shaft of the electric motor is connected to any of the output shaft of the internal combustion engine, the input shaft of the transmission, and the output shaft of the transmission can be employed. Hereinafter, the driving torque of the output shaft of the internal combustion engine is referred to as “internal combustion engine driving torque”, and the driving torque of the output shaft of the electric motor is referred to as “motor driving torque”.
 近年、手動変速機と摩擦クラッチとを備えたハイブリッド車両(以下、「HV-MT車」と呼ぶ)に適用される動力伝達制御装置が開発されてきている。ここにいう「手動変速機」とは、運転者により操作されるシフトレバーのシフト位置に応じて変速段が選択されるトルクコンバータを備えない変速機(所謂、マニュアルトランスミッション、MT)である。また、ここにいう「摩擦クラッチ」とは、内燃機関の出力軸と手動変速機の入力軸との間に介装されて、運転者により操作されるクラッチペダルの操作量に応じて摩擦プレートの接合状態が変化するクラッチである。 Recently, a power transmission control device applied to a hybrid vehicle (hereinafter referred to as “HV-MT vehicle”) having a manual transmission and a friction clutch has been developed. The “manual transmission” referred to here is a transmission (so-called manual transmission, MT) that does not include a torque converter in which a gear position is selected according to a shift position of a shift lever operated by a driver. In addition, the “friction clutch” referred to here is interposed between the output shaft of the internal combustion engine and the input shaft of the manual transmission, and the friction plate is operated according to the operation amount of the clutch pedal operated by the driver. This is a clutch whose joining state changes.
 ハイブリッド車両では、内燃機関駆動トルクと電動機駆動トルクの両方を利用して車両が走行する状態(以下、「HV走行」と呼ぶ)が実現され得る。近年、このHV走行に加えて、内燃機関を停止状態(内燃機関の出力軸の回転が停止した状態)に維持しながら電動機駆動トルクのみを利用して車両が走行する状態(以下、「EV走行」と呼ぶ)が実現できるハイブリッド車両が開発されてきている。 In the hybrid vehicle, a state in which the vehicle travels using both the internal combustion engine driving torque and the electric motor driving torque (hereinafter referred to as “HV traveling”) can be realized. In recent years, in addition to this HV traveling, the vehicle travels using only the motor driving torque while maintaining the internal combustion engine in a stopped state (rotation of the output shaft of the internal combustion engine) (hereinafter referred to as “EV traveling”). Hybrid vehicles capable of realizing "
 HV-MT車において、運転者がクラッチペダルを操作しない状態(即ち、クラッチが接合された状態)においてEV走行を実現するためには、変速機の入力軸が回転しない状態を維持しながら変速機の出力軸が電動機駆動トルクにより駆動される必要がある。このためには、電動機の出力軸が変速機の出力軸に接続されることに加え、変速機が「変速機の入力軸と変速機の出力軸との間で動力伝達系統が確立されない状態」に維持される必要がある。 In an HV-MT vehicle, in order to realize EV traveling in a state where the driver does not operate the clutch pedal (that is, a state where the clutch is engaged), the transmission is maintained while maintaining the state where the input shaft of the transmission is not rotated. The output shaft must be driven by the motor driving torque. For this purpose, in addition to the output shaft of the motor being connected to the output shaft of the transmission, the transmission is in a state where a power transmission system is not established between the input shaft of the transmission and the output shaft of the transmission. Needs to be maintained.
 以下、「(クラッチを介して)内燃機関から動力が入力される入力軸」と「電動機から動力が入力される(即ち、電動機の出力軸が動力伝達可能に常時接続された)出力軸」とを備えた手動変速機を想定する。この手動変速機では、入力軸・出力軸間での動力伝達系統の確立の有無にかかわらず、電動機駆動トルクを手動変速機の出力軸(従って、駆動輪)に任意に伝達することができる。 Hereinafter, “input shaft to which power is input from the internal combustion engine (via the clutch)” and “output shaft to which power is input from the motor (that is, the output shaft of the motor is always connected so that power can be transmitted)” Assuming a manual transmission with In this manual transmission, regardless of whether or not a power transmission system is established between the input shaft and the output shaft, the motor drive torque can be arbitrarily transmitted to the output shaft (and hence the drive wheels) of the manual transmission.
 従って、この手動変速機を利用してHV走行に加えて上記のEV走行を実現するためには、手動変速機の変速段として、HV走行用の「変速機の入力軸・出力軸間で動力伝達系統が確立される変速段」(以下、「HV走行用変速段」と呼ぶ)に加えて、EV走行用の「変速機の入力軸・出力軸間で動力伝達系統が確立されない変速段」(ニュートラルとは異なる変速段。以下、「EV走行変速段」と呼ぶ)が設けられる必要がある。 Therefore, in order to realize the above-described EV travel in addition to the HV travel using this manual transmission, the power transmission stage between the input shaft and the output shaft of the transmission is used as the gear stage of the manual transmission. In addition to “the gear stage in which the transmission system is established” (hereinafter referred to as “the gear stage for HV traveling”), “the gear stage in which the power transmission system is not established between the input shaft and the output shaft of the transmission” for EV traveling. (A gear stage different from neutral, hereinafter referred to as “EV travel gear stage”) needs to be provided.
 即ち、この手動変速機では、シフトレバーをシフトパターン上において複数のHV走行用変速段に対応するそれぞれのHV走行シフト完了位置に移動することにより、入力軸・出力軸間で、「減速比」が対応するHV走行用変速段に対応するそれぞれの値に設定される動力伝達系統が確立され、シフトレバーをシフトパターン上においてEV走行用変速段に対応するEV走行シフト完了位置(ニュートラル位置とは異なる)に移動することにより、入力軸・出力軸間で動力伝達系統が確立されない。 That is, in this manual transmission, the “shift ratio” between the input shaft and the output shaft is obtained by moving the shift lever to each HV traveling shift completion position corresponding to a plurality of HV traveling gear positions on the shift pattern. Is established, and the EV transmission shift completion position (neutral position is the neutral position) corresponding to the EV traveling gear position on the shift pattern is established. The power transmission system is not established between the input shaft and the output shaft.
 ところで、本出願人は、この種のHV-MT車用の手動変速機を既に提案している(例えば、特願2011-92124号を参照)。この出願では、電動機の出力軸と変速機の出力軸とが共通の1本の軸で兼用された手動変速機が開示されている。この構成によれば、電動機の出力軸と変速機の出力軸とを個別に設ける必要がないので、変速機全体をコンパクト化し易くなる。 By the way, the present applicant has already proposed a manual transmission for this type of HV-MT vehicle (see, for example, Japanese Patent Application No. 2011-92124). This application discloses a manual transmission in which the output shaft of the electric motor and the output shaft of the transmission are shared by a single shaft. According to this configuration, it is not necessary to separately provide the output shaft of the electric motor and the output shaft of the transmission, so that the entire transmission can be easily made compact.
 この出願に開示された構成では、電動機の出力軸が変速機の出力軸と一体で常時回転する。換言すれば、変速機の出力軸の回転速度(従って、車速)に対する電動機の出力軸の回転速度の割合(以下、「電動機変速比」と呼ぶ)を変更することができない。従って、HV走行時とEV走行時とで電動機変速比を異ならせることができない。 In the configuration disclosed in this application, the output shaft of the motor is always rotated integrally with the output shaft of the transmission. In other words, the ratio of the rotational speed of the output shaft of the motor to the rotational speed of the output shaft of the transmission (and hence the vehicle speed) (hereinafter referred to as “motor speed ratio”) cannot be changed. Therefore, the motor gear ratio cannot be made different between HV traveling and EV traveling.
 一般に、EV走行は、車両発進時等の比較的低速走行時に主として使用されることが多い。一方、HV走行は、高速側の変速段が使用される比較的高速走行時においても使用される。即ち、HV走行時の車速域とEV走行時の車速域とは異なる。従って、HV走行時及びEV走行時で電動機の回転速度を安定して適切な範囲内に調整する観点からは、HV走行時とEV走行時とで電動機変速比を異ならせる必要がある。 Generally, EV traveling is often used mainly at relatively low speed traveling such as when the vehicle starts. On the other hand, HV traveling is also used during relatively high-speed traveling in which a high-speed side gear is used. That is, the vehicle speed range during HV traveling is different from the vehicle speed range during EV traveling. Therefore, from the viewpoint of stably adjusting the rotation speed of the electric motor within an appropriate range during HV traveling and EV traveling, it is necessary to make the motor gear ratio different between HV traveling and EV traveling.
 本発明の目的は、複数の「HV走行変速段」と「EV走行変速段」とを備えた手動変速機であって、HV走行時及びEV走行時で電動機の回転速度を安定して適切な範囲内に調整し易いものを提供することにある。 An object of the present invention is a manual transmission provided with a plurality of “HV travel shift speeds” and “EV travel shift speeds”, in which the rotational speed of an electric motor is stabilized and appropriately controlled during HV travel and EV travel. The object is to provide an easily adjustable range.
