WO2013011774A1 - Planar illumination device - Google Patents

Planar illumination device Download PDF

Info

Publication number
WO2013011774A1
WO2013011774A1 PCT/JP2012/065018 JP2012065018W WO2013011774A1 WO 2013011774 A1 WO2013011774 A1 WO 2013011774A1 JP 2012065018 W JP2012065018 W JP 2012065018W WO 2013011774 A1 WO2013011774 A1 WO 2013011774A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
diffusion sheet
light guide
layer
Prior art date
Application number
PCT/JP2012/065018
Other languages
French (fr)
Japanese (ja)
Inventor
高充 奥村
岩崎 修
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013011774A1 publication Critical patent/WO2013011774A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0088Positioning aspects of the light guide or other optical sheets in the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources

Definitions

  • the present invention relates to a planar illumination device used for a liquid crystal display device or illumination.
  • a backlight unit that irradiates light from the back side of the liquid crystal display panel and illuminates the liquid crystal display panel.
  • the backlight unit is configured by using components such as a light guide plate that diffuses light emitted from a light source for illumination and irradiates the liquid crystal display panel, a prism sheet that diffuses light emitted from the light guide plate, and a diffusion sheet. .
  • a backlight unit of a large-sized liquid crystal television is mainly used in a so-called direct type in which a light guide plate is disposed directly above a light source for illumination.
  • a plurality of light sources such as cold cathode fluorescent lamps are arranged on the back surface of the light guide plate, and a uniform light quantity distribution and necessary luminance are ensured with the inside as a white reflecting surface.
  • the direct type backlight unit needs a thickness of about 30 mm in the vertical direction with respect to the liquid crystal display panel, and it is difficult to make it thinner.
  • a backlight unit that can be thinned a light emitting surface that is a surface that is different from the surface on which light is emitted from a light source for illumination and incident from a side surface is guided in a predetermined direction.
  • a sidelight type backlight unit that uses a plate-shaped light guide plate that emits light from a light source.
  • a backlight unit using a light guide plate a backlight unit using a light guide plate in which scattering particles for scattering light in a transparent resin are mixed has been proposed.
  • the sidelight-type backlight unit when the backlight unit is enlarged, it becomes difficult to guide incident light to the back of the light guide plate, that is, to the center of the light guide plate.
  • the brightness of the emitted light at the central portion is lowered. Therefore, in the light guide plate mixed with scattering particles, in order to guide the incident light to the back of the light guide plate, it consists of two layers having different particle concentrations, and the particle concentration is higher as the distance from the light incident surface increases. It has been proposed to make the luminance distribution of the emitted light uniform or medium height by using a light guide plate in which the layer thickness is increased.
  • Patent Document 1 has a rectangular light emission surface, a light incident surface including one side of the light emission surface, and a back surface that is the surface opposite to the light emission surface, and scattering particles are contained inside. It is a dispersed light guide plate, which is composed of a first layer on the light exit surface side and a second layer on the back surface side having a particle concentration different from that of the first layer, and the particle concentration of the scattering particles in the first layer is defined as Npo. Assuming that the particle concentration of the scattering particles in the second layer is Npr, a light guide plate in which the relationship between Npo and Npr satisfies Npo ⁇ Npr is described.
  • a rod-like light source lamp is mounted on the end face of a light guide having a portion where the non-scattering light guide region and the scattering light guide region overlap, and the portion that does not face the light guide of the light source lamp
  • a surface light source device is described in which the concentration of particles is locally adjusted with the thickness of both regions.
  • Patent Document 3 two symmetrical inclined surfaces whose distances from the light emitting surface become longer from the two light incident surfaces toward the center of the light emitting surface, and a curved portion that joins the two inclined surfaces, respectively. And includes scattering particles that scatter light propagating therein, the length between the two light incident surfaces, the thickness of the light incident surface, the thickness of the center of the curved portion, the radius of curvature of the curved portion, and the inclined surface
  • a light guide plate having a taper satisfying a predetermined range, a scattering particle size, a concentration, light utilization efficiency, and a medium to high degree of luminance distribution of the light exit surface satisfying the predetermined range, a light source, a housing, and a light source
  • a planar illumination device provided with a fixing means for fixing the distance between the light incident surface of the light guide plate to be constant and a sliding mechanism for sliding the fixing means with respect to the housing.
  • JP 2009-117357 A Japanese Patent Laid-Open No. 11-345512 JP 2009-117349 A
  • the backlight unit is flexible, that is, has flexibility, and the surface of the backlight unit is formed into various curved surfaces, so that it can be used as a flexible liquid crystal display or flexible.
  • a planar lighting device that can also be used for electrical decoration and general lighting.
  • the light guide plate is composed of two layers having different particle concentrations, and the thickness of the layer having the higher particle concentration increases as the distance from the light incident surface increases. Even if the backlight unit is made larger and thinner, or if it is a flexible backlight unit, the incident light can be sufficiently guided to the back of the light guide plate. Therefore, there is a possibility that the light emitted from the backlight unit cannot be made uniform.
  • the diffusion sheet placed on the exit surface will buckle near the edge of the light exit of the housing, causing slack and wrinkles, and the light emitted from the backlight unit will have a non-uniform luminance distribution. Or the light utilization efficiency may be reduced.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and to have a large and thin shape and a flexible planar lighting device that emits light with high light utilization efficiency and less unevenness in luminance.
  • Another object of the present invention is to provide a planar lighting device that can prevent the buckling of the diffusion sheet and obtain a uniform or medium-high brightness distribution.
  • the present invention provides a light emitting surface having a rectangular shape and a light incident surface that is provided on the edge side of the light emitting surface and that travels in a direction substantially parallel to the light emitting surface.
  • a light guide plate having a thickness of 1.5 mm or less in a direction perpendicular to the light output surface, and a back surface provided on the opposite side of the light output surface and scattering particles dispersed therein
  • a light source unit disposed facing the light incident surface, a diffusion sheet disposed facing the light output surface of the light guide plate, and a light output surface of the light guide plate containing the light guide plate, the light source unit, and the diffusion sheet
  • the light guide plate has two or more layers having different particle concentrations of scattering particles, which overlap each other in a direction substantially perpendicular to the light exit surface, In the direction perpendicular to the light incident surface, the thickness of two or more layers is approximately perpendicular to the light exit surface.
  • the synthetic particle concentration of the light guide plate is changed, and the light guide plate, the light source unit, the diffusion sheet, and the housing are engaged with each other on the light source unit side, and the entire planar illumination device is made light incident.
  • the radius of curvature is R [mm]
  • the bending stress is P [N / mm 2 ]
  • the maximum static friction coefficient between the casing and the diffusion sheet is ⁇ 0, and diffusion
  • the length of the sheet in the direction perpendicular to the light incident surface is a [mm]
  • the thickness is h [mm]
  • the Young's modulus of the material of the diffusion sheet is E [N / mm 2 ]
  • the Poisson's ratio is ⁇ .
  • the planar lighting device is characterized in that the bending stress P satisfies P> ⁇ 0 / tan (a / R) and P ⁇ P max .
  • P max E ⁇ ⁇ 2 / (6 (1- ⁇ ) 2 ) ⁇ (h / a) 2 .
  • the thickness h, length a, width b, and radius of curvature R of the diffusion sheet are 0.25 ⁇ h ⁇ It is preferable that 1.0 and 300 ⁇ R ⁇ 10000 and 1.0 ⁇ b / a ⁇ 3.0 are satisfied.
  • the thickness h [mm] of the diffusion sheet is 0.3 ⁇ h ⁇ 1.0, two or more biaxially stretched polyethylene terephthalate resin substrates are bonded as the diffusion sheet substrate. It is preferable to use the composite base material.
  • the two or more layers of the light guide plate are composed of two layers, a first layer on the light emitting surface side and a second layer on the back surface side having a higher particle concentration than the first layer, and the thickness of the second layer
  • the thickness continuously changes so as to become thicker after becoming thinner as the distance from the light incident surface increases.
  • the two or more layers of the light guide plate are composed of two layers, a first layer on the light emitting surface side and a second layer on the back surface side having a higher particle concentration than the first layer, and the thickness of the second layer As the distance from the light incident surface increases, it is preferable that the thickness is once changed to be thicker and then continuously changed so as to become thicker again.
  • the back surface of the light guide plate is a plane parallel to the light exit surface.
  • the present invention is a large and thin shape, and is a flexible planar illuminating device, which can emit light with high light use efficiency and little luminance unevenness, and is used in a curved manner. It is possible to prevent slack and wrinkles due to buckling of the diffusion sheet, and to obtain a uniform or medium-high brightness distribution.
  • FIG. 1 is a schematic front view of the backlight unit of the liquid crystal display device shown in FIG. 1
  • (B) is a cross-sectional view taken along line II in (A)
  • (C) is a cross-sectional view taken along line II-II in (A).
  • (A) is a schematic sectional drawing of the light-guide plate shown in FIG. 3
  • (B) and (C) are schematic sectional drawings showing another example of the light-guide plate used for the planar illuminating device of this invention. .
  • FIG. 1 is the partial schematic perspective view of the light source unit of the planar illuminating device shown in FIG. 2
  • (B) is a schematic perspective view of a LED chip
  • (C) is a schematic front view of a light source.
  • (A) is a schematic fragmentary sectional view of the diffusion sheet used for the planar illuminating device shown in FIG.
  • (B) is a schematic fragmentary sectional view of another example of a diffusion sheet.
  • It is the schematic at the time of curving the planar illuminating device shown in FIG.
  • It is a graph which shows the relationship between the dimension of a diffusion sheet, and coefficient (alpha).
  • (A) And (B) is a graph which shows the relationship between the curvature radius R and the bending stress P.
  • FIG. (A) And (B) is the schematic showing the planar illuminating device for demonstrating the subject of this
  • planar illumination device according to the present invention will be described in detail below based on a preferred embodiment shown in the accompanying drawings.
  • FIG. 1 shows a schematic perspective view of an example of a liquid crystal display device using the planar illumination device of the present invention.
  • the backlight unit 20 and the drive unit 14 for driving the liquid crystal display panel 12 are included.
  • the backlight unit 20 is disposed on the back surface (opposite to the image display surface) of the liquid crystal display panel 12 with the light emission surface (light emission surface) facing the liquid crystal display panel 12.
  • the extending direction of the short side of the liquid crystal display panel 12 is the vertical (UD) direction, the extending direction of the long side, that is, the direction orthogonal to the vertical direction. Is also referred to as the left-right (LR) direction.
  • UD vertical
  • LR left-right
  • FIG. 1 a part of the liquid crystal display panel 12 is omitted in order to clearly show the configuration of the backlight unit 20.
  • the liquid crystal display panel 12 applies a partial electric field to liquid crystal molecules arranged in a specific direction in advance to change the arrangement of the molecules, and uses the change in the refractive index generated in the liquid crystal cell to make a liquid crystal display. Characters, figures, images, etc. are displayed on the surface of the display panel 12.
  • the drive unit 14 applies a voltage to the transparent electrode in the liquid crystal display panel 12, changes the direction of the liquid crystal molecules, and controls the transmittance of light transmitted through the liquid crystal display panel 12.
  • the backlight unit 20 is an illuminating device that irradiates light from the back surface of the liquid crystal display panel 12 to the entire surface of the liquid crystal display panel 12, and has a light emission port 24 having substantially the same shape as the image display surface of the liquid crystal display panel 12.
  • the backlight unit 20 in the illustrated example includes a light source unit 28, a light guide plate 30, a diffusion sheet 32, and a housing 26.
  • 2A is a diagram conceptually showing the front (display surface side of the liquid crystal display device 10) from which the upper housing 44 is removed from the backlight unit 20, and
  • FIG. 2B is a diagram showing the backlight unit.
  • FIG. 2A is a cross-sectional view taken along the line II of FIG. 20, and FIG.
  • the housing 26 accommodates / holds the light source unit 28, the light guide plate 30, the diffusion sheet 32, and the like at predetermined positions.
  • the housing 26 has a lower housing 42 and an upper housing 44.
  • the lower housing 42 is a rectangular parallelepiped housing whose one surface (maximum surface) is open, and accommodates / holds the light source unit 28, the light guide plate 30 having a rectangular light emitting surface, the diffusion sheet 32, and the like at predetermined positions. To do.
  • the light guide plate 30 is accommodated in the lower housing 42 with the light emission surface 30a described later facing the open surface.
  • a power storage unit 49 that stores a plurality of power supplies that supply power to the light source unit 28 is attached to the back side of the lower housing 42.
  • the upper housing 44 is a housing having the same shape as the lower housing in which the lower housing 42 is inserted like a so-called lid, and the light emitted from the light guide plate 30 is liquid crystal on the surface facing the open surface. A light exit 24 for irradiating the back surface of the display panel 12 is formed.
  • the backlight unit of the present invention is a flexible backlight unit and can be curved. Therefore, the upper housing 44 and the lower housing 42 are formed of a material that can be elastically deformed so as to be a flexible backlight unit.
  • an aluminum alloy, a magnesium alloy, a carbon fiber sheet, a stainless steel sheet, a phosphor bronze sheet, a resin containing a metal filler, a carbon material-based sheet, or the like can be used as a material of the upper casing 44 and the lower casing.
  • FIG. 3 is a conceptual perspective view of the light guide plate 30.
  • the light guide plate 30 is a flat plate-like member having a rectangular (rectangular) light exit surface 30a that can include the entire surface of the light exit port 32 and can be accommodated in the lower housing.
  • the thickness of the light guide plate 30 is 1.5 mm or less.
  • the light guide plate 30 has dispersed therein fine scattering particles for scattering light.
  • the transparent resin material used for the light guide plate 30 include PET (polyethylene terephthalate), PP (polypropylene), PC (polycarbonate), PMMA (polymethyl methacrylate), benzyl methacrylate, MS resin, or COP (cycloolefin).
  • an optically transparent resin such as a polymer.
  • the scattering particles kneaded and dispersed in the light guide plate 30 include silicone particles such as Tospearl (registered trademark), particles made of silica, zirconia, dielectric polymer, and the like.
  • the particle size of the scattering particles dispersed in the light guide plate 30 used in the planar lighting device of the present invention is preferably 4.0 to 12.0 ⁇ m.
  • the scattering particles to be used may have a single particle size or a mixture of scattering particles having a plurality of particle sizes.
  • the light guide plate 30 is formed in a two-layer structure divided into a first layer 60 on the light emitting surface 30a side and a second layer 62 on the back surface 30b side.
  • the boundary between the first layer 60 and the second layer 62 is a boundary surface z
  • the first layer 60 is an area of a cross section surrounded by the light emitting surface 30a, the light incident surface 30c, the side surface 30d, and the boundary surface z.
  • the second layer 62 is a layer adjacent to the back surface 30b side of the first layer, and is a cross-sectional region surrounded by the boundary surface z, the light incident surface 30c, the side surface 30d, and the back surface 30b.
  • the particle concentration of the scattering particles in the first layer 60 is Npo and the particle concentration of the scattering particles in the second layer 62 is Npr
  • the relationship between Npo and Npr is Npo ⁇ Npr. That is, in the light guide plate 30, the particle concentration of the scattering particles is higher in the second layer on the back surface 30b side than on the first layer on the light emitting surface 30a side.
  • the light guide plate 30 is divided into a first layer 60 and a second layer 62 at the boundary surface z, but the first layer 60 and the second layer 62 have the same transparent resin only in the particle concentration.
  • the same scattering particles are dispersed to each other and are integrated in structure.
  • Such a light guide plate 30 can be manufactured using an extrusion molding method or an injection molding method.
  • the boundary surface z between the first layer 60 and the second layer 62 When the boundary surface z between the first layer 60 and the second layer 62 is viewed in a cross section perpendicular to the longitudinal direction of the light incident surface, the second layer 62 becomes thinner from the light incident surface 30c toward the side surface 30d. Then, it continuously changes so as to become thicker, and continuously changes so as to become thinner again in the vicinity of the side surface 30d.
  • the boundary surface z is a curved surface that is concave toward the light exit surface 30a on the light incident surface 30c side, and a curved surface that is convex toward the light exit surface 30a on the side surface 30d side.
  • the thickness of the second layer having a higher concentration of scattering particles than the first layer 60 is continuously changed so as to be once thinned near the light incident surface 30c and once thickened near the side surface 30d.
  • the concentration of the synthesized particles of the scattering particles is changed to be the smallest near the light incident surface 30c and the largest near the side surface 30d. That is, the concentration profile of the synthetic particle concentration is a curve that changes so as to have a minimum value on the first light incident surface 30c side and a maximum value on the side surface 122d side.
  • the synthetic particle concentration means that light is incident on the light guide plate by using the amount of scattered particles added (synthesized) in a direction substantially perpendicular to the light emitting surface at a certain position in the direction perpendicular to the light incident surface. It is the concentration of scattering particles when it is regarded as a flat plate having a thickness of the surface. That is, at a certain position away from the light incident surface, when the light guide plate is regarded as a flat light guide plate having a thickness of the light incident surface and having one type of concentration, the scattering particles added in a direction substantially perpendicular to the light exit surface The quantity per unit volume or the weight percentage with respect to the base material.
  • the synthetic particle concentration of the light guide plate 30 continuously changes so as to increase after decreasing from the light incident surface 30c, and continuously so as to decrease again in the vicinity of the side surface 30d.
  • the changing configuration it is possible to guide the light incident from the light incident surface 30c to a farther position. Therefore, even when the light guide plate 30 (backlight unit 20) is thinned and enlarged, the backlight The luminance distribution of the emitted light from the unit 20 can be made uniform or medium-high, and the light utilization efficiency can be improved.
  • the minimum value in the vicinity of the light incident surface 30c the light incident from the light incident surfaces 30c and 30d is sufficiently diffused in the vicinity of the light incident surface, and the emitted light emitted from the vicinity of the light incident surface is It is possible to prevent the bright line (dark line, unevenness) caused by the arrangement interval of the light sources from being visually recognized.
  • the luminance distribution scattering particle concentration distribution
  • the efficiency can be improved to the maximum.
  • the particle concentration of the layer on the light exit surface side is lowered, the amount of scattered particles as a whole can be reduced, leading to cost reduction.
  • the light emitted from the light source unit 28 and incident from the light incident surface 30 c passes through the light guide plate 30 while being scattered by scatterers (scattered particles) included in the light guide plate 30. Then, it is emitted from the light exit surface 30a directly or after being reflected by the back surface 30b. At this time, a part of the light may leak from the back surface 30 b, but the leaked light is reflected by the reflecting plate disposed on the back surface 30 b side of the light guide plate 30 and enters the light guide plate 30 again.
  • the boundary surface z is a concave curved surface on the light incident surface 30c side and a convex curved surface on the side surface 30d side, but the present invention is not limited to this.
  • the light guide plates 100 and 102 shown in FIGS. 4B and 4C have the same configuration except that the shape of the boundary surface z of the light guide plate 30 shown in FIG.
  • the same reference numerals are attached, and the following description will mainly focus on different parts.
  • the boundary surface z of the light guide plate 100 shown in FIG. 4 (B) is temporarily second layer 62 from the light incident surface 30c toward the side surface 30d when viewed in a cross section perpendicular to the longitudinal direction of the light incident surface 30c. , The thickness of the second layer 62 is changed to be thick, and then the thickness of the second layer 62 is continuously changed to be constant. That is, the boundary surface z is a curved surface that is concave toward the light emitting surface 30a on the light incident surface 30c side, and is a curved surface that is convex toward the light emitting surface 30a at the center of the light guide plate. On the side surface 30d side from the apex, the plane is parallel to the light emitting surface 30a.
  • the shape of the boundary surface z is such that the thickness of the second layer is minimized at a position close to the light incident surface, and the thickness of the second layer is maximized at a position far from the light incident surface.
  • the boundary surface z of the light guide plate 102 shown in FIG. 4C is thicker in the second layer 62 from the light incident surface 30c toward the side surface 30d when viewed in a cross section perpendicular to the longitudinal direction of the light incident surface 30c. Once changed so that the second layer 62 becomes thinner, the second layer 62 changes again so as to become thicker, and continuously changes so as to become thinner on the side surface 30d side. .
  • the boundary surface z is connected to the side surface 30d side of the convex curved surface toward the light emitting surface 30a, a concave curved surface smoothly connected to the convex curved surface, and the concave curved surface, It consists of a concave curved surface connected to the end of the light incident surface 30c on the back surface 30b side.
  • the thickness of the second layer 62 is zero. That is, the synthetic particle concentration (thickness of the second layer) of the scattering particles is larger than the first maximum value in the vicinity of the first light incident surface 30c and the first maximum value on the side surface 30d side from the central portion of the light guide plate. It is continuously changed so as to have the second maximum value.
  • the synthetic particle concentration (thickness of the second layer 62) of the light guide plate 102 has the first maximum value at a position close to the light incident surface 30c, and the first maximum value on the side surface 30d side from the central portion.
  • concentration By setting the concentration to have a second maximum value larger than the value, even a large and thin light guide plate can deliver light incident from the light incident surface to a position farther from the light incident surface.
  • the luminance distribution can be a medium-high luminance distribution.
  • the first maximum value of the synthetic particle concentration in the vicinity of the light incident surface, the light incident from the light incident surface is sufficiently diffused in the vicinity of the light incident surface and is emitted from the vicinity of the light incident surface.
  • the incident light is returned from the light incident surface. It is possible to reduce light and outgoing light from a region near the light incident surface that is covered with the casing and not used, and to improve the utilization efficiency of light emitted from an effective region of the light outgoing surface.
  • the backlight unit 20 of the present invention it is preferable to provide a reflection plate that reflects light toward the light guide plate 30 at a necessary portion, such as the back surface 30b serving as a light reflection surface, similarly to the known light guide plate.
  • the reflection plate all known ones used for the light guide plate can be used.
  • a void is formed by kneading and stretching a filler in, for example, PET or PP (polypropylene) to increase the reflectance.
  • the light emitting surface 30a of the light guide plate 30 is locked at both corners on the light incident surface 30c side and the center thereof by the light source unit 28 (its light source support portion 52) described later.
  • holding members 84a to 84c (in FIG. 3, the holding member 84c at the center in the upper left and right direction is omitted) for locking the diffusion sheet 32 described later are fixed. This will be described in detail later.
  • the method for fixing the holding members 84a to 84c to the light guide plate 30 is not particularly limited, and various known methods can be used depending on the formation material and shape of the light guide plate 30 and the holding member. A fixing method using an adhesive is preferable in that there is no need for perforation or the like and damage such as cracking of the light guide plate 30 can be prevented.
  • FIG. 5A shows a schematic perspective view of a part of the light source unit 28 (near the end in the left-right direction).
  • the light source unit 28 includes a plurality of LED chips (light emitting diodes) 50 and a light source support portion 52, and the LED chips 50 are arranged on the light source support portion 52.
  • LED chips light emitting diodes
  • the LED chip 50 is a chip in which a fluorescent material is coated on the surface of a light emitting diode that emits blue light.
  • the LED chip 50 has a light emitting surface 50a having a predetermined area, and emits white light from the light emitting surface 50a.
  • the LED chip 50 has a characteristic that the fluorescent material applied to the surface of the light emitting diode fluoresces when blue light emitted from the light emitting diode is transmitted. For this reason, the LED chip 50 emits blue light from the light emitting diode, so that the fluorescent material through which the blue light is transmitted also emits light. White light is generated and emitted from the light emitted by the fluorescence.
  • the LED chip 50 is exemplified by a chip in which a YAG (yttrium / aluminum / garnet) fluorescent material is applied to the surface of a GaN-based light-emitting diode, InGaN-based light-emitting diode, or the like.
  • a YAG yttrium / aluminum / garnet
  • various light emitting devices other than the LED chip 50 can be used for the light source unit 28, and various light emitting devices according to the application of the planar lighting device are used.
  • various light emitting devices according to the application of the planar lighting device are used.
  • an LED unit having a configuration in which three types of LEDs, a red LED, a green LED, and a blue LED, are combined may be used.
  • a semiconductor laser (LD) can be used instead of the LED.
  • the light source support portion 52 is a plate-like member that is disposed so that one surface thereof faces the light incident surface 30 c of the light guide plate 30.
  • the light source support portion 52 supports the plurality of LED chips 50 on a side surface that is a surface facing the light incident surface 30c of the light guide plate 30 in a state of being spaced apart from each other by a predetermined distance.
