WO2013011906A1 - Battery-incorporating appliance and charging stand, and battery-incorporating appliance - Google Patents
Battery-incorporating appliance and charging stand, and battery-incorporating appliance Download PDFInfo
- Publication number
- WO2013011906A1 WO2013011906A1 PCT/JP2012/067766 JP2012067766W WO2013011906A1 WO 2013011906 A1 WO2013011906 A1 WO 2013011906A1 JP 2012067766 W JP2012067766 W JP 2012067766W WO 2013011906 A1 WO2013011906 A1 WO 2013011906A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- battery
- coil
- full
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/20—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
- H02H3/202—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage for dc systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/04—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
- H02H9/041—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00302—Overcharge protection
Definitions
- the present invention relates to a battery built-in device such as a battery pack or a mobile phone, a charging stand that conveys electric power to the battery built-in device by electromagnetic induction and charges the built-in battery of the battery built-in device, and a battery built-in device.
- a charging stand has been developed that carries power from the power transmission coil to the power receiving coil by the action of electromagnetic induction and charges the internal battery. (See Patent Document 1)
- Patent Document 1 describes a structure in which a power transmission coil that is excited by an AC power source is built in a charging stand, and a power receiving coil that is electromagnetically coupled to the power transmission coil is built in a battery pack. Further, the battery pack includes a circuit for rectifying the alternating current induced in the power receiving coil and supplying the rectified current to the internal battery for charging. According to this structure, the battery pack can be charged in a non-contact state by placing the battery pack on the charging stand.
- the above charging system converts the alternating current induced in the power receiving coil into direct current that can charge the built-in battery by rectifying with a rectifier circuit.
- a rectifier circuit a bridge circuit of a rectifier element such as a diode is used.
- the diode bridge circuit has a problem of heat generation due to the rectifying element.
- the diode bridge uses a diode having a low breakdown voltage, and can reduce heat generation by reducing the on-resistance.
- a diode with a low withstand voltage has a drawback that voltage breakdown occurs when an excessive voltage is input from the power receiving coil. This state occurs when the user mistakenly places the battery built-in device on a high-output power transmission coil like an IH cooker. In this state, an extremely high AC voltage is induced from the high-output power transmission coil to the power reception coil, and the low breakdown voltage diode that constitutes the rectifier circuit is broken down.
- the heat generated by the rectifier circuit can be reduced by reducing the voltage drop across the rectifier element.
- a synchronous rectifier circuit that uses a semiconductor switching element such as an FET as the rectifier element can further reduce the heat generation of the FET, which is a rectifier element, as compared to a rectifier circuit of a diode having a low withstand voltage.
- the synchronous rectification circuit rectifies the alternating current in the same manner as the diode bridge circuit by controlling on and off the FET connected to the bridge in synchronization with the alternating current induced in the power receiving coil.
- the synchronous rectifier circuit can reduce heat generation because the on-resistance of the FET as a rectifier is smaller than that of the diode.
- the synchronous rectifier circuit can also reduce the on-resistance by lowering the withstand voltage of the FET, which is the rectifier element, in the same way as the diode bridge.
- the rectifying circuit of the rectifying element having a low withstand voltage is not limited to the case where an excessive voltage is induced from the power transmission coil of the IH cooker to the power receiving coil.
- the rectifier circuit breaks beyond its withstand voltage. This is because when the rectifier circuit is unloaded, the voltage input from the power receiving coil to the rectifier circuit increases. This state occurs, for example, in a state where the control of the charging stand fails and does not operate normally. That is, even though the built-in battery is fully charged and a signal to stop charging is transmitted from the battery built-in device to the charging stand, the protection circuit is activated when the power transmission coil is in an excited state, Occurs when the internal battery is open.
- Patent Document 2 also describes the use of a relay for a short circuit, but not only does the relay have a higher component cost than a semiconductor switching element, but also has a large time delay for switching on, so synchronous rectification. There is a disadvantage that an excessive voltage of the circuit cannot be quickly prevented. In addition, since the relay physically moves the contact and switches on and off, the life is shorter than that of the semiconductor switching element, and it is difficult to increase the reliability so as not to break down for a long time.
- the present invention has been developed for the purpose of solving this drawback, and has a very simple circuit configuration while reducing the heat generation of the rectifier circuit, and uses an inexpensive semiconductor switching element to provide a rectifier circuit.
- An object of the present invention is to provide a battery built-in device, a charging stand, and a battery built-in device capable of effectively preventing a failure due to a breakdown voltage abnormality of a rectifying element used.
- the battery built-in device and the charging stand according to the present invention include the charging stand 10 including the power transmission coil 11 and the battery built-in device 50 including the power receiving coil 51 electromagnetically coupled to the power transmission coil 11.
- the built-in battery 52 of the battery built-in device 50 is charged with the power conveyed to 51.
- the battery built-in device 50 includes a full-wave rectifier circuit 53 that rectifies the alternating current induced by the power receiving coil 51, a charging circuit 54 that charges the built-in battery 52 of the battery built-in device 50 with the output of the full-wave rectifier circuit 53, In some cases, the output side of the full-wave rectifier circuit 53 is short-circuited and a short-circuit circuit 70 including a semiconductor switching element 71 that protects the semiconductor element of the full-wave rectifier circuit 53 is provided.
- the above-mentioned battery built-in equipment has an extremely simple circuit configuration while reducing the heat generation of the full-wave rectifier circuit, and uses an inexpensive semiconductor switching element, resulting in an abnormal breakdown voltage of the rectifier element used in the full-wave rectifier circuit. Realize features that can effectively prevent failures.
- the above-mentioned battery built-in device connects a short circuit consisting of a semiconductor switching element to the output side of the full-wave rectifier circuit, and switches on this semiconductor switching element in the event of an abnormality to short-circuit the output side of the full-wave rectifier circuit. Because it does.
- the semiconductor switching element of the short circuit short-circuits the output side of the full-wave rectifier circuit only in a state where electricity is supplied only from the plus side to the minus side, that is, a state where electricity is supplied in one direction. While the semiconductor switching element is short-circuited in a state where current flows in one direction, the output side of the power receiving coil short-circuits the current flowing in both directions. This is because the full-wave rectifier circuit alternately switches the AC voltage induced on the output side of the power receiving coil and energizes in one direction.
- the short-circuit can short-circuit only the current flowing in one direction while short-circuiting the AC voltage induced in the power receiving coil in both directions, thereby preventing a high voltage from being supplied to the full-wave rectifier circuit. For this reason, the characteristic which can prevent reliably destruction by the pressure
- the full-wave rectifier circuit 53 can be replaced with a synchronous full-wave rectifier circuit 53X.
- the full-wave rectifier circuit is a synchronous full-wave rectifier circuit that uses a semiconductor switching element such as an FET. Therefore, the on-resistance of the rectifier element can be further reduced to reduce heat generation.
- the battery built-in device and the charging stand according to the present invention are provided with an output switch 79 that is turned off at the time of abnormality and turned on at the time of abnormality on the output side of the full-wave rectifier circuit 53.
- the output side of the wave rectifier circuit 53 can be disconnected from the load 69.
- the output switch of the full-wave rectifier circuit is disconnected from the load built-in battery at the time of abnormality, so that charging of the built-in battery can be stopped at the time of abnormality to improve safety.
- the short circuit 70 can short-circuit the output side of the full-wave rectifier circuit 53 with the semiconductor switching element 71 via the short-circuit resistor 72. Since the above-mentioned battery built-in device can limit the short-circuit current with the electric resistance of the short-circuit resistance, it has a feature that the semiconductor switching element of the short-circuit can be protected from a large short-circuit current.
- the battery built-in device and the charging stand according to the present invention include a PTC 59 connected in series with the power receiving coil 51.
- the PTC 59 trips and full-wave rectification is performed from the power receiving coil 51.
- the voltage supply to the circuit 53 can be cut off.
- the PTC trips and the current in the power receiving coil is substantially reduced. Shut off.
- the battery built-in device can be a battery pack.
- the battery built-in device of the present invention has a built-in battery 52 that can be charged and a power receiving coil 51 that is electromagnetically coupled to the power transmitting coil 11 provided in the charging stand 10, and carries power from the power transmitting coil 11 to the power receiving coil 51.
- the built-in battery 52 is charged with the generated electric power.
- the battery built-in device includes a full-wave rectifier circuit 53 that rectifies the alternating current induced in the power receiving coil 51, a charging circuit 54 that charges the built-in battery 52 with the output of the full-wave rectifier circuit 53, and a full-wave rectifier circuit 53 in an abnormal state.
- a short circuit 70 composed of a semiconductor switching element 71 that protects the semiconductor element of the full-wave rectifier circuit 53 by short-circuiting the output side.
- the full-wave rectifier circuit 53 can be a synchronous full-wave rectifier circuit 53X.
- the battery built-in device of the present invention is provided with an output switch 79 on the output side of the full-wave rectifier circuit 53 that is turned off in the event of an abnormality and turned on in the normal state.
- the output side of the circuit 53 can be disconnected from the load 69.
- the short circuit 70 can short-circuit the output side of the full-wave rectifier circuit 53 with the semiconductor switching element 71 via the short-circuit resistor 72.
- the battery built-in device of the present invention includes a PTC 59 that is connected in series with the power receiving coil 51, and when abnormal power is supplied to the power receiving coil 51, the PTC 59 trips to the full-wave rectifier circuit 53 from the power receiving coil 51.
- the power supply can be cut off.
- the battery built-in device can be a battery pack.
- the charging stand 10 places the battery built-in device 50 on the charging stand 10 and charges the built-in battery 52 of the battery built-in device 50 by electromagnetic induction.
- the battery built-in device 50 includes a power receiving coil 51 that is electromagnetically coupled to the power transmitting coil 11.
- a built-in battery 52 that is charged with electric power induced in the power receiving coil 51 is incorporated.
- the battery built-in device 50 may be a battery pack.
- FIG. 9 shows a block circuit diagram of the battery built-in device 50.
- the battery built-in device 50 includes a full-wave rectifier circuit 53 that rectifies the alternating current induced in the power receiving coil 51, a charging circuit 54 that charges the built-in battery 52 of the battery built-in device 50 with the output of the full-wave rectifier circuit 53, A short circuit 70 for short-circuiting the output side of the full-wave rectifier circuit 53 in the event of an abnormality is provided.
- the full-wave rectifier circuit 53 rectifies the alternating current induced in the power receiving coil 51 and outputs it to the charging circuit 54.
- the battery built-in device 50 shown in the figure has a series capacitor 55 connected between the power receiving coil 51 and the full-wave rectifier circuit 53, and the full-wave rectifier circuit converts the alternating current induced in the power receiving coil 51 through the series capacitor 55. 53.
- the series capacitor 55 forms a series resonance circuit with the power receiving coil 51, and efficiently inputs alternating current induced in the power receiving coil 51 to the full-wave rectifier circuit 53. Therefore, the capacitance of the series capacitor 55 is set to be close to the frequency of the alternating current induced by the inductance of the power receiving coil 51.
- an electrolytic capacitor 58 that smoothes the pulsating current output from the full-wave rectifier circuit 53 is connected to the output side of the full-wave rectifier circuit 53.
- the full-wave rectifier circuit 53 includes a rectifier element 61 that rectifies the alternating current input from the power receiving coil 51.
- the full-wave rectifier circuit 53 shown in FIG. 9 is a synchronous full-wave rectifier circuit 53X that uses an FET as the rectifier element 61.
- the synchronous full-wave rectifier circuit 53X in which the rectifier element 61 is a semiconductor switching element such as an FET has a feature that the on-resistance of the rectifier element can be reduced to reduce heat generation.
- the full-wave rectifier circuit can use a diode as a rectifier element, and can use all semiconductor elements developed in the future.
- the synchronous full-wave rectifier circuit 53X is already on the market as an integrated circuit (IC).
- the synchronous full-wave rectifier circuit 53X includes an FET bridge circuit 60 formed by connecting FETs 63, 64, 65, and 66, which are four rectifier elements 61, to the bridge, and the FET bridge circuit 60. And a switching circuit 62 that controls on / off of the FETs 63, 64, 65, and 66 constituting the circuit.
- two P-channel FETs 63, 65 and two N-channel FETs 64, 66 are connected to a bridge, and these FETs 63, 64, 65, 66 are separated by a switching circuit 62. Control on and off.
- the FET bridge circuit 60 connects in parallel a series circuit formed by connecting two FETs 63 and 65 in series and a series circuit formed by connecting two FETs 64 and 66 in series.
- the four FETs 63, 64, 65, 66 constituting the FET bridge circuit 60 are controlled to be turned on / off by the switching circuit 62.
- the switching circuit 62 switches the four FETs 63, 64, 65, 66 constituting the FET bridge circuit 60 on and off in synchronization with the alternating current induced in the power receiving coil 51, and always receives the positive side of the electrolytic capacitor 58.
- the positive side of the coil 51 and the negative side of the electrolytic capacitor 58 are always connected to the negative side of the power receiving coil 51. In the power receiving coil 51, plus and minus on the output side change with the frequency of the power transmitting coil 11.
- the switching circuit 62 turns on the two FETs 63 and 66 so that current flows as shown by the solid line arrow in FIG. 9 at the timing when the series capacitor 55 side of the power receiving coil 51 becomes positive.
- the FETs 64 and 65 are turned off.
- the P-channel FET 63 on the upper left column and the N-channel FET 66 on the lower right column are switched on, the other FETs 64 and 65 are turned off, and current is supplied as shown by the solid line.
- the two FETs 64 and 65 are turned on and the other FETs 63 and 66 are turned off so that a current flows as shown by a chain line arrow in FIG.
- the P-channel FET 65 on the lower left column and the N-channel FET 64 on the upper right column are switched on, the other FETs 63 and 66 are turned off, and current is supplied as shown by the chain line. Since both ends of the power receiving coil 51 are switched between positive and negative at the frequency of the power transmitting coil 11, the switching circuit 62 detects the positive and negative of the power receiving coil 51 and turns on and off the FETs 63, 64, 65, and 66. Switch to.
- the short circuit 70 shorts the output side of the full wave rectifier circuit 53.
- the short circuit 70 in FIG. 9 connects a series circuit of a short circuit resistor 72 and a semiconductor switching element 71 between the plus side and the minus side on the output side of the full-wave rectifier circuit 53.
- the short circuit 70 turns on the semiconductor switching element 71 in an abnormal state and shorts the plus side and the minus side on the output side of the full-wave rectifier circuit 53 via the short-circuit resistor 72.
- the semiconductor switching element 71 is an FET. However, a semiconductor switching element such as a transistor or a thyristor can also be used as the semiconductor switching element.
- the short circuit 70 in which the short-circuit resistor 72 is connected in series to the semiconductor switching element 71 can limit the short-circuit current with the short-circuit resistance 72 in the ON state of the semiconductor switching element 71.
- the short-circuit resistor 72 can increase the electric resistance to reduce the short-circuit current, and reduce the electric resistance to quickly short-circuit the output side of the full-wave rectifier circuit 53.
- the full-wave rectifier circuit 53 has a smoothing electrolytic capacitor 58 connected to the output side. Therefore, the semiconductor switching element 71 of the short circuit 70 discharges the electrolytic capacitor 58 in the ON state. Since the electrolytic capacitor 58 has a large capacity, a large short current flows instantaneously.
- the short circuit 70 in which the short-circuit resistors 72 are connected in series limits the short-circuit current that discharges the electrolytic capacitor 58 with the short-circuit resistors 72.
- the short-circuit resistor 72 that limits the short-circuit current is set to an electrical resistance that restricts the short-circuit current to be smaller than the maximum current allowed for the semiconductor switching device 71 when the semiconductor switching device 71 is in the ON state. However, if the electrical resistance of the short-circuit resistor 72 is large, it takes time to discharge the electrolytic capacitor 58. Therefore, the electrical resistance of the short-circuit resistor 72 is set to an electrical resistance that can quickly discharge the electrolytic capacitor 58.
- the short circuit does not necessarily need to connect a short circuit resistor in series with the semiconductor switching element. This is because semiconductor switching elements such as FETs and transistors can control the internal resistance by controlling the gate voltage and base current. This semiconductor switching element can limit the short-circuit current for discharging the electrolytic capacitor by controlling the internal resistance.
- the short circuit that controls the internal resistance to limit the short-circuit current increases the power loss of the semiconductor switching element due to the power loss proportional to the square of the internal resistance and current. Need to use.
- the short circuit 70 in which the short-circuit resistor 72 is connected in series with the semiconductor switching element 71 can short-circuit the output side of the full-wave rectifier circuit 53 by turning on / off the semiconductor switching element 71, that is, without controlling the internal resistance.
- the power loss in the ON state of the semiconductor switching element 71 that is, heat generation can be consumed by the short-circuit resistor 72. Therefore, while using an inexpensive element having a small power capacity for the semiconductor switching element 71, the short-circuit current can be limited and the heat generation of the semiconductor switching element 71 can be reduced.
- the short circuit 70 includes a detection unit 73 that detects an abnormal time when an excessive voltage acts on the rectifying element 61 of the full-wave rectifying circuit 53 and controls the semiconductor switching element 71.
- the detecting unit 73 turns on the FET of the semiconductor switching element 71 in an on state and normally turns it off when an abnormality occurs.
- the semiconductor switching element 71 in the on state shorts the output side of the full-wave rectifier circuit 53 and reduces the output power of the full-wave rectifier circuit 53 to less than the withstand voltage.
- the power transfer from the charging stand 10 cannot be stopped or the battery built-in device 50 is electromagnetically cooked.
- This is a state in which abnormal power is induced in the power receiving coil 51 by being placed on a device (IH) or the like.
- the state in which the charging of the built-in battery 52 is stopped and the power transfer from the charging stand 10 cannot be stopped is, for example, despite the fact that the charging stop signal is transmitted from the battery built-in device 50 to the charging stand 10. Occurs in a state where the supply of AC power to the power transmission coil 11 cannot be stopped.
- the charging stand 10 fails and power is transferred while the charging of the built-in battery 52 is stopped, the protection circuit on the battery side is activated and disconnected, and the full-wave rectifier circuit 53 becomes unloaded.
- the output voltage becomes abnormally high.
- the battery built-in device 50 is placed on an electromagnetic cooker or the like, the power transferred to the power receiving coil 51 becomes extremely large, the induced voltage of the power receiving coil 51 becomes higher than a specified value, and the full-wave rectifier circuit. 53 input voltage becomes abnormally high.
- the synchronous full-wave rectifier circuit 53 ⁇ / b> X includes four rectifier elements 61, FETs 63, 64, 65, and 66.
- the FETs 63, 64, 65, and 66 use FETs with low on-resistance in order to reduce the power loss of the synchronous full-wave rectifier circuit 53X. If the power loss of the synchronous full-wave rectifier circuit 53X is large, the amount of heat generated by the battery built-in device 50 increases when the built-in battery 52 is charged, and this heat generation causes failure or deterioration of the built-in electronic components and the built-in battery 52. It is a cause.
- the on-resistance of the FETs 63, 64, 65, 66 can be reduced by lowering the breakdown voltage. For example, an FET having a breakdown voltage of 20V has an on-resistance of about 400 m ⁇ , whereas an FET having the same chip area and a breakdown voltage of 5V can have an on-resistance of about
- the FETs 63, 64, 65, 66 which are the rectifying elements 61 of the synchronous full-wave rectifier circuit 53X, are in a state where a load is connected to the power receiving coil 51, that is, a state where the built-in battery 52 is charged with the power of the power receiving coil 51.
- the withstand voltage FET that can withstand in this state causes breakdown due to breakdown withstand voltage when the receiving coil 51 is unloaded and the dielectric voltage increases.
- the battery built-in device 50 of FIG. 9 includes a short circuit 70 that prevents a failure due to a withstand voltage of the FETs 63, 64, 65, and 66 that are the rectifying elements 61 of the synchronous full-wave rectifying circuit 53X.
- the short-circuit 70 shorts the output side of the full-wave rectifier circuit 53 and lowers the voltage applied to the semiconductor switching element 71 when the input voltage of the full-wave rectifier circuit 53 increases in the above-described state.
- the output side of the full-wave rectifier circuit 53 is short-circuited, the output voltage of the full-wave rectifier circuit 53 falls below the withstand voltage. Furthermore, in this state, the voltage of the AC output of the power receiving coil 51 also decreases.
- the semiconductor switching element 71 of the short circuit 70 is turned on, the output side of the full-wave rectifier circuit 53 is short-circuited, and the voltage applied to the FET of the rectifier element 61 is considerably reduced. A failure due to an excessive voltage of the FET 61 can be prevented.
- the detection unit 73 detects an input voltage or an output voltage of the full-wave rectifier circuit 53. When the detected voltage becomes higher than a preset voltage, the semiconductor switching element 71 is switched on to turn on the full-wave rectifier circuit 53. Short-circuit the output side. Further, the detection unit 73 detects the input current or the output current of the full-wave rectifier circuit 53, and when the detected current becomes larger than a preset set current, the semiconductor switching element 71 is switched to the on state to perform full-wave rectification. The output side of the circuit 53 can be short-circuited.
- the detection unit 73 shown in the figure includes a voltage detection circuit 74 that detects an input voltage of the full-wave rectifier circuit 53, in other words, an output voltage of the power receiving coil 51, and an input current of the full-wave rectifier circuit 53, that is, an output of the power receiving coil 51.
- a current detection circuit 75 for detecting a current and a control unit 76 for controlling the switching element 71 on and off based on these detection voltages or detection currents are provided.
- the voltage detection circuit 74 shown in the figure detects the input voltage of the full-wave rectification circuit 53 and inputs the detected voltage to the control unit 76. Although not shown, the voltage detection circuit can detect the output voltage of the full-wave rectification circuit and input it to the control unit. Furthermore, the current detection circuit 75 in the figure detects the input current of the full-wave rectification circuit 53 and outputs the detected detection current to the control unit 76. Although not shown, the current detection circuit can detect the output current of the full-wave rectifier circuit and input it to the control unit.
- the battery built-in device that detects the output current of the full-wave rectifier circuit by the current detection circuit has a feature that the charging of the internal battery that is internally short-circuited can be stopped to improve safety.
- the control unit 76 compares the detection voltage input from the voltage detection circuit 74 with the set voltage, compares the detection current input from the current detection circuit 75 with the set current, and selects either the detection voltage or the detection current. Or both are larger than the set value, the semiconductor switching element 71 is switched to the ON state.
- the control unit 76 shown in the figure includes a latching circuit 77 that holds the semiconductor switching element 71 switched to the on state in an on state, and a limiter circuit 78 that releases the latching circuit 77.
- the latching circuit 77 prevents the semiconductor switching element 71 switched to the on state from being immediately switched to the off state, and holds the semiconductor switching element 71 in the on state.
- the latching circuit 77 switches the semiconductor switching element 71 from the on state to the off state.
- the limiter circuit 78 detects that the detection current input from the current detection circuit 75 has become smaller than a preset second setting current, and inputs a release signal to the latching circuit 77.
- the second set current can be made equal to or smaller than the set current that is a threshold value for switching the semiconductor switching element 71 to the ON state.
- the second set current can be set to 0, for example.
- the state where the semiconductor switching element 71 is switched on is an abnormal state where an excessive voltage acts on the rectifying element 61 of the full-wave rectifying circuit 53.
- the semiconductor switching element 71 is kept until the induction current does not flow through the power receiving coil 51, that is, until the power receiving coil 51 is sufficiently separated from the power transmitting coil 11.
- the limiter circuit 78 preferably detects that the output current of the power receiving coil 51 becomes 0 or becomes smaller than the second set current after a predetermined time has elapsed, and the release signal is latched by the latching circuit 77. To enter.
- the limiter circuit includes a timer, and can input a release signal to the latching circuit when a predetermined time elapses to return the semiconductor switching element to the OFF state.
- the limiter circuit may be a limiter switch (not shown).