 本発明に係る手動変速機の特徴は、前記電動機の出力軸と前記変速機の出力軸との間の接続状態を変更する接続切替機構を備えたことにある。この接続切替機構は、「変速機の出力軸に相対回転不能に設けられたEV走行用固定ギヤと電動機の出力軸とが動力伝達可能に接続された第1接続状態」と、「複数のHV走行用変速段の遊転ギヤのうち変速機の出力軸に設けられた特定の遊転ギヤと電動機の出力軸とが動力伝達可能に接続された第2接続状態」と、を選択的に実現するように構成される。 A feature of the manual transmission according to the present invention is that a connection switching mechanism for changing a connection state between the output shaft of the electric motor and the output shaft of the transmission is provided. This connection switching mechanism includes a “first connection state in which an EV traveling fixed gear provided on the output shaft of the transmission so as not to rotate relative to the output shaft of the electric motor and an output shaft of the electric motor are connected so as to be able to transmit power”, and “a plurality of HV A second idle connection state in which a specific idler gear provided on the output shaft of the transmission and the output shaft of the motor are connected so as to be able to transmit power is selectively realized. Configured to do.
 上記構成によれば、シフト操作部材の位置がEV走行シフト完了位置にある場合には「第1接続状態」が実現され得、シフト操作部材の位置が複数のHV走行シフト完了位置のうちの何れかにある場合には「第2接続状態」が実現され得る。即ち、EV走行時とHV走行時とで電動機変速比を異ならせることができる。 According to the above configuration, when the position of the shift operation member is at the EV travel shift completion position, the “first connection state” can be realized, and the position of the shift operation member is any of the plurality of HV travel shift completion positions. In such a case, the “second connection state” can be realized. That is, the motor gear ratio can be made different between EV traveling and HV traveling.
 加えて、複数のHV走行用変速段のうち選択される変速段がより高速側であるほど、同じ(或る)車速に対する変速機の入力軸の回転速度が小さくなる。変速機の出力軸に設けられた「特定の遊転ギヤ」(例えば、2速の遊転ギヤ)は、変速機の入力軸と一体で回転する対応する固定ギヤ(例えば、2速の固定ギヤ)と常時歯合している。これらのことから、第2接続状態では、複数のHV走行用変速段のうち選択される変速段がより高速側であるほど、同じ(或る)車速に対する「特定の遊転ギヤ」の回転速度(従って、電動機の回転速度)が小さくなる。このことは、低速側の変速段が選択される比較的低速走行時から高速側の変速段が選択される比較的高速走行時までに亘って電動機の回転速度の変動範囲が小さくなることを意味する。この結果、電動機の回転速度を安定して適切な範囲内に調整し易くなる。 In addition, the higher the speed selected from among the plurality of HV travel speeds, the lower the rotational speed of the input shaft of the transmission for the same (certain) vehicle speed. A “specific idle gear” (for example, a 2-speed idle gear) provided on the output shaft of the transmission is a corresponding fixed gear (for example, a 2-speed fixed gear) that rotates together with the input shaft of the transmission. ). For these reasons, in the second connection state, the rotational speed of the “specific idle gear” with respect to the same (certain) vehicle speed becomes higher as the selected speed stage among the plurality of HV traveling speed stages is higher. (Thus, the rotational speed of the electric motor) is reduced. This means that the range of fluctuations in the rotational speed of the motor is reduced from the relatively low speed running when the low speed gear is selected to the relatively high speed when the high speed gear is selected. To do. As a result, it becomes easy to stably adjust the rotation speed of the electric motor within an appropriate range.
 また、上記本発明に係る手動変速機では、前記第1、第2接続状態に加えて、「変速機の出力軸と電動機の出力軸とが動力伝達可能に接続されない非接続状態」を選択的に実現するように構成されることが好適である。これによれば、シフト操作部材の位置が複数のHV走行シフト完了位置のうちの何れかにある場合、「第2接続状態」と「非接続状態」とが選択的に実現され得る。「非接続状態」では、内燃機関駆動トルクのみを利用して車両が走行する状態(以下、「EG走行」と呼ぶ)が実現される。 In the manual transmission according to the present invention, in addition to the first and second connection states, a “non-connection state in which the output shaft of the transmission and the output shaft of the motor are not connected so as to transmit power” is selectively performed. It is preferable that the configuration is realized. According to this, when the position of the shift operation member is at any one of the plurality of HV travel shift completion positions, the “second connection state” and the “non-connection state” can be selectively realized. In the “disconnected state”, a state in which the vehicle travels using only the internal combustion engine drive torque (hereinafter referred to as “EG travel”) is realized.
 以上より、シフト操作部材の位置が複数のHV走行シフト完了位置のうちの何れかにある場合、「第2接続状態」選択時ではHV走行が実現され、「非接続状態」選択時ではEG走行が実現され得る。「第2接続状態」と「非接続状態」との選択は、車両の走行状態(車速、アクセル開度等)の検出結果に基づいてアクチュエータの駆動力等を利用して実行されてもよいし、シフト操作部材以外の運転者により操作される切替部材の操作に基づいて前記切替部材の操作力、アクチュエータの駆動力等を利用して実行されてもよい。 As described above, when the position of the shift operation member is at any one of a plurality of HV traveling shift completion positions, HV traveling is realized when the “second connection state” is selected, and EG traveling is performed when the “non-connection state” is selected. Can be realized. The selection between the “second connection state” and the “non-connection state” may be performed using the driving force of the actuator based on the detection result of the vehicle running state (vehicle speed, accelerator opening, etc.). The operation may be performed using the operation force of the switching member, the driving force of the actuator, or the like based on the operation of the switching member operated by a driver other than the shift operation member.
本発明の実施形態に係るHV-MT車用の動力伝達制御装置のN位置が選択された状態における概略構成図である。1 is a schematic configuration diagram in a state where an N position of a power transmission control device for an HV-MT vehicle according to an embodiment of the present invention is selected. FIG. N位置が選択された状態におけるS&Sシャフト及び複数のフォークシャフトの位置関係を示した模式図である。It is the schematic diagram which showed the positional relationship of the S & S shaft and the some fork shaft in the state where N position was selected. 「スリーブ及びフォークシャフト」とS&Sシャフトとの係合状態を示した模式図である。It is the schematic diagram which showed the engagement state of a "sleeve and a fork shaft" and a S & S shaft. シフトパターンの詳細を示した図である。It is the figure which showed the detail of the shift pattern. EV位置が選択された状態における図1に対応する図である。FIG. 2 is a diagram corresponding to FIG. 1 in a state where an EV position is selected. EV位置が選択された状態における図2に対応する図である。FIG. 3 is a diagram corresponding to FIG. 2 in a state where an EV position is selected. 2速位置(HV走行)が選択された状態における図1に対応する図である。It is a figure corresponding to Drawing 1 in the state where the 2nd speed position (HV driving) was selected. 2速位置が選択された状態における図2に対応する図である。It is a figure corresponding to Drawing 2 in the state where the 2nd gear position was selected. 2速位置(EG走行)が選択された状態における図1に対応する図である。It is a figure corresponding to Drawing 1 in the state where the 2nd speed position (EG running) was selected. 3速位置(HV走行)が選択された状態における図1に対応する図である。It is a figure corresponding to Drawing 1 in the state where the 3rd speed position (HV driving) was selected. 3速位置が選択された状態における図2に対応する図である。It is a figure corresponding to Drawing 2 in the state where the 3rd speed position was chosen. 3速位置(EG走行)が選択された状態における図1に対応する図である。It is a figure corresponding to Drawing 1 in the state where the 3rd speed position (EG running) was selected. 4速位置(HV走行)が選択された状態における図1に対応する図である。It is a figure corresponding to Drawing 1 in the state where the 4th speed position (HV driving) was selected. 4速位置が選択された状態における図2に対応する図である。It is a figure corresponding to Drawing 2 in the state where the 4th gear position was selected. 4速位置(EG走行)が選択された状態における図1に対応する図である。It is a figure corresponding to Drawing 1 in the state where the 4th speed position (EG running) was selected. 5速位置(HV走行)が選択された状態における図1に対応する図である。It is a figure corresponding to Drawing 1 in the state where the 5th speed position (HV driving) was selected. 5速位置が選択された状態における図2に対応する図である。It is a figure corresponding to Drawing 2 in the state where the 5th speed position was chosen. 5速位置(EG走行)が選択された状態における図1に対応する図である。It is a figure corresponding to Drawing 1 in the state where the 5th speed position (EG running) was selected. 本発明の実施形態の変形例に係る動力伝達制御装置の図1に対応する図である。It is a figure corresponding to FIG. 1 of the power transmission control apparatus which concerns on the modification of embodiment of this invention.
