WO2013011984A1 - Fluorescent probe and method for producing same - Google Patents

Fluorescent probe and method for producing same Download PDF

Info

Publication number
WO2013011984A1
WO2013011984A1 PCT/JP2012/068111 JP2012068111W WO2013011984A1 WO 2013011984 A1 WO2013011984 A1 WO 2013011984A1 JP 2012068111 W JP2012068111 W JP 2012068111W WO 2013011984 A1 WO2013011984 A1 WO 2013011984A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
fluorescent probe
rare earth
ion
earth element
Prior art date
Application number
PCT/JP2012/068111
Other languages
French (fr)
Japanese (ja)
Inventor
健治 小野
誠 澤田
真悟 渕
竹田 美和
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2013524724A priority Critical patent/JP6019535B2/en
Publication of WO2013011984A1 publication Critical patent/WO2013011984A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/774Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7759Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing samarium
    • C09K11/7764Aluminates; Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/778Borates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2458/00Labels used in chemical analysis of biological material
    • G01N2458/40Rare earth chelates

Definitions

  • the present invention relates to a fluorescent probe that emits near-infrared light having a wavelength different from that of irradiated light when irradiated with near-infrared light, and a method for manufacturing the same.
  • Physiological imaging using a fluorescence method is one of imaging methods that can capture structural changes and dynamic changes of an object in a minimally invasive manner without using radiation.
  • a fluorescent probe is widely used, and a fluorescent probe is useful because a structural change or a dynamic change of a target object (target molecule) is visualized and observed based on emitted fluorescence.
  • a fluorescent probe for example, Patent Document 1 describes a fluorescent dye (organic fluorescent dye) made of an organic compound such as a fluorescent protein such as GFP or DsRed, a Cy series such as Cy2, or an Alexa series such as Alexa488. Yes.
  • Patent Document 2 describes many fluorescent probes made of other organic compounds.
  • the fluorescent probes made of these organic compounds are excited with light having a short wavelength of around 480 nm, so that the excitation light cannot reach the deep part of the living body and can only image the outer surface of the living body.
  • the organic compound emits light in the visible light range, it overlaps with various fluorescence of substances constituting the living body, and is obtained as an image in which fluorescence of the target object and other fluorescence are mixed. For this reason, it is necessary to devise a method for clearly grasping the target object, such as spectroscopic analysis.
  • organic fluorescent dyes tend to fade due to the principle of fluorescence generation, there is a drawback that the fluorescence signal of the target substance disappears when the irradiation time of excitation light is long.
  • one of the clues is to use light in the near-infrared light region that penetrates from the outer surface of the living body to a depth of about 20 mm as excitation light and use a fluorescent probe corresponding to it. It is done.
  • the living body Compared to the visible light region, in the near-infrared light region having a wavelength of more than 800 nm, the living body emits blood components and the like because it has not only high light permeability but also extremely low light absorption of water and hemoglobin. Almost no autofluorescence is seen. For this reason, when light in the near-infrared light region is used, it is considered that it is easy to clearly distinguish between the fluorescence of the target object and the fluorescence of other substances. Therefore, it is considered that the use of a near-infrared light region fluorescent probe enables unprecedented good imaging.
  • fluorescent probes corresponding to various wavelengths can be produced by changing the particle diameter of the quantum dots. Further, unlike organic fluorescent dyes, a fluorescent probe in the near-infrared light region can be produced.
  • quantum dots that emit fluorescence in the near-infrared light region have a disadvantage that they have a large particle size and are difficult to use in living organisms. Furthermore, since the quantum dot contains a biological harmful substance such as cadmium, there is a need to reduce toxicity.
  • Patent Document 4 discloses silicon dioxide nanoparticles containing rare earth element ions
  • Patent Document 5 discloses YAG nanocrystals containing rare earth element ions. Since these techniques are different from quantum dots, it is possible to produce a fluorescent probe that emits light with a wide range of wavelengths without depending on the particle diameter.
  • the invention described in Patent Document 4 or 5 is considered to be more useful in controlling the emission wavelength, fading stability, particle size, and the like than the inventions described in Patent Documents 1 to 3.
  • crystal growth is performed so that the rare earth ions are incorporated at specific positions in the crystal so that they emit light with high efficiency. Conditions must be controlled and advanced techniques are required in the manufacturing process.
  • Patent Document 4 suggests that an amorphous material is used instead of a crystalline material, the specific raw materials and manufacturing methods thereof are not described, and a method similar to that of YAG nanocrystals is used. It is estimated that amorphous nanoparticles are produced from the solution.
  • An object of the present invention is to provide a fluorescent probe using near infrared light and an efficient manufacturing method thereof.
  • the present inventors produced a glass composition in which ions of rare earth elements were dispersed in glass. And when near infrared light was irradiated to this glass composition, it discovered that the near infrared light different from the wavelength of irradiated light was emitted. Moreover, when the glass composition was crushed and atomized, the powder was found to be a fluorescent probe suitable for biological imaging using light in the near infrared light region as excitation light. That is, the present invention is shown below. 1.
  • the fluorescent probe according to 1 or 2 above, wherein the rare earth element ion is at least one selected from Yb ion, Nd ion, Tm ion, Sm ion, Ho ion, Er ion, Dy ion and Pr ion. 4).
  • the glass is Bi 2 O 3 —B 2 O 3 glass, Bi 2 O 3 —GeO 2 glass, ZnO—B 2 O 3 glass, CaO—B 2 O 3 glass and CaO—P 2 O 5.
  • the compound containing the rare earth element is at least one selected from compounds containing a rare earth element selected from Yb, Nd, Tm, Sm, Ho, Er, Dy and Pr. Production method. 10.
  • the fluorescent probe of the present invention is made of glass powder in which ions of rare earth elements are dispersed in glass, and therefore emits near-infrared light different from the wavelength of the irradiated light when irradiated with near-infrared light. Utilizing this property, it can be suitably used for biological imaging using light in the near-infrared light region as excitation light.
  • the fluorescent probe of the present invention is chemically stable without fading, and there is no restriction on the particle size as in quantum dots. It is suitable as a fluorescent probe in the method.
  • the excitation light described above is excellent in permeability from the body surface to the inside of animals including humans, a desired site in a range from the surface to a depth of about 20 mm can be observed in more detail.
  • the rare earth element ion in the present invention is at least one selected from Yb ion, Nd ion, Tm ion, Sm ion, Ho ion, Er ion, Dy ion and Pr ion
  • the near infrared light region Light having a wavelength different from that of the excitation light (fluorescence) can be easily obtained.
  • light emission in the 1000 nm band (including 950 to 1050 nm) with high biological permeability can be obtained by irradiation with light having a wavelength of 808 nm.
  • light emission in the 900 nm band (including 860 to 930 nm) can be obtained by irradiation with light having a wavelength of 808 nm. It is done. Further, when Yb ions are used alone as rare earth element ions, light emission in the 1000 nm band (including 950 to 1050 nm) can be obtained by irradiation with light having a wavelength of 808 nm.
  • the glass in the present invention is at least one selected from boric acid glass, germanic acid glass, phosphoric acid glass and fluoride glass, it is excellent in the transparency of excitation light and fluorescence wavelengths. Luminous intensity can be obtained. Further, when the content ratio of the rare earth element constituting the powder is 0.4 to 2.0 at% with respect to the total amount of atoms constituting the fluorescent probe, higher fluorescence intensity can be obtained.
  • a fluorescent probe can be produced efficiently. After the glass raw material is melted by the melting process, the fluorescent probe is manufactured through the cooling process and the crushing process, and thus a manufacturing method with a high degree of freedom can be obtained. Moreover, since a glass composition can be selected widely as mentioned above, a general glass raw material can be handled freely according to a crushing characteristic and a light emission characteristic. For example, as a glass raw material, Bi 2 O 3 —B 2 O 3 glass, Bi 2 O 3 —GeO 2 glass, ZnO—B 2 O 3 glass, CaO—B 2 O 3 glass, or CaO—P 2 is used.
  • the material for forming the O 5 based glass a melting temperature in the melting step, it is possible to reduce, it becomes possible to smoothly form the glass composition.
  • the growth conditions differ depending on the crystal matrix composition, and thus the degree of freedom is small.
  • the glass composition can be easily atomized by general crushing, the method for producing the fluorescent probe of the present invention is very simple.
  • a general aggregation inhibitor may be used when the glass composition is produced and then crushed. As described above, the manufacturing cost and the management cost can be reduced by the manufacturing method of the fluorescent probe of the present invention.
  • 2 is an image taken by irradiating visible light on the fluorescent probe powder obtained in Example 1.
  • FIG. It is the image image
  • 2 is a fluorescence spectrum obtained by irradiating the fluorescent probe (powder) obtained in Example 1 with near infrared light. It is the image image
  • the fluorescent probe of the present invention is a fluorescent probe containing rare earth element ions that are excited by light having a wavelength in the near infrared light region and emit light having a wavelength in the near infrared light region other than the wavelength, It consists of glass powder containing ions.
  • the near-infrared wavelength region in the present invention means a wavelength range of about 750 nm to 2500 nm, and preferably a wavelength range of 800 nm to 1200 nm.
  • Yb, Nd, Tm, Sm, Ho, Er, Dy and Pr are rare earth elements ytterbium (Yb), neodymium (Nd), thulium (Tm), samarium (Sm), holmium (Ho). ), Erbium (Er), dysprosium (Dy) and praseodymium (Pr).
  • the glass powder constituting the fluorescent probe of the present invention is a powder in which ions of rare earth elements are dispersed in glass. This means a state in which rare earth element ions are scattered and contained in the glass, and is not a state in which a specific chemical structure is formed by the rare earth element ions.
  • rare earth element ions exist as trivalent ions.
  • the ions of rare earth elements contained in the fluorescent probe of the present invention are excited by light having a wavelength corresponding to the excitation band, and emit light when relaxing from the excited state to the ground state.
  • light having a wavelength corresponding to the excitation band of rare earth element ions is in the near-infrared light region, and the wavelength of emitted light is in the near-infrared light region and is different from the excitation light. Since it is a wavelength, it can be said that it is a fluorescent probe using light of a wavelength other than the excitation light.
  • the rare earth element ions are contained in the glass having excellent transparency to excitation light and fluorescence, sufficient emission intensity in the fluorescent probe can be obtained without reducing the emission intensity of the rare earth element ions. Can do.
  • the rare earth element ion used in the fluorescent probe of the present invention is an ion of at least one element selected from 17 elements from scandium to lutetium. Only one type of ion in the powder may be used, or a combination of two or more types may be used. In the present invention, since fluorescence with high light transmittance to a living body can be obtained, Yb ion, Nd ion, Tm ion, Sm ion, Ho ion, Er ion, Dy ion and Pr ion are preferable. Yb ions and Nd ions are preferred. Yb ions and Nd ions may be used in combination, or may be used alone.
  • a fluorescent probe containing Yb ions and Nd ions as the emission center
  • two ions are excited by receiving light including the vicinity of 808 nm, and emit light in the near infrared light region of 850 nm to 1100 nm.
  • a fluorescent probe that emits light at a wavelength different from that of the excitation light and is suitable for observation of a living body can be obtained.
  • the lower limit of the content ratio of the rare earth element in the powder constituting the fluorescent probe of the present invention is preferably 0.05 at% with respect to the total amount of atoms constituting the fluorescent probe from the viewpoint of emission intensity. More preferably, it is 0.4 at%, More preferably, it is 0.7 at%. Moreover, an upper limit is 10 at% normally, Preferably it is 7 at%, More preferably, it is 3.4 at%, More preferably, it is 2.0 at%. If the content of rare earth element ions is too high, concentration quenching may occur. Therefore, the content ratio may be appropriately set in accordance with the type of rare earth element ions and the like within a range where concentration quenching does not occur.
  • the glass constituting the glass powder in the present invention is an amorphous solid composed of an inorganic compound exhibiting a glass transition phenomenon.
  • This amorphous solid preferably has the same degree of rigidity as a crystal pulverized by a known method. From the viewpoint of an industrial process, a lower melting point is preferable. In addition, a lower limit is 340 degreeC normally.
  • Specific examples of the glass include boric acid glass, germanic acid glass, phosphoric acid glass, and fluoride glass. One kind of the glass may be used, or two or more kinds may be combined.
  • Bi 2 O 3 —B 2 O 3 glass, Bi 2 O 3 —GeO 2 glass, ZnO—B 2 O 3 glass, CaO— are more preferable.
  • the form of the fluorescent probe of the present invention is a powder, and the shape is a lump such as a sphere, an ellipsoid, a polyhedron (cube, cuboid, octahedron, etc.), etc .; Linear body, curved body) and the like.
  • the size of the fluorescent probe is such that the upper limit of the maximum length measured with an electron microscope, a laser scatterometer or the like is preferably 10 ⁇ m, more preferably 5 ⁇ m, and even more preferably 1 ⁇ m or less. However, the lower limit is usually 0.1 ⁇ m. Since the emission intensity of the fluorescent probe depends on the volume of the powder, sufficient emission intensity can be obtained if the lower limit of the maximum length is 0.1 ⁇ m.
  • the fluorescent probe is small because it is easy to move in the capillaries of animals including humans.
  • the shape preferable for biological imaging is a shape having as few pointed parts as possible, and a shape close to a polyhedron or a sphere is more preferable.
  • the method for producing a fluorescent probe of the present invention was obtained by melting a compound containing a rare earth element (hereinafter also simply referred to as “rare earth compound”) and a glass raw material, and the melting step. It comprises a cooling step of cooling the melt to produce a glass composition containing rare earth element ions, and a crushing step of crushing the glass composition to obtain a powder.
  • the ions of the rare earth element are simply taken into the glass composition by the melting step and the cooling step. Does not require manufacturing techniques.
  • the melting step is a step of melting a mixture containing a rare earth compound and a glass raw material. By this melting process, both the rare earth compound and the glass raw material are melted and mixed to produce a melt.
  • the rare earth compound is a compound that forms a molten mixture with a glass raw material in a melting step and generates ions of rare earth elements in the glass composition after the cooling step.
  • examples of such compounds include oxides, hydroxides, sulfates, carbonates, nitrates, phosphates and halides containing rare earth elements.
  • Such rare earth compounds may be used alone or in combination of two or more.
  • a compound containing a rare earth element selected from Yb, Nd, Tm, Sm, Ho, Er, Dy, and Pr is preferable because fluorescence with high light transmittance to a living body is obtained, and oxidation of these elements is preferable.
  • the product is particularly preferred.
  • Yb 2 O 3 or Nd 2 O 3 is preferably used as the rare earth compound.
  • the glass raw material is a material capable of forming glass by being cooled after being made into a melt by heating.
  • a well-known glass forming compound can be used, and examples thereof include SiO 2 , GeO 2 , P 2 O 5 , B 2 O 3 and the like.
  • modified oxides such as Bi 2 O 3 , ZnO, and CaO can be used in combination.
  • the glass constituting the glass powder is Bi 2 O 3 —B 2 O 3 glass, Bi 2 O 3 and H 3 BO 3 are preferably used.
  • the melting point is relatively low and the vitrification range is relatively wide, which is advantageous for the production of a fluorescent probe.
  • it is preferable to adjust the ratio of each oxide in glass so that the glass from which an appropriate crushing characteristic is obtained can be obtained.
  • the mixing ratio of the rare earth compound and the glass raw material in the melting step is appropriately selected according to the purpose of use of the fluorescent probe.
  • the amount of the rare earth compound used is that of the rare earth compound and the glass raw material.
  • the total amount is preferably 0.1 to 10 mol%, more preferably 1 to 5 mol%.
  • the method for preparing the melt and the melting conditions are not particularly limited.
  • the melting temperature in the melting step is appropriately selected depending on the kind of the rare earth compound and the glass raw material, but is preferably 800 ° C. to 1500 ° C., more preferably 900 ° C. to 1350 ° C., further preferably 1000 ° C. to 1250 ° C. It is. Further, the melting time in the melting step is preferably 5 to 60 minutes, more preferably 10 to 15 minutes.
  • the cooling step is a step of cooling the melt obtained in the melting step to obtain a glass composition containing rare earth element ions.
  • the method for cooling the melt and the cooling conditions are not particularly limited. For example, air cooling by being left in an air atmosphere can be mentioned.
  • the cooling rate can be, for example, several kelvins per second.
  • the crushing step is a step of crushing the glass composition obtained in the cooling step to obtain a powder.
  • the powder obtained in this crushing process can be used as a fluorescent probe.
  • the pulverization method of the glass composition is not particularly limited, and a known method of pulverizing and atomizing a lump such as glass can be applied. Examples include crushing with a pestle and mortar, crushing with a ball mill, and the like. These pulverization methods can also be performed in combination.
  • a fluorescent probe made of a powder of Bi 2 O 3 —B 2 O 3 glass containing Yb ions and Nd ions is Yb 2 O 3 powder, Nd 2 O 3 powder, Bi 2 O 3 powder and H 3 BO 3.
  • the powder is mixed at a predetermined ratio, heated to melt the mixture, then the melt is cooled, and further, the cooled product (glass composition) is pulverized.
  • the melting temperature is set at, for example, 1000 ° C. to 1250 ° C. Cooling may be performed by pouring a melt (melt) into a stainless or carbon mold and air cooling.
  • FIG. 1 shows an appearance image of a glass composition (before crushing) prepared with 1.0 mol%.
  • a fluorescent probe can be produced by crushing the obtained glass composition by the method exemplified above. By changing the crushing conditions, the particle size distribution of the finally obtained fluorescent probe can be controlled, for example, as shown in FIGS.
  • the composition of the usage, as well as the glass raw material of Yb 2 O 3 and Nd 2 O 3, as desired emission characteristics can be obtained, as appropriate , You may change.
  • the total of the rare earth compound and the glass raw material is 100 mol%
  • Yb 2 O 3 is 5.0 mol%
  • Nd 2 O 3 is 2.9 mol%
  • Bi 2 O 3 is 43.9 mol%
  • B 2 A fluorescent probe produced with 48.1 mol% of O 3 gives sufficient emission characteristics.
  • the amount of Yb 2 O 3 and Nd 2 O 3, respectively, are fixed to 5.0 mol% and 3.0mol%, Bi 2 O 3 and B 2 O 3 usage, respectively, 91.9Mol % And 0 mol%, 82.4 mol% and 9.5 mol%, 73.2 mol% and 18.8 mol%, 64.5 mol% and 27.3 mol%, 55.2 mol% and 33.7 mol%, or 36.6 mol % And 55.4 mol% can also be changed.
  • the fluorescent probe of the present invention is suitable for biological imaging, and a method for introducing the fluorescent probe into the living body is exemplified below.
  • a method of directly injecting a fluorescent probe with a syringe (2) A method of directly injecting a dispersion containing a fluorescent probe and a liquid with a syringe (3) A fluorescent probe with endocytosis or phagocytosis (4) A method of injecting cells labeled with a fluorescent probe on a cell membrane by a syringe (5) A method of injecting an antibody or a chemical substance labeled with a fluorescent probe with a syringe; and Excitation light is irradiated from outside the living body, and light emission from the fluorescent probe is observed.
  • an optical filter that removes the excitation light may be used.
  • a light source for excitation light a commercially available light source may be used, and a semiconductor light emitting device such as a light emitting diode or a laser diode is preferable.
  • the light emission of the rare earth ion-dispersed glass fluorescent probe may be performed using an existing two-dimensional detector such as a Si-based CCD camera or an InGaAs camera. Since the fluorescent probe of the present invention is chemically stable, even if it is introduced into a desired site in a living body, it does not cause alteration or decomposition. Strength can be obtained.
  • Example 1 Preparation of fluorescent probe As a rare earth element compound, 1 mol% Yb 2 O 3 powder (Kanto Chemical Co., Ltd. material research reagent) and 4 mol% Nd 2 O 3 powder (Kanto Chemical Co., Ltd.
  • the melt (melt) was poured out into a stainless steel mold and air-cooled at room temperature (about 20 ° C.) to obtain a glass composition in which rare earth ions were dispersed. Thereafter, the obtained glass composition was crushed with a pestle, a mortar and a ball mill to prepare a powder mixture (fluorescent probe) having a maximum length of 0.1 ⁇ m or more and 1 ⁇ m or less as measured by a laser scatterometer.
  • the content ratio of the rare earth elements was 2.0 at% with respect to the total of all atoms constituting the fluorescent probe.
  • 3 and 4 show images of the fluorescent probe when the fluorescent probe obtained as described above is irradiated with visible light and near-infrared light including a wavelength of 808 nm, respectively.
  • near-infrared light including a wavelength of 808 nm was irradiated, it was confirmed that it was excited to emit fluorescence and reflected the powder shape of the fluorescent probe. Further, it was confirmed by fluorescence spectrum measurement that the wavelength of fluorescence was 850 to 1100 nm (see FIG. 5).
  • FIG. 6 and FIG. 7 show images of a mouse tail imaged under natural light, and fluorescence emitted from a fluorescent probe contained in the mouse tail (wavelength 850 ⁇ ) when excited by irradiation with near infrared light including 808 nm. The image which image
  • Example 2 A fluorescent probe dispersion prepared by the same method as in Example 1 was injected into the body of a mouse by the same method as in Example 1, and the fluorescent probe was accumulated in the lung.
  • FIG. 8 and FIG. 9 show images obtained by photographing the part including the lung after incising only the skin of the mouse.
  • FIG. 8 is an image taken under natural light
  • FIG. 9 is an image taken of fluorescence (light with a wavelength of 850 to 1100 nm) emitted from a fluorescent probe by being excited by irradiation with near infrared light including 808 nm. It is an image.
  • Example 3 A fluorescent probe dispersion prepared by the same method as in Example 1 was injected under the skin of the mouse by the same method as in Example 1. 10 and 11 show images taken at the same position before and after injection of the fluorescent probe. In either case, 808 nm excitation light was irradiated.
  • the atomized fluorescent probe is directly used, but the surface of the fluorescent probe can be coated with a polymer or labeled with an antibody or a drug.
  • a method of directly binding an antibody or the like to a functional group (for example, a hydroxyl group) on the surface of the fluorescent probe, or a surface of the fluorescent probe with a silane coupling agent (for example, 3-amino A method of binding an antibody or the like after coating with propyltrimethoxysilane) or the like can be applied.
  • Example 4 (Production of fluorescent probe)
  • a rare earth element compound 1 mol% Yb 2 O 3 powder (Kanto Chemical Co., Ltd. material research reagent), 1 mol% Nd 2 O 3 powder (Kanto Chemical Co., Ltd. material research reagent), and a glass raw material, 54 mol% ZnO powder (material research reagent manufactured by Kanto Chemical Co., Inc.) and H 3 BO 3 powder (special grade reagent manufactured by Nacalai Tesque) in an amount of 44 mol% in terms of B 2 O 3 and (rare earth element compound and glass) The raw materials were combined to make 100 mol%) to prepare a mixed powder that was a raw material for the fluorescent probe.
  • the mixed powder was put into an alumina crucible, and a fluorescent probe was produced in the same manner as in Example 1 except that the mixture was heated and melted at 1250 ° C. for 10 minutes in an air atmosphere.
  • the content ratio of the rare earth elements (the total content of Yb and Nd) was 0.8 at% with respect to the total of all atoms constituting the fluorescent probe.
  • the wavelength of fluorescence was 870 to 1100 nm (see FIG. 12).
  • Example 5 (Production of fluorescent probe)
  • 1 mol% Er 2 O 3 powder Kanto Chemical Co., Ltd. material research reagent
  • 49 mol% Bi 2 O 3 powder Kanto Chemical Co., Ltd. material research reagent
  • B 2 H 3 BO 3 powder special grade reagent manufactured by Nacalai Tesque
  • 1 mol% Sb 2 O 3 powder reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • rare earth element compound and The glass raw materials were combined to make 100 mol%) to prepare a mixed powder that was a raw material for the fluorescent probe.
  • the mixed powder was put into an alumina crucible, and a fluorescent probe was produced in the same manner as in Example 1 except that the mixture was heated and melted at 1250 ° C. for 10 minutes in an air atmosphere.
  • the content ratio of Er which is a rare earth element, was 0.4 at% with respect to the total of all atoms constituting the fluorescent probe.
  • Example 6 (Production of fluorescent probe) As a rare earth element compound, 1 mol% Sm 2 O 3 powder (Kanto Chemical Co., Ltd. material research reagent), as a glass raw material, 54.5 mol% ZnO powder (Kanto Chemical Co., Ltd. material research reagent), and B H 3 BO 3 powder (special grade reagent manufactured by Nacalai Tesque) in an amount of 44.5 mol% in terms of 2 O 3 is mixed with (rare earth element compound and glass raw material are combined to 100 mol%), and the fluorescent probe A mixed powder as a raw material was prepared.
  • the mixed powder was put into an alumina crucible, and a fluorescent probe was produced in the same manner as in Example 1 except that the mixture was heated and melted at 1250 ° C. for 10 minutes in an air atmosphere.
  • the content ratio of Sm which is a rare earth element was 0.6 at% with respect to the total of all atoms constituting the fluorescent probe.
  • Example 7 (Production of fluorescent probe) As a rare earth element compound, Pr 6 O 11 powder (material research reagent manufactured by Kanto Chemical Co., Inc.) in an amount of 1 mol% in terms of Pr 2 O 3 and 54.5 mol% ZnO powder (manufactured by Kanto Chemical Co., Ltd.) as a glass raw material. Material research reagent), and H 3 BO 3 powder (special grade reagent manufactured by Nacalai Tesque) in an amount of 44.5 mol% in terms of B 2 O 3 and (rare earth element compound and glass raw material are combined to make 100 mol%) ) Were mixed to prepare a mixed powder as a raw material of the fluorescent probe.
  • Pr 6 O 11 powder material research reagent manufactured by Kanto Chemical Co., Inc.
  • H 3 BO 3 powder special grade reagent manufactured by Nacalai Tesque
  • the mixed powder was put into an alumina crucible, and a fluorescent probe was produced in the same manner as in Example 1 except that the mixture was heated and melted at 1250 ° C. for 10 minutes in an air atmosphere.
  • the content ratio of Pr, which is a rare earth element, was 0.6 at% with respect to the total of all atoms constituting the fluorescent probe.
  • the fluorescent probe of the present invention is suitable for biological imaging using near infrared light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Glass Compositions (AREA)

Abstract

This fluorescent probe is formed of a glass powder that contains rare earth element ions, which are excited by light having a wavelength in the near infrared region and emit light having a wavelength in the near infrared region other than the above-mentioned wavelength, in glass. This method for producing a fluorescent probe sequentially comprises: a melting step wherein a compound containing a rare earth element and a glass starting material are melted; a cooling step wherein the molten material obtained in the melting step is cooled, thereby producing a glass composition that contains rare earth element ions; and a crushing step wherein the glass composition is crushed, thereby obtaining a powder.