- This limiter switch can be provided in a battery built-in device as an external switch operated by a user. In this battery built-in device, the detection unit detects a voltage abnormality in the full-wave rectifier circuit, switches on the semiconductor switching element and shorts the output side of the full-wave rectifier circuit, and then the user turns on the limiter switch that is an external switch. By operating, the release signal is input to the latching circuit, and the semiconductor switching element is switched to the off state.
- the battery built-in device 50 of FIG. 9 is provided with an output switch 79 on the output side of the full-wave rectifier circuit 53 that is turned off when abnormal and turned on when normal.
- the built-in battery 52 is connected via the output switch 79. Charge.
- the output switch 79 is switched off in the event of an abnormality, disconnects the output side of the full-wave rectifier circuit 53 from the load, and stops charging the built-in battery 52.
- the battery built-in device 50 in FIG. 9 controls both the output switch 79 and the semiconductor switching element 71 of the short circuit 70 to be turned on / off by the detection unit 73.
- the detection unit 73 turns on the output switch 79 in a state where the semiconductor switching element 71 of the short circuit 70 is turned on, that is, when the output switch 79 is turned off during an abnormality and the semiconductor switching element 71 of the short circuit 70 is turned off.
- the built-in battery 52 is charged with the output of the full-wave rectifier circuit 53 as a state.
- the output switch 79 is turned off at the time of abnormality, and the output side of the full-wave rectifier circuit 53 is disconnected from the built-in battery 52 as a load.
- the full-wave rectifier circuit 53 is an FET synchronous rectifier circuit, the heat generation of the full-wave rectifier circuit 53 can be remarkably reduced.
- the battery built-in device of the present invention can also realize a full-wave rectifier circuit with a diode bridge.
- the diode bridge can use an element having a low withstand voltage to reduce the on-resistance and reduce heat generation.
- a diode with a low breakdown voltage fails at a high voltage, at the time of abnormality, the output side of the full-wave rectifier circuit can be short-circuited by a short circuit to prevent a failure due to an excessive voltage of the rectifier element.
- FIG. 8 and FIG. 9 further includes a PTC 59 connected in series with the power receiving coil 51.
- the PTC 59 has a small electric resistance in a normal normal state, but trips when an excessive current flows and the temperature rises to a predetermined temperature, and the electric resistance is remarkably increased to substantially cut off the current of the power receiving coil 51. .
- the PTC 59 trips and cuts off the current in the power receiving coil 51. .
- the PTC 59 returns and the electrical resistance decreases. For this reason, it can remove from an electromagnetic cooker, can be set in the charging stand 10 again, and the internal battery 52 can be charged.
- the battery built-in device 50 turns off the short circuit 70 under normal conditions, rectifies the alternating current induced in the power receiving coil 51 by the synchronous full-wave rectifier circuit 53X, smoothes it by the electrolytic capacitor 58, and is used for charging the built-in battery 52. Is done.
- the direct current output from the synchronous full-wave rectifier circuit 53X is controlled by the charging circuit 54 to charge the built-in battery 52.
- the charging circuit 54 detects the full charge of the built-in battery 52 and stops charging.
- a charging circuit 54 for charging the built-in battery 52 of the lithium ion battery fully charges the built-in battery 52 by performing constant voltage / constant current charging.
- the charging circuit for charging the internal battery of the nickel metal hydride battery fully charges the internal battery by constant current charging.
- the charging stand 10 includes a power transmission coil 11 that is connected to an AC power source 12 and induces an electromotive force in the power receiving coil 51.
- a case 20 having an upper surface plate 21 on which the device 50 is placed, a moving mechanism 13 that is built in the case 20 and moves the power transmission coil 11 along the inner surface of the upper surface plate 21, and a battery built-in device 50 that is placed on the upper surface plate 21.
- a position detection controller 14 for controlling the moving mechanism 13 to bring the power transmission coil 11 closer to the power reception coil 51 of the battery built-in device 50.
- the charging stand 10 includes a power transmission coil 11, an AC power source 12, a moving mechanism 13, and a position detection controller 14 in a case 20.
- the charging stand 10 charges the built-in battery 52 of the battery built-in device 50 by the following operation.
- the position detection controller 14 detects the position of the battery built-in device 50.
- the position detection controller 14 that has detected the position of the battery built-in device 50 controls the moving mechanism 13 to move the power transmission coil 11 along the upper surface plate 21 with the moving mechanism 13, thereby Approach the power receiving coil 51.
- the power transmission coil 11 approaching the power reception coil 51 is electromagnetically coupled to the power reception coil 51 and carries AC power to the power reception coil 51.
- the battery built-in device 50 rectifies the AC power of the power receiving coil 51 and converts it into direct current, and charges the built-in battery 52 with this direct current.
- the charging stand 10 that charges the built-in battery 52 of the battery built-in device 50 by the above operation has the power transmission coil 11 connected to the AC power supply 12 built in the case 20.
- the power transmission coil 11 is disposed under the upper surface plate 21 of the case 20 so as to move along the upper surface plate 21.
- the efficiency of power transfer from the power transmission coil 11 to the power reception coil 51 can be improved by narrowing the interval between the power transmission coil 11 and the power reception coil 51.
- the distance between the power transmission coil 11 and the power reception coil 51 is set to 7 mm or less while the power transmission coil 11 is approaching the power reception coil 51. Therefore, the power transmission coil 11 is disposed below the top plate 21 and as close to the top plate 21 as possible. Since the power transmission coil 11 moves so as to approach the power reception coil 51 of the battery built-in device 50 placed on the upper surface plate 21, the power transmission coil 11 is disposed so as to be movable along the lower surface of the upper surface plate 21.
- the case 20 containing the power transmission coil 11 is provided with a flat top plate 21 on which the battery built-in device 50 is placed on the top surface.
- the charging stand 10 in FIGS. 2 and 3 is disposed horizontally with the entire top plate 21 as a flat surface.
- the upper surface plate 21 has such a size that various battery-equipped devices 50 having different sizes and outer shapes can be placed thereon, for example, a quadrangle having one side of 5 cm to 30 cm.
- the top plate may be circular with a diameter of 5 to 30 cm.
- the charging stand 10 of FIGS. 2 and 3 is built in such a manner that the upper plate 21 is enlarged, that is, a size capable of mounting a plurality of battery built-in devices 50 at the same time.
- the built-in battery 52 can be charged in order.
- the top plate can be equipped with a peripheral wall around it, and a battery built-in device can be set inside the peripheral wall to charge the built-in battery.
- the power transmission coil 11 is wound in a spiral shape on a surface parallel to the upper surface plate 21 and radiates an alternating magnetic flux above the upper surface plate 21.
- the power transmission coil 11 radiates an alternating magnetic flux orthogonal to the upper surface plate 21 above the upper surface plate 21.
- the power transmission coil 11 is supplied with AC power from the AC power source 12 and radiates AC magnetic flux above the upper surface plate 21.
- the power transmission coil 11 can increase the inductance by winding a wire around a core 15 made of a magnetic material.
- the core 15 is made of a magnetic material such as ferrite having a high magnetic permeability, and has a bowl shape that opens upward.
- the bowl-shaped core 15 has a shape in which a columnar portion 15A disposed at the center of a power transmission coil 11 wound in a spiral shape and a cylindrical portion 15B disposed on the outside are connected at the bottom.
- the power transmission coil 11 having the core 15 can concentrate the magnetic flux to a specific portion and efficiently transmit power to the power reception coil 51.
- the power transmission coil does not necessarily need to be provided with a core, and may be an air-core coil. Since the air-core coil is light, a moving mechanism for moving it on the inner surface of the upper plate can be simplified.
- the power transmission coil 11 is substantially equal to the outer diameter of the power reception coil 51 and efficiently conveys power to the power reception coil 51.
- the AC power supply 12 supplies, for example, high frequency power of 20 kHz to several MHz to the power transmission coil 11.
- the AC power supply 12 is connected to the power transmission coil 11 via a flexible lead wire 16. This is because the power transmission coil 11 is moved so as to approach the power reception coil 51 of the battery built-in device 50 placed on the upper surface plate 21.
- the AC power source 12 includes a self-excited oscillation circuit and a power amplifier that amplifies the AC output from the oscillation circuit.
- the self-excited oscillation circuit uses the power transmission coil 11 in combination with the oscillation coil. Therefore, the oscillation frequency of this oscillation circuit changes due to the inductance of the power transmission coil 11.
- the inductance of the power transmission coil 11 changes at the relative position between the power transmission coil 11 and the power reception coil 51. This is because the mutual inductance between the power transmission coil 11 and the power reception coil 51 changes at the relative position between the power transmission coil 11 and the power reception coil 51. Therefore, the self-excited oscillation circuit that uses the power transmission coil 11 as the oscillation coil changes as the AC power supply 12 approaches the power reception coil 51. For this reason, the self-excited oscillation circuit can detect the relative position between the power transmission coil 11 and the power reception coil 51 by a change in the oscillation frequency, and can be used together with the position detection controller 14.
- the power transmission coil 11 is moved by the moving mechanism 13 so as to approach the power reception coil 51.
- the moving mechanism 13 shown in FIGS. 3 to 6 moves the power transmission coil 11 along the top plate 21 in the X-axis direction and the Y-axis direction to approach the power receiving coil 51.
- the moving mechanism 13 shown in the figure rotates the screw rod 23 by the servo motor 22 controlled by the position detection controller 14 to move the nut member 24 screwed into the screw rod 23, and the power transmission coil 11 is moved to the power receiving coil 51.
- the servo motor 22 includes an X-axis servo motor 22A that moves the power transmission coil 11 in the X-axis direction, and a Y-axis servo motor 22B that moves the Y-axis direction.
- the screw rod 23 includes a pair of X-axis screw rods 23A that move the power transmission coil 11 in the X-axis direction, and a Y-axis screw rod 23B that moves the power transmission coil 11 in the Y-axis direction.
- the pair of X-axis screw rods 23A are arranged in parallel to each other, driven by the belt 25, and rotated together by the X-axis servomotor 22A.
- the nut member 24 includes a pair of X-axis nut members 24A screwed into the respective X-axis screw rods 23A, and a Y-axis nut member 24B screwed into the Y-axis screw rods 23B.
- the Y-axis screw rod 23B is coupled so that both ends thereof can be rotated to a pair of X-axis nut members 24A.
- the power transmission coil 11 is connected to the Y-axis nut member 24B.
- the moving mechanism 13 shown in the figure has a guide rod 26 disposed in parallel with the Y-axis screw rod 23B in order to move the power transmission coil 11 in the Y-axis direction in a horizontal posture. Both ends of the guide rod 26 are connected to the pair of X-axis nut members 24A and move together with the pair of X-axis nut members 24A. The guide rod 26 penetrates the guide portion 27 coupled to the power transmission coil 11 so that the power transmission coil 11 can be moved along the guide rod 26 in the Y-axis direction.
- the power transmission coil 11 moves in the Y-axis direction in a horizontal posture via the Y-axis nut member 24 ⁇ / b> B and the guide portion 27 that move along the Y-axis screw rod 23 ⁇ / b> B and the guide rod 26 arranged in parallel to each other. To do.
- the X-axis servo motor 22A rotates the X-axis screw rod 23A
- the pair of X-axis nut members 24A move along the X-axis screw rod 23A
- the Y-axis screw rod 23B and the guide rod 26 is moved in the X-axis direction.
- the Y-axis servo motor 22B rotates the Y-axis screw rod 23B
- the Y-axis nut member 24B moves along the Y-axis screw rod 23B, and moves the power transmission coil 11 in the Y-axis direction.
- the guide part 27 connected to the power transmission coil 11 moves along the guide rod 26 to move the power transmission coil 11 in the Y-axis direction in a horizontal posture.
- the rotation of the X-axis servomotor 22A and the Y-axis servomotor 22B can be controlled by the position detection controller 14, and the power transmission coil 11 can be moved in the X-axis direction and the Y-axis direction.
- the charging stand of the present invention does not specify the moving mechanism as the above mechanism. This is because any mechanism that can move the power transmission coil in the X-axis direction and the Y-axis direction can be used as the moving mechanism.
- the position detection controller 14 detects the position of the battery built-in device 50 placed on the top plate 21.
- the position detection controller 14 in FIGS. 3 to 6 detects the position of the power receiving coil 51 built in the battery built-in device 50, and causes the power transmitting coil 11 to approach the power receiving coil 51.
- the position detection controller 14 includes a first position detection controller 14A that roughly detects the position of the power receiving coil 51, and a second position detection controller 14B that precisely detects the position of the power receiving coil 51.
- the position detection controller 14 roughly detects the position of the power receiving coil 51 by the first position detection controller 14A, and controls the moving mechanism 13 to bring the position of the power transmitting coil 11 closer to the power receiving coil 51.
- the moving mechanism 13 is controlled while precisely detecting the position of the power receiving coil 51 by the second position detection controller 14B, so that the position of the power transmitting coil 11 is brought close to the power receiving coil 51 accurately.
- the charging stand 10 can bring the power transmission coil 11 close to the power reception coil 51 quickly and more accurately.
- the first position detection controller 14 ⁇ / b> A generates a plurality of position detection coils 30 fixed to the inner surface of the upper surface plate 21, and detection signal generation for supplying position detection signals to the position detection coils 30.
- a reception circuit 32 that receives an echo signal that is excited by a pulse supplied from the detection signal generation circuit 31 to the position detection coil 30 and is output from the power reception coil 51 to the position detection coil 30;
- an identification circuit 33 for determining the position of the power transmission coil 11 from the echo signal received.
- the position detection coil 30 is composed of a plurality of rows of coils, and the plurality of position detection coils 30 are fixed to the inner surface of the top plate 21 at predetermined intervals.
- the position detection coil 30 includes a plurality of X-axis detection coils 30A that detect the position of the power receiving coil 51 in the X-axis direction, and a plurality of Y-axis detection coils 30B that detect a position in the Y-axis direction.
- Each X-axis detection coil 30A has a loop shape elongated in the Y-axis direction, and the plurality of X-axis detection coils 30A are fixed to the inner surface of the upper surface plate 21 at a predetermined interval.
- the interval (d) between the adjacent X-axis detection coils 30A is smaller than the outer diameter (D) of the power receiving coil 51.
- the interval (d) between the X-axis detection coils 30A is equal to the outer diameter (D) of the power receiving coil 51. 1 times to 1/4 times.
- the X-axis detection coil 30A can accurately detect the position of the power receiving coil 51 in the X-axis direction by narrowing the interval (d).
- Each Y-axis detection coil 30B has a loop shape elongated in the X-axis direction, and the plurality of Y-axis detection coils 30B are fixed to the inner surface of the upper surface plate 21 at a predetermined interval.
- the interval (d) between the adjacent Y-axis detection coils 30B is also smaller than the outer diameter (D) of the power receiving coil 51, and preferably the interval (d) between the Y-axis detection coils 30B.
- the outer diameter (D) of the power receiving coil 51 is set to 1 to 1/4 times.
- the Y-axis detection coil 30B can also accurately detect the position of the power receiving coil 51 in the Y-axis direction by narrowing the interval (d).
- the detection signal generation circuit 31 outputs a pulse signal that is a position detection signal to the position detection coil 30 at a predetermined timing.
- the position detection coil 30 to which the position detection signal is input excites the power receiving coil 51 that approaches the position detection signal.
- the excited power receiving coil 51 outputs an echo signal to the position detection coil 30 with the energy of the flowing current. Therefore, as shown in FIG. 10, the position detection coil 30 near the power receiving coil 51 is guided by an echo signal from the power receiving coil 51 with a predetermined time delay after the position detection signal is input.
- the echo signal induced in the position detection coil 30 is output to the identification circuit 33 by the reception circuit 32. Therefore, the identification circuit 33 determines whether or not the power receiving coil 51 is approaching the position detection coil 30 with the echo signal input from the receiving circuit 32. When echo signals are induced in the plurality of position detection coils 30, the identification circuit 33 determines that the position detection coil 30 with the highest echo signal level is closest.
- the position detection controller 14 shown in FIG. 7 connects each position detection coil 30 to the reception circuit 32 via the switching circuit 34. Since the position detection controller 14 switches the inputs in order and connects them to the plurality of position detection coils 30, the single reception circuit 32 can detect the echo signals of the plurality of position detection coils 30. However, an echo signal can also be detected by connecting a receiving circuit to each position detection coil.
- the position detection controller 14 of FIG. 7 connects the plurality of position detection coils 30 in order with the switching circuit 34 controlled by the identification circuit 33 and connects to the reception circuit 32.
- the detection signal generation circuit 31 is connected to the output side of the switching circuit 34 and outputs a position detection signal to the position detection coil 30.
- the level of the position detection signal output from the detection signal generation circuit 31 to the position detection coil 30 is extremely higher than the echo signal from the power receiving coil 51.
- the receiving circuit 32 has a limiter circuit 35 made of a diode connected to the input side. The limiter circuit 35 limits the signal level of the position detection signal input from the detection signal generation circuit 31 to the reception circuit 32 and inputs the position detection signal to the reception circuit 32.
- An echo signal having a low signal level is input to the receiving circuit 32 without being limited.
- the receiving circuit 32 amplifies and outputs both the position detection signal and the echo signal.
- the echo signal output from the receiving circuit 32 is transmitted at a predetermined timing from the position detection signal, for example, several ⁇ s.
- the signal is delayed from ec to several hundred ⁇ sec. Since the delay time that the echo signal is delayed from the position detection signal is a fixed time, the signal after a predetermined delay time from the position detection signal is used as an echo signal, and the receiving coil 51 is connected to the position detection coil 30 from the level of this echo signal. Determine if you are approaching.
- the receiving circuit 32 is an amplifier that amplifies and outputs an echo signal input from the position detection coil 30.
- the receiving circuit 32 outputs a position detection signal and an echo signal.
- the identification circuit 33 determines whether or not the power reception coil 51 is set close to the position detection coil 30 from the position detection signal and the echo signal input from the reception circuit 32.
- the identification circuit 33 includes an A / D converter 36 that converts a signal input from the reception circuit 32 into a digital signal.
- the digital signal output from the A / D converter 36 is calculated to detect an echo signal.
- the identification circuit 33 detects a signal input after a specific delay time from the position detection signal as an echo signal, and further determines whether the power receiving coil 51 is approaching the position detection coil 30 from the level of the echo signal.
- the identification circuit 33 detects the position of the power receiving coil 51 in the X-axis direction by controlling the switching circuit 34 so that the plurality of X-axis detection coils 30A are sequentially connected to the receiving circuit 32.
- the identification circuit 33 outputs a position detection signal to the X-axis detection coil 30A connected to the identification circuit 33 every time each X-axis detection coil 30A is connected to the reception circuit 32, and a specific delay from the position detection signal. It is determined whether or not the power receiving coil 51 is approaching the X-axis detection coil 30A based on whether or not an echo signal is detected after the time.
- the identification circuit 33 connects all the X-axis detection coils 30A to the reception circuit 32, and determines whether or not the power reception coils 51 are close to the respective X-axis detection coils 30A.
- the identification circuit 33 can detect the position of the power receiving coil 51 in the X-axis direction from the X-axis detection coil 30A that can detect an echo signal.
- echo signals are detected from the plurality of X-axis detection coils 30A.
- the identification circuit 33 determines that it is closest to the X-axis detection coil 30A from which the strongest echo signal, that is, the echo signal having a high level is detected.
- the identification circuit 33 similarly controls the Y-axis detection coil 30B to detect the position of the power receiving coil 51 in the Y-axis direction.
- the identification circuit 33 controls the moving mechanism 13 from the detected X-axis direction and Y-axis direction to move the power transmission coil 11 to a position approaching the power reception coil 51.
- the identification circuit 33 controls the X-axis servomotor 22 ⁇ / b> A of the moving mechanism 13 to move the power transmission coil 11 to the position of the power reception coil 51 in the X-axis direction.
- the Y-axis servomotor 22B of the moving mechanism 13 is controlled to move the power transmission coil 11 to the position of the power reception coil 51 in the Y-axis direction.
- the first position detection controller 14 ⁇ / b> A moves the power transmission coil 11 to a position approaching the power reception coil 51.
- the charging stand of the present invention can charge the built-in battery 52 by transferring power from the power transmission coil 11 to the power receiving coil 51 after the power transmission coil 11 approaches the power receiving coil 51 by the first position detection controller 14A.
- the charging stand can further accurately control the position of the power transmission coil 11 to approach the power receiving coil 51 and then carry the power to charge the internal battery 52.
- the power transmission coil 11 is more accurately approached to the power reception coil 51 by the second position detection controller 14B.
- the second position detection controller 14B controls the moving mechanism 13 by accurately detecting the position of the power transmission coil 11 from the oscillation frequency of the self-excited oscillation circuit using the AC power supply 12 as a self-excited oscillation circuit.
- the second position detection controller 14B controls the X-axis servo motor 22A and the Y-axis servo motor 22B of the moving mechanism 13 to move the power transmission coil 11 in the X-axis direction and the Y-axis direction. Detect the oscillation frequency.
- FIG. 11 shows the characteristic that the oscillation frequency of the self-excited oscillation circuit changes. This figure shows the change of the oscillation frequency with respect to the relative displacement between the power transmission coil 11 and the power reception coil 51.
- the oscillation frequency of the self-excited oscillation circuit is highest at a position where the power transmission coil 11 is closest to the power reception coil 51, and the oscillation frequency is lowered as the relative position is shifted. Therefore, the second position detection controller 14B controls the X-axis servomotor 22A of the moving mechanism 13 to move the power transmission coil 11 in the X-axis direction, and stops at the position where the oscillation frequency becomes the highest.
- the Y-axis servo motor 22B is similarly controlled to move the power transmission coil 11 in the Y-axis direction and stop at the position where the oscillation frequency becomes the highest.
- the second position detection controller 14B can move the power transmission coil 11 to the position closest to the power reception coil 51 as described above.
- the position detection controller 44 includes a plurality of position detection coils 30 fixed to the inner surface of the upper surface plate, and a detection signal generation circuit 31 that supplies a position detection signal to the position detection coil 30.
- a receiving circuit 32 that receives an echo signal that is excited by a pulse supplied from the detection signal generation circuit 31 to the position detection coil 30 and that is output from the power reception coil 51 to the position detection coil 30, and the reception circuit 32 receives the echo signal.
- an identification circuit 43 for determining the position of the power transmission coil 11 from the echo signal. Further, the position detection controller 44 causes the discrimination circuit 43 to detect the level of the echo signal induced in each position detection coil 30 with respect to the position of the power reception coil 51, that is, as shown in FIG.
- the position detection controller 44 detects the level of the echo signal induced in each position detection coil 30, compares the level of the detected echo signal with the level of the echo signal stored in the storage circuit 47, and The position of the power receiving coil 51 is detected.
- the position detection controller 44 obtains the position of the power receiving coil 51 from the level of the echo signal induced in each position detection coil 30 as follows.
- the position detection coil 30 shown in FIG. 12 includes a plurality of X axis detection coils 30A that detect the position of the power receiving coil 51 in the X axis direction, and a plurality of Y axis detection coils 30B that detect the position in the Y axis direction.
- a plurality of position detection coils 30 are fixed to the inner surface of the upper surface plate 21 at a predetermined interval.
- Each X-axis detection coil 30A has an elongated loop shape in the Y-axis direction
- each Y-axis detection coil 30B has an elongated loop shape in the X-axis direction.
- FIG. 13 shows the level of the echo signal induced in the X-axis position detection coil 30A in a state where the power receiving coil 51 is moved in the X-axis direction
- the horizontal axis shows the position of the power receiving coil 51 in the X-axis direction
- the vertical axis indicates the level of the echo signal induced in each X-axis position detection coil 30A.
- the position detection controller 44 can determine the position of the power receiving coil 51 in the X-axis direction by detecting the level of the echo signal induced in each X-axis position detection coil 30A. As shown in this figure, when the power receiving coil 51 is moved in the X-axis direction, the level of the echo signal induced in each X-axis position detection coil 30A changes.