 以下、本発明の実施形態に係る手動変速機を含む車両の動力伝達制御装置(以下、「本装置」と呼ぶ)について図面を参照しながら説明する。図1に示すように、本装置は、「動力源としてエンジンE/GとモータジェネレータM/Gとを備え、且つ、トルクコンバータを備えない手動変速機M/Tと、摩擦クラッチC/Tとを備えた車両」、即ち、上記「HV-MT車」に適用される。この「HV-MT車」は、前輪駆動車であっても、後輪駆動車であっても、4輪駆動車であってもよい。 Hereinafter, a power transmission control device for a vehicle including a manual transmission according to an embodiment of the present invention (hereinafter referred to as “the present device”) will be described with reference to the drawings. As shown in FIG. 1, the present apparatus is “a manual transmission M / T having an engine E / G and a motor generator M / G as a power source and not having a torque converter, a friction clutch C / T, This is applied to the “vehicle equipped with the vehicle”, that is, the “HV-MT vehicle”. The “HV-MT vehicle” may be a front wheel drive vehicle, a rear wheel drive vehicle, or a four wheel drive vehicle.
(全体構成)
 先ず、本装置の全体構成について説明する。エンジンE/Gは、周知の内燃機関であり、例えば、ガソリンを燃料として使用するガソリンエンジン、軽油を燃料として使用するディーゼルエンジンである。
(overall structure)
First, the overall configuration of this apparatus will be described. The engine E / G is a well-known internal combustion engine, for example, a gasoline engine that uses gasoline as fuel, or a diesel engine that uses light oil as fuel.
 手動変速機M/Tは、運転者により操作されるシフトレバーSLのシフト位置に応じて変速段が選択されるトルクコンバータを備えない変速機(所謂、マニュアルトランスミッション)である。M/Tは、E/Gの出力軸Aeから動力が入力される入力軸Aiと、車両の駆動輪へ動力を出力する出力軸Aoと、M/Gから動力が入力されるMG軸Amと、を備える。入力軸Ai、出力軸Ao、及びMG軸Amは互いに平行に配置されている。M/Tの構成の詳細は後述する。 The manual transmission M / T is a transmission (so-called manual transmission) that does not include a torque converter that selects a gear position according to the shift position of the shift lever SL operated by the driver. M / T includes an input shaft Ai that receives power from the output shaft Ae of the E / G, an output shaft Ao that outputs power to the drive wheels of the vehicle, and an MG shaft Am that receives power from the M / G. . The input shaft Ai, the output shaft Ao, and the MG axis Am are arranged in parallel to each other. Details of the configuration of the M / T will be described later.
 摩擦クラッチC/Tは、E/Gの出力軸AeとM/Tの入力軸Aiとの間に介装されている。C/Tは、運転者により操作されるクラッチペダルCPの操作量(踏み込み量)に応じて摩擦プレートの接合状態(より具体的には、Aeと一体回転するフライホイールに対する、Aiと一体回転する摩擦プレートの軸方向位置)が変化する周知のクラッチである。 The friction clutch C / T is interposed between the E / G output shaft Ae and the M / T input shaft Ai. C / T rotates integrally with Ai with respect to the state of engagement of the friction plates (more specifically, the flywheel that rotates integrally with Ae) according to the operation amount (depression amount) of the clutch pedal CP operated by the driver. This is a known clutch in which the axial position of the friction plate changes.
 C/Tの接合状態(摩擦プレートの軸方向位置)は、クラッチペダルCPとC/T(摩擦プレート)とを機械的に連結するリンク機構等を利用してCPの操作量に応じて機械的に調整されてもよいし、CPの操作量を検出するセンサ(後述するセンサP1)の検出結果に基づいて作動するアクチュエータの駆動力を利用して電気的に(所謂バイ・ワイヤ方式で)調整されてもよい。 The C / T joined state (the axial position of the friction plate) is mechanically controlled according to the operation amount of the CP using a link mechanism or the like that mechanically connects the clutch pedal CP and the C / T (friction plate). Or may be adjusted electrically (in a so-called by-wire method) using the driving force of an actuator that operates based on the detection result of a sensor (sensor P1 to be described later) that detects the amount of operation of the CP. May be.
 モータジェネレータM/Gは、周知の構成(例えば、交流同期モータ)の1つを有していて、例えば、ロータ(図示せず)が出力軸Aoと一体回転するようになっている。即ち、M/Gの出力軸とM/Tの出力軸Aoとの間では動力伝達系統が常時確立されている。以下、E/Gの出力軸Aeの駆動トルクを「EGトルク」と呼び、M/Gの出力軸(出力軸Ao)の駆動トルクを「MGトルク」と呼ぶ。 The motor generator M / G has one of known configurations (for example, an AC synchronous motor), and, for example, a rotor (not shown) rotates integrally with the output shaft Ao. That is, a power transmission system is always established between the M / G output shaft and the M / T output shaft Ao. Hereinafter, the drive torque of the E / G output shaft Ae is referred to as “EG torque”, and the drive torque of the M / G output shaft (output shaft Ao) is referred to as “MG torque”.
 また、本装置は、クラッチペダルCPの操作量(踏み込み量、クラッチストローク等)を検出するクラッチ操作量センサP1と、ブレーキペダルBPの操作量(踏力、操作の有無等)を検出するブレーキ操作量センサP2と、アクセルペダルAPの操作量(アクセル開度)を検出するアクセル操作量センサP3と、シフトレバーSLの位置を検出するシフト位置センサP4と、を備えている。 In addition, this device has a clutch operation amount sensor P1 that detects an operation amount (depression amount, clutch stroke, etc.) of the clutch pedal CP, and a brake operation amount that detects an operation amount (stepping force, presence / absence of operation, etc.) of the brake pedal BP. A sensor P2, an accelerator operation amount sensor P3 that detects the operation amount (accelerator opening) of the accelerator pedal AP, and a shift position sensor P4 that detects the position of the shift lever SL are provided.
 更に、本装置は、電子制御ユニットECUを備えている。ECUは、上述のセンサP1~P4、並びにその他のセンサ等からの情報等に基づいて、E/Gの燃料噴射量(スロットル弁の開度)を制御することでEGトルクを制御するとともに、インバータ(図示せず)を制御することでMGトルクを制御する。 Furthermore, this device includes an electronic control unit ECU. The ECU controls the EG torque by controlling the fuel injection amount of the E / G (the opening degree of the throttle valve) based on the information from the sensors P1 to P4 and the other sensors, and the inverter. The MG torque is controlled by controlling (not shown).
(M/Tの構成)
 以下、M/Tの構成の詳細について図1~図4を参照しながら説明する。図1及び図4に示すシフトレバーSLのシフトパターンから理解できるように、本例では、選択される変速段(シフト完了位置)として、前進用の5つの変速段(EV、2速~5速)、及び後進用の1つの変速段(R)が設けられている。以下、後進用の変速段(R)についての説明は省略する。「EV」は上述したEV走行用変速段であり、「2速」~「5速」はそれぞれ上述したHV走行用変速段である。以下、説明の便宜上、「N位置」、「第1セレクト位置」、「第2セレクト位置」を含むセレクト操作が可能な範囲を総称して「ニュートラル範囲」と呼ぶ。
(M / T configuration)
Details of the M / T configuration will be described below with reference to FIGS. As can be understood from the shift pattern of the shift lever SL shown in FIGS. 1 and 4, in this example, as the selected gear position (shift completion position), five forward gear positions (EV, 2nd to 5th gears). ) And one reverse gear (R) for reverse travel. Hereinafter, the description of the reverse gear stage (R) is omitted. “EV” is the above-described EV travel speed, and “2nd speed” to “5th speed” are the above-described HV travel speeds. Hereinafter, for convenience of explanation, a range in which a select operation including “N position”, “first select position”, and “second select position” is possible is collectively referred to as “neutral range”.
 M/Tは、スリーブS1、S2、S3、及びSmを備える。S1、S2、及びS3はそれぞれ、出力軸Aoと一体回転する対応するハブに相対回転不能且つ軸方向に相対移動可能に嵌合された、「2速」用のスリーブ、「3速-4速」用のスリーブ、及び「5速」用のスリーブである。Smは、MG軸Amと一体回転するハブに相対回転不能且つ軸方向に相対移動可能に嵌合された、MG軸Amの接続状態の切り替え用のスリーブである。 M / T includes sleeves S1, S2, S3, and Sm. S1, S2, and S3 are sleeves for “second speed” and “third speed—fourth speed” respectively fitted to corresponding hubs that rotate integrally with the output shaft Ao so that they cannot rotate relative to each other and can move relative to each other in the axial direction. "Sleeve" and "5-speed" sleeve. Sm is a sleeve for switching the connection state of the MG shaft Am, which is fitted to a hub that rotates integrally with the MG shaft Am so that it cannot rotate relative to the MG shaft Am and can move relatively in the axial direction.
 図2及び図3に示すように、スリーブS1、S2、及びS3はそれぞれ、フォークシャフトFS1、FS2、及びFS3と(フォークを介して)一体に連結されている。FS1、FS2、及びFS3(従って、S1、S2、及びS3)はそれぞれ、シフトレバーSLの操作と連動するS&Sシャフトに設けられたインナレバーIL(図2、図3を参照)によって軸方向(図2では上下方向、図1及び図3では左右方向)に駆動される。 As shown in FIGS. 2 and 3, the sleeves S1, S2, and S3 are integrally connected to the fork shafts FS1, FS2, and FS3 (via the forks), respectively. FS1, FS2, and FS3 (and therefore S1, S2, and S3) are axially (see FIG. 2) by an inner lever IL (see FIGS. 2 and 3) provided on the S & S shaft that is interlocked with the operation of the shift lever SL. Is driven in the vertical direction, and in the horizontal direction in FIGS.