Description

蛍光プローブ及びその製造方法Fluorescent probe and method for producing the same
 本発明は、近赤外光の照射により、照射光の波長と異なる近赤外光を発する蛍光プローブ及びその製造方法に関する。 The present invention relates to a fluorescent probe that emits near-infrared light having a wavelength different from that of irradiated light when irradiated with near-infrared light, and a method for manufacturing the same.
 蛍光法による生体イメージングは、放射線を用いることなく低侵襲的に構造変化や対象物の動態変化を捉えることができるイメージング手法の一つである。蛍光法では、蛍光プローブが広く用いられ、発光した蛍光をもとに、目的対象物(標的分子)の構造変化や動態変化等が可視化観察されるので、蛍光プローブは、有用である。このような蛍光プローブとして、例えば、特許文献1には、GFPやDsRedなどの蛍光タンパク質やCy2などのCyシリーズやAlexa488などのAlexaシリーズといった有機化合物からなる蛍光色素(有機蛍光色素)が記載されている。また、特許文献2には、その他の有機化合物からなる蛍光プローブが多数記載されている。 Physiological imaging using a fluorescence method is one of imaging methods that can capture structural changes and dynamic changes of an object in a minimally invasive manner without using radiation. In the fluorescence method, a fluorescent probe is widely used, and a fluorescent probe is useful because a structural change or a dynamic change of a target object (target molecule) is visualized and observed based on emitted fluorescence. As such a fluorescent probe, for example, Patent Document 1 describes a fluorescent dye (organic fluorescent dye) made of an organic compound such as a fluorescent protein such as GFP or DsRed, a Cy series such as Cy2, or an Alexa series such as Alexa488. Yes. Patent Document 2 describes many fluorescent probes made of other organic compounds.
 これらの有機化合物からなる蛍光プローブの多くは、480nm付近の短波長の光で励起するため、励起光が生体深部に到達できず、生体の外表面のイメージングしか行うことができない。また、上記有機化合物は、可視光域で発光するため、生体を構成する物質のさまざまな蛍光と重なり、目的対象物の蛍光とそれ以外の蛍光とが混在したイメージとして得られる。そのため、スペクトル分析を用いて分光するなど、目的対象物を明確に捉えるための工夫が必要となる。更に、有機蛍光色素は、蛍光発生の原理上、退色する傾向にあるので、励起光の照射時間が長いと、目的物質の蛍光シグナルが消失してしまう欠点がある。 Most of the fluorescent probes made of these organic compounds are excited with light having a short wavelength of around 480 nm, so that the excitation light cannot reach the deep part of the living body and can only image the outer surface of the living body. In addition, since the organic compound emits light in the visible light range, it overlaps with various fluorescence of substances constituting the living body, and is obtained as an image in which fluorescence of the target object and other fluorescence are mixed. For this reason, it is necessary to devise a method for clearly grasping the target object, such as spectroscopic analysis. Furthermore, since organic fluorescent dyes tend to fade due to the principle of fluorescence generation, there is a drawback that the fluorescence signal of the target substance disappears when the irradiation time of excitation light is long.
 これらの問題点を解消するには、生体の外表面から20mm程度の深部まで透過する近赤外光域の光を励起光として用い、それに対応した蛍光プローブを用いることが一つの糸口になると考えられる。 In order to solve these problems, it is considered that one of the clues is to use light in the near-infrared light region that penetrates from the outer surface of the living body to a depth of about 20 mm as excitation light and use a fluorescent probe corresponding to it. It is done.
 可視光域と比べ、波長800nmを超える近赤外光域では、生体に対して、単に光の透過性が高いだけではなく、水やヘモグロビンの光吸収が極めて低いことから、血液成分などが発する自家蛍光がほとんど見られない。そのため、近赤外光域の光を用いると、目的対象物の蛍光とそれ以外の物質の蛍光とを区別して明確に捉えることが容易であると考えられる。したがって、近赤外光域蛍光プローブを用いることで、これまでにない良好なイメージングが可能になると考えられる。 Compared to the visible light region, in the near-infrared light region having a wavelength of more than 800 nm, the living body emits blood components and the like because it has not only high light permeability but also extremely low light absorption of water and hemoglobin. Almost no autofluorescence is seen. For this reason, when light in the near-infrared light region is used, it is considered that it is easy to clearly distinguish between the fluorescence of the target object and the fluorescence of other substances. Therefore, it is considered that the use of a near-infrared light region fluorescent probe enables unprecedented good imaging.
 近年、特許文献3に記載されているように、蛍光プローブとして、半導体量子ドットが用いられ始めている。この手法では、量子ドットの粒子径を変化させることにより、さまざまな波長に対応した蛍光プローブを作製することができる。また、有機蛍光色素などと異なり、近赤外光域の蛍光プローブを作製することもできる。 In recent years, as described in Patent Document 3, semiconductor quantum dots have begun to be used as fluorescent probes. In this method, fluorescent probes corresponding to various wavelengths can be produced by changing the particle diameter of the quantum dots. Further, unlike organic fluorescent dyes, a fluorescent probe in the near-infrared light region can be produced.
 しかしながら、近赤外光域の蛍光を発する量子ドットは、粒子径が大きく、生体で使用しにくい欠点を有する。更に、量子ドットは、カドミウムなどの生体有害物質を含むため、毒性を軽減する必要性が生じる。 However, quantum dots that emit fluorescence in the near-infrared light region have a disadvantage that they have a large particle size and are difficult to use in living organisms. Furthermore, since the quantum dot contains a biological harmful substance such as cadmium, there is a need to reduce toxicity.
 特許文献4には、希土類元素のイオンを含有したシリコンジオキサイドナノ粒子が開示されており、特許文献5には、希土類元素のイオンを含有したYAGナノ結晶が開示されている。これらの技術によると、量子ドットとは異なるので、粒径に依存せず、広い範囲の波長の光で発光する蛍光プローブを作製することができる。
 特許文献4又は5に記載された発明は、特許文献1~3に記載された発明と比べて、その発光波長、退色に対する安定性、粒径の制御等において有用であると考えられる。ところが、YAGナノ結晶やシリコンジオキサイドナノ結晶へ希土類元素のイオンを導入する場合には、希土類元素のイオンが高効率の発光を示すように、結晶中の特定の位置に取り込まれるように結晶成長条件をコントロールしなければならず、製造工程において高度なテクニックが要求される。また、ナノ結晶のサイズコントロールも高度なテクニックが必要である。更に、ナノ結晶の凝集防止も必要であり、製造管理コストは多大なものとなる。特許文献4のシリコンジオキサイドナノ粒子は、溶液からの合成方法によるため、この問題は重要である。尚、特許文献5には、結晶材料ではなく非晶質材料を用いることも示唆されているが、その具体的な原料や製造方法は記載されておらず、YAGナノ結晶等と同様の方法によって、溶液から非晶質ナノ粒子が作製されるものと推測される。
Patent Document 4 discloses silicon dioxide nanoparticles containing rare earth element ions, and Patent Document 5 discloses YAG nanocrystals containing rare earth element ions. Since these techniques are different from quantum dots, it is possible to produce a fluorescent probe that emits light with a wide range of wavelengths without depending on the particle diameter.
The invention described in Patent Document 4 or 5 is considered to be more useful in controlling the emission wavelength, fading stability, particle size, and the like than the inventions described in Patent Documents 1 to 3. However, when introducing rare earth ions into YAG nanocrystals or silicon dioxide nanocrystals, crystal growth is performed so that the rare earth ions are incorporated at specific positions in the crystal so that they emit light with high efficiency. Conditions must be controlled and advanced techniques are required in the manufacturing process. Also, advanced techniques are needed to control the size of nanocrystals. Furthermore, it is necessary to prevent aggregation of the nanocrystals, and the production management cost becomes enormous. Since the silicon dioxide nanoparticles of Patent Document 4 are based on a synthesis method from a solution, this problem is important. Although Patent Document 5 suggests that an amorphous material is used instead of a crystalline material, the specific raw materials and manufacturing methods thereof are not described, and a method similar to that of YAG nanocrystals is used. It is estimated that amorphous nanoparticles are produced from the solution.
国際公開WO2009/020197号公報International Publication WO2009 / 020197 特開2008-149154号公報JP 2008-149154 A 国際公開WO2008/123291号公報International Publication No. WO2008 / 123291 特表2003-522149号公報Japanese translation of PCT publication No. 2003-522149 特開2007-230877号公報Japanese Patent Laid-Open No. 2007-230877
 本発明は、近赤外光を利用する蛍光プローブ及びその効率良い製造方法を提供することを目的とする。 An object of the present invention is to provide a fluorescent probe using near infrared light and an efficient manufacturing method thereof.
 本発明者らは、希土類元素のイオンがガラスの中に分散したガラス組成物を作製した。そして、このガラス組成物に近赤外光を照射すると、照射光の波長と異なる近赤外光を発することを見い出した。また、ガラス組成物を、破砕して微粒化した場合、この粉体が近赤外光域の光を励起光とする生体イメージングに好適な蛍光プローブであることを見い出した。即ち、本発明は以下に示される。
1.近赤外光域の波長の光で励起されて該波長以外の近赤外光域の波長の光を発する希土類元素のイオンを含む蛍光プローブであって、該イオンを含むガラス粉体からなることを特徴とする蛍光プローブ。
2.上記近赤外光域が、800~1200nmの範囲にある波長である上記1に記載の蛍光プローブ。
3.上記希土類元素のイオンが、Ybイオン、Ndイオン、Tmイオン、Smイオン、Hoイオン、Erイオン、Dyイオン及びPrイオンから選ばれた少なくとも1種である上記1又は2に記載の蛍光プローブ。
4.上記ガラス粉体を構成するガラスが、硼酸系ガラス、ゲルマン酸系ガラス、リン酸系ガラス及びフッ化物ガラスから選ばれた少なくとも1種である上記1~3のいずれか一項に記載の蛍光プローブ。
5.上記ガラスが、Bi-B系ガラス、Bi-GeO系ガラス、ZnO-B系ガラス、CaO-B系ガラス及びCaO-P系ガラスから選ばれた少なくとも1種である上記4に記載の蛍光プローブ。
6.上記希土類元素の含有割合が上記蛍光プローブを構成する原子の合計量に対して0.4~2.0at%である上記1~5のいずれか一項に記載の蛍光プローブ。
7.上記粉体の最大長さを測定した際の下限値が0.1μmであり、上限値が1.0μmである上記1~6のいずれか一項に記載の蛍光プローブ。
8.希土類元素を含む化合物と、ガラス原料とを溶融する溶融工程と、上記溶融工程により得られた溶融物を冷却し、希土類元素のイオンを含むガラス組成物を作製する冷却工程と、上記ガラス組成物を破砕し、粉体を得る破砕工程と、を備えることを特徴とする蛍光プローブの製造方法。
9.上記希土類元素を含む化合物が、Yb、Nd、Tm、Sm、Ho、Er、Dy及びPrから選ばれた希土類元素を含有する化合物から選ばれた少なくとも1種である上記8に記載の蛍光プローブの製造方法。
10.上記希土類元素を含む化合物が、酸化物である上記8又は9に記載の蛍光プローブの製造方法。
11.上記ガラス原料が、硼酸系ガラス、ゲルマン酸系ガラス、リン酸系ガラス及びフッ化物ガラスから選ばれた少なくとも1種を形成する化合物を含む上記8~10のいずれか一項に記載の蛍光プローブの製造方法。
12.上記溶融工程における温度が900℃~1350℃である上記8~11のいずれか一項に記載の蛍光プローブの製造方法。
13.上記破砕工程において、乳棒及び乳鉢による破砕、並びに/又は、ボールミルによる破砕が行われる上記8~12のいずれか一項に記載の蛍光プローブの製造方法。
The present inventors produced a glass composition in which ions of rare earth elements were dispersed in glass. And when near infrared light was irradiated to this glass composition, it discovered that the near infrared light different from the wavelength of irradiated light was emitted. Moreover, when the glass composition was crushed and atomized, the powder was found to be a fluorescent probe suitable for biological imaging using light in the near infrared light region as excitation light. That is, the present invention is shown below.
1. A fluorescent probe containing rare-earth element ions that are excited by light having a wavelength in the near-infrared light region and emit light having a wavelength in the near-infrared light region other than the wavelength, and comprising a glass powder containing the ion A fluorescent probe characterized by
2. 2. The fluorescent probe according to 1 above, wherein the near infrared light region has a wavelength in the range of 800 to 1200 nm.
3. 3. The fluorescent probe according to 1 or 2 above, wherein the rare earth element ion is at least one selected from Yb ion, Nd ion, Tm ion, Sm ion, Ho ion, Er ion, Dy ion and Pr ion.
4). 4. The fluorescent probe according to any one of 1 to 3 above, wherein the glass constituting the glass powder is at least one selected from boric acid glass, germanic acid glass, phosphoric acid glass and fluoride glass. .
5. The glass is Bi 2 O 3 —B 2 O 3 glass, Bi 2 O 3 —GeO 2 glass, ZnO—B 2 O 3 glass, CaO—B 2 O 3 glass and CaO—P 2 O 5. 5. The fluorescent probe as described in 4 above, which is at least one selected from a system glass.
6). 6. The fluorescent probe according to any one of 1 to 5 above, wherein a content ratio of the rare earth element is 0.4 to 2.0 at% with respect to a total amount of atoms constituting the fluorescent probe.
7). 7. The fluorescent probe according to any one of 1 to 6, wherein a lower limit value when measuring the maximum length of the powder is 0.1 μm and an upper limit value is 1.0 μm.
8). A melting step of melting a compound containing a rare earth element and a glass raw material, a cooling step of cooling a melt obtained by the melting step to produce a glass composition containing ions of rare earth elements, and the glass composition And a crushing step for crushing to obtain powder.