- the power receiving coil 51 is in the middle of the first X-axis position detection coil 30A and the second X-axis position detection coil 30A, as shown by a point B in FIG. 13, the first X-axis position detection coil 30A.
- the level of the echo signal induced in the second X-axis position detection coil 30A is the same.
- each X-axis position detection coil 30A the level of the echo signal that is induced when the power receiving coil 51 is closest is the strongest, and the level of the echo signal decreases as the power receiving coil 51 moves away. Therefore, it can be determined which X-axis position detection coil 30A is closest to the power receiving coil 51 depending on which X-axis position detection coil 30A has the strongest echo signal level. Also, when an echo signal is induced in the two X-axis position detection coils 30A, in which direction the echo signal is induced from the X-axis position detection coil 30A that detects a strong echo signal.
- the relative position between the two X-axis position detecting coils 30A can be determined by the level ratio of the echo signal. Can be judged. For example, if the level ratio of the echo signals of the two X-axis position detection coils 30A is 1, it can be determined that the power receiving coil 51 is located at the center of the two X-axis position detection coils 30A.
- the identification circuit 43 stores the level of the echo signal induced in each X-axis position detection coil 30 ⁇ / b> A with respect to the position of the power receiving coil 51 in the X-axis direction in the storage circuit 47.
- an echo signal is induced in one of the X-axis position detection coils 30A. Therefore, the identification circuit 43 detects that the power receiving coil 51 has been placed by an echo signal induced in the X-axis position detection coil 30 ⁇ / b> A, that is, that the battery built-in device 50 has been placed on the charging stand 10.
- the position of the power receiving coil 51 in the X-axis direction can be determined by comparing the level of the echo signal induced in any of the X-axis position detection coils 30 ⁇ / b> A with the level stored in the storage circuit 47. .
- the identification circuit stores a function for specifying the position of the power receiving coil 51 in the X-axis direction from the level ratio of the echo signal induced in the adjacent X-axis position detection coil in the storage circuit, and the position of the power receiving coil 51 from this function. Can also be determined. This function is obtained by moving the power receiving coil 51 between the two X-axis position detection coils and detecting the level ratio of the echo signal induced in each X-axis position detection coil.
- the identification circuit 43 detects the level ratio of echo signals induced in the two X-axis position detection coils 30A, and receives power between the two X-axis position detection coils 30A based on this function from the detected level ratio.
- the position of the coil 51 in the X-axis direction can be calculated and detected.
- the above shows the method in which the identification circuit 43 detects the position of the power receiving coil 51 in the X axis direction from the echo signal induced in the X axis position detection coil 30A, but the position of the power receiving coil 51 in the Y axis direction is also X. In the same manner as in the axial direction, it can be detected from the echo signal induced in the Y-axis position detection coil 30B.
- the position detection controller 44 moves the power transmission coil 11 to the position of the power receiving coil 51 using the position signal from the identification circuit 43.
- the identification circuit 43 of the charging stand can recognize and identify that the power receiving coil 51 of the battery built-in device 50 is mounted.
- the power supply can be stopped assuming that a device other than the power receiving coil 51 (for example, a metal foreign object) of the battery built-in device 50 is mounted.
- the power supply coil 51 of the battery built-in device 50 is not mounted and power is not supplied.
- the charging stand 10 supplies AC power to the power transmission coil 11 with the AC power supply 12 in a state where the position detection controllers 14 and 44 control the moving mechanism 13 to bring the power transmission coil 11 close to the power reception coil 51.
- the AC power of the power transmission coil 11 is transferred to the power reception coil 51 and used to charge the internal battery 52.
- the battery built-in device 50 detects that the built-in battery 52 is fully charged, it stops charging and transmits a full charge signal to the charging stand 10.
- the battery built-in device 50 can output a full charge signal to the power receiving coil 51, transmit this full charge signal from the power receiving coil 51 to the power transmission coil 11, and transmit full charge information to the charging stand 10.
- the battery built-in device 50 outputs an AC signal having a frequency different from that of the AC power source 12 to the power receiving coil 51, and the charging stand 10 can receive the AC signal by the power transmitting coil 11 and detect full charge. Further, the battery built-in device 50 outputs a signal that modulates a carrier wave of a specific frequency with a full charge signal to the power receiving coil 51, and the charging stand 10 receives the carrier wave of a specific frequency and demodulates this signal to detect a full charge signal. You can also Furthermore, the battery built-in device can also transmit full charge information by wirelessly transmitting a full charge signal to the charging stand.
- the battery built-in device has a built-in transmitter that transmits a full charge signal
- the charging stand has a built-in receiver that receives the full charge signal.
- the position detection controller 14 shown in FIG. 8 includes a full charge detection circuit 17 that detects the full charge of the internal battery 52.
- the full charge detection circuit 17 detects a full charge signal output from the battery built-in device 50 to detect full charge of the built-in battery 52.
- Y-axis nut material 25 ... Belt 26 ... Guide rod 27 ... Guide part 30 ... Position detection coil 30A ... X-axis detection coil 30B ... Y-axis detection coil 31 ... Detection signal generation circuit 32 ... Receiving circuit 33 ... Identification circuit DESCRIPTION OF SYMBOLS 4 ... Switching circuit 35 ... Limiter circuit 36 ... A / D converter 43 ... Identification circuit 44 ... Position detection controller 47 ... Memory circuit 50 ... Battery built-in apparatus 51 ... Power receiving coil 52 ... Built-in battery 53 ... Full wave rectifier circuit 53X ... Synchronous Full wave rectifier circuit 54 ... Charging circuit 55 ... Series capacitor 58 ... Electrolytic capacitor 59 ... PTC 60 ...
- FET bridge circuit 61 Rectifying element 62 ... Switching circuit 63 ... FET 64 ... FET 65 ... FET 66 ... FET DESCRIPTION OF SYMBOLS 69 ... Load 70 ... Short circuit 71 ... Semiconductor switching element 72 ... Short circuit resistance 73 ... Detection part 74 ... Voltage detection circuit 75 ... Current detection circuit 76 ... Control part 77 ... Latching circuit 78 ... Limiter circuit 79 ... Output switch 150 ... Built-in battery Equipment 151 ... Receiving coil 153 ... Synchronous rectification circuit 156 ... Short circuit 156A ... Semiconductor switching element
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
[Problem] While minimizing generation of heat by a rectifying circuit, to effectively prevent failure caused by abnormality of withstand voltage of the rectifying element employed in the rectifying circuit, by adopting an extremely simple circuit layout and using an inexpensive semiconductor switching element. [Solution] A battery-incorporating appliance and a charging stand comprise: a charging stand (10) equipped with a power delivery coil (11), and a battery-incorporating appliance (50) that incorporates a power-receiving coil (51) that is electromagnetically coupled with this power delivery coil (11). An incorporated battery (52) of the battery-incorporating appliance (50) is charged with power delivered to the power-receiving coil (51) from the power delivery coil (11). The battery-incorporating appliance (50) is equipped with: a full wave rectifying circuit (53) that rectifies AC that is induced in the power-receiving coil (51); a charging circuit (54) that charges the incorporated battery (52) of the battery-incorporating appliance (50) with the output of this full wave rectifying circuit (53); and a short-circuiting circuit (70) comprising a semiconductor switching element (71) that protects the semiconductor elements of the full wave rectifying circuit (53) by short-circuiting the output side of the full wave rectifying circuit (53) in the event of abnormality.
Description
本発明は、パック電池や携帯電話などの電池内蔵機器と、この電池内蔵機器に電磁誘導作用で電力を搬送して、電池内蔵機器の内蔵電池を充電する充電台、及び電池内蔵機器に関する。
The present invention relates to a battery built-in device such as a battery pack or a mobile phone, a charging stand that conveys electric power to the battery built-in device by electromagnetic induction and charges the built-in battery of the battery built-in device, and a battery built-in device.
電磁誘導の作用で送電コイルから受電コイルに電力搬送して、内蔵電池を充電する充電台は開発されている。(特許文献1参照)
A charging stand has been developed that carries power from the power transmission coil to the power receiving coil by the action of electromagnetic induction and charges the internal battery. (See Patent Document 1)
特許文献1は、充電台に、交流電源で励磁される送電コイルを内蔵し、パック電池には送電コイルに電磁結合される受電コイルを内蔵する構造を記載する。さらに、パック電池は、受電コイルに誘導される交流を整流し、これを内蔵電池に供給して充電する回路も内蔵する。この構造によると、充電台の上にパック電池を載せて、非接触状態でパック電池の内蔵電池を充電できる。
Patent Document 1 describes a structure in which a power transmission coil that is excited by an AC power source is built in a charging stand, and a power receiving coil that is electromagnetically coupled to the power transmission coil is built in a battery pack. Further, the battery pack includes a circuit for rectifying the alternating current induced in the power receiving coil and supplying the rectified current to the internal battery for charging. According to this structure, the battery pack can be charged in a non-contact state by placing the battery pack on the charging stand.
以上の充電システムは、受電コイルに誘導される交流を整流回路で整流して、内蔵電池を充電できる直流に変換している。整流回路にはダイオードなどの整流素子のブリッジ回路が使用される。ところが、このダイオードブリッジ回路は、整流素子に起因する発熱が問題となる。とくに、異常な状態で使用されて耐圧による破損を防止するために、整流素子に高耐圧のものを使用すると、オン抵抗とオン状態における電圧降下が大きくなって発熱量が大きくなる。ダイオードブリッジは、耐圧の低いダイオードを使用して、オン抵抗を小さくして発熱を小さくできる。ただ、耐圧の低いダイオードは、受電コイルから過大電圧が入力されると電圧破壊する欠点がある。この状態は、ユーザーが誤って、電池内蔵機器をIH調理器のように大出力の送電コイルに載せる状態で発生する。この状態になると、大出力の送電コイルから受電コイルに極めて高い交流電圧が誘導されて、整流回路を構成する耐圧の低いダイオードを電圧破壊する。
The above charging system converts the alternating current induced in the power receiving coil into direct current that can charge the built-in battery by rectifying with a rectifier circuit. For the rectifier circuit, a bridge circuit of a rectifier element such as a diode is used. However, the diode bridge circuit has a problem of heat generation due to the rectifying element. In particular, when a rectifying element having a high withstand voltage is used in order to prevent damage due to a withstand voltage when used in an abnormal state, the on-resistance and the voltage drop in the on-state are increased, and the amount of heat generation is increased. The diode bridge uses a diode having a low breakdown voltage, and can reduce heat generation by reducing the on-resistance. However, a diode with a low withstand voltage has a drawback that voltage breakdown occurs when an excessive voltage is input from the power receiving coil. This state occurs when the user mistakenly places the battery built-in device on a high-output power transmission coil like an IH cooker. In this state, an extremely high AC voltage is induced from the high-output power transmission coil to the power reception coil, and the low breakdown voltage diode that constitutes the rectifier circuit is broken down.
ところで、電磁誘導作用で電力搬送して電池内蔵機器の内蔵電池を充電する充電システムは、充電するときに電池内蔵機器の温度上昇をいかに少なくするかが極めて大切である。発熱が、内蔵電池や内蔵している電子部品等に熱による悪影響を与えるからである。
By the way, in a charging system in which electric power is transferred by electromagnetic induction to charge the internal battery of the battery built-in device, it is extremely important to reduce the temperature rise of the battery built-in device when charging. This is because the heat generation adversely affects the built-in battery and built-in electronic components.
整流回路の発熱は、整流素子の電圧降下を小さくして少なくできる。整流素子にFET等の半導体スイッチング素子を使用する同期整流回路は、整流素子であるFETの発熱を、耐圧の低いダイオードの整流回路よりもさらに少なくできる。同期整流回路は、受電コイルに誘導される交流に同期してブリッジに接続しているFETをオンオフに制御して、ダイオードのブリッジ回路と同じように交流を整流する。同期整流回路は、整流素子であるFETのオン抵抗がダイオードよりも小さいことから発熱を少なくできる。整流素子の発熱量が、整流素子のオン抵抗と電流の二乗の積に比例するからである。さらに、同期整流回路もダイオードブリッジと同じように、整流素子であるFETの耐圧を低くしてオン抵抗をより小さくできる。
The heat generated by the rectifier circuit can be reduced by reducing the voltage drop across the rectifier element. A synchronous rectifier circuit that uses a semiconductor switching element such as an FET as the rectifier element can further reduce the heat generation of the FET, which is a rectifier element, as compared to a rectifier circuit of a diode having a low withstand voltage. The synchronous rectification circuit rectifies the alternating current in the same manner as the diode bridge circuit by controlling on and off the FET connected to the bridge in synchronization with the alternating current induced in the power receiving coil. The synchronous rectifier circuit can reduce heat generation because the on-resistance of the FET as a rectifier is smaller than that of the diode. This is because the amount of heat generated by the rectifying element is proportional to the product of the on-resistance of the rectifying element and the square of the current. Furthermore, the synchronous rectifier circuit can also reduce the on-resistance by lowering the withstand voltage of the FET, which is the rectifier element, in the same way as the diode bridge.
ただ、耐圧の低い整流素子の整流回路は、IH調理器の送電コイルから受電コイルに過大電圧が誘導される場合のみでなく、さらに受電コイルに交流電圧が誘導される状態で整流回路の出力側が無負荷になると、整流素子の耐圧を超えて破壊してしまう弊害がある。整流回路が無負荷になると受電コイルから整流回路に入力される電圧が上昇するからである。この状態は、たとえば、充電台の制御が故障して正常に動作しなくなる状態で発生する。すなわち、内蔵電池が満充電になって、電池内蔵機器から充電台に充電を停止させる信号が伝送されたにもかかわらず、送電コイルが励起状態にあるとき過充電になって保護回路が働き、内蔵電池がオープン状態になったときに発生する。
However, the rectifying circuit of the rectifying element having a low withstand voltage is not limited to the case where an excessive voltage is induced from the power transmission coil of the IH cooker to the power receiving coil. When there is no load, there is a detrimental effect that the rectifier element breaks beyond its withstand voltage. This is because when the rectifier circuit is unloaded, the voltage input from the power receiving coil to the rectifier circuit increases. This state occurs, for example, in a state where the control of the charging stand fails and does not operate normally. That is, even though the built-in battery is fully charged and a signal to stop charging is transmitted from the battery built-in device to the charging stand, the protection circuit is activated when the power transmission coil is in an excited state, Occurs when the internal battery is open.
以上の弊害を防止することを目的として、受電コイルの出力側に半導体スイッチング素子の短絡回路を設ける電池内蔵機器が開発されている。(特許文献2参照)
この電池内蔵機器150は、図1に示すように、受電コイル151の出力側であって同期整流回路153の入力側に、短絡回路156としてFETやトランジスタ等の半導体スイッチング素子156Aを接続する。短絡回路156のFETやトランジスタは、同期整流回路153に過大な電圧が入力されるときにオンに切り換えられて、受電コイル151の出力側を短絡する。 In order to prevent the above disadvantages, a battery built-in device in which a short circuit of a semiconductor switching element is provided on the output side of the power receiving coil has been developed. (See Patent Document 2)
As shown in FIG. 1, the battery built-indevice 150 connects a semiconductor switching element 156A such as an FET or a transistor as a short circuit 156 to the output side of the power receiving coil 151 and the input side of the synchronous rectifier circuit 153. The FET and the transistor of the short circuit 156 are turned on when an excessive voltage is input to the synchronous rectifier circuit 153 to short-circuit the output side of the power receiving coil 151.
この電池内蔵機器150は、図1に示すように、受電コイル151の出力側であって同期整流回路153の入力側に、短絡回路156としてFETやトランジスタ等の半導体スイッチング素子156Aを接続する。短絡回路156のFETやトランジスタは、同期整流回路153に過大な電圧が入力されるときにオンに切り換えられて、受電コイル151の出力側を短絡する。 In order to prevent the above disadvantages, a battery built-in device in which a short circuit of a semiconductor switching element is provided on the output side of the power receiving coil has been developed. (See Patent Document 2)
As shown in FIG. 1, the battery built-in
この回路構成は、FETやトランジスタ等の半導体スイッチング素子156Aで双方向の電流を遮断できない。このため、FET等のオン状態において、受電コイル151に誘導される交流電圧を両方向では短絡できず、FET等の逆方向の過大電圧を制限できない。両方向の過大電圧を制限するには、両方向の電流を遮断できるように一対のFETやトランジスタを並列に接続して、同時にオンに切り換える必要があって、回路構成が複雑になる欠点がある。さらに、特許文献2は、短絡回路にリレーを使用することも記載するが、リレーは半導体スイッチング素子に比較して部品コストが高くなるばかりでなく、オンに切り換える時間遅れが大きいことから、同期整流回路の過大電圧を速やかに阻止できない欠点がある。また、リレーは物理的に接点を移動させてオンオフに切り換えるので、半導体スイッチング素子に比較して寿命が短く、長期間にわたって故障しないように、信頼性を高くするのが難しい。
In this circuit configuration, the bidirectional current cannot be cut off by the semiconductor switching element 156A such as FET or transistor. For this reason, in the ON state of the FET or the like, the AC voltage induced in the power receiving coil 151 cannot be short-circuited in both directions, and the excessive voltage in the reverse direction of the FET or the like cannot be limited. In order to limit the excessive voltage in both directions, it is necessary to connect a pair of FETs and transistors in parallel so as to cut off the current in both directions and switch them on at the same time, resulting in a complicated circuit configuration. Further, Patent Document 2 also describes the use of a relay for a short circuit, but not only does the relay have a higher component cost than a semiconductor switching element, but also has a large time delay for switching on, so synchronous rectification. There is a disadvantage that an excessive voltage of the circuit cannot be quickly prevented. In addition, since the relay physically moves the contact and switches on and off, the life is shorter than that of the semiconductor switching element, and it is difficult to increase the reliability so as not to break down for a long time.
本発明は、さらにこの欠点を解決することを目的として開発されたもので、整流回路の発熱を少なくしながら、極めて簡単な回路構成とし、かつ安価な半導体スイッチング素子を使用して、整流回路に使用される整流素子の耐圧異常による故障を有効に防止できる電池内蔵機器と充電台、及び電池内蔵機器を提供することにある。
The present invention has been developed for the purpose of solving this drawback, and has a very simple circuit configuration while reducing the heat generation of the rectifier circuit, and uses an inexpensive semiconductor switching element to provide a rectifier circuit. An object of the present invention is to provide a battery built-in device, a charging stand, and a battery built-in device capable of effectively preventing a failure due to a breakdown voltage abnormality of a rectifying element used.
本発明の電池内蔵機器と充電台は、送電コイル11を備える充電台10と、この送電コイル11に電磁結合される受電コイル51を内蔵する電池内蔵機器50とからなり、送電コイル11から受電コイル51に電力搬送される電力でもって、電池内蔵機器50の内蔵電池52を充電する。電池内蔵機器50は、受電コイル51に誘導される交流を整流する全波整流回路53と、この全波整流回路53の出力で電池内蔵機器50の内蔵電池52を充電する充電回路54と、異常時に全波整流回路53の出力側を短絡して全波整流回路53の半導体素子を保護する半導体スイッチング素子71からなる短絡回路70とを備えている。
The battery built-in device and the charging stand according to the present invention include the charging stand 10 including the power transmission coil 11 and the battery built-in device 50 including the power receiving coil 51 electromagnetically coupled to the power transmission coil 11. The built-in battery 52 of the battery built-in device 50 is charged with the power conveyed to 51. The battery built-in device 50 includes a full-wave rectifier circuit 53 that rectifies the alternating current induced by the power receiving coil 51, a charging circuit 54 that charges the built-in battery 52 of the battery built-in device 50 with the output of the full-wave rectifier circuit 53, In some cases, the output side of the full-wave rectifier circuit 53 is short-circuited and a short-circuit circuit 70 including a semiconductor switching element 71 that protects the semiconductor element of the full-wave rectifier circuit 53 is provided.
以上の電池内蔵機器は、全波整流回路の発熱を少なくしながら、極めて簡単な回路構成とし、かつ安価な半導体スイッチング素子を使用して、全波整流回路に使用される整流素子の耐圧異常による故障を有効に防止できる特徴を実現する。それは、以上の電池内蔵機器が、全波整流回路の出力側に半導体スイッチング素子からなる短絡回路を接続して、異常時にこの半導体スイッチング素子をオンに切り換えて、全波整流回路の出力側を短絡するからである。短絡回路の半導体スイッチング素子は、全波整流回路の出力側を、プラス側からマイナス側にのみ通電する状態、すなわち、一方向に通電する状態にのみ短絡する。半導体スイッチング素子が一方向に通電する状態で短絡しながら、受電コイルの出力側は、両方向に流れる電流を短絡する。それは、全波整流回路が、受電コイルの出力側に誘導される交流電圧を交互に切り換えて、一方向に通電するからである。したがって、短絡回路は一方向に流れる電流のみを短絡しながら、受電コイルに誘導される交流電圧を両方向に短絡して、全波整流回路に高電圧が供給されるのを防止できる。このため、簡単な回路構成の短絡回路でもって、全波整流回路を実現する整流素子の耐圧異常による破壊を確実に阻止できる特徴が実現できる。
The above-mentioned battery built-in equipment has an extremely simple circuit configuration while reducing the heat generation of the full-wave rectifier circuit, and uses an inexpensive semiconductor switching element, resulting in an abnormal breakdown voltage of the rectifier element used in the full-wave rectifier circuit. Realize features that can effectively prevent failures. The above-mentioned battery built-in device connects a short circuit consisting of a semiconductor switching element to the output side of the full-wave rectifier circuit, and switches on this semiconductor switching element in the event of an abnormality to short-circuit the output side of the full-wave rectifier circuit. Because it does. The semiconductor switching element of the short circuit short-circuits the output side of the full-wave rectifier circuit only in a state where electricity is supplied only from the plus side to the minus side, that is, a state where electricity is supplied in one direction. While the semiconductor switching element is short-circuited in a state where current flows in one direction, the output side of the power receiving coil short-circuits the current flowing in both directions. This is because the full-wave rectifier circuit alternately switches the AC voltage induced on the output side of the power receiving coil and energizes in one direction. Therefore, the short-circuit can short-circuit only the current flowing in one direction while short-circuiting the AC voltage induced in the power receiving coil in both directions, thereby preventing a high voltage from being supplied to the full-wave rectifier circuit. For this reason, the characteristic which can prevent reliably destruction by the pressure | voltage resistant abnormality of the rectifier which implement | achieves a full wave rectifier circuit with the short circuit of a simple circuit structure is realizable.
本発明の電池内蔵機器と充電台は、全波整流回路53を同期全波整流回路53Xとすることができる。
以上の電池内蔵機器は、全波整流回路を、FETなどの半導体スイッチング素子を使用する同期全波整流回路とするので、整流素子のオン抵抗をさらに小さくして発熱をより少なくできる。 In the battery built-in device and the charging stand of the present invention, the full-wave rectifier circuit 53 can be replaced with a synchronous full-wave rectifier circuit 53X.
In the battery built-in device described above, the full-wave rectifier circuit is a synchronous full-wave rectifier circuit that uses a semiconductor switching element such as an FET. Therefore, the on-resistance of the rectifier element can be further reduced to reduce heat generation.
以上の電池内蔵機器は、全波整流回路を、FETなどの半導体スイッチング素子を使用する同期全波整流回路とするので、整流素子のオン抵抗をさらに小さくして発熱をより少なくできる。 In the battery built-in device and the charging stand of the present invention, the full-
In the battery built-in device described above, the full-wave rectifier circuit is a synchronous full-wave rectifier circuit that uses a semiconductor switching element such as an FET. Therefore, the on-resistance of the rectifier element can be further reduced to reduce heat generation.