  • the plurality of LED chips 50 constituting the light source 28 are arranged in an array along the longitudinal direction of the light incident surface 30 c of the light guide plate 30 and are fixed on the light source support portion 52.
  • the light source support 52 is made of a metal having good thermal conductivity such as copper or aluminum, and also has a function as a heat sink that absorbs heat generated from the LED chip 50 and dissipates it to the outside.
  • the light source support 52 may be provided with fins that can increase the surface area and increase the heat dissipation effect, or may be provided with a heat pipe that transfers heat to the heat dissipation member.
  • the LED chip 50 of the present embodiment has a rectangular shape whose length in the direction orthogonal to the arrangement direction is shorter than the length of the LED chip 50 in the arrangement direction, that is, described later.
  • the light guide plate 30 has a rectangular shape in which the thickness direction (the direction perpendicular to the light emitting surface 30a) is a short side.
  • the LED chip 50 can make the light source 28 thinner, it is preferable that the LED chip 50 has a rectangular shape having a short side in the thickness direction of the light guide plate 30.
  • the present invention is not limited to this, and the square shape and the circular shape are not limited thereto. LED chips having various shapes such as a shape, a polygonal shape, and an elliptical shape can be used.
  • the light source support portion 52 of the light source unit 28 penetrates the plate on the surface on which the LED chips 50 are arranged, and supports support pins 64a and 64b of the lower casing 42 described later.
  • Long holes 70a and 70b for insertion and through holes 72 for insertion of the support pins 66 of the lower housing 42 are formed.
  • support pins 74a and 74b for supporting support members 84a and 84b of the light guide plate 30 described later are fixed near both ends in the left-right direction. These will be described in detail later.
  • a diffusion sheet 32 is disposed on the front surface of the light guide plate 30 (in front of the light exit surface 30a).
  • the diffusion sheet 32 diffuses the emitted light emitted from the light guide plate 30 to reduce luminance unevenness, and converts the emission angle of the emitted light to the front direction (direction perpendicular to the light emitting surface 30a).
  • the diffusion sheet 32 is formed with long holes 90a and 90b and through holes 90c for inserting support pins 86a, 86b and 86c provided in support members 84a, 84b and 84c fixed to the light guide plate 30. (See FIG. 6A).
  • the thickness h of the diffusion sheet preferably satisfies 0.25 mm ⁇ h ⁇ 1.0 mm.
  • the thickness h of the diffusion sheet is 0.25 mm or less, when the backlight unit 20 is bent, flattened or deformed, loosening and wrinkles are likely to occur, and the plastic deformation without wrinkles returning. Or, in extreme cases, it may be broken, resulting in a problem that the appearance quality is degraded.
  • the thickness h of the diffusion sheet is thicker than 1.0 mm, the flexibility of the backlight unit 20 may be reduced, or the thickness of the light guide plate may be exceeded, resulting in an increase in the overall thickness of the illumination system.
  • the backlight unit 20 can be bent, flattened or deformed without lowering the flexibility of the backlight unit 20. In this case, it is possible to prevent slack and wrinkles from occurring.
  • the base material of the diffusion sheet 32 it is preferable to use biaxially stretched PET (polyethylene terephthalate) resin.
  • a biaxially stretched PET resin as the base material of the diffusion sheet 32, it is possible to ensure mechanical strength and heat resistance.
  • performance such as dimensional stability, chemical resistance, and optical characteristics is improved, so bending rigidity is increased, wrinkles are less likely to occur even with relatively thin films, and birefringence can be suppressed. It is preferable in that it is suitable.
  • the base material of the diffusion sheet 32 when the thickness h of the diffusion sheet is 0.25 mm ⁇ h ⁇ 0.3 mm, a single base material PET It is preferable to use a resin.
  • a biaxially stretched PET resin is used as the base material of the diffusion sheet 32, if the thickness h of the diffusion sheet is 0.3 mm ⁇ h ⁇ 1.0 mm, two or three sheets are used. It is preferable to use a composite base material on which a base material made of PET resin is bonded.
  • a diffusion sheet 32 shown in FIG. 7A is obtained by laminating a first base material 110, a second base material 112, and a third base material 114 with an adhesive layer 116 interposed therebetween.
  • the first base 110 has a biaxially stretched PET resin as a base 120, a light diffusion layer 126 is formed on the surface of the base 120 on the side that becomes the surface of the diffusion sheet 32, and the other surface (second base). 112), an easy adhesion layer 122 is formed on the surface.
  • the light diffusion layer 126 is a layer for diffusing light, and is coated with pigments such as silica, titanium oxide, and zinc oxide, or beads such as resin, glass, and zirconia that scatter light together with a binder. It is formed by kneading the aforementioned pigments and beads that scatter light.
  • the easy-adhesion layer 122 is for improving the adhesiveness with other base materials, and by providing the easy-adhesion layer 122, peeling of the adhered base materials can be suppressed.
  • the easy adhesion layer 122 for example, those described in paragraphs [0016] to [0027] of JP-A-2009-199001 can be applied.
  • the easy-adhesion layer 122 is usually formed by applying a coating liquid composed of a binder, a curing agent, and a surfactant to one surface of the base 120.
  • a slipping agent such as organic or inorganic fine particles or wax may be added to the easy adhesion layer 122 as necessary.
  • the binder used for the easy-adhesion layer 122 is not particularly limited as long as it can improve the adhesion to the base 120. From the viewpoint of easy adhesion, one of a polyester resin, a polyurethane resin, an acrylic resin, and a styrene-butadiene resin is used. It is preferred to use more than one. A water-soluble or water-dispersible binder is particularly preferable from the viewpoint of environmental load. Further, for the purpose of adjusting the refractive index of the easy adhesion layer 122, metal oxide fine particles may be added to the easy adhesion layer 122.
  • metal oxide fine particles high refractive index metal oxides such as tin oxide, zirconium oxide, zinc oxide, titanium oxide, cerium oxide and niobium oxide are preferable.
  • the particle diameter of the metal oxide fine particles is preferably in the range of 1 nm to 50 nm, particularly preferably in the range of 2 nm to 40 nm.
  • the addition amount of the metal oxide in the easy-adhesion layer 122 is preferably added in the range of 10 to 90 parts by mass in the easy-adhesion layer 122 in order to obtain a desired refractive index, and particularly 30 to 80 parts by mass. It is preferable to add in the range of parts.
  • the refractive index of the easy-adhesion layer 122 is preferably in the range of 1.56 to 1.64 for the purpose of reducing the interference color due to the reflection of the laminated film. If the refractive index is smaller than 1.56 or larger than 1.64, the effect of reducing the interference color is reduced.
  • the formation method of the easy-adhesion layer 122 is not particularly limited, and a known coating method can be appropriately selected according to the purpose. For example, a spin coater, a roll coater, a bar coater, a curtain coater and the like can be mentioned. In any method, after a solution containing a material for forming the easy-adhesion layer 122 is applied to a desired surface, the layer is formed by drying the solution.
  • the drying method is not particularly limited, and a commonly used method can be appropriately selected.
  • the thickness of the easy adhesion layer 122 is preferably 0.01 ⁇ m to 2 ⁇ m, and more preferably 0.01 ⁇ m to 1 ⁇ m.
  • the base 120 and the easy adhesion layer 122 are subjected to corona discharge treatment, glow discharge treatment, atmospheric pressure plasma treatment, UV-ozone treatment, flame treatment, and the like. Adhesion with can be improved.
  • the easily bonding layer 122 used for the diffusion sheet 32 has high transparency.
  • the second base material 112 has a biaxially-stretched PET resin as a base 120, and an easy adhesion layer 122 is formed on both surfaces of the base 120.
  • the third base material 114 has a biaxially stretched PET resin as a base 120, a hard coat layer 124 is formed on the surface of the base 120 on the side that becomes the surface of the diffusion sheet 32, and the other surface (second base material). 112), an easy adhesion layer 122 is formed on the surface.
  • the hard coat layer 124 is for preventing the surface of the diffusion sheet 32 from being scratched, and is a layer provided for improving scratch resistance.
  • the thickness of the hard coat layer 124 is preferably 1 ⁇ m to 20 ⁇ m, and more preferably 1 ⁇ m to 10 ⁇ m.
  • As the material of the hard coat layer 124 moisture-heat curing using polyfunctional acrylic monomer and oligomer-containing material that can be cured by irradiation with ultraviolet rays, electron beams, etc., hydrolysis of alkoxysilane and dehydration condensation of silanol generated there. A type of silica-based hardcoat is included.
  • the hard coat layer 124 used for the diffusion sheet 32 is preferably highly transparent.
  • the adhesive layer 116 is for bonding the substrates together.
  • the adhesive layer 116 such as acrylic, urethane, epoxy, and silicone, and materials that are usually used for adhesion can be appropriately selected and used according to the purpose.
  • a laminate-based commercial product for example, there is a two-component dry laminate material that can be used by adding an LCR-901 isocyanate-based curing agent to LIS805 urethane-based main ingredient manufactured by Toyo Ink. can give.
  • materials suitable for the extrusion method and the hot melt method can be used as appropriate.
  • the refractive index of the adhesive layer 116 is preferably 1.5 to 1.67.
  • the thickness of the adhesive layer 116 is preferably 1 ⁇ m to 50 ⁇ m, and more preferably 1 ⁇ m to 15 ⁇ m, from the viewpoint of securely bonding without impairing light transmittance.
  • the first substrate 110, the second substrate 112, and the third substrate 114 preferably each have a thickness in the range of 150 to 300 ⁇ m.
  • the thickness h of the diffusion sheet is 0.3 mm ⁇ h ⁇ 1.0 mm
  • the mechanical strength is obtained by bonding and forming a plurality of substrates having a thickness of 150 to 300 ⁇ m. Is preferable in that wrinkles and twists are less likely to occur.
  • the light diffusion layer 126 is formed on the surface of the diffusion sheet 32.
  • the present invention is not limited to this, and the light diffusion layer 126 is formed inside the diffusion sheet 32. It is good also as a structure formed.
  • the first base material 110 having the light diffusion layer 126 may be stacked and sandwiched between the two third base materials 114.
  • the light diffusion layer 126 or the hard coat layer 124 is formed on the surface on the surface side of the diffusion sheet.
  • the adhesive layer 122 may be formed.
  • the first base material 110, the second base material 112, and the second base material 112 may be stacked in this order, or the second base material 112, the first base material 110, and the second base material 122 may be stacked. You may laminate
  • the base material of the diffusion sheet 32 one of acrylic (PMMA) resin, polystyrene resin, MS resin (styrene-PMMA copolymer resin), and polycarbonate is used as a material and is molded by extrusion or cast polymerization. It is also preferable to use a base material that has been prepared. Use of a base material obtained by molding the above resin by extrusion or cast polymerization is preferable in that smoothness and surface properties can be improved even in a large size, and optical characteristics can be made uniform.
  • one diffusion sheet 32 is arranged in the illustrated backlight unit 20.
  • the present invention is not limited to this, and a plurality of diffusion sheets may be arranged.
  • various optical sheets used in the backlight unit such as a prism sheet, may be arranged.
  • the light source unit 28 is locked to the lower housing 42, the light guide plate 30 is locked to the light source unit 28, and the diffusion sheet 32 is locked to the light guide plate 30. And held.
  • the configuration will be described below with reference to FIGS. 2, 3, and 6 (A).
  • a support pin 66 is erected at the center in the upper left and right (LR) direction. Further, at the same position in the vertical (UD) direction with respect to the support pin 66, the support pin 64a is spaced a predetermined distance from the support pin 66 in one of the left and right directions, and the support pin 64b is spaced the same distance in the other direction.
  • the light source support part 52 of the light source unit 28 as described above, the light source support part 52 to which the LED chip 50 is fixed penetrates in the thickness direction of the light guide plate 30 and penetrates in the center part in the left-right direction.
  • a hole 72a is formed, and a long hole 70a that extends from the through hole 72 in one direction in the left-right direction and extends in the left-right direction and penetrates the same is separated in the other direction by the same distance.
  • Both the long holes 70a and 70b are formed so that the distance from the center of the through hole 72 to the center in the left-right direction is equal to the distance between the support pin 66 and the support pins 64a and 64b.
  • the support pin 66 of the lower housing 42 is in the through hole 72 of the light source unit 28, the support pin 64 a of the lower housing 42 is in the long hole 70 a of the light source unit 28 a, and the lower housing 70.
  • the lower housing 42 supports the light source unit 28 at a predetermined position by inserting the support pins 64b into the long holes 70b of the light source unit 28a.
  • a support pin 74a is erected in the vicinity of one end portion in the left-right direction on the front end surface of the plate portion on which the LED chips 50 are arranged, and the other end portion.
  • Support pins 74b are erected at the same vertical position in the vicinity.
  • a support pin 74c is erected at the same position in the vertical direction as the support pin 74a and the like, and at the center in the horizontal direction.
  • the holding members 84a and 84b are fixed to both corners of the light emitting surface 30a of the light guide plate 30 on the light incident surface side.
  • a holding member 84c is fixed at the center in the left-right direction.
  • elongated holes 88a and 88b which are through holes extending in the left and right direction, are provided at the same position in the vertical direction, respectively. It is formed. Both the long holes 88a and 88b have a distance from the center in the left-right direction of the light guide plate 30 to the center in the left-right direction of itself (the long hole) and the through-hole 72 formed in the light source support portion 52. It is formed to be equal to the distance between the pin 74a and the support pin 74b.
  • the holding member 84c fixed to the upper center is formed with a through hole 88c at the same position in the vertical direction as the elongated hole 88a and the like, and at the center in the horizontal direction of the light guide plate 30.
  • the support pin 74c of the light source support portion 52 of the light source unit 28 is supported in the through hole 88c
  • the support pin 74a of the light source unit 28 is supported in the elongated hole 88a of the holding member 84a
  • the light source unit 28 is supported.
  • the pins 74b are inserted through the long holes 88b of the holding member 84b. Accordingly, the light incident surface 30c of the light guide plate 30 and the LED chip 50 row of the light source unit 28 face each other, and the light guide plate 30 is supported by the light source unit 28 (its light source support portion 52).
  • the vertical positions of the support pins and the corresponding holding members are set so that the distance between the light source unit 28 (light emitting surface of the LED chip 50) and the light incident surface 30c is appropriate. Needless to say.
  • a support pin 86a is erected on the holding member 84a fixed to the light guide plate 30, a support pin 86b is erected on the holding member 84b, and a support pin 86c is erected on the holding member 84c at the center in the left-right direction. Further, as shown in FIG. 6, a reinforcing member 92a and a reinforcing member 92b are fixed to one end in the left-right direction and the other end in the upper end of the diffusion sheet 32, respectively. A reinforcing member 92c is fixed at the center of the.
  • elongated holes 90a and 90b which are through-holes extending in the left-right direction (also through the diffusion sheet 32), are formed at the same position in the up-down direction.
  • Both of the long holes 90a and 90b have a distance from the center in the left-right direction of the light guide plate 30 to the center in the left-right direction of the light guide plate 30 and the support pin 86c of the holding member 84c of the light guide plate 30. It is formed to be equal to the distance between the support pin 86a of the member 84a and the support pin 86b of the holding member 84b.
  • a through hole 90c (same as above) is formed in the central reinforcing member 92c in the left-right direction at the same position in the vertical direction as the support pin 86a and the like, and in the center in the left-right direction.
  • the support pin 86c of the holding member 84c fixed to the light guide plate 30 is inserted into the through hole 90c of the reinforcing member 92c, and the support pin 86a of the holding member 84a is connected to the through hole 90a of the reinforcing member 92a. Then, the support pins 86b of the holding member 84b are inserted through the through holes 90b of the reinforcing member 92b. Thereby, the diffusion sheet 32 is supported by the light guide plate 30.
  • the light source unit 28 is supported by the lower housing 42
  • the light guide plate 30 is supported by the light source unit 28
  • the diffusion sheet 32 is supported by the light guide plate 30.
  • a flexible backlight unit When a flexible backlight unit is configured, if the light guide plate, diffusion sheet, and housing are fixed on both ends of the light incident surface (light source unit) side and the opposite surface side, the backlight When the light unit 20 is bent or flattened and deformed, each member regulates the movement of other members, so that the light guide plate and the diffusion sheet are damaged or the flexibility is lowered. There is a risk of doing so.
  • the light source unit 28, the light guide plate 30, the diffusion film 32, and the housing 26 of the backlight unit 20 are respectively locked on the light source unit 28 side, and the other end side is made free. Even when the backlight unit 20 is deformed by bending or flattening it as the flexible backlight unit 20, the end opposite to the fixed end can be freely moved. Each member does not restrict the movement of other members, the light guide plate 30 and the diffusion sheet 32 are damaged, the flexibility of the backlight unit 20 is reduced, and the diffusion film is wrinkled or twisted. Can be prevented.
  • the light guide plate 30 and the diffusion sheet 32 expand and contract due to heat of the light source unit 28, moisture absorption due to the installation environment, and the like. Since the expansion and contraction amounts of the diffusion sheet and the light guide plate are different due to the influence of heat and moisture absorption, the expansion and contraction of the diffusion sheet and the light guide plate affect each other when they are fixed at both ends. There is a possibility that the light plate is damaged or the flexibility is lowered.
  • the backlight unit 20 of the present invention locks the light source unit 28, the light guide plate 30, the diffusion sheet 32, and the housing 26 of the backlight unit 20 on the light source unit 28 side, and the other end side.
  • one end portion is configured to be freely movable, so that the light guide plate 30 and the diffusion sheet 32 do not affect each other even if the light guide plate 30 and the diffusion sheet 32 expand or contract. Damage and a decrease in flexibility can be prevented.
  • the light guide plate 30 is locked to the light source unit 28. With such a configuration, even when the backlight unit 20 is bent or flattened and deformed, or when the light guide plate 30 is expanded and contracted, the light incident surface 30c of the light guide plate 30 The distance of the light emitting surface 50a of the LED chip 50 can be kept constant, and the light incident efficiency can be kept.
  • the housing 26 and the light source unit 28, the light source unit 28 and the light guide plate 30, and the light guide plate 30 and the diffusion sheet 32 are respectively locked by forming pins and through holes (long holes).
  • pins and through holes long holes
  • engagement with the light-guide plate 30 and the diffusion sheet 32 is performed with the long hole and support pin which are extended in the left-right direction.
  • the long hole and support pin which are extended in the left-right direction.
  • a support pin 86c is erected at the center of the light guide plate 30 in the left-right direction, and further, at the center of the diffusion sheet 32 in the left-right direction, the support pin 86c is approximately the same size ( A through hole 90c that is large enough to allow insertion is formed, and the support pin 86c is inserted through the through hole 90c.
  • the left-right expansion / contraction can be distributed to both sides, and the movement of the end due to the expansion / contraction can be halved.
  • the diffusion sheet 32 can be positioned using this as a reference position. This also applies to the relationship between the housing 26 and the light source unit 28 and between the light source unit 28 and the light guide plate 30.
  • a support pin is erected on the holding member of the light guide plate 30 and the light guide plate 30 and the diffusion sheet 32 are locked by forming a through hole in the diffusion sheet 32.
  • a pin may be erected on the diffusion sheet 32 and a through hole may be formed in the light guide plate holding member (or the light guide plate itself).
  • the support pins may be erected directly on the light guide plate 30 without providing the holding member. This also applies to the relationship between the housing 26 and the light source unit 28, and the relationship between the light source unit 28 and the light guide plate 30.
  • the liquid crystal display device 10 basically has such a configuration.
  • the light emitted from the light source unit 28 disposed facing the light incident surface 30 c of the light guide plate 30 enters the light incident surface 30 c of the light guide plate 30.
  • the light incident from the light incident surface 30c passes through the light guide plate 30 while being scattered by the scatterers included in the light guide plate 30, and is emitted directly or after being reflected by the back surface 30b. To do.
  • the light emitted from the light emitting surface 30 a of the light guide plate 30 passes through the diffusion sheet 32 and is emitted from the light emitting port 24 to illuminate the liquid crystal display panel 12.
  • the liquid crystal display panel 12 displays characters, figures, images, and the like on the surface of the liquid crystal display panel 12 by controlling the light transmittance according to the position by the drive unit 14.
  • the backlight unit 20 of the present invention is formed flexibly, and can be deformed by being bent or flattened.
  • FIG. 8 shows a schematic diagram of a state in which the backlight unit 20 is curved.
  • members other than the light guide plate 30, the diffusion sheet 32, the light source unit 28, and the casing 26 members for locking the members to each other (support pins, holding members, reinforcing members)) and the like Is not shown.
  • the backlight unit 20 shown in FIG. 8 is curved with a radius of curvature R [mm] in a direction perpendicular to the light incident surface 30 c of the light guide plate 30.
  • the bending stress of the diffusion sheet 32 when curved with a radius of curvature R [mm] is P [N / mm]
  • the length of the diffusion sheet 32 in the direction perpendicular to the light incident surface 30c is a [ mm]
  • the longitudinal width of the light incident surface 30c is b [mm]
  • the thickness is h [mm]
  • the Young's modulus of the material of the diffusion sheet 32 is E [N / mm]
  • the Poisson's ratio is ⁇
  • is a coefficient obtained from the dimensions (thickness h, length a, width b) of the diffusion sheet 32.
  • FIG. 9 shows the relationship between the coefficient ⁇ and the dimension of the diffusion sheet.
  • the force to return to the casing 26 is required to return to the flat state. It is necessary to be larger than the friction force between them, and the force applied to the film by the friction force needs to be smaller than the force causing the film to bend. Accordingly, when the maximum static friction coefficient between the casing 26 (upper housing 44) and the diffusion sheet 32 is ⁇ 0 , the bending stress P of the diffusion sheet 32 needs to satisfy P> ⁇ 0 / tan (a / R). is there.
  • FIGS. 10A and 10B show the relationship between the radius of curvature R and the bending stress P.
  • FIG. 10A shows the case where the thickness h of the diffusion sheet 32 is 0.3 [mm], the length a is 500 [mm], the width b is 700 [mm], and P max is It is about 0.08 [N / mm 2 ].
  • FIG. 10B shows the case where the thickness h of the diffusion sheet 32 is 0.5 [mm], the length a is 500 [mm], the width b is 500 [mm], and P max is It is about 0.26 [N / mm 2 ].
  • the smaller the radius of curvature R the greater the stress at the time of bending, so that bending occurs.
  • the diffusion sheet causes a buckling phenomenon in the vicinity of the end of the light emission port of the housing as shown in FIG.
  • slack and wrinkles may occur, and the light emitted from the backlight unit may have a non-uniform luminance distribution.
  • the maximum static friction coefficient ⁇ 0 , the thickness h and the length of the diffusion sheet 32 so that the bending stress P satisfies P> ⁇ 0 / tan (a / R) and P ⁇ P max.
  • a, width b, the Young's modulus E of the material of the diffusion sheet 32, and the Poisson's ratio ⁇ the buckling phenomenon is prevented even when the backlight unit is bent and then flattened. Since no slack or wrinkle occurs, it is possible to prevent the light emitted from the backlight unit from having a non-uniform luminance distribution or reducing the light utilization efficiency.
  • the thickness h, the length a, the width b, and the curvature radius R of the diffusion sheet 32 are 0.25 ⁇ h ⁇ 1.0, 300 ⁇ R ⁇ 10000, and 1.0 ⁇ b. It is preferable to satisfy /a ⁇ 3.0.
  • the flexible back can be obtained in the aspect ratio (ratio between a and b) of the surface assumed as illumination.
  • the film incorporated in the backlight unit used at the curvature radius R assumed as the light is preferable in that the film can function as a uniform curved light source without bending or peeling.
  • Example 1 As Example 1, the backlight unit 20 shown in FIG. 2 was used, and after the backlight unit 20 was bent, the diffusion sheet was inspected for bending and wrinkling when it was returned to the flat state.
  • the diffusion sheet 32 used in Example 1 had a thickness h of 0.3 mm, a length a of 500 mm, a width b of 700 mm, and a bending radius of curvature R of 500 mm.
  • the coefficient ⁇ is 0.077
  • the maximum stress P max is 0.080 N / mm 2
  • the bending stress P is 0.065 N / mm 2 .
  • the backlight unit 20 was bent and then inspected for the presence / absence of wrinkles / wrinkles of the diffusion sheet 32 when it was returned to a flat state.
  • the test was performed a plurality of times, and a case where no bending / wrinkling occurred was evaluated as “good”, and a case where bending / wrinkling occurred even once was evaluated as “poor”. As a result, the evaluation was good.
  • Example 2 the diffusion sheet 32 was inspected for bending / wrinkle in the same manner as Example 1 except that the radius of curvature R was 750 mm.
  • Example 3 the diffusion sheet 32 was inspected for bending and wrinkles in the same manner as in Example 1 except that the radius of curvature R was 1000 mm.
  • Example 4 the diffusion sheet 32 was inspected for bending / wrinkle in the same manner as in Example 1 except that the width b of the diffusion sheet 32 was 500 mm and the radius of curvature R was 700 mm.
  • Example 5 the diffusion sheet 32 was inspected for bending / wrinkle in the same manner as in Example 1 except that the width b of the diffusion sheet 32 was 900 mm and the curvature radius R was 350 mm.
  • Example 6 the diffusion sheet 32 was inspected for bending / wrinkle in the same manner as in Example 1 except that the thickness h of the diffusion sheet 32 was 0.5 mm and the curvature radius R was 350 mm.
  • Example 7 the diffusion sheet 32 was inspected for bending and wrinkling in the same manner as in Example 6 except that the thickness of the diffusion sheet 32 was 0.5 mm.
  • Table 1 As shown in Table 1, in all of Examples 2 to 7, the bending stress P was smaller than the maximum stress P max , and no bending or wrinkle occurred. Therefore, evaluation was (circle).
  • Comparative Example 1 the diffusion sheet 32 was inspected for bending and wrinkling in the same manner as in Example 1 except that the thickness h of the diffusion sheet 32 was 0.2 mm.
  • Comparative Example 2 the diffusion sheet 32 was inspected for bending and wrinkling in the same manner as in Comparative Example 1, except that the width b of the diffusion sheet 32 was 500 mm and the radius of curvature R was 700 mm.
  • Comparative Example 3 the diffusion sheet 32 was inspected for bending and wrinkling in the same manner as in Comparative Example 1 except that the width b of the diffusion sheet 32 was 900 mm and the curvature radius R was 350 mm.
  • Table 2 As shown in Table 2, in each of Comparative Examples 1 to 3, the bending stress P was larger than the maximum stress P max , and bending and wrinkling occurred. Therefore, evaluation was x.
  • planar lighting device according to the present invention has been described in detail above.
  • the present invention is not limited to the above embodiment, and various improvements and modifications are made without departing from the gist of the present invention. May be.