 図2及び図3では、S&Sシャフトとして、シフトレバーSLのシフト操作(図1、図4では上下方向の操作)によって軸方向に平行移動し且つシフトレバーSLのセレクト操作(図1、図4では左右方向の操作)によって軸中心に回動する「セレクト回転型」が示されているが、SLのシフト操作によって軸中心に回動し且つSLのセレクト操作によって軸方向に平行移動する「シフト回転型」が使用されてもよい。 2 and 3, as the S & S shaft, the shift lever SL is shifted in the axial direction by a shift operation (up and down operation in FIGS. 1 and 4) and the shift lever SL is selected (in FIGS. 1 and 4). “Select rotation type” is shown that rotates about the axis by the left and right direction operation, but “shift rotation” that rotates about the axis by the SL shift operation and translates in the axial direction by the SL selection operation. A “type” may be used.
 図3に示すように、FS1、FS2、及びFS3にはそれぞれ、シフトヘッドH1、H2、及びH3が一体に設けられている。SLの位置がシフト操作(車両前後方向の操作)によって「ニュートラル範囲」から車両前方側及び後方側の何れの方向に移動しても、即ち、インナレバーILの軸方向位置(図3における左右方向の位置)が、SLの「ニュートラル範囲」に対応する基準位置から何れの方向に移動しても、ILがH1、H2、及びH3のうち選択された何れか一つを軸方向に押圧することによって、FS1、FS2、及びFS3(従って、S1、S2、及びS3)のうち選択された何れか一つが「中立位置」から移動する。これにより、後述するように、対応する変速段が実現される。 As shown in FIG. 3, shift heads H1, H2, and H3 are integrally provided in FS1, FS2, and FS3, respectively. Even if the position of the SL is moved from the “neutral range” by the shift operation (operation in the vehicle front-rear direction) to any direction on the vehicle front side or rear side, that is, the axial position of the inner lever IL (the left-right direction in FIG. 3). Position) moves in any direction from the reference position corresponding to the “neutral range” of SL, and IL presses any one selected from H1, H2, and H3 in the axial direction. , FS1, FS2, and FS3 (accordingly, S1, S2, and S3) are moved from the “neutral position”. Thereby, as will be described later, the corresponding gear stage is realized.
<MG軸の接続状態の切り替え>
 以下、先ず、図1を参照しながら、MG軸の接続状態の切り替えについて説明する。MG軸の接続状態の切り替えは、スリーブSmを駆動してSmの軸方向位置を変更することによってなされる。MG軸Amには、第1遊転ギヤGm1と、第2遊転ギヤGm2とが設けられている。第1遊転ギヤGm1は、出力軸Aoに設けられた固定ギヤGevと常時歯合する。第2遊転ギヤGm2は、出力軸Aoに設けられた2速用の遊転ギヤG2o(「特定の遊転ギヤ」に対応)と常時歯合する。
<Switching the connection state of the MG axis>
Hereinafter, first, switching of the connection state of the MG shaft will be described with reference to FIG. The connection state of the MG shaft is switched by driving the sleeve Sm to change the axial position of Sm. The MG shaft Am is provided with a first idle gear Gm1 and a second idle gear Gm2. The first idle gear Gm1 always meshes with a fixed gear Gev provided on the output shaft Ao. The second idle gear Gm2 always meshes with a second-speed idle gear G2o (corresponding to “specific idle gear”) provided on the output shaft Ao.
 図1に示すように、スリーブSmが中立位置にある場合、Smは、遊転ギヤGm1、Gm2の何れとも係合しない。即ち、MG軸Amと出力軸Aoとの間では動力伝達系統が実現されない。以下、この状態を「非接続状態」と呼ぶ。 As shown in FIG. 1, when the sleeve Sm is in the neutral position, Sm does not engage with any of the idle gears Gm1 and Gm2. That is, a power transmission system is not realized between the MG shaft Am and the output shaft Ao. Hereinafter, this state is referred to as a “non-connection state”.
 スリーブSmが中立位置から図1の右方向に駆動されて第1接続位置(後述する図5等を参照)に移動すると、Smが遊転ギヤGm1と係合し、Gm1がMG軸Amに対して相対回転不能に固定される。即ち、MG軸Amは、出力軸Aoに設けられた固定ギヤGevと動力伝達可能に接続される。以下、この状態を「第1接続状態」と呼ぶ。 When the sleeve Sm is driven from the neutral position to the right in FIG. 1 and moved to the first connection position (see FIG. 5 and the like to be described later), Sm engages with the idler gear Gm1, and Gm1 is in relation to the MG axis Am. And is fixed so that relative rotation is impossible. That is, the MG shaft Am is connected to a fixed gear Gev provided on the output shaft Ao so as to be able to transmit power. Hereinafter, this state is referred to as a “first connection state”.
 スリーブSmが中立位置から図1の左方向に駆動されて第2接続位置(後述する図7等を参照)に移動すると、Smが遊転ギヤGm2と係合し、Gm2がMG軸Amに対して相対回転不能に固定される。即ち、MG軸Amは、出力軸Aoに設けられた遊転ギヤG2oと動力伝達可能に接続される。以下、この状態を「第2接続状態」と呼ぶ。 When the sleeve Sm is driven to the left in FIG. 1 from the neutral position and moves to the second connection position (see FIG. 7 and the like to be described later), Sm engages with the idle gear Gm2, and Gm2 is in relation to the MG axis Am. And is fixed so that relative rotation is impossible. That is, the MG shaft Am is connected to the idle gear G2o provided on the output shaft Ao so as to be able to transmit power. Hereinafter, this state is referred to as a “second connection state”.
 以上のように、スリーブSmの位置に応じて、非接続状態、第1接続状態、及び第2接続状態が選択的に実現される。スリーブSmを軸方向に駆動するための駆動力としては、ECUにより制御されるアクチュエータACT(図1を参照)の駆動力、並びに、シフトレバーSL以外の運転者によって操作される切替部材(図示せず)の操作力が用いられ得る。 As described above, the non-connected state, the first connected state, and the second connected state are selectively realized according to the position of the sleeve Sm. The driving force for driving the sleeve Sm in the axial direction includes a driving force of an actuator ACT (see FIG. 1) controlled by the ECU and a switching member (not shown) operated by a driver other than the shift lever SL. ) Can be used.
 スリーブSmの位置の選択(従って、MG軸の接続状態の選択)は、運転者による前記切替部材の操作に基づいて行われ得る。この場合、スリーブSmを駆動するための駆動力として、アクチュエータACTの駆動力、並びに、運転者による前記切替部材の操作力が用いられ得る。また、Smの位置の選択は、車両の走行状態(車速、アクセル開度等)の検出結果に基づいて行われ得る。この場合、スリーブSmを駆動するための駆動力として、アクチュエータACTの駆動力が用いられ得る。 The selection of the position of the sleeve Sm (and hence the selection of the connection state of the MG shaft) can be performed based on the operation of the switching member by the driver. In this case, as the driving force for driving the sleeve Sm, the driving force of the actuator ACT and the operating force of the switching member by the driver can be used. Further, the selection of the position of Sm can be performed based on the detection result of the running state of the vehicle (vehicle speed, accelerator opening, etc.). In this case, the driving force of the actuator ACT can be used as the driving force for driving the sleeve Sm.
<変速段の切り替え>
 以下、図1、2、5~18を参照しながら、各変速段について順に説明していく。なお、以下、SLが或る変速段のシフト完了位置にあることを、その変速段が「選択された」と表現することもある。
<Change gear shift>
Hereinafter, each speed stage will be described in order with reference to FIGS. Hereinafter, the fact that SL is in the shift completion position of a certain gear position may be expressed as “selected”.
<N>
 図1、2に示すように、シフトレバーSLが「N位置」(より正確には、ニュートラル領域)にある状態では、スリーブS1、S2、及びS3の全てが「中立位置」にある。この状態では、S1、S2、及びS3はそれぞれ、対応する何れの遊転ギヤとも係合していない。即ち、入力軸Aiと出力軸Aoとの間では動力伝達系統が確立されない。
<N>
As shown in FIGS. 1 and 2, when the shift lever SL is in the “N position” (more precisely, the neutral region), all of the sleeves S1, S2, and S3 are in the “neutral position”. In this state, S1, S2, and S3 are not engaged with any corresponding idle gears. That is, a power transmission system is not established between the input shaft Ai and the output shaft Ao.
 加えて、スリーブSmが「中立位置」に制御される。従って、MG軸Amと出力軸Aoとの間でも動力伝達系統が確立されない。MGトルクは「ゼロ」に維持される。以上、SLが「N位置」(より正確には、ニュートラル領域)にある状態では、EGトルク及びMGトルクは共に駆動輪に伝達されない。 In addition, the sleeve Sm is controlled to the “neutral position”. Therefore, a power transmission system is not established between the MG shaft Am and the output shaft Ao. The MG torque is maintained at “zero”. As described above, in the state where SL is in the “N position” (more accurately, the neutral region), neither the EG torque nor the MG torque is transmitted to the drive wheels.
<EV>
 図5、6に示すように、シフトレバーSLが「N位置」から(第1セレクト位置を経由して)「EVのシフト完了位置」に移動すると、S&SシャフトのILがFS1に連結されたヘッドH1の「EV側係合部」を「EV」方向(図6では上方向)に駆動することによって、FS1(従って、S1)のみが(図6では上方向、図5では右方向)に駆動される。この結果、スリーブS1が「EV位置」に移動する。スリーブS2、S3はそれぞれ「中立位置」にある。S1が「EV位置」に移動しても、S1と係合する遊転ギヤが存在しない。従って、入力軸Aiと出力軸Aoとの間では動力伝達系統が確立されない。
<EV>
As shown in FIGS. 5 and 6, when the shift lever SL moves from the “N position” to the “EV shift completion position” (via the first select position), the IL of the S & S shaft is connected to the FS1. By driving the “EV engagement portion” of H1 in the “EV” direction (upward in FIG. 6), only FS1 (and therefore S1) is driven (upward in FIG. 6, rightward in FIG. 5). Is done. As a result, the sleeve S1 moves to the “EV position”. The sleeves S2 and S3 are each in the “neutral position”. Even if S1 moves to the “EV position”, there is no idle gear that engages with S1. Therefore, a power transmission system is not established between the input shaft Ai and the output shaft Ao.