本発明の電池内蔵機器と充電台は、全波整流回路53の出力側に、異常時にオフ、正常時にオンに切り換えられる出力スイッチ79を備えて、異常時に出力スイッチ79をオフに切り換えて、全波整流回路53の出力側を負荷69から切り離すことができる。
以上の電池内蔵機器は、異常時に出力スイッチをオフに切り換えて、全波整流回路の出力側を負荷の内蔵電池から切り離すので、異常時に内蔵電池の充電を停止して、安全性を向上できる。 The battery built-in device and the charging stand according to the present invention are provided with anoutput switch 79 that is turned off at the time of abnormality and turned on at the time of abnormality on the output side of the full-wave rectifier circuit 53. The output side of the wave rectifier circuit 53 can be disconnected from the load 69.
In the above battery built-in device, the output switch of the full-wave rectifier circuit is disconnected from the load built-in battery at the time of abnormality, so that charging of the built-in battery can be stopped at the time of abnormality to improve safety.
以上の電池内蔵機器は、異常時に出力スイッチをオフに切り換えて、全波整流回路の出力側を負荷の内蔵電池から切り離すので、異常時に内蔵電池の充電を停止して、安全性を向上できる。 The battery built-in device and the charging stand according to the present invention are provided with an
In the above battery built-in device, the output switch of the full-wave rectifier circuit is disconnected from the load built-in battery at the time of abnormality, so that charging of the built-in battery can be stopped at the time of abnormality to improve safety.
本発明の電池内蔵機器と充電台は、短絡回路70が、短絡抵抗72を介して半導体スイッチング素子71でもって全波整流回路53の出力側を短絡することができる。
以上の電池内蔵機器は、短絡抵抗の電気抵抗でもってショート電流を制限できるので、短絡回路の半導体スイッチング素子を大きなショート電流から保護できる特徴がある。 In the battery built-in device and the charging stand of the present invention, theshort circuit 70 can short-circuit the output side of the full-wave rectifier circuit 53 with the semiconductor switching element 71 via the short-circuit resistor 72.
Since the above-mentioned battery built-in device can limit the short-circuit current with the electric resistance of the short-circuit resistance, it has a feature that the semiconductor switching element of the short-circuit can be protected from a large short-circuit current.
以上の電池内蔵機器は、短絡抵抗の電気抵抗でもってショート電流を制限できるので、短絡回路の半導体スイッチング素子を大きなショート電流から保護できる特徴がある。 In the battery built-in device and the charging stand of the present invention, the
Since the above-mentioned battery built-in device can limit the short-circuit current with the electric resistance of the short-circuit resistance, it has a feature that the semiconductor switching element of the short-circuit can be protected from a large short-circuit current.
本発明の電池内蔵機器と充電台は、受電コイル51と直列に接続してなるPTC59を備えて、受電コイル51に異常な電力が供給されるとPTC59がトリップして受電コイル51から全波整流回路53への電圧供給を遮断することができる。
以上の電池内蔵機器は、受電コイルに異常な交流電力が供給される状態、たとえば、電池内蔵機器が電磁調理器(IH)に載せられる状態においては、PTCがトリップして受電コイルの電流を実質的に遮断する。このため、このような状態では、内蔵電池の充電を停止し、また、整流回路に高電圧の交流が入力されるのを防止して整流回路の故障も防止できる。さらに、電磁調理器から除いた状態では、PTCが低抵抗な状態に復帰するので、正常に充電台にセットする状態では内蔵電池の充電を再開できる。 The battery built-in device and the charging stand according to the present invention include aPTC 59 connected in series with the power receiving coil 51. When abnormal power is supplied to the power receiving coil 51, the PTC 59 trips and full-wave rectification is performed from the power receiving coil 51. The voltage supply to the circuit 53 can be cut off.
In the above battery built-in device, when abnormal AC power is supplied to the power receiving coil, for example, in a state where the battery built-in device is mounted on the electromagnetic cooker (IH), the PTC trips and the current in the power receiving coil is substantially reduced. Shut off. For this reason, in such a state, charging of the built-in battery is stopped, and a high-voltage alternating current is prevented from being input to the rectifier circuit, thereby preventing a failure of the rectifier circuit. Furthermore, since the PTC returns to a low resistance state when it is removed from the electromagnetic cooker, charging of the built-in battery can be resumed when it is normally set on the charging stand.
以上の電池内蔵機器は、受電コイルに異常な交流電力が供給される状態、たとえば、電池内蔵機器が電磁調理器(IH)に載せられる状態においては、PTCがトリップして受電コイルの電流を実質的に遮断する。このため、このような状態では、内蔵電池の充電を停止し、また、整流回路に高電圧の交流が入力されるのを防止して整流回路の故障も防止できる。さらに、電磁調理器から除いた状態では、PTCが低抵抗な状態に復帰するので、正常に充電台にセットする状態では内蔵電池の充電を再開できる。 The battery built-in device and the charging stand according to the present invention include a
In the above battery built-in device, when abnormal AC power is supplied to the power receiving coil, for example, in a state where the battery built-in device is mounted on the electromagnetic cooker (IH), the PTC trips and the current in the power receiving coil is substantially reduced. Shut off. For this reason, in such a state, charging of the built-in battery is stopped, and a high-voltage alternating current is prevented from being input to the rectifier circuit, thereby preventing a failure of the rectifier circuit. Furthermore, since the PTC returns to a low resistance state when it is removed from the electromagnetic cooker, charging of the built-in battery can be resumed when it is normally set on the charging stand.
本発明の電池内蔵機器と充電台は、電池内蔵機器をパック電池とすることができる。
In the battery built-in device and the charging stand of the present invention, the battery built-in device can be a battery pack.
本発明の電池内蔵機器は、充電できる内蔵電池52と、充電台10に備えられた送電コイル11に電磁結合される受電コイル51とを内蔵しており、送電コイル11から受電コイル51に電力搬送される電力でもって、内蔵電池52を充電する。電池内蔵機器は、受電コイル51に誘導される交流を整流する全波整流回路53と、この全波整流回路53の出力で内蔵電池52を充電する充電回路54と、異常時に全波整流回路53の出力側を短絡して全波整流回路53の半導体素子を保護する半導体スイッチング素子71からなる短絡回路70とを備えている。
The battery built-in device of the present invention has a built-in battery 52 that can be charged and a power receiving coil 51 that is electromagnetically coupled to the power transmitting coil 11 provided in the charging stand 10, and carries power from the power transmitting coil 11 to the power receiving coil 51. The built-in battery 52 is charged with the generated electric power. The battery built-in device includes a full-wave rectifier circuit 53 that rectifies the alternating current induced in the power receiving coil 51, a charging circuit 54 that charges the built-in battery 52 with the output of the full-wave rectifier circuit 53, and a full-wave rectifier circuit 53 in an abnormal state. And a short circuit 70 composed of a semiconductor switching element 71 that protects the semiconductor element of the full-wave rectifier circuit 53 by short-circuiting the output side.
本発明の電池内蔵機器は、全波整流回路53を同期全波整流回路53Xとすることができる。
In the battery built-in device of the present invention, the full-wave rectifier circuit 53 can be a synchronous full-wave rectifier circuit 53X.
本発明の電池内蔵機器は、全波整流回路53の出力側に、異常時にオフ、正常時にオンに切り換えられる出力スイッチ79を備えて、異常時に前記出力スイッチ79をオフに切り換えて、全波整流回路53の出力側を負荷69から切り離すことができる。
The battery built-in device of the present invention is provided with an output switch 79 on the output side of the full-wave rectifier circuit 53 that is turned off in the event of an abnormality and turned on in the normal state. The output side of the circuit 53 can be disconnected from the load 69.
本発明の電池内蔵機器は、短絡回路70が、短絡抵抗72を介して半導体スイッチング素子71でもって全波整流回路53の出力側を短絡することができる。
In the battery built-in device of the present invention, the short circuit 70 can short-circuit the output side of the full-wave rectifier circuit 53 with the semiconductor switching element 71 via the short-circuit resistor 72.
本発明の電池内蔵機器は、受電コイル51と直列に接続してなるPTC59を備えて、受電コイル51に異常な電力が供給されるとPTC59がトリップして受電コイル51から全波整流回路53への電力供給を遮断することができる。
The battery built-in device of the present invention includes a PTC 59 that is connected in series with the power receiving coil 51, and when abnormal power is supplied to the power receiving coil 51, the PTC 59 trips to the full-wave rectifier circuit 53 from the power receiving coil 51. The power supply can be cut off.
本発明の電池内蔵機器は、電池内蔵機器をパック電池とすることができる。
In the battery built-in device of the present invention, the battery built-in device can be a battery pack.
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電池内蔵機器と充電台、及び電池内蔵機器を例示するものであって、本発明は電池内蔵機器と充電台、及び電池内蔵機器を以下のものに特定しない。さらに、この明細書は、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the examples shown below illustrate the battery built-in device and the charging stand and the battery built-in device for embodying the technical idea of the present invention, and the present invention includes the battery built-in device and the charging stand, and The battery built-in equipment is not specified as follows. Further, this specification does not limit the members shown in the claims to the members of the embodiments.
図2ないし図8は、充電台10の概略構成図及び原理図を示している。充電台10は、図2、図3、及び図8に示すように、充電台10の上に電池内蔵機器50を載せて、電池内蔵機器50の内蔵電池52を電磁誘導作用で充電する。電池内蔵機器50は、送電コイル11に電磁結合される受電コイル51を内蔵している。この受電コイル51に誘導される電力で充電される内蔵電池52を内蔵している。電池内蔵機器50は、パック電池であっても良い。
2 to 8 show a schematic configuration diagram and a principle diagram of the charging stand 10. As shown in FIGS. 2, 3, and 8, the charging stand 10 places the battery built-in device 50 on the charging stand 10 and charges the built-in battery 52 of the battery built-in device 50 by electromagnetic induction. The battery built-in device 50 includes a power receiving coil 51 that is electromagnetically coupled to the power transmitting coil 11. A built-in battery 52 that is charged with electric power induced in the power receiving coil 51 is incorporated. The battery built-in device 50 may be a battery pack.
図9は、電池内蔵機器50のブロック回路図を示す。この電池内蔵機器50は、受電コイル51に誘導される交流を整流する全波整流回路53と、この全波整流回路53の出力で電池内蔵機器50の内蔵電池52を充電する充電回路54と、異常時に全波整流回路53の出力側を短絡する短絡回路70を備えている。
FIG. 9 shows a block circuit diagram of the battery built-in device 50. The battery built-in device 50 includes a full-wave rectifier circuit 53 that rectifies the alternating current induced in the power receiving coil 51, a charging circuit 54 that charges the built-in battery 52 of the battery built-in device 50 with the output of the full-wave rectifier circuit 53, A short circuit 70 for short-circuiting the output side of the full-wave rectifier circuit 53 in the event of an abnormality is provided.
全波整流回路53は、受電コイル51に誘導される交流を整流して、充電回路54に出力する。図の電池内蔵機器50は、受電コイル51と全波整流回路53の間に直列コンデンサー55を接続しており、この直列コンデンサー55を介して、受電コイル51に誘導される交流を全波整流回路53に入力している。直列コンデンサー55は、受電コイル51と直列共振回路を構成して、受電コイル51に誘導される交流を効率よく全波整流回路53に入力する。したがって、直列コンデンサー55の静電容量は、受電コイル51のインダクタンスで、誘導される交流の周波数に近くなるように設定される。さらに、図の電池内蔵機器50は、全波整流回路53の出力側に全波整流回路53から出力される脈流を平滑化する電解コンデンサー58を接続している。
The full-wave rectifier circuit 53 rectifies the alternating current induced in the power receiving coil 51 and outputs it to the charging circuit 54. The battery built-in device 50 shown in the figure has a series capacitor 55 connected between the power receiving coil 51 and the full-wave rectifier circuit 53, and the full-wave rectifier circuit converts the alternating current induced in the power receiving coil 51 through the series capacitor 55. 53. The series capacitor 55 forms a series resonance circuit with the power receiving coil 51, and efficiently inputs alternating current induced in the power receiving coil 51 to the full-wave rectifier circuit 53. Therefore, the capacitance of the series capacitor 55 is set to be close to the frequency of the alternating current induced by the inductance of the power receiving coil 51. Further, in the battery built-in device 50 in the figure, an electrolytic capacitor 58 that smoothes the pulsating current output from the full-wave rectifier circuit 53 is connected to the output side of the full-wave rectifier circuit 53.
全波整流回路53は、受電コイル51から入力される交流を整流する整流素子61を備えている。図9に示す全波整流回路53は、整流素子61にFETを使用する同期全波整流回路53Xとしている。整流素子61をFET等の半導体スイッチング素子とする同期全波整流回路53Xは、整流素子のオン抵抗を小さくして発熱を少なくできる特長がある。ただ、全波整流回路は、整流素子として、ダイオードを使用することができ、さらには、今後開発される全ての半導体素子を使用することができる。
The full-wave rectifier circuit 53 includes a rectifier element 61 that rectifies the alternating current input from the power receiving coil 51. The full-wave rectifier circuit 53 shown in FIG. 9 is a synchronous full-wave rectifier circuit 53X that uses an FET as the rectifier element 61. The synchronous full-wave rectifier circuit 53X in which the rectifier element 61 is a semiconductor switching element such as an FET has a feature that the on-resistance of the rectifier element can be reduced to reduce heat generation. However, the full-wave rectifier circuit can use a diode as a rectifier element, and can use all semiconductor elements developed in the future.
同期全波整流回路53Xは、すでに集積回路(IC)として市販されている。同期全波整流回路53Xは、ダイオードのブリッジ回路と同じように、4個の整流素子61であるFET63、64、65、66をブリッジに接続してなるFETブリッジ回路60と、このFETブリッジ回路60を構成するFET63、64、65、66をオンオフに制御する切換回路62とを備えている。図のFETブリッジ回路60は、2個のPチャンネルのFET63、65と2個のNチャンネルのFET64、66をブリッジに接続しており、これらのFET63、64、65、66を切換回路62で別々にオンオフに制御している。FETブリッジ回路60は、2個のFET63、65を直列に接続してなる直列回路と、2個のFET64、66を直列に接続してなる直列回路とを並列に接続している。
The synchronous full-wave rectifier circuit 53X is already on the market as an integrated circuit (IC). As in the diode bridge circuit, the synchronous full-wave rectifier circuit 53X includes an FET bridge circuit 60 formed by connecting FETs 63, 64, 65, and 66, which are four rectifier elements 61, to the bridge, and the FET bridge circuit 60. And a switching circuit 62 that controls on / off of the FETs 63, 64, 65, and 66 constituting the circuit. In the illustrated FET bridge circuit 60, two P- channel FETs 63, 65 and two N- channel FETs 64, 66 are connected to a bridge, and these FETs 63, 64, 65, 66 are separated by a switching circuit 62. Control on and off. The FET bridge circuit 60 connects in parallel a series circuit formed by connecting two FETs 63 and 65 in series and a series circuit formed by connecting two FETs 64 and 66 in series.
FETブリッジ回路60を構成する4個のFET63、64、65、66は、切換回路62でオンオフに制御される。切換回路62は、FETブリッジ回路60を構成する4個のFET63、64、65、66を、受電コイル51に誘導される交流に同期してオンオフに切り換えて、電解コンデンサー58のプラス側を常に受電コイル51のプラス側に、また、電解コンデンサー58のマイナス側を受電コイル51のマイナス側に常に接続する。受電コイル51は、送電コイル11の周波数で出力側のプラスとマイナスが変化する。したがって、切換回路62は、受電コイル51の直列コンデンサー55側がプラスとなるタイミングにあっては、図9の実線の矢印で示すように電流を流すように2個のFET63、66をオン、他のFET64、65をオフとする。このタイミングにおいて、左列上側のPチャンネルのFET63と、右列下側のNチャンネルのFET66をオンに切り換え、その他のFET64、65をオフとして、実線で示すように通電する。また、直列コンデンサー55側がマイナスとなるタイミングにあっては、図9の鎖線の矢印で示すように電流を流すように2個のFET64、65をオン、他のFET63、66をオフに切り換える。このタイミングにおいて、左列下側のPチャンネルのFET65と、右列上側のNチャンネルのFET64をオンに切り換え、その他のFET63、66をオフとして、鎖線で示すように通電する。受電コイル51の両端は、送電コイル11の周波数で直列コンデンサー55側がプラスとマイナスに切り換えられるので、切換回路62は受電コイル51のプラスとマイナスを検出して、FET63、64、65、66をオンオフに切り換える。
The four FETs 63, 64, 65, 66 constituting the FET bridge circuit 60 are controlled to be turned on / off by the switching circuit 62. The switching circuit 62 switches the four FETs 63, 64, 65, 66 constituting the FET bridge circuit 60 on and off in synchronization with the alternating current induced in the power receiving coil 51, and always receives the positive side of the electrolytic capacitor 58. The positive side of the coil 51 and the negative side of the electrolytic capacitor 58 are always connected to the negative side of the power receiving coil 51. In the power receiving coil 51, plus and minus on the output side change with the frequency of the power transmitting coil 11. Therefore, the switching circuit 62 turns on the two FETs 63 and 66 so that current flows as shown by the solid line arrow in FIG. 9 at the timing when the series capacitor 55 side of the power receiving coil 51 becomes positive. The FETs 64 and 65 are turned off. At this timing, the P-channel FET 63 on the upper left column and the N-channel FET 66 on the lower right column are switched on, the other FETs 64 and 65 are turned off, and current is supplied as shown by the solid line. Further, at the timing when the series capacitor 55 side becomes negative, the two FETs 64 and 65 are turned on and the other FETs 63 and 66 are turned off so that a current flows as shown by a chain line arrow in FIG. At this timing, the P-channel FET 65 on the lower left column and the N-channel FET 64 on the upper right column are switched on, the other FETs 63 and 66 are turned off, and current is supplied as shown by the chain line. Since both ends of the power receiving coil 51 are switched between positive and negative at the frequency of the power transmitting coil 11, the switching circuit 62 detects the positive and negative of the power receiving coil 51 and turns on and off the FETs 63, 64, 65, and 66. Switch to.
短絡回路70は、全波整流回路53の出力側を短絡する。図9の短絡回路70は、短絡抵抗72と半導体スイッチング素子71の直列回路を、全波整流回路53の出力側のプラス側とマイナス側との間に接続している。この短絡回路70は、異常時に半導体スイッチング素子71をオン状態として、短絡抵抗72を介して全波整流回路53の出力側のプラス側とマイナス側とを短絡する。半導体スイッチング素子71はFETである。ただし、半導体スイッチング素子には、トランジスタやサイリスタなどの半導体スイッチング素子も使用できる。半導体スイッチング素子71に短絡抵抗72を直列に接続している短絡回路70は、半導体スイッチング素子71のオン状態において、短絡抵抗72でショート電流を制限できる。短絡抵抗72は、電気抵抗を大きくしてショート電流を小さくし、電気抵抗を小さくして速やかに全波整流回路53の出力側を短絡できる。
The short circuit 70 shorts the output side of the full wave rectifier circuit 53. The short circuit 70 in FIG. 9 connects a series circuit of a short circuit resistor 72 and a semiconductor switching element 71 between the plus side and the minus side on the output side of the full-wave rectifier circuit 53. The short circuit 70 turns on the semiconductor switching element 71 in an abnormal state and shorts the plus side and the minus side on the output side of the full-wave rectifier circuit 53 via the short-circuit resistor 72. The semiconductor switching element 71 is an FET. However, a semiconductor switching element such as a transistor or a thyristor can also be used as the semiconductor switching element. The short circuit 70 in which the short-circuit resistor 72 is connected in series to the semiconductor switching element 71 can limit the short-circuit current with the short-circuit resistance 72 in the ON state of the semiconductor switching element 71. The short-circuit resistor 72 can increase the electric resistance to reduce the short-circuit current, and reduce the electric resistance to quickly short-circuit the output side of the full-wave rectifier circuit 53.
全波整流回路53は、出力側に平滑用の電解コンデンサー58を接続している。したがって、短絡回路70の半導体スイッチング素子71は、オン状態で、電解コンデンサー58を放電する。電解コンデンサー58は容量が大きいので、瞬間的に大きなショート電流が流れる。短絡抵抗72を直列に接続している短絡回路70は、短絡抵抗72で電解コンデンサー58を放電するショート電流を制限する。ショート電流を制限する短絡抵抗72は、半導体スイッチング素子71のオン状態において、半導体スイッチング素子71に許容される最大電流よりもショート電流を小さく制限する電気抵抗に設定される。ただ、短絡抵抗72の電気抵抗が大きいと、電解コンデンサー58の放電に時間がかかるので、短絡抵抗72の電気抵抗は、電解コンデンサー58を速やかに放電できる電気抵抗に設定される。
The full-wave rectifier circuit 53 has a smoothing electrolytic capacitor 58 connected to the output side. Therefore, the semiconductor switching element 71 of the short circuit 70 discharges the electrolytic capacitor 58 in the ON state. Since the electrolytic capacitor 58 has a large capacity, a large short current flows instantaneously. The short circuit 70 in which the short-circuit resistors 72 are connected in series limits the short-circuit current that discharges the electrolytic capacitor 58 with the short-circuit resistors 72. The short-circuit resistor 72 that limits the short-circuit current is set to an electrical resistance that restricts the short-circuit current to be smaller than the maximum current allowed for the semiconductor switching device 71 when the semiconductor switching device 71 is in the ON state. However, if the electrical resistance of the short-circuit resistor 72 is large, it takes time to discharge the electrolytic capacitor 58. Therefore, the electrical resistance of the short-circuit resistor 72 is set to an electrical resistance that can quickly discharge the electrolytic capacitor 58.
短絡回路は、必ずしも半導体スイッチング素子と直列に短絡抵抗を接続する必要はない。それは、FETやトランジスタ等の半導体スイッチング素子は、ゲート電圧やベース電流を制御して、内部抵抗をコントロールできるからである。この半導体スイッチング素子は、内部抵抗をコントロールして、電解コンデンサーを放電するショート電流を制限できる。ただ、内部抵抗をコントロールしてショート電流を制限する短絡回路は、内部抵抗と電流の二乗に比例する電力損失によって、半導体スイッチング素子の電力損失が大きくなるので、半導体スイッチング素子に大容量の素子を使用する必要がある。
The short circuit does not necessarily need to connect a short circuit resistor in series with the semiconductor switching element. This is because semiconductor switching elements such as FETs and transistors can control the internal resistance by controlling the gate voltage and base current. This semiconductor switching element can limit the short-circuit current for discharging the electrolytic capacitor by controlling the internal resistance. However, the short circuit that controls the internal resistance to limit the short-circuit current increases the power loss of the semiconductor switching element due to the power loss proportional to the square of the internal resistance and current. Need to use.
短絡抵抗72を半導体スイッチング素子71と直列に接続している短絡回路70は、半導体スイッチング素子71をオンオフ動作させて、すなわち内部抵抗をコントロールすることなく、全波整流回路53の出力側を短絡でき、しかも、半導体スイッチング素子71のオン状態における電力損失、すなわち発熱を短絡抵抗72で消費できる。したがって、半導体スイッチング素子71に電力容量の小さい安価な素子を使用しながら、ショート電流を制限し、しかも半導体スイッチング素子71の発熱を少なくできる。
The short circuit 70 in which the short-circuit resistor 72 is connected in series with the semiconductor switching element 71 can short-circuit the output side of the full-wave rectifier circuit 53 by turning on / off the semiconductor switching element 71, that is, without controlling the internal resistance. In addition, the power loss in the ON state of the semiconductor switching element 71, that is, heat generation can be consumed by the short-circuit resistor 72. Therefore, while using an inexpensive element having a small power capacity for the semiconductor switching element 71, the short-circuit current can be limited and the heat generation of the semiconductor switching element 71 can be reduced.
短絡回路70は、全波整流回路53の整流素子61に過大な電圧が作用する異常時を検出して、半導体スイッチング素子71を制御する検出部73を備えている。検出部73は、異常時に半導体スイッチング素子71のFETをオン状態に、正常にオフ状態とする。オン状態の半導体スイッチング素子71は、全波整流回路53の出力側を短絡して、全波整流回路53の出力電力を耐圧未満に下げる。
The short circuit 70 includes a detection unit 73 that detects an abnormal time when an excessive voltage acts on the rectifying element 61 of the full-wave rectifying circuit 53 and controls the semiconductor switching element 71. The detecting unit 73 turns on the FET of the semiconductor switching element 71 in an on state and normally turns it off when an abnormality occurs. The semiconductor switching element 71 in the on state shorts the output side of the full-wave rectifier circuit 53 and reduces the output power of the full-wave rectifier circuit 53 to less than the withstand voltage.