Abstract

An objective of the present invention is to provide a planar illumination device which is large, has a thin shape, is flexible, and with which it is possible to emit light with high light usage efficiency and low brightness unevenness, as well as to prevent buckling of a diffusion sheet and obtain a luminosity distribution which is either uniform or convex. This planar illumination device comprises two or more layers with different particle concentrations which a light-guiding plate overlaps in a direction which is perpendicular to a light emission plane. In the direction which is perpendicular to a light entrance plane, the thicknesses of the two or more layers respectively change, the composite particle concentrations change, the light-guiding plate, a light source unit, the diffusion sheet, and a casing fit together on the light source unit side, and with the radius of curvature when the planar illumination device overall is curved designated R, then the bending stress P satisfies the formulae P > μ0/tan(a/R), and P ≤ Pmax.

Description

面状照明装置Surface lighting device
 本発明は、液晶表示装置や照明などに用いられる面状照明装置に関するものである。 The present invention relates to a planar illumination device used for a liquid crystal display device or illumination.
 液晶表示装置には、液晶表示パネルの裏面側から光を照射し、液晶表示パネルを照明するバックライトユニットが用いられている。バックライトユニットは、照明用の光源が発する光を拡散して液晶表示パネルを照射する導光板、導光板から出射される光を均一化するプリズムシートや拡散シートなどの部品を用いて構成される。 In the liquid crystal display device, a backlight unit that irradiates light from the back side of the liquid crystal display panel and illuminates the liquid crystal display panel is used. The backlight unit is configured by using components such as a light guide plate that diffuses light emitted from a light source for illumination and irradiates the liquid crystal display panel, a prism sheet that diffuses light emitted from the light guide plate, and a diffusion sheet. .
 現在、大型の液晶テレビのバックライトユニットは、照明用の光源の直上に導光板を配置した、いわゆる直下型と呼ばれる方式が主流である。この方式では、冷陰極管等の光源を導光板の背面に複数本配置し、内部を白色の反射面として均一な光量分布と必要な輝度を確保している。
 しかしながら、直下型のバックライトユニットでは、光量分布を均一にするために、液晶表示パネルに対して垂直方向の厚みが30mm程度必要であり、これ以上の薄型化が困難である。
At present, a backlight unit of a large-sized liquid crystal television is mainly used in a so-called direct type in which a light guide plate is disposed directly above a light source for illumination. In this system, a plurality of light sources such as cold cathode fluorescent lamps are arranged on the back surface of the light guide plate, and a uniform light quantity distribution and necessary luminance are ensured with the inside as a white reflecting surface.
However, in order to make the light amount distribution uniform, the direct type backlight unit needs a thickness of about 30 mm in the vertical direction with respect to the liquid crystal display panel, and it is difficult to make it thinner.
 これに対し、薄型化が可能なバックライトユニットとしては、照明用の光源から出射され、側面から入射した光を、所定方向に導き、光が入射された面とは異なる面である光出射面から出射させる板状の導光板を用いるサイドライト型のバックライトユニットがある。
 このような、導光板を用いたバックライトユニットとしては、透明樹脂に光を散乱させるための散乱粒子を混入させた導光板を用いる方式のバックライトユニットが提案されている。ここで、サイドライト型のバックライトユニットにおいて、バックライトユニットを大型化すると、入射した光を導光板の奥に、すなわち、導光板の中央に導光しづらくなってしまうので、バックライトユニットの中央部での出射光の輝度が低下してしまうという問題があった。そのため、散乱粒子を混入させた導光板において、入射した光を導光板の奥に導光するために、粒子濃度が異なる2つの層からなり、光入射面から離れるに従って、粒子濃度が高い方の層の厚さが厚くなる導光板とすることで、出射光の輝度分布を均一に、あるいは、中高にすることが提案されている。
On the other hand, as a backlight unit that can be thinned, a light emitting surface that is a surface that is different from the surface on which light is emitted from a light source for illumination and incident from a side surface is guided in a predetermined direction. There is a sidelight type backlight unit that uses a plate-shaped light guide plate that emits light from a light source.
As such a backlight unit using a light guide plate, a backlight unit using a light guide plate in which scattering particles for scattering light in a transparent resin are mixed has been proposed. Here, in the sidelight-type backlight unit, when the backlight unit is enlarged, it becomes difficult to guide incident light to the back of the light guide plate, that is, to the center of the light guide plate. There has been a problem that the brightness of the emitted light at the central portion is lowered. Therefore, in the light guide plate mixed with scattering particles, in order to guide the incident light to the back of the light guide plate, it consists of two layers having different particle concentrations, and the particle concentration is higher as the distance from the light incident surface increases. It has been proposed to make the luminance distribution of the emitted light uniform or medium height by using a light guide plate in which the layer thickness is increased.
 例えば、特許文献1には、矩形状の光射出面と、光射出面の一辺を含む光入射面と、光射出面とは反対側の面である背面とを有し、内部に散乱粒子が分散された導光板であって、光射出面側の第1層と、第1層とは粒子濃度が異なる背面側の第2層とで構成され、第1層の散乱粒子の粒子濃度をNpoとし、第2層の散乱粒子の粒子濃度をNprとすると、NpoとNprとの関係が、Npo<Nprを満たす導光板が記載されている。
 また、特許文献2には、非散乱導光領域と、散乱導光領域とが重なる部分を有する導光体の端面に棒状の光源灯を装着すると共に、光源灯の導光体に対面しない部分を反射板で被覆して、両領域の板厚で粒子の濃度を局所的に調節する面光源装置が記載されている。
For example, Patent Document 1 has a rectangular light emission surface, a light incident surface including one side of the light emission surface, and a back surface that is the surface opposite to the light emission surface, and scattering particles are contained inside. It is a dispersed light guide plate, which is composed of a first layer on the light exit surface side and a second layer on the back surface side having a particle concentration different from that of the first layer, and the particle concentration of the scattering particles in the first layer is defined as Npo. Assuming that the particle concentration of the scattering particles in the second layer is Npr, a light guide plate in which the relationship between Npo and Npr satisfies Npo <Npr is described.
In Patent Document 2, a rod-like light source lamp is mounted on the end face of a light guide having a portion where the non-scattering light guide region and the scattering light guide region overlap, and the portion that does not face the light guide of the light source lamp A surface light source device is described in which the concentration of particles is locally adjusted with the thickness of both regions.
 また、導光板を大型化、薄型化すると、温度や湿度の影響による伸縮や反りが大きくなってしまい、導光板と光源や液晶パネルが接触し、各部が損傷してしまうおそれがある。そのため、導光板の伸縮に応じて、導光板と光源とが、筺体に対して一体的に移動可能な機構を有する面状照明装置が提案されている。 Also, if the light guide plate is made larger and thinner, the expansion and contraction and warpage due to the influence of temperature and humidity will increase, and the light guide plate and the light source and the liquid crystal panel may come into contact with each other and the parts may be damaged. Therefore, a planar illumination device having a mechanism in which the light guide plate and the light source can move integrally with respect to the housing according to the expansion and contraction of the light guide plate has been proposed.
 例えば、特許文献3には、2つの光入射面から光射出面の中央に向かうに従ってそれぞれ光射出面からの距離が遠くなる対称な2つの傾斜面と、2つの傾斜面を接合する湾曲部とを有し、その内部に伝搬する光を散乱する散乱粒子を含み、2つの光入射面間の長さ、光入射面の厚み、湾曲部の中央の厚み、湾曲部の曲率半径および傾斜面のテーパが所定範囲を満足し、散乱粒子の粒径、濃度、光の利用効率、光射出面の輝度分布の中高度合が所定範囲を満足する導光板と、光源と、筐体と、光源と導光板の光入射面との間の距離を一定にして固定する固定手段と、筐体に対して固定手段を摺動させるすべり機構とを設けた面状照明装置が記載されている。 For example, in Patent Document 3, two symmetrical inclined surfaces whose distances from the light emitting surface become longer from the two light incident surfaces toward the center of the light emitting surface, and a curved portion that joins the two inclined surfaces, respectively. And includes scattering particles that scatter light propagating therein, the length between the two light incident surfaces, the thickness of the light incident surface, the thickness of the center of the curved portion, the radius of curvature of the curved portion, and the inclined surface A light guide plate having a taper satisfying a predetermined range, a scattering particle size, a concentration, light utilization efficiency, and a medium to high degree of luminance distribution of the light exit surface satisfying the predetermined range, a light source, a housing, and a light source There is described a planar illumination device provided with a fixing means for fixing the distance between the light incident surface of the light guide plate to be constant and a sliding mechanism for sliding the fixing means with respect to the housing.
特開2009-117357号公報JP 2009-117357 A 特開平11-345512号公報Japanese Patent Laid-Open No. 11-345512 特開2009-117349号公報JP 2009-117349 A
 液晶表示装置の大型化に伴い、バックライトユニットにも、より、大型化および薄型軽量化が要求されるようになっている。さらには、薄型化に加えて、バックライトユニットをフレキシブルに、つまり、柔軟性を持たせて、バックライトユニットの表面を種々の曲面に形成することで、フレキシブルな液晶ディスプレイとして、あるいは、フレキシブルな電飾や一般照明としても利用が可能な面状照明装置が求められている。 With the increase in size of liquid crystal display devices, backlight units are required to be larger and thinner and lighter. Furthermore, in addition to thinning, the backlight unit is flexible, that is, has flexibility, and the surface of the backlight unit is formed into various curved surfaces, so that it can be used as a flexible liquid crystal display or flexible. There is a demand for a planar lighting device that can also be used for electrical decoration and general lighting.
 しかしながら、特許文献1や特許文献2のように、導光板を、粒子濃度が異なる2つの層で構成し、光入射面から離れるに従って、粒子濃度が高い方の層の厚さが厚くなるようにした場合であっても、バックライトユニットをさらに大型化、薄型化した場合や、フレキシブルなバックライトユニットとした場合には、入射した光を、導光板の奥に十分に導光することができず、バックライトユニットからの出射光を均一にすることができないおそれがある。 However, as in Patent Document 1 and Patent Document 2, the light guide plate is composed of two layers having different particle concentrations, and the thickness of the layer having the higher particle concentration increases as the distance from the light incident surface increases. Even if the backlight unit is made larger and thinner, or if it is a flexible backlight unit, the incident light can be sufficiently guided to the back of the light guide plate. Therefore, there is a possibility that the light emitted from the backlight unit cannot be made uniform.
 また、散乱粒子を混錬分散した導光板を用いる場合には、導光板の光出射面上に少なくとも1枚の拡散シートを配置して、導光板からの出射光を、バックライトユニットの正面方向へ角度変換する必要がある。
 ここで、フレキシブルなバックライトユニットとした場合には、特許文献3のように、導光板と光源とを一体的に保持する機構を用いることで、バックライトユニットを湾曲させた場合でも、導光板と光源との相対位置がずれることを防止することができる。しかしながら、フレキシブルなバックライトユニットにおいて、図11(A)のように、バックライトユニットを湾曲させた後に、平板状に戻した場合には、図11(B)に示すように、導光板の光出射面上に配置される拡散シートが、筺体の光出射口の端部近傍で、座屈現象を起こし、弛みやシワが生じて、バックライトユニットの出射光が、不均一な輝度分布となったり、光の利用効率が低下してしまうおそれがある。
In addition, when using a light guide plate in which scattering particles are kneaded and dispersed, at least one diffusion sheet is disposed on the light output surface of the light guide plate, and the light emitted from the light guide plate is transmitted in the front direction of the backlight unit. It is necessary to convert the angle.
Here, when a flexible backlight unit is used, even if the backlight unit is bent by using a mechanism that integrally holds the light guide plate and the light source, as in Patent Document 3, the light guide plate And the relative position of the light source can be prevented from shifting. However, in a flexible backlight unit, when the backlight unit is bent and then returned to a flat shape as shown in FIG. 11A, the light of the light guide plate is returned as shown in FIG. The diffusion sheet placed on the exit surface will buckle near the edge of the light exit of the housing, causing slack and wrinkles, and the light emitted from the backlight unit will have a non-uniform luminance distribution. Or the light utilization efficiency may be reduced.
 本発明の目的は、上記従来技術の問題点を解消し、大型かつ薄型な形状であり、フレキシブルな面状照明装置であって、光の利用効率が高く、輝度むらが少ない光を出射することができ、また、拡散シートの座屈を防止して、均一な、あるいは、中高な明るさの分布を得ることができる面状照明装置を提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, and to have a large and thin shape and a flexible planar lighting device that emits light with high light utilization efficiency and less unevenness in luminance. Another object of the present invention is to provide a planar lighting device that can prevent the buckling of the diffusion sheet and obtain a uniform or medium-high brightness distribution.
 上記課題を解決するために、本発明は、矩形状の光出射面と、光出射面の端辺側に設けられ、光出射面に略平行な方向に進行する光を入射する1つの光入射面と、光出射面とは反対側に設けられる背面と、内部に分散された散乱粒子とを有し、光出射面に垂直な方向の厚さが1.5mm以下の導光板、導光板の光入射面に対面して配置される光源ユニット、導光板の光出射面に対面して配置される拡散シート、および、導光板と光源ユニットと拡散シートとを収納し、導光板の光出射面に対応する開口部を備える筺体を有する面状照明装置であって、導光板が、光出射面に略垂直な方向に重なった、散乱粒子の粒子濃度が異なる2つ以上の層を有し、光入射面に垂直な方向において、2つ以上の層の、光出射面に略垂直な方向の厚さがそれぞれ変化して、導光板の合成粒子濃度が変化しており、かつ、導光板と光源ユニットと拡散シートと筐体とが、光源ユニット側で互いに係合し、面状照明装置全体を、光入射面に垂直な方向において湾曲させた際の、曲率半径をR[mm]とし、曲げ応力をP[N/mm]とし、筐体と拡散シートとの最大静止摩擦係数をμとし、拡散シートの、光入射面に垂直な方向の長さをa[mm]、厚さをh[mm]とし、拡散シートの材料のヤング率をE[N/mm]、ポアソン比をνとすると、曲げ応力Pは、P>μ/tan(a/R)、かつ、P≦Pmaxを満たすことを特徴とする面状照明装置を提供する。ここで、Pmax=E・π/(6(1-ν))・(h/a)である。 In order to solve the above-mentioned problems, the present invention provides a light emitting surface having a rectangular shape and a light incident surface that is provided on the edge side of the light emitting surface and that travels in a direction substantially parallel to the light emitting surface. A light guide plate having a thickness of 1.5 mm or less in a direction perpendicular to the light output surface, and a back surface provided on the opposite side of the light output surface and scattering particles dispersed therein A light source unit disposed facing the light incident surface, a diffusion sheet disposed facing the light output surface of the light guide plate, and a light output surface of the light guide plate containing the light guide plate, the light source unit, and the diffusion sheet The light guide plate has two or more layers having different particle concentrations of scattering particles, which overlap each other in a direction substantially perpendicular to the light exit surface, In the direction perpendicular to the light incident surface, the thickness of two or more layers is approximately perpendicular to the light exit surface. As a result, the synthetic particle concentration of the light guide plate is changed, and the light guide plate, the light source unit, the diffusion sheet, and the housing are engaged with each other on the light source unit side, and the entire planar illumination device is made light incident. When curved in a direction perpendicular to the surface, the radius of curvature is R [mm], the bending stress is P [N / mm 2 ], the maximum static friction coefficient between the casing and the diffusion sheet is μ 0, and diffusion When the length of the sheet in the direction perpendicular to the light incident surface is a [mm], the thickness is h [mm], the Young's modulus of the material of the diffusion sheet is E [N / mm 2 ], and the Poisson's ratio is ν. The planar lighting device is characterized in that the bending stress P satisfies P> μ 0 / tan (a / R) and P ≦ P max . Here, P max = E · π 2 / (6 (1-ν) 2 ) · (h / a) 2 .
 ここで、拡散シートの、光入射面の長手方向の幅をb[mm]とすると、拡散シートの厚さhと長さaと幅bと、曲率半径Rとが、0.25<h≦1.0、かつ、300<R<10000、かつ、1.0≦b/a<3.0を満たすのが好ましい。
 また、拡散シートの基材として、二軸延伸されたポリエチレンテレフタレート樹脂基材を用いるのが好ましい。
 ここで、拡散シートの厚さh[mm]が、0.3<h≦1.0の場合に、拡散シートの基材として、二軸延伸されたポリエチレンテレフタレート樹脂基材を2枚以上貼合した複合基材を用いるのが好ましい。
Here, when the longitudinal width of the light incident surface of the diffusion sheet is b [mm], the thickness h, length a, width b, and radius of curvature R of the diffusion sheet are 0.25 <h ≦ It is preferable that 1.0 and 300 <R <10000 and 1.0 ≦ b / a <3.0 are satisfied.
Moreover, it is preferable to use a biaxially stretched polyethylene terephthalate resin substrate as the substrate of the diffusion sheet.
Here, when the thickness h [mm] of the diffusion sheet is 0.3 <h ≦ 1.0, two or more biaxially stretched polyethylene terephthalate resin substrates are bonded as the diffusion sheet substrate. It is preferable to use the composite base material.
 あるいは、拡散シートの基材として、アクリル樹脂、ポリスチレン樹脂、MS樹脂、および、ポリカーボネート樹脂のいずれかを材料として、押出あるいはキャスト重合により成型した基材を用いるのが好ましい。 Alternatively, it is preferable to use a base material formed by extrusion or cast polymerization using any one of acrylic resin, polystyrene resin, MS resin, and polycarbonate resin as the base material of the diffusion sheet.
 また、導光板の2つ以上の層が、光出射面側の第1層と、第1層よりも粒子濃度が高い背面側の第2層との2つの層からなり、第2層の厚さが、光入射面から離間するに従って、薄くなった後に、厚くなるように連続的に変化しているのが好ましい。 Further, the two or more layers of the light guide plate are composed of two layers, a first layer on the light emitting surface side and a second layer on the back surface side having a higher particle concentration than the first layer, and the thickness of the second layer However, it is preferable that the thickness continuously changes so as to become thicker after becoming thinner as the distance from the light incident surface increases.
 あるいは、導光板の2つ以上の層が、光出射面側の第1層と、第1層よりも粒子濃度が高い背面側の第2層との2つの層からなり、第2層の厚さが、光入射面から離間するに従って、一旦、厚くなり、薄くなった後に、再び、厚くなるように連続的に変化しているのが好ましい。 Alternatively, the two or more layers of the light guide plate are composed of two layers, a first layer on the light emitting surface side and a second layer on the back surface side having a higher particle concentration than the first layer, and the thickness of the second layer As the distance from the light incident surface increases, it is preferable that the thickness is once changed to be thicker and then continuously changed so as to become thicker again.
 また、導光板の背面が、光出射面に平行な平面であることが好ましい。 Further, it is preferable that the back surface of the light guide plate is a plane parallel to the light exit surface.
 本発明によれば、大型かつ薄型な形状であり、フレキシブルな面状照明装置であって、光の利用効率が高く、輝度むらが少ない光を出射することができ、また、湾曲して使用した際の拡散シートの座屈による弛みやシワを防止して、均一な、あるいは、中高な明るさの分布を得ることができる。 According to the present invention, it is a large and thin shape, and is a flexible planar illuminating device, which can emit light with high light use efficiency and little luminance unevenness, and is used in a curved manner. It is possible to prevent slack and wrinkles due to buckling of the diffusion sheet, and to obtain a uniform or medium-high brightness distribution.
本発明に係る面状照明装置を備える液晶表示装置の一実施形態を示す概略斜視図である。It is a schematic perspective view which shows one Embodiment of a liquid crystal display device provided with the planar illuminating device which concerns on this invention. (A)は、図1に示す液晶表示装置のバックライトユニットの概略正面図、(B)は、(A)のI-I線断面、(C)は、(A)のII-II線断面図である。(A) is a schematic front view of the backlight unit of the liquid crystal display device shown in FIG. 1, (B) is a cross-sectional view taken along line II in (A), and (C) is a cross-sectional view taken along line II-II in (A). FIG. 図2に示すバックライトユニットの導光板の概略斜視図である。It is a schematic perspective view of the light-guide plate of the backlight unit shown in FIG. (A)は、図3に示す導光板の概略断面図であり、(B)および(C)は、本発明の面状照明装置に用いられる導光板の他の一例を表す概略断面図である。(A) is a schematic sectional drawing of the light-guide plate shown in FIG. 3, (B) and (C) are schematic sectional drawings showing another example of the light-guide plate used for the planar illuminating device of this invention. . (A)は、図2に示す面状照明装置の光源ユニットの部分概略斜視図、(B)は、LEDチップの概略斜視図、(C)は、光源の概略正面図である。(A) is the partial schematic perspective view of the light source unit of the planar illuminating device shown in FIG. 2, (B) is a schematic perspective view of a LED chip, (C) is a schematic front view of a light source. 図2に示す面状照明装置に用いられる拡散シートを概念的に示す図である。It is a figure which shows notionally the diffusion sheet used for the planar illuminating device shown in FIG. (A)は、図2に示す面状照明装置に用いられる拡散シートの概略部分断面図であり、(B)は、拡散シートの他の一例の概略部分断面図である。(A) is a schematic fragmentary sectional view of the diffusion sheet used for the planar illuminating device shown in FIG. 2, (B) is a schematic fragmentary sectional view of another example of a diffusion sheet. 図2に示す面状照明装置を湾曲させた際の概略図である。It is the schematic at the time of curving the planar illuminating device shown in FIG. 拡散シートの寸法と係数αとの関係を示すグラフである。It is a graph which shows the relationship between the dimension of a diffusion sheet, and coefficient (alpha). (A)および(B)は、曲率半径Rと曲げ応力Pとの関係を示すグラフである。(A) And (B) is a graph which shows the relationship between the curvature radius R and the bending stress P. FIG. (A)および(B)は、本発明の課題を説明するための面状照明装置を表す概略図である。(A) And (B) is the schematic showing the planar illuminating device for demonstrating the subject of this invention.
 本発明に係る面状照明装置を、添付の図面に示す好適実施形態に基づいて以下に詳細に説明する。 The planar illumination device according to the present invention will be described in detail below based on a preferred embodiment shown in the accompanying drawings.
 図1に、本発明の面状照明装置を利用する液晶表示装置の一例の概略斜視図を示す。
 図1に示す液晶表示装置10は、液晶テレビなど、いわゆる液晶表示パネル(液晶ディスプレイパネル=LCD)12を用いる表示装置で、基本的に、前記液晶表示パネル12と、本発明の面状照明装置にかかるバックライトユニット20と、液晶表示パネル12を駆動する駆動ユニット14とを有する。
 バックライトユニット20は、光出射面(光射出面)を液晶表示パネル12に向けて、液晶表示パネル12の背面(画像表示面と逆面)に配置される。なお、以下の説明では、便宜的に、液晶表示パネル12(後述する導光板30)の短辺の延在方向を上下(UD)方向、長辺の延在方向すなわち前記上下方向と直交する方向を左右(LR)方向とも言う。
 なお、図1においては、バックライトユニット20の構成を明瞭に示すため、液晶表示パネル12の一部を省略している。
FIG. 1 shows a schematic perspective view of an example of a liquid crystal display device using the planar illumination device of the present invention.
A liquid crystal display device 10 shown in FIG. 1 is a display device using a so-called liquid crystal display panel (liquid crystal display panel = LCD) 12 such as a liquid crystal television. Basically, the liquid crystal display panel 12 and the surface illumination device of the present invention are used. The backlight unit 20 and the drive unit 14 for driving the liquid crystal display panel 12 are included.
The backlight unit 20 is disposed on the back surface (opposite to the image display surface) of the liquid crystal display panel 12 with the light emission surface (light emission surface) facing the liquid crystal display panel 12. In the following description, for the sake of convenience, the extending direction of the short side of the liquid crystal display panel 12 (light guide plate 30 to be described later) is the vertical (UD) direction, the extending direction of the long side, that is, the direction orthogonal to the vertical direction. Is also referred to as the left-right (LR) direction.
In FIG. 1, a part of the liquid crystal display panel 12 is omitted in order to clearly show the configuration of the backlight unit 20.
 液晶表示パネル12は、予め特定の方向に配列してある液晶分子に、部分的に電界を印加してこの分子の配列を変え、液晶セル内に生じた屈折率の変化を利用して、液晶表示パネル12の表面上に文字、図形、画像などを表示する。
 駆動ユニット14は、液晶表示パネル12内の透明電極に電圧をかけ、液晶分子の向きを変えて液晶表示パネル12を透過する光の透過率を制御する。
The liquid crystal display panel 12 applies a partial electric field to liquid crystal molecules arranged in a specific direction in advance to change the arrangement of the molecules, and uses the change in the refractive index generated in the liquid crystal cell to make a liquid crystal display. Characters, figures, images, etc. are displayed on the surface of the display panel 12.
The drive unit 14 applies a voltage to the transparent electrode in the liquid crystal display panel 12, changes the direction of the liquid crystal molecules, and controls the transmittance of light transmitted through the liquid crystal display panel 12.
 バックライトユニット20は、液晶表示パネル12の背面から、液晶表示パネル12の全面に光を照射する照明装置であり、液晶表示パネル12の画像表示面と略同一形状の光出射口24を有する。
 図1および図2に示すように、図示例のバックライトユニット20は、光源ユニット28と、導光板30と、拡散シート32と、筐体26とを有して構成される。
 なお、図2において、(A)は、バックライトユニット20から上部筐体44を取り外した正面(液晶表示装置10の表示面側)を概念的に示す図で、(B)は、バックライトユニット20の図2(A)I-I線断面を、(C)は、同II-II線断面を、概念的に示す図である。
The backlight unit 20 is an illuminating device that irradiates light from the back surface of the liquid crystal display panel 12 to the entire surface of the liquid crystal display panel 12, and has a light emission port 24 having substantially the same shape as the image display surface of the liquid crystal display panel 12.
As shown in FIGS. 1 and 2, the backlight unit 20 in the illustrated example includes a light source unit 28, a light guide plate 30, a diffusion sheet 32, and a housing 26.
2A is a diagram conceptually showing the front (display surface side of the liquid crystal display device 10) from which the upper housing 44 is removed from the backlight unit 20, and FIG. 2B is a diagram showing the backlight unit. FIG. 2A is a cross-sectional view taken along the line II of FIG. 20, and FIG.
 筐体26は、光源ユニット28、導光板30、および、拡散シート32等を所定位置に収容/保持する。
 筐体26は、下部筺体42と上部筺体44とを有する。
The housing 26 accommodates / holds the light source unit 28, the light guide plate 30, the diffusion sheet 32, and the like at predetermined positions.
The housing 26 has a lower housing 42 and an upper housing 44.
 下部筐体42は、一面(最大面)が開放する直方体状の筐体で、光源ユニット28、矩形状の光出射面を有する導光板30、および、拡散シート32等を所定位置に収容/保持する。導光板30は、後述する光出射面30aを開放面に向けて、下部筐体42に収容される。また、下部筺体42の背面側には、光源ユニット28に電力を供給する複数の電源を収納する電源収納部49が取り付けられている。 The lower housing 42 is a rectangular parallelepiped housing whose one surface (maximum surface) is open, and accommodates / holds the light source unit 28, the light guide plate 30 having a rectangular light emitting surface, the diffusion sheet 32, and the like at predetermined positions. To do. The light guide plate 30 is accommodated in the lower housing 42 with the light emission surface 30a described later facing the open surface. In addition, a power storage unit 49 that stores a plurality of power supplies that supply power to the light source unit 28 is attached to the back side of the lower housing 42.