 一方、この場合、Smは「第1接続位置」に制御される(図5を参照)。従って、図5に太い実線で示すように、MG軸Amと出力軸Aoとの間で「Gm1及びGev」を介して確立された動力伝達系統を利用して、前進方向のMGトルクが駆動輪に伝達される。即ち、「EV」が選択された場合、E/Gを停止状態(E/Gの出力軸Aeの回転が停止した状態)に維持しながらMGトルクのみを利用して車両が走行する状態(即ち、上記「EV走行」)が実現される。即ち、この車両では、「EV」を選択することにより、EV走行による前方発進が可能である。MGトルクは、アクセル開度等に応じた大きさの前進方向の値に調整される。 On the other hand, in this case, Sm is controlled to the “first connection position” (see FIG. 5). Therefore, as shown by the thick solid line in FIG. 5, the MG torque in the forward direction is converted to the drive wheel by using the power transmission system established through “Gm1 and Gev” between the MG shaft Am and the output shaft Ao. Is transmitted to. That is, when “EV” is selected, the vehicle travels using only the MG torque while maintaining the E / G in the stopped state (the state where the rotation of the output shaft Ae of the E / G is stopped) (ie, , "EV traveling") is realized. That is, in this vehicle, by selecting “EV”, it is possible to start forward by EV traveling. The MG torque is adjusted to a value in the forward direction having a magnitude corresponding to the accelerator opening.
 なお、「R」が選択された場合も、「EV」が選択された場合と同様、Smを「第1接続位置」に制御することによってEV走行が実現され得る。即ち、「R」を選択することにより、EV走行による後方発進が可能となる。なお、「N位置」(ニュートラル領域)と「EV位置」(及び、「R位置」)との識別は、例えば、シフト位置センサP4の検出結果、並びに、S&Sシャフトの位置を検出するセンサの検出結果等に基づいて達成され得る。 Even when “R” is selected, EV traveling can be realized by controlling Sm to the “first connection position”, similarly to the case where “EV” is selected. That is, by selecting “R”, it is possible to start backward by EV traveling. The “N position” (neutral region) and “EV position” (and “R position”) are identified by, for example, the detection result of the shift position sensor P4 and the detection of the sensor that detects the position of the S & S shaft. It can be achieved on the basis of the result or the like.
<2速>
 図7、8に示すように、シフトレバーSLが「N位置」から(第1セレクト位置を経由して)「2速のシフト完了位置」に移動すると、S&SシャフトのILがFS1に連結されたヘッドH1の「2速側係合部」を「2速」方向(図8では下方向)に駆動することによって、FS1(従って、S1)のみが(図8では下方向、図7では左方向)に駆動される。この結果、スリーブS1が「2速位置」に移動する。スリーブS2、S3はそれぞれ「中立位置」にある。
<2nd speed>
As shown in FIGS. 7 and 8, when the shift lever SL is moved from the “N position” to the “second gear shift completion position” (via the first select position), the IL of the S & S shaft is connected to the FS1. By driving the “second speed side engaging portion” of the head H1 in the “second speed” direction (downward in FIG. 8), only FS1 (and therefore S1) is (downward in FIG. 8, leftward in FIG. 7). ). As a result, the sleeve S1 moves to the “second speed position”. The sleeves S2 and S3 are each in the “neutral position”.
 この状態では、S1は、遊転ギヤG2oと係合し、遊転ギヤG2oを出力軸Aoに対して相対回転不能に固定している。また、遊転ギヤG2oは、入力軸Aiに固定された固定ギヤG2iと常時噛合している。この結果、図7に太い実線で示すように、入力軸Aiと出力軸Aoとの間で「G2i及びG2o」を介して「2速」に対応するEGトルク用の動力伝達系統が確立される。 In this state, S1 is engaged with the idle gear G2o, and the idle gear G2o is fixed so as not to rotate relative to the output shaft Ao. The idle gear G2o is always meshed with a fixed gear G2i fixed to the input shaft Ai. As a result, as shown by a thick solid line in FIG. 7, a power transmission system for EG torque corresponding to “second speed” is established between the input shaft Ai and the output shaft Ao via “G2i and G2o”. .
 また、図7では、Smは「第2接続位置」に制御されている。従って、図7に太い実線で示すように、MG軸Amと出力軸Aoとの間で「Gm2及びG2o」を介してMGトルク用の動力伝達系統が確立される。以上、図7に示す状態では、クラッチC/Tを介して伝達されるEGトルクと、MGトルクとの両方を利用して車両が走行する状態(即ち、上記「HV走行」)が実現される。即ち、「2速」のHV走行が可能となる。 In FIG. 7, Sm is controlled to “second connection position”. Therefore, as shown by a thick solid line in FIG. 7, a power transmission system for MG torque is established between the MG shaft Am and the output shaft Ao via “Gm2 and G2o”. As described above, in the state illustrated in FIG. 7, a state in which the vehicle travels using both the EG torque transmitted via the clutch C / T and the MG torque (that is, the “HV traveling”) is realized. . That is, “second speed” HV traveling is possible.
 一方、図9に示すように、「2速」が選択された場合において、Smは「中立位置」にも制御され得る。この場合、MG軸Amと出力軸Aoとの間で動力伝達系統が確立されない。従って、図9に示す状態では、クラッチC/Tを介して伝達されるEGトルクのみを利用して車両が走行する状態(即ち、上記「EG走行」)が実現される。即ち、「2速」のEG走行が可能となる。 On the other hand, as shown in FIG. 9, when “second gear” is selected, Sm can also be controlled to “neutral position”. In this case, a power transmission system is not established between the MG shaft Am and the output shaft Ao. Therefore, in the state shown in FIG. 9, a state in which the vehicle travels using only the EG torque transmitted via the clutch C / T (that is, the “EG travel”) is realized. That is, “2nd speed” EG traveling is possible.
<3速~5速>
 以下、図10~図18に示すように、シフトレバーSLが「3速」、「4速」又は「5速」にある場合も、「2速」の場合と同様、Smが「第2接続位置」にある場合には「HV走行」が実現され、Smが「中立位置」にある場合には「EG走行」が可能となる。
<3rd to 5th gear>
Hereinafter, as shown in FIGS. 10 to 18, when the shift lever SL is in “3rd speed”, “4th speed” or “5th speed”, Sm is “second connection” as in the case of “2nd speed”. When it is in the “position”, “HV traveling” is realized, and when the Sm is in the “neutral position”, “EG traveling” is possible.
 具体的には、「3速」、「4速」、「5速」ではそれぞれ、入力軸Aiと出力軸Aoとの間で、「G3i及びG3o」、「G4i及びG4o」、「G5i及びG5o」を介して、「3速」、「4速」、「5速」に対応するEGトルク用の動力伝達系統が確立される。また、Smが「第2接続位置」にある場合、「3速」、「4速」、「5速」ではそれぞれ、MG軸Amと出力軸Aoとの間で、「Gm2、G2o、G2i、Ai、G3i、G3o」、「Gm2、G2o、G2i、Ai、G4i、G4o」、「Gm2、G2o、G2i、Ai、G5i、G5o」を介して、MGトルク用の動力伝達系統が確立される。 Specifically, in “3rd speed”, “4th speed”, and “5th speed”, “G3i and G3o”, “G4i and G4o”, “G5i and G5o” between the input shaft Ai and the output shaft Ao, respectively. ”, A power transmission system for EG torque corresponding to“ 3rd speed ”,“ 4th speed ”, and“ 5th speed ”is established. In addition, when Sm is in the “second connection position”, “Gm2, G2o, G2i,“ Gm2, G2o, G2i, A power transmission system for MG torque is established through “Ai, G3i, G3o”, “Gm2, G2o, G2i, Ai, G4i, G4o”, “Gm2, G2o, G2i, Ai, G5i, G5o”.
 以上、本例では、「EV」(及び「R」)がEV走行用の変速段であり、「2速」~「5速」はHV走行用の変速段である。EGトルクの伝達系統について、「Aoの回転速度に対するAiの回転速度の割合」を「MT減速比」と呼ぶものとすると、「2速」から「5速」に向けてMT減速比(GNoの歯数/GNiの歯数)(N:2~5)が次第に小さくなっていく。 As described above, in this example, “EV” (and “R”) is a shift stage for EV travel, and “2nd speed” to “5th speed” are shift stages for HV travel. For the transmission system of the EG torque, if “the ratio of the rotational speed of Ai to the rotational speed of Ao” is referred to as “MT speed reduction ratio”, the MT speed reduction ratio (GNo. The number of teeth / the number of teeth of GNi) (N: 2 to 5) gradually decreases.
 なお、上記の例では、スリーブS1~S3の軸方向位置は、シフトレバーSLとスリーブS1~S3とを機械的に連結するリンク機構(S&Sシャフトとフォークシャフト)等を利用してシフトレバーSLのシフト位置に応じて機械的に調整されている。これに対し、スリーブS1~S3の軸方向位置が、シフト位置センサP4の検出結果に基づいて作動するアクチュエータの駆動力を利用して電気的に(所謂バイ・ワイヤ方式で)調整されてもよい。 In the above example, the axial positions of the sleeves S1 to S3 are determined by using a link mechanism (S & S shaft and fork shaft) that mechanically connects the shift lever SL and the sleeves S1 to S3. It is mechanically adjusted according to the shift position. In contrast, the axial positions of the sleeves S1 to S3 may be adjusted electrically (in a so-called by-wire system) using the driving force of the actuator that operates based on the detection result of the shift position sensor P4. .
(E/Gの制御)
 本装置によるE/Gの制御は、大略的に以下のようになされる。車両が停止しているとき、或いは、「N」又は「EV」(又は「R」)が選択されているとき、E/Gが停止状態(燃料噴射がなされない状態)に維持される。E/Gの停止状態において、HV走行用の変速段(「2速」~「5速」の何れか)が選択されたことに基づいて、E/Gが始動される(燃料噴射が開始される)。E/Gの稼働中(燃料噴射がなされている間)では、アクセル開度等に基づいてEGトルクが制御される。E/Gの稼働中において、「N」又は「EV」(又は「R」)が選択されたこと、或いは、車両が停止したことに基づいて、E/Gが再び停止状態に維持される。
(E / G control)