異常時は、たとえば、電池内蔵機器50の内蔵電池52が過充電となり保護回路により充電が停止された後も、充電台10からの電力搬送を停止できない状態、あるいは、電池内蔵機器50が電磁調理器(IH)などに載せられて、受電コイル51に異常な電力が誘導される状態などである。内蔵電池52の充電を停止して、充電台10からの電力搬送を停止できない状態は、たとえば、電池内蔵機器50から充電を停止する信号を充電台10に伝送したにもかかわらず、充電台10が故障して送電コイル11への交流電力の供給を停止できない状態で発生する。
In the case of an abnormality, for example, after the built-in battery 52 of the battery built-in device 50 is overcharged and charging is stopped by the protection circuit, the power transfer from the charging stand 10 cannot be stopped or the battery built-in device 50 is electromagnetically cooked. This is a state in which abnormal power is induced in the power receiving coil 51 by being placed on a device (IH) or the like. The state in which the charging of the built-in battery 52 is stopped and the power transfer from the charging stand 10 cannot be stopped is, for example, despite the fact that the charging stop signal is transmitted from the battery built-in device 50 to the charging stand 10. Occurs in a state where the supply of AC power to the power transmission coil 11 cannot be stopped.
内蔵電池52の充電を停止する状態で、充電台10が故障して続けて電力搬送されると、電池側の保護回路が働いて切断され、全波整流回路53が無負荷な状態となって出力電圧が異常に高くなる。また、電池内蔵機器50が電磁調理器などに載せられると、受電コイル51に電力搬送されるパワーが極めて大きくなって、受電コイル51の誘導電圧が規定値よりも高くなって、全波整流回路53の入力電圧が異常に高くなる。この状態になると、同期全波整流回路53Xの整流素子61であるFET63、64、65、66に耐圧よりも高い電圧が印加されて、半導体スイッチング素子71のFET63、64、65、66を破壊する原因となる。
If the charging stand 10 fails and power is transferred while the charging of the built-in battery 52 is stopped, the protection circuit on the battery side is activated and disconnected, and the full-wave rectifier circuit 53 becomes unloaded. The output voltage becomes abnormally high. In addition, when the battery built-in device 50 is placed on an electromagnetic cooker or the like, the power transferred to the power receiving coil 51 becomes extremely large, the induced voltage of the power receiving coil 51 becomes higher than a specified value, and the full-wave rectifier circuit. 53 input voltage becomes abnormally high. In this state, a voltage higher than the withstand voltage is applied to the FETs 63, 64, 65, 66 that are the rectifying elements 61 of the synchronous full-wave rectifying circuit 53X, and the FETs 63, 64, 65, 66 of the semiconductor switching element 71 are destroyed. Cause.
同期全波整流回路53Xは4個の整流素子61であるFET63、64、65、66で構成される。FET63、64、65、66は、同期全波整流回路53Xの電力損失を少なくするために、オン抵抗の小さいFETを使用する。同期全波整流回路53Xの電力損失が大きいと、内蔵電池52を充電するときに電池内蔵機器50の発熱量が大きくなり、この発熱が内蔵する電子部品や内蔵電池52を故障させ、あるいは劣化させる原因となるからである。FET63、64、65、66のオン抵抗は、耐圧を低くして小さくできる。たとえば、耐圧を20VとするFETのオン抵抗が約400mΩであるのに対して、同じチップ面積で耐圧を5VとするFETのオン抵抗は約150mΩと相当に小さくできる
。 The synchronous full-wave rectifier circuit 53 </ b> X includes four rectifier elements 61, FETs 63, 64, 65, and 66. The FETs 63, 64, 65, and 66 use FETs with low on-resistance in order to reduce the power loss of the synchronous full-wave rectifier circuit 53X. If the power loss of the synchronous full-wave rectifier circuit 53X is large, the amount of heat generated by the battery built-in device 50 increases when the built-in battery 52 is charged, and this heat generation causes failure or deterioration of the built-in electronic components and the built-in battery 52. It is a cause. The on-resistance of the FETs 63, 64, 65, 66 can be reduced by lowering the breakdown voltage. For example, an FET having a breakdown voltage of 20V has an on-resistance of about 400 mΩ, whereas an FET having the same chip area and a breakdown voltage of 5V can have an on-resistance of about 150 mΩ.
。 The synchronous full-
以上のことから、同期全波整流回路53Xの整流素子61であるFET63、64、65、66は、受電コイル51に負荷を接続する状態、すなわち受電コイル51の電力で内蔵電池52を充電する状態で耐えられる耐圧の素子を使用することで、オン抵抗を小さくして発熱による悪影響を防止できる。ただ、この状態で耐えられる耐圧のFETは、受電コイル51が無負荷となって誘電電圧が高くなると耐圧破壊されて故障する原因となる。
From the above, the FETs 63, 64, 65, 66, which are the rectifying elements 61 of the synchronous full-wave rectifier circuit 53X, are in a state where a load is connected to the power receiving coil 51, that is, a state where the built-in battery 52 is charged with the power of the power receiving coil 51. By using an element with a withstand voltage that can withstand, the on-resistance can be reduced and adverse effects due to heat generation can be prevented. However, the withstand voltage FET that can withstand in this state causes breakdown due to breakdown withstand voltage when the receiving coil 51 is unloaded and the dielectric voltage increases.
図9の電池内蔵機器50は、同期全波整流回路53Xの整流素子61であるFET63、64、65、66の耐圧による故障を防止する短絡回路70を備える。短絡回路70は、前述した状態で全波整流回路53の入力電圧が高くなる異常時に、全波整流回路53の出力側を短絡して、半導体スイッチング素子71に印加される電圧を低くする。全波整流回路53の出力側が短絡されると、全波整流回路53の出力電圧は耐圧未満に下がる。さらに、この状態になると、受電コイル51の交流出力の電圧も低くなる。それは、受電コイル51に流れる電流が大きくなって、受電コイル51の内部抵抗に起因する電圧降下によって出力電圧が低下されるからである。受電コイル51の出力電圧が低下して、全波整流回路53の出力側の電圧が耐圧未満になると、全波整流回路53の整流素子61であるFETの両端に供給される電圧が低くなる。それは、整流素子61の両端の電圧に、全波整流回路53の出力側と、受電コイル51の両端の電位差が印加されるからである。たとえば、全波整流回路53の出力電圧が5V、受電コイル51の両端から、プラスとマイナスのピーク電圧を5Vとする交流が出力されると、整流素子61のFETには、最大で10Vの電圧が印加される。ところが、全波整流回路53の出力電圧が短絡されて耐圧未満、例えば2Vに低下し、受電コイル51の両端からのピーク電圧を4Vとする交流が出力されると、整流素子61のFETの両端に印加される電圧は4Vに低下する。したがって、異常時に、短絡回路70の半導体スイッチング素子71をオン状態として、全波整流回路53の出力側を短絡して、整流素子61のFETに印加される電圧を相当に低くして、整流素子61であるFETの過大電圧による故障を防止できる。
The battery built-in device 50 of FIG. 9 includes a short circuit 70 that prevents a failure due to a withstand voltage of the FETs 63, 64, 65, and 66 that are the rectifying elements 61 of the synchronous full-wave rectifying circuit 53X. The short-circuit 70 shorts the output side of the full-wave rectifier circuit 53 and lowers the voltage applied to the semiconductor switching element 71 when the input voltage of the full-wave rectifier circuit 53 increases in the above-described state. When the output side of the full-wave rectifier circuit 53 is short-circuited, the output voltage of the full-wave rectifier circuit 53 falls below the withstand voltage. Furthermore, in this state, the voltage of the AC output of the power receiving coil 51 also decreases. This is because the current flowing through the power receiving coil 51 is increased, and the output voltage is reduced due to the voltage drop caused by the internal resistance of the power receiving coil 51. When the output voltage of the power receiving coil 51 decreases and the voltage on the output side of the full-wave rectifier circuit 53 becomes less than the withstand voltage, the voltage supplied to both ends of the FET that is the rectifying element 61 of the full-wave rectifier circuit 53 becomes low. This is because a potential difference between the output side of the full-wave rectifier circuit 53 and both ends of the power receiving coil 51 is applied to the voltage across the rectifier element 61. For example, when an alternating current with a full-wave rectifier circuit 53 output voltage of 5 V and positive and negative peak voltages of 5 V is output from both ends of the receiving coil 51, a voltage of 10 V at maximum is applied to the FET of the rectifier element 61. Is applied. However, when the output voltage of the full-wave rectifier circuit 53 is short-circuited and drops to less than a withstand voltage, for example, 2 V, and an alternating current with a peak voltage of 4 V from both ends of the receiving coil 51 is output, both ends of the FET of the rectifying element 61 are output. The voltage applied to is reduced to 4V. Therefore, when an abnormality occurs, the semiconductor switching element 71 of the short circuit 70 is turned on, the output side of the full-wave rectifier circuit 53 is short-circuited, and the voltage applied to the FET of the rectifier element 61 is considerably reduced. A failure due to an excessive voltage of the FET 61 can be prevented.
検出部73は、全波整流回路53の入力電圧または出力電圧を検出し、検出電圧があらかじめ設定している設定電圧よりも高くなると、半導体スイッチング素子71をオン状態に切り換えて全波整流回路53の出力側を短絡する。さらに、検出部73は、全波整流回路53の入力電流または出力電流を検出し、検出電流があらかじめ設定している設定電流よりも大きくなると、半導体スイッチング素子71をオン状態に切り換えて全波整流回路53の出力側を短絡することもできる。
The detection unit 73 detects an input voltage or an output voltage of the full-wave rectifier circuit 53. When the detected voltage becomes higher than a preset voltage, the semiconductor switching element 71 is switched on to turn on the full-wave rectifier circuit 53. Short-circuit the output side. Further, the detection unit 73 detects the input current or the output current of the full-wave rectifier circuit 53, and when the detected current becomes larger than a preset set current, the semiconductor switching element 71 is switched to the on state to perform full-wave rectification. The output side of the circuit 53 can be short-circuited.
図に示す検出部73は、全波整流回路53の入力電圧、いいかえると受電コイル51の出力電圧を検出する電圧検出回路74と、全波整流回路53の入力電流、いいかえると受電コイル51の出力電流を検出する電流検出回路75と、これらの検出電圧または検出電流に基づいてスイッチング素子71をオンオフに制御する制御部76とを備えている。
The detection unit 73 shown in the figure includes a voltage detection circuit 74 that detects an input voltage of the full-wave rectifier circuit 53, in other words, an output voltage of the power receiving coil 51, and an input current of the full-wave rectifier circuit 53, that is, an output of the power receiving coil 51. A current detection circuit 75 for detecting a current and a control unit 76 for controlling the switching element 71 on and off based on these detection voltages or detection currents are provided.
図の電圧検出回路74は、全波整流回路53の入力電圧を検出し、検出された検出電圧を制御部76に入力する。電圧検出回路は、図示しないが、全波整流回路の出力電圧を検出して制御部に入力することもできる。さらに、図の電流検出回路75は、全波整流回路53の入力電流を検出し、検出された検出電流を制御部76に出力する。電流検出回路は、図示しないが、全波整流回路の出力電流を検出して制御部に入力することもできる。このように、電流検出回路で全波整流回路の出力電流を検出する電池内蔵機器は、内部ショートする内蔵電池の充電を停止して安全性を向上できる特徴がある。
The voltage detection circuit 74 shown in the figure detects the input voltage of the full-wave rectification circuit 53 and inputs the detected voltage to the control unit 76. Although not shown, the voltage detection circuit can detect the output voltage of the full-wave rectification circuit and input it to the control unit. Furthermore, the current detection circuit 75 in the figure detects the input current of the full-wave rectification circuit 53 and outputs the detected detection current to the control unit 76. Although not shown, the current detection circuit can detect the output current of the full-wave rectifier circuit and input it to the control unit. Thus, the battery built-in device that detects the output current of the full-wave rectifier circuit by the current detection circuit has a feature that the charging of the internal battery that is internally short-circuited can be stopped to improve safety.
制御部76は、電圧検出回路74から入力される検出電圧を設定電圧に比較し、また、電流検出回路75から入力される検出電流を設定電流に比較し、検出電圧と検出電流のいずれか一方、または両方が設定値よりも大きい場合に、半導体スイッチング素子71をオン状態に切り換える。さらに、図に示す制御部76は、オン状態に切り換えられた半導体スイッチング素子71をオン状態に保持するラッチング回路77と、このラッチング回路77を解除するリミッター回路78とを備えている。ラッチング回路77は、オン状態に切り換えられた半導体スイッチング素子71が直ぐにオフ状態に切り換えられるのを阻止して、半導体スイッチング素子71をオン状態に保持する。このラッチング回路77は、リミッター回路78から解除信号が入力されると、半導体スイッチング素子71をオン状態からオフ状態に切り換える。
The control unit 76 compares the detection voltage input from the voltage detection circuit 74 with the set voltage, compares the detection current input from the current detection circuit 75 with the set current, and selects either the detection voltage or the detection current. Or both are larger than the set value, the semiconductor switching element 71 is switched to the ON state. Further, the control unit 76 shown in the figure includes a latching circuit 77 that holds the semiconductor switching element 71 switched to the on state in an on state, and a limiter circuit 78 that releases the latching circuit 77. The latching circuit 77 prevents the semiconductor switching element 71 switched to the on state from being immediately switched to the off state, and holds the semiconductor switching element 71 in the on state. When a release signal is input from the limiter circuit 78, the latching circuit 77 switches the semiconductor switching element 71 from the on state to the off state.
リミッター回路78は、電流検出回路75から入力される検出電流が、あらかじめ設定している第2の設定電流よりも小さくなったことを検出して、解除信号をラッチング回路77に入力する。ここで、第2の設定電流は、前述の半導体スイッチング素子71をオン状態に切り換える閾値である設定電流と等しくすることも、あるいは小さくすることもできる。第2の設定電流は、例えば、0とすることもできる。半導体スイッチング素子71がオンに切り換えられる状態は、全波整流回路53の整流素子61に過大な電圧が作用する異常な状態である。このため、半導体スイッチング素子71がオンに切り換えられた状態では、受電コイル51に誘導電流が流れなくなるまで、すなわち、受電コイル51が送電コイル11から十分に遠ざけられる状態となるまで半導体スイッチング素子71をオフ状態に復帰させないことで、全波整流回路53の整流素子61を確実に保護できる。したがって、リミッター回路78は、好ましくは、受電コイル51の出力電流が0になり、あるいは第2の設定電流よりも小さくなる状態が所定の時間経過することを検出して、解除信号をラッチング回路77に入力する。
The limiter circuit 78 detects that the detection current input from the current detection circuit 75 has become smaller than a preset second setting current, and inputs a release signal to the latching circuit 77. Here, the second set current can be made equal to or smaller than the set current that is a threshold value for switching the semiconductor switching element 71 to the ON state. The second set current can be set to 0, for example. The state where the semiconductor switching element 71 is switched on is an abnormal state where an excessive voltage acts on the rectifying element 61 of the full-wave rectifying circuit 53. For this reason, in a state where the semiconductor switching element 71 is switched on, the semiconductor switching element 71 is kept until the induction current does not flow through the power receiving coil 51, that is, until the power receiving coil 51 is sufficiently separated from the power transmitting coil 11. By not returning to the off state, the rectifier element 61 of the full-wave rectifier circuit 53 can be reliably protected. Therefore, the limiter circuit 78 preferably detects that the output current of the power receiving coil 51 becomes 0 or becomes smaller than the second set current after a predetermined time has elapsed, and the release signal is latched by the latching circuit 77. To enter.
ただ、リミッター回路は、タイマーを備えて、所定の時間が経過すると解除信号をラッチング回路に入力して、半導体スイッチング素子をオフ状態に復帰させることもできる。さらに、リミッター回路は、図示しないが、リミッタースイッチとすることもできる。このリミッタースイッチは、ユーザーが操作する外部スイッチとして、電池内蔵機器に設けることができる。この電池内蔵機器は、検出部が全波整流回路の電圧異常を検出して、半導体スイッチング素子をオンに切り換えて全波整流回路の出力側を短絡した後、ユーザーが外部スイッチであるリミッタースイッチを操作することにより、解除信号がラッチング回路に入力されて半導体スイッチング素子がオフ状態に切り換えられる。
However, the limiter circuit includes a timer, and can input a release signal to the latching circuit when a predetermined time elapses to return the semiconductor switching element to the OFF state. Further, the limiter circuit may be a limiter switch (not shown). This limiter switch can be provided in a battery built-in device as an external switch operated by a user. In this battery built-in device, the detection unit detects a voltage abnormality in the full-wave rectifier circuit, switches on the semiconductor switching element and shorts the output side of the full-wave rectifier circuit, and then the user turns on the limiter switch that is an external switch. By operating, the release signal is input to the latching circuit, and the semiconductor switching element is switched to the off state.
さらに、図9の電池内蔵機器50は、全波整流回路53の出力側に、異常時にオフ、正常時にオンに切り換えられる出力スイッチ79を設けており、この出力スイッチ79を介して内蔵電池52を充電する。出力スイッチ79は、異常時にオフに切り換えられて、全波整流回路53の出力側を負荷から切り離して、内蔵電池52の充電を停止する。図9の電池内蔵機器50は、出力スイッチ79と短絡回路70の半導体スイッチング素子71の両方を検出部73でオンオフに制御する。検出部73は、短絡回路70の半導体スイッチング素子71をオンに切り換える状態、すなわち異常時に出力スイッチ79をオフに切り換え、短絡回路70の半導体スイッチング素子71をオフとする正常時には、出力スイッチ79をオン状態として全波整流回路53の出力で内蔵電池52を充電する。この電池内蔵機器50は、異常時に出力スイッチ79をオフに切り換えて、全波整流回路53の出力側を負荷である内蔵電池52から切り離すので、異常時に内蔵電池52の充電を停止できる。
Further, the battery built-in device 50 of FIG. 9 is provided with an output switch 79 on the output side of the full-wave rectifier circuit 53 that is turned off when abnormal and turned on when normal. The built-in battery 52 is connected via the output switch 79. Charge. The output switch 79 is switched off in the event of an abnormality, disconnects the output side of the full-wave rectifier circuit 53 from the load, and stops charging the built-in battery 52. The battery built-in device 50 in FIG. 9 controls both the output switch 79 and the semiconductor switching element 71 of the short circuit 70 to be turned on / off by the detection unit 73. The detection unit 73 turns on the output switch 79 in a state where the semiconductor switching element 71 of the short circuit 70 is turned on, that is, when the output switch 79 is turned off during an abnormality and the semiconductor switching element 71 of the short circuit 70 is turned off. The built-in battery 52 is charged with the output of the full-wave rectifier circuit 53 as a state. In the battery built-in device 50, the output switch 79 is turned off at the time of abnormality, and the output side of the full-wave rectifier circuit 53 is disconnected from the built-in battery 52 as a load.
以上の実施例は、全波整流回路53をFETの同期整流回路とするので、全波整流回路53の発熱を著しく少なくできる。ただ、本発明の電池内蔵機器は、全波整流回路をダイオードブリッジで実現することもできる。ダイオードブリッジも同期整流回路と同じように、ダイオードに耐圧の低い素子を使用して、オン抵抗を小さくして発熱を小さくできる。ただ、耐圧の低いダイオードは、高電圧で故障するので、異常時には、全波整流回路の出力側を短絡回路で短絡して整流素子の過大電圧による故障を防止できる。
In the above embodiment, since the full-wave rectifier circuit 53 is an FET synchronous rectifier circuit, the heat generation of the full-wave rectifier circuit 53 can be remarkably reduced. However, the battery built-in device of the present invention can also realize a full-wave rectifier circuit with a diode bridge. Similarly to the synchronous rectifier circuit, the diode bridge can use an element having a low withstand voltage to reduce the on-resistance and reduce heat generation. However, since a diode with a low breakdown voltage fails at a high voltage, at the time of abnormality, the output side of the full-wave rectifier circuit can be short-circuited by a short circuit to prevent a failure due to an excessive voltage of the rectifier element.
さらに、図8と図9の電池内蔵機器50は、受電コイル51と直列に接続しているPTC59を備える。PTC59は、通常のノーマル状態では電気抵抗が小さいが、過大な電流が流れて所定の温度まで温度上昇するとトリップして、電気抵抗を著しく大きくして、受電コイル51の電流を実質的に遮断する。この電池内蔵機器50は、前述のように短絡回路70がオンとなる状態で、受電コイル51に誘導される電流が設定値よりも大きくなると、PTC59がトリップして受電コイル51の電流を遮断する。このため、電池内蔵機器50が電磁調理器などに載せられても、受電コイル51の電流を遮断して安全に使用できる。PTC59は、電池内蔵機器50が電磁調理器から外されると、復帰して電気抵抗が小さくなる。このため、電磁調理器から外して、ふたたび充電台10にセットして、内蔵電池52を充電できる。
8 and FIG. 9 further includes a PTC 59 connected in series with the power receiving coil 51. The PTC 59 has a small electric resistance in a normal normal state, but trips when an excessive current flows and the temperature rises to a predetermined temperature, and the electric resistance is remarkably increased to substantially cut off the current of the power receiving coil 51. . In the battery built-in device 50, when the current induced in the power receiving coil 51 becomes larger than the set value with the short circuit 70 turned on as described above, the PTC 59 trips and cuts off the current in the power receiving coil 51. . For this reason, even if the battery built-in apparatus 50 is mounted on an electromagnetic cooker or the like, it can be safely used by cutting off the current of the power receiving coil 51. When the battery built-in device 50 is removed from the electromagnetic cooker, the PTC 59 returns and the electrical resistance decreases. For this reason, it can remove from an electromagnetic cooker, can be set in the charging stand 10 again, and the internal battery 52 can be charged.
電池内蔵機器50は、正常時において短絡回路70をオフとして、受電コイル51に誘導される交流を同期全波整流回路53Xで整流し、電解コンデンサー58で平滑化して、内蔵電池52の充電に使用される。同期全波整流回路53Xから出力される直流は、充電回路54で制御されて内蔵電池52を充電する。充電回路54は、内蔵電池52の満充電を検出して充電を停止する。リチウムイオン電池の内蔵電池52を充電する充電回路54は、定電圧・定電流充電して内蔵電池52を満充電する。ニッケル水素電池の内蔵電池を充電する充電回路は、定電流充電して内蔵電池を満充電する。
The battery built-in device 50 turns off the short circuit 70 under normal conditions, rectifies the alternating current induced in the power receiving coil 51 by the synchronous full-wave rectifier circuit 53X, smoothes it by the electrolytic capacitor 58, and is used for charging the built-in battery 52. Is done. The direct current output from the synchronous full-wave rectifier circuit 53X is controlled by the charging circuit 54 to charge the built-in battery 52. The charging circuit 54 detects the full charge of the built-in battery 52 and stops charging. A charging circuit 54 for charging the built-in battery 52 of the lithium ion battery fully charges the built-in battery 52 by performing constant voltage / constant current charging. The charging circuit for charging the internal battery of the nickel metal hydride battery fully charges the internal battery by constant current charging.