 他方、上部筺体44は、いわゆる蓋体のように下部筺体42を挿入する、下部筐体と同形状の筐体で、開放面と対向する面には、導光板30から出射された光を液晶表示パネル12の背面に照射するための光出射口24が形成される。
 ここで、本発明のバックライトユニットは、フレキシブルなバックライトユニットであって、湾曲させることができる。したがって、上部筺体44および下部筺体42は、フレキシブルなバックライトユニットとするために、弾性変形が可能な材料で形成されている。上部筺体44および下部筺体の材料としては、アルミ合金、マグネシウム合金、炭素繊維シート、ステンレスシート、りん青銅シート、金属フィラー入り樹脂、炭素素材系シート等を用いることができる。
On the other hand, the upper housing 44 is a housing having the same shape as the lower housing in which the lower housing 42 is inserted like a so-called lid, and the light emitted from the light guide plate 30 is liquid crystal on the surface facing the open surface. A light exit 24 for irradiating the back surface of the display panel 12 is formed.
Here, the backlight unit of the present invention is a flexible backlight unit and can be curved. Therefore, the upper housing 44 and the lower housing 42 are formed of a material that can be elastically deformed so as to be a flexible backlight unit. As a material of the upper casing 44 and the lower casing, an aluminum alloy, a magnesium alloy, a carbon fiber sheet, a stainless steel sheet, a phosphor bronze sheet, a resin containing a metal filler, a carbon material-based sheet, or the like can be used.
 図3に、導光板30の概念斜視図を示す。
 図3に示すように、導光板30は、光出射口32の全面を包含可能かつ下部筐体に収容可能な矩形状(長方形状)の光出射面30aを有する平板状の部材であり、前記光出射面30aと、前記光出射面30aとは反対側の面である背面30bと、光出射面の長辺側の端面にそれぞれ設定される光入射面30cおよび側面30dを有する。
FIG. 3 is a conceptual perspective view of the light guide plate 30.
As shown in FIG. 3, the light guide plate 30 is a flat plate-like member having a rectangular (rectangular) light exit surface 30a that can include the entire surface of the light exit port 32 and can be accommodated in the lower housing. The light emitting surface 30a, the back surface 30b that is the surface opposite to the light emitting surface 30a, and the light incident surface 30c and the side surface 30d that are set on the end surface on the long side of the light emitting surface, respectively.
 図示例においては、光入射面30cおよび30dから光が入射し、短辺方向に導光板30内を伝播して、光出射面30aから光を出射して、液晶表示パネル12の背面に光を入射する。
 ここで、本発明において、バックライトユニットを薄型、かつ、フレキシブルとするために、導光板30の厚さは、1.5mm以下とする。
In the illustrated example, light enters from the light incident surfaces 30c and 30d, propagates in the light guide plate 30 in the short side direction, emits light from the light emitting surface 30a, and emits light to the back surface of the liquid crystal display panel 12. Incident.
Here, in the present invention, in order to make the backlight unit thin and flexible, the thickness of the light guide plate 30 is 1.5 mm or less.
 また、導光板30は、内部に光を散乱させるための微小な散乱粒子が分散されている。
 導光板30に用いられる透明な樹脂の材料としては、例えば、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PC(ポリカーボネート)、PMMA(ポリメチルメタクリレート)、ベンジルメタクリレート、MS樹脂、あるいはCOP(シクロオレフィンポリマー)のような光学的に透明な樹脂が挙げられる。
 また、導光板30に混錬分散する散乱粒子としては、トスパール(登録商標)等のシリコーン粒子や、シリカ、ジルコニア、誘電体ポリマ等からなる粒子が例示される。このような散乱粒子を導光板30の内部に含有させることによって、均一で輝度むらが少ない照明光を光出射面30aから出射することができる。
Further, the light guide plate 30 has dispersed therein fine scattering particles for scattering light.
Examples of the transparent resin material used for the light guide plate 30 include PET (polyethylene terephthalate), PP (polypropylene), PC (polycarbonate), PMMA (polymethyl methacrylate), benzyl methacrylate, MS resin, or COP (cycloolefin). And an optically transparent resin such as a polymer.
Examples of the scattering particles kneaded and dispersed in the light guide plate 30 include silicone particles such as Tospearl (registered trademark), particles made of silica, zirconia, dielectric polymer, and the like. By including such scattering particles in the light guide plate 30, it is possible to emit illumination light that is uniform and has less luminance unevenness from the light exit surface 30a.
 ここで、本発明の面状照明装置に用いる導光板30に分散させる散乱粒子の粒径は、4.0~12.0μmとするのが好ましい。散乱粒子の粒径を、この範囲とすることにより、高い散乱効率を得ることができ、また、前方散乱性が大きくかつ波長依存性が少なく、色むらを好適に抑制できる等の点で好ましい。
 なお、使用する散乱粒子は、単一粒径でもよく、あるいは、複数粒径の散乱粒子を混合して用いても良い。
Here, the particle size of the scattering particles dispersed in the light guide plate 30 used in the planar lighting device of the present invention is preferably 4.0 to 12.0 μm. By setting the particle diameter of the scattering particles in this range, it is preferable in that high scattering efficiency can be obtained, forward scattering properties are large and wavelength dependency is small, and color unevenness can be suitably suppressed.
The scattering particles to be used may have a single particle size or a mixture of scattering particles having a plurality of particle sizes.
 ここで、導光板30は、光出射面30a側の第1層60と、背面30b側の第2層62とに分かれた2層構造で形成されている。第1層60と第2層62との境界を境界面zとすると、第1層60は、光出射面30aと光入射面30cと側面30dと境界面zとで囲まれた断面の領域であり、第2層62は、第1層の背面30b側に隣接する層であり、境界面zと光入射面30cと側面30dと背面30bとで囲まれた断面の領域である。 Here, the light guide plate 30 is formed in a two-layer structure divided into a first layer 60 on the light emitting surface 30a side and a second layer 62 on the back surface 30b side. Assuming that the boundary between the first layer 60 and the second layer 62 is a boundary surface z, the first layer 60 is an area of a cross section surrounded by the light emitting surface 30a, the light incident surface 30c, the side surface 30d, and the boundary surface z. The second layer 62 is a layer adjacent to the back surface 30b side of the first layer, and is a cross-sectional region surrounded by the boundary surface z, the light incident surface 30c, the side surface 30d, and the back surface 30b.
 第1層60の散乱粒子の粒子濃度をNpoとし、第2層62の散乱粒子の粒子濃度をNprとすると、NpoとNprとの関係は、Npo<Nprとなる。つまり、導光板30は、光出射面30a側の第1層よりも、背面30b側の第2層の方が散乱粒子の粒子濃度が高い。
 ここで、導光板30は、境界面zで第1層60と第2層62とに分かれているが、第1層60と第2層62とは、粒子濃度が異なるのみで、同じ透明樹脂に同じ散乱粒子を分散させた構成であり、構造上は一体となっている。つまり、導光板30は、境界面zを基準として分けた場合、それぞれの領域の粒子濃度は異なるが、境界面zは、仮想的な線であり、第1層60および第2層62は一体となっている。
 このような導光板30は、押出成形法や射出成形法を用いて製造することができる。
When the particle concentration of the scattering particles in the first layer 60 is Npo and the particle concentration of the scattering particles in the second layer 62 is Npr, the relationship between Npo and Npr is Npo <Npr. That is, in the light guide plate 30, the particle concentration of the scattering particles is higher in the second layer on the back surface 30b side than on the first layer on the light emitting surface 30a side.
Here, the light guide plate 30 is divided into a first layer 60 and a second layer 62 at the boundary surface z, but the first layer 60 and the second layer 62 have the same transparent resin only in the particle concentration. The same scattering particles are dispersed to each other and are integrated in structure. That is, when the light guide plate 30 is divided on the basis of the boundary surface z, the particle concentration in each region is different, but the boundary surface z is a virtual line, and the first layer 60 and the second layer 62 are integrated. It has become.
Such a light guide plate 30 can be manufactured using an extrusion molding method or an injection molding method.
 第1層60と第2層62との境界面zは、光入射面の長手方向に垂直な断面で見た際に、光入射面30cから側面30dに向かうに従って、第2層62が、薄くなった後、厚くなるように、連続的に変化し、側面30d付近で、再び薄くなるように連続的に変化している。
 具体的には、境界面zは、光入射面30c側では、光出射面30aに向かって凹の曲面であり、側面30d側では、光出射面30aに向かって凸の曲面である。
When the boundary surface z between the first layer 60 and the second layer 62 is viewed in a cross section perpendicular to the longitudinal direction of the light incident surface, the second layer 62 becomes thinner from the light incident surface 30c toward the side surface 30d. Then, it continuously changes so as to become thicker, and continuously changes so as to become thinner again in the vicinity of the side surface 30d.
Specifically, the boundary surface z is a curved surface that is concave toward the light exit surface 30a on the light incident surface 30c side, and a curved surface that is convex toward the light exit surface 30a on the side surface 30d side.
 このように、第1層60よりも散乱粒子の粒子濃度が高い第2層の厚さを、光入射面30c近傍で一旦、薄くなり、側面30d近傍で一旦、厚くなるように連続的に変化させることにより、散乱粒子の合成粒子濃度を、光入射面30c近傍で最も小さくなり、側面30d近傍で、最も大きくなるように変化させている。
 すなわち、合成粒子濃度の濃度プロファイルは、第1光入射面30c側において極小値を持ち、側面122d側において極大値を持つように変化する曲線である。
Thus, the thickness of the second layer having a higher concentration of scattering particles than the first layer 60 is continuously changed so as to be once thinned near the light incident surface 30c and once thickened near the side surface 30d. By doing so, the concentration of the synthesized particles of the scattering particles is changed to be the smallest near the light incident surface 30c and the largest near the side surface 30d.
That is, the concentration profile of the synthetic particle concentration is a curve that changes so as to have a minimum value on the first light incident surface 30c side and a maximum value on the side surface 122d side.
 なお、本発明において、合成粒子濃度とは、光入射面に垂直な方向の或る位置において、光出射面と略垂直方向に加算(合成)した散乱粒子量を用いて、導光板を光入射面の厚みの平板と見なした際における散乱粒子の濃度である。すなわち、光入射面から離間した或る位置において、該導光板を光入射面の厚みの、一種類の濃度の平板導光板とみなした場合に、光出射面と略垂直方向に加算した散乱粒子の単位体積あたりの数量または、母材に対する重量百分率である。 In the present invention, the synthetic particle concentration means that light is incident on the light guide plate by using the amount of scattered particles added (synthesized) in a direction substantially perpendicular to the light emitting surface at a certain position in the direction perpendicular to the light incident surface. It is the concentration of scattering particles when it is regarded as a flat plate having a thickness of the surface. That is, at a certain position away from the light incident surface, when the light guide plate is regarded as a flat light guide plate having a thickness of the light incident surface and having one type of concentration, the scattering particles added in a direction substantially perpendicular to the light exit surface The quantity per unit volume or the weight percentage with respect to the base material.
 このように、導光板30の合成粒子濃度を、光入射面30cから離れるに従って、小さくなった後、大きくなるように、連続的に変化し、側面30d付近で、再び小さくなるように連続的に変化する構成とすることで、光入射面30cから入射する光をより遠い位置まで導光することができるので、導光板30(バックライトユニット20)を薄型化、大型化した場合も、バックライトユニット20の出射光の輝度分布を均一に、あるいは、中高にすることができ、光の利用効率を向上させることができる。 Thus, the synthetic particle concentration of the light guide plate 30 continuously changes so as to increase after decreasing from the light incident surface 30c, and continuously so as to decrease again in the vicinity of the side surface 30d. By adopting the changing configuration, it is possible to guide the light incident from the light incident surface 30c to a farther position. Therefore, even when the light guide plate 30 (backlight unit 20) is thinned and enlarged, the backlight The luminance distribution of the emitted light from the unit 20 can be made uniform or medium-high, and the light utilization efficiency can be improved.
 また、光入射面30c近傍に極小値を配置することによって、光入射面30c、30dから入射した光を、光入射面近傍で十分に拡散し、光入射面近傍から出射される出射光に、光源の配置間隔等に起因する輝線(暗線、ムラ)が視認されることを防止することができる。
 また、境界面zの形状を調整することで、輝度分布(散乱粒子の濃度分布)も任意に設定することができ、効率を最大限に向上できる。
 また、光出射面側の層の粒子濃度を低くするので、全体での散乱粒子の量を少なくすることができ、コストダウンにもつながる。
Further, by arranging the minimum value in the vicinity of the light incident surface 30c, the light incident from the light incident surfaces 30c and 30d is sufficiently diffused in the vicinity of the light incident surface, and the emitted light emitted from the vicinity of the light incident surface is It is possible to prevent the bright line (dark line, unevenness) caused by the arrangement interval of the light sources from being visually recognized.
Further, by adjusting the shape of the boundary surface z, the luminance distribution (scattering particle concentration distribution) can be arbitrarily set, and the efficiency can be improved to the maximum.
Further, since the particle concentration of the layer on the light exit surface side is lowered, the amount of scattered particles as a whole can be reduced, leading to cost reduction.
 図2に示す導光板30では、光源ユニット28から出射され光入射面30cから入射した光は、導光板30の内部に含まれる散乱体(散乱粒子)によって散乱されつつ、導光板30内部を通過し、直接、または背面30bで反射した後、光出射面30aから出射される。このとき、背面30bから一部の光が漏出する場合もあるが、漏出した光は導光板30の背面30b側に配置された反射板によって反射され再び導光板30の内部に入射する。 In the light guide plate 30 shown in FIG. 2, the light emitted from the light source unit 28 and incident from the light incident surface 30 c passes through the light guide plate 30 while being scattered by scatterers (scattered particles) included in the light guide plate 30. Then, it is emitted from the light exit surface 30a directly or after being reflected by the back surface 30b. At this time, a part of the light may leak from the back surface 30 b, but the leaked light is reflected by the reflecting plate disposed on the back surface 30 b side of the light guide plate 30 and enters the light guide plate 30 again.
 ここで、図示例の導光板30においては、境界面zは、光入射面30c側では凹の曲面であり、側面30d側では凸の曲面としたが、本発明はこれに限定はされない。 Here, in the illustrated light guide plate 30, the boundary surface z is a concave curved surface on the light incident surface 30c side and a convex curved surface on the side surface 30d side, but the present invention is not limited to this.
 図4(B)および(C)に示す導光板100、102は、図4(A)に示す導光板30の境界面zの形状を変更した以外は、同じ構成を有するので、同じ部位には、同じ符号を付し、以下の説明は異なる部位を主に行なう。 The light guide plates 100 and 102 shown in FIGS. 4B and 4C have the same configuration except that the shape of the boundary surface z of the light guide plate 30 shown in FIG. The same reference numerals are attached, and the following description will mainly focus on different parts.
 図4(B)に示す導光板100の境界面zは、光入射面30cの長手方向に垂直な断面で見た際に、光入射面30cから側面30dに向かって、一旦、第2層62が薄くなるように変化した後、第2層62が厚くなるように変化し、その後第2層62の厚さが一定となるように連続的に変化している。すなわち、境界面zは、光入射面30c側では、光出射面30aに向かって凹の曲面であり、導光板中央部では、光出射面30aに向かって凸の曲面であり、凸の曲面の頂点より、側面30d側では、光出射面30aに平行な平面である。 The boundary surface z of the light guide plate 100 shown in FIG. 4 (B) is temporarily second layer 62 from the light incident surface 30c toward the side surface 30d when viewed in a cross section perpendicular to the longitudinal direction of the light incident surface 30c. , The thickness of the second layer 62 is changed to be thick, and then the thickness of the second layer 62 is continuously changed to be constant. That is, the boundary surface z is a curved surface that is concave toward the light emitting surface 30a on the light incident surface 30c side, and is a curved surface that is convex toward the light emitting surface 30a at the center of the light guide plate. On the side surface 30d side from the apex, the plane is parallel to the light emitting surface 30a.
 このように、境界面zの形状を、光入射面に近い位置で、第2層の厚さが最小になり、光入射面から遠い位置で、第2層の厚さが最大になるような非対称な形状とすることにより、光源から出射され、光入射面から入射した光を、導光板の奥まで導光することができ、光出射面から出射する光の照度分布を中高にすることができ、光の利用効率を向上させることができる。 As described above, the shape of the boundary surface z is such that the thickness of the second layer is minimized at a position close to the light incident surface, and the thickness of the second layer is maximized at a position far from the light incident surface. By using an asymmetric shape, the light emitted from the light source and incident from the light incident surface can be guided to the back of the light guide plate, and the illuminance distribution of the light emitted from the light exit surface can be made to be medium to high And the light utilization efficiency can be improved.
 図4(C)に示す導光板102の境界面zは、光入射面30cの長手方向に垂直な断面で見た際に、光入射面30cから側面30dに向かって、第2層62が厚くなるように変化し、一旦、第2層62が薄くなるように変化した後、再び第2層62が厚くなるように変化し、側面30d側で薄くなるように、連続的に変化している。
 具体的には、境界面zは、側面30d側の、光出射面30aに向かって凸の曲面と、この凸の曲面に滑らかに接続された凹の曲面と、この凹の曲面と接続され、光入射面30cの背面30b側の端部に接続する凹の曲面とからなる。また、光入射面30c上では、第2層62の厚さが0となる。
 すなわち、散乱粒子の合成粒子濃度(第2層の厚さ)を、第1光入射面30c近傍の第1極大値と、導光板中央部よりも側面30d側で、第1極大値よりも大きい第2極大値を有するように連続的に変化させている。
The boundary surface z of the light guide plate 102 shown in FIG. 4C is thicker in the second layer 62 from the light incident surface 30c toward the side surface 30d when viewed in a cross section perpendicular to the longitudinal direction of the light incident surface 30c. Once changed so that the second layer 62 becomes thinner, the second layer 62 changes again so as to become thicker, and continuously changes so as to become thinner on the side surface 30d side. .
Specifically, the boundary surface z is connected to the side surface 30d side of the convex curved surface toward the light emitting surface 30a, a concave curved surface smoothly connected to the convex curved surface, and the concave curved surface, It consists of a concave curved surface connected to the end of the light incident surface 30c on the back surface 30b side. On the light incident surface 30c, the thickness of the second layer 62 is zero.
That is, the synthetic particle concentration (thickness of the second layer) of the scattering particles is larger than the first maximum value in the vicinity of the first light incident surface 30c and the first maximum value on the side surface 30d side from the central portion of the light guide plate. It is continuously changed so as to have the second maximum value.
 このように、導光板102の合成粒子濃度(第2層62の厚さ)を、光入射面30cに近い位置で第1極大値を有し、中央部よりも側面30d側で、第1極大値よりも大きな第2極大値を有する濃度とすることによって、大型かつ薄型な導光板であっても、光入射面から入射する光を光入射面からより遠い位置まで届けることができ、出射光の輝度分布を中高な輝度分布とすることができる。
 また、光入射面近傍に、合成粒子濃度の第1極大値を配置することによって、光入射面から入射した光を、光入射面近傍で十分に拡散し、光入射面近傍から出射される出射光に、光源の配置間隔等に起因する輝線(暗線、ムラ)が視認されることを防止することができる。
 また、合成粒子濃度の第1極大値となる位置よりも光入射面側の領域を、第1極大値よりも低い合成粒子濃度とすることによって、入射した光が光入射面から出射される戻り光や、筺体に覆われていて利用されない光入射面付近の領域からの出射光を低減し、光出射面の有効な領域から出射する光の利用効率を向上させることができる。
Thus, the synthetic particle concentration (thickness of the second layer 62) of the light guide plate 102 has the first maximum value at a position close to the light incident surface 30c, and the first maximum value on the side surface 30d side from the central portion. By setting the concentration to have a second maximum value larger than the value, even a large and thin light guide plate can deliver light incident from the light incident surface to a position farther from the light incident surface. The luminance distribution can be a medium-high luminance distribution.
In addition, by arranging the first maximum value of the synthetic particle concentration in the vicinity of the light incident surface, the light incident from the light incident surface is sufficiently diffused in the vicinity of the light incident surface and is emitted from the vicinity of the light incident surface. It is possible to prevent bright lines (dark lines, unevenness) caused by the arrangement interval of the light sources from being visually recognized in the incident light.
In addition, by setting the region closer to the light incident surface than the position where the synthetic particle concentration becomes the first maximum value to the synthetic particle concentration lower than the first maximum value, the incident light is returned from the light incident surface. It is possible to reduce light and outgoing light from a region near the light incident surface that is covered with the casing and not used, and to improve the utilization efficiency of light emitted from an effective region of the light outgoing surface.
 本発明のバックライトユニット20においては、公知の導光板と同様に、光反射面となる背面30bなど、必要な部位に、光を導光板30に向けて反射する反射板を設けるのが好ましい。反射板を設けることにより、光の利用効率を、より向上できる。
 反射板は、導光板に利用されている公知のものが全て利用可能であり、例えば、例えば、PETやPP(ポリプロピレン)等にフィラーを混練後延伸することによりボイドを形成して反射率を高めた樹脂シート、透明もしくは白色の樹脂シート表面にアルミ蒸着などで鏡面を形成したシート、アルミ等の金属箔もしくは金属箔を担持した樹脂シート、あるいは表面に十分な反射性を有する金属薄板等が利用可能である。
In the backlight unit 20 of the present invention, it is preferable to provide a reflection plate that reflects light toward the light guide plate 30 at a necessary portion, such as the back surface 30b serving as a light reflection surface, similarly to the known light guide plate. By providing the reflecting plate, the light utilization efficiency can be further improved.
As the reflection plate, all known ones used for the light guide plate can be used. For example, a void is formed by kneading and stretching a filler in, for example, PET or PP (polypropylene) to increase the reflectance. Resin sheet, transparent or white resin sheet surface with mirror surface formed by vapor deposition of aluminum, etc., aluminum or other metal foil or resin sheet carrying metal foil, or metal sheet with sufficient reflectivity on the surface Is possible.
 ここで、後に詳述するが、導光板30の光出射面30aの光入射面30c側の両隅、およびその中央には、自身が後述する光源ユニット28(その光源支持部52)に係止され、かつ、後述する拡散シート32を係止するための、保持部材84a~84c(図3では、上部左右方向中央の保持部材84cは省略)が固定される。
 この点に関しては、後に詳述する。
 なお、この保持部材84a~84cの導光板30への固定方法には、特に限定はなく、導光板30および保持部材の形成材料や形状等に応じて、公知の方法が各種利用可能であるが、穿孔等の必要がなく、導光板30の割れ等の損傷を防止できる等の点で、接着剤を用いる固定方法が好適である。
Here, as will be described in detail later, the light emitting surface 30a of the light guide plate 30 is locked at both corners on the light incident surface 30c side and the center thereof by the light source unit 28 (its light source support portion 52) described later. In addition, holding members 84a to 84c (in FIG. 3, the holding member 84c at the center in the upper left and right direction is omitted) for locking the diffusion sheet 32 described later are fixed.
This will be described in detail later.
The method for fixing the holding members 84a to 84c to the light guide plate 30 is not particularly limited, and various known methods can be used depending on the formation material and shape of the light guide plate 30 and the holding member. A fixing method using an adhesive is preferable in that there is no need for perforation or the like and damage such as cracking of the light guide plate 30 can be prevented.
 図5(A)に光源ユニット28の一部(左右方向の端部近傍)概略斜視図を示す。
 図5(A)に示すように、光源ユニット28は、複数のLEDチップ(発光ダイオード)50と、光源支持部52とを有し、LEDチップ50を光源支持部52に配列してなる構成を有する。
FIG. 5A shows a schematic perspective view of a part of the light source unit 28 (near the end in the left-right direction).
As shown in FIG. 5A, the light source unit 28 includes a plurality of LED chips (light emitting diodes) 50 and a light source support portion 52, and the LED chips 50 are arranged on the light source support portion 52. Have.
 LEDチップ50は、青色光を出射する発光ダイオードの表面に蛍光物質が塗布されたチップであり、所定面積の発光面50aを有し、この発光面50aから白色光を出射する。
 具体的には、LEDチップ50は、発光ダイオードの表面に塗布された蛍光物質が発光ダイオードから出射された青色光が透過することにより蛍光する特性を有する。このため、LEDチップ50は、発光ダイオードから青色光を出射することで、青色光が透過された蛍光物質も発光し、この発光ダイオードから出射されそのまま蛍光物質を透過した青色光と、蛍光物質が蛍光されることで出射される光とで白色光を生成され、出射される。
 ここで、LEDチップ50としては、GaN系発光ダイオード、InGaN系発光ダイオード等の表面にYAG(イットリウム・アルミニウム・ガーネット)系蛍光物質を塗布したチップが例示される。
The LED chip 50 is a chip in which a fluorescent material is coated on the surface of a light emitting diode that emits blue light. The LED chip 50 has a light emitting surface 50a having a predetermined area, and emits white light from the light emitting surface 50a.
Specifically, the LED chip 50 has a characteristic that the fluorescent material applied to the surface of the light emitting diode fluoresces when blue light emitted from the light emitting diode is transmitted. For this reason, the LED chip 50 emits blue light from the light emitting diode, so that the fluorescent material through which the blue light is transmitted also emits light. White light is generated and emitted from the light emitted by the fluorescence.
Here, the LED chip 50 is exemplified by a chip in which a YAG (yttrium / aluminum / garnet) fluorescent material is applied to the surface of a GaN-based light-emitting diode, InGaN-based light-emitting diode, or the like.
 なお、本発明の面状照明装置においては、光源ユニット28には、LEDチップ50以外にも各種の発光デバイスが利用可能であり、面状照明装置の用途に応じた、各種の発光デバイスが利用可能である。
 例えば、図示例のような液晶表示装置10であれば、赤色LED、緑色LED、青色LEDの3種類のLEDを組み合わせた構成のLEDユニットを用いてもよい。また、LEDの代わりに半導体レーザー(LD)を用いることもできる。
In the planar lighting device of the present invention, various light emitting devices other than the LED chip 50 can be used for the light source unit 28, and various light emitting devices according to the application of the planar lighting device are used. Is possible.
For example, in the case of the liquid crystal display device 10 as in the illustrated example, an LED unit having a configuration in which three types of LEDs, a red LED, a green LED, and a blue LED, are combined may be used. In addition, a semiconductor laser (LD) can be used instead of the LED.
 光源支持部52は、一面が導光板30の光入射面30cに対向して配置される板状部材である。
 光源支持部52は、導光板30の光入射面30cに対向する面となる側面に、複数のLEDチップ50を、互いに所定間隔離間した状態で支持している。具体的には、光源28を構成する複数のLEDチップ50は、導光板30の光入射面30cの長手方向に沿って、アレイ状に配列され、光源支持部52上に固定されている。
 光源支持部52は、銅やアルミニウム等の熱伝導性の良い金属で形成されており、LEDチップ50から発生する熱を吸収し、外部に放散させるヒートシンクとしての機能も有する。なお、光源支持部52には、表面積を広くし、かつ、放熱効果を高くすることができるフィンを設けても、熱を放熱部材に伝熱するヒートパイプを設けてもよい。
The light source support portion 52 is a plate-like member that is disposed so that one surface thereof faces the light incident surface 30 c of the light guide plate 30.
The light source support portion 52 supports the plurality of LED chips 50 on a side surface that is a surface facing the light incident surface 30c of the light guide plate 30 in a state of being spaced apart from each other by a predetermined distance. Specifically, the plurality of LED chips 50 constituting the light source 28 are arranged in an array along the longitudinal direction of the light incident surface 30 c of the light guide plate 30 and are fixed on the light source support portion 52.