9. 9. The fluorescent probe according to 8 above, wherein the compound containing the rare earth element is at least one selected from compounds containing a rare earth element selected from Yb, Nd, Tm, Sm, Ho, Er, Dy and Pr. Production method.
10. 10. The method for producing a fluorescent probe according to 8 or 9, wherein the compound containing the rare earth element is an oxide.
11. 11. The fluorescent probe according to any one of the above 8 to 10, wherein the glass raw material contains a compound that forms at least one selected from boric acid glass, germanic acid glass, phosphoric acid glass, and fluoride glass. Production method.
12 12. The method for producing a fluorescent probe according to any one of 8 to 11, wherein the temperature in the melting step is 900 ° C. to 1350 ° C.
13. 13. The method for producing a fluorescent probe according to any one of 8 to 12, wherein in the crushing step, crushing with a pestle and mortar and / or crushing with a ball mill is performed.
 本発明の蛍光プローブは、希土類元素のイオンが、ガラスの中に分散しているガラス粉体からなることから、近赤外光を照射すると、照射光の波長と異なる近赤外光を発する。この性質を利用して、近赤外光域の光を励起光とする生体イメージングに好適に用いることができる。また、本発明の蛍光プローブは、有機色素と異なり退色することなく化学的に安定であり、量子ドットのように粒子径にも制限がないので、市販の励起用光源を用いた多彩な生体イメージング法における蛍光プローブとして好適である。特に、上記の励起光は、ヒトを含む動物の体表面から内部への透過性に優れるので、表面から20mm程度の深さまでの範囲における所望の部位をより詳しく観察することができる。 The fluorescent probe of the present invention is made of glass powder in which ions of rare earth elements are dispersed in glass, and therefore emits near-infrared light different from the wavelength of the irradiated light when irradiated with near-infrared light. Utilizing this property, it can be suitably used for biological imaging using light in the near-infrared light region as excitation light. In addition, unlike organic dyes, the fluorescent probe of the present invention is chemically stable without fading, and there is no restriction on the particle size as in quantum dots. It is suitable as a fluorescent probe in the method. In particular, since the excitation light described above is excellent in permeability from the body surface to the inside of animals including humans, a desired site in a range from the surface to a depth of about 20 mm can be observed in more detail.
 本発明における希土類元素のイオンが、Ybイオン、Ndイオン、Tmイオン、Smイオン、Hoイオン、Erイオン、Dyイオン及びPrイオンから選ばれた少なくとも1種である場合には、近赤外光域の波長の光であって、励起光と異なる波長の発光(蛍光)を容易に得ることができる。
 例えば、希土類元素のイオンとして、Ybイオン及びNdイオンの両方を含む場合は、波長808nmの光の照射で、生体透過性の高い1000nm帯(950~1050nmを含む)の発光が得られる。そして、希土類元素のイオンとして、Ndイオンを単独で用いた場合は、波長808nmの光の照射で、安価なSi系検出器を用いることができる900nm帯(860~930nmを含む)の発光が得られる。また、希土類元素のイオンとして、Ybイオンを単独で用いた場合は、波長808nmの光の照射で、1000nm帯(950~1050nmを含む)の発光が得られる。
When the rare earth element ion in the present invention is at least one selected from Yb ion, Nd ion, Tm ion, Sm ion, Ho ion, Er ion, Dy ion and Pr ion, the near infrared light region Light having a wavelength different from that of the excitation light (fluorescence) can be easily obtained.
For example, in the case where both of Yb ions and Nd ions are included as rare earth element ions, light emission in the 1000 nm band (including 950 to 1050 nm) with high biological permeability can be obtained by irradiation with light having a wavelength of 808 nm. When Nd ions are used alone as rare earth element ions, light emission in the 900 nm band (including 860 to 930 nm) can be obtained by irradiation with light having a wavelength of 808 nm. It is done. Further, when Yb ions are used alone as rare earth element ions, light emission in the 1000 nm band (including 950 to 1050 nm) can be obtained by irradiation with light having a wavelength of 808 nm.
 本発明におけるガラスが、硼酸系ガラス、ゲルマン酸系ガラス、リン酸系ガラス及びフッ化物ガラスから選ばれた少なくとも1種である場合には、励起光及び蛍光の波長の透過性に優れるので、高い発光強度が得られる。
 また、粉体を構成する希土類元素の含有割合が、蛍光プローブを構成する原子の合計量に対して0.4~2.0at%である場合には、より高い蛍光強度を得ることができる。
When the glass in the present invention is at least one selected from boric acid glass, germanic acid glass, phosphoric acid glass and fluoride glass, it is excellent in the transparency of excitation light and fluorescence wavelengths. Luminous intensity can be obtained.
Further, when the content ratio of the rare earth element constituting the powder is 0.4 to 2.0 at% with respect to the total amount of atoms constituting the fluorescent probe, higher fluorescence intensity can be obtained.
 本発明の蛍光プローブの製造方法によれば、蛍光プローブを効率良く製造することができる。溶融工程によりガラス原料等を溶融した後、冷却工程及び破砕工程を経て、蛍光プローブを作製するため、自由度の大きい製造方法とすることができる。また、上記のように、ガラス組成を広く選択することができるので、破砕特性及び発光特性に合わせて、一般的なガラス原料を自由に扱うことができる。例えば、ガラス原料として、Bi-B系ガラス、Bi-GeO系ガラス、ZnO-B系ガラス、CaO-B系ガラス又はCaO-P系ガラスを形成する原料を用いると、溶融工程における溶融温度を、低下させることができ、ガラス組成物を円滑に形成することが可能となる。尚、引用文献に示された方法のように、溶液からのナノ結晶成長を利用する方法では、結晶母体組成によって成長条件が異なるため、自由度が小さい。更に、ガラス組成物は、一般的な破砕によって微粒化が容易であることから、本発明の蛍光プローブの製造方法は、非常に簡便である。また、凝集防止に関してもガラス組成物を製造後、破砕する際に、一般的な凝集防止剤を使用すればよい。以上より、本発明の蛍光プローブの製造方法によって、製造コスト及び管理コストの低減化を図ることができる。 According to the method for producing a fluorescent probe of the present invention, a fluorescent probe can be produced efficiently. After the glass raw material is melted by the melting process, the fluorescent probe is manufactured through the cooling process and the crushing process, and thus a manufacturing method with a high degree of freedom can be obtained. Moreover, since a glass composition can be selected widely as mentioned above, a general glass raw material can be handled freely according to a crushing characteristic and a light emission characteristic. For example, as a glass raw material, Bi 2 O 3 —B 2 O 3 glass, Bi 2 O 3 —GeO 2 glass, ZnO—B 2 O 3 glass, CaO—B 2 O 3 glass, or CaO—P 2 is used. with the material for forming the O 5 based glass, a melting temperature in the melting step, it is possible to reduce, it becomes possible to smoothly form the glass composition. Note that, in the method using nanocrystal growth from a solution, such as the method described in the cited document, the growth conditions differ depending on the crystal matrix composition, and thus the degree of freedom is small. Furthermore, since the glass composition can be easily atomized by general crushing, the method for producing the fluorescent probe of the present invention is very simple. In addition, regarding the prevention of aggregation, a general aggregation inhibitor may be used when the glass composition is produced and then crushed. As described above, the manufacturing cost and the management cost can be reduced by the manufacturing method of the fluorescent probe of the present invention.
本発明の蛍光プローブの製造方法で作製したガラス組成物(破砕前)の外観画像である。It is an external appearance image of the glass composition (before crushing) produced with the manufacturing method of the fluorescent probe of the present invention. 本発明の蛍光プローブの製造方法で作製した蛍光プローブの粒径分布を示すグラフである。It is a graph which shows the particle size distribution of the fluorescent probe produced with the manufacturing method of the fluorescent probe of this invention. 実施例1で得られた蛍光プローブ粉体に可視光を照射して撮影した画像である。2 is an image taken by irradiating visible light on the fluorescent probe powder obtained in Example 1. FIG. 実施例1で得られた蛍光プローブ(粉体)に近赤外光を照射して撮影した画像である。It is the image image | photographed by irradiating the near-infrared light to the fluorescent probe (powder) obtained in Example 1. 実施例1で得られた蛍光プローブ(粉体)に近赤外光を照射して得られた蛍光スペクトルである。2 is a fluorescence spectrum obtained by irradiating the fluorescent probe (powder) obtained in Example 1 with near infrared light. 実施例1で得られた蛍光プローブをマウスの尾静脈に注入した後、自然光下にて撮影した画像である。It is the image image | photographed under natural light, after inject | pouring the fluorescent probe obtained in Example 1 into the tail vein of a mouse | mouth. 実施例1で得られた蛍光プローブをマウスの尾静脈に注入した後、近赤外光を照射して撮影した画像である。It is the image image | photographed by injecting the near infrared light after inject | pouring the fluorescent probe obtained in Example 1 into the tail vein of a mouse | mouth. 実施例1で得られた蛍光プローブをマウスの肺に集積させた後、自然光下にて撮影した画像である。It is the image image | photographed under natural light, after integrating the fluorescent probe obtained in Example 1 in the lungs of a mouse | mouth. 実施例1で得られた蛍光プローブをマウスの肺に集積させた後、近赤外光を照射して撮影した画像である。It is the image image | photographed by irradiating near-infrared light, after integrating the fluorescent probe obtained in Example 1 in the mouse | mouth lung. 実施例1で得られた蛍光プローブをマウスの皮膚下に注入する前に、近赤外光を照射して撮影した画像である。It is the image image | photographed by irradiating near-infrared light before inject | pouring the fluorescent probe obtained in Example 1 under the skin of a mouse | mouth. 実施例1で得られた蛍光プローブをマウスの皮膚下に注入した後、近赤外光を照射して撮影した画像である。It is the image image | photographed by irradiating near infrared light, after inject | pouring the fluorescent probe obtained in Example 1 under the skin of a mouse | mouth. 実施例4で得られた蛍光プローブ粉体に近赤外光を照射して得られた蛍光スペクトルである。It is the fluorescence spectrum obtained by irradiating the near-infrared light to the fluorescent probe powder obtained in Example 4. 実施例5で得られた蛍光プローブ粉体に近赤外光を照射して得られた蛍光スペクトルである。It is the fluorescence spectrum obtained by irradiating the near-infrared light to the fluorescent probe powder obtained in Example 5. 実施例6で得られた蛍光プローブ粉体に近赤外光を照射して得られた蛍光スペクトルである。It is the fluorescence spectrum obtained by irradiating the near-infrared light to the fluorescent probe powder obtained in Example 6. 実施例7で得られた蛍光プローブ粉体に近赤外光を照射して得られた蛍光スペクトルである。It is the fluorescence spectrum obtained by irradiating the near-infrared light to the fluorescent probe powder obtained in Example 7.
1.蛍光プローブ
 本発明の蛍光プローブは、近赤外光域の波長の光で励起されて該波長以外の近赤外光域の波長の光を発する希土類元素のイオンを含む蛍光プローブであって、該イオンを含むガラス粉体からなることを特徴とする。本発明における近赤外光域の波長とは、750nmから2500nm程度の波長範囲を意味し、好ましくは800nmから1200nmの波長範囲である。
 尚、本明細書において、Yb、Nd、Tm、Sm、Ho、Er、Dy及びPrは、希土類元素のイッテルビウム(Yb)、ネオジム(Nd)、ツリウム(Tm)、サマリウム(Sm)、ホルミウム(Ho)、エルビウム(Er)、ジスプロシウム(Dy)及びプラセオジム(Pr)を示す。
 本発明の蛍光プローブを構成するガラス粉体は、希土類元素のイオンが、ガラスの中に分散された粉体である。これは、ガラスの中に希土類元素のイオンが散らばって含まれている状態を意味し、希土類元素のイオンによる特定の化学構造体を形成している状態ではない。尚、本発明の蛍光プローブでは、希土類元素のイオンは、三価のイオンとして存在している。
1. Fluorescent probe The fluorescent probe of the present invention is a fluorescent probe containing rare earth element ions that are excited by light having a wavelength in the near infrared light region and emit light having a wavelength in the near infrared light region other than the wavelength, It consists of glass powder containing ions. The near-infrared wavelength region in the present invention means a wavelength range of about 750 nm to 2500 nm, and preferably a wavelength range of 800 nm to 1200 nm.
In this specification, Yb, Nd, Tm, Sm, Ho, Er, Dy and Pr are rare earth elements ytterbium (Yb), neodymium (Nd), thulium (Tm), samarium (Sm), holmium (Ho). ), Erbium (Er), dysprosium (Dy) and praseodymium (Pr).
The glass powder constituting the fluorescent probe of the present invention is a powder in which ions of rare earth elements are dispersed in glass. This means a state in which rare earth element ions are scattered and contained in the glass, and is not a state in which a specific chemical structure is formed by the rare earth element ions. In the fluorescent probe of the present invention, rare earth element ions exist as trivalent ions.
 本発明の蛍光プローブに含まれる希土類元素のイオンは、その励起帯に相当する波長の光により励起され、励起状態から基底状態へ緩和する際に発光する。本発明の蛍光プローブにおいて、希土類元素のイオンの励起帯に相当する波長の光が近赤外光域にあり、発光する光の波長が、近赤外光域にあり、且つ、励起光と異なる波長であることから、励起光以外の波長の光を利用している蛍光プローブであるといえる。また、希土類元素のイオンが、励起光及び蛍光の透過性に優れたガラスの中に含まれることから、希土類元素のイオンの発光強度を低減させることなく、蛍光プローブにおける十分な発光強度を得ることができる。 The ions of rare earth elements contained in the fluorescent probe of the present invention are excited by light having a wavelength corresponding to the excitation band, and emit light when relaxing from the excited state to the ground state. In the fluorescent probe of the present invention, light having a wavelength corresponding to the excitation band of rare earth element ions is in the near-infrared light region, and the wavelength of emitted light is in the near-infrared light region and is different from the excitation light. Since it is a wavelength, it can be said that it is a fluorescent probe using light of a wavelength other than the excitation light. Moreover, since the rare earth element ions are contained in the glass having excellent transparency to excitation light and fluorescence, sufficient emission intensity in the fluorescent probe can be obtained without reducing the emission intensity of the rare earth element ions. Can do.
 本発明の蛍光プローブに用いる希土類元素のイオンは、スカンジウムからルテチウムまでの17元素から選ばれた少なくとも1種の元素のイオンである。上記粉体中のイオンは1種のみでもよく、あるいは2種以上の組み合わせでもよい。本発明においては、生体に対する光透過性の高い蛍光が得られることから、好ましくは、Ybイオン、Ndイオン、Tmイオン、Smイオン、Hoイオン、Erイオン、Dyイオン及びPrイオンであり、特に、Ybイオン及びNdイオンが好ましい。尚、Ybイオン及びNdイオンは、組み合わせて用いてもよいし、それぞれ、単独で用いてもよい。
 例えば、発光中心としてYbイオン及びNdイオンを含有する蛍光プローブは、808nm付近を含む光の受光により、2つのイオンが励起され、850nm~1100nmの近赤外光域で発光する。このように、励起光と異なる波長で発光し、生体の観察に適した蛍光プローブとすることができる。
The rare earth element ion used in the fluorescent probe of the present invention is an ion of at least one element selected from 17 elements from scandium to lutetium. Only one type of ion in the powder may be used, or a combination of two or more types may be used. In the present invention, since fluorescence with high light transmittance to a living body can be obtained, Yb ion, Nd ion, Tm ion, Sm ion, Ho ion, Er ion, Dy ion and Pr ion are preferable. Yb ions and Nd ions are preferred. Yb ions and Nd ions may be used in combination, or may be used alone.
For example, in a fluorescent probe containing Yb ions and Nd ions as the emission center, two ions are excited by receiving light including the vicinity of 808 nm, and emit light in the near infrared light region of 850 nm to 1100 nm. In this way, a fluorescent probe that emits light at a wavelength different from that of the excitation light and is suitable for observation of a living body can be obtained.
 本発明の蛍光プローブを構成する粉体中の希土類元素の含有割合の下限値は、発光強度の観点から、蛍光プローブを構成する原子の合計量に対して、好ましくは0.05at%であり、より好ましくは0.4at%、更に好ましくは0.7at%である。また、上限値は、通常、10at%、好ましくは7at%、より好ましくは3.4at%、更に好ましくは2.0at%である。希土類元素のイオンの含有割合が多過ぎると、濃度消光が生じることがある。そのため、含有割合は、濃度消光が生じない範囲で、希土類元素のイオンの種類等に応じて、適宜、設定すればよい。 The lower limit of the content ratio of the rare earth element in the powder constituting the fluorescent probe of the present invention is preferably 0.05 at% with respect to the total amount of atoms constituting the fluorescent probe from the viewpoint of emission intensity. More preferably, it is 0.4 at%, More preferably, it is 0.7 at%. Moreover, an upper limit is 10 at% normally, Preferably it is 7 at%, More preferably, it is 3.4 at%, More preferably, it is 2.0 at%. If the content of rare earth element ions is too high, concentration quenching may occur. Therefore, the content ratio may be appropriately set in accordance with the type of rare earth element ions and the like within a range where concentration quenching does not occur.
 本発明におけるガラス粉末を構成するガラスとは、ガラス転移現象を示す無機化合物からなる非晶質固体である。この非晶質固体は、公知の方法により粉砕される結晶と同程度の剛性を持つことが好ましい。また、工業プロセスの観点から、融点は低い方が好ましい。尚、下限値は、通常、340℃である。このガラスとしては、具体的には、硼酸系ガラス、ゲルマン酸系ガラス、リン酸系ガラス、フッ化物ガラス等が挙げられる。上記ガラスは1種のみでもよく、あるいは2種以上を組み合わせてもよい。これらのうち、高い発光強度が得られることから、より好ましくは、Bi-B系ガラス、Bi-GeO系ガラス、ZnO-B系ガラス、CaO-B系ガラス及びCaO-P系ガラスである。更に好ましくは、Bi-B系ガラスである。 The glass constituting the glass powder in the present invention is an amorphous solid composed of an inorganic compound exhibiting a glass transition phenomenon. This amorphous solid preferably has the same degree of rigidity as a crystal pulverized by a known method. From the viewpoint of an industrial process, a lower melting point is preferable. In addition, a lower limit is 340 degreeC normally. Specific examples of the glass include boric acid glass, germanic acid glass, phosphoric acid glass, and fluoride glass. One kind of the glass may be used, or two or more kinds may be combined. Among these, since high emission intensity can be obtained, Bi 2 O 3 —B 2 O 3 glass, Bi 2 O 3 —GeO 2 glass, ZnO—B 2 O 3 glass, CaO— are more preferable. B 2 O 3 glass and CaO—P 2 O 5 glass. More preferred is Bi 2 O 3 —B 2 O 3 based glass.
 本発明の蛍光プローブの形態は、粉体であり、形状は、球体、楕円球体、多面体(立方体、直方体、八面体等)等の塊状;断面が、円形、楕円形又は多角形の線状(直線体、曲線体)等とすることができる。この蛍光プローブの大きさは、具体的には、電子顕微鏡、レーザー散乱計等で測定される最大長さの上限値が、好ましくは10μm、より好ましくは5μm、更に好ましくは1μm以下である。但し、下限値は、通常、0.1μmである。蛍光プローブの発光強度は、粉体の体積に依存するので、最大長さの下限値が0.1μmであれば、十分な発光強度を得ることができる。尚、蛍光プローブが小さければ、ヒトを含む動物の毛細血管内を移動させることが容易となり好ましい。生体イメージングに好ましい形状は、尖った部位ができるだけ少ない形状であり、多面体や球体に近い形状がより好ましい。 The form of the fluorescent probe of the present invention is a powder, and the shape is a lump such as a sphere, an ellipsoid, a polyhedron (cube, cuboid, octahedron, etc.), etc .; Linear body, curved body) and the like. Specifically, the size of the fluorescent probe is such that the upper limit of the maximum length measured with an electron microscope, a laser scatterometer or the like is preferably 10 μm, more preferably 5 μm, and even more preferably 1 μm or less. However, the lower limit is usually 0.1 μm. Since the emission intensity of the fluorescent probe depends on the volume of the powder, sufficient emission intensity can be obtained if the lower limit of the maximum length is 0.1 μm. In addition, it is preferable that the fluorescent probe is small because it is easy to move in the capillaries of animals including humans. The shape preferable for biological imaging is a shape having as few pointed parts as possible, and a shape close to a polyhedron or a sphere is more preferable.
2.蛍光プローブの製造方法
 本発明の蛍光プローブの製造方法は、希土類元素を含む化合物(以下、単に「希土類化合物」ともいう)と、ガラス原料とを溶融する溶融工程と、上記溶融工程により得られた溶融物を冷却し、希土類元素のイオンを含むガラス組成物を作製する冷却工程と、上記ガラス組成物を破砕し、粉体を得る破砕工程と、を備えることを特徴とする。
 本発明の製造方法では、希土類元素を結晶中の特定の位置に取り込ませなければならない技術と異なり、単純に、溶融工程及び冷却工程により、ガラス組成物の中に希土類元素のイオンが取り込まれるため、製造上のテクニックを必要としない。
2. Method for Producing Fluorescent Probe The method for producing a fluorescent probe of the present invention was obtained by melting a compound containing a rare earth element (hereinafter also simply referred to as “rare earth compound”) and a glass raw material, and the melting step. It comprises a cooling step of cooling the melt to produce a glass composition containing rare earth element ions, and a crushing step of crushing the glass composition to obtain a powder.
In the manufacturing method of the present invention, unlike the technique in which the rare earth element must be taken into a specific position in the crystal, the ions of the rare earth element are simply taken into the glass composition by the melting step and the cooling step. Does not require manufacturing techniques.
 上記溶融工程は、希土類化合物と、ガラス原料とを含有する混合物を溶融する工程である。この溶融工程により、希土類化合物とガラス原料の両方が溶融して混ざり合った溶融物が生成する。 The melting step is a step of melting a mixture containing a rare earth compound and a glass raw material. By this melting process, both the rare earth compound and the glass raw material are melted and mixed to produce a melt.
 上記希土類化合物は、溶融工程でガラス原料とともに溶融混合物を形成し、冷却工程の後、ガラス組成物の中に希土類元素のイオンを生じさせる化合物である。このような化合物としては、希土類元素を含む酸化物、水酸化物、硫酸塩、炭酸塩、硝酸塩、リン酸塩及びハロゲン化物等が挙げられる。このような希土類化合物は、1種のみでもよく、あるいは2種以上を組み合わせて用いてもよい。これらのうち、生体に対する光透過性の高い蛍光が得られることから、Yb、Nd、Tm、Sm、Ho、Er、Dy及びPrから選ばれた希土類元素を含む化合物が好ましく、これらの元素の酸化物が特に好ましい。具体的には、ガラスの中に、Ybイオン又はNdイオンを分散させた蛍光プローブを製造する場合、希土類化合物として、Yb又はNdが好ましく用いられる。 The rare earth compound is a compound that forms a molten mixture with a glass raw material in a melting step and generates ions of rare earth elements in the glass composition after the cooling step. Examples of such compounds include oxides, hydroxides, sulfates, carbonates, nitrates, phosphates and halides containing rare earth elements. Such rare earth compounds may be used alone or in combination of two or more. Among these, a compound containing a rare earth element selected from Yb, Nd, Tm, Sm, Ho, Er, Dy, and Pr is preferable because fluorescence with high light transmittance to a living body is obtained, and oxidation of these elements is preferable. The product is particularly preferred. Specifically, when producing a fluorescent probe in which Yb ions or Nd ions are dispersed in glass, Yb 2 O 3 or Nd 2 O 3 is preferably used as the rare earth compound.
 上記ガラス原料は、加熱により溶融物とされた後に冷却されて、ガラスを形成することができる材料である。このガラス原料としては、よく知られたガラス形成化合物を用いることができ、例えば、SiO、GeO、P、B等が挙げられる。また、ガラスの諸物性を制御するために、Bi、ZnO、CaO等の修飾酸化物等を併用することができる。具体的には、ガラス粉末を構成するガラスをBi-B系ガラスとする場合、Bi及びHBOが好ましく用いられる。
 ガラス原料として、Bi-B系ガラスを形成する原料を用いると、融点が比較的低く、かつ、ガラス化範囲が比較的広くなるので、蛍光プローブの製造に有利である。
 製造コストを考慮すると、形成されるガラスの融点が低くなるガラス原料を用いることが好ましい。また、適切な破砕特性が得られるガラスが得られるように、ガラス中の各酸化物の割合を調整することが好ましい。
The glass raw material is a material capable of forming glass by being cooled after being made into a melt by heating. As this glass raw material, a well-known glass forming compound can be used, and examples thereof include SiO 2 , GeO 2 , P 2 O 5 , B 2 O 3 and the like. In order to control various physical properties of the glass, modified oxides such as Bi 2 O 3 , ZnO, and CaO can be used in combination. Specifically, when the glass constituting the glass powder is Bi 2 O 3 —B 2 O 3 glass, Bi 2 O 3 and H 3 BO 3 are preferably used.
When a raw material for forming Bi 2 O 3 —B 2 O 3 glass is used as the glass raw material, the melting point is relatively low and the vitrification range is relatively wide, which is advantageous for the production of a fluorescent probe.
Considering the production cost, it is preferable to use a glass raw material that lowers the melting point of the glass to be formed. Moreover, it is preferable to adjust the ratio of each oxide in glass so that the glass from which an appropriate crushing characteristic is obtained can be obtained.
 溶融工程における、希土類化合物及びガラス原料の混合比は、蛍光プローブの使用目的に応じて、適宜、選択される。上記のように、本発明の蛍光プローブを構成する原子の合計量に対して、希土類元素の好ましい含有割合が0.05~10at%であるので、希土類化合物の使用量は、希土類化合物及びガラス原料の合計量に対して、好ましくは0.1~10mol%であり、より好ましくは1~5mol%である。希土類化合物の使用量が、上記範囲内であると、濃度消光が抑制され、発光特性に優れる蛍光プローブが得られる。 The mixing ratio of the rare earth compound and the glass raw material in the melting step is appropriately selected according to the purpose of use of the fluorescent probe. As described above, since the preferable content ratio of the rare earth element is 0.05 to 10 at% with respect to the total amount of atoms constituting the fluorescent probe of the present invention, the amount of the rare earth compound used is that of the rare earth compound and the glass raw material. The total amount is preferably 0.1 to 10 mol%, more preferably 1 to 5 mol%. When the amount of the rare earth compound used is within the above range, concentration quenching is suppressed, and a fluorescent probe excellent in emission characteristics can be obtained.
 上記溶融工程において、溶融物を調製する方法及び溶融条件は、特に限定されない。
 溶融工程における溶融温度は、希土類化合物及びガラス原料の種類により、適宜、選択されるが、好ましくは800℃~1500℃であり、より好ましくは900℃~1350℃、更に好ましくは1000℃~1250℃である。
 また、溶融工程における溶融時間は、好ましくは5~60分であり、より好ましくは10~15分である。
In the melting step, the method for preparing the melt and the melting conditions are not particularly limited.
The melting temperature in the melting step is appropriately selected depending on the kind of the rare earth compound and the glass raw material, but is preferably 800 ° C. to 1500 ° C., more preferably 900 ° C. to 1350 ° C., further preferably 1000 ° C. to 1250 ° C. It is.
Further, the melting time in the melting step is preferably 5 to 60 minutes, more preferably 10 to 15 minutes.
 上記冷却工程は、溶融工程で得られた溶融物を冷却し、希土類元素のイオンを含むガラス組成物を得る工程である。溶融物の冷却方法及び冷却条件は、特に限定されない。例えば、大気雰囲気下での放置による空冷等が挙げられる。冷却速度は、例えば、毎秒数ケルビンとすることができる。 The cooling step is a step of cooling the melt obtained in the melting step to obtain a glass composition containing rare earth element ions. The method for cooling the melt and the cooling conditions are not particularly limited. For example, air cooling by being left in an air atmosphere can be mentioned. The cooling rate can be, for example, several kelvins per second.
 上記破砕工程は、冷却工程で得られたガラス組成物を破砕して、粉体を得る工程である。この破砕工程で得られた粉体を蛍光プローブとして用いることができる。ガラス組成物の粉砕方法は、特に限定されず、ガラス等の塊状物を粉砕し、微粒化する、公知の方法を適用することができる。例えば、乳棒及び乳鉢による破砕、ボールミルによる破砕等が挙げられる。これらの粉砕方法は、組み合わせて行うこともできる。 The crushing step is a step of crushing the glass composition obtained in the cooling step to obtain a powder. The powder obtained in this crushing process can be used as a fluorescent probe. The pulverization method of the glass composition is not particularly limited, and a known method of pulverizing and atomizing a lump such as glass can be applied. Examples include crushing with a pestle and mortar, crushing with a ball mill, and the like. These pulverization methods can also be performed in combination.
 以下、本発明の蛍光プローブの製造方法の1例を示す。 Hereinafter, an example of the method for producing the fluorescent probe of the present invention will be shown.
 Ybイオン及びNdイオンを含有するBi-B系ガラスの粉体からなる蛍光プローブは、Yb粉末、Nd粉末、Bi粉末及びHBO粉末を、所定の割合で混合し、加熱して混合物を溶融した後、溶融物を冷却し、更に、冷却物(ガラス組成物)を粉砕することにより作製される。混合物を溶融する場合には、アルミナ坩堝等が用いられ、溶融温度は、例えば、1000℃~1250℃に設定される。また、冷却は、ステンレス製又はカーボン製の鋳型に融液(溶融物)を流し出し、空冷すればよい。尚、1000℃を超える温度で溶融を行うと、Biイオンが還元されるため、この場合は、Sb粉末を使用すると、Biイオンの還元を抑制することができる。希土類化合物とガラス原料との合計を100mol%としたときに、Ybの使用量が5.0mol%以下、かつ、Ndの使用量が6.0mol%以下であれば、1000℃での溶融物を冷却することにより、ガラス組成物を作製することができる。蛍光プローブの原料として、Ybを1.0mol%、Ndを1.0mol%、Biを48.5mol%、Bを48.5mol%、Sbを1.0mol%として作製したガラス組成物(破砕前)の外観画像を図1に示す。 A fluorescent probe made of a powder of Bi 2 O 3 —B 2 O 3 glass containing Yb ions and Nd ions is Yb 2 O 3 powder, Nd 2 O 3 powder, Bi 2 O 3 powder and H 3 BO 3. The powder is mixed at a predetermined ratio, heated to melt the mixture, then the melt is cooled, and further, the cooled product (glass composition) is pulverized. In the case of melting the mixture, an alumina crucible or the like is used, and the melting temperature is set at, for example, 1000 ° C. to 1250 ° C. Cooling may be performed by pouring a melt (melt) into a stainless or carbon mold and air cooling. In addition, when melting is performed at a temperature exceeding 1000 ° C., Bi ions are reduced. In this case, when Sb 2 O 3 powder is used, reduction of Bi ions can be suppressed. When the total amount of the rare earth compound and the glass raw material is 100 mol%, if the amount of Yb 2 O 3 used is 5.0 mol% or less and the amount of Nd 2 O 3 used is 6.0 mol% or less, 1000 A glass composition can be produced by cooling the melt at 0C. As a raw material of the fluorescent probe, Yb 2 O 3 is 1.0 mol%, Nd 2 O 3 is 1.0 mol%, Bi 2 O 3 is 48.5 mol%, B 2 O 3 is 48.5 mol%, Sb 2 O 3. FIG. 1 shows an appearance image of a glass composition (before crushing) prepared with 1.0 mol%.
 次いで、得られたガラス組成物を、上記例示した方法により破砕することにより、蛍光プローブを作製できる。尚、破砕条件を変えることによって、最終的に得られる蛍光プローブの粒径分布を、例えば、図2(A)及び(B)に示すように制御できる。 Next, a fluorescent probe can be produced by crushing the obtained glass composition by the method exemplified above. By changing the crushing conditions, the particle size distribution of the finally obtained fluorescent probe can be controlled, for example, as shown in FIGS.
 希土類元素のイオン源として、Yb及びNdを用いる場合、Yb及びNdの使用量並びにガラス原料の組成は、所望の発光特性が得られるように、適宜、変更してもよい。例えば、希土類化合物とガラス原料との合計を100mol%としたときに、Ybを5.0mol%、Ndを2.9mol%、Biを43.9mol%、Bを48.1mol%として作製した蛍光プローブは、十分な発光特性を与える。また、Yb及びNdの使用量を、それぞれ、5.0mol%及び3.0mol%に固定して、Bi及びBの使用量をそれぞれ、91.9mol%及び0mol%、82.4mol%及び9.5mol%、73.2mol%及び18.8mol%、64.5mol%及び27.3mol%、55.2mol%及び33.7mol%、又は、36.6mol%及び55.4mol%と変化させることもできる。 As an ion source of a rare earth element, when using a Yb 2 O 3 and Nd 2 O 3, the composition of the usage, as well as the glass raw material of Yb 2 O 3 and Nd 2 O 3, as desired emission characteristics can be obtained, as appropriate , You may change. For example, when the total of the rare earth compound and the glass raw material is 100 mol%, Yb 2 O 3 is 5.0 mol%, Nd 2 O 3 is 2.9 mol%, Bi 2 O 3 is 43.9 mol%, B 2 A fluorescent probe produced with 48.1 mol% of O 3 gives sufficient emission characteristics. Further, the amount of Yb 2 O 3 and Nd 2 O 3, respectively, are fixed to 5.0 mol% and 3.0mol%, Bi 2 O 3 and B 2 O 3 usage, respectively, 91.9Mol % And 0 mol%, 82.4 mol% and 9.5 mol%, 73.2 mol% and 18.8 mol%, 64.5 mol% and 27.3 mol%, 55.2 mol% and 33.7 mol%, or 36.6 mol % And 55.4 mol% can also be changed.
 本発明の蛍光プローブは、生体イメージングに好適であり、蛍光プローブを生体内に導入する方法は、以下に例示される。
(1)蛍光プローブを、シリンジにより、直接、注射する方法
(2)蛍光プローブと、液体とを含む分散液を、シリンジにより、直接、注射する方法
(3)蛍光プローブをエンドサイトーシスやファゴサイトーシスによって取り込んだ細胞を、シリンジにより注射する方法
(4)蛍光プローブを細胞膜に標識した細胞を、シリンジにより注射する方法
(5)蛍光プローブを標識した抗体や化学物質をシリンジにより注射する方法
 そして、生体外部から励起光を照射し、蛍光プローブからの発光を観察する。その際、励起光の波長と発光の波長とが異なるため、励起光を除去する光学フィルターを用いるとよい。励起光の光源としては、市販の光源を用いればよく、発光ダイオードやレーザダイオードのような半導体発光デバイスが好ましい。希土類イオン分散ガラス蛍光プローブの発光は、Si系CCDカメラ、InGaAsカメラ等の既存の2次元検出器を用いればよい。
 本発明の蛍光プローブは、化学的に安定であるので、生体内における所望の部位に導入しても、変質又は分解を引き起こすことがないので、近赤外光を照射することにより、十分な発光強度を得ることができる。
The fluorescent probe of the present invention is suitable for biological imaging, and a method for introducing the fluorescent probe into the living body is exemplified below.
(1) A method of directly injecting a fluorescent probe with a syringe (2) A method of directly injecting a dispersion containing a fluorescent probe and a liquid with a syringe (3) A fluorescent probe with endocytosis or phagocytosis (4) A method of injecting cells labeled with a fluorescent probe on a cell membrane by a syringe (5) A method of injecting an antibody or a chemical substance labeled with a fluorescent probe with a syringe; and Excitation light is irradiated from outside the living body, and light emission from the fluorescent probe is observed. At that time, since the wavelength of the excitation light and the emission wavelength are different, an optical filter that removes the excitation light may be used. As a light source for excitation light, a commercially available light source may be used, and a semiconductor light emitting device such as a light emitting diode or a laser diode is preferable. The light emission of the rare earth ion-dispersed glass fluorescent probe may be performed using an existing two-dimensional detector such as a Si-based CCD camera or an InGaAs camera.
Since the fluorescent probe of the present invention is chemically stable, even if it is introduced into a desired site in a living body, it does not cause alteration or decomposition. Strength can be obtained.
 以下、実施例を挙げて、本発明の実施の形態を、更に具体的に説明する。但し、本発明は、これらの実施例に何ら制約されるものではない。 Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
実施例1
(1)蛍光プローブの調製
 希土類元素化合物として、1mol%のYb粉末(関東化学社製 素材研究用試薬)及び4mol%のNd粉末(関東化学社製 素材研究用試薬)と、ガラス原料として、47mol%のBi粉末(関東化学社製 素材研究用試薬)、B換算で47mol%となる量のHBO粉末(ナカライテスク社製 特級試薬)、及び、1mol%のSb粉末(和光純薬工業株式会社製 試薬)と(希土類元素化合物及びガラス原料を合わせて100mol%とする)を、チャック袋(zipper bag)中で混合し、蛍光プローブの原料である混合粉末を調製した。次いで、混合粉末をアルミナ坩堝に投入し、大気雰囲気下、1250℃で10分間加熱をして、溶融させた。続いて、ステンレス鋳型に溶融物(融液)を流し出して、室温(20℃程度)で空冷させて、希土類イオンが分散したガラス組成物を得た。その後、得られたガラス組成物を、乳棒、乳鉢及びボールミルにより破砕し、レーザー散乱計により測定される最大長さが0.1μm以上1μm以下の粉体混合物(蛍光プローブ)を作製した。希土類元素(Yb及びNdの含有量の合計)の含有割合は、蛍光プローブを構成する全原子の合計に対して、2.0at%であった。
 上記により得られた蛍光プローブに対して、可視光を照射したとき、及び、波長808nmを含む近赤外光を照射したときの蛍光プローブの画像を、それぞれ、図3及び図4に示す。波長808nmを含む近赤外光を照射した場合、励起されて蛍光を発して、蛍光プローブの粉末形状を反映していることが確認された。また、蛍光スペクトル測定により、蛍光の波長は850~1100nmであることを確認した(図5参照)。
Example 1
(1) Preparation of fluorescent probe As a rare earth element compound, 1 mol% Yb 2 O 3 powder (Kanto Chemical Co., Ltd. material research reagent) and 4 mol% Nd 2 O 3 powder (Kanto Chemical Co., Ltd. material research reagent) As a glass raw material, 47 mol% Bi 2 O 3 powder (material research reagent manufactured by Kanto Chemical Co., Inc.), H 3 BO 3 powder (special grade reagent manufactured by Nacalai Tesque) in an amount of 47 mol% in terms of B 2 O 3 , 1 mol% of Sb 2 O 3 powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.) and (rare earth element compound and glass raw material are combined to make 100 mol%) are mixed in a zipper bag, and fluorescent A mixed powder as a raw material of the probe was prepared. Next, the mixed powder was put into an alumina crucible and heated at 1250 ° C. for 10 minutes in an air atmosphere to be melted. Subsequently, the melt (melt) was poured out into a stainless steel mold and air-cooled at room temperature (about 20 ° C.) to obtain a glass composition in which rare earth ions were dispersed. Thereafter, the obtained glass composition was crushed with a pestle, a mortar and a ball mill to prepare a powder mixture (fluorescent probe) having a maximum length of 0.1 μm or more and 1 μm or less as measured by a laser scatterometer. The content ratio of the rare earth elements (the total content of Yb and Nd) was 2.0 at% with respect to the total of all atoms constituting the fluorescent probe.
FIGS. 3 and 4 show images of the fluorescent probe when the fluorescent probe obtained as described above is irradiated with visible light and near-infrared light including a wavelength of 808 nm, respectively. When near-infrared light including a wavelength of 808 nm was irradiated, it was confirmed that it was excited to emit fluorescence and reflected the powder shape of the fluorescent probe. Further, it was confirmed by fluorescence spectrum measurement that the wavelength of fluorescence was 850 to 1100 nm (see FIG. 5).
(2)生体イメージング評価
 蛍光プローブ0.1gを、リン酸緩衝液(pH7.4、10mM)1mlに投入し、撹拌して、蛍光プローブが懸濁した分散液を得た。得られた分散液を、26ゲージ針の付いた1mlシリンジに充填し、マウスの尾静脈から200μl注入した。図6及び図7に、自然光の下でマウス尾部を撮影した画像、及び、808nmを含む近赤外光を照射して励起させ、マウス尾部に含まれる蛍光プローブから発せられた蛍光(波長850~1100nmの光)を撮影した画像を示す。
(2) Evaluation of biological imaging 0.1 g of the fluorescent probe was put into 1 ml of a phosphate buffer (pH 7.4, 10 mM) and stirred to obtain a dispersion in which the fluorescent probe was suspended. The obtained dispersion was filled into a 1 ml syringe with a 26 gauge needle, and 200 μl was injected from the tail vein of the mouse. FIG. 6 and FIG. 7 show images of a mouse tail imaged under natural light, and fluorescence emitted from a fluorescent probe contained in the mouse tail (wavelength 850˜) when excited by irradiation with near infrared light including 808 nm. The image which image | photographed 1100 nm light) is shown.
 図7に示す画像によると、マウスの尾静脈中の蛍光プローブの発光が明瞭に観察できた(2つの矢印の間の発光線参照)。波長808nmの光は、生体透過性の比較的高い励起極大波長の1つであるため、尾静脈中の蛍光プローブを十分励起することができた。そして、蛍光プローブの蛍光は、波長850~1100nmの光であるため、蛍光プローブが尾静脈の中にあるにも関わらず、この光が生体を透過しマウスの尾の外から容易に観察できた。更に、マウスの尾静脈の周辺の発光は観察されず、低侵襲で、バックグラウンド発光の無い尾静脈の観察ができた。 According to the image shown in FIG. 7, the emission of the fluorescent probe in the tail vein of the mouse could be clearly observed (see the emission line between the two arrows). Since light having a wavelength of 808 nm is one of excitation maximum wavelengths with relatively high biological permeability, the fluorescent probe in the tail vein could be sufficiently excited. Since the fluorescence of the fluorescent probe is light with a wavelength of 850 to 1100 nm, the light penetrates the living body and can be easily observed from outside the mouse's tail even though the fluorescent probe is in the tail vein. . Furthermore, no luminescence around the tail vein of the mouse was observed, and the tail vein was observed with minimal invasiveness and no background luminescence.
実施例2
 実施例1と同様の方法で調製した蛍光プローブの分散液を、実施例1と同様の方法により、マウスの体内に注入し、蛍光プローブを肺に集積させた。図8及び図9に、マウスの皮膚のみを切開後、肺を含む部分を撮影した画像を示す。図8は、自然光の下で撮影した画像であり、図9は、808nmを含む近赤外光を照射して励起させ、蛍光プローブから発せられた蛍光(波長850~1100nmの光)を撮影した画像である。
Example 2
A fluorescent probe dispersion prepared by the same method as in Example 1 was injected into the body of a mouse by the same method as in Example 1, and the fluorescent probe was accumulated in the lung. FIG. 8 and FIG. 9 show images obtained by photographing the part including the lung after incising only the skin of the mouse. FIG. 8 is an image taken under natural light, and FIG. 9 is an image taken of fluorescence (light with a wavelength of 850 to 1100 nm) emitted from a fluorescent probe by being excited by irradiation with near infrared light including 808 nm. It is an image.
 図8に示される画像から、蛍光プローブの集積は明瞭ではないが、図9に示される画像によると、肺へ集積した蛍光プローブの発光が明確に観察された。尚、皮膚を切開せずに、除毛だけした場合でも、近赤外光の照射により、同様の蛍光観察を行うことができた。このように、低侵襲で、バックグラウンド発光の無い肺のイメージングができた。尚、最終的には、開腹によって肺への集積を確認した。 From the image shown in FIG. 8, the accumulation of the fluorescent probe is not clear, but according to the image shown in FIG. 9, the emission of the fluorescent probe accumulated in the lung was clearly observed. Even when only the hair was removed without incising the skin, the same fluorescence observation could be performed by irradiation with near infrared light. Thus, imaging of the lung with minimal invasiveness and no background light emission was possible. Finally, accumulation in the lung was confirmed by laparotomy.
実施例3
 実施例1と同様の方法で調製した蛍光プローブの分散液を、実施例1と同様の方法により、マウスの皮膚下に注入した。蛍光プローブを注入する前と、注入した後に、同じ位置を撮影した画像を図10及び図11に示す。尚、いずれの場合も808nmの励起光を照射した。
Example 3
A fluorescent probe dispersion prepared by the same method as in Example 1 was injected under the skin of the mouse by the same method as in Example 1. 10 and 11 show images taken at the same position before and after injection of the fluorescent probe. In either case, 808 nm excitation light was irradiated.
 図10に示すように、蛍光プローブをマウスの皮膚下に注入する前の画像では、発光は観察されなかった。一方、図11に示すように、蛍光プローブをマウスの皮膚下に注入した後では、皮膚下の注入部のみから850~1100nmの蛍光が明確に観察された。このように、皮膚下に存在する蛍光プローブのみを低侵襲で観察することができた。 As shown in FIG. 10, no luminescence was observed in the image before the fluorescent probe was injected under the skin of the mouse. On the other hand, as shown in FIG. 11, after the fluorescent probe was injected under the skin of the mouse, the fluorescence at 850 to 1100 nm was clearly observed only from the injection part under the skin. Thus, only the fluorescent probe existing under the skin could be observed with minimal invasiveness.
 実施例1~3では、微粒化された蛍光プローブを直接用いているが、蛍光プローブの表面を、ポリマー等でコーティングしたり、抗体や薬物などに標識したりすることも可能である。蛍光プローブの標識を行う場合には、抗体等を、蛍光プローブの表面の官能基(例えば、水酸基)に、直接、結合させる方法、蛍光プローブの表面を、シランカップリング剤(例えば、3-アミノプロピルトリメトキシシラン)等でコーティングした後、抗体等を結合させる方法等を適用することができる。 In Examples 1 to 3, the atomized fluorescent probe is directly used, but the surface of the fluorescent probe can be coated with a polymer or labeled with an antibody or a drug. When labeling a fluorescent probe, a method of directly binding an antibody or the like to a functional group (for example, a hydroxyl group) on the surface of the fluorescent probe, or a surface of the fluorescent probe with a silane coupling agent (for example, 3-amino A method of binding an antibody or the like after coating with propyltrimethoxysilane) or the like can be applied.
実施例4(蛍光プローブの製造)
 希土類元素化合物として、1mol%のYb粉末(関東化学社製 素材研究用試薬)、及び、1mol%のNd粉末(関東化学社製 素材研究用試薬)と、ガラス原料として、54mol%のZnO粉末(関東化学社製 素材研究用試薬)、及び、B換算で44mol%となる量のHBO粉末(ナカライテスク社製 特級試薬)と(希土類元素化合物及びガラス原料を合わせて100mol%とする)を、混合し、蛍光プローブの原料である混合粉末を調製した。次いで、混合粉末をアルミナ坩堝に投入し、大気雰囲気下、1250℃で10分間加熱をして、溶融させた以外は、実施例1と同様にして、蛍光プローブを作製した。希土類元素(Yb及びNdの含有量の合計)の含有割合は、蛍光プローブを構成する全原子の合計に対して、0.8at%であった。
 上記により得られた蛍光プローブの蛍光スペクトル測定により、蛍光の波長は870~1100nmであることを確認した(図12参照)。
Example 4 (Production of fluorescent probe)
As a rare earth element compound, 1 mol% Yb 2 O 3 powder (Kanto Chemical Co., Ltd. material research reagent), 1 mol% Nd 2 O 3 powder (Kanto Chemical Co., Ltd. material research reagent), and a glass raw material, 54 mol% ZnO powder (material research reagent manufactured by Kanto Chemical Co., Inc.) and H 3 BO 3 powder (special grade reagent manufactured by Nacalai Tesque) in an amount of 44 mol% in terms of B 2 O 3 and (rare earth element compound and glass) The raw materials were combined to make 100 mol%) to prepare a mixed powder that was a raw material for the fluorescent probe. Next, the mixed powder was put into an alumina crucible, and a fluorescent probe was produced in the same manner as in Example 1 except that the mixture was heated and melted at 1250 ° C. for 10 minutes in an air atmosphere. The content ratio of the rare earth elements (the total content of Yb and Nd) was 0.8 at% with respect to the total of all atoms constituting the fluorescent probe.
By measuring the fluorescence spectrum of the fluorescent probe obtained as described above, it was confirmed that the wavelength of fluorescence was 870 to 1100 nm (see FIG. 12).
実施例5(蛍光プローブの製造)
 希土類元素化合物として、1mol%のEr粉末(関東化学社製 素材研究用試薬)と、ガラス原料として、49mol%のBi粉末(関東化学社製 素材研究用試薬)、B換算で49mol%となる量のHBO粉末(ナカライテスク社製 特級試薬)、及び、1mol%のSb粉末(和光純薬工業株式会社製 試薬)と(希土類元素化合物及びガラス原料を合わせて100mol%とする)を、混合し、蛍光プローブの原料である混合粉末を調製した。次いで、混合粉末をアルミナ坩堝に投入し、大気雰囲気下、1250℃で10分間加熱をして、溶融させた以外は、実施例1と同様にして、蛍光プローブを作製した。希土類元素であるErの含有割合は、蛍光プローブを構成する全原子の合計に対して、0.4at%であった。
 上記により得られた蛍光プローブの蛍光スペクトル測定により、蛍光の波長は1440~1640nmであることを確認した(図13参照)。
Example 5 (Production of fluorescent probe)
As a rare earth element compound, 1 mol% Er 2 O 3 powder (Kanto Chemical Co., Ltd. material research reagent), and as a glass raw material, 49 mol% Bi 2 O 3 powder (Kanto Chemical Co., Ltd. material research reagent), B 2 H 3 BO 3 powder (special grade reagent manufactured by Nacalai Tesque) in an amount of 49 mol% in terms of O 3 , and 1 mol% Sb 2 O 3 powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.) and (rare earth element compound and The glass raw materials were combined to make 100 mol%) to prepare a mixed powder that was a raw material for the fluorescent probe. Next, the mixed powder was put into an alumina crucible, and a fluorescent probe was produced in the same manner as in Example 1 except that the mixture was heated and melted at 1250 ° C. for 10 minutes in an air atmosphere. The content ratio of Er, which is a rare earth element, was 0.4 at% with respect to the total of all atoms constituting the fluorescent probe.
By measuring the fluorescence spectrum of the fluorescent probe obtained as described above, it was confirmed that the wavelength of fluorescence was 1440 to 1640 nm (see FIG. 13).
実施例6(蛍光プローブの製造)
 希土類元素化合物として、1mol%のSm粉末(関東化学社製 素材研究用試薬)と、ガラス原料として、54.5mol%のZnO粉末(関東化学社製 素材研究用試薬)、及び、B換算で44.5mol%となる量のHBO粉末(ナカライテスク社製 特級試薬)と(希土類元素化合物及びガラス原料を合わせて100mol%とする)を、混合し、蛍光プローブの原料である混合粉末を調製した。次いで、混合粉末をアルミナ坩堝に投入し、大気雰囲気下、1250℃で10分間加熱をして、溶融させた以外は、実施例1と同様にして、蛍光プローブを作製した。希土類元素であるSmの含有割合は、蛍光プローブを構成する全原子の合計に対して、0.6at%であった。
 上記により得られた蛍光プローブの蛍光スペクトル測定により、蛍光の波長は750~1050nmであることを確認した(図14参照)。
Example 6 (Production of fluorescent probe)
As a rare earth element compound, 1 mol% Sm 2 O 3 powder (Kanto Chemical Co., Ltd. material research reagent), as a glass raw material, 54.5 mol% ZnO powder (Kanto Chemical Co., Ltd. material research reagent), and B H 3 BO 3 powder (special grade reagent manufactured by Nacalai Tesque) in an amount of 44.5 mol% in terms of 2 O 3 is mixed with (rare earth element compound and glass raw material are combined to 100 mol%), and the fluorescent probe A mixed powder as a raw material was prepared. Next, the mixed powder was put into an alumina crucible, and a fluorescent probe was produced in the same manner as in Example 1 except that the mixture was heated and melted at 1250 ° C. for 10 minutes in an air atmosphere. The content ratio of Sm which is a rare earth element was 0.6 at% with respect to the total of all atoms constituting the fluorescent probe.
By measuring the fluorescence spectrum of the fluorescent probe obtained as described above, it was confirmed that the wavelength of fluorescence was 750 to 1050 nm (see FIG. 14).
実施例7(蛍光プローブの製造)
 希土類元素化合物として、Pr換算で1mol%となる量のPr11粉末(関東化学社製 素材研究用試薬)と、ガラス原料として、54.5mol%のZnO粉末(関東化学社製 素材研究用試薬)、及び、B換算で44.5mol%となる量のHBO粉末(ナカライテスク社製 特級試薬)と(希土類元素化合物及びガラス原料を合わせて100mol%とする)を、混合し、蛍光プローブの原料である混合粉末を調製した。次いで、混合粉末をアルミナ坩堝に投入し、大気雰囲気下、1250℃で10分間加熱をして、溶融させた以外は、実施例1と同様にして、蛍光プローブを作製した。希土類元素であるPrの含有割合は、蛍光プローブを構成する全原子の合計に対して、0.6at%であった。
 上記により得られた蛍光プローブの蛍光スペクトル測定により、蛍光の波長は760~1100nmであることを確認した(図15参照)。
Example 7 (Production of fluorescent probe)
As a rare earth element compound, Pr 6 O 11 powder (material research reagent manufactured by Kanto Chemical Co., Inc.) in an amount of 1 mol% in terms of Pr 2 O 3 and 54.5 mol% ZnO powder (manufactured by Kanto Chemical Co., Ltd.) as a glass raw material. Material research reagent), and H 3 BO 3 powder (special grade reagent manufactured by Nacalai Tesque) in an amount of 44.5 mol% in terms of B 2 O 3 and (rare earth element compound and glass raw material are combined to make 100 mol%) ) Were mixed to prepare a mixed powder as a raw material of the fluorescent probe. Next, the mixed powder was put into an alumina crucible, and a fluorescent probe was produced in the same manner as in Example 1 except that the mixture was heated and melted at 1250 ° C. for 10 minutes in an air atmosphere. The content ratio of Pr, which is a rare earth element, was 0.6 at% with respect to the total of all atoms constituting the fluorescent probe.
By measuring the fluorescence spectrum of the fluorescent probe obtained as described above, it was confirmed that the wavelength of fluorescence was 760 to 1100 nm (see FIG. 15).
 本発明の蛍光プローブは、近赤外光を用いた生体イメージングに好適である。 The fluorescent probe of the present invention is suitable for biological imaging using near infrared light.

Claims (13)

  1.  近赤外光域の波長の光で励起されて該波長以外の近赤外光域の波長の光を発する希土類元素のイオンを含む蛍光プローブであって、該イオンを含むガラス粉体からなることを特徴とする蛍光プローブ。 A fluorescent probe containing rare-earth element ions that are excited by light having a wavelength in the near-infrared light region and emit light having a wavelength in the near-infrared light region other than the wavelength, and comprising a glass powder containing the ion A fluorescent probe characterized by
  2.  前記近赤外光域が、800~1200nmの範囲にある波長である請求項1に記載の蛍光プローブ。 The fluorescent probe according to claim 1, wherein the near-infrared light region has a wavelength in a range of 800 to 1200 nm.
  3.  前記希土類元素のイオンが、Ybイオン、Ndイオン、Tmイオン、Smイオン、Hoイオン、Erイオン、Dyイオン及びPrイオンから選ばれた少なくとも1種である請求項1又は2に記載の蛍光プローブ。 3. The fluorescent probe according to claim 1, wherein the rare earth element ion is at least one selected from Yb ion, Nd ion, Tm ion, Sm ion, Ho ion, Er ion, Dy ion and Pr ion.
  4.  前記ガラス粉体を構成するガラスが、硼酸系ガラス、ゲルマン酸系ガラス、リン酸系ガラス及びフッ化物ガラスから選ばれた少なくとも1種である請求項1~3のいずれか一項に記載の蛍光プローブ。 The fluorescence according to any one of claims 1 to 3, wherein the glass constituting the glass powder is at least one selected from boric acid glass, germanic acid glass, phosphoric acid glass and fluoride glass. probe.
  5.  前記ガラスが、Bi-B系ガラス、Bi-GeO系ガラス、ZnO-B系ガラス、CaO-B系ガラス及びCaO-P系ガラスから選ばれた少なくとも1種である請求項4に記載の蛍光プローブ。 The glass is Bi 2 O 3 —B 2 O 3 glass, Bi 2 O 3 —GeO 2 glass, ZnO—B 2 O 3 glass, CaO—B 2 O 3 glass and CaO—P 2 O 5. The fluorescent probe according to claim 4, wherein the fluorescent probe is at least one selected from a system glass.
  6.  前記希土類元素の含有割合が前記蛍光プローブを構成する原子の合計量に対して0.4~2.0at%である請求項1~5のいずれか一項に記載の蛍光プローブ。 The fluorescent probe according to any one of claims 1 to 5, wherein a content ratio of the rare earth element is 0.4 to 2.0 at% with respect to a total amount of atoms constituting the fluorescent probe.
  7.  前記粉体の最大長さを測定した際の下限値が0.1μmであり、上限値が1.0μmである請求項1~6のいずれか一項に記載の蛍光プローブ。 The fluorescent probe according to any one of claims 1 to 6, wherein a lower limit when the maximum length of the powder is measured is 0.1 µm, and an upper limit is 1.0 µm.
  8.  希土類元素を含む化合物と、ガラス原料とを溶融する溶融工程と、
     前記溶融工程により得られた溶融物を冷却し、希土類元素のイオンを含むガラス組成物を作製する冷却工程と、
     前記ガラス組成物を破砕し、粉体を得る破砕工程と、を備えることを特徴とする蛍光プローブの製造方法。
    A melting step of melting a compound containing a rare earth element and a glass raw material;
    A cooling step of cooling the melt obtained by the melting step to produce a glass composition containing ions of rare earth elements;
    A crushing step of crushing the glass composition to obtain a powder, and a method for producing a fluorescent probe.
  9.  前記希土類元素を含む化合物が、Yb、Nd、Tm、Sm、Ho、Er、Dy及びPrから選ばれた希土類元素を含有する化合物から選ばれた少なくとも1種である請求項8に記載の蛍光プローブの製造方法。 The fluorescent probe according to claim 8, wherein the rare earth element-containing compound is at least one selected from compounds containing a rare earth element selected from Yb, Nd, Tm, Sm, Ho, Er, Dy, and Pr. Manufacturing method.
  10.  前記希土類元素を含む化合物が、酸化物である請求項8又は9に記載の蛍光プローブの製造方法。 The method for producing a fluorescent probe according to claim 8 or 9, wherein the compound containing the rare earth element is an oxide.
  11.  前記ガラス原料が、硼酸系ガラス、ゲルマン酸系ガラス、リン酸系ガラス及びフッ化物ガラスから選ばれた少なくとも1種を形成する化合物を含む請求項8~10のいずれか一項に記載の蛍光プローブの製造方法。 The fluorescent probe according to any one of claims 8 to 10, wherein the glass raw material contains a compound forming at least one selected from boric acid glass, germanic acid glass, phosphoric acid glass and fluoride glass. Manufacturing method.
  12.  前記溶融工程における温度が900℃~1350℃である請求項8~11のいずれか一項に記載の蛍光プローブの製造方法。 The method for producing a fluorescent probe according to any one of claims 8 to 11, wherein a temperature in the melting step is 900 ° C to 1350 ° C.
  13.  前記破砕工程において、乳棒及び乳鉢による破砕、並びに/又は、ボールミルによる破砕が行われる請求項8~12のいずれか一項に記載の蛍光プローブの製造方法。 The method for producing a fluorescent probe according to any one of claims 8 to 12, wherein in the crushing step, crushing with a pestle and mortar and / or crushing with a ball mill is performed.
PCT/JP2012/068111 2011-07-21 2012-07-17 Fluorescent probe and method for producing same WO2013011984A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013524724A JP6019535B2 (en) 2011-07-21 2012-07-17 Fluorescent probe and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011160261 2011-07-21
JP2011-160261 2011-07-21

Publications (1)

Publication Number Publication Date
WO2013011984A1 true WO2013011984A1 (en) 2013-01-24

Family

ID=47558161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068111 WO2013011984A1 (en) 2011-07-21 2012-07-17 Fluorescent probe and method for producing same

Country Status (2)

Country Link
JP (1) JP6019535B2 (en)
WO (1) WO2013011984A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162978A (en) * 2012-02-13 2013-08-22 Aichi Prefecture Detection system for detection target region
JP2014223033A (en) * 2013-05-16 2014-12-04 公益財団法人科学技術交流財団 Specific fungus detection method
JP2015086321A (en) * 2013-10-31 2015-05-07 独立行政法人産業技術総合研究所 Near infrared light-storing fluorescent material, near infrared light-storing fluorescent, and manufacturing method of near infrared light-storing fluorescent material
JP2015086327A (en) * 2013-10-31 2015-05-07 独立行政法人産業技術総合研究所 Stress luminescent material, stress illuminant and method of producing stress luminescent material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504419A (en) * 1999-07-16 2003-02-04 ブリストル−マイヤーズ スクイブ ファーマ カンパニー Targeted porous inorganic ultrasound contrast agents
JP2004107612A (en) * 2002-03-05 2004-04-08 Dainippon Printing Co Ltd Rare earth element-containing particulate and fluorescent probe using the same
JP2006522123A (en) * 2003-04-04 2006-09-28 バイオスフィア メディカル, インコーポレイテッド Microspheres containing therapeutic and diagnostic radioisotopes
JP2007230877A (en) * 2006-02-27 2007-09-13 Keio Gijuku Luminescent labeling reagent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504419A (en) * 1999-07-16 2003-02-04 ブリストル−マイヤーズ スクイブ ファーマ カンパニー Targeted porous inorganic ultrasound contrast agents
JP2004107612A (en) * 2002-03-05 2004-04-08 Dainippon Printing Co Ltd Rare earth element-containing particulate and fluorescent probe using the same
JP2006522123A (en) * 2003-04-04 2006-09-28 バイオスフィア メディカル, インコーポレイテッド Microspheres containing therapeutic and diagnostic radioisotopes
JP2007230877A (en) * 2006-02-27 2007-09-13 Keio Gijuku Luminescent labeling reagent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHINGO FUCHI ET AL.: "Yb'3+', Nd'3+' Kyotenka Bi203-kei Glass Keikotai no Kinsekigai Kotaiiki Hakko", PHOSPHOR RESEARCH SOCIETY KOEN YOKO, vol. 323, 2008, pages 7 - 16 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162978A (en) * 2012-02-13 2013-08-22 Aichi Prefecture Detection system for detection target region
JP2014223033A (en) * 2013-05-16 2014-12-04 公益財団法人科学技術交流財団 Specific fungus detection method
JP2015086321A (en) * 2013-10-31 2015-05-07 独立行政法人産業技術総合研究所 Near infrared light-storing fluorescent material, near infrared light-storing fluorescent, and manufacturing method of near infrared light-storing fluorescent material
JP2015086327A (en) * 2013-10-31 2015-05-07 独立行政法人産業技術総合研究所 Stress luminescent material, stress illuminant and method of producing stress luminescent material

Also Published As

Publication number Publication date
JPWO2013011984A1 (en) 2015-02-23
JP6019535B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
Huang et al. Designing next generation of persistent luminescence: recent advances in uniform persistent luminescence nanoparticles
Liang et al. Controlling persistent luminescence in nanocrystalline phosphors
Zhou et al. Near-infrared persistent phosphors: synthesis, design, and applications
Zhou et al. Impact of lanthanide nanomaterials on photonic devices and smart applications
Wang et al. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence
Damasco et al. Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF4 nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging
Suo et al. 808 nm light-triggered thermometer–heater upconverting platform based on Nd3+-sensitized yolk–shell GdOF@ SiO2
Viana et al. Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence
Singh Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications
Peng et al. Biodegradable inorganic upconversion nanocrystals for in vivo applications
Yin et al. Enhanced red emission from GdF3: Yb3+, Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging
Fritzen et al. Opportunities for persistent luminescent nanoparticles in luminescence imaging of biological systems and photodynamic therapy
Zhu et al. Enhancing upconversion luminescence of LiYF4: Yb, Er nanocrystals by Cd2+ doping and core–shell structure
Zhu et al. Zn3Ga2Ge2O10: Cr3+ uniform microspheres: template-free synthesis, tunable bandgap/trap depth, and in vivo rechargeable near-infrared-persistent luminescence
Wang et al. 1.18 Rare-earth doped upconversion nanophosphors
Kuang et al. Fine-tuning Ho-based red-upconversion luminescence by altering NaHoF4 core size and NaYbF4 shell thickness
Hao et al. Heterogeneous core/shell fluoride nanocrystals with enhanced upconversion photoluminescence for in vivo bioimaging
Zhao et al. Design of infrared-emitting rare earth doped nanoparticles and nanostructured composites
CN103865538A (en) A kind of Nd3+ sensitized up/down conversion dual-mode fluorescent nanomaterial and its synthesis method
Gao et al. Zinc germanate nanophosphors with persistent luminescence for multi-mode imaging of latent fingerprints
US20190292452A1 (en) Homogeneous persistent luminescence nanocrystals and methods of preparation and application thereof
Lu et al. Long-wavelength near-infrared divalent nickel-activated double-perovskite Ba2MgWO6 phosphor as imaging for human fingers
Jain et al. Rare-earth-doped Y3Al5O12 (YAG) nanophosphors: synthesis, surface functionalization, and applications in thermoluminescence dosimetry and nanomedicine
JP6019535B2 (en) Fluorescent probe and method for producing the same
Wang et al. Lanthanide-based near infrared nanomaterials for bioimaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524724

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814993

Country of ref document: EP

Kind code of ref document: A1