充電台10は、図2ないし図8に示すように、交流電源12に接続されて受電コイル51に起電力を誘導する送電コイル11と、この送電コイル11を内蔵すると共に、上面には電池内蔵機器50を載せる上面プレート21を有するケース20と、このケース20に内蔵されて、送電コイル11を上面プレート21の内面に沿って移動させる移動機構13と、上面プレート21に載せられる電池内蔵機器50の位置を検出して、移動機構13を制御して送電コイル11を電池内蔵機器50の受電コイル51に接近させる位置検出制御器14とを備える。充電台10は、送電コイル11と、交流電源12と、移動機構13と、位置検出制御器14とをケース20に内蔵している。
As shown in FIGS. 2 to 8, the charging stand 10 includes a power transmission coil 11 that is connected to an AC power source 12 and induces an electromotive force in the power receiving coil 51. A case 20 having an upper surface plate 21 on which the device 50 is placed, a moving mechanism 13 that is built in the case 20 and moves the power transmission coil 11 along the inner surface of the upper surface plate 21, and a battery built-in device 50 that is placed on the upper surface plate 21. And a position detection controller 14 for controlling the moving mechanism 13 to bring the power transmission coil 11 closer to the power reception coil 51 of the battery built-in device 50. The charging stand 10 includes a power transmission coil 11, an AC power source 12, a moving mechanism 13, and a position detection controller 14 in a case 20.
この充電台10は、以下の動作で電池内蔵機器50の内蔵電池52を充電する。
(1)ケース20の上面プレート21に電池内蔵機器50が載せられると、この電池内蔵機器50の位置が位置検出制御器14で検出される。
(2)電池内蔵機器50の位置を検出した位置検出制御器14は、移動機構13を制御して、移動機構13でもって送電コイル11を上面プレート21に沿って移動させて電池内蔵機器50の受電コイル51に接近させる。
(3)受電コイル51に接近する送電コイル11は、受電コイル51に電磁結合されて受電コイル51に交流電力を搬送する。
(4)電池内蔵機器50は、受電コイル51の交流電力を整流して直流に変換し、この直流で内蔵電池52を充電する。 The charging stand 10 charges the built-inbattery 52 of the battery built-in device 50 by the following operation.
(1) When the battery built-indevice 50 is placed on the upper surface plate 21 of the case 20, the position detection controller 14 detects the position of the battery built-in device 50.
(2) Theposition detection controller 14 that has detected the position of the battery built-in device 50 controls the moving mechanism 13 to move the power transmission coil 11 along the upper surface plate 21 with the moving mechanism 13, thereby Approach the power receiving coil 51.
(3) Thepower transmission coil 11 approaching the power reception coil 51 is electromagnetically coupled to the power reception coil 51 and carries AC power to the power reception coil 51.
(4) The battery built-indevice 50 rectifies the AC power of the power receiving coil 51 and converts it into direct current, and charges the built-in battery 52 with this direct current.
(1)ケース20の上面プレート21に電池内蔵機器50が載せられると、この電池内蔵機器50の位置が位置検出制御器14で検出される。
(2)電池内蔵機器50の位置を検出した位置検出制御器14は、移動機構13を制御して、移動機構13でもって送電コイル11を上面プレート21に沿って移動させて電池内蔵機器50の受電コイル51に接近させる。
(3)受電コイル51に接近する送電コイル11は、受電コイル51に電磁結合されて受電コイル51に交流電力を搬送する。
(4)電池内蔵機器50は、受電コイル51の交流電力を整流して直流に変換し、この直流で内蔵電池52を充電する。 The charging stand 10 charges the built-in
(1) When the battery built-in
(2) The
(3) The
(4) The battery built-in
以上の動作で電池内蔵機器50の内蔵電池52を充電する充電台10は、交流電源12に接続している送電コイル11をケース20に内蔵している。送電コイル11は、ケース20の上面プレート21の下に配設されて、上面プレート21に沿って移動するように配設される。送電コイル11から受電コイル51への電力搬送の効率は、送電コイル11と受電コイル51の間隔を狭くして向上できる。好ましくは、送電コイル11を受電コイル51に接近する状態で、送電コイル11と受電コイル51の間隔は7mm以下とする。したがって、送電コイル11は、上面プレート21の下にあって、できるかぎり上面プレート21に接近して配設される。送電コイル11は、上面プレート21の上に載せられる電池内蔵機器50の受電コイル51に接近するように移動するので、上面プレート21の下面に沿って移動できるように配設される。
The charging stand 10 that charges the built-in battery 52 of the battery built-in device 50 by the above operation has the power transmission coil 11 connected to the AC power supply 12 built in the case 20. The power transmission coil 11 is disposed under the upper surface plate 21 of the case 20 so as to move along the upper surface plate 21. The efficiency of power transfer from the power transmission coil 11 to the power reception coil 51 can be improved by narrowing the interval between the power transmission coil 11 and the power reception coil 51. Preferably, the distance between the power transmission coil 11 and the power reception coil 51 is set to 7 mm or less while the power transmission coil 11 is approaching the power reception coil 51. Therefore, the power transmission coil 11 is disposed below the top plate 21 and as close to the top plate 21 as possible. Since the power transmission coil 11 moves so as to approach the power reception coil 51 of the battery built-in device 50 placed on the upper surface plate 21, the power transmission coil 11 is disposed so as to be movable along the lower surface of the upper surface plate 21.
送電コイル11を内蔵するケース20は、電池内蔵機器50を載せる平面状の上面プレート21を上面に設けている。図2と図3の充電台10は、上面プレート21全体を平面状として水平に配設している。上面プレート21は、大きさや外形が異なる種々の電池内蔵機器50を上に載せることができる大きさ、たとえば、一辺を5cmないし30cmとする四角形としている。ただ、上面プレートは、直径を5cmないし30cmとする円形とすることもできる。図2と図3の充電台10は、上面プレート21を大きくして、すなわち複数の電池内蔵機器50を同時に載せることができる大きさとして、複数の電池内蔵機器50を一緒に載せて内蔵される内蔵電池52を順番に充電できるようにしている。また、上面プレートは、その周囲に周壁などを設け、周壁の内側に電池内蔵機器をセットして、内蔵する電池を充電するこ・BR>ニもできる。
The case 20 containing the power transmission coil 11 is provided with a flat top plate 21 on which the battery built-in device 50 is placed on the top surface. The charging stand 10 in FIGS. 2 and 3 is disposed horizontally with the entire top plate 21 as a flat surface. The upper surface plate 21 has such a size that various battery-equipped devices 50 having different sizes and outer shapes can be placed thereon, for example, a quadrangle having one side of 5 cm to 30 cm. However, the top plate may be circular with a diameter of 5 to 30 cm. The charging stand 10 of FIGS. 2 and 3 is built in such a manner that the upper plate 21 is enlarged, that is, a size capable of mounting a plurality of battery built-in devices 50 at the same time. The built-in battery 52 can be charged in order. In addition, the top plate can be equipped with a peripheral wall around it, and a battery built-in device can be set inside the peripheral wall to charge the built-in battery.
送電コイル11は、上面プレート21と平行な面で渦巻き状に巻かれて、上面プレート21の上方に交流磁束を放射する。この送電コイル11は、上面プレート21に直交する交流磁束を上面プレート21の上方に放射する。送電コイル11は、交流電源12から交流電力が供給されて、上面プレート21の上方に交流磁束を放射する。送電コイル11は、磁性材からなるコア15に線材を巻いてインダクタンスを大きくできる。コア15は、透磁率が大きいフェライト等の磁性材料で、上方を開放する壺形としている。壺形のコア15は、渦巻き状に巻かれた送電コイル11の中心に配置する円柱部15Aと、外側に配置される円筒部15Bを底部で連結する形状としている。コア15のある送電コイル11は、磁束を特定部分に集束して、効率よく電力を受電コイル51に伝送できる。ただ、送電コイルは、必ずしもコアを設ける必要はなく、空芯コイルとすることもできる。空芯コイルは軽いので、これを上面プレートの内面で移動する移動機構を簡単にできる。送電コイル11は、受電コイル51の外径にほぼ等しくして、受電コイル51に効率よく電力搬送する。
The power transmission coil 11 is wound in a spiral shape on a surface parallel to the upper surface plate 21 and radiates an alternating magnetic flux above the upper surface plate 21. The power transmission coil 11 radiates an alternating magnetic flux orthogonal to the upper surface plate 21 above the upper surface plate 21. The power transmission coil 11 is supplied with AC power from the AC power source 12 and radiates AC magnetic flux above the upper surface plate 21. The power transmission coil 11 can increase the inductance by winding a wire around a core 15 made of a magnetic material. The core 15 is made of a magnetic material such as ferrite having a high magnetic permeability, and has a bowl shape that opens upward. The bowl-shaped core 15 has a shape in which a columnar portion 15A disposed at the center of a power transmission coil 11 wound in a spiral shape and a cylindrical portion 15B disposed on the outside are connected at the bottom. The power transmission coil 11 having the core 15 can concentrate the magnetic flux to a specific portion and efficiently transmit power to the power reception coil 51. However, the power transmission coil does not necessarily need to be provided with a core, and may be an air-core coil. Since the air-core coil is light, a moving mechanism for moving it on the inner surface of the upper plate can be simplified. The power transmission coil 11 is substantially equal to the outer diameter of the power reception coil 51 and efficiently conveys power to the power reception coil 51.
交流電源12は、たとえば、20kHz~数MHzの高周波電力を送電コイル11に供給する。交流電源12は、可撓性のリード線16を介して送電コイル11に接続される。送電コイル11が上面プレート21に載せられる電池内蔵機器50の受電コイル51に接近するように移動されるからである。交流電源12は、図示しないが、自励式の発振回路と、この発振回路から出力される交流を電力増幅するパワーアンプとを備える。自励式の発振回路は、送電コイル11を発振コイルに併用している。したがって、この発振回路は、送電コイル11のインダクタンスで発振周波数が変化する。送電コイル11のインダクタンスは、送電コイル11と受電コイル51との相対位置で変化する。送電コイル11と受電コイル51との相互インダクタンスが、送電コイル11と受電コイル51との相対位置で変化するからである。したがって、送電コイル11を発振コイルに使用する自励式の発振回路は、交流電源12が受電コイル51に接近するにしたがって変化する。このため、自励式の発振回路は、発振周波数の変化で送電コイル11と受電コイル51との相対位置を検出することができ、位置検出制御器14に併用できる。
The AC power supply 12 supplies, for example, high frequency power of 20 kHz to several MHz to the power transmission coil 11. The AC power supply 12 is connected to the power transmission coil 11 via a flexible lead wire 16. This is because the power transmission coil 11 is moved so as to approach the power reception coil 51 of the battery built-in device 50 placed on the upper surface plate 21. Although not shown, the AC power source 12 includes a self-excited oscillation circuit and a power amplifier that amplifies the AC output from the oscillation circuit. The self-excited oscillation circuit uses the power transmission coil 11 in combination with the oscillation coil. Therefore, the oscillation frequency of this oscillation circuit changes due to the inductance of the power transmission coil 11. The inductance of the power transmission coil 11 changes at the relative position between the power transmission coil 11 and the power reception coil 51. This is because the mutual inductance between the power transmission coil 11 and the power reception coil 51 changes at the relative position between the power transmission coil 11 and the power reception coil 51. Therefore, the self-excited oscillation circuit that uses the power transmission coil 11 as the oscillation coil changes as the AC power supply 12 approaches the power reception coil 51. For this reason, the self-excited oscillation circuit can detect the relative position between the power transmission coil 11 and the power reception coil 51 by a change in the oscillation frequency, and can be used together with the position detection controller 14.
送電コイル11は、移動機構13で受電コイル51に接近するように移動される。図3ないし図6の移動機構13は、送電コイル11を、上面プレート21に沿って、X軸方向とY軸方向に移動させて受電コイル51に接近させる。図の移動機構13は、位置検出制御器14で制御されるサーボモータ22でネジ棒23を回転して、ネジ棒23にねじ込んでいるナット材24を移動して、送電コイル11を受電コイル51に接近させる。サーボモータ22は、送電コイル11をX軸方向に移動させるX軸サーボモータ22Aと、Y軸方向に移動させるY軸サーボモータ22Bとを備える。ネジ棒23は、送電コイル11をX軸方向に移動させる一対のX軸ネジ棒23Aと、送電コイル11をY軸方向に移動させるY軸ネジ棒23Bとを備える。一対のX軸ネジ棒23Aは、互いに平行に配設されて、ベルト25に駆動されてX軸サーボモータ22Aで一緒に回転される。ナット材24は、各々のX軸ネジ棒23Aにねじ込んでいる一対のX軸ナット材24Aと、Y軸ネジ棒23Bにねじ込んでいるY軸ナット材24Bからなる。Y軸ネジ棒23Bは、その両端を一対のX軸ナット材24Aに回転できるように連結している。送電コイル11はY軸ナット材24Bに連結している。
The power transmission coil 11 is moved by the moving mechanism 13 so as to approach the power reception coil 51. The moving mechanism 13 shown in FIGS. 3 to 6 moves the power transmission coil 11 along the top plate 21 in the X-axis direction and the Y-axis direction to approach the power receiving coil 51. The moving mechanism 13 shown in the figure rotates the screw rod 23 by the servo motor 22 controlled by the position detection controller 14 to move the nut member 24 screwed into the screw rod 23, and the power transmission coil 11 is moved to the power receiving coil 51. To approach. The servo motor 22 includes an X-axis servo motor 22A that moves the power transmission coil 11 in the X-axis direction, and a Y-axis servo motor 22B that moves the Y-axis direction. The screw rod 23 includes a pair of X-axis screw rods 23A that move the power transmission coil 11 in the X-axis direction, and a Y-axis screw rod 23B that moves the power transmission coil 11 in the Y-axis direction. The pair of X-axis screw rods 23A are arranged in parallel to each other, driven by the belt 25, and rotated together by the X-axis servomotor 22A. The nut member 24 includes a pair of X-axis nut members 24A screwed into the respective X-axis screw rods 23A, and a Y-axis nut member 24B screwed into the Y-axis screw rods 23B. The Y-axis screw rod 23B is coupled so that both ends thereof can be rotated to a pair of X-axis nut members 24A. The power transmission coil 11 is connected to the Y-axis nut member 24B.
さらに、図に示す移動機構13は、送電コイル11を水平な姿勢でY軸方向に移動させるために、Y軸ネジ棒23Bと平行にガイドロッド26を配設している。ガイドロッド26は、両端を一対のX軸ナット材24Aに連結しており、一対のX軸ナット材24Aと一緒に移動する。ガイドロッド26は、送電コイル11に連結されるガイド部27を貫通しており、送電コイル11をガイドロッド26に沿ってY軸方向に移動できるようにしている。すなわち、送電コイル11は、互いに平行に配設されるY軸ネジ棒23Bとガイドロッド26に沿って移動するY軸ナット材24Bとガイド部27を介して、水平な姿勢でY軸方向に移動する。
Furthermore, the moving mechanism 13 shown in the figure has a guide rod 26 disposed in parallel with the Y-axis screw rod 23B in order to move the power transmission coil 11 in the Y-axis direction in a horizontal posture. Both ends of the guide rod 26 are connected to the pair of X-axis nut members 24A and move together with the pair of X-axis nut members 24A. The guide rod 26 penetrates the guide portion 27 coupled to the power transmission coil 11 so that the power transmission coil 11 can be moved along the guide rod 26 in the Y-axis direction. That is, the power transmission coil 11 moves in the Y-axis direction in a horizontal posture via the Y-axis nut member 24 </ b> B and the guide portion 27 that move along the Y-axis screw rod 23 </ b> B and the guide rod 26 arranged in parallel to each other. To do.
この移動機構13は、X軸サーボモータ22AがX軸ネジ棒23Aを回転させると、一対のX軸ナット材24AがX軸ネジ棒23Aに沿って移動して、Y軸ネジ棒23Bとガイドロッド26をX軸方向に移動させる。Y軸サーボモータ22BがY軸ネジ棒23Bを回転させると、Y軸ナット材24BがY軸ネジ棒23Bに沿って移動して、送電コイル11をY軸方向に移動させる。このとき、送電コイル11に連結されたガイド部27は、ガイドロッド26に沿って移動して、送電コイル11を水平な姿勢でY軸方向に移動させる。したがって、X軸サーボモータ22AとY軸サーボモータ22Bの回転を位置検出制御器14で制御して、送電コイル11をX軸方向とY軸方向に移動できる。ただし、本発明の充電台は、移動機構を以上のメカニズムには特定しない。移動機構には、送電コイルをX軸方向とY軸方向に移動できる全ての機構を利用できるからである。
In the moving mechanism 13, when the X-axis servo motor 22A rotates the X-axis screw rod 23A, the pair of X-axis nut members 24A move along the X-axis screw rod 23A, and the Y-axis screw rod 23B and the guide rod 26 is moved in the X-axis direction. When the Y-axis servo motor 22B rotates the Y-axis screw rod 23B, the Y-axis nut member 24B moves along the Y-axis screw rod 23B, and moves the power transmission coil 11 in the Y-axis direction. At this time, the guide part 27 connected to the power transmission coil 11 moves along the guide rod 26 to move the power transmission coil 11 in the Y-axis direction in a horizontal posture. Therefore, the rotation of the X-axis servomotor 22A and the Y-axis servomotor 22B can be controlled by the position detection controller 14, and the power transmission coil 11 can be moved in the X-axis direction and the Y-axis direction. However, the charging stand of the present invention does not specify the moving mechanism as the above mechanism. This is because any mechanism that can move the power transmission coil in the X-axis direction and the Y-axis direction can be used as the moving mechanism.
位置検出制御器14は、上面プレート21に載せられた電池内蔵機器50の位置を検出する。図3ないし図6の位置検出制御器14は、電池内蔵機器50に内蔵される受電コイル51の位置を検出して、送電コイル11を受電コイル51に接近させる。さらに、位置検出制御器14は、受電コイル51の位置を粗検出する第1の位置検出制御器14Aと、受電コイル51の位置を精密検出する第2の位置検出制御器14Bとを備える。この位置検出制御器14は、第1の位置検出制御器14Aで受電コイル51の位置を粗検出すると共に、移動機構13を制御して送電コイル11の位置を受電コイル51に接近させた後、さらに、第2の位置検出制御器14Bで受電コイル51の位置を精密検出しながら移動機構13を制御して、送電コイル11の位置を正確に受電コイル51に接近させる。この充電台10は、速やかに、しかも、より正確に送電コイル11を受電コイル51に接近できる。
The position detection controller 14 detects the position of the battery built-in device 50 placed on the top plate 21. The position detection controller 14 in FIGS. 3 to 6 detects the position of the power receiving coil 51 built in the battery built-in device 50, and causes the power transmitting coil 11 to approach the power receiving coil 51. Further, the position detection controller 14 includes a first position detection controller 14A that roughly detects the position of the power receiving coil 51, and a second position detection controller 14B that precisely detects the position of the power receiving coil 51. The position detection controller 14 roughly detects the position of the power receiving coil 51 by the first position detection controller 14A, and controls the moving mechanism 13 to bring the position of the power transmitting coil 11 closer to the power receiving coil 51. Further, the moving mechanism 13 is controlled while precisely detecting the position of the power receiving coil 51 by the second position detection controller 14B, so that the position of the power transmitting coil 11 is brought close to the power receiving coil 51 accurately. The charging stand 10 can bring the power transmission coil 11 close to the power reception coil 51 quickly and more accurately.
第1の位置検出制御器14Aは、図7に示すように、上面プレート21の内面に固定している複数の位置検出コイル30と、この位置検出コイル30に位置検出信号を供給する検出信号発生回路31と、この検出信号発生回路31から位置検出コイル30に供給されるパルスに励起されて受電コイル51から位置検出コイル30に出力されるエコー信号を受信する受信回路32と、この受信回路32が受信するエコー信号から送電コイル11の位置を判別する識別回路33とを備える。
As shown in FIG. 7, the first position detection controller 14 </ b> A generates a plurality of position detection coils 30 fixed to the inner surface of the upper surface plate 21, and detection signal generation for supplying position detection signals to the position detection coils 30. A reception circuit 32 that receives an echo signal that is excited by a pulse supplied from the detection signal generation circuit 31 to the position detection coil 30 and is output from the power reception coil 51 to the position detection coil 30; And an identification circuit 33 for determining the position of the power transmission coil 11 from the echo signal received.
位置検出コイル30は複数列のコイルからなり、複数の位置検出コイル30を上面プレート21の内面に所定の間隔で固定している。位置検出コイル30は、受電コイル51のX軸方向の位置を検出する複数のX軸検出コイル30Aと、Y軸方向の位置を検出する複数のY軸検出コイル30Bとを備える。各々のX軸検出コイル30Aは、Y軸方向に細長いループ状であって、複数のX軸検出コイル30Aは、所定の間隔で上面プレート21の内面に固定されている。隣接するX軸検出コイル30Aの間隔(d)は、受電コイル51の外径(D)よりも小さく、好ましくはX軸検出コイル30Aの間隔(d)を受電コイル51の外径(D)の1倍ないし1/4倍としている。X軸検出コイル30Aは、間隔(d)を狭くして、受電コイル51のX軸方向の位置を正確に検出できる。各々のY軸検出コイル30Bは、X軸方向に細長いループ状であって、複数のY軸検出コイル30Bは、所定の間隔で上面プレート21の内面に固定されている。隣接するY軸検出コイル30Bの間隔(d)も、X軸検出コイル30Aと同じように、受電コイル51の外径(D)よりも小さく、好ましくはY軸検出コイル30Bの間隔(d)を受電コイル51の外径(D)の1倍ないし1/4倍としている。Y軸検出コイル30Bも、その間隔(d)を狭くして、受電コイル51のY軸方向の位置を正確に検出できる。
The position detection coil 30 is composed of a plurality of rows of coils, and the plurality of position detection coils 30 are fixed to the inner surface of the top plate 21 at predetermined intervals. The position detection coil 30 includes a plurality of X-axis detection coils 30A that detect the position of the power receiving coil 51 in the X-axis direction, and a plurality of Y-axis detection coils 30B that detect a position in the Y-axis direction. Each X-axis detection coil 30A has a loop shape elongated in the Y-axis direction, and the plurality of X-axis detection coils 30A are fixed to the inner surface of the upper surface plate 21 at a predetermined interval. The interval (d) between the adjacent X-axis detection coils 30A is smaller than the outer diameter (D) of the power receiving coil 51. Preferably, the interval (d) between the X-axis detection coils 30A is equal to the outer diameter (D) of the power receiving coil 51. 1 times to 1/4 times. The X-axis detection coil 30A can accurately detect the position of the power receiving coil 51 in the X-axis direction by narrowing the interval (d). Each Y-axis detection coil 30B has a loop shape elongated in the X-axis direction, and the plurality of Y-axis detection coils 30B are fixed to the inner surface of the upper surface plate 21 at a predetermined interval. Similarly to the X-axis detection coil 30A, the interval (d) between the adjacent Y-axis detection coils 30B is also smaller than the outer diameter (D) of the power receiving coil 51, and preferably the interval (d) between the Y-axis detection coils 30B. The outer diameter (D) of the power receiving coil 51 is set to 1 to 1/4 times. The Y-axis detection coil 30B can also accurately detect the position of the power receiving coil 51 in the Y-axis direction by narrowing the interval (d).
検出信号発生回路31は、所定のタイミングで位置検出信号であるパルス信号を位置検出コイル30に出力する。位置検出信号が入力される位置検出コイル30は、位置検出信号で接近する受電コイル51を励起する。励起された受電コイル51は、流れる電流のエネルギーでエコー信号を位置検出コイル30に出力する。したがって、受電コイル51の近くにある位置検出コイル30は、図10に示すように、位置検出信号が入力された後、所定の時間遅れて、受電コイル51からのエコー信号が誘導される。位置検出コイル30に誘導されるエコー信号は、受信回路32で識別回路33に出力される。したがって、識別回路33は、受信回路32から入力されるエコー信号でもって、位置検出コイル30に受電コイル51が接近しているかどうかを判定する。複数の位置検出コイル30にエコー信号が誘導されるとき、識別回路33は、エコー信号レベルの大きい位置検出コイル30にもっとも接近していると判定する。
The detection signal generation circuit 31 outputs a pulse signal that is a position detection signal to the position detection coil 30 at a predetermined timing. The position detection coil 30 to which the position detection signal is input excites the power receiving coil 51 that approaches the position detection signal. The excited power receiving coil 51 outputs an echo signal to the position detection coil 30 with the energy of the flowing current. Therefore, as shown in FIG. 10, the position detection coil 30 near the power receiving coil 51 is guided by an echo signal from the power receiving coil 51 with a predetermined time delay after the position detection signal is input. The echo signal induced in the position detection coil 30 is output to the identification circuit 33 by the reception circuit 32. Therefore, the identification circuit 33 determines whether or not the power receiving coil 51 is approaching the position detection coil 30 with the echo signal input from the receiving circuit 32. When echo signals are induced in the plurality of position detection coils 30, the identification circuit 33 determines that the position detection coil 30 with the highest echo signal level is closest.