The light source support 52 is made of a metal having good thermal conductivity such as copper or aluminum, and also has a function as a heat sink that absorbs heat generated from the LED chip 50 and dissipates it to the outside. The light source support 52 may be provided with fins that can increase the surface area and increase the heat dissipation effect, or may be provided with a heat pipe that transfers heat to the heat dissipation member.
 ここで、図5(B)に示すように、本実施形態のLEDチップ50は、LEDチップ50の配列方向の長さよりも、配列方向に直交する方向の長さが短い長方形形状、つまり、後述する導光板30の厚み方向(光出射面30aに垂直な方向)が短辺となる長方形形状を有する。LEDチップ50を長方形形状とすることにより、大光量の出力を維持しつつ、薄型な光源とすることができる。光源28を薄型化することにより、バックライトユニットを薄型にすることができる。また、LEDチップの配置個数を少なくすることができる。 Here, as shown in FIG. 5B, the LED chip 50 of the present embodiment has a rectangular shape whose length in the direction orthogonal to the arrangement direction is shorter than the length of the LED chip 50 in the arrangement direction, that is, described later. The light guide plate 30 has a rectangular shape in which the thickness direction (the direction perpendicular to the light emitting surface 30a) is a short side. By making the LED chip 50 into a rectangular shape, a thin light source can be obtained while maintaining a large light output. By making the light source 28 thinner, the backlight unit can be made thinner. In addition, the number of LED chips can be reduced.
 なお、LEDチップ50は、光源28をより薄型にできるため、導光板30の厚み方向を短辺とする長方形形状とすることが好ましいが、本発明はこれに限定はされず、正方形形状、円形形状、多角形形状、楕円形形状等種々の形状のLEDチップを用いることができる。 In addition, since the LED chip 50 can make the light source 28 thinner, it is preferable that the LED chip 50 has a rectangular shape having a short side in the thickness direction of the light guide plate 30. However, the present invention is not limited to this, and the square shape and the circular shape are not limited thereto. LED chips having various shapes such as a shape, a polygonal shape, and an elliptical shape can be used.
 光源ユニット28の光源支持部52は、図5(C)に模式的に示すように、LEDチップ50が配列される面の板を貫通して、後述する下部筺体42の支持ピン64aおよび64bを挿通するための長孔70aおよび70b、ならびに、下部筺体42の支持ピン66を挿通するための貫通孔72が形成される。また、左右方向の両端部近傍には、後述する導光板30の支持部材84aおよび84bを支持するための、支持ピン74aおよび74bが固定される。
 これらについては、後に詳述する。
As schematically shown in FIG. 5C, the light source support portion 52 of the light source unit 28 penetrates the plate on the surface on which the LED chips 50 are arranged, and supports support pins 64a and 64b of the lower casing 42 described later. Long holes 70a and 70b for insertion and through holes 72 for insertion of the support pins 66 of the lower housing 42 are formed. Also, support pins 74a and 74b for supporting support members 84a and 84b of the light guide plate 30 described later are fixed near both ends in the left-right direction.
These will be described in detail later.
 図2(B)および(C)に示すように、導光板30の前面(光射出面30aの前)には、拡散シート32が配置される。
 拡散シート32は、導光板30から出射された出射光を拡散して、輝度ムラを低減するとともに、出射光の出射角度を正面方向(光出射面30aに垂直な方向)に角度変換する。
 また、拡散シート32には、導光板30に固定される支持部材84a、84bおよび84cに設けられている支持ピン86a,86bおよび86cを挿通するための長孔90aおよび90b、貫通孔90cが形成される(図6(A)参照)。
As shown in FIGS. 2B and 2C, a diffusion sheet 32 is disposed on the front surface of the light guide plate 30 (in front of the light exit surface 30a).
The diffusion sheet 32 diffuses the emitted light emitted from the light guide plate 30 to reduce luminance unevenness, and converts the emission angle of the emitted light to the front direction (direction perpendicular to the light emitting surface 30a).
Further, the diffusion sheet 32 is formed with long holes 90a and 90b and through holes 90c for inserting support pins 86a, 86b and 86c provided in support members 84a, 84b and 84c fixed to the light guide plate 30. (See FIG. 6A).
 ここで、拡散シート32の厚さをhとすると、拡散シートの厚さhは、0.25mm<h≦1.0mmを満たすことが好ましい。
 拡散シートの厚さhが、0.25mm以下の場合は、バックライトユニット20を曲げたり平らにしたり変形させた場合に、弛みやシワ等が発生しやすくなったり、シワが戻らずに塑性変形したり、極端な場合は折れたりして、外観品質の低下をまねくという問題が発生するおそれがある。
 一方、拡散シートの厚さhが、1.0mmより厚い場合は、バックライトユニット20のフレキシブル性が低下してしまったり、導光板の厚みを超え、照明系の全体の厚みが増加することにより、筐体の強度を増す必要が生じ、照明系全体の重量が増加するという問題が発生するおそれがある。
 従って、拡散シートの厚さhを、0.25mm<h≦1.0mmとすることにより、バックライトユニット20のフレキシブル性を低下させることなく、かつ、バックライトユニット20を曲げたり平らにしたり変形させた場合に、弛みやシワ等が発生することを防止できる。
Here, when the thickness of the diffusion sheet 32 is h, the thickness h of the diffusion sheet preferably satisfies 0.25 mm <h ≦ 1.0 mm.
When the thickness h of the diffusion sheet is 0.25 mm or less, when the backlight unit 20 is bent, flattened or deformed, loosening and wrinkles are likely to occur, and the plastic deformation without wrinkles returning. Or, in extreme cases, it may be broken, resulting in a problem that the appearance quality is degraded.
On the other hand, if the thickness h of the diffusion sheet is thicker than 1.0 mm, the flexibility of the backlight unit 20 may be reduced, or the thickness of the light guide plate may be exceeded, resulting in an increase in the overall thickness of the illumination system. Therefore, it is necessary to increase the strength of the housing, which may cause a problem that the weight of the entire illumination system increases.
Therefore, by setting the thickness h of the diffusion sheet to 0.25 mm <h ≦ 1.0 mm, the backlight unit 20 can be bent, flattened or deformed without lowering the flexibility of the backlight unit 20. In this case, it is possible to prevent slack and wrinkles from occurring.
 また、拡散シート32の基材の材料としては、二軸延伸されたPET(ポリエチレンテレフタレート)樹脂を用いることが好ましい。拡散シート32の基材として二軸延伸されたPET樹脂を用いることにより、機械的強度と耐熱性を確保することが可能となる。また、寸法安定性,耐薬品性,光学特性などの性能が向上するため、曲げ剛性がアップし、比較的薄いフィルムでもシワがよりにくく、かつ、複屈折性を抑制できるため、拡散フィルムのベースとして適している点で好ましい。
 また、拡散シート32の基材として、二軸延伸されたPET樹脂を用いる際に、拡散シートの厚さhを0.25mm<h≦0.3mmとする場合には、単一基材のPET樹脂を用いることが好ましい。
 一方、拡散シート32の基材として、二軸延伸されたPET樹脂を用いる際に、拡散シートの厚さhを0.3mm<h≦1.0mmとする場合には、2枚あるいは3枚のPET樹脂からなる基材を貼合した複合基材を用いることが好ましい。
Moreover, as a material of the base material of the diffusion sheet 32, it is preferable to use biaxially stretched PET (polyethylene terephthalate) resin. By using a biaxially stretched PET resin as the base material of the diffusion sheet 32, it is possible to ensure mechanical strength and heat resistance. In addition, performance such as dimensional stability, chemical resistance, and optical characteristics is improved, so bending rigidity is increased, wrinkles are less likely to occur even with relatively thin films, and birefringence can be suppressed. It is preferable in that it is suitable.
When the biaxially stretched PET resin is used as the base material of the diffusion sheet 32, when the thickness h of the diffusion sheet is 0.25 mm <h ≦ 0.3 mm, a single base material PET It is preferable to use a resin.
On the other hand, when a biaxially stretched PET resin is used as the base material of the diffusion sheet 32, if the thickness h of the diffusion sheet is 0.3 mm <h ≦ 1.0 mm, two or three sheets are used. It is preferable to use a composite base material on which a base material made of PET resin is bonded.
 拡散シート32の基材として複合基材を用いた場合の一例を、図7(A)および(B)に示す。
 図7(A)に示す拡散シート32は、第1基材110と、第2基材112と、第3基材114とを接着層116を介して積層したものである。
An example when a composite base material is used as the base material of the diffusion sheet 32 is shown in FIGS.
A diffusion sheet 32 shown in FIG. 7A is obtained by laminating a first base material 110, a second base material 112, and a third base material 114 with an adhesive layer 116 interposed therebetween.
 第1基材110は、二軸延伸されたPET樹脂をベース120として、ベース120の、拡散シート32の表面となる側の面に光拡散層126が形成され、他方の面(第2基材112側の面)に易接着層122が形成されて、構成されている。 The first base 110 has a biaxially stretched PET resin as a base 120, a light diffusion layer 126 is formed on the surface of the base 120 on the side that becomes the surface of the diffusion sheet 32, and the other surface (second base). 112), an easy adhesion layer 122 is formed on the surface.
 光拡散層126は、光を拡散させるための層であり、光を散乱させるシリカ、酸化チタン、酸化亜鉛等の顔料もしくは樹脂やガラス、ジルコニア等のビーズ類をバインダとともに塗工したり、ベース120中に光を散乱させる前述の顔料、ビーズ類を混練することで形成される。 The light diffusion layer 126 is a layer for diffusing light, and is coated with pigments such as silica, titanium oxide, and zinc oxide, or beads such as resin, glass, and zirconia that scatter light together with a binder. It is formed by kneading the aforementioned pigments and beads that scatter light.
 易接着層122は、他の基材との接着性を向上させるためのものであり、易接着層122を設けることで、接着した基材同士の剥離が抑えられる。易接着層122としては、例えば、特開2009-199001号公報の段落[0016]~[0027]に記載のものを適用することができる。
 易接着層122は通常、バインダ、硬化剤、界面活性剤からなる塗布液をベース120の一方の面に塗布することにより形成される。易接着層122には、必要に応じて有機または無機の微粒子、ワックス等の滑り剤を添加してもよい。
 また、易接着層122に使用するバインダは、ベース120との密着性を改善できるものであれば特に限定されないが、易接着性の観点からポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、スチレンブタジエン樹脂の一つ以上を使用することが好ましい。また水溶性または水分散性のバインダが環境負荷の点で特に好ましい。
 また、易接着層122の屈折率を調整する目的で、易接着層122中に金属酸化物微粒子を添加してもよい。金属酸化物微粒子としては、酸化スズ、酸化ジルコニウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ニオブなどの高屈折率金属酸化物が好ましい。
 金属酸化物微粒子の粒子径は、1nm~50nmの範囲が好ましく、2nm~40nmの範囲が特に好ましい。易接着層122中の金属酸化物の添加量は、目的の屈折率を得るために、易接着層122中の割合が10~90質量部の範囲で添加することが好ましく、特に30~80質量部の範囲で添加することが好ましい。
 易接着層122の屈折率は、積層フィルムの反射による干渉色を低減する目的で、1.56~1.64の範囲が好ましい。屈折率が1.56より小さいか、1.64より大きいと干渉色の低減効果が小さくなる。
 易接着層122の形成方法は特に制限されるものではなく、公知である塗布方法を目的に応じて適宜選択することができる。例えば、スピンコーター、ロールコーター、バーコーター、カーテンコーター等が挙げられる。いずれの方法も、易接着層122を形成させる材料を含む溶液を所望とする面に塗布した後、これを乾燥させることで層を形成させる。ここで乾燥方法は特に制限されるものではなく、通常使用される方法を適宜選択することができる。
 易接着層122の厚さは0.01μm~2μmであることが好ましく、0.01μm~1μmであることがより好ましい。また、ベース120上に易接着層122を形成する前に、コロナ放電処理やグロー放電処理、大気圧プラズマ処理、UV-オゾン処理、火炎処理などを実施することで、ベース120と易接着層122との密着性を改善することができる。
 なお、拡散シート32に用いられる易接着層122は、透明性が高いことが好ましい。
The easy-adhesion layer 122 is for improving the adhesiveness with other base materials, and by providing the easy-adhesion layer 122, peeling of the adhered base materials can be suppressed. As the easy adhesion layer 122, for example, those described in paragraphs [0016] to [0027] of JP-A-2009-199001 can be applied.
The easy-adhesion layer 122 is usually formed by applying a coating liquid composed of a binder, a curing agent, and a surfactant to one surface of the base 120. A slipping agent such as organic or inorganic fine particles or wax may be added to the easy adhesion layer 122 as necessary.
The binder used for the easy-adhesion layer 122 is not particularly limited as long as it can improve the adhesion to the base 120. From the viewpoint of easy adhesion, one of a polyester resin, a polyurethane resin, an acrylic resin, and a styrene-butadiene resin is used. It is preferred to use more than one. A water-soluble or water-dispersible binder is particularly preferable from the viewpoint of environmental load.
Further, for the purpose of adjusting the refractive index of the easy adhesion layer 122, metal oxide fine particles may be added to the easy adhesion layer 122. As the metal oxide fine particles, high refractive index metal oxides such as tin oxide, zirconium oxide, zinc oxide, titanium oxide, cerium oxide and niobium oxide are preferable.
The particle diameter of the metal oxide fine particles is preferably in the range of 1 nm to 50 nm, particularly preferably in the range of 2 nm to 40 nm. The addition amount of the metal oxide in the easy-adhesion layer 122 is preferably added in the range of 10 to 90 parts by mass in the easy-adhesion layer 122 in order to obtain a desired refractive index, and particularly 30 to 80 parts by mass. It is preferable to add in the range of parts.
The refractive index of the easy-adhesion layer 122 is preferably in the range of 1.56 to 1.64 for the purpose of reducing the interference color due to the reflection of the laminated film. If the refractive index is smaller than 1.56 or larger than 1.64, the effect of reducing the interference color is reduced.
The formation method of the easy-adhesion layer 122 is not particularly limited, and a known coating method can be appropriately selected according to the purpose. For example, a spin coater, a roll coater, a bar coater, a curtain coater and the like can be mentioned. In any method, after a solution containing a material for forming the easy-adhesion layer 122 is applied to a desired surface, the layer is formed by drying the solution. Here, the drying method is not particularly limited, and a commonly used method can be appropriately selected.
The thickness of the easy adhesion layer 122 is preferably 0.01 μm to 2 μm, and more preferably 0.01 μm to 1 μm. In addition, before forming the easy adhesion layer 122 on the base 120, the base 120 and the easy adhesion layer 122 are subjected to corona discharge treatment, glow discharge treatment, atmospheric pressure plasma treatment, UV-ozone treatment, flame treatment, and the like. Adhesion with can be improved.
In addition, it is preferable that the easily bonding layer 122 used for the diffusion sheet 32 has high transparency.
 第2基材112は、二軸延伸されたPET樹脂をベース120として、ベース120の両面に易接着層122が形成されて、構成されている。 The second base material 112 has a biaxially-stretched PET resin as a base 120, and an easy adhesion layer 122 is formed on both surfaces of the base 120.
 第3基材114は、二軸延伸されたPET樹脂をベース120として、ベース120の、拡散シート32の表面となる側の面にハードコート層124が形成され、他方の面(第2基材112側の面)に易接着層122が形成されて、構成されている。 The third base material 114 has a biaxially stretched PET resin as a base 120, a hard coat layer 124 is formed on the surface of the base 120 on the side that becomes the surface of the diffusion sheet 32, and the other surface (second base material). 112), an easy adhesion layer 122 is formed on the surface.
 ハードコート層124は、拡散シート32の表面に傷がつくことを防止するためのものであり、耐傷性向上のために設けられる層である。ハードコート層124の厚さは1μm~20μmであることが好ましく、1μm~10μmであることがより好ましい。
 ハードコート層124の材質としては、紫外線、電子線などを照射して硬化可能な多官能のアクリルモノマー、オリゴマーを含む素材、アルコキシシランの加水分解とそこで生じるシラノールの脱水縮合を利用した湿気熱硬化型のシリカ系ハードコートが含まれる。なお、拡散シート32に用いられるハードコート層124は、透明性が高いことが好ましい。
The hard coat layer 124 is for preventing the surface of the diffusion sheet 32 from being scratched, and is a layer provided for improving scratch resistance. The thickness of the hard coat layer 124 is preferably 1 μm to 20 μm, and more preferably 1 μm to 10 μm.
As the material of the hard coat layer 124, moisture-heat curing using polyfunctional acrylic monomer and oligomer-containing material that can be cured by irradiation with ultraviolet rays, electron beams, etc., hydrolysis of alkoxysilane and dehydration condensation of silanol generated there. A type of silica-based hardcoat is included. The hard coat layer 124 used for the diffusion sheet 32 is preferably highly transparent.
 接着層116は、各基材同士を接着するためのものである。接着層116としては、アクリル系、ウレタン系、エポキシ系、シリコーン系等、特に制限はなく、通常、接着に使用される物質を目的に応じて適宜選択して使用することができる。具体的には、ラミネート系の市販品としては例えば、東洋インキ社製のLIS805のウレタン系主剤に対し、LCR-901のイソシアネート系の硬化剤を添加して使用できる2液系のドライラミネート材料があげられる。さらに、ラミネートとして、押し出し方式や、ホットメルト方式に適した材料も適宜利用できる。
 また、接着層116の屈折率は、1.5~1.67であることが好ましい。
 接着層116の厚さは、光透過性を損なわず且つ確実に接着させる観点から、1μm~50μmであることが好ましく、1μm~15μmであることがより好ましい。
The adhesive layer 116 is for bonding the substrates together. There are no particular limitations on the adhesive layer 116, such as acrylic, urethane, epoxy, and silicone, and materials that are usually used for adhesion can be appropriately selected and used according to the purpose. Specifically, as a laminate-based commercial product, for example, there is a two-component dry laminate material that can be used by adding an LCR-901 isocyanate-based curing agent to LIS805 urethane-based main ingredient manufactured by Toyo Ink. can give. Furthermore, as the laminate, materials suitable for the extrusion method and the hot melt method can be used as appropriate.
The refractive index of the adhesive layer 116 is preferably 1.5 to 1.67.
The thickness of the adhesive layer 116 is preferably 1 μm to 50 μm, and more preferably 1 μm to 15 μm, from the viewpoint of securely bonding without impairing light transmittance.
 ここで、第1基材110、第2基材112、および、第3基材114は、それぞれ厚さが150~300μmの範囲にあることが好ましい。このように、拡散シートの厚さhを0.3mm<h≦1.0mmとする場合に、厚さが150~300μmの基材を複数枚、貼合して形成することにより、機械的強度が増し、シワや捩れなどが発生しにくくなる点で好ましい。 Here, the first substrate 110, the second substrate 112, and the third substrate 114 preferably each have a thickness in the range of 150 to 300 μm. Thus, when the thickness h of the diffusion sheet is 0.3 mm <h ≦ 1.0 mm, the mechanical strength is obtained by bonding and forming a plurality of substrates having a thickness of 150 to 300 μm. Is preferable in that wrinkles and twists are less likely to occur.
 なお、図7(A)に示す例では、光拡散層126が、拡散シート32の表面に形成される構成としたが、これに限定はされず、光拡散層126が拡散シート32の内部に形成される構成としてもよい。
 例えば、図7(B)に示す拡散シートのように、光拡散層126を有する第1基材110を、2つの第3基材114で挟むように積層して構成してもよい。
In the example shown in FIG. 7A, the light diffusion layer 126 is formed on the surface of the diffusion sheet 32. However, the present invention is not limited to this, and the light diffusion layer 126 is formed inside the diffusion sheet 32. It is good also as a structure formed.
For example, as in the diffusion sheet shown in FIG. 7B, the first base material 110 having the light diffusion layer 126 may be stacked and sandwiched between the two third base materials 114.
 また、図示例においては、拡散シートの表面側となる面に光拡散層126あるいはハードコート層124を形成する構成としたが、これに限定はされず、拡散シートの表面側となる面に易接着層122を形成する構成としてもよい。例えば、第1基材110、第2基材112、第2基材112の順に積層して構成してもよく、あるいは、第2基材112、第1基材110、第2基材122の順に積層して構成してもよい。 In the illustrated example, the light diffusion layer 126 or the hard coat layer 124 is formed on the surface on the surface side of the diffusion sheet. However, the present invention is not limited to this, and the surface on the surface side of the diffusion sheet is easily formed. The adhesive layer 122 may be formed. For example, the first base material 110, the second base material 112, and the second base material 112 may be stacked in this order, or the second base material 112, the first base material 110, and the second base material 122 may be stacked. You may laminate | stack in order.
 また、拡散シート32の基材としては、アクリル(PMMA)樹脂、ポリスチレン樹脂、MS樹脂(スチレン-PMMA共重合体樹脂)、および、ポリカーボネートのいずれかを材料として、押出、あるいは、キャスト重合により成型した基材を用いることも好ましい。上記樹脂を、押出あるいはキャスト重合により成型した基材を用いることにより、大サイズにおいても平滑性や表面性を良好にし、光学特性を均一にできる点で好ましい。 Further, as the base material of the diffusion sheet 32, one of acrylic (PMMA) resin, polystyrene resin, MS resin (styrene-PMMA copolymer resin), and polycarbonate is used as a material and is molded by extrusion or cast polymerization. It is also preferable to use a base material that has been prepared. Use of a base material obtained by molding the above resin by extrusion or cast polymerization is preferable in that smoothness and surface properties can be improved even in a large size, and optical characteristics can be made uniform.
 なお、図示例のバックライトユニット20では、拡散シート32を1枚配置する構成としたが、本発明は、これに限定はされず、複数の拡散シートを配置する構成としてもよく、あるいは、拡散シート32に加えて、プリズムシート等の、バックライトユニットに用いられている各種の光学シートを配置する構成としてもよい。 In the illustrated backlight unit 20, one diffusion sheet 32 is arranged. However, the present invention is not limited to this, and a plurality of diffusion sheets may be arranged. In addition to the sheet 32, various optical sheets used in the backlight unit, such as a prism sheet, may be arranged.
 図示例のバックライトユニット20においては、光源ユニット28が下部筺体42に係止され、この光源ユニット28に導光板30が係止され、この導光板30に、拡散シート32が係止された状態で、保持される。
 以下、図2および図3、図6(A)を参照して、その構成について説明する。
In the illustrated backlight unit 20, the light source unit 28 is locked to the lower housing 42, the light guide plate 30 is locked to the light source unit 28, and the diffusion sheet 32 is locked to the light guide plate 30. And held.
The configuration will be described below with reference to FIGS. 2, 3, and 6 (A).
 下部筺体42の背面30b側内壁面において、上方の左右(LR)方向の中心部には、支持ピン66が立設している。また、支持ピン66と上下(UD)方向の同位置には、支持ピン66から左右方向の一方に所定距離離間して支持ピン64aが、他方向に同距離離間して支持ピン64bが、それぞれ立設される。
 また、光源ユニット28の光源支持部52においては、前述のように、LEDチップ50が固定される光源支持部52に、導光板30の厚さ方向に貫通して、左右方向の中心部に貫通孔72が形成され、さらに、貫通孔72から左右方向の一方に所定距離離間して、左右方向に延在して貫通する長孔70aが、他方向に同距離離間して同様の長孔70bが、それぞれ形成される。この長孔70aおよび70bは、共に、貫通孔72の中心から左右方向の中心までの距離が、支持ピン66と支持ピン64aおよび支持ピン64bとの距離と等しくなるように形成される。
On the inner wall surface on the back surface 30b side of the lower housing 42, a support pin 66 is erected at the center in the upper left and right (LR) direction. Further, at the same position in the vertical (UD) direction with respect to the support pin 66, the support pin 64a is spaced a predetermined distance from the support pin 66 in one of the left and right directions, and the support pin 64b is spaced the same distance in the other direction. Established.
Moreover, in the light source support part 52 of the light source unit 28, as described above, the light source support part 52 to which the LED chip 50 is fixed penetrates in the thickness direction of the light guide plate 30 and penetrates in the center part in the left-right direction. A hole 72a is formed, and a long hole 70a that extends from the through hole 72 in one direction in the left-right direction and extends in the left-right direction and penetrates the same is separated in the other direction by the same distance. Are formed respectively. Both the long holes 70a and 70b are formed so that the distance from the center of the through hole 72 to the center in the left-right direction is equal to the distance between the support pin 66 and the support pins 64a and 64b.
 図示例のバックライトユニット20においては、下部筐体42の支持ピン66を光源ユニット28の貫通孔72に、下部筐体42の支持ピン64aを光源ユニット28aの長孔70aに、下部筐体70の支持ピン64bを光源ユニット28aの長孔70bに、それぞれ挿通することによって、下部筐体42が光源ユニット28を所定位置に支持する。 In the illustrated backlight unit 20, the support pin 66 of the lower housing 42 is in the through hole 72 of the light source unit 28, the support pin 64 a of the lower housing 42 is in the long hole 70 a of the light source unit 28 a, and the lower housing 70. The lower housing 42 supports the light source unit 28 at a predetermined position by inserting the support pins 64b into the long holes 70b of the light source unit 28a.
 また、光源ユニット28の光源支持部52において、LEDチップ50が配列される板部の前面側の端面には、左右方向の一方の端部近傍に支持ピン74aが立設し、他方の端部近傍の上下方向の同位置に支持ピン74bが立設している。さらに、支持ピン74a等と上下方向の同位置で、かつ、左右方向の中心には、支持ピン74cが立設されている。
 他方、前述のように、導光板30の光出射面30aの光入射面側の両隅には、保持部材84a、84bが固定される。また、左右方向の中央には、保持部材84cが固定される。
 導光板30の光入射面側の左右方向端部に固定される保持部材84aおよび84bには、それぞれ、上下方向の同位置に、左右方向に延在する貫通孔である長孔88aおよび88bが形成される。この長孔88aおよび88bは、共に、導光板30の左右方向の中心から、自身(長孔)の左右方向の中心までの距離が、前記光源支持部52に形成される貫通孔72と、支持ピン74aおよび支持ピン74bとの距離と等しくなるように形成される。
 また、上側の中央に固定される保持部材84cには、前記長孔88a等と上下方向の同位置で、かつ、導光板30の左右方向の中心に、貫通孔88cが形成される。
Further, in the light source support portion 52 of the light source unit 28, a support pin 74a is erected in the vicinity of one end portion in the left-right direction on the front end surface of the plate portion on which the LED chips 50 are arranged, and the other end portion. Support pins 74b are erected at the same vertical position in the vicinity. Further, a support pin 74c is erected at the same position in the vertical direction as the support pin 74a and the like, and at the center in the horizontal direction.
On the other hand, as described above, the holding members 84a and 84b are fixed to both corners of the light emitting surface 30a of the light guide plate 30 on the light incident surface side. A holding member 84c is fixed at the center in the left-right direction.
In the holding members 84a and 84b fixed to the left and right end portions on the light incident surface side of the light guide plate 30, elongated holes 88a and 88b, which are through holes extending in the left and right direction, are provided at the same position in the vertical direction, respectively. It is formed. Both the long holes 88a and 88b have a distance from the center in the left-right direction of the light guide plate 30 to the center in the left-right direction of itself (the long hole) and the through-hole 72 formed in the light source support portion 52. It is formed to be equal to the distance between the pin 74a and the support pin 74b.
The holding member 84c fixed to the upper center is formed with a through hole 88c at the same position in the vertical direction as the elongated hole 88a and the like, and at the center in the horizontal direction of the light guide plate 30.
 図示例のバックライトユニット20においては、光源ユニット28の光源支持部52の支持ピン74cを貫通孔88cに、光源ユニット28の支持ピン74aを保持部材84aの長孔88aに、光源ユニット28の支持ピン74bを保持部材84bの長孔88bに、それぞれ挿通する。
 これにより、導光板30の光入射面30cと、光源ユニット28のLEDチップ50列とを対面して、導光板30が、光源ユニット28(その光源支持部52)によって支持される。ここで、各支持ピンおよび対応する保持部材の上下方向の位置は、光源ユニット28(LEDチップ50の光出射面)と光入射面30cとの距離が適正になるように設定されているのは、言うまでもない。
In the illustrated backlight unit 20, the support pin 74c of the light source support portion 52 of the light source unit 28 is supported in the through hole 88c, the support pin 74a of the light source unit 28 is supported in the elongated hole 88a of the holding member 84a, and the light source unit 28 is supported. The pins 74b are inserted through the long holes 88b of the holding member 84b.
Accordingly, the light incident surface 30c of the light guide plate 30 and the LED chip 50 row of the light source unit 28 face each other, and the light guide plate 30 is supported by the light source unit 28 (its light source support portion 52). Here, the vertical positions of the support pins and the corresponding holding members are set so that the distance between the light source unit 28 (light emitting surface of the LED chip 50) and the light incident surface 30c is appropriate. Needless to say.
 導光板30に固定される保持部材84aには支持ピン86aが、保持部材84bには支持ピン86bが、左右方向中央の保持部材84cには支持ピン86cが、それぞれ、立設される。
 また、図6に示されるように、拡散シート32の上端部には、左右方向の一方の端部に補強部材92aが、他方の端部に補強部材92bが、それぞれ固定され、さらに、左右方向の中央には、補強部材92cが固定される。
 この補強部材92aおよび92bには、上下方向の同位置に、左右方向に延在する貫通孔(拡散シート32も貫通)である長孔90aおよび90bが形成される。この長孔90aおよび90bは、共に、導光板30の左右方向の中心から、自身(長孔)の左右方向の中心までの距離が、前記導光板30の保持部材84cの支持ピン86cと、保持部材84aの支持ピン86aおよび保持部材84bの支持ピン86bとの距離と等しくなるように形成される。さらに、左右方向の中央の補強部材92cには、支持ピン86a等と上下方向の同位置で、かつ、左右方向の中心に、貫通孔90c(同前)が形成される。
A support pin 86a is erected on the holding member 84a fixed to the light guide plate 30, a support pin 86b is erected on the holding member 84b, and a support pin 86c is erected on the holding member 84c at the center in the left-right direction.
Further, as shown in FIG. 6, a reinforcing member 92a and a reinforcing member 92b are fixed to one end in the left-right direction and the other end in the upper end of the diffusion sheet 32, respectively. A reinforcing member 92c is fixed at the center of the.
In the reinforcing members 92a and 92b, elongated holes 90a and 90b, which are through-holes extending in the left-right direction (also through the diffusion sheet 32), are formed at the same position in the up-down direction. Both of the long holes 90a and 90b have a distance from the center in the left-right direction of the light guide plate 30 to the center in the left-right direction of the light guide plate 30 and the support pin 86c of the holding member 84c of the light guide plate 30. It is formed to be equal to the distance between the support pin 86a of the member 84a and the support pin 86b of the holding member 84b. Further, a through hole 90c (same as above) is formed in the central reinforcing member 92c in the left-right direction at the same position in the vertical direction as the support pin 86a and the like, and in the center in the left-right direction.
 図示例のバックライトユニット20においては、導光板30に固定される保持部材84cの支持ピン86cを補強部材92cの貫通孔90cに、同保持部材84aの支持ピン86aを補強部材92aの貫通孔90aに、保持部材84bの支持ピン86bを補強部材92bの貫通孔90bに、それぞれ挿通する。
 これにより、拡散シート32が、導光板30によって支持される。
In the illustrated backlight unit 20, the support pin 86c of the holding member 84c fixed to the light guide plate 30 is inserted into the through hole 90c of the reinforcing member 92c, and the support pin 86a of the holding member 84a is connected to the through hole 90a of the reinforcing member 92a. Then, the support pins 86b of the holding member 84b are inserted through the through holes 90b of the reinforcing member 92b.
Thereby, the diffusion sheet 32 is supported by the light guide plate 30.
 以上の説明より明らかなように、バックライトユニット20においては、光源ユニット28が下部筺体42に支持され、この光源ユニット28に導光板30が支持され、この導光板30に、拡散シート32が支持されることにより、各構成要素が、下部筺体42内の所定位置に設置される。 As is clear from the above description, in the backlight unit 20, the light source unit 28 is supported by the lower housing 42, the light guide plate 30 is supported by the light source unit 28, and the diffusion sheet 32 is supported by the light guide plate 30. Thus, each component is installed at a predetermined position in the lower housing 42.
 フレキシブルなバックライトユニットを構成する際に、導光板と拡散シートと筐体とを、光入射面(光源ユニット)側と、その対向する面側との両端部側で固定した場合には、バックライトユニット20を湾曲させたり、平らにしたりして変形させた際に、各部材が互いに、他の部材の移動を規制してしまうので、導光板や拡散シートが損傷したり、フレキシブル性が低下したりするおそれがある。
 これに対して、バックライトユニット20の光源ユニット28と導光板30と拡散フィルム32と筐体26とを、光源ユニット28側でそれぞれ係止し、他端側を自由にする構成とすることにより、フレキシブルなバックライトユニット20として、バックライトユニット20を湾曲させたり、平らにしたりして変形させた場合であっても、固定端部側とは反対側の端部が、自由に移動可能なので、各部材が互いに、他の部材の移動を規制することがなく、導光板30や拡散シート32が損傷することや、バックライトユニット20のフレキシブル性が低下することや、拡散フィルムにシワや捩れが発生することを防止することができる。
When a flexible backlight unit is configured, if the light guide plate, diffusion sheet, and housing are fixed on both ends of the light incident surface (light source unit) side and the opposite surface side, the backlight When the light unit 20 is bent or flattened and deformed, each member regulates the movement of other members, so that the light guide plate and the diffusion sheet are damaged or the flexibility is lowered. There is a risk of doing so.
On the other hand, the light source unit 28, the light guide plate 30, the diffusion film 32, and the housing 26 of the backlight unit 20 are respectively locked on the light source unit 28 side, and the other end side is made free. Even when the backlight unit 20 is deformed by bending or flattening it as the flexible backlight unit 20, the end opposite to the fixed end can be freely moved. Each member does not restrict the movement of other members, the light guide plate 30 and the diffusion sheet 32 are damaged, the flexibility of the backlight unit 20 is reduced, and the diffusion film is wrinkled or twisted. Can be prevented.
 また、バックライトユニット20においては、光源ユニット28の熱や、設置環境に起因する吸湿等によって、導光板30および拡散シート32が伸縮する。
 熱や吸湿の影響による、拡散シートおよび導光板の伸縮量は異なるため、両端部で固定されている場合には、拡散シートおよび導光板の伸縮が、互いに影響を与えてしまい、拡散シートや導光板が損傷したり、フレキシブル性が低下するおそれがある。
In the backlight unit 20, the light guide plate 30 and the diffusion sheet 32 expand and contract due to heat of the light source unit 28, moisture absorption due to the installation environment, and the like.
Since the expansion and contraction amounts of the diffusion sheet and the light guide plate are different due to the influence of heat and moisture absorption, the expansion and contraction of the diffusion sheet and the light guide plate affect each other when they are fixed at both ends. There is a possibility that the light plate is damaged or the flexibility is lowered.
 これに対し、本発明のバックライトユニット20は、バックライトユニット20の光源ユニット28と導光板30と拡散シート32と筐体26とを、光源ユニット28側でそれぞれ係止し、他端側を自由にする構成とすることにより、一方の端部が自由に移動可能に構成されるので、導光板30および拡散シート32が伸縮しても互いに影響を与えることがなく、拡散シートや導光板の損傷や、フレキシブル性の低下を防止することができる。 In contrast, the backlight unit 20 of the present invention locks the light source unit 28, the light guide plate 30, the diffusion sheet 32, and the housing 26 of the backlight unit 20 on the light source unit 28 side, and the other end side. By adopting a free configuration, one end portion is configured to be freely movable, so that the light guide plate 30 and the diffusion sheet 32 do not affect each other even if the light guide plate 30 and the diffusion sheet 32 expand or contract. Damage and a decrease in flexibility can be prevented.
 また、図示例においては、好ましい態様として、導光板30を光源ユニット28に係止する構成としている。このような構成とすることにより、バックライトユニット20を湾曲させたり、平らにしたりして変形させた場合や、導光板30が伸縮した場合であっても、導光板30の光入射面30cと、LEDチップ50の発光面50aの距離を一定に保つことができ、光の入射効率を保つことができる。 In the illustrated example, as a preferred mode, the light guide plate 30 is locked to the light source unit 28. With such a configuration, even when the backlight unit 20 is bent or flattened and deformed, or when the light guide plate 30 is expanded and contracted, the light incident surface 30c of the light guide plate 30 The distance of the light emitting surface 50a of the LED chip 50 can be kept constant, and the light incident efficiency can be kept.
 また、図示例においては、筐体26と光源ユニット28、光源ユニット28と導光板30、および、導光板30と拡散シート32を、それぞれピンと貫通孔(長穴)とを形成して係止する構成としたが、これに限定はされず、それぞれ公知の手段で固定してもよい。 In the illustrated example, the housing 26 and the light source unit 28, the light source unit 28 and the light guide plate 30, and the light guide plate 30 and the diffusion sheet 32 are respectively locked by forming pins and through holes (long holes). Although it was set as the structure, it is not limited to this, You may fix by a well-known means, respectively.
 また、図示例のバックライトユニット20においては、好ましい態様として、導光板30と拡散シート32との係合を左右方向に延在する長孔と支持ピンとで行なっている。これにより、上下方向のみならず、左右方向の導光板30や拡散シート32の伸縮も吸収することができ、左右方向の伸縮に起因する導光板30や拡散シート32の歪みや反りも、好適に防止できる。
 なお、この点に関しては、筺体26と光源ユニット28、および、光源ユニット28と導光板30との関係においても、同様である。
Moreover, in the backlight unit 20 of the example of illustration, as a preferable aspect, engagement with the light-guide plate 30 and the diffusion sheet 32 is performed with the long hole and support pin which are extended in the left-right direction. Thereby, not only the vertical direction but also the expansion and contraction of the light guide plate 30 and the diffusion sheet 32 in the left and right direction can be absorbed, and the distortion and warpage of the light guide plate 30 and the diffusion sheet 32 due to the expansion and contraction in the left and right direction are also suitable. Can be prevented.
In this regard, the same applies to the relationship between the housing 26 and the light source unit 28 and between the light source unit 28 and the light guide plate 30.
 ここで、図示例においては、好ましい態様として、導光板30の左右方向の中心に支持ピン86cを立設し、さらに、拡散シート32の左右方向の中心に、この支持ピン86cとほぼ同サイズ(挿通可能にする分のみ大きい)の貫通孔90cを形成して、支持ピン86cを貫通孔90cに挿通させている。
 このように、左右方向の中心部を、左右方向に固定することにより、左右方向の伸縮を両側に分散することができ、伸縮に起因する端部の移動を、半分にすることができる。加えて、このような支持ピン86cと貫通孔90cとを有することにより、此処を基準位置として、拡散シート32の位置決めを行なうことができる。
 この点に関しては、筺体26と光源ユニット28、および、光源ユニット28と導光板30との関係においても、同様である。
Here, in the illustrated example, as a preferred embodiment, a support pin 86c is erected at the center of the light guide plate 30 in the left-right direction, and further, at the center of the diffusion sheet 32 in the left-right direction, the support pin 86c is approximately the same size ( A through hole 90c that is large enough to allow insertion is formed, and the support pin 86c is inserted through the through hole 90c.
In this way, by fixing the center portion in the left-right direction in the left-right direction, the left-right expansion / contraction can be distributed to both sides, and the movement of the end due to the expansion / contraction can be halved. In addition, since the support pin 86c and the through hole 90c are provided, the diffusion sheet 32 can be positioned using this as a reference position.
This also applies to the relationship between the housing 26 and the light source unit 28 and between the light source unit 28 and the light guide plate 30.
 なお、図示例においては、導光板30の保持部材に支持ピンを立設し、拡散シート32に貫通孔を形成することで、導光板30と拡散シート32とを係止したが、本発明は、これに限定はされず、逆に、拡散シート32にピンを立設し、導光板の保持部材(導光板自身でも可)に貫通孔を形成してもよい。また、保持部材を設けずに、導光板30に、直接、支持ピンを立設してもよい。
 この点に関しても、筺体26と光源ユニット28、および、光源ユニット28と導光板30との関係においても、同様である。
In the illustrated example, a support pin is erected on the holding member of the light guide plate 30 and the light guide plate 30 and the diffusion sheet 32 are locked by forming a through hole in the diffusion sheet 32. However, the present invention is not limited to this, and conversely, a pin may be erected on the diffusion sheet 32 and a through hole may be formed in the light guide plate holding member (or the light guide plate itself). In addition, the support pins may be erected directly on the light guide plate 30 without providing the holding member.
This also applies to the relationship between the housing 26 and the light source unit 28, and the relationship between the light source unit 28 and the light guide plate 30.
 液晶表示装置10は、基本的に、このような構成を有する。
 バックライトユニット20において、導光板30の光入射面30cに対面して配置された光源ユニット28から出射された光が、導光板30の光入射面30cに入射する。光入射面30cから入射した光は、導光板30の内部に含まれる散乱体によって散乱されつつ、導光板30内部を通過し、直接、または背面30bで反射された後、光出射面30aから出射する。
 このようにして、導光板30の光出射面30aから出射された光は、拡散シート32を透過し、光出射口24から出射され、液晶表示パネル12を照明する。
 液晶表示パネル12は、駆動ユニット14により、位置に応じて光の透過率を制御することで、液晶表示パネル12の表面上に文字、図形、画像などを表示する。
The liquid crystal display device 10 basically has such a configuration.
In the backlight unit 20, the light emitted from the light source unit 28 disposed facing the light incident surface 30 c of the light guide plate 30 enters the light incident surface 30 c of the light guide plate 30. The light incident from the light incident surface 30c passes through the light guide plate 30 while being scattered by the scatterers included in the light guide plate 30, and is emitted directly or after being reflected by the back surface 30b. To do.
Thus, the light emitted from the light emitting surface 30 a of the light guide plate 30 passes through the diffusion sheet 32 and is emitted from the light emitting port 24 to illuminate the liquid crystal display panel 12.
The liquid crystal display panel 12 displays characters, figures, images, and the like on the surface of the liquid crystal display panel 12 by controlling the light transmittance according to the position by the drive unit 14.
 ここで、前述のとおり、本発明のバックライトユニット20は、フレキシブルに形成されており、湾曲させたり、平らにしたりして変形させることができる。 Here, as described above, the backlight unit 20 of the present invention is formed flexibly, and can be deformed by being bent or flattened.
 図8に、バックライトユニット20を湾曲させた状態の概略図を示す。なお、図8においては、導光板30、拡散シート32、光源ユニット28、および、筐体26以外の部材(各部材を互いに係止するための部材(支持ピン、保持部材、補強部材))等の図示は省略している。
 図8に示すバックライトユニット20は、導光板30の光入射面30cに垂直な方向において、曲率半径R[mm]で湾曲されている。
 ここで、曲率半径R[mm]で湾曲させた際の、拡散シート32の曲げ応力をP[N/mm]とし、拡散シート32の、光入射面30cに垂直な方向の長さをa[mm]、光入射面30cの長手方向の幅をb[mm]、厚さをh[mm]とし、拡散シート32の材料のヤング率をE[N/mm]、ポアソン比をνとすると、曲げた際の筐体全体の撓みωは、ω=R(1-cos(a/2R))で表され、拡散シート32の曲げ応力Pは、P=(ω・E・h・b)/(α・a)で表される。
 ここで、αは、拡散シート32の寸法(厚さh、長さa、幅b)により求められる係数である。係数αと拡散シートの寸法との関係を図9に示す。
FIG. 8 shows a schematic diagram of a state in which the backlight unit 20 is curved. In FIG. 8, members other than the light guide plate 30, the diffusion sheet 32, the light source unit 28, and the casing 26 (members for locking the members to each other (support pins, holding members, reinforcing members)) and the like Is not shown.
The backlight unit 20 shown in FIG. 8 is curved with a radius of curvature R [mm] in a direction perpendicular to the light incident surface 30 c of the light guide plate 30.
Here, the bending stress of the diffusion sheet 32 when curved with a radius of curvature R [mm] is P [N / mm], and the length of the diffusion sheet 32 in the direction perpendicular to the light incident surface 30c is a [ mm], the longitudinal width of the light incident surface 30c is b [mm], the thickness is h [mm], the Young's modulus of the material of the diffusion sheet 32 is E [N / mm], and the Poisson's ratio is ν, The bending ω of the entire housing when bent is expressed by ω = R (1-cos (a / 2R)), and the bending stress P of the diffusion sheet 32 is P = (ω · E · h 2 · b) / (Α · a 4 ).
Here, α is a coefficient obtained from the dimensions (thickness h, length a, width b) of the diffusion sheet 32. FIG. 9 shows the relationship between the coefficient α and the dimension of the diffusion sheet.
 バックライトユニット20を湾曲させた後に、平らに戻した場合に、拡散シート32に撓みやシワが発生しないように、平らな状態に戻るためには、戻ろうとする力が、筐体26との間の摩擦力よりも大きくなる必要があり、また、摩擦力によってフィルムにかかる力がフィルムに撓みが発生する力よりも小さくなる必要がある。従って、筐体26(上部筺体44)と拡散シート32との最大静止摩擦係数をμとすると、拡散シート32の曲げ応力Pが、P>μ/tan(a/R)を満たす必要がある。 In order to return to the flat state so that the diffusion sheet 32 does not bend or wrinkle when the backlight unit 20 is returned to the flat state after being bent, the force to return to the casing 26 is required to return to the flat state. It is necessary to be larger than the friction force between them, and the force applied to the film by the friction force needs to be smaller than the force causing the film to bend. Accordingly, when the maximum static friction coefficient between the casing 26 (upper housing 44) and the diffusion sheet 32 is μ 0 , the bending stress P of the diffusion sheet 32 needs to satisfy P> μ 0 / tan (a / R). is there.
 また、曲げ量が大きい場合、すなわち、曲率半径Rが小さいと、曲げた際の応力が大きくなるため、撓みが発生してしまう。そのため、拡散シート32の曲げ応力Pが、P≦Pmaxを満たす必要がある。ここで、Pmaxは拡散シートに撓みが発生する応力であり、Pmax=E・π/(6(1-ν))・(h/a)で表される。 Further, when the amount of bending is large, that is, when the radius of curvature R is small, the stress at the time of bending increases, so that bending occurs. Therefore, the bending stress P of the diffusion sheet 32 needs to satisfy P ≦ P max . Here, P max is a stress that causes the diffusion sheet to bend, and is expressed by P max = E · π 2 / (6 (1-ν) 2 ) · (h / a) 2 .
 ここで、図10(A)および(B)に曲率半径Rと、曲げ応力Pとの関係を示す。
 図10(A)は、拡散シート32の厚さhが、0.3[mm]、長さaが、500[mm]、幅bが、700[mm]の場合であり、Pmaxは、約0.08[N/mm]である。
 図10(B)は、拡散シート32の厚さhが、0.5[mm]、長さaが、500[mm]、幅bが、500[mm]の場合であり、Pmaxは、約0.26[N/mm]である。
 図10(A)、および(B)に示されるように、曲率半径Rが小さいほど、曲げた際の応力が大きくなるため、撓みが発生してしまう。
Here, FIGS. 10A and 10B show the relationship between the radius of curvature R and the bending stress P. FIG.
FIG. 10A shows the case where the thickness h of the diffusion sheet 32 is 0.3 [mm], the length a is 500 [mm], the width b is 700 [mm], and P max is It is about 0.08 [N / mm 2 ].
FIG. 10B shows the case where the thickness h of the diffusion sheet 32 is 0.5 [mm], the length a is 500 [mm], the width b is 500 [mm], and P max is It is about 0.26 [N / mm 2 ].
As shown in FIGS. 10A and 10B, the smaller the radius of curvature R, the greater the stress at the time of bending, so that bending occurs.
 前述のとおり、バックライトユニットを湾曲させた後に、平らに戻した場合には、図11(B)のように、拡散シートが、筺体の光出射口の端部近傍で、座屈現象を起こし、弛みやシワが生じて、バックライトユニットの出射光が、不均一な輝度分布となってしまうおそれがある。 As described above, when the backlight unit is bent and then returned to the flat state, the diffusion sheet causes a buckling phenomenon in the vicinity of the end of the light emission port of the housing as shown in FIG. As a result, slack and wrinkles may occur, and the light emitted from the backlight unit may have a non-uniform luminance distribution.
 これに対して、曲げ応力Pが、P>μ/tan(a/R)、かつ、P≦Pmaxを満たすように、最大静止摩擦係数μ、拡散シート32の厚さh、長さa、幅b、拡散シート32の材料のヤング率E、および、ポアソン比νを設定することにより、バックライトユニットを湾曲させた後に、平らに戻した場合であっても、座屈現象を防止することができ、弛みやシワが生じないので、バックライトユニットの出射光が、不均一な輝度分布となったり、光の利用効率が低下してしまうことを防止することができる。 On the other hand, the maximum static friction coefficient μ 0 , the thickness h and the length of the diffusion sheet 32 so that the bending stress P satisfies P> μ 0 / tan (a / R) and P ≦ P max. By setting a, width b, the Young's modulus E of the material of the diffusion sheet 32, and the Poisson's ratio ν, the buckling phenomenon is prevented even when the backlight unit is bent and then flattened. Since no slack or wrinkle occurs, it is possible to prevent the light emitted from the backlight unit from having a non-uniform luminance distribution or reducing the light utilization efficiency.
 ここで、拡散シート32の厚さhと長さaと幅bと、曲率半径Rとは、0.25<h≦1.0、かつ、300<R<10000、かつ、1.0≦b/a<3.0を満たすことが好ましい。
 拡散シート32の厚さhと長さaと幅bと、曲率半径Rとが、上記範囲を満たすことで、照明として想定される面のアスペクト比(aとbとの比)において、フレキシブルバックライトとして想定される曲率半径Rにて使用されたバックライトユニットに組み込んだフィルムに撓みや剥がれなどなく均一な曲面光源として機能を発揮できる点で好ましい。
Here, the thickness h, the length a, the width b, and the curvature radius R of the diffusion sheet 32 are 0.25 <h ≦ 1.0, 300 <R <10000, and 1.0 ≦ b. It is preferable to satisfy /a<3.0.
When the thickness h, the length a, the width b, and the radius of curvature R of the diffusion sheet 32 satisfy the above ranges, the flexible back can be obtained in the aspect ratio (ratio between a and b) of the surface assumed as illumination. The film incorporated in the backlight unit used at the curvature radius R assumed as the light is preferable in that the film can function as a uniform curved light source without bending or peeling.
 以下、本発明の具体的実施例を挙げ、本発明のバックライトユニットについて、詳細に説明する。 Hereinafter, specific examples of the present invention will be given and the backlight unit of the present invention will be described in detail.
 [実施例]
 実施例1として、図2に示すバックライトユニット20を用いて、バックライトユニット20を湾曲させた後に、平らに戻した際の拡散シートの撓み・シワの有無を検査した。
 実施例1に用いた拡散シート32は、厚みhを0.3mmとし、長さaを500mmとし、幅bを700mmとし、曲げの際の曲率半径Rを500mmとした。この時、係数αは、0.077であり、最大応力Pmaxは、0.080N/mmであり、曲げ応力Pは、0.065N/mmである。
 このようなバックライトユニット20を用いて、バックライトユニット20を湾曲させた後に、平らに戻した際の拡散シート32の撓み・シワの有無を検査した。検査は、複数回行い、撓み・シワが一度も発生しなかった場合を○と評価し、撓み・シワが一度でも発生した場合を×と評価した。
 その結果、評価は○であった。
[Example]
As Example 1, the backlight unit 20 shown in FIG. 2 was used, and after the backlight unit 20 was bent, the diffusion sheet was inspected for bending and wrinkling when it was returned to the flat state.
The diffusion sheet 32 used in Example 1 had a thickness h of 0.3 mm, a length a of 500 mm, a width b of 700 mm, and a bending radius of curvature R of 500 mm. At this time, the coefficient α is 0.077, the maximum stress P max is 0.080 N / mm 2 , and the bending stress P is 0.065 N / mm 2 .
Using such a backlight unit 20, the backlight unit 20 was bent and then inspected for the presence / absence of wrinkles / wrinkles of the diffusion sheet 32 when it was returned to a flat state. The test was performed a plurality of times, and a case where no bending / wrinkling occurred was evaluated as “good”, and a case where bending / wrinkling occurred even once was evaluated as “poor”.
As a result, the evaluation was good.
 また、実施例2として、曲率半径Rを750mmとした以外は、実施例1と同様にして、拡散シート32の撓み・シワの有無を検査した。
 実施例3として、曲率半径Rを1000mmとした以外は、実施例1と同様にして、拡散シート32の撓み・シワの有無を検査した。
 実施例4として、拡散シート32の幅bを500mmとし、曲率半径Rを700mmとした以外は、実施例1と同様にして、拡散シート32の撓み・シワの有無を検査した。
 実施例5として、拡散シート32の幅bを900mmとし、曲率半径Rを350mmとした以外は、実施例1と同様にして、拡散シート32の撓み・シワの有無を検査した。
 実施例6として、拡散シート32の厚さhを0.5mmとし、曲率半径Rを350mmとした以外は、実施例1と同様にして、拡散シート32の撓み・シワの有無を検査した。
 実施例7として、拡散シート32の厚さを0.5mmとした以外は、実施例6と同様にして、拡散シート32の撓み・シワの有無を検査した。
 評価結果を表1に示す。表1に示すように、実施例2~7は、いずれも曲げ応力Pが最大応力Pmaxよりも小さく、撓み・シワが一度も発生しなかった。従って、評価は○であった。
Further, as Example 2, the diffusion sheet 32 was inspected for bending / wrinkle in the same manner as Example 1 except that the radius of curvature R was 750 mm.
As Example 3, the diffusion sheet 32 was inspected for bending and wrinkles in the same manner as in Example 1 except that the radius of curvature R was 1000 mm.
As Example 4, the diffusion sheet 32 was inspected for bending / wrinkle in the same manner as in Example 1 except that the width b of the diffusion sheet 32 was 500 mm and the radius of curvature R was 700 mm.
As Example 5, the diffusion sheet 32 was inspected for bending / wrinkle in the same manner as in Example 1 except that the width b of the diffusion sheet 32 was 900 mm and the curvature radius R was 350 mm.
As Example 6, the diffusion sheet 32 was inspected for bending / wrinkle in the same manner as in Example 1 except that the thickness h of the diffusion sheet 32 was 0.5 mm and the curvature radius R was 350 mm.
As Example 7, the diffusion sheet 32 was inspected for bending and wrinkling in the same manner as in Example 6 except that the thickness of the diffusion sheet 32 was 0.5 mm.
The evaluation results are shown in Table 1. As shown in Table 1, in all of Examples 2 to 7, the bending stress P was smaller than the maximum stress P max , and no bending or wrinkle occurred. Therefore, evaluation was (circle).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、比較例1として、拡散シート32の厚みhを0.2mmとした以外は、実施例1と同様にして、拡散シート32の撓み・シワの有無を検査した。
 比較例2として、拡散シート32の幅bを500mmとし、曲率半径Rを700mmとした以外は、比較例1と同様にして、拡散シート32の撓み・シワの有無を検査した。
 比較例3として、拡散シート32の幅bを900mmとし、曲率半径Rを350mmとした以外は、比較例1と同様にして、拡散シート32の撓み・シワの有無を検査した。
 評価結果を表2に示す。表2に示すように、比較例1~3は、いずれも曲げ応力Pが最大応力Pmaxよりも大きく、撓み・シワが発生してしまった。従って、評価は×であった。
Further, as Comparative Example 1, the diffusion sheet 32 was inspected for bending and wrinkling in the same manner as in Example 1 except that the thickness h of the diffusion sheet 32 was 0.2 mm.
As Comparative Example 2, the diffusion sheet 32 was inspected for bending and wrinkling in the same manner as in Comparative Example 1, except that the width b of the diffusion sheet 32 was 500 mm and the radius of curvature R was 700 mm.
As Comparative Example 3, the diffusion sheet 32 was inspected for bending and wrinkling in the same manner as in Comparative Example 1 except that the width b of the diffusion sheet 32 was 900 mm and the curvature radius R was 350 mm.
The evaluation results are shown in Table 2. As shown in Table 2, in each of Comparative Examples 1 to 3, the bending stress P was larger than the maximum stress P max , and bending and wrinkling occurred. Therefore, evaluation was x.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上、本発明に係る面状照明装置について詳細に説明したが、本発明は、以上の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよい。 The planar lighting device according to the present invention has been described in detail above. However, the present invention is not limited to the above embodiment, and various improvements and modifications are made without departing from the gist of the present invention. May be.
  10 液晶表示装置
  12 液晶表示パネル
  14 駆動ユニット
  20、200 バックライトユニット(面状照明装置)
  24 光出射口
  26、208 筐体
  28、206 光源ユニット
  30、100、102、204 導光板
  30a 光出射面
  30b 背面
  30c 光入射面
  30d 側面
  32、202 拡散シート
  42 下部筐体
  44 上部筐体
  49 電源収納部
  50 LEDチップ
  50a 発光面
  52 光源支持部
  60 第1層
  62 第2層
  64a、64b、66、74a、74b、74c、86a、86b、86c 支持ピン
  70a、70b、88a、88b、90a、90b 長孔
  72、90c 貫通孔
  84a、84b、84c 保持部材
  92a、92b、92c 補強部材
  110 第1基材
  112 第2基材
  114 第3基材
  116 接着層
  120 ベース
  122 易接着層
  124 ハードコート層
  126 光拡散層
  α 2等分線
  z 境界面
DESCRIPTION OF SYMBOLS 10 Liquid crystal display device 12 Liquid crystal display panel 14 Drive unit 20,200 Backlight unit (planar illumination device)
24 Light exit port 26, 208 Housing 28, 206 Light source unit 30, 100, 102, 204 Light guide plate 30a Light exit surface 30b Back surface 30c Light entrance surface 30d Side surface 32, 202 Diffusion sheet 42 Lower housing 44 Upper housing 49 Power supply Storage unit 50 LED chip 50a Light emitting surface 52 Light source support unit 60 First layer 62 Second layer 64a, 64b, 66, 74a, 74b, 74c, 86a, 86b, 86c Support pins 70a, 70b, 88a, 88b, 90a, 90b Long hole 72, 90c Through hole 84a, 84b, 84c Retaining member 92a, 92b, 92c Reinforcing member 110 First base material 112 Second base material 114 Third base material 116 Adhesive layer 120 Base 122 Easy adhesive layer 124 Hard coat layer 126 Light diffusion layer α bisector z interface

Claims (8)

  1.  矩形状の光出射面と、前記光出射面の端辺側に設けられ、前記光出射面に略平行な方向に進行する光を入射する1つの光入射面と、前記光出射面とは反対側に設けられる背面と、内部に分散される散乱粒子とを有し、前記光出射面に垂直な方向の厚さが1.5mm以下の導光板、
     前記導光板の前記光入射面に対面して配置される光源ユニット、
     前記導光板の前記光出射面に対面して配置される拡散シート、および、
     前記導光板と前記光源ユニットと前記拡散シートとを収納し、前記導光板の前記光出射面に対応する開口部を備える筺体を有する面状照明装置であって、
     前記導光板が、前記光出射面に略垂直な方向に重なった、前記散乱粒子の粒子濃度が異なる2つ以上の層を有し、前記光入射面に垂直な方向において、前記2つ以上の層の、前記光出射面に略垂直な方向の厚さがそれぞれ変化して、前記導光板の合成粒子濃度が変化しており、
     かつ、前記導光板と前記光源ユニットと前記拡散シートと前記筐体とが、前記光源ユニット側で互いに係合し、
     面状照明装置全体を、前記光入射面に垂直な方向において湾曲させた際の、曲率半径をR[mm]とし、曲げ応力をP[N/mm]とし、前記筐体と前記拡散シートとの最大静止摩擦係数をμとし、前記拡散シートの、前記光入射面に垂直な方向の長さをa[mm]、厚さをh[mm]とし、前記拡散シートの材料のヤング率をE[N/mm]、ポアソン比をνとすると、前記曲げ応力Pは、
     P>μ/tan(a/R)、かつ、P≦Pmax
     ここで、Pmax=E・π/(6(1-ν))・(h/a)
    を満たすことを特徴とする面状照明装置。
    A rectangular light exit surface, one light entrance surface that is provided on the edge side of the light exit surface and that enters light traveling in a direction substantially parallel to the light exit surface, and the light exit surface are opposite to each other A light guide plate having a back surface provided on the side and scattering particles dispersed therein, and having a thickness in a direction perpendicular to the light exit surface of 1.5 mm or less,
    A light source unit disposed to face the light incident surface of the light guide plate;
    A diffusion sheet disposed to face the light exit surface of the light guide plate; and
    A planar lighting device having a housing that houses the light guide plate, the light source unit, and the diffusion sheet and includes an opening corresponding to the light exit surface of the light guide plate,
    The light guide plate has two or more layers with different particle concentrations of the scattering particles overlapped in a direction substantially perpendicular to the light exit surface, and the two or more layers in the direction perpendicular to the light incident surface. The thickness of each layer in a direction substantially perpendicular to the light exit surface is changed, and the composite particle concentration of the light guide plate is changed,
    And the light guide plate, the light source unit, the diffusion sheet, and the housing are engaged with each other on the light source unit side,
    When the entire planar lighting device is curved in a direction perpendicular to the light incident surface, the radius of curvature is R [mm], the bending stress is P [N / mm 2 ], and the casing and the diffusion sheet The maximum static friction coefficient is μ 0 , the length of the diffusion sheet in the direction perpendicular to the light incident surface is a [mm], the thickness is h [mm], and the Young's modulus of the material of the diffusion sheet Is E [N / mm 2 ] and Poisson's ratio is ν, the bending stress P is
    P> μ 0 / tan (a / R) and P ≦ P max
    Here, P max = E · π 2 / (6 (1-ν) 2 ) · (h / a) 2
    A planar illumination device characterized by satisfying the above.
  2.  前記拡散シートの、前記光入射面の長手方向の幅をb[mm]とすると、前記拡散シートの厚さhと長さaと幅bと、前記曲率半径Rとが、
     0.25<h≦1.0、かつ、300<R<10000、かつ、1.0≦b/a<3.0を満たす請求項1に記載の面状照明装置。
    When the width of the light incident surface of the diffusion sheet in the longitudinal direction is b [mm], the thickness h, the length a, the width b, and the radius of curvature R of the diffusion sheet are:
    The planar lighting device according to claim 1, wherein 0.25 <h ≦ 1.0, 300 <R <10000, and 1.0 ≦ b / a <3.0 are satisfied.
  3.  前記拡散シートの基材として、二軸延伸されたポリエチレンテレフタレート樹脂基材を用いる請求項1または2に記載の面状照明装置。 The planar illumination device according to claim 1 or 2, wherein a biaxially stretched polyethylene terephthalate resin substrate is used as the substrate of the diffusion sheet.
  4.  前記拡散シートの厚さh[mm]が、0.3<h≦1.0の場合に、前記拡散シートの基材として、二軸延伸されたポリエチレンテレフタレート樹脂基材を2枚以上貼合した複合基材を用いる請求項3に記載の面状照明装置。 When the thickness h [mm] of the diffusion sheet is 0.3 <h ≦ 1.0, two or more biaxially stretched polyethylene terephthalate resin base materials were bonded as the base material of the diffusion sheet. The planar lighting device according to claim 3, wherein a composite base material is used.
  5.  前記拡散シートの基材として、アクリル樹脂、ポリスチレン樹脂、MS樹脂、および、ポリカーボネート樹脂のいずれかを材料として、押出あるいはキャスト重合により成型した基材を用いる請求項1または2に記載の面状照明装置。 The planar illumination according to claim 1 or 2, wherein a base material molded by extrusion or cast polymerization using any one of acrylic resin, polystyrene resin, MS resin, and polycarbonate resin as a base material of the diffusion sheet is used. apparatus.
  6.  前記導光板の前記2つ以上の層が、前記光出射面側の第1層と、前記第1層よりも粒子濃度が高い前記背面側の第2層との2つの層からなり、前記第2層の厚さが、前記光入射面から離間するに従って、薄くなった後に、厚くなるように連続的に変化している請求項1~5のいずれかに記載の面状照明装置。 The two or more layers of the light guide plate are composed of two layers, a first layer on the light emitting surface side and a second layer on the back surface side having a particle concentration higher than that of the first layer. The planar illumination device according to any one of claims 1 to 5, wherein the thickness of the two layers is continuously changed so as to become thicker after becoming thinner as the distance from the light incident surface increases.
  7.  前記導光板の前記2つ以上の層が、前記光出射面側の第1層と、前記第1層よりも粒子濃度が高い前記背面側の第2層との2つの層からなり、前記第2層の厚さが、前記光入射面から離間するに従って、一旦、厚くなり、薄くなった後に、再び、厚くなるように連続的に変化している請求項1~5のいずれかに記載の面状照明装置。 The two or more layers of the light guide plate are composed of two layers, a first layer on the light emitting surface side and a second layer on the back surface side having a particle concentration higher than that of the first layer. 6. The thickness of the two layers is continuously increased so as to become thicker again after becoming thicker and thinner after being separated from the light incident surface. Planar lighting device.
  8.  前記導光板の前記背面が、前記光出射面に平行な平面である請求項1~7のいずれかに記載の面状照明装置。
     
    The planar illumination device according to any one of claims 1 to 7, wherein the back surface of the light guide plate is a plane parallel to the light exit surface.
PCT/JP2012/065018 2011-07-15 2012-06-12 Planar illumination device WO2013011774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011156798A JP2013025890A (en) 2011-07-15 2011-07-15 Planar lighting system
JP2011-156798 2011-07-15

Publications (1)

Publication Number Publication Date
WO2013011774A1 true WO2013011774A1 (en) 2013-01-24

Family

ID=47557960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065018 WO2013011774A1 (en) 2011-07-15 2012-06-12 Planar illumination device

Country Status (2)

Country Link
JP (1) JP2013025890A (en)
WO (1) WO2013011774A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016059721A1 (en) * 2014-10-17 2017-07-27 堺ディスプレイプロダクト株式会社 Display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101345140B1 (en) * 2013-05-22 2013-12-26 한솔테크닉스(주) Curved back light unit and display device having the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083474A1 (en) * 2004-02-27 2005-09-09 Kimoto Co., Ltd. Optical member and backlight using same
JP2009117357A (en) * 2007-10-19 2009-05-28 Fujifilm Corp Light guide plate
JP2011039189A (en) * 2009-08-07 2011-02-24 Dainippon Printing Co Ltd Optical sheet, surface light source device, and transmissive display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083474A1 (en) * 2004-02-27 2005-09-09 Kimoto Co., Ltd. Optical member and backlight using same
JP2009117357A (en) * 2007-10-19 2009-05-28 Fujifilm Corp Light guide plate
JP2011039189A (en) * 2009-08-07 2011-02-24 Dainippon Printing Co Ltd Optical sheet, surface light source device, and transmissive display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016059721A1 (en) * 2014-10-17 2017-07-27 堺ディスプレイプロダクト株式会社 Display device

Also Published As

Publication number Publication date
JP2013025890A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
US7661862B2 (en) LCD display backlight using elongated illuminators
JP4762217B2 (en) Light guide plate, light guide plate unit, and planar illumination device
JP5178460B2 (en) Surface lighting device
JP5089960B2 (en) Surface light source device, backlight unit including the same, and liquid crystal display device including the backlight unit
TWI336799B (en) Light guide device and light guide plate using the same
JP5635472B2 (en) Light guide plate
WO2012101940A1 (en) Planar lighting device
WO2011025017A1 (en) Planar lighting device
EP3242158A1 (en) Display device
WO2017088237A1 (en) Backlight module and reflecting layer thereof
US20060268581A1 (en) Method and apparatus for light guide unit and backlight module using the same
WO2012153615A1 (en) Planar illumination device
TW200811544A (en) Surface light source device, backlight unit and liquid crystal display having the same
TW200302946A (en) Surface-emitting device and liquid crystal display device
WO2012049952A1 (en) Light guiding plate and planar lighting device
WO2012132510A1 (en) Planar illumination device
WO2013011774A1 (en) Planar illumination device
WO2013001929A1 (en) Light guide plate and planar lighting device
TWI354747B (en) Lamp holder
WO2013099454A1 (en) Sheet-shaped light guide plate, planar illumination device, and planar illumination unit
JP5066902B2 (en) Optical sheet
WO2012124364A1 (en) Light guide plate and surface illumination device
JP2010086669A (en) Surface lighting device
JP2010218841A (en) Light guide plate and planar lighting device using this
JP5600121B2 (en) Light block

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814153

Country of ref document: EP

Kind code of ref document: A1