The E / G control by this apparatus is generally performed as follows. When the vehicle is stopped or “N” or “EV” (or “R”) is selected, E / G is maintained in a stopped state (a state where fuel injection is not performed). In the E / G stop state, the E / G is started (fuel injection is started based on the selection of a gear position for HV traveling (any one of “2nd speed” to “5th speed”)). ) During operation of E / G (while fuel is being injected), EG torque is controlled based on the accelerator opening and the like. During the operation of the E / G, the E / G is maintained in the stopped state again based on the selection of “N” or “EV” (or “R”) or the stop of the vehicle.
(M/Gの制御)
 本装置によるM/Gの制御は、大略的に以下のようになされる。車両が停止しているとき、或いは、「N」が選択されているとき、M/Gが停止状態(MGトルク=0)に維持される。「EV」(又は「R」)が選択されたことに基づいて(スリーブSmは「第1接続位置」に制御される)、MGトルクが、アクセル開度及びクラッチストローク等に基づいてEV走行用の値に調整される(EV走行用MGトルク制御)。他方、HV走行用の変速段(「2速」~「5速」の何れか)が選択されたことに基づいて、スリーブSmが「第2接続位置」にある場合において、MGトルクが、アクセル開度及びクラッチストローク等に基づいてHV走行用の値に調整される(HV走行用MGトルク制御)。EV走行用MGトルク制御とHV走行用MGトルク制御とでは、調整されるMGトルクの大きさが異なる。そして、「N」が選択されたこと、或いは、車両が停止したことに基づいて、M/Gが再び停止状態に維持される。
(M / G control)
The M / G control by this apparatus is generally performed as follows. When the vehicle is stopped or “N” is selected, the M / G is maintained in the stopped state (MG torque = 0). Based on the selection of “EV” (or “R”) (the sleeve Sm is controlled to the “first connection position”), the MG torque is for EV traveling based on the accelerator opening, the clutch stroke, and the like. (EV running MG torque control). On the other hand, when the sleeve Sm is in the “second connection position” based on the selection of the gear position for HV traveling (any of “2nd speed” to “5th speed”), the MG torque is It is adjusted to a value for HV traveling based on the opening degree, the clutch stroke, etc. (MG torque control for HV traveling) The magnitude of the MG torque to be adjusted differs between the EV traveling MG torque control and the HV traveling MG torque control. Then, based on the selection of “N” or the stop of the vehicle, the M / G is maintained in the stop state again.
(作用・効果)
 本発明の実施形態に係る手動変速機では、EV走行用の変速段(「EV」)が選択された場合には「第1接続状態」が実現されて、「Gm1及びGev」を介してMG軸Amと出力軸Aoとの間で動力伝達系統が確立される。一方、HV走行用の変速段(「2速」~「5速」の何れか)が選択された場合には「第2接続状態」が実現されて、「Gm2及びG2o」(又は「Gm2及びG2oを含むギヤ列」)を介してMG軸Amと出力軸Aoとの間で動力伝達系統が確立される。即ち、EV走行時とHV走行時とで「Aoの回転速度に対するAmの回転速度の割合」(MG減速比)を異ならせることができる。従って、車速域が異なるHV走行時及びEV走行時の両方においてM/Gの回転速度を安定して適切な範囲内に調整することができる。
(Action / Effect)
In the manual transmission according to the embodiment of the present invention, the “first connection state” is realized when the gear position for EV travel (“EV”) is selected, and the MG is set via “Gm1 and Gev”. A power transmission system is established between the shaft Am and the output shaft Ao. On the other hand, when the gear position for HV traveling (any one of “2nd speed” to “5th speed”) is selected, the “second connection state” is realized and “Gm2 and G2o” (or “Gm2 and A power transmission system is established between the MG shaft Am and the output shaft Ao via the gear train including G2o ”). That is, the “ratio of Am rotational speed to Ao rotational speed” (MG reduction ratio) can be made different between EV traveling and HV traveling. Therefore, the M / G rotational speed can be stably adjusted within an appropriate range during both HV traveling and EV traveling in different vehicle speed ranges.
 また、スリーブSmが「第2接続位置」にある場合(即ち、「第2接続状態」)においては、HV走行用の変速段(「2速」~「5速」)のうち選択される変速段がより高速側であるほど、同じ(或る)車速に対する「特定の遊転ギヤ」(本例では、遊転ギヤG2o)の回転速度(従って、M/Gの回転速度)が小さくなる。これは、選択される変速段がより高速側であるほど、同じ(或る)車速に対する変速機の入力軸Aiの回転速度が小さくなること、並びに、「特定の遊転ギヤ」(本例では、遊転ギヤG2o)が変速機の入力軸Aiと一体で回転する固定ギヤ(本例では、固定ギヤG2i)と常時歯合していること、に基づく。 Further, when the sleeve Sm is in the “second connection position” (that is, “second connection state”), a shift selected from among the HV running gears (“2nd speed” to “5th speed”) is selected. The higher the stage, the smaller the rotation speed of the “specific idle gear” (in this example, the idle gear G2o) for the same (certain) vehicle speed (and hence the M / G rotation speed). This is because the higher the gear position selected, the lower the rotational speed of the input shaft Ai of the transmission for the same (certain) vehicle speed, and the “specific idle gear” (in this example). , Based on the fact that the idle gear G2o) is always meshed with a fixed gear (in this example, fixed gear G2i) that rotates integrally with the input shaft Ai of the transmission.
 この結果、低速側の変速段が選択される場合には車速に対するM/Gの回転速度の割合が相対的に大きくなり、高速側の変速段が選択される場合には車速に対するM/Gの回転速度の割合が相対的に小さくなる。このことは、低速側の変速段が選択される比較的低速走行時から高速側の変速段が選択される比較的高速走行時までに亘ってM/Gの回転速度の変動範囲が小さくなることを意味する。上記実施形態では、この観点からも、M/Gの回転速度を安定して適切な範囲内に調整し易くなる。 As a result, the ratio of the rotational speed of the M / G to the vehicle speed is relatively large when the low speed side gear is selected, and the M / G of the vehicle speed is selected when the high speed side gear is selected. The rate of rotation speed becomes relatively small. This means that the fluctuation range of the rotational speed of M / G becomes small from the time of relatively low speed travel where the low speed side gear is selected to the time of relatively high speed travel where the high speed side gear is selected. Means. In the above embodiment, the M / G rotation speed can be stably adjusted within an appropriate range from this viewpoint.
 また、遊転ギヤGm2と歯合するギヤがHV走行用の変速段(「2速」~「5速」の何れか)の遊転ギヤ(本例では、「2速」の遊転ギヤG2o)であることによって、変速機全体がコンパクト化され得る。即ち、EV走行時とHV走行時とでMG減速比を異ならせるためには、Gm2と歯合するギヤが出力軸Aoに設けられた(Gev以外の)HV走行専用の第2の固定ギヤであってもよい。この場合、出力軸Aoにおいて、G2o及びGevに加えて、このHV走行専用の第2の固定ギヤを更に設ける必要がある。これに対し、上記実施形態では、このHV走行専用の第2の固定ギヤを設ける必要がないので、この点において変速機全体をコンパクト化できる。 In addition, the gear meshing with the idle gear Gm2 is an idle gear (in this example, “2nd speed” idle gear G2o) of the HV traveling speed stage (any one of “2nd speed” to “5th speed”). ), The entire transmission can be made compact. That is, in order to make the MG reduction ratio different between EV travel and HV travel, a gear that meshes with Gm2 is a second fixed gear dedicated to HV travel (other than Gev) provided on the output shaft Ao. There may be. In this case, on the output shaft Ao, in addition to G2o and Gev, it is necessary to further provide a second fixed gear dedicated to HV traveling. On the other hand, in the above embodiment, it is not necessary to provide the second fixed gear dedicated to the HV traveling, and thus the entire transmission can be made compact in this respect.
 本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、スリーブS1~S3が共に出力軸Aoに設けられているが、スリーブS1~S3のうちの一部(前記「特定の遊転ギヤ」と係合するスリーブを含む)が出力軸Aoに残りが入力軸Aiに設けられていてもよい。 The present invention is not limited to the above embodiment, and various modifications can be employed within the scope of the present invention. For example, in the above embodiment, the sleeves S1 to S3 are all provided on the output shaft Ao, but some of the sleeves S1 to S3 (including the sleeve that engages with the “specific idle gear”) are included. The remainder on the output shaft Ao may be provided on the input shaft Ai.
 また、上記実施形態では、HV走行用の変速段(「2速」~「5速」)の何れかが選択される場合において、スリーブSmの位置は、「第2接続位置」(HV走行に対応)及び「中立位置」(EG走行に対応)の何れかに制御されるが、HV走行用の変速段(「2速」~「5速」)の何れかが選択される場合において、スリーブSmの位置が「第1接続位置」(HV走行に対応)に制御されてもよい。 Further, in the above-described embodiment, when any one of the gear positions for HV traveling (“2nd speed” to “5th speed”) is selected, the position of the sleeve Sm is “second connection position” (for HV traveling). Response) and “neutral position” (corresponding to EG traveling), but when one of the gears for HV traveling (“2nd speed” to “5th speed”) is selected, the sleeve The position of Sm may be controlled to the “first connection position” (corresponding to HV traveling).
 また、上記実施形態では、MG軸Amに設けられた遊転ギヤGm2が「2速」の遊転ギヤG2oと歯合しているが、図19に示すように、遊転ギヤGm2が「5速」の遊転ギヤG5oと歯合してもよい。或いは、遊転ギヤGm2が「3速」又は「4速」の遊転ギヤG3o又はG4oと歯合してもよい。 In the above embodiment, the idle gear Gm2 provided on the MG shaft Am is in mesh with the “2nd speed” idle gear G2o. However, as shown in FIG. 19, the idle gear Gm2 is “5”. It may be meshed with the “speed” idle gear G5o. Alternatively, the idle gear Gm2 may mesh with the “3rd speed” or “4th speed” idle gear G3o or G4o.

Claims (4)

  1.  動力源として内燃機関(E/G)と電動機(M/G)とを備えた車両に適用される、トルクコンバータを備えない手動変速機(M/T)であって、
     前記内燃機関から動力が入力される入力軸(Ai)と、
     前記電動機から動力が入力されるとともに前記車両の駆動輪へ動力を出力する出力軸(Ao)と、
     運転者により操作されるシフト操作部材(SL)をシフトパターン上において前記内燃機関及び前記電動機の両方の駆動力を利用し得る状態で走行するための複数のハイブリッド走行用変速段(2速~5速)に対応するそれぞれのハイブリッド走行シフト完了位置に移動することによって、前記入力軸と前記出力軸との間で、前記出力軸の回転速度に対する前記入力軸の回転速度の割合である変速機減速比が対応するハイブリッド走行用変速段に対応するそれぞれの値に設定される動力伝達系統を確立し、前記シフト操作部材を前記シフトパターン上において前記内燃機関及び前記電動機の駆動力のうち前記電動機の駆動力のみを利用して走行するための電動機走行用変速段(EV)に対応する電動機走行シフト完了位置に移動することによって、前記入力軸と前記出力軸との間で動力伝達系統を確立しない変速機変速機構(M1)と、
     前記電動機の出力軸(Am)と前記変速機の出力軸(Ao)との間の接続状態を変更する接続切替機構(M2)と、
     を備え、
     前記変速機変速機構(M1)は、
     それぞれが前記変速機の入力軸(Ai)又は前記出力軸(Ao)に相対回転不能に設けられた複数の固定ギヤであってそれぞれが前記複数のハイブリッド走行用変速段のそれぞれに対応する複数の固定ギヤ(G2i、G3i、G4i、G5i)と、
     それぞれが前記入力軸又は前記出力軸に相対回転可能に設けられた複数の遊転ギヤであってそれぞれが前記複数のハイブリッド走行用変速段のそれぞれに対応するとともに対応するハイブリッド走行用変速段の前記固定ギヤと常時歯合する複数の遊転ギヤ(G2o、G3o、G4o、G5o)と、
     それぞれが前記入力軸及び前記出力軸のうち対応する軸に相対回転不能且つ軸方向に相対移動可能に設けられた複数のスリーブであってそれぞれが前記複数の遊転ギヤのうち対応する遊転ギヤを前記対応する軸に対して相対回転不能に固定するために前記対応する遊転ギヤと係合可能な複数のスリーブ(S1、S2、S3)と、
     前記シフト操作部材の操作に応じて前記複数のスリーブのうち対応するスリーブを軸方向に移動して前記複数の遊転ギヤのうち対応する遊転ギヤを前記対応する軸に対して相対回転不能に固定することによって、前記複数のハイブリッド走行用変速段のうち対応する変速段を実現するスリーブ駆動機構(FS1、FS2、FS3、S&Sシャフト)と、
     を備え、
     前記接続切替機構(M2)は、
     前記変速機の出力軸(Ao)に相対回転不能に設けられた前記複数の固定ギヤ以外の電動機走行用固定ギヤ(Gev)と前記電動機の出力軸(Am)とが動力伝達可能に接続された第1接続状態と、前記複数の遊転ギヤのうち前記変速機の出力軸に設けられた特定の遊転ギヤ(G2o、G5o)と前記電動機の出力軸(Am)とが動力伝達可能に接続された第2接続状態と、を選択的に実現するように構成された、手動変速機。
    A manual transmission (M / T) without a torque converter, which is applied to a vehicle having an internal combustion engine (E / G) and an electric motor (M / G) as a power source,
    An input shaft (Ai) to which power is input from the internal combustion engine;
    An output shaft (Ao) that receives power from the electric motor and outputs power to the drive wheels of the vehicle;
    A plurality of shift speeds for hybrid driving (second speed to 5) for driving a shift operating member (SL) operated by a driver in a state where the driving force of both the internal combustion engine and the electric motor can be used on a shift pattern. The transmission deceleration is the ratio of the rotational speed of the input shaft to the rotational speed of the output shaft between the input shaft and the output shaft by moving to each hybrid travel shift completion position corresponding to the speed). Establishing a power transmission system in which the ratio is set to each value corresponding to the hybrid driving gear position corresponding to the ratio, and the shift operation member on the shift pattern of the electric motor among the driving force of the internal combustion engine and the electric motor By moving to the motor travel shift completion position corresponding to the motor travel speed stage (EV) for traveling using only the driving force. Te, a transmission shifting mechanism which does not establish a power transmission system (M1) between said output shaft and said input shaft,
    A connection switching mechanism (M2) for changing a connection state between the output shaft (Am) of the electric motor and the output shaft (Ao) of the transmission;
    With
    The transmission transmission mechanism (M1)
    Each of the plurality of fixed gears is provided on the input shaft (Ai) or the output shaft (Ao) of the transmission so as not to be relatively rotatable, and each of the plurality of gears corresponds to each of the plurality of hybrid travel speeds. Fixed gears (G2i, G3i, G4i, G5i);
    Each of the plurality of idle gears provided so as to be relatively rotatable with respect to the input shaft or the output shaft, each corresponding to each of the plurality of hybrid travel gears and the corresponding hybrid travel gears. A plurality of idler gears (G2o, G3o, G4o, G5o) that are always in mesh with the fixed gear;
    Each of the plurality of sleeves provided so as not to rotate relative to the corresponding shaft of the input shaft and the output shaft and to be relatively movable in the axial direction, and each of the free gears of the plurality of free gears. A plurality of sleeves (S1, S2, S3) engageable with the corresponding idler gears to fix the non-rotatable relative to the corresponding shaft;
    The corresponding sleeve of the plurality of sleeves is moved in the axial direction in accordance with the operation of the shift operation member, so that the corresponding idle gear of the plurality of idle gears is not rotatable relative to the corresponding shaft. A sleeve drive mechanism (FS1, FS2, FS3, S & S shaft) that realizes a corresponding shift stage among the plurality of hybrid travel shift stages by fixing;
    With
    The connection switching mechanism (M2)
    An electric motor traveling fixed gear (Gev) other than the plurality of fixed gears provided so as not to rotate relative to the output shaft (Ao) of the transmission and an output shaft (Am) of the electric motor are connected to transmit power. Of the plurality of idle gears, the specific idle gears (G2o, G5o) provided on the output shaft of the transmission and the output shaft (Am) of the electric motor are connected so that power can be transmitted. A manual transmission configured to selectively realize the second connection state.
  2.  請求項1に記載の手動変速機において、
     前記接続切替機構は、
     前記シフト操作部材の位置が前記電動機走行シフト完了位置にある場合には前記第1接続状態を実現し、前記シフト操作部材の位置が前記複数のハイブリッド走行シフト完了位置のうちの何れかにある場合には前記第2接続状態を実現するように構成された、手動変速機。
    The manual transmission according to claim 1, wherein
    The connection switching mechanism is
    The first connection state is realized when the position of the shift operation member is at the electric motor travel shift completion position, and the position of the shift operation member is at any one of the plurality of hybrid travel shift completion positions A manual transmission configured to realize the second connection state.
  3.  請求項2に記載の手動変速機において、
     前記接続切替機構は、
     前記第1、第2接続状態に加えて、前記変速機の出力軸(Ao)と前記電動機の出力軸(Am)とが動力伝達可能に接続されない非接続状態を選択的に実現するように構成され、
     前記シフト操作部材の位置が前記複数のハイブリッド走行シフト完了位置のうちの何れかにある場合、前記第2接続状態と前記非接続状態とを選択的に実現するように構成された、手動変速機。
    The manual transmission according to claim 2, wherein
    The connection switching mechanism is
    In addition to the first and second connection states, a non-connection state in which the output shaft (Ao) of the transmission and the output shaft (Am) of the electric motor are not connected so as to transmit power is selectively realized. And
    A manual transmission configured to selectively realize the second connection state and the non-connection state when the position of the shift operation member is at any one of the plurality of hybrid travel shift completion positions. .
  4.  請求項3に記載の手動変速機において、
     前記接続切替機構は、
     前記電動機の出力軸(Am)に相対回転可能に設けられた前記複数の遊転ギヤ以外の第1遊転ギヤであって前記電動機走行用固定ギヤ(Gev)と常時歯合する第1遊転ギヤ(Gm1)と、
     前記電動機の出力軸(Am)に相対回転可能に設けられた前記複数の遊転ギヤ以外の第2遊転ギヤであって前記特定の遊転ギヤ(G2o、G5o)と常時歯合する第2遊転ギヤ(Gm2)と、
     前記電動機の出力軸(Am)に相対回転不能且つ軸方向に相対移動可能に設けられた前記複数のスリーブ以外の切替用スリーブであって前記第1、第2遊転ギヤを前記電動機の出力軸に対して選択的に相対回転不能に固定するために前記第1、第2遊転ギヤと選択的に係合可能な切替スリーブ(Sm)と、
     を備え、
     前記切替スリーブが第1軸方向位置にあるときは、前記切替スリーブが前記第1遊転ギヤと係合して前記第1接続状態を実現し、
     前記切替スリーブが第2軸方向位置にあるときは、前記切替スリーブが前記第2遊転ギヤと係合して前記第2接続状態を実現し、
     前記切替スリーブが第3軸方向位置にあるときは、前記切替スリーブが前記第1、第2遊転ギヤの何れにも係合せずに前記非接続状態を実現するように構成された、手動変速機。
    The manual transmission according to claim 3, wherein
    The connection switching mechanism is
    First idle gears other than the plurality of idle gears provided on the output shaft (Am) of the electric motor so as to be relatively rotatable and always meshed with the electric motor driving fixed gear (Gev). A gear (Gm1);
    A second idler gear other than the plurality of idler gears provided on the output shaft (Am) of the electric motor so as to be relatively rotatable, and is always meshed with the specific idler gears (G2o, G5o). An idle gear (Gm2),
    A switching sleeve other than the plurality of sleeves provided on the output shaft (Am) of the electric motor so as not to be relatively rotatable and relatively movable in the axial direction, wherein the first and second idler gears are connected to the output shaft of the electric motor. A switching sleeve (Sm) that is selectively engageable with the first and second idle gears in order to selectively fix them relative to each other.
    With
    When the switching sleeve is in the first axial position, the switching sleeve is engaged with the first idle gear to realize the first connection state;
    When the switching sleeve is in the second axial position, the switching sleeve is engaged with the second idle gear to realize the second connection state;
    When the switching sleeve is at the third axial position, the switching sleeve is configured to realize the non-connected state without being engaged with any of the first and second idle gears. Machine.
PCT/JP2012/068164 2011-07-19 2012-07-18 Manual transmission WO2013011994A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112012003012.5T DE112012003012T5 (en) 2011-07-19 2012-07-18 manual transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-157689 2011-07-19
JP2011157689A JP5876242B2 (en) 2011-07-19 2011-07-19 Manual transmission

Publications (1)

Publication Number Publication Date
WO2013011994A1 true WO2013011994A1 (en) 2013-01-24

Family

ID=47558171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068164 WO2013011994A1 (en) 2011-07-19 2012-07-18 Manual transmission

Country Status (3)

Country Link
JP (1) JP5876242B2 (en)
DE (1) DE112012003012T5 (en)
WO (1) WO2013011994A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016204586B4 (en) 2016-03-18 2022-02-03 Audi Ag Hybrid drive train for a hybrid motor vehicle
DE102016217575A1 (en) * 2016-09-15 2018-03-15 Volkswagen Aktiengesellschaft Drive arrangement for a vehicle
DE102016221057B4 (en) * 2016-10-26 2024-06-13 Audi Ag Hybrid drive train for a hybrid-powered motor vehicle
DE102016221059A1 (en) 2016-10-26 2018-04-26 Audi Ag Hybrid powertrain for a hybrid-powered motor vehicle
DE102016221095A1 (en) * 2016-10-26 2018-04-26 Avl List Gmbh Torque transmission device, drive system and motor vehicle
DE102016221060A1 (en) 2016-10-26 2018-04-26 Audi Ag Hybrid powertrain for a hybrid-powered motor vehicle
DE102016221097A1 (en) * 2016-10-26 2018-04-26 Avl List Gmbh Torque transmission device for hybrid drives
EP4092883A4 (en) * 2020-01-14 2024-02-21 Kubota Corporation Power-transmitting mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015514A (en) * 2005-07-06 2007-01-25 Nissan Motor Co Ltd Hybrid electric vehicle and its driving control method
JP2007269073A (en) * 2006-03-30 2007-10-18 Honda Motor Co Ltd Driving force transmitting device of vehicle
JP2010202054A (en) * 2009-03-04 2010-09-16 Toyota Motor Corp Control apparatus for hybrid vehicle
JP2011031855A (en) * 2009-08-05 2011-02-17 Toyota Motor Corp Controller for hybrid car
WO2011048636A1 (en) * 2009-10-22 2011-04-28 トヨタ自動車株式会社 Controller of vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556893B2 (en) * 2000-10-11 2004-08-25 本田技研工業株式会社 Power transmission mechanism
JP5267303B2 (en) * 2009-04-22 2013-08-21 トヨタ自動車株式会社 Vehicle drive device
KR20110039207A (en) * 2009-10-09 2011-04-15 엘지전자 주식회사 Apparatus and method for transmitting and receiving uplink backhaul signal in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015514A (en) * 2005-07-06 2007-01-25 Nissan Motor Co Ltd Hybrid electric vehicle and its driving control method
JP2007269073A (en) * 2006-03-30 2007-10-18 Honda Motor Co Ltd Driving force transmitting device of vehicle
JP2010202054A (en) * 2009-03-04 2010-09-16 Toyota Motor Corp Control apparatus for hybrid vehicle
JP2011031855A (en) * 2009-08-05 2011-02-17 Toyota Motor Corp Controller for hybrid car
WO2011048636A1 (en) * 2009-10-22 2011-04-28 トヨタ自動車株式会社 Controller of vehicle

Also Published As

Publication number Publication date
JP2013023000A (en) 2013-02-04
DE112012003012T5 (en) 2014-05-08
JP5876242B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP5876242B2 (en) Manual transmission
JP5670222B2 (en) Manual transmission
JP5907676B2 (en) Manual transmission
JP5641610B2 (en) Manual transmission
WO2013008856A1 (en) Manual transmission
JP5802478B2 (en) Manual transmission
WO2013008855A1 (en) Manual transmission
JP5801068B2 (en) Manual transmission
JP5815988B2 (en) Manual transmission
WO2014162760A1 (en) Vehicle controller
JP6109581B2 (en) Vehicle power transmission control device
WO2012124494A1 (en) Manual transmission
WO2012081280A1 (en) Power transmission control device for vehicle
JP2012171595A (en) Manual transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814639

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012003012

Country of ref document: DE

Ref document number: 1120120030125

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814639

Country of ref document: EP

Kind code of ref document: A1