図7に示す位置検出制御器14は、各々の位置検出コイル30を切換回路34を介して受信回路32に接続する。この位置検出制御器14は、入力を順番に切り換えて複数の位置検出コイル30に接続するので、ひとつの受信回路32で複数の位置検出コイル30のエコー信号を検出できる。ただし、各々の位置検出コイルに受信回路を接続してエコー信号を検出することもできる。
The position detection controller 14 shown in FIG. 7 connects each position detection coil 30 to the reception circuit 32 via the switching circuit 34. Since the position detection controller 14 switches the inputs in order and connects them to the plurality of position detection coils 30, the single reception circuit 32 can detect the echo signals of the plurality of position detection coils 30. However, an echo signal can also be detected by connecting a receiving circuit to each position detection coil.
図7の位置検出制御器14は、識別回路33で制御される切換回路34で複数の位置検出コイル30を順番に切り換えて受信回路32に接続する。検出信号発生回路31は切換回路34の出力側に接続されて、位置検出コイル30に位置検出信号を出力する。検出信号発生回路31から位置検出コイル30に出力される位置検出信号のレベルは、受電コイル51からのエコー信号に比較して極めて大きい。受信回路32は、入力側にダイオードからなるリミッター回路35を接続している。リミッター回路35は、検出信号発生回路31から受信回路32に入力される位置検出信号の信号レベルを制限して受信回路32に入力する。信号レベルの小さいエコー信号は、制限されることなく受信回路32に入力される。受信回路32は、位置検出信号とエコー信号の両方を増幅して出力する。受信回路32から出力されるエコー信号は、位置検出信号から所定のタイミング、たとえば数μs
ec~数百μsec遅れた信号となる。エコー信号が位置検出信号から遅れる遅延時間は、一定の時間であるから、位置検出信号から所定の遅延時間後の信号をエコー信号とし、このエコー信号のレベルから位置検出コイル30に受電コイル51が接近しているかどうかを判定する。 Theposition detection controller 14 of FIG. 7 connects the plurality of position detection coils 30 in order with the switching circuit 34 controlled by the identification circuit 33 and connects to the reception circuit 32. The detection signal generation circuit 31 is connected to the output side of the switching circuit 34 and outputs a position detection signal to the position detection coil 30. The level of the position detection signal output from the detection signal generation circuit 31 to the position detection coil 30 is extremely higher than the echo signal from the power receiving coil 51. The receiving circuit 32 has a limiter circuit 35 made of a diode connected to the input side. The limiter circuit 35 limits the signal level of the position detection signal input from the detection signal generation circuit 31 to the reception circuit 32 and inputs the position detection signal to the reception circuit 32. An echo signal having a low signal level is input to the receiving circuit 32 without being limited. The receiving circuit 32 amplifies and outputs both the position detection signal and the echo signal. The echo signal output from the receiving circuit 32 is transmitted at a predetermined timing from the position detection signal, for example, several μs.
The signal is delayed from ec to several hundred μsec. Since the delay time that the echo signal is delayed from the position detection signal is a fixed time, the signal after a predetermined delay time from the position detection signal is used as an echo signal, and the receivingcoil 51 is connected to the position detection coil 30 from the level of this echo signal. Determine if you are approaching.
ec~数百μsec遅れた信号となる。エコー信号が位置検出信号から遅れる遅延時間は、一定の時間であるから、位置検出信号から所定の遅延時間後の信号をエコー信号とし、このエコー信号のレベルから位置検出コイル30に受電コイル51が接近しているかどうかを判定する。 The
The signal is delayed from ec to several hundred μsec. Since the delay time that the echo signal is delayed from the position detection signal is a fixed time, the signal after a predetermined delay time from the position detection signal is used as an echo signal, and the receiving
受信回路32は、位置検出コイル30から入力されるエコー信号を増幅して出力するアンプである。受信回路32は、位置検出信号とエコー信号を出力する。識別回路33は、受信回路32から入力される位置検出信号とエコー信号から位置検出コイル30に受電コイル51が接近してセットされるかどうかを判定する。識別回路33は、受信回路32から入力される信号をデジタル信号に変換するA/Dコンバータ36を備えている。このA/Dコンバータ36から出力されるデジタル信号を演算してエコー信号を検出する。識別回路33は、位置検出信号から特定の遅延時間の後に入力される信号をエコー信号として検出し、さらにエコー信号のレベルから受電コイル51が位置検出コイル30に接近しているかどうかを判定する。
The receiving circuit 32 is an amplifier that amplifies and outputs an echo signal input from the position detection coil 30. The receiving circuit 32 outputs a position detection signal and an echo signal. The identification circuit 33 determines whether or not the power reception coil 51 is set close to the position detection coil 30 from the position detection signal and the echo signal input from the reception circuit 32. The identification circuit 33 includes an A / D converter 36 that converts a signal input from the reception circuit 32 into a digital signal. The digital signal output from the A / D converter 36 is calculated to detect an echo signal. The identification circuit 33 detects a signal input after a specific delay time from the position detection signal as an echo signal, and further determines whether the power receiving coil 51 is approaching the position detection coil 30 from the level of the echo signal.
識別回路33は、複数のX軸検出コイル30Aを順番に受信回路32に接続するように切換回路34を制御して、受電コイル51のX軸方向の位置を検出する。識別回路33は、各々のX軸検出コイル30Aを受信回路32に接続する毎に、識別回路33に接続しているX軸検出コイル30Aに位置検出信号を出力し、位置検出信号から特定の遅延時間の後に、エコー信号が検出されるかどうかで、このX軸検出コイル30Aに受電コイル51が接近しているかどうかを判定する。識別回路33は、全てのX軸検出コイル30Aを受信回路32に接続して、各々のX軸検出コイル30Aに受電コイル51が接近しているかどうかを判定する。受電コイル51がいずれかのX軸検出コイル30Aに接近していると、このX軸検出コイル30Aを受信回路32に接続する状態でエコー信号が検出される。したがって、識別回路33は、エコー信号を検出できるX軸検出コイル30Aから受電コイル51のX軸方向の位置を検出できる。受電コイル51が複数のX軸検出コイル30Aに跨って接近する状態では、複数のX軸検出コイル30Aからエコー信号が検出される。この状態において、識別回路33はもっとも強いエコー信号、すなわちレベルの大きいエコー信号が検出されるX軸検出コイル30Aにもっとも接近していると判定する。識別回路33は、Y軸検出コイル30Bも同じように制御して、受電コイル51のY軸方向の位置を検出する。
The identification circuit 33 detects the position of the power receiving coil 51 in the X-axis direction by controlling the switching circuit 34 so that the plurality of X-axis detection coils 30A are sequentially connected to the receiving circuit 32. The identification circuit 33 outputs a position detection signal to the X-axis detection coil 30A connected to the identification circuit 33 every time each X-axis detection coil 30A is connected to the reception circuit 32, and a specific delay from the position detection signal. It is determined whether or not the power receiving coil 51 is approaching the X-axis detection coil 30A based on whether or not an echo signal is detected after the time. The identification circuit 33 connects all the X-axis detection coils 30A to the reception circuit 32, and determines whether or not the power reception coils 51 are close to the respective X-axis detection coils 30A. When the power receiving coil 51 approaches one of the X axis detection coils 30 </ b> A, an echo signal is detected in a state where the X axis detection coil 30 </ b> A is connected to the reception circuit 32. Therefore, the identification circuit 33 can detect the position of the power receiving coil 51 in the X-axis direction from the X-axis detection coil 30A that can detect an echo signal. In a state in which the power receiving coil 51 approaches across the plurality of X-axis detection coils 30A, echo signals are detected from the plurality of X-axis detection coils 30A. In this state, the identification circuit 33 determines that it is closest to the X-axis detection coil 30A from which the strongest echo signal, that is, the echo signal having a high level is detected. The identification circuit 33 similarly controls the Y-axis detection coil 30B to detect the position of the power receiving coil 51 in the Y-axis direction.
識別回路33は、検出するX軸方向とY軸方向から移動機構13を制御して、送電コイル11を受電コイル51に接近する位置に移動させる。識別回路33は、移動機構13のX軸サーボモータ22Aを制御して、送電コイル11を受電コイル51のX軸方向の位置に移動させる。また、移動機構13のY軸サーボモータ22Bを制御して、送電コイル11を受電コイル51のY軸方向の位置に移動させる。
The identification circuit 33 controls the moving mechanism 13 from the detected X-axis direction and Y-axis direction to move the power transmission coil 11 to a position approaching the power reception coil 51. The identification circuit 33 controls the X-axis servomotor 22 </ b> A of the moving mechanism 13 to move the power transmission coil 11 to the position of the power reception coil 51 in the X-axis direction. Further, the Y-axis servomotor 22B of the moving mechanism 13 is controlled to move the power transmission coil 11 to the position of the power reception coil 51 in the Y-axis direction.
以上のようにして、第1の位置検出制御器14Aが送電コイル11を受電コイル51に接近する位置に移動させる。本発明の充電台は、第1の位置検出制御器14Aで送電コイル11を受電コイル51に接近した後、送電コイル11から受電コイル51に電力搬送して内蔵電池52を充電することができる。ただ、充電台は、さらに送電コイル11の位置を正確に制御して受電コイル51に接近させた後、電力搬送して内蔵電池52を充電することができる。送電コイル11は、第2の位置検出制御器14Bでより正確に受電コイル51に接近される。
As described above, the first position detection controller 14 </ b> A moves the power transmission coil 11 to a position approaching the power reception coil 51. The charging stand of the present invention can charge the built-in battery 52 by transferring power from the power transmission coil 11 to the power receiving coil 51 after the power transmission coil 11 approaches the power receiving coil 51 by the first position detection controller 14A. However, the charging stand can further accurately control the position of the power transmission coil 11 to approach the power receiving coil 51 and then carry the power to charge the internal battery 52. The power transmission coil 11 is more accurately approached to the power reception coil 51 by the second position detection controller 14B.
第2の位置検出制御器14Bは、交流電源12を自励式の発振回路として、自励式の発振回路の発振周波数から送電コイル11の位置を正確に検出して移動機構13を制御する。第2の位置検出制御器14Bは、移動機構13のX軸サーボモータ22AとY軸サーボモータ22Bを制御して、送電コイル11をX軸方向とY軸方向に移動させて、交流電源12の発振周波数を検出する。自励式の発振回路の発振周波数が変化する特性を図11に示している。この図は、送電コイル11と受電コイル51の相対的な位置ずれに対する発振周波数の変化を示している。この図に示すように、自励式の発振回路の発振周波数は、送電コイル11が受電コイル51に最も接近する位置でもっとも高くなり、相対位置がずれるにしたがって発振周波数が低くなる。したがって、第2の位置検出制御器14Bは、移動機構13のX軸サーボモータ22Aを制御して送電コイル11をX軸方向に移動し、発振周波数が最も高くなる位置で停止する。また、Y軸サーボモータ22Bも同じように制御して送電コイル11をY軸方向に移動して、発振周波数が最も高くなる位置で停止する。第2の位置検出制御器14Bは、以上のようにして、送電コイル11を受電コイル51に最も接近する位置に移動できる。
The second position detection controller 14B controls the moving mechanism 13 by accurately detecting the position of the power transmission coil 11 from the oscillation frequency of the self-excited oscillation circuit using the AC power supply 12 as a self-excited oscillation circuit. The second position detection controller 14B controls the X-axis servo motor 22A and the Y-axis servo motor 22B of the moving mechanism 13 to move the power transmission coil 11 in the X-axis direction and the Y-axis direction. Detect the oscillation frequency. FIG. 11 shows the characteristic that the oscillation frequency of the self-excited oscillation circuit changes. This figure shows the change of the oscillation frequency with respect to the relative displacement between the power transmission coil 11 and the power reception coil 51. As shown in this figure, the oscillation frequency of the self-excited oscillation circuit is highest at a position where the power transmission coil 11 is closest to the power reception coil 51, and the oscillation frequency is lowered as the relative position is shifted. Therefore, the second position detection controller 14B controls the X-axis servomotor 22A of the moving mechanism 13 to move the power transmission coil 11 in the X-axis direction, and stops at the position where the oscillation frequency becomes the highest. The Y-axis servo motor 22B is similarly controlled to move the power transmission coil 11 in the Y-axis direction and stop at the position where the oscillation frequency becomes the highest. The second position detection controller 14B can move the power transmission coil 11 to the position closest to the power reception coil 51 as described above.
以上の充電台は、第1の位置検出制御器14Aで受電コイル51の位置を粗検出した後、さらに第2の位置検出制御器14Bで微調整して送電コイル11を受電コイル51に接近させるが、図12に示す以下の位置検出制御器44は、微調整することなく送電コイル11を受電コイル51に接近できる。
In the above charging stand, after the position of the power receiving coil 51 is roughly detected by the first position detection controller 14A, fine adjustment is further performed by the second position detection controller 14B to bring the power transmission coil 11 closer to the power receiving coil 51. However, the following position detection controller 44 shown in FIG. 12 can bring the power transmission coil 11 closer to the power reception coil 51 without fine adjustment.
この位置検出制御器44は、図12に示すように、上面プレートの内面に固定している複数の位置検出コイル30と、この位置検出コイル30に位置検出信号を供給する検出信号発生回路31と、この検出信号発生回路31から位置検出コイル30に供給されるパルスに励起されて受電コイル51から位置検出コイル30に出力されるエコー信号を受信する受信回路32と、この受信回路32が受信するエコー信号から送電コイル11の位置を判別する識別回路43とを備える。さらに、この位置検出制御器44は、識別回路43に、受電コイル51の位置に対する各々の位置検出コイル30に誘導されるエコー信号のレベル、すなわち図10に示すように、各々の位置検出コイル30を位置検出信号で励起して所定の時間経過後に誘導されるエコー信号のレベルを記憶する記憶回路47を備えている。この位置検出制御器44は、各々の位置検出コイル30に誘導されるエコー信号のレベルを検出し、検出したエコー信号のレベルを記憶回路47に記憶しているエコー信号のレベルに比較して、受電コイル51の位置を検出している。
As shown in FIG. 12, the position detection controller 44 includes a plurality of position detection coils 30 fixed to the inner surface of the upper surface plate, and a detection signal generation circuit 31 that supplies a position detection signal to the position detection coil 30. A receiving circuit 32 that receives an echo signal that is excited by a pulse supplied from the detection signal generation circuit 31 to the position detection coil 30 and that is output from the power reception coil 51 to the position detection coil 30, and the reception circuit 32 receives the echo signal. And an identification circuit 43 for determining the position of the power transmission coil 11 from the echo signal. Further, the position detection controller 44 causes the discrimination circuit 43 to detect the level of the echo signal induced in each position detection coil 30 with respect to the position of the power reception coil 51, that is, as shown in FIG. Is provided with a storage circuit 47 for storing the level of an echo signal that is induced after a predetermined time has elapsed by excitation with a position detection signal. The position detection controller 44 detects the level of the echo signal induced in each position detection coil 30, compares the level of the detected echo signal with the level of the echo signal stored in the storage circuit 47, and The position of the power receiving coil 51 is detected.
この位置検出制御器44は、以下のようにして、各々の位置検出コイル30に誘導されるエコー信号のレベルから、受電コイル51の位置を求めている。図12に示す位置検出コイル30は、受電コイル51のX軸方向の位置を検出する複数のX軸検出コイル30Aと、Y軸方向の位置を検出する複数のY軸検出コイル30Bとを備え、複数の位置検出コイル30を上面プレート21の内面に所定の間隔で固定している。各々のX軸検出コイル30Aは、Y軸方向に細長いループ状であって、各々のY軸検出コイル30Bは、X軸方向に細長いループ状としている。図13は、受電コイル51をX軸方向に移動させる状態における、X軸位置検出コイル30Aに誘導されるエコー信号のレベルを示しており、横軸が受電コイル51のX軸方向の位置を示し、縦軸が各々のX軸位置検出コイル30Aに誘導されるエコー信号のレベルを示している。この位置検出制御器44は、各々のX軸位置検出コイル30Aに誘導されるエコー信号のレベルを検出することによって、受電コイル51のX軸方向の位置を求めることができる。この図に示すように、受電コイル51をX軸方向に移動すると、各々のX軸位置検出コイル30Aに誘導されるエコー信号のレベルは変化する。たとえば、受電コイル51の中心が第1のX軸位置検出コイル30Aの中心にあるとき、図13の点Aで示すように、第1のX軸位置検出コイル30Aに誘導されるエコー信号のレベルが最も強くなる。また、受電コイル51が第1のX軸位置検出コイル30Aと第2のX軸位置検出コイル30Aの中間にあるとき、図13の点Bで示すように、第1のX軸位置検出コイル30Aと第2のX軸位置検出コイル30Aに誘導されるエコー信号のレベルは同じとなる。すなわち、各々のX軸位置検出コイル30Aは、受電コイル51が最も近くにあるときに誘導されるエコー信号のレベルが最も強くなり、受電コイル51が離れるにしたがってエコー信号のレベルは小さくなる。したがって、どのX軸位置検出コイル30Aのエコー信号のレベルが最も強いかで、受電コイル51がどのX軸位置検出コイル30Aに最も接近しているかを判定できる。また、ふたつのX軸位置検出コイル30Aにエコー信号が誘導されるとき、強いエコー信号を検出するX軸位置検出コイル30Aからどの方向にあるX軸位置検出コイル30Aにエコー信号が誘導されるかで、最もエコー信号の強いX軸位置検出コイル30Aからどの方向にずれて受電コイル51があるかを判定でき、また、エコー信号のレベル比でふたつのX軸位置検出コイル30Aとの相対位置を判定できる。たとえば、ふたつのX軸位置検出コイル30Aのエコー信号のレベル比が1であると、受電コイル51はふたつのX軸位置検出コイル30Aの中央に位置すると判定できる。
The position detection controller 44 obtains the position of the power receiving coil 51 from the level of the echo signal induced in each position detection coil 30 as follows. The position detection coil 30 shown in FIG. 12 includes a plurality of X axis detection coils 30A that detect the position of the power receiving coil 51 in the X axis direction, and a plurality of Y axis detection coils 30B that detect the position in the Y axis direction. A plurality of position detection coils 30 are fixed to the inner surface of the upper surface plate 21 at a predetermined interval. Each X-axis detection coil 30A has an elongated loop shape in the Y-axis direction, and each Y-axis detection coil 30B has an elongated loop shape in the X-axis direction. FIG. 13 shows the level of the echo signal induced in the X-axis position detection coil 30A in a state where the power receiving coil 51 is moved in the X-axis direction, and the horizontal axis shows the position of the power receiving coil 51 in the X-axis direction. The vertical axis indicates the level of the echo signal induced in each X-axis position detection coil 30A. The position detection controller 44 can determine the position of the power receiving coil 51 in the X-axis direction by detecting the level of the echo signal induced in each X-axis position detection coil 30A. As shown in this figure, when the power receiving coil 51 is moved in the X-axis direction, the level of the echo signal induced in each X-axis position detection coil 30A changes. For example, when the center of the power receiving coil 51 is at the center of the first X-axis position detection coil 30A, the level of the echo signal induced in the first X-axis position detection coil 30A as shown by the point A in FIG. Is the strongest. When the power receiving coil 51 is in the middle of the first X-axis position detection coil 30A and the second X-axis position detection coil 30A, as shown by a point B in FIG. 13, the first X-axis position detection coil 30A. And the level of the echo signal induced in the second X-axis position detection coil 30A is the same. That is, in each X-axis position detection coil 30A, the level of the echo signal that is induced when the power receiving coil 51 is closest is the strongest, and the level of the echo signal decreases as the power receiving coil 51 moves away. Therefore, it can be determined which X-axis position detection coil 30A is closest to the power receiving coil 51 depending on which X-axis position detection coil 30A has the strongest echo signal level. Also, when an echo signal is induced in the two X-axis position detection coils 30A, in which direction the echo signal is induced from the X-axis position detection coil 30A that detects a strong echo signal. Thus, it can be determined in which direction the power receiving coil 51 is shifted from the X-axis position detecting coil 30A having the strongest echo signal, and the relative position between the two X-axis position detecting coils 30A can be determined by the level ratio of the echo signal. Can be judged. For example, if the level ratio of the echo signals of the two X-axis position detection coils 30A is 1, it can be determined that the power receiving coil 51 is located at the center of the two X-axis position detection coils 30A.
識別回路43は、受電コイル51のX軸方向の位置に対する、各々のX軸位置検出コイル30Aに誘導されるエコー信号のレベルを記憶回路47に記憶している。受電コイル51が置かれると、いずれかのX軸位置検出コイル30Aにエコー信号が誘導される。したがって、識別回路43は、X軸位置検出コイル30Aに誘導されるエコー信号で受電コイル51が載せられたこと、すなわち電池内蔵機器50が充電台10に載せられたことを検出する。さらに、いずれかのX軸位置検出コイル30Aに誘導されるエコー信号のレベルを、記憶回路47に記憶しているレベルに比較して、受電コイル51のX軸方向の位置を判別することができる。識別回路は、隣接するX軸位置検出コイルに誘導されるエコー信号のレベル比から受電コイル51のX軸方向の位置を特定する関数を記憶回路に記憶して、この関数から受電コイル51の位置を判別することもできる。この関数は、ふたつのX軸位置検出コイルの間に受電コイル51を移動させて、各々のX軸位置検出コイルに誘導されるエコー信号のレベル比を検出して求められる。識別回路43は、ふたつのX軸位置検出コイル30Aに誘導されるエコー信号のレベル比を検出し、検出されるレベル比から、この関数に基づいてふたつのX軸位置検出コイル30Aの間における受電コイル51のX軸方向の位置を演算して検出することができる。
The identification circuit 43 stores the level of the echo signal induced in each X-axis position detection coil 30 </ b> A with respect to the position of the power receiving coil 51 in the X-axis direction in the storage circuit 47. When the power receiving coil 51 is placed, an echo signal is induced in one of the X-axis position detection coils 30A. Therefore, the identification circuit 43 detects that the power receiving coil 51 has been placed by an echo signal induced in the X-axis position detection coil 30 </ b> A, that is, that the battery built-in device 50 has been placed on the charging stand 10. Furthermore, the position of the power receiving coil 51 in the X-axis direction can be determined by comparing the level of the echo signal induced in any of the X-axis position detection coils 30 </ b> A with the level stored in the storage circuit 47. . The identification circuit stores a function for specifying the position of the power receiving coil 51 in the X-axis direction from the level ratio of the echo signal induced in the adjacent X-axis position detection coil in the storage circuit, and the position of the power receiving coil 51 from this function. Can also be determined. This function is obtained by moving the power receiving coil 51 between the two X-axis position detection coils and detecting the level ratio of the echo signal induced in each X-axis position detection coil. The identification circuit 43 detects the level ratio of echo signals induced in the two X-axis position detection coils 30A, and receives power between the two X-axis position detection coils 30A based on this function from the detected level ratio. The position of the coil 51 in the X-axis direction can be calculated and detected.
以上は、識別回路43が、X軸位置検出コイル30Aに誘導されるエコー信号から、受電コイル51のX軸方向の位置を検出する方法を示すが、受電コイル51のY軸方向の位置もX軸方向と同じようにして、Y軸位置検出コイル30Bに誘導されるエコー信号から検出できる。
The above shows the method in which the identification circuit 43 detects the position of the power receiving coil 51 in the X axis direction from the echo signal induced in the X axis position detection coil 30A, but the position of the power receiving coil 51 in the Y axis direction is also X. In the same manner as in the axial direction, it can be detected from the echo signal induced in the Y-axis position detection coil 30B.
識別回路43が、受電コイル51のX軸方向とY軸方向の位置を検出すると、この識別回路43からの位置信号でもって、位置検出制御器44は送電コイル11を受電コイル51の位置に移動させる。
When the identification circuit 43 detects the position of the power receiving coil 51 in the X-axis direction and the Y-axis direction, the position detection controller 44 moves the power transmission coil 11 to the position of the power receiving coil 51 using the position signal from the identification circuit 43. Let
なお、上記のような波形のエコー信号が検出されたとき、充電台の識別回路43は、電池内蔵機器50の受電コイル51が搭載されたと認識、識別することができる。エコー信号の波形とは異なる波形が検出、識別されるときは、電池内蔵機器50の受電コイル51以外(例えば、金属異物)のものが搭載されたとして、電力供給を停止することができる。また、エコー信号の波形が検出、識別されないときは、電池内蔵機器50の受電コイル51が搭載されていないとして、電力供給をしない。
When the echo signal having the waveform as described above is detected, the identification circuit 43 of the charging stand can recognize and identify that the power receiving coil 51 of the battery built-in device 50 is mounted. When a waveform different from the waveform of the echo signal is detected and identified, the power supply can be stopped assuming that a device other than the power receiving coil 51 (for example, a metal foreign object) of the battery built-in device 50 is mounted. When the waveform of the echo signal is not detected or identified, the power supply coil 51 of the battery built-in device 50 is not mounted and power is not supplied.
充電台10は、位置検出制御器14、44で移動機構13を制御して送電コイル11を受電コイル51に接近させた状態で、交流電源12で送電コイル11に交流電力を供給する。送電コイル11の交流電力は受電コイル51に電力搬送されて、内蔵電池52の充電に使用される。電池内蔵機器50は、内蔵電池52が満充電されたことを検出すると、充電を停止して、満充電信号を充電台10に伝送する。電池内蔵機器50は、受電コイル51に満充電信号を出力し、この満充電信号を受電コイル51から送電コイル11に伝送して、充電台10に満充電の情報を伝送することができる。この電池内蔵機器50は、交流電源12と異なる周波数の交流信号を受電コイル51に出力し、充電台10はこの交流信号を送電コイル11で受信して満充電を検出することができる。また、電池内蔵機器50が特定周波数の搬送波を満充電信号で変調する信号を受電コイル51に出力し、充電台10が特定周波数の搬送波を受信し、この信号を復調して満充電信号を検出することもできる。さらに、電池内蔵機器は、満充電信号を充電台に無線伝送して、満充電の情報を伝送することもできる。この電池内蔵機器は、満充電信号を送信する送信器を内蔵しており、充電台は満充電信号を受信する受信器を内蔵する。図8に示す位置検出制御器14は、内蔵電池52の満充電を検出する満充電検出回路17を内蔵している。この満充電検出回路17は、電池内蔵機器50から出力される満充電信号を検出して、内蔵電池52の満充電を検出する。
The charging stand 10 supplies AC power to the power transmission coil 11 with the AC power supply 12 in a state where the position detection controllers 14 and 44 control the moving mechanism 13 to bring the power transmission coil 11 close to the power reception coil 51. The AC power of the power transmission coil 11 is transferred to the power reception coil 51 and used to charge the internal battery 52. When the battery built-in device 50 detects that the built-in battery 52 is fully charged, it stops charging and transmits a full charge signal to the charging stand 10. The battery built-in device 50 can output a full charge signal to the power receiving coil 51, transmit this full charge signal from the power receiving coil 51 to the power transmission coil 11, and transmit full charge information to the charging stand 10. The battery built-in device 50 outputs an AC signal having a frequency different from that of the AC power source 12 to the power receiving coil 51, and the charging stand 10 can receive the AC signal by the power transmitting coil 11 and detect full charge. Further, the battery built-in device 50 outputs a signal that modulates a carrier wave of a specific frequency with a full charge signal to the power receiving coil 51, and the charging stand 10 receives the carrier wave of a specific frequency and demodulates this signal to detect a full charge signal. You can also Furthermore, the battery built-in device can also transmit full charge information by wirelessly transmitting a full charge signal to the charging stand. The battery built-in device has a built-in transmitter that transmits a full charge signal, and the charging stand has a built-in receiver that receives the full charge signal. The position detection controller 14 shown in FIG. 8 includes a full charge detection circuit 17 that detects the full charge of the internal battery 52. The full charge detection circuit 17 detects a full charge signal output from the battery built-in device 50 to detect full charge of the built-in battery 52.
10…充電台
11…送電コイル
12…交流電源
13…移動機構
14…位置検出制御器 14A…第1の位置検出制御器
14B…第2の位置検出制御器
15…コア 15A…円柱部
15B…円筒部
16…リード線
17…満充電検出回路
20…ケース
21…上面プレート
22…サーボモータ 22A…X軸サーボモータ
22B…Y軸サーボモータ
23…ネジ棒 23A…X軸ネジ棒
23B…Y軸ネジ棒
24…ナット材 24A…X軸ナット材
24B…Y軸ナット材
25…ベルト
26…ガイドロッド
27…ガイド部
30…位置検出コイル 30A…X軸検出コイル
30B…Y軸検出コイル
31…検出信号発生回路
32…受信回路
33…識別回路
34…切換回路
35…リミッター回路
36…A/Dコンバータ
43…識別回路
44…位置検出制御器
47…記憶回路
50…電池内蔵機器
51…受電コイル
52…内蔵電池
53…全波整流回路 53X…同期全波整流回路
54…充電回路
55…直列コンデンサー
58…電解コンデンサー
59…PTC
60…FETブリッジ回路
61…整流素子
62…切換回路
63…FET
64…FET
65…FET
66…FET
69…負荷
70…短絡回路
71…半導体スイッチング素子
72…短絡抵抗
73…検出部
74…電圧検出回路
75…電流検出回路
76…制御部
77…ラッチング回路
78…リミッター回路
79…出力スイッチ
150…電池内蔵機器
151…受電コイル
153…同期整流回路
156…短絡回路 156A…半導体スイッチング素子 DESCRIPTION OFSYMBOLS 10 ... Charging stand 11 ... Power transmission coil 12 ... AC power supply 13 ... Moving mechanism 14 ... Position detection controller 14A ... 1st position detection controller 14B ... 2nd position detection controller 15 ... Core 15A ... Cylindrical part 15B ... Cylindrical Part 16 ... Lead wire 17 ... Full charge detection circuit 20 ... Case 21 ... Top plate 22 ... Servo motor 22A ... X-axis servo motor 22B ... Y-axis servo motor 23 ... Screw rod 23A ... X-axis screw rod 23B ... Y-axis screw rod 24 ... Nut material 24A ... X-axis nut material 24B ... Y-axis nut material 25 ... Belt 26 ... Guide rod 27 ... Guide part 30 ... Position detection coil 30A ... X-axis detection coil 30B ... Y-axis detection coil 31 ... Detection signal generation circuit 32 ... Receiving circuit 33 ... Identification circuit DESCRIPTION OF SYMBOLS 4 ... Switching circuit 35 ... Limiter circuit 36 ... A / D converter 43 ... Identification circuit 44 ... Position detection controller 47 ... Memory circuit 50 ... Battery built-in apparatus 51 ... Power receiving coil 52 ... Built-in battery 53 ... Full wave rectifier circuit 53X ... Synchronous Full wave rectifier circuit 54 ... Charging circuit 55 ... Series capacitor 58 ... Electrolytic capacitor 59 ... PTC
60 ...FET bridge circuit 61 ... Rectifying element 62 ... Switching circuit 63 ... FET
64 ... FET
65 ... FET
66 ... FET
DESCRIPTION OFSYMBOLS 69 ... Load 70 ... Short circuit 71 ... Semiconductor switching element 72 ... Short circuit resistance 73 ... Detection part 74 ... Voltage detection circuit 75 ... Current detection circuit 76 ... Control part 77 ... Latching circuit 78 ... Limiter circuit 79 ... Output switch 150 ... Built-in battery Equipment 151 ... Receiving coil 153 ... Synchronous rectification circuit 156 ... Short circuit 156A ... Semiconductor switching element
11…送電コイル
12…交流電源
13…移動機構
14…位置検出制御器 14A…第1の位置検出制御器
14B…第2の位置検出制御器
15…コア 15A…円柱部
15B…円筒部
16…リード線
17…満充電検出回路
20…ケース
21…上面プレート
22…サーボモータ 22A…X軸サーボモータ
22B…Y軸サーボモータ
23…ネジ棒 23A…X軸ネジ棒
23B…Y軸ネジ棒
24…ナット材 24A…X軸ナット材
24B…Y軸ナット材
25…ベルト
26…ガイドロッド
27…ガイド部
30…位置検出コイル 30A…X軸検出コイル
30B…Y軸検出コイル
31…検出信号発生回路
32…受信回路
33…識別回路
34…切換回路
35…リミッター回路
36…A/Dコンバータ
43…識別回路
44…位置検出制御器
47…記憶回路
50…電池内蔵機器
51…受電コイル
52…内蔵電池
53…全波整流回路 53X…同期全波整流回路
54…充電回路
55…直列コンデンサー
58…電解コンデンサー
59…PTC
60…FETブリッジ回路
61…整流素子
62…切換回路
63…FET
64…FET
65…FET
66…FET
69…負荷
70…短絡回路
71…半導体スイッチング素子
72…短絡抵抗
73…検出部
74…電圧検出回路
75…電流検出回路
76…制御部
77…ラッチング回路
78…リミッター回路
79…出力スイッチ
150…電池内蔵機器
151…受電コイル
153…同期整流回路
156…短絡回路 156A…半導体スイッチング素子 DESCRIPTION OF
60 ...
64 ... FET
65 ... FET
66 ... FET
DESCRIPTION OF
Claims (12)
- 送電コイルを備える充電台と、この送電コイルに電磁結合される受電コイルを内蔵する電池内蔵機器とからなり、送電コイルから受電コイルに電力搬送される電力でもって、電池内蔵機器の内蔵電池を充電するようにしてなる電池内蔵機器と充電台であって、
前記電池内蔵機器は、受電コイルに誘導される交流を整流する全波整流回路と、この全波整流回路の出力で前記電池内蔵機器の内蔵電池を充電する充電回路と、異常時に前記全波整流回路の出力側を短絡して全波整流回路の半導体素子を保護する半導体スイッチング素子からなる短絡回路とを備えてなる電池内蔵機器と充電台。 It consists of a charging stand equipped with a power transmission coil and a battery built-in device with a built-in power receiving coil that is electromagnetically coupled to the power transmission coil, and charges the built-in battery of the battery built-in device with the power transferred from the power transmission coil to the power receiving coil. A battery built-in device and a charging stand,
The battery built-in device includes a full-wave rectifier circuit that rectifies the alternating current induced in the receiving coil, a charging circuit that charges the built-in battery of the battery built-in device with an output of the full-wave rectifier circuit, and the full-wave rectifier in an abnormal state. A battery built-in device and a charging stand comprising: a short circuit comprising a semiconductor switching element that short-circuits the output side of the circuit to protect the semiconductor element of the full-wave rectifier circuit. - 前記全波整流回路が同期全波整流回路である請求項1に記載される電池内蔵機器と充電台。 The battery built-in device and the charging stand according to claim 1, wherein the full-wave rectifier circuit is a synchronous full-wave rectifier circuit.
- 前記全波整流回路の出力側に、異常時にオフ、正常時にオンに切り換えられる出力スイッチを備えており、異常時に前記出力スイッチがオフに切り換えられて、前記全波整流回路の出力側を負荷から切り離すようにしてなる請求項1又は2に記載される電池内蔵機器と充電台。 The output side of the full-wave rectifier circuit is provided with an output switch that is turned off at the time of abnormality and turned on at the time of abnormality, and the output switch is turned off at the time of abnormality, and the output side of the full-wave rectifier circuit is disconnected from the load. The battery built-in device and the charging stand according to claim 1 or 2, wherein the device is separated.
- 前記短絡回路が、短絡抵抗を介して半導体スイッチング素子でもって前記全波整流回路の出力側を短絡する請求項1ないし3のいずれかに記載される電池内蔵機器と充電台。 The battery built-in device and the charging stand according to any one of claims 1 to 3, wherein the short circuit short-circuits the output side of the full-wave rectifier circuit with a semiconductor switching element via a short-circuit resistor.
- 前記受電コイルと直列に接続してなるPTCを備え、前記受電コイルに異常な電力が供給されると前記PTCがトリップして前記受電コイルから前記全波整流回路への電力供給を遮断するようにしてなる請求項1ないし4のいずれかに記載される電池内蔵機器と充電台。 A PTC connected in series with the power receiving coil is provided, and when abnormal power is supplied to the power receiving coil, the PTC trips to cut off power supply from the power receiving coil to the full-wave rectifier circuit. The battery built-in apparatus and the charging stand according to any one of claims 1 to 4.
- 前記電池内蔵機器がパック電池である請求項1ないし5のいずれかに記載される電池内蔵機器と充電台。 The battery built-in device and the charging stand according to any one of claims 1 to 5, wherein the battery built-in device is a battery pack.
- 充電できる内蔵電池と、充電台に備えられた送電コイルに電磁結合される受電コイルとを内蔵しており、送電コイルから前記受電コイルに電力搬送される電力でもって、前記内蔵電池を充電するようにしてなる電池内蔵機器であって、
前記受電コイルに誘導される交流を整流する全波整流回路と、この全波整流回路の出力で前記内蔵電池を充電する充電回路と、異常時に前記全波整流回路の出力側を短絡して全波整流回路の半導体素子を保護する半導体スイッチング素子からなる短絡回路とを備えてなることを特徴とする電池内蔵機器。 A built-in battery that can be charged and a power receiving coil that is electromagnetically coupled to a power transmission coil provided in the charging stand are built in, and the built-in battery is charged with power that is transferred from the power transmission coil to the power receiving coil. A battery built-in device,
A full-wave rectifier circuit that rectifies the alternating current induced in the power receiving coil, a charging circuit that charges the built-in battery with the output of the full-wave rectifier circuit, and short-circuits the output side of the full-wave rectifier circuit in the event of an abnormality. A battery built-in device comprising: a short circuit comprising a semiconductor switching element for protecting a semiconductor element of a wave rectifier circuit. - 前記全波整流回路が同期全波整流回路である請求項7に記載される電池内蔵機器。 The battery built-in apparatus according to claim 7, wherein the full-wave rectifier circuit is a synchronous full-wave rectifier circuit.
- 前記全波整流回路の出力側に、異常時にオフ、正常時にオンに切り換えられる出力スイッチを備えており、異常時に前記出力スイッチがオフに切り換えられて、前記全波整流回路の出力側を負荷から切り離すようにしてなる請求項7又は8に記載される電池内蔵機器。 The output side of the full-wave rectifier circuit is provided with an output switch that is turned off at the time of abnormality and turned on at the time of abnormality, and the output switch is turned off at the time of abnormality, and the output side of the full-wave rectifier circuit is disconnected from the load. The battery built-in apparatus according to claim 7 or 8, wherein the battery built-in apparatus is separated.
- 前記短絡回路が、短絡抵抗を介して半導体スイッチング素子でもって前記全波整流回路の出力側を短絡する請求項7ないし9のいずれかに記載される電池内蔵機器。 10. The battery built-in device according to claim 7, wherein the short circuit short-circuits the output side of the full-wave rectifier circuit with a semiconductor switching element via a short circuit resistor.
- 前記受電コイルと直列に接続してなるPTCを備え、前記受電コイルに異常な電力が供給されると前記PTCがトリップして前記受電コイルから前記全波整流回路への電力供給を遮断するようにしてなる請求項7ないし10のいずれかに記載される電池内蔵機器。 A PTC connected in series with the power receiving coil is provided, and when abnormal power is supplied to the power receiving coil, the PTC trips to cut off power supply from the power receiving coil to the full-wave rectifier circuit. The battery built-in apparatus according to any one of claims 7 to 10.
- 前記電池内蔵機器がパック電池である請求項7ないし11のいずれかに記載される電池内蔵機器。 The battery built-in device according to any one of claims 7 to 11, wherein the battery built-in device is a battery pack.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-157278 | 2011-07-16 | ||
JP2011157278A JP2014187723A (en) | 2011-07-16 | 2011-07-16 | Battery built-in apparatus and charging stand, and battery built-in apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013011906A1 true WO2013011906A1 (en) | 2013-01-24 |
Family
ID=47558084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/067766 WO2013011906A1 (en) | 2011-07-16 | 2012-07-12 | Battery-incorporating appliance and charging stand, and battery-incorporating appliance |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014187723A (en) |
WO (1) | WO2013011906A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015020416A1 (en) * | 2013-08-09 | 2015-02-12 | Samsung Electronics Co., Ltd. | Apparatus and method for wireless power reception |
CN104505889A (en) * | 2014-12-24 | 2015-04-08 | 广东欧珀移动通信有限公司 | Mobile terminal and charging device |
CN104505888A (en) * | 2014-12-24 | 2015-04-08 | 广东欧珀移动通信有限公司 | Mobile terminal and charging device |
WO2016002839A1 (en) * | 2014-07-03 | 2016-01-07 | 株式会社Ihi | Power-receiving device, contactless power supply system, and power-feeding device |
JP2016015862A (en) * | 2014-07-03 | 2016-01-28 | 株式会社Ihi | Power reception device |
JP2016119759A (en) * | 2014-12-19 | 2016-06-30 | 株式会社Ihi | Non-contact power supply system and power transmission device |
JPWO2016084524A1 (en) * | 2014-11-27 | 2017-04-27 | 株式会社村田製作所 | Power transmission device and power transmission system |
WO2017110369A1 (en) * | 2015-12-25 | 2017-06-29 | ローム株式会社 | Wireless power receiver |
JP2017169274A (en) * | 2016-03-14 | 2017-09-21 | 株式会社東芝 | Power reception device and wireless power transmission system |
JP2019176732A (en) * | 2019-07-10 | 2019-10-10 | 株式会社東芝 | Power reception device, wireless power transmission system, and power reception method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6451510B2 (en) * | 2015-06-03 | 2019-01-16 | 株式会社Soken | Non-contact power feeding device |
JP6455332B2 (en) * | 2015-06-22 | 2019-01-23 | 株式会社Soken | Non-contact power feeding device |
JP6267808B2 (en) * | 2015-09-30 | 2018-01-24 | 株式会社日立製作所 | Wireless power feeding system, power feeding side device, and power receiving side device |
CN109962501B (en) * | 2019-03-15 | 2024-03-29 | 中惠创智(阜阳)技术有限公司 | Wireless receiving end protection circuit |
KR102620480B1 (en) | 2022-11-18 | 2024-01-03 | (주)뉴텍웰니스 | Seated row |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10150727A (en) * | 1996-11-18 | 1998-06-02 | Makita Corp | Charger |
JP2009118587A (en) * | 2007-11-02 | 2009-05-28 | Meleagros Corp | Power transmitter |
JP2011114985A (en) * | 2009-11-27 | 2011-06-09 | Sanyo Electric Co Ltd | Apparatus with built-in battery and charging pad |
-
2011
- 2011-07-16 JP JP2011157278A patent/JP2014187723A/en not_active Withdrawn
-
2012
- 2012-07-12 WO PCT/JP2012/067766 patent/WO2013011906A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10150727A (en) * | 1996-11-18 | 1998-06-02 | Makita Corp | Charger |
JP2009118587A (en) * | 2007-11-02 | 2009-05-28 | Meleagros Corp | Power transmitter |
JP2011114985A (en) * | 2009-11-27 | 2011-06-09 | Sanyo Electric Co Ltd | Apparatus with built-in battery and charging pad |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015020416A1 (en) * | 2013-08-09 | 2015-02-12 | Samsung Electronics Co., Ltd. | Apparatus and method for wireless power reception |
US9685882B2 (en) | 2013-08-09 | 2017-06-20 | Samsung Electronics Co., Ltd. | Apparatus and method for wireless power reception |
CN106464018A (en) * | 2014-07-03 | 2017-02-22 | 株式会社Ihi | Power-receiving device, contactless power supply system, and power-feeding device |
WO2016002839A1 (en) * | 2014-07-03 | 2016-01-07 | 株式会社Ihi | Power-receiving device, contactless power supply system, and power-feeding device |
JP2016015862A (en) * | 2014-07-03 | 2016-01-28 | 株式会社Ihi | Power reception device |
JPWO2016084524A1 (en) * | 2014-11-27 | 2017-04-27 | 株式会社村田製作所 | Power transmission device and power transmission system |
JP2016119759A (en) * | 2014-12-19 | 2016-06-30 | 株式会社Ihi | Non-contact power supply system and power transmission device |
CN104505888A (en) * | 2014-12-24 | 2015-04-08 | 广东欧珀移动通信有限公司 | Mobile terminal and charging device |
CN104505889A (en) * | 2014-12-24 | 2015-04-08 | 广东欧珀移动通信有限公司 | Mobile terminal and charging device |
WO2017110369A1 (en) * | 2015-12-25 | 2017-06-29 | ローム株式会社 | Wireless power receiver |
JPWO2017110369A1 (en) * | 2015-12-25 | 2018-08-09 | ローム株式会社 | Wireless power receiver |
US10951062B2 (en) | 2015-12-25 | 2021-03-16 | Rohm Co., Ltd. | Wireless power receiver apparatus |
JP2017169274A (en) * | 2016-03-14 | 2017-09-21 | 株式会社東芝 | Power reception device and wireless power transmission system |
JP2019176732A (en) * | 2019-07-10 | 2019-10-10 | 株式会社東芝 | Power reception device, wireless power transmission system, and power reception method |
Also Published As
Publication number | Publication date |
---|---|
JP2014187723A (en) | 2014-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013011906A1 (en) | Battery-incorporating appliance and charging stand, and battery-incorporating appliance | |
US8519666B2 (en) | Charging system including a device housing a battery and charging pad | |
JP5348183B2 (en) | Battery built-in equipment and charger | |
US8410751B2 (en) | Device housing a battery and charging pad | |
JP5340017B2 (en) | Built-in battery and charging stand | |
JP5362330B2 (en) | Charging stand | |
WO2013011905A1 (en) | Charging stand, battery pack and charging stand, and battery pack | |
EP3197018B1 (en) | Contactless power supply system | |
KR100859445B1 (en) | Non-contact charging battery-pack and mobile divice with non-contact charging battery-pack | |
JP2011259534A (en) | Battery-integrated apparatus and charging stand | |
KR20080032519A (en) | Rechargeable power supply, battery device, contact-less charger systems and method for charging rechargeable battery cell | |
WO2013031589A1 (en) | Battery charger, and charging station | |
JP2013118719A (en) | Charging stand, battery driven apparatus, charging system, and charging method | |
WO2013047260A1 (en) | Apparatus having built-in battery with charging stand, and apparatus having built-in battery | |
WO2013015208A1 (en) | Device with built-in battery, and charging station and device with built-in battery | |
JP6420025B2 (en) | Non-contact power transmission apparatus and non-contact power transmission method | |
JP2012110085A (en) | Built-in battery apparatus, and built-in battery apparatus and charger | |
WO2012132142A1 (en) | Charging table for cellular phone | |
JP5394135B2 (en) | Charging stand | |
JP5538124B2 (en) | Contactless charging method for battery built-in devices | |
WO2012173128A1 (en) | Charging station | |
KR100915842B1 (en) | Non-contact charging station of wireless power transmision with pt-lw core having planar spiral core structure and control method thereof | |
JP6719234B2 (en) | Power transmission/reception system and power transmission device | |
WO2015104768A1 (en) | Contactless power supply device control method and contactless power supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12814672 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12814672 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |