WO2013011584A1 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
WO2013011584A1
WO2013011584A1 PCT/JP2011/066584 JP2011066584W WO2013011584A1 WO 2013011584 A1 WO2013011584 A1 WO 2013011584A1 JP 2011066584 W JP2011066584 W JP 2011066584W WO 2013011584 A1 WO2013011584 A1 WO 2013011584A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
injection
injection hole
hole plate
flow
Prior art date
Application number
PCT/JP2011/066584
Other languages
French (fr)
Japanese (ja)
Inventor
夏樹 杉山
伊藤 弘和
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/066584 priority Critical patent/WO2013011584A1/en
Publication of WO2013011584A1 publication Critical patent/WO2013011584A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates

Definitions

  • the present invention relates to a fuel injection valve that injects fuel, and particularly to a fuel injection valve having a plurality of injection holes.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2010-65541
  • a fuel injection valve having a plurality of injection holes is known.
  • a circular injection hole plate is provided at the tip of the injection valve body, and each injection hole is formed in this injection hole plate.
  • Each injection hole is arranged radially with respect to the center of the injection hole plate, and the axis of each injection hole is inclined from the center toward the outer diameter side with respect to the center axis of the injection hole plate. . That is, in the radial direction of the nozzle hole plate, the outlets of the individual nozzle holes are opened outside the inlet. Thereby, in the prior art, atomization of the injected fuel is promoted.
  • the applicant has recognized the following documents including the above-mentioned documents as related to the present invention.
  • each injection hole is inclined from the center of the injection hole plate toward the outer diameter side.
  • the fuel flows from the entire circumference into the inlet of the injection hole, so that the fuel flows easily collide with each other at the center of the injection hole. This collision tends to suppress the flow of fuel flowing out from the injection hole and increase the thickness of fuel in the injection hole (so-called bulk thickness).
  • the average particle size of the injected fuel increases as the bulk thickness increases. For this reason, in the prior art, there is a problem that atomization of the injected fuel is hindered due to an increase in bulk thickness.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to reduce the thickness of the fuel in the injection hole and promote the atomization of the injected fuel. It is to provide an injection valve.
  • an injection hole plate having an inner surface facing a fuel supply space to which fuel is supplied when the valve body is opened and an outer surface facing the outside,
  • a plurality of injection holes provided as through-holes in the nozzle hole plate, each having a fuel inlet opening on an inner surface of the nozzle hole plate and a fuel outlet opening on the outer surface;
  • An uneven portion provided on the inner side surface of the injection hole plate, which surrounds at least a half or more of the fuel inlet except for a part of the entire circumference of the fuel inlet of the injection hole serving as a fuel introduction part.
  • a fuel flow restraining portion arranged as follows, It is characterized by providing.
  • the fuel flow suppressing portion surrounds the fuel inlet except for a portion of the entire circumference of the fuel inlet that the fuel supplied to the fuel supply space reaches in the shortest distance.
  • the fuel introduction part is arranged at a portion where the fuel supplied to the fuel supply space reaches the shortest distance.
  • a third aspect of the invention is a valve body that is attached to and detached from an annular valve seat;
  • a fuel supply space formed on the inner peripheral side of the valve seat, to which fuel is supplied from the outer peripheral side of the valve seat when the valve body is opened;
  • An injection hole plate formed of a circular plate material, and having an inner surface facing the fuel supply space and an outer surface facing the outside;
  • a plurality of injection holes provided as through-holes in the nozzle hole plate, each having a fuel inlet opening on an inner surface of the nozzle hole plate and a fuel outlet opening on the outer surface;
  • An uneven portion provided on the inner side surface of the nozzle hole plate, which surrounds the fuel inlet except for a portion of the entire circumference of the fuel inlet of the injection hole that is farthest from the center of the nozzle hole plate.
  • a fuel flow restraining portion arranged as follows, A fuel introduction part constituted by a part where the fuel flow suppression part is not arranged in the entire circumference of the fuel inlet; It is characterized by
  • the fuel inlet of the injection hole is formed in an elliptical shape or an oval shape that extends in the radial direction of the injection hole plate.
  • the plurality of injection holes are arranged radially with respect to the center of the injection hole plate.
  • the plurality of injection holes are arranged symmetrically with respect to one straight line extending in the radial direction through the center of the injection hole plate.
  • the fuel flow suppressing portion is formed as a concavo-convex portion continuously extending over the periphery of at least two fuel inflow ports.
  • the fuel flow suppressing portion is constituted by dimples in which a plurality of concave portions and convex portions are regularly arranged.
  • the first invention when the fuel flows into the injection hole, resistance can be added to the flow of the fuel at the position of the fuel flow suppressing portion, and the flow of the fuel flowing into the injection hole can be inhibited. Thereby, the flow of the fuel flowing into the injection hole from the position of the fuel introduction part can be relatively accelerated. For this reason, by appropriately adjusting the formation position of the fuel flow suppressing portion with respect to the entire circumference of the injection hole, the fuel can be caused to flow into the injection hole at a desired position so that the fuel is easily separated from the inner wall surface of the injection hole. it can.
  • the thickness of the fuel in the injection hole can be reduced and fuel atomization can be promoted, and the atomization ability can be increased.
  • a high injection hole plate can be easily formed at low cost.
  • the arrangement of the injection holes can be freely set, and the degree of freedom in design can be improved.
  • the valve element when the valve element is opened, the fuel supplied to the fuel supply space reaches the fuel introduction portion in the shortest distance, so that the fuel can smoothly flow into the injection hole. Thereby, the flow of the fuel flowing into the injection hole from the fuel flow suppressing portion can be further suppressed, and the fuel inflow can be concentrated on the fuel introducing portion.
  • fuel can be caused to flow into the injection hole from the fuel introduction portion located on the outermost diameter side in the radial direction of the injection hole plate in the entire circumference of the fuel inlet of the injection hole.
  • the fuel supplied from the outer diameter side of the nozzle hole plate flows into the outer diameter side of the fuel inlet, so that the fuel flow is bent sharply toward the outer diameter near the inlet of the injection hole.
  • the fuel can be atomized by reducing the thickness of the fuel in the injection hole. Therefore, it is possible to easily form an injection hole plate with high atomization capability at low cost simply by forming an uneven fuel flow suppression portion on the inner surface of the injection hole plate, and the degree of freedom in designing the injection hole. Can be improved.
  • the fuel is caused to flow intensively from the end portion in the longitudinal direction (the outer diameter side of the injection hole plate) with respect to the fuel inlet of the injection hole formed in an elliptical shape or an oval shape.
  • the fuel can be efficiently peeled from the outer diameter side portion of the inner wall surface of the injection hole.
  • fuel can be intensively introduced from the end portion in the longitudinal direction (outer diameter side of the nozzle hole plate) with respect to the fuel inlet of each nozzle hole arranged radially,
  • the fuel can be efficiently separated from the outer diameter side portion of the inner wall surface of the injection hole.
  • the fuel flow suppression unit and the fuel introduction unit By adjusting the arrangement, fuel can be introduced from the end of the injection hole on the outer diameter side. Therefore, the degree of freedom in designing the injection hole can be improved while ensuring the atomization level of the injected fuel.
  • the fuel flow suppressing portion is formed so as to straddle the periphery of at least two or more fuel inlets, the fuel flow suppressing portion can be efficiently formed for a large number of injection holes.
  • the fuel flow suppressing portion and the fuel introducing portion can be accurately aligned with respect to each injection hole.
  • the fuel flow suppressing portion is constituted by dimples in which a plurality of concave portions and convex portions are regularly arranged, for example, the effect of suppressing the fuel flow with respect to the formation area of the fuel flow suppressing portion can be easily achieved. Therefore, the nozzle plate can be designed efficiently.
  • FIG. 5 is an explanatory diagram showing a bulk generated during fuel injection.
  • Embodiment 2 of this invention it is the top view which looked at the nozzle hole plate from the same position as FIG. It is a principal part enlarged view in FIG. 6 which expands and shows one injection hole.
  • FIG. 9 is a plan view of the injection hole in FIG. 8 as viewed from the direction of arrow BB. It is a top view which shows the nozzle hole plate in another comparative example.
  • FIG. 8 is an enlarged view of a main part similar to FIG. 7 illustrating, as a comparative example, a case where there is no fuel flow suppression unit in the same injection hole as in the second embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a fuel injection valve according to Embodiment 1 of the present invention.
  • FIG. 1 shows only the tip of the fuel injection valve.
  • the fuel injection valve 1 is composed of a known needle valve or the like, and includes a housing 2, a valve seat 3, a valve body 4, an injection hole plate 10, and the like.
  • the housing 2 is formed in a stepped cylindrical shape with a metal material or the like, and at least a tip portion is open.
  • An annular valve seat 3 on which the valve body 4 is seated is attached to the inner peripheral side of the distal end portion of the housing 2.
  • a rod-shaped valve body 4 is provided inside the housing 2.
  • the valve body 4 is separated from and seated on the valve seat 3 by being displaced in the axial direction, and is driven by an actuator such as a solenoid disposed on the base end side of the housing 2. Further, a fuel passage 5 that is a cylindrical gap is provided between the housing 2 and the valve body 4, and the fuel passage 5 is located on the outer peripheral side of the valve seat 3. Fuel flows into the fuel passage 5 in a pressurized state from a fuel pipe or the like connected to the base end side of the housing 2. On the other hand, a fuel supply space 6, which is a flat cylindrical space, is provided between the distal end surface of the valve body 4 and the nozzle hole plate 10, and the fuel supply space 6 is positioned on the inner peripheral side of the valve seat 3. is doing. Fuel is supplied to the fuel supply space 6 from the fuel passage 5 when the valve body 4 is opened.
  • the valve seat 3, the valve body 4, the fuel supply space 6, and the nozzle hole plate 10 are arranged coaxially with each other. The nozzle hole plate 10 will be described later.
  • FIGS. 1 to 4 the nozzle hole plate 10 that is a feature of the present embodiment will be described.
  • 2 is a cross-sectional view showing the nozzle hole plate in FIG. 1 alone
  • FIG. 3 is a plan view of the nozzle hole plate as viewed from the direction of arrow A in FIG.
  • FIG. 4 is an enlarged view of a main part in FIG. 3 showing one injection hole in an enlarged manner.
  • the nozzle hole plate 10 is formed of a circular metal plate or the like, and is attached to the tip portion at a position covering the tip portion of the housing 2.
  • the nozzle hole plate 10 has an inner side surface 10 a facing the inside of the housing 2 (fuel supply space 6) and an outer side surface 10 b facing the outside of the housing 2.
  • a short cylindrical mounting portion F is formed on the peripheral edge portion of the nozzle hole plate 10 and this mounting portion F is mounted on the outer periphery of the distal end portion of the housing 2 is exemplified.
  • the nozzle hole plate 10 having no attachment portion F may be fixed to the front end surface of the housing 2.
  • the injection hole plate 10 is provided with a plurality of injection holes 11 for injecting fuel.
  • Each injection hole 11 is formed as a through-hole penetrating the nozzle hole plate 10 in the axial direction.
  • the fuel inlet 11 a that opens on the inner surface 10 a of the nozzle hole plate 10, and the nozzle hole plate 10.
  • a fuel outlet 11b that opens to the outer surface 10b.
  • Each injection hole 11 is inclined toward the outer diameter side of the injection hole plate 10 such that the fuel outlet 11b is farther from the center O of the injection hole plate 10 than the fuel injection hole 11a.
  • the injection holes 11 are arranged radially with respect to the center O of the injection hole plate 10 and are arranged in a double concentric manner. Further, as shown in FIGS.
  • the fuel inlet 11 a and the fuel outlet 11 b of the injection hole 11 are formed in an elliptical shape or an oval shape, and are elongated in the radial direction of the injection hole plate 10. That is, the extending directions of the major axes of the fuel inlet 11 a and the fuel outlet 11 b coincide with the radial direction of the nozzle hole plate 10.
  • a fuel flow suppressing portion 12 and a fuel introducing portion 13 are provided on the inner side surface 10 a of the nozzle hole plate 10.
  • the fuel flow suppressing portion 12 is formed by a concavo-convex portion, and is preferably formed as a dimple in which a plurality of concave portions and convex portions are alternately arranged regularly.
  • the fuel flow suppressing portion 12 is a portion of at least a half or more (preferably 3/4 or more) of the fuel inlet 11a, except for a part of the entire circumference of the fuel inlet 11a, which becomes the fuel introduction portion 13. It is arranged so that it surrounds.
  • the fuel flow suppression unit 12 adds resistance to the fuel flow in the vicinity of the inner surface 10a, and suppresses (inhibits) the flow of fuel flowing into the injection hole 11 from a position (direction) other than the fuel introduction unit 13. To do.
  • the fuel introduction part 13 is arranged in a part (preferably, a part less than 1 ⁇ 4 circumference) of the entire circumference of the fuel inflow port 11a where the fuel flow suppression part 12 is not arranged. It is comprised by the inner surface 10a.
  • the fuel introduction unit 13 introduces fuel into the injection hole 11 from a specific position (direction) using the function of the fuel flow suppression unit 12. More specifically, since the fuel flow is relatively smooth at the position of the fuel introduction portion 13 as compared with the portion where the fuel flow suppression portion 12 is formed, the flow of the fuel flowing into the injection hole 11 can be promoted. it can.
  • FIG. 8 is an enlarged view of the main part showing the tip of the fuel injection valve 100 employed as a comparative example
  • FIG. 9 is a plan view of the injection hole 107 in FIG. 8 as viewed from the direction of arrows BB.
  • the fuel injection valve 100 includes a housing 101, a valve seat 102, a valve body 103, a fuel passage 104, a fuel supply space 105, an injection hole plate 106, and an injection hole 107.
  • the fuel in order to atomize the injected fuel, the fuel is preferably separated from the wall surface in the injection hole 107.
  • the injection hole 107 is formed so as to be inclined so that the outflow port is on the outer diameter side of the fuel inflow port, and flows into the fuel supply space 105 from the outer diameter side of the injection hole plate 106.
  • the fuel flow is bent sharply toward the outer diameter side at the inlet of the injection hole 107.
  • the flow of fuel can be separated from the inner wall surface of the injection hole 107 located on the inner diameter side of the injection hole plate 106, and a certain degree of atomization is realized. can do.
  • the fuel in the fuel supply space 105 flows from the entire circumference to the inlet of the injection hole 107, so that the fuel flow collides at the center of the injection hole.
  • the thickness (bulk thickness) of the fuel in the injection hole 107 increases, and atomization of the injected fuel is hindered.
  • FIG. 10 is a plan view showing an injection hole plate in another comparative example.
  • radial protrusions (partitions) 108 are provided on the inner surface of the injection hole plate 106, and the flow of fuel flowing into the injection holes 107 is rectified by the protrusions 108.
  • the fuel flows into the injection holes from the entire periphery, so that atomization is hindered for the above-described reason.
  • the portion farthest from the center O of the injection hole plate 10 is excluded from the entire circumference of the fuel inlet 11 a of each injection hole 11.
  • the fuel flow suppressing portion 12 is arranged, and the fuel introducing portion 13 is arranged at a portion farthest from the center O in the entire circumference of the fuel inflow port 11a. That is, the portion where the fuel introduction portion 13 is disposed is a portion located on the outermost diameter side of the nozzle hole plate 10 in the entire circumference of the fuel inlet 11a, and this portion is outside when the valve body 4 is opened. This corresponds to the portion where the fuel supplied from the radial valve seat 3 to the fuel supply space 6 reaches the fuel inlet 11a in the shortest distance.
  • the flow of the fuel flowing into the injection hole 11 from another part is further suppressed, and most of the fuel flowing into the injection hole 11 is concentrated on the fuel introducing part 13. That is, since the fuel supplied from the outer diameter side of the nozzle hole plate 10 flows into the outer diameter side of the fuel inlet 11a, the fuel flow is suddenly directed toward the outer diameter near the inlet of the injection hole 11. Can be bent. As a result, in the present embodiment, as shown in FIG. 4, the fuel flow can be largely separated from the portion located on the outer diameter side of the injection hole plate 10 on the inner wall surface of the injection hole 11. Compared to the above-described comparative example (FIG. 9), the fuel thickness (bulk thickness) in the injection hole 11 can be reduced.
  • FIG. 5 is an explanatory diagram schematically showing a bulk generated during fuel injection.
  • 5A shows a cross-sectional view of the injection hole 11
  • FIG. 5B shows a bottom view of the injection hole 11 viewed from the fuel outlet 11b side.
  • the bulk is a flow of fuel having a relatively high density ejected from the injection holes 11 in a columnar shape, and a film that is a mist-like fuel having a low density is formed around the bulk.
  • the bulk thickness h is defined as a bulk thickness dimension at the opening position of the fuel outlet 11b.
  • the thickness dimension is a dimension in a direction along the inflow direction of fuel to the injection hole 11 (in the present embodiment, the radial direction of the injection hole plate 10). Generally, between the average particle diameter D 30 and the bulk thickness h of the injected fuel of the injected fuel, the relationship is established as shown in the following equation (1).
  • This formula is called a FRAZER formula, and is a known relational formula described in Japanese Patent Laid-Open No. 2002-168163, for example.
  • C1 and C2 are constants
  • V is the fuel flow velocity
  • is the surface tension of the fuel
  • ⁇ L and ⁇ a are the fuel and air densities. If denoted as C collectively constants in equation (1), it can be obtained right, mean particle diameter D 30 of the fuel is found to be smaller as the bulk thickness h is reduced.
  • the fuel introduction that is a non-formation portion of the fuel flow restraining portion 12 is provided only by providing the fuel flow restraining portion 12 having an uneven shape on the inner side surface 10a of the nozzle hole plate 10.
  • the fuel can smoothly flow into the injection hole 11 from the portion 13, and the bulk thickness h of the fuel can be reduced. Thereby, atomization of the injected fuel can be promoted and the performance of the fuel injection valve 1 can be improved.
  • the fuel flow suppressing portion 12 can be formed together by relatively simple processing, for example, when the nozzle hole plate 10 is formed, and separate parts are assembled to the nozzle hole plate as in the other comparative examples described above. There is no need to put it on. Therefore, since the management of processing accuracy is relatively gradual and the number of processing steps does not increase greatly, an injection hole plate with high atomization capability can be easily formed at low cost.
  • the fuel inflow direction with respect to the injection hole 11 can be adjusted by the fuel flow suppression unit 12 and the fuel introduction unit 13 without depending on the shape of the fuel supply space 6 or the like. That is, even if each injection hole 11 is arranged asymmetrically or a part where the injection holes are gathered is provided in a part of the injection hole plate 10, the position where the fuel flow suppressing portion 12 is formed with respect to each injection hole 11. If this is set appropriately, fuel can flow into each injection hole 11 from a desired direction. Therefore, the arrangement of the injection holes can be set more freely than in the comparative examples, and the degree of design freedom can be improved. This effect will be specifically described in the second embodiment.
  • a plurality of injection holes 11 are arranged in a double concentric manner to form the first and second injection hole groups G1 and G2, and individual injections are made.
  • Two fuel flow suppression portions 12 (hereinafter referred to as fuel flow suppression portions 12A and 12B) and two fuel introduction portions 13 (referred to as fuel introduction portions 13A and 13B) are formed corresponding to the hole groups G1 and G2. It is configured to do.
  • the first fuel flow suppressing portion 12A is formed as an annular concavo-convex portion extending along the outer peripheral injection hole group G1, and surrounds the inner diameter side of each fuel inlet 11a of the injection hole group G1.
  • the first fuel flow restraining portion 13A is disposed over the entire circumference on the outer diameter side of the fuel flow restraining portion 12A, and takes a portion located on the outermost diameter side of each fuel inlet 11a of the injection hole group G1. It is arranged to surround.
  • the second fuel flow suppression portion 12B is formed as a circular concavo-convex portion, and is disposed on the inner peripheral side of the fuel flow suppression portion 12A with a radial interval.
  • the fuel flow suppressing portion 12B has a contour corresponding to the formation portion of the injection hole group G2 on the inner peripheral side, and is disposed so as to surround the inner diameter side of each fuel inlet 11a of the injection hole group G2.
  • the second fuel flow suppressing portion 13B is formed in an annular shape between the fuel flow suppressing portions 12A and 12B, and a portion positioned on the outermost diameter side of each fuel inlet 11a of the injection hole group G2. They are arranged to surround each other.
  • each of the fuel flow restraining portions 12A and 12B is formed as a concavo-convex portion continuously extending over the periphery of the two or more fuel inflow ports 11a.
  • the fuel flow suppression part 12 can be efficiently formed with respect to many injection holes 11, and the fuel flow suppression part 12 and the fuel introduction part 13 are accurately aligned with respect to each injection hole 11.
  • the effect of suppressing the fuel flow on the formation area of the fuel flow suppressing portion 12 can be easily estimated.
  • the nozzle hole plate 10 can be designed efficiently.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIGS.
  • the present embodiment is characterized in that a plurality of injection holes are arranged symmetrically with respect to one straight line.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 6 is a plan view of the nozzle hole plate seen from the same position as in FIG. 3 in Embodiment 2 of the present invention.
  • FIG. 7 is an enlarged view of a main part in FIG. 6 showing one injection hole in an enlarged manner.
  • the plurality of injection holes 21 are symmetric left and right with respect to one straight line (for example, the Y axis) extending in the radial direction through the center O of the injection hole plate 10. Is arranged.
  • each injection hole 21 is divided into left and right inner injection hole groups G1in and G2in and left and right outer injection hole groups G1out and G2out.
  • the injection holes 21 are arranged in a straight line for each of the injection hole groups G1in, G2in, G1out, and G2out, and the arrangement direction is set parallel to the Y axis.
  • each injection hole 21 is inclined toward the outer diameter side of the injection hole plate 10 such that the fuel outlet 21b is farther from the axis of symmetry (Y axis) than the fuel inlet 21a.
  • the fuel inlet 21a and the fuel outlet 21b of the injection hole 21 are formed in an elliptical shape or an oval shape, but along a straight line (for example, the X axis) perpendicular to the axis of symmetry. Elongate. That is, the major axes of the fuel inlet 21a and the fuel outlet 21b are arranged parallel to the X axis.
  • a fuel flow suppression unit 22 and a fuel introduction unit 23 are provided on the inner side surface 10 a of the nozzle hole plate 10, as in the first embodiment.
  • the fuel flow suppressing portion 22 is formed of dimples, and at least half of the circumference of the fuel inlet 21a except for a part of the entire circumference of the fuel inlet 21a serving as the fuel introduction portion 23 (preferably 3/4). It is arranged so as to surround the portion of the circumference.
  • the fuel introduction part 23 is arrange
  • the non-formation part of the fuel introduction part 23 includes the parts farthest from the center O and the Y axis of the injection hole plate 10 in the entire circumference of the fuel inlet 21a. In addition, it includes a portion where the fuel supplied from the outer diameter side valve seat 3 to the fuel supply space 6 when the valve body 4 is opened reaches the fuel inlet 21a in the shortest distance.
  • the fuel flow suppression unit 22 is divided into three fuel flow suppression units 22A, 22B, and 22C having a belt shape corresponding to the individual injection hole groups G1in, G2in, G1out, and G2out.
  • the fuel flow suppression portions 22A, 22B, and 22C are formed to be divided into four fuel introduction portions 23A, 23B, 23C, and 23D. More specifically, the central fuel flow suppressing portion 22A is arranged so as to surround the inner diameter side of each fuel inlet 21a of the injection hole groups G1in and G2in.
  • the left fuel flow suppressing portion 22B is disposed so as to surround the inner diameter side of each fuel inlet 21a of the left injection hole group G1out, and the right fuel flow suppressing portion 22C is provided for each fuel of the right injection hole group G2out. It arrange
  • the fuel introduction portions 23A, 23B, 23C, and 23D are disposed so as to surround portions of the injection hole groups G1in, G2in, G1out, and G2out that are located on the outer diameter side of the respective fuel inflow ports 21a. Accordingly, each of the fuel flow suppressing portions 22A to 22C continuously extends over the periphery of the two or more fuel inflow ports 21a.
  • the flow suppression part 22 can be formed efficiently.
  • FIG. 11 is an enlarged view of the main part similar to FIG. 7 showing, as a comparative example, the case where the fuel flow suppressing part is not present in the injection hole similar to the second embodiment of the present invention.
  • the fuel flows obliquely into the injection hole 107, and pressure loss occurs due to the rotation of the fuel in the injection hole 107, so that the fuel is difficult to peel off from the inner wall of the injection hole 107.
  • this problem can be solved only by disposing the fuel flow suppressing portion 22 around the injection hole 21.
  • the fuel flow Fuel can be allowed to flow in from the end on the outer diameter side of the injection hole 21 only by adjusting the arrangement of the suppression portion 22 and the fuel introduction portion 23. Therefore, the degree of freedom in designing the injection hole 21 can be improved while ensuring the atomization level of the injected fuel.
  • the fuel flow suppression units 12 and 22 and the fuel introduction units 13 and 23 are arranged for all the injection holes 11 and 21 provided in the injection hole plate 10.
  • the present invention is not limited to this.
  • the fuel flow suppressing portion and the fuel introducing portion may be arranged only around some of the injection holes provided in the injection hole plate.
  • the present invention is not limited to this, and can be widely applied to injection holes of any shape including a circular shape.
  • the fuel injection valve 1 in which fuel is supplied from the outer diameter side of the nozzle hole plate 10 toward the center side when the valve body 4 is opened has been described as an example.
  • the present invention is not limited to this, and can be applied to a fuel injection valve of a type in which fuel is supplied from an arbitrary direction to an injection hole plate having an arbitrary shape. That is, according to the present invention, in various fuel injection valves having different valve seat positions, fuel supply directions, injection hole shapes and arrangements, etc., the fuel flow to the injection holes depends on the arrangement of the fuel flow suppression unit and the fuel introduction unit. The purpose is to adjust the inflow direction.
  • Fuel injection valve 2 Housing 3 Valve seat 4 Valve body 5 Fuel passage 6 Fuel supply space 10 Injection hole plate 10a Inner side surface 10b Outer side surface 11, 21 Injection hole 11a Fuel inflow port 11b Fuel outflow port 12 (12A, 12B), 22 (22A, 22B, 22C) Fuel flow suppression unit 13 (13A, 13B), 23 (23A, 23B, 23C, 23D) Fuel introduction unit G1, G2, G1in, G2in, G1out, G2out injection hole group

Abstract

The purpose of the present invention is to reduce the thickness of fuel inside an injection hole, and promote atomization of injected fuel. A plurality of injection holes (11) having a fuel-inflow orifice (11a) and a fuel-outflow orifice (11b) are provided on an injection-hole plate (10) of a fuel-injection valve (1). A fuel flow inhibitor (12) is provided on an inside surface (10a) of the injection-hole plate (10), and arranged so as to surround the fuel-inflow orifices (11a) excluding some of the circumference of the fuel inflow orifices (11a) to be used as a fuel-introduction unit (13). The fuel flow inhibitor (12) is formed of dimples having a plurality of recesses and projections. This inhibits the flow of fuel flowing into the injection holes (11) at the position of the fuel flow inhibitor (12) by adding resistance to the flow of fuel, and correspondingly promotes the flow of fuel flowing into the injection holes (11) at the position of the fuel-introduction unit (13). Therefore, it is possible to cause fuel to flow to the injection holes (11) from a desired position where atomization is facilitated.

Description

燃料噴射弁Fuel injection valve
 本発明は、燃料を噴射する燃料噴射弁に関し、特に、複数の噴射孔を備えた燃料噴射弁に関する。 The present invention relates to a fuel injection valve that injects fuel, and particularly to a fuel injection valve having a plurality of injection holes.
 従来技術として、例えば特許文献1(日本特開2010-65541号公報)に開示されているように、複数の噴射孔を備えた燃料噴射弁が知られている。従来技術では、噴射弁本体の先端部に円形状の噴孔プレートを設け、この噴孔プレートに各噴射孔を形成している。各噴射孔は、噴孔プレートの中心に対して放射状に配置され、更に、個々の噴射孔の軸線は、噴孔プレートの中心軸線に対して、中心から外径側に向けて傾斜している。即ち、噴孔プレートの径方向において、個々の噴射孔の流出口は流入口よりも外側に開口している。これにより、従来技術では、噴射燃料の微粒化を促進するようにしている。
 尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
As a conventional technique, for example, as disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2010-65541), a fuel injection valve having a plurality of injection holes is known. In the prior art, a circular injection hole plate is provided at the tip of the injection valve body, and each injection hole is formed in this injection hole plate. Each injection hole is arranged radially with respect to the center of the injection hole plate, and the axis of each injection hole is inclined from the center toward the outer diameter side with respect to the center axis of the injection hole plate. . That is, in the radial direction of the nozzle hole plate, the outlets of the individual nozzle holes are opened outside the inlet. Thereby, in the prior art, atomization of the injected fuel is promoted.
The applicant has recognized the following documents including the above-mentioned documents as related to the present invention.
日本特開2010-65541号公報Japanese Unexamined Patent Publication No. 2010-65541 国際公開第2004/109095号International Publication No. 2004/109095 日本特開2008-231961号公報Japanese Unexamined Patent Publication No. 2008-231961 日本特開2002-168163号公報Japanese Unexamined Patent Publication No. 2002-168163
 ところで、従来技術では、噴射燃料の微粒化を促進するために、各噴射孔を噴孔プレートの中心から外径側に向けて傾斜させる構成としている。しかし、このように構成しても、燃料の噴射時には、噴射孔の流入口に対して全周から燃料が流入するので、噴射孔の中央部では、燃料の流れ同士が衝突し易くなる。この衝突は、噴射孔から流出する燃料の流れを抑制し、噴射孔内での燃料の厚み(所謂バルク厚)を増加させる傾向がある。一般に、噴射燃料の平均粒径は、バルク厚が増加するにつれて大きくなる。このため、従来技術では、バルク厚の増加により噴射燃料の微粒化が阻害されるという問題がある。 By the way, in the prior art, in order to promote atomization of the injected fuel, each injection hole is inclined from the center of the injection hole plate toward the outer diameter side. However, even with this configuration, when fuel is injected, the fuel flows from the entire circumference into the inlet of the injection hole, so that the fuel flows easily collide with each other at the center of the injection hole. This collision tends to suppress the flow of fuel flowing out from the injection hole and increase the thickness of fuel in the injection hole (so-called bulk thickness). In general, the average particle size of the injected fuel increases as the bulk thickness increases. For this reason, in the prior art, there is a problem that atomization of the injected fuel is hindered due to an increase in bulk thickness.
 本発明は、上述のような課題を解決するためになされたもので、本発明の目的は、噴射孔内での燃料の厚みを減少させ、噴射燃料の微粒化を促進することが可能な燃料噴射弁を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to reduce the thickness of the fuel in the injection hole and promote the atomization of the injected fuel. It is to provide an injection valve.
 第1の発明は、弁体の開弁時に燃料が供給される燃料供給空間に面した内側面と外部に面した外側面とを有する噴孔プレートと、
 前記噴孔プレートに貫通孔として設けられ、前記噴孔プレートの内側面に開口する燃料流入口と前記外側面に開口する燃料流出口とを有する複数の噴射孔と、
 前記噴孔プレートの内側面に設けられた凹凸部であって、前記噴射孔の燃料流入口の全周のうち燃料導入部となる一部を除いて当該燃料流入口の少なくとも半周以上を取囲むように配置された燃料流抑制部と、
 を備えることを特徴とする。
According to a first aspect of the present invention, there is provided an injection hole plate having an inner surface facing a fuel supply space to which fuel is supplied when the valve body is opened and an outer surface facing the outside,
A plurality of injection holes provided as through-holes in the nozzle hole plate, each having a fuel inlet opening on an inner surface of the nozzle hole plate and a fuel outlet opening on the outer surface;
An uneven portion provided on the inner side surface of the injection hole plate, which surrounds at least a half or more of the fuel inlet except for a part of the entire circumference of the fuel inlet of the injection hole serving as a fuel introduction part. A fuel flow restraining portion arranged as follows,
It is characterized by providing.
 第2の発明によると、前記燃料流抑制部は、前記燃料流入口の全周のうち前記燃料供給空間に供給された燃料が最短距離で到達する部分を除いて当該燃料流入口を取囲むように配置し、前記燃料導入部は、前記燃料供給空間に供給される燃料が最短距離で到達する部分に配置している。 According to a second aspect of the invention, the fuel flow suppressing portion surrounds the fuel inlet except for a portion of the entire circumference of the fuel inlet that the fuel supplied to the fuel supply space reaches in the shortest distance. The fuel introduction part is arranged at a portion where the fuel supplied to the fuel supply space reaches the shortest distance.
 第3の発明は、環状の弁座に離着座する弁体と、
 前記弁座の内周側に形成され、前記弁体の開弁時に前記弁座の外周側から燃料が供給される燃料供給空間と、
 円形状の板材により形成され、前記燃料供給空間に面した内側面と外部に面した外側面とを有する噴孔プレートと、
 前記噴孔プレートに貫通孔として設けられ、前記噴孔プレートの内側面に開口する燃料流入口と前記外側面に開口する燃料流出口とを有する複数の噴射孔と、
 前記噴孔プレートの内側面に設けられた凹凸部であって、前記噴射孔の燃料流入口の全周のうち前記噴孔プレートの中心から最も離れた部分を除いて当該燃料流入口を取囲むように配置された燃料流抑制部と、
 前記燃料流入口の全周のうち前記燃料流抑制部を配置していない部分により構成された燃料導入部と、
 を備えることを特徴とする。
A third aspect of the invention is a valve body that is attached to and detached from an annular valve seat;
A fuel supply space formed on the inner peripheral side of the valve seat, to which fuel is supplied from the outer peripheral side of the valve seat when the valve body is opened;
An injection hole plate formed of a circular plate material, and having an inner surface facing the fuel supply space and an outer surface facing the outside;
A plurality of injection holes provided as through-holes in the nozzle hole plate, each having a fuel inlet opening on an inner surface of the nozzle hole plate and a fuel outlet opening on the outer surface;
An uneven portion provided on the inner side surface of the nozzle hole plate, which surrounds the fuel inlet except for a portion of the entire circumference of the fuel inlet of the injection hole that is farthest from the center of the nozzle hole plate. A fuel flow restraining portion arranged as follows,
A fuel introduction part constituted by a part where the fuel flow suppression part is not arranged in the entire circumference of the fuel inlet;
It is characterized by providing.
 第4の発明によると、前記噴射孔の燃料流入口は、前記噴孔プレートの径方向に細長く延びた楕円状または長円状に形成している。 According to a fourth aspect of the invention, the fuel inlet of the injection hole is formed in an elliptical shape or an oval shape that extends in the radial direction of the injection hole plate.
 第5の発明によると、前記複数の噴射孔は、前記噴孔プレートの中心に対して放射状に配置している。 According to the fifth invention, the plurality of injection holes are arranged radially with respect to the center of the injection hole plate.
 第6の発明によると、前記複数の噴射孔は、前記噴孔プレートの中心を通って径方向に延びる1つの直線に対して対称に配置している。 According to the sixth invention, the plurality of injection holes are arranged symmetrically with respect to one straight line extending in the radial direction through the center of the injection hole plate.
 第7の発明は、前記燃料流抑制部を少なくとも2つ以上の燃料流入口の周囲に跨って連続的に延びた凹凸部として形成している。 In the seventh invention, the fuel flow suppressing portion is formed as a concavo-convex portion continuously extending over the periphery of at least two fuel inflow ports.
 第8の発明によると、前記燃料流抑制部は、複数の凹部及び凸部が規則的に配置されたディンプルにより構成している。 According to the eighth aspect of the invention, the fuel flow suppressing portion is constituted by dimples in which a plurality of concave portions and convex portions are regularly arranged.
 第1の発明によれば、燃料が噴射孔に流入するときには、燃料流抑制部の位置で燃料の流れに抵抗を付加し、噴射孔に流入する燃料の流れを阻害することができる。これにより、燃料導入部の位置から噴射孔に流入する燃料の流れを相対的に促進することができる。このため、噴射孔の全周に対する燃料流抑制部の形成位置を適切に調整すれば、燃料が噴射孔の内壁面から剥離し易くなるような所望の位置で燃料を噴射孔に流入させることができる。従って、噴孔プレートの内側面に凹凸状の燃料流抑制部を形成するだけで、噴射孔内での燃料の厚みを減少させて、燃料の微粒化を促進することができ、微粒化能力が高い噴孔プレートを低コストで容易に形成することができる。また、燃料流抑制部により噴射孔に対する燃料の流入位置(流入方向)を調整できるので、噴射孔の配置を自由に設定することができ、設計自由度を向上させることができる。 According to the first invention, when the fuel flows into the injection hole, resistance can be added to the flow of the fuel at the position of the fuel flow suppressing portion, and the flow of the fuel flowing into the injection hole can be inhibited. Thereby, the flow of the fuel flowing into the injection hole from the position of the fuel introduction part can be relatively accelerated. For this reason, by appropriately adjusting the formation position of the fuel flow suppressing portion with respect to the entire circumference of the injection hole, the fuel can be caused to flow into the injection hole at a desired position so that the fuel is easily separated from the inner wall surface of the injection hole. it can. Therefore, only by forming the uneven fuel flow suppression portion on the inner surface of the nozzle hole plate, the thickness of the fuel in the injection hole can be reduced and fuel atomization can be promoted, and the atomization ability can be increased. A high injection hole plate can be easily formed at low cost. In addition, since the fuel inflow position (inflow direction) with respect to the injection hole can be adjusted by the fuel flow suppression unit, the arrangement of the injection holes can be freely set, and the degree of freedom in design can be improved.
 第2の発明によれば、弁体の開弁時には、燃料供給空間に供給された燃料が燃料導入部に最短距離で到達するので、この燃料を噴射孔に円滑に流入させることができる。これにより、燃料流抑制部から噴射孔に流入する燃料の流れを更に抑制し、燃料の流入を燃料導入部に集中させることができる。 According to the second aspect of the invention, when the valve element is opened, the fuel supplied to the fuel supply space reaches the fuel introduction portion in the shortest distance, so that the fuel can smoothly flow into the injection hole. Thereby, the flow of the fuel flowing into the injection hole from the fuel flow suppressing portion can be further suppressed, and the fuel inflow can be concentrated on the fuel introducing portion.
 第3の発明によれば、噴射孔の燃料流入口の全周のうち、噴孔プレートの径方向において最外径側に位置する燃料導入部から噴射孔内に燃料を流入させることができる。これにより、噴孔プレートの外径側から供給された燃料が燃料流入口の外径側に流入することになるので、噴射孔の入口近傍で燃料の流れを外径側に向けて急激に屈曲させることができ、噴射孔内での燃料の厚みを減少させて、燃料の微粒化を促進することができる。従って、噴孔プレートの内側面に凹凸状の燃料流抑制部を形成するだけで、微粒化能力が高い噴孔プレートを低コストで容易に形成することができ、また、噴射孔の設計自由度を向上させることができる。 According to the third invention, fuel can be caused to flow into the injection hole from the fuel introduction portion located on the outermost diameter side in the radial direction of the injection hole plate in the entire circumference of the fuel inlet of the injection hole. As a result, the fuel supplied from the outer diameter side of the nozzle hole plate flows into the outer diameter side of the fuel inlet, so that the fuel flow is bent sharply toward the outer diameter near the inlet of the injection hole. The fuel can be atomized by reducing the thickness of the fuel in the injection hole. Therefore, it is possible to easily form an injection hole plate with high atomization capability at low cost simply by forming an uneven fuel flow suppression portion on the inner surface of the injection hole plate, and the degree of freedom in designing the injection hole. Can be improved.
 第4の発明によれば、楕円状または長円状に形成した噴射孔の燃料流入口に対して、長手方向の端部(噴孔プレートの外径側)から燃料を集中的に流入させることができ、噴射孔の内壁面のうち外径側の部位から燃料を効率よく剥離させることができる。 According to the fourth aspect of the invention, the fuel is caused to flow intensively from the end portion in the longitudinal direction (the outer diameter side of the injection hole plate) with respect to the fuel inlet of the injection hole formed in an elliptical shape or an oval shape. The fuel can be efficiently peeled from the outer diameter side portion of the inner wall surface of the injection hole.
 第5の発明によれば、放射状に配置した各噴射孔の燃料流入口に対して、それぞれ長手方向の端部(噴孔プレートの外径側)から燃料を集中的に流入させることができ、噴射孔の内壁面のうち外径側の部位から燃料を効率よく剥離させることができる。 According to the fifth aspect of the present invention, fuel can be intensively introduced from the end portion in the longitudinal direction (outer diameter side of the nozzle hole plate) with respect to the fuel inlet of each nozzle hole arranged radially, The fuel can be efficiently separated from the outer diameter side portion of the inner wall surface of the injection hole.
 第6の発明によれば、燃料供給空間内での燃料の流れ方向(噴孔プレートの径方向)に対して噴射孔の長手方向が平行ではない場合でも、燃料流抑制部及び燃料導入部の配置を調整するだけで、噴射孔の外径側の端部から燃料を流入させることができる。従って、噴射燃料の微粒化レベルを確保しつつ、噴射孔の設計自由度を向上させることができる。 According to the sixth aspect of the invention, even when the longitudinal direction of the injection hole is not parallel to the flow direction of fuel in the fuel supply space (the radial direction of the injection hole plate), the fuel flow suppression unit and the fuel introduction unit By adjusting the arrangement, fuel can be introduced from the end of the injection hole on the outer diameter side. Therefore, the degree of freedom in designing the injection hole can be improved while ensuring the atomization level of the injected fuel.
 第7の発明によれば、燃料流抑制部を、少なくとも2つ以上の燃料流入口の周囲に跨るように形成したので、多数の噴射孔に対して燃料流抑制部を効率よく形成することができ、また、各噴射孔に対する燃料流抑制部及び燃料導入部の位置合わせを精度よく行うことができる。 According to the seventh invention, since the fuel flow suppressing portion is formed so as to straddle the periphery of at least two or more fuel inlets, the fuel flow suppressing portion can be efficiently formed for a large number of injection holes. In addition, the fuel flow suppressing portion and the fuel introducing portion can be accurately aligned with respect to each injection hole.
 第8の発明によれば、燃料流抑制部を、複数の凹部及び凸部が規則的に配置されたディンプルにより構成したので、例えば燃料流抑制部の形成面積に対する燃料流の抑制効果等を容易に推定することができ、噴孔プレートの設計を効率よく行うことができる。 According to the eighth aspect of the invention, since the fuel flow suppressing portion is constituted by dimples in which a plurality of concave portions and convex portions are regularly arranged, for example, the effect of suppressing the fuel flow with respect to the formation area of the fuel flow suppressing portion can be easily achieved. Therefore, the nozzle plate can be designed efficiently.
本発明の実施の形態1による燃料噴射弁を示す断面図である。It is sectional drawing which shows the fuel injection valve by Embodiment 1 of this invention. 図1中の噴孔プレートを単体で示す断面図である。It is sectional drawing which shows the nozzle hole plate in FIG. 噴孔プレートを図2中の矢示A方向からみた平面図である。It is the top view which looked at the nozzle hole plate from the arrow A direction in FIG. 1つの噴射孔を拡大して示す図3中の要部拡大図である。It is a principal part enlarged view in FIG. 3 which expands and shows one injection hole. 図5は、燃料噴射時に生じるバルクを示す説明図である。FIG. 5 is an explanatory diagram showing a bulk generated during fuel injection. 本発明の実施の形態2において、噴孔プレートを図3と同様位置からみた平面図である。In Embodiment 2 of this invention, it is the top view which looked at the nozzle hole plate from the same position as FIG. 1つの噴射孔を拡大して示す図6中の要部拡大図である。It is a principal part enlarged view in FIG. 6 which expands and shows one injection hole. 本発明の実施の形態1に対する比較例として採用した燃料噴射弁の先端部を示す要部拡大図である。It is a principal part enlarged view which shows the front-end | tip part of the fuel injection valve employ | adopted as a comparative example with respect to Embodiment 1 of this invention. 図8中の噴射孔を矢示B-B方向からみた平面図である。FIG. 9 is a plan view of the injection hole in FIG. 8 as viewed from the direction of arrow BB. 他の比較例における噴孔プレートを示す平面図である。It is a top view which shows the nozzle hole plate in another comparative example. 本発明の実施の形態2と同様の噴射孔において、燃料流抑制部が存在しない場合を比較例として示す図7と同様の要部拡大図である。FIG. 8 is an enlarged view of a main part similar to FIG. 7 illustrating, as a comparative example, a case where there is no fuel flow suppression unit in the same injection hole as in the second embodiment of the present invention.
実施の形態1.
[実施の形態1の構成]
 以下、図1及び図5を参照しつつ、本発明の実施の形態1について説明する。図1は、本発明の実施の形態1による燃料噴射弁を示す断面図である。なお、図1は、燃料噴射弁の先端部のみを示している。この図に示すように、燃料噴射弁1は、公知のニードル弁等により構成され、ハウジング2、弁座3、弁体4、噴孔プレート10等を備えている。ハウジング2は、金属材料等により段付き円筒状に形成され、少なくとも先端部が開口している。ハウジング2の先端部の内周側には、弁体4が離着座する環状の弁座3が設けられている。また、ハウジング2の内部には棒状の弁体4が設けられている。
Embodiment 1 FIG.
[Configuration of Embodiment 1]
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 5. FIG. 1 is a cross-sectional view showing a fuel injection valve according to Embodiment 1 of the present invention. FIG. 1 shows only the tip of the fuel injection valve. As shown in this figure, the fuel injection valve 1 is composed of a known needle valve or the like, and includes a housing 2, a valve seat 3, a valve body 4, an injection hole plate 10, and the like. The housing 2 is formed in a stepped cylindrical shape with a metal material or the like, and at least a tip portion is open. An annular valve seat 3 on which the valve body 4 is seated is attached to the inner peripheral side of the distal end portion of the housing 2. A rod-shaped valve body 4 is provided inside the housing 2.
 弁体4は、軸方向に変位することにより弁座3に離着座するもので、ハウジング2の基端側に配置されたソレノイド等のアクチュエータにより駆動される。また、ハウジング2と弁体4との間には、円筒状の隙間である燃料通路5が設けられ、燃料通路5は、弁座3の外周側に位置している。燃料通路5には、ハウジング2の基端側に接続された燃料配管等から燃料が加圧状態で流入する。一方、弁体4の先端面と噴孔プレート10との間には、扁平な円柱状の空間である燃料供給空間6が設けられ、燃料供給空間6は、弁座3の内周側に位置している。燃料供給空間6には、弁体4の開弁時に燃料通路5から燃料が供給される。なお、弁座3、弁体4、燃料供給空間6及び噴孔プレート10は、互いに同軸に配置されている。また、噴孔プレート10については後述する。 The valve body 4 is separated from and seated on the valve seat 3 by being displaced in the axial direction, and is driven by an actuator such as a solenoid disposed on the base end side of the housing 2. Further, a fuel passage 5 that is a cylindrical gap is provided between the housing 2 and the valve body 4, and the fuel passage 5 is located on the outer peripheral side of the valve seat 3. Fuel flows into the fuel passage 5 in a pressurized state from a fuel pipe or the like connected to the base end side of the housing 2. On the other hand, a fuel supply space 6, which is a flat cylindrical space, is provided between the distal end surface of the valve body 4 and the nozzle hole plate 10, and the fuel supply space 6 is positioned on the inner peripheral side of the valve seat 3. is doing. Fuel is supplied to the fuel supply space 6 from the fuel passage 5 when the valve body 4 is opened. The valve seat 3, the valve body 4, the fuel supply space 6, and the nozzle hole plate 10 are arranged coaxially with each other. The nozzle hole plate 10 will be described later.
 次に、燃料噴射弁1の基本的な動作について説明する。まず、図1に示す閉弁状態では、弁体4の先端部が弁座3に着座しているので、燃料通路5と燃料供給空間6とは互いに遮断されている。このため、燃料通路5内の燃料は燃料供給空間6に流入せず、燃料噴射は停止した状態となっている。一方、燃料噴射弁1の開弁時には、弁体4がハウジング2内で基端側に向けて変位し、弁座3から離座する。これにより、弁座3と弁体4との間には環状の隙間が形成されるので、燃料通路5内の燃料は、この隙間を通じて燃料供給空間6に外径側から流入し、当該空間内を径方向に流通する。そして、燃料供給空間6に流入した燃料は、噴孔プレート10の各噴射孔11から外部に向けて噴射される。 Next, the basic operation of the fuel injection valve 1 will be described. First, in the valve closed state shown in FIG. 1, the tip of the valve body 4 is seated on the valve seat 3, so that the fuel passage 5 and the fuel supply space 6 are blocked from each other. For this reason, the fuel in the fuel passage 5 does not flow into the fuel supply space 6, and the fuel injection is stopped. On the other hand, when the fuel injection valve 1 is opened, the valve body 4 is displaced toward the proximal end in the housing 2 and is separated from the valve seat 3. As a result, an annular gap is formed between the valve seat 3 and the valve body 4, so that the fuel in the fuel passage 5 flows into the fuel supply space 6 from the outer diameter side through this gap, Circulate in the radial direction. Then, the fuel that has flowed into the fuel supply space 6 is injected outward from each injection hole 11 of the injection hole plate 10.
 次に、図1乃至図4を参照して、本実施の形態の特徴事項である噴孔プレート10について説明する。図2は、図1中の噴孔プレートを単体で示す断面図であり、図3は、噴孔プレートを図2中の矢示A方向からみた平面図である。また、図4は、1つの噴射孔を拡大して示す図3中の要部拡大図である。まず、噴孔プレート10は、図1乃至図3に示すように、円形状の金属板等により形成され、ハウジング2の先端部を覆う位置で当該先端部に取付けられている。また、噴孔プレート10は、ハウジング2の内部(燃料供給空間6)に面した内側面10aと、ハウジング2の外部に面した外側面10bとを有している。なお、本実施の形態では、噴孔プレート10の周縁部に短尺な筒状の取付部Fを形成し、この取付部Fをハウジング2の先端部外周に取付ける場合を例示した。しかし、本発明では、例えば取付部Fをもたない噴孔プレート10をハウジング2の先端面に固着する構成としてもよい。 Next, with reference to FIGS. 1 to 4, the nozzle hole plate 10 that is a feature of the present embodiment will be described. 2 is a cross-sectional view showing the nozzle hole plate in FIG. 1 alone, and FIG. 3 is a plan view of the nozzle hole plate as viewed from the direction of arrow A in FIG. FIG. 4 is an enlarged view of a main part in FIG. 3 showing one injection hole in an enlarged manner. First, as shown in FIGS. 1 to 3, the nozzle hole plate 10 is formed of a circular metal plate or the like, and is attached to the tip portion at a position covering the tip portion of the housing 2. The nozzle hole plate 10 has an inner side surface 10 a facing the inside of the housing 2 (fuel supply space 6) and an outer side surface 10 b facing the outside of the housing 2. In the present embodiment, a case where a short cylindrical mounting portion F is formed on the peripheral edge portion of the nozzle hole plate 10 and this mounting portion F is mounted on the outer periphery of the distal end portion of the housing 2 is exemplified. However, in the present invention, for example, the nozzle hole plate 10 having no attachment portion F may be fixed to the front end surface of the housing 2.
 噴孔プレート10には、燃料を噴射する複数の噴射孔11が設けられている。各噴射孔11は、噴孔プレート10を軸方向に貫通する貫通孔として形成され、図3に示すように、噴孔プレート10の内側面10aに開口する燃料流入口11aと、噴孔プレート10の外側面10bに開口する燃料流出口11bとを有している。また、各噴射孔11は、燃料流入口11aよりも燃料流出口11bの方が噴孔プレート10の中心Oから遠くなるように、噴孔プレート10の外径側に向けて傾斜している。さらに、各噴射孔11は、噴孔プレート10の中心Oに対して放射状に配置されると共に、2重の同心円状に並べて配置されている。また、噴射孔11の燃料流入口11a及び燃料流出口11bは、図3及び図4に示すように、楕円状または長円状に形成され、噴孔プレート10の径方向に細長く延びている。即ち、燃料流入口11a及び燃料流出口11bの長軸の伸長方向は、噴孔プレート10の径方向と一致している。 The injection hole plate 10 is provided with a plurality of injection holes 11 for injecting fuel. Each injection hole 11 is formed as a through-hole penetrating the nozzle hole plate 10 in the axial direction. As shown in FIG. 3, the fuel inlet 11 a that opens on the inner surface 10 a of the nozzle hole plate 10, and the nozzle hole plate 10. And a fuel outlet 11b that opens to the outer surface 10b. Each injection hole 11 is inclined toward the outer diameter side of the injection hole plate 10 such that the fuel outlet 11b is farther from the center O of the injection hole plate 10 than the fuel injection hole 11a. Further, the injection holes 11 are arranged radially with respect to the center O of the injection hole plate 10 and are arranged in a double concentric manner. Further, as shown in FIGS. 3 and 4, the fuel inlet 11 a and the fuel outlet 11 b of the injection hole 11 are formed in an elliptical shape or an oval shape, and are elongated in the radial direction of the injection hole plate 10. That is, the extending directions of the major axes of the fuel inlet 11 a and the fuel outlet 11 b coincide with the radial direction of the nozzle hole plate 10.
 一方、噴孔プレート10の内側面10aには、図3及び図4に示すように、燃料流抑制部12と燃料導入部13とが設けられている。燃料流抑制部12は凹凸部により形成され、好ましくは、複数の凹部及び凸部が交互に規則的に配置されたディンプルとして形成されている。また、燃料流抑制部12は、燃料流入口11aの全周のうち、燃料導入部13となる一部を除いて燃料流入口11aの少なくとも半周以上(好ましくは、3/4周以上)の部分を取囲むように配置されている。これにより、燃料流抑制部12は、内側面10aの近傍で燃料の流れに抵抗を付加し、燃料導入部13以外の位置(方向)から噴射孔11に流入する燃料の流れを抑制(阻害)するものである。 On the other hand, as shown in FIGS. 3 and 4, a fuel flow suppressing portion 12 and a fuel introducing portion 13 are provided on the inner side surface 10 a of the nozzle hole plate 10. The fuel flow suppressing portion 12 is formed by a concavo-convex portion, and is preferably formed as a dimple in which a plurality of concave portions and convex portions are alternately arranged regularly. In addition, the fuel flow suppressing portion 12 is a portion of at least a half or more (preferably 3/4 or more) of the fuel inlet 11a, except for a part of the entire circumference of the fuel inlet 11a, which becomes the fuel introduction portion 13. It is arranged so that it surrounds. Thereby, the fuel flow suppression unit 12 adds resistance to the fuel flow in the vicinity of the inner surface 10a, and suppresses (inhibits) the flow of fuel flowing into the injection hole 11 from a position (direction) other than the fuel introduction unit 13. To do.
 燃料導入部13は、燃料流入口11aの全周のうち、燃料流抑制部12を配置していない部分(好ましくは、1/4周未満の部分)に配置され、噴孔プレート10の通常の内側面10aにより構成されている。燃料導入部13は、燃料流抑制部12の機能を利用して特定の位置(方向)から噴射孔11に燃料を導入するものである。詳しく述べると、燃料導入部13の位置では、燃料流抑制部12の形成部位と比較して燃料の流れが相対的に円滑となるので、噴射孔11に流入する燃料の流れを促進することができる。 The fuel introduction part 13 is arranged in a part (preferably, a part less than ¼ circumference) of the entire circumference of the fuel inflow port 11a where the fuel flow suppression part 12 is not arranged. It is comprised by the inner surface 10a. The fuel introduction unit 13 introduces fuel into the injection hole 11 from a specific position (direction) using the function of the fuel flow suppression unit 12. More specifically, since the fuel flow is relatively smooth at the position of the fuel introduction portion 13 as compared with the portion where the fuel flow suppression portion 12 is formed, the flow of the fuel flowing into the injection hole 11 can be promoted. it can.
 次に、燃料流抑制部12及び燃料導入部13の配置について説明する。まず、本発明の作用効果を明確にするために、図8乃至図10を参照して、実施の形態1に対する比較例について説明する。図8は、比較例として採用した燃料噴射弁100の先端部を示す要部拡大図であり、図9は、図8中の噴射孔107を矢示B-B方向からみた平面図である。これらの図に示すように、燃料噴射弁100は、ハウジング101、弁座102、弁体103、燃料通路104、燃料供給空間105、噴孔プレート106、噴射孔107を備えている。そして、燃料噴射弁100の開弁時には、弁体103と弁座102との間に環状の隙間が形成され、燃料通路104内の燃料が燃料供給空間105に外径側から流入する。そして、この燃料は、燃料供給空間105内を径方向に流通し(横流れ)、各噴射孔107から外部に噴射される。ここまでの構成及び作動は、燃料噴射弁1と同様である。 Next, the arrangement of the fuel flow suppression unit 12 and the fuel introduction unit 13 will be described. First, in order to clarify the effect of the present invention, a comparative example with respect to the first embodiment will be described with reference to FIGS. FIG. 8 is an enlarged view of the main part showing the tip of the fuel injection valve 100 employed as a comparative example, and FIG. 9 is a plan view of the injection hole 107 in FIG. 8 as viewed from the direction of arrows BB. As shown in these drawings, the fuel injection valve 100 includes a housing 101, a valve seat 102, a valve body 103, a fuel passage 104, a fuel supply space 105, an injection hole plate 106, and an injection hole 107. When the fuel injection valve 100 is opened, an annular gap is formed between the valve body 103 and the valve seat 102, and the fuel in the fuel passage 104 flows into the fuel supply space 105 from the outer diameter side. The fuel flows in the radial direction in the fuel supply space 105 (lateral flow), and is injected to the outside from each injection hole 107. The configuration and operation so far are the same as those of the fuel injection valve 1.
 このような構成において、噴射燃料を微粒化させるためには、噴射孔107内で燃料を壁面から剥離させるのが好ましい。このため、上記比較例では、噴射孔107を、燃料の流入口よりも流出口が外径側となるように傾斜させて形成し、噴孔プレート106の外径側から燃料供給空間105に流入した燃料の流れを、噴射孔107の流入口で外径側に急激に屈曲させる構成としている。この構成によれば、図9に示すように、噴射孔107の内壁面のうち、噴孔プレート106の内径側に位置する部分から燃料の流れを剥離させることができ、ある程度の微粒化を実現することができる。しかし、このように構成しても、燃料供給空間105内の燃料は、噴射孔107の流入口に対して全周から流入するので、噴射孔の中央部では燃料流の衝突が生じることになり、これによって噴射孔107内での燃料の厚み(バルク厚)が増加し、噴射燃料の微粒化が阻害される。 In such a configuration, in order to atomize the injected fuel, the fuel is preferably separated from the wall surface in the injection hole 107. For this reason, in the comparative example, the injection hole 107 is formed so as to be inclined so that the outflow port is on the outer diameter side of the fuel inflow port, and flows into the fuel supply space 105 from the outer diameter side of the injection hole plate 106. The fuel flow is bent sharply toward the outer diameter side at the inlet of the injection hole 107. According to this configuration, as shown in FIG. 9, the flow of fuel can be separated from the inner wall surface of the injection hole 107 located on the inner diameter side of the injection hole plate 106, and a certain degree of atomization is realized. can do. However, even in such a configuration, the fuel in the fuel supply space 105 flows from the entire circumference to the inlet of the injection hole 107, so that the fuel flow collides at the center of the injection hole. As a result, the thickness (bulk thickness) of the fuel in the injection hole 107 increases, and atomization of the injected fuel is hindered.
 また、図10は、他の比較例における噴孔プレートを示す平面図である。この図に示すように、他の比較例では、噴孔プレート106の内側面に放射状の突起(仕切り)108を設け、噴射孔107に流入する燃料の流れを突起108により整流する構成としている。しかし、この場合にも、個々の噴射孔107では、全周から噴射孔内に燃料が流入することになるので、前述の理由により微粒化が阻害される。また、他の比較例では、複数の突起108を各噴射孔107に対して正確に位置合わせした状態で噴孔プレート106に固着する必要があり、この固着加工に起因する加工精度のばらつきやコストアップが生じ易い。更に言えば、上述した2つの比較例は何れも、燃料噴射弁の噴射方向や噴霧の広がり状態等を調整するために噴射孔の位置を変更した場合に、各噴射孔への燃料の流入状態が変化し、微粒化の度合いが変動し易い。即ち、上記各比較例の構成では、噴射燃料を安定的に微粒化しようとすると、噴射自由度(噴射孔の設計自由度)が低下する。 FIG. 10 is a plan view showing an injection hole plate in another comparative example. As shown in this figure, in another comparative example, radial protrusions (partitions) 108 are provided on the inner surface of the injection hole plate 106, and the flow of fuel flowing into the injection holes 107 is rectified by the protrusions 108. However, also in this case, in each of the injection holes 107, the fuel flows into the injection holes from the entire periphery, so that atomization is hindered for the above-described reason. Further, in another comparative example, it is necessary to fix the plurality of protrusions 108 to the injection hole plate 106 in a state where the protrusions 108 are accurately aligned with respect to the injection holes 107. Up is easy to occur. Furthermore, in both of the above-mentioned two comparative examples, when the position of the injection hole is changed in order to adjust the injection direction of the fuel injection valve, the spread state of the spray, etc., the state of the fuel flowing into each injection hole Changes and the degree of atomization tends to fluctuate. That is, in the configuration of each of the comparative examples, when the injected fuel is stably atomized, the degree of freedom in injection (the degree of freedom in designing the injection hole) is lowered.
 これに対し、本実施の形態では、図3及び図4に示すように、各噴射孔11の燃料流入口11aの全周のうち、噴孔プレート10の中心Oから最も離れた部分を除いて燃料流抑制部12を配置し、燃料流入口11aの全周のうち前記中心Oから最も離れた部分に燃料導入部13を配置する構成としている。即ち、燃料導入部13が配置された部分は、燃料流入口11aの全周のうち噴孔プレート10の最も外径側に位置する部分であり、この部分は、弁体4の開弁時に外径側の弁座3から燃料供給空間6に供給される燃料が燃料流入口11aに対して最短距離で到達する部分に相当している。 On the other hand, in the present embodiment, as shown in FIGS. 3 and 4, the portion farthest from the center O of the injection hole plate 10 is excluded from the entire circumference of the fuel inlet 11 a of each injection hole 11. The fuel flow suppressing portion 12 is arranged, and the fuel introducing portion 13 is arranged at a portion farthest from the center O in the entire circumference of the fuel inflow port 11a. That is, the portion where the fuel introduction portion 13 is disposed is a portion located on the outermost diameter side of the nozzle hole plate 10 in the entire circumference of the fuel inlet 11a, and this portion is outside when the valve body 4 is opened. This corresponds to the portion where the fuel supplied from the radial valve seat 3 to the fuel supply space 6 reaches the fuel inlet 11a in the shortest distance.
 上記構成によれば、個々の噴射孔11では、燃料流抑制部12の位置から噴射孔11に流入する燃料の流れが阻害され、燃料導入部13の位置から噴射孔11に流入する燃料の流れが相対的に促進される。しかも、弁体4の開弁時には、外径側の弁座3から燃料供給空間6に供給された燃料が燃料導入部13に最短距離で到達するので、この燃料は、燃料導入部13の位置、即ち、燃料流入口11aの長手方向(長軸方向)の端部から、噴射孔11の外径側に流入し易くなる。従って、他の部位(燃料流抑制部12)から噴射孔11に流入する燃料の流れは更に抑制され、噴射孔11に流入する燃料の大部分は燃料導入部13に集中する。即ち、噴孔プレート10の外径側から供給された燃料が燃料流入口11aの外径側に流入することになるので、噴射孔11の入口近傍で燃料の流れを外径側に向けて急激に屈曲させることができる。この結果、本実施の形態では、図4に示すように、噴射孔11の内壁面のうち噴孔プレート10の外径側に位置する部分から、燃料の流れを大きく剥離させることができ、例えば前述の比較例(図9)に対して、噴射孔11内での燃料の厚み(バルク厚)を減少させることができる。 According to the above configuration, in each injection hole 11, the flow of fuel flowing into the injection hole 11 from the position of the fuel flow suppressing portion 12 is inhibited, and the flow of fuel flowing into the injection hole 11 from the position of the fuel introduction portion 13. Is relatively promoted. In addition, when the valve body 4 is opened, the fuel supplied from the outer diameter side valve seat 3 to the fuel supply space 6 reaches the fuel introduction portion 13 at the shortest distance. That is, it becomes easy to flow into the outer diameter side of the injection hole 11 from the end in the longitudinal direction (long axis direction) of the fuel inlet 11a. Therefore, the flow of the fuel flowing into the injection hole 11 from another part (the fuel flow suppressing part 12) is further suppressed, and most of the fuel flowing into the injection hole 11 is concentrated on the fuel introducing part 13. That is, since the fuel supplied from the outer diameter side of the nozzle hole plate 10 flows into the outer diameter side of the fuel inlet 11a, the fuel flow is suddenly directed toward the outer diameter near the inlet of the injection hole 11. Can be bent. As a result, in the present embodiment, as shown in FIG. 4, the fuel flow can be largely separated from the portion located on the outer diameter side of the injection hole plate 10 on the inner wall surface of the injection hole 11. Compared to the above-described comparative example (FIG. 9), the fuel thickness (bulk thickness) in the injection hole 11 can be reduced.
 ここで、図5を参照して、噴射孔11内での燃料のバルク厚と噴射燃料の平均粒径との関係について説明する。図5は、燃料噴射時に生じるバルクを模式的に示す説明図である。なお、図5(a)は、噴射孔11の断面図を示し、図5(b)は噴射孔11を燃料流出口11b側からみた底面図を示している。バルクとは、噴射孔11から柱状に噴出する比較的密度の高い燃料の流れであり、バルクの周囲には密度が低い霧状の燃料であるフィルムが形成される。バルク厚hとは、一例を挙げれば、燃料流出口11bの開口位置におけるバルクの厚さ寸法として定義される。この厚さ寸法とは、噴射孔11に対する燃料の流入方向(本実施の形態では、噴孔プレート10の径方向)に沿った方向の寸法である。一般に、噴射燃料の平均粒径D30と噴射燃料のバルク厚hとの間には、下記(1)式に示す関係が成立する。 Here, with reference to FIG. 5, the relationship between the bulk thickness of the fuel in the injection hole 11 and the average particle diameter of the injected fuel will be described. FIG. 5 is an explanatory diagram schematically showing a bulk generated during fuel injection. 5A shows a cross-sectional view of the injection hole 11, and FIG. 5B shows a bottom view of the injection hole 11 viewed from the fuel outlet 11b side. The bulk is a flow of fuel having a relatively high density ejected from the injection holes 11 in a columnar shape, and a film that is a mist-like fuel having a low density is formed around the bulk. For example, the bulk thickness h is defined as a bulk thickness dimension at the opening position of the fuel outlet 11b. The thickness dimension is a dimension in a direction along the inflow direction of fuel to the injection hole 11 (in the present embodiment, the radial direction of the injection hole plate 10). Generally, between the average particle diameter D 30 and the bulk thickness h of the injected fuel of the injected fuel, the relationship is established as shown in the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この式は、FRAZERの式と呼ばれるもので、例えば日本特開2002-168163号公報に記載された公知の関係式である。上記(1)式中のC1,C2は定数であり、Vは燃料の流速、σは燃料の表面張力、ρ,ρは燃料及び空気の密度をそれぞれ表している。上記(1)式中の定数をまとめてCと表記すれば、右辺を得ることができ、燃料の平均粒径D30は、バルク厚hが減少するにつれて小さくなることがわかる。 This formula is called a FRAZER formula, and is a known relational formula described in Japanese Patent Laid-Open No. 2002-168163, for example. In the above equation (1), C1 and C2 are constants, V is the fuel flow velocity, σ is the surface tension of the fuel, and ρ L and ρ a are the fuel and air densities. If denoted as C collectively constants in equation (1), it can be obtained right, mean particle diameter D 30 of the fuel is found to be smaller as the bulk thickness h is reduced.
 以上詳述した通り、本実施の形態によれば、噴孔プレート10の内側面10aに凹凸形状を有する燃料流抑制部12を設けるだけで、燃料流抑制部12の非形成部位である燃料導入部13から噴射孔11に燃料をスムーズに流入させることができ、燃料のバルク厚hを減少させることができる。これにより、噴射燃料の微粒化を促進し、燃料噴射弁1の性能を向上させることができる。また、燃料流抑制部12は、例えば噴孔プレート10の形成時に比較的簡単な加工によって一緒に形成することができ、前述した他の比較例のように、別個の部品を噴孔プレートに組付ける必要がない。従って、加工精度の管理が比較的緩やかで済み、また、加工工数も大きく増加しないので、微粒化能力が高い噴孔プレートを低コストで容易に形成することができる。 As described above in detail, according to the present embodiment, the fuel introduction that is a non-formation portion of the fuel flow restraining portion 12 is provided only by providing the fuel flow restraining portion 12 having an uneven shape on the inner side surface 10a of the nozzle hole plate 10. The fuel can smoothly flow into the injection hole 11 from the portion 13, and the bulk thickness h of the fuel can be reduced. Thereby, atomization of the injected fuel can be promoted and the performance of the fuel injection valve 1 can be improved. In addition, the fuel flow suppressing portion 12 can be formed together by relatively simple processing, for example, when the nozzle hole plate 10 is formed, and separate parts are assembled to the nozzle hole plate as in the other comparative examples described above. There is no need to put it on. Therefore, since the management of processing accuracy is relatively gradual and the number of processing steps does not increase greatly, an injection hole plate with high atomization capability can be easily formed at low cost.
 また、本実施の形態によれば、燃料供給空間6の形状等に依存しなくても、噴射孔11に対する燃料の流入方向を燃料流抑制部12及び燃料導入部13により調整することができる。即ち、仮りに各噴射孔11を非対称に配置したり、噴孔プレート10の一部に噴射孔が集まった部位を設けるような場合でも、個々の噴射孔11に対する燃料流抑制部12の形成位置を適切に設定すれば、所望の方向から各噴射孔11に燃料を流入させることができる。従って、噴射孔の配置を前記各比較例よりも自由に設定することができ、設計自由度を向上させることができる。なお、この効果については、実施の形態2で具体的に説明する。 In addition, according to the present embodiment, the fuel inflow direction with respect to the injection hole 11 can be adjusted by the fuel flow suppression unit 12 and the fuel introduction unit 13 without depending on the shape of the fuel supply space 6 or the like. That is, even if each injection hole 11 is arranged asymmetrically or a part where the injection holes are gathered is provided in a part of the injection hole plate 10, the position where the fuel flow suppressing portion 12 is formed with respect to each injection hole 11. If this is set appropriately, fuel can flow into each injection hole 11 from a desired direction. Therefore, the arrangement of the injection holes can be set more freely than in the comparative examples, and the degree of design freedom can be improved. This effect will be specifically described in the second embodiment.
 さらに、本実施の形態では、図3に示すように、例えば複数の噴射孔11を2重の同心円状に並べることにより第1,第2の噴射孔群G1,G2を形成し、個々の噴射孔群G1,G2に対応して2つの燃料流抑制部12(以下、燃料流抑制部12A,12Bと称す)と、2つの燃料導入部13(燃料導入部13A,13Bと称す)とを形成する構成としている。詳しく述べると、第1の燃料流抑制部12Aは、外周側の噴射孔群G1に沿って延びる環状の凹凸部として形成され、噴射孔群G1の各燃料流入口11aの内径側をそれぞれ取囲むように配置されている。そして、第1の燃料流抑制部13Aは、燃料流抑制部12Aの外径側に全周にわたって配置され、噴射孔群G1の各燃料流入口11aの最外径側に位置する部分をそれぞれ取囲むように配置されている。 Further, in the present embodiment, as shown in FIG. 3, for example, a plurality of injection holes 11 are arranged in a double concentric manner to form the first and second injection hole groups G1 and G2, and individual injections are made. Two fuel flow suppression portions 12 (hereinafter referred to as fuel flow suppression portions 12A and 12B) and two fuel introduction portions 13 (referred to as fuel introduction portions 13A and 13B) are formed corresponding to the hole groups G1 and G2. It is configured to do. More specifically, the first fuel flow suppressing portion 12A is formed as an annular concavo-convex portion extending along the outer peripheral injection hole group G1, and surrounds the inner diameter side of each fuel inlet 11a of the injection hole group G1. Are arranged as follows. The first fuel flow restraining portion 13A is disposed over the entire circumference on the outer diameter side of the fuel flow restraining portion 12A, and takes a portion located on the outermost diameter side of each fuel inlet 11a of the injection hole group G1. It is arranged to surround.
 一方、第2の燃料流抑制部12Bは、円形状の凹凸部として形成され、燃料流抑制部12Aの内周側に径方向の間隔をもって配置されている。そして、燃料流抑制部12Bは、内周側の噴射孔群G2の形成部位に対応する輪郭を有し、噴射孔群G2の各燃料流入口11aの内径側をそれぞれ取囲むように配置されている。また、第2の燃料流抑制部13Bは、燃料流抑制部12A,12Bの間に位置して環状に形成され、噴射孔群G2の各燃料流入口11aの最外径側に位置する部分をそれぞれ取囲むように配置されている。 On the other hand, the second fuel flow suppression portion 12B is formed as a circular concavo-convex portion, and is disposed on the inner peripheral side of the fuel flow suppression portion 12A with a radial interval. The fuel flow suppressing portion 12B has a contour corresponding to the formation portion of the injection hole group G2 on the inner peripheral side, and is disposed so as to surround the inner diameter side of each fuel inlet 11a of the injection hole group G2. Yes. Further, the second fuel flow suppressing portion 13B is formed in an annular shape between the fuel flow suppressing portions 12A and 12B, and a portion positioned on the outermost diameter side of each fuel inlet 11a of the injection hole group G2. They are arranged to surround each other.
 このように、燃料流抑制部12A,12Bは、それぞれ2つ以上の燃料流入口11aの周囲に跨って連続的に延びた凹凸部として形成されている。これにより、多数の噴射孔11に対して燃料流抑制部12を効率よく形成することができ、また、各噴射孔11に対する燃料流抑制部12及び燃料導入部13の位置合わせを精度よく行うことができる。また、燃料流抑制部12として、凹部と凸部が交互に規則的に配置されたディンプルを用いることにより、例えば燃料流抑制部12の形成面積に対する燃料流の抑制効果等を容易に推定することができ、噴孔プレート10の設計を効率よく行うことができる。 Thus, each of the fuel flow restraining portions 12A and 12B is formed as a concavo-convex portion continuously extending over the periphery of the two or more fuel inflow ports 11a. Thereby, the fuel flow suppression part 12 can be efficiently formed with respect to many injection holes 11, and the fuel flow suppression part 12 and the fuel introduction part 13 are accurately aligned with respect to each injection hole 11. Can do. Further, by using dimples in which concave portions and convex portions are alternately and regularly arranged as the fuel flow suppressing portion 12, for example, the effect of suppressing the fuel flow on the formation area of the fuel flow suppressing portion 12 can be easily estimated. The nozzle hole plate 10 can be designed efficiently.
実施の形態2.
 次に、図6及び図7を参照して、本発明の実施の形態2について説明する。本実施の形態では、複数の噴射孔を1つの直線に対して対称に配置したことを特徴としている。なお、本実施の形態では、前記実施の形態1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIGS. The present embodiment is characterized in that a plurality of injection holes are arranged symmetrically with respect to one straight line. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[実施の形態2の特徴]
 図6は、本発明の実施の形態2において、噴孔プレートを図3と同様位置からみた平面図である。また、図7は、1つの噴射孔を拡大して示す図6中の要部拡大図である。本実施の形態では、図6に示すように、噴孔プレート10の中心Oを通って径方向に延びる1つの直線(例えば、Y軸)に対して、複数の噴射孔21を左,右対称に配置している。これにより、各噴射孔21は、左,右の内側噴射孔群G1in,G2inと、左,右の外側噴射孔群G1out,G2outとに分かれている。各噴射孔21は、噴射孔群G1in,G2in,G1out,G2out毎に直線状に並んで配置され、その並び方向はY軸と平行に設定されている。
[Features of Embodiment 2]
6 is a plan view of the nozzle hole plate seen from the same position as in FIG. 3 in Embodiment 2 of the present invention. FIG. 7 is an enlarged view of a main part in FIG. 6 showing one injection hole in an enlarged manner. In the present embodiment, as shown in FIG. 6, the plurality of injection holes 21 are symmetric left and right with respect to one straight line (for example, the Y axis) extending in the radial direction through the center O of the injection hole plate 10. Is arranged. Thereby, each injection hole 21 is divided into left and right inner injection hole groups G1in and G2in and left and right outer injection hole groups G1out and G2out. The injection holes 21 are arranged in a straight line for each of the injection hole groups G1in, G2in, G1out, and G2out, and the arrangement direction is set parallel to the Y axis.
 また、各噴射孔21は、燃料流入口21aよりも燃料流出口21bの方が対称軸(Y軸)から遠くなるように、噴孔プレート10の外径側に向けて傾斜している。噴射孔21の燃料流入口21a及び燃料流出口21bは、実施の形態1と同様に、楕円状または長円状に形成されているものの、対称軸と直行する直線(例えば、X軸)に沿って細長く延びている。即ち、燃料流入口21a及び燃料流出口21bの長軸は、X軸と平行に配置されている。 Further, each injection hole 21 is inclined toward the outer diameter side of the injection hole plate 10 such that the fuel outlet 21b is farther from the axis of symmetry (Y axis) than the fuel inlet 21a. Like the first embodiment, the fuel inlet 21a and the fuel outlet 21b of the injection hole 21 are formed in an elliptical shape or an oval shape, but along a straight line (for example, the X axis) perpendicular to the axis of symmetry. Elongate. That is, the major axes of the fuel inlet 21a and the fuel outlet 21b are arranged parallel to the X axis.
 一方、噴孔プレート10の内側面10aには、実施の形態1と同様に、燃料流抑制部22と燃料導入部23とが設けられている。そして、燃料流抑制部22は、ディンプルにより形成され、燃料流入口21aの全周のうち、燃料導入部23となる一部を除いて燃料流入口21aの少なくとも半周以上(好ましくは、3/4周以上)の部分を取囲むように配置されている。また、燃料導入部23は、燃料流入口21aの全周のうち、燃料流抑制部22を配置していない部分(好ましくは、1/4周未満の部分)に配置されている。燃料導入部23の非形成部位(燃料導入部23の形成部位)は、燃料流入口21aの全周のうち、噴孔プレート10の中心O及びY軸からそれぞれ最も離れた部分を含んでおり、また、弁体4の開弁時に外径側の弁座3から燃料供給空間6に供給される燃料が燃料流入口21aに対して最短距離で到達する部分を含んでいる。 On the other hand, on the inner side surface 10 a of the nozzle hole plate 10, as in the first embodiment, a fuel flow suppression unit 22 and a fuel introduction unit 23 are provided. The fuel flow suppressing portion 22 is formed of dimples, and at least half of the circumference of the fuel inlet 21a except for a part of the entire circumference of the fuel inlet 21a serving as the fuel introduction portion 23 (preferably 3/4). It is arranged so as to surround the portion of the circumference. Moreover, the fuel introduction part 23 is arrange | positioned in the part (preferably part less than 1/4 circumference) which has not arrange | positioned the fuel flow suppression part 22 among the perimeters of the fuel inflow port 21a. The non-formation part of the fuel introduction part 23 (formation part of the fuel introduction part 23) includes the parts farthest from the center O and the Y axis of the injection hole plate 10 in the entire circumference of the fuel inlet 21a. In addition, it includes a portion where the fuel supplied from the outer diameter side valve seat 3 to the fuel supply space 6 when the valve body 4 is opened reaches the fuel inlet 21a in the shortest distance.
 また、燃料流抑制部22は、個々の噴射孔群G1in,G2in,G1out,G2outに対応して帯状をなす3つの燃料流抑制部22A,22B,22Cに分けて形成され、燃料導入部23は、各燃料流抑制部22A,22B,22Cと交互に配置された4つの燃料導入部23A,23B,23C,23Dに分けて形成されている。詳しく述べると、中央の燃料流抑制部22Aは、噴射孔群G1in,G2inの各燃料流入口21aの内径側をそれぞれ取囲むように配置されている。左側の燃料流抑制部22Bは、左側の噴射孔群G1outの各燃料流入口21aの内径側を取囲むように配置され、右側の燃料流抑制部22Cは、右側の噴射孔群G2outの各燃料流入口21aの内径側を取囲むように配置されている。一方、燃料導入部23A,23B,23C,23Dは、それぞれ噴射孔群G1in,G2in,G1out,G2outの各燃料流入口21aの外径側に位置する部分を取囲むように配置されている。従って、燃料流抑制部22A~22Cは、それぞれ2つ以上の燃料流入口21aの周囲に跨って連続的に延びているので、実施の形態1と同様に、多数の噴射孔21に対して燃料流抑制部22を効率よく形成することができる。 The fuel flow suppression unit 22 is divided into three fuel flow suppression units 22A, 22B, and 22C having a belt shape corresponding to the individual injection hole groups G1in, G2in, G1out, and G2out. The fuel flow suppression portions 22A, 22B, and 22C are formed to be divided into four fuel introduction portions 23A, 23B, 23C, and 23D. More specifically, the central fuel flow suppressing portion 22A is arranged so as to surround the inner diameter side of each fuel inlet 21a of the injection hole groups G1in and G2in. The left fuel flow suppressing portion 22B is disposed so as to surround the inner diameter side of each fuel inlet 21a of the left injection hole group G1out, and the right fuel flow suppressing portion 22C is provided for each fuel of the right injection hole group G2out. It arrange | positions so that the internal-diameter side of the inflow port 21a may be surrounded. On the other hand, the fuel introduction portions 23A, 23B, 23C, and 23D are disposed so as to surround portions of the injection hole groups G1in, G2in, G1out, and G2out that are located on the outer diameter side of the respective fuel inflow ports 21a. Accordingly, each of the fuel flow suppressing portions 22A to 22C continuously extends over the periphery of the two or more fuel inflow ports 21a. The flow suppression part 22 can be formed efficiently.
 このように構成される本実施の形態でも、図7に示すように、前記実施の形態1とほぼ同様の作用効果を得ることができる。即ち、各噴射孔21では、燃料流抑制部22の位置から噴射孔21に流入する燃料の流れが阻害され、燃料導入部23の位置から噴射孔21に流入する燃料の流れが相対的に促進される。また、弁体4の開弁時には、外径側の弁座3から燃料供給空間6に供給された燃料が燃料導入部23に最短距離で到達する。従って、噴射孔21に流入する燃料の大部分は、燃料流入口21aの長手方向の端部近傍から集中的に流入しつつ、外径側に向けて急激に屈曲する。この結果、噴射孔21の内壁面のうち噴孔プレート10の外径側に位置する部分から、燃料の流れを大きく剥離させることができ、例えば図11に示す比較例に対して、燃料のバルク厚を減少させることができる。 Also in the present embodiment configured as described above, it is possible to obtain substantially the same operational effects as in the first embodiment, as shown in FIG. That is, in each injection hole 21, the flow of fuel flowing into the injection hole 21 from the position of the fuel flow suppressing portion 22 is obstructed, and the flow of fuel flowing into the injection hole 21 from the position of the fuel introduction portion 23 is relatively accelerated. Is done. Further, when the valve body 4 is opened, the fuel supplied from the outer diameter side valve seat 3 to the fuel supply space 6 reaches the fuel introduction portion 23 in the shortest distance. Therefore, most of the fuel flowing into the injection hole 21 is bent in abruptly toward the outer diameter side while intensively flowing in from the vicinity of the end of the fuel inlet 21a in the longitudinal direction. As a result, the fuel flow can be largely separated from the portion of the inner wall surface of the injection hole 21 located on the outer diameter side of the injection hole plate 10. For example, compared with the comparative example shown in FIG. The thickness can be reduced.
 ここで、図11は、本発明の実施の形態2と同様の噴射孔において、燃料流抑制部が存在しない場合を比較例として示す図7と同様の要部拡大図である。この比較例の構成では、噴射孔107に対して燃料が斜めに流れ込むことになり、噴射孔107内で燃料が回転することにより圧損が生じるので、燃料が噴射孔107の内壁から剥離し難くなる。本実施の形態では、噴射孔21の周囲に燃料流抑制部22を配置するだけで、この問題を解決することができる。 Here, FIG. 11 is an enlarged view of the main part similar to FIG. 7 showing, as a comparative example, the case where the fuel flow suppressing part is not present in the injection hole similar to the second embodiment of the present invention. In the configuration of this comparative example, the fuel flows obliquely into the injection hole 107, and pressure loss occurs due to the rotation of the fuel in the injection hole 107, so that the fuel is difficult to peel off from the inner wall of the injection hole 107. . In the present embodiment, this problem can be solved only by disposing the fuel flow suppressing portion 22 around the injection hole 21.
 このように、本実施の形態によれば、燃料供給空間6内での燃料の流れ方向(噴孔プレート10の径方向)に対して噴射孔21の長手方向が平行ではない場合でも、燃料流抑制部22及び燃料導入部23の配置を調整するだけで、噴射孔21の外径側の端部から燃料を流入させることができる。従って、噴射燃料の微粒化レベルを確保しつつ、噴射孔21の設計自由度を向上させることができる。 Thus, according to the present embodiment, even when the longitudinal direction of the injection hole 21 is not parallel to the flow direction of fuel in the fuel supply space 6 (the radial direction of the injection hole plate 10), the fuel flow Fuel can be allowed to flow in from the end on the outer diameter side of the injection hole 21 only by adjusting the arrangement of the suppression portion 22 and the fuel introduction portion 23. Therefore, the degree of freedom in designing the injection hole 21 can be improved while ensuring the atomization level of the injected fuel.
 なお、前記実施の形態1,2では、噴孔プレート10に設けられた全ての噴射孔11,21に対して燃料流抑制部12,22及び燃料導入部13,23を配置する構成とした。しかし、本発明はこれに限らず、例えば噴孔プレートに設けられた複数の噴射孔のうち、一部の噴射孔の周囲にのみ燃料流抑制部及び燃料導入部を配置する構成としてもよい。 In the first and second embodiments, the fuel flow suppression units 12 and 22 and the fuel introduction units 13 and 23 are arranged for all the injection holes 11 and 21 provided in the injection hole plate 10. However, the present invention is not limited to this. For example, the fuel flow suppressing portion and the fuel introducing portion may be arranged only around some of the injection holes provided in the injection hole plate.
 また、前記実施の形態1,2では、噴射孔11,21が楕円状または長円状である場合を例示した。しかし、本発明はこれに限らず、円形状を含む任意の形状の噴射孔に広く適用することができる。 In the first and second embodiments, the case where the injection holes 11 and 21 are oval or oval is illustrated. However, the present invention is not limited to this, and can be widely applied to injection holes of any shape including a circular shape.
 また、前記実施の形態1,2では、弁体4の開弁時に噴孔プレート10の外径側から中心側に向けて燃料が供給される燃料噴射弁1を例に挙げて説明した。しかし、本発明はこれに限らず、任意の形状を有する噴孔プレートに対して任意の方向から燃料が供給されるタイプの燃料噴射弁に適用することができる。即ち、本発明は、弁座の位置、燃料の供給方向、噴射孔の形状及び配置等が異なる各種の燃料噴射弁において、燃料流抑制部及び燃料導入部の配置に応じて噴射孔に対する燃料の流入方向を調整することを目的とするものである。 In the first and second embodiments, the fuel injection valve 1 in which fuel is supplied from the outer diameter side of the nozzle hole plate 10 toward the center side when the valve body 4 is opened has been described as an example. However, the present invention is not limited to this, and can be applied to a fuel injection valve of a type in which fuel is supplied from an arbitrary direction to an injection hole plate having an arbitrary shape. That is, according to the present invention, in various fuel injection valves having different valve seat positions, fuel supply directions, injection hole shapes and arrangements, etc., the fuel flow to the injection holes depends on the arrangement of the fuel flow suppression unit and the fuel introduction unit. The purpose is to adjust the inflow direction.
1 燃料噴射弁
2 ハウジング
3 弁座
4 弁体
5 燃料通路
6 燃料供給空間
10 噴孔プレート
10a 内側面
10b 外側面
11,21 噴射孔
11a 燃料流入口
11b 燃料流出口
12(12A,12B),22(22A,22B,22C) 燃料流抑制部
13(13A,13B),23(23A,23B,23C,23D) 燃料導入部
G1,G2,G1in,G2in,G1out,G2out 噴射孔群
DESCRIPTION OF SYMBOLS 1 Fuel injection valve 2 Housing 3 Valve seat 4 Valve body 5 Fuel passage 6 Fuel supply space 10 Injection hole plate 10a Inner side surface 10b Outer side surface 11, 21 Injection hole 11a Fuel inflow port 11b Fuel outflow port 12 (12A, 12B), 22 (22A, 22B, 22C) Fuel flow suppression unit 13 (13A, 13B), 23 (23A, 23B, 23C, 23D) Fuel introduction unit G1, G2, G1in, G2in, G1out, G2out injection hole group

Claims (8)

  1.  弁体の開弁時に燃料が供給される燃料供給空間に面した内側面と外部に面した外側面とを有する噴孔プレートと、
     前記噴孔プレートに貫通孔として設けられ、前記噴孔プレートの内側面に開口する燃料流入口と前記外側面に開口する燃料流出口とを有する複数の噴射孔と、
     前記噴孔プレートの内側面に設けられた凹凸部であって、前記噴射孔の燃料流入口の全周のうち燃料導入部となる一部を除いて当該燃料流入口の少なくとも半周以上を取囲むように配置された燃料流抑制部と、
     を備えることを特徴とする燃料噴射弁。
    An injection hole plate having an inner surface facing a fuel supply space to which fuel is supplied when the valve body is opened and an outer surface facing the outside;
    A plurality of injection holes provided as through-holes in the nozzle hole plate, each having a fuel inlet opening on an inner surface of the nozzle hole plate and a fuel outlet opening on the outer surface;
    An uneven portion provided on the inner side surface of the injection hole plate, which surrounds at least a half or more of the fuel inlet except for a part of the entire circumference of the fuel inlet of the injection hole serving as a fuel introduction part. A fuel flow restraining portion arranged as follows,
    A fuel injection valve comprising:
  2.  前記燃料流抑制部は、前記燃料流入口の全周のうち前記燃料供給空間に供給された燃料が最短距離で到達する部分を除いて当該燃料流入口を取囲むように配置し、前記燃料導入部は、前記燃料供給空間に供給される燃料が最短距離で到達する部分に配置してなる請求項1に記載の燃料噴射弁。 The fuel flow suppressing portion is disposed so as to surround the fuel inlet except for a portion where the fuel supplied to the fuel supply space reaches the shortest distance in the entire circumference of the fuel inlet. The fuel injection valve according to claim 1, wherein the portion is disposed at a portion where the fuel supplied to the fuel supply space reaches the shortest distance.
  3.  環状の弁座に離着座する弁体と、
     前記弁座の内周側に形成され、前記弁体の開弁時に前記弁座の外周側から燃料が供給される燃料供給空間と、
     円形状の板材により形成され、前記燃料供給空間に面した内側面と外部に面した外側面とを有する噴孔プレートと、
     前記噴孔プレートに貫通孔として設けられ、前記噴孔プレートの内側面に開口する燃料流入口と前記外側面に開口する燃料流出口とを有する複数の噴射孔と、
     前記噴孔プレートの内側面に設けられた凹凸部であって、前記噴射孔の燃料流入口の全周のうち前記噴孔プレートの中心から最も離れた部分を除いて当該燃料流入口を取囲むように配置された燃料流抑制部と、
     前記燃料流入口の全周のうち前記燃料流抑制部を配置していない部分により構成された燃料導入部と、
     を備えることを特徴とする燃料噴射弁。
    A valve body that is attached to and detached from an annular valve seat;
    A fuel supply space formed on the inner peripheral side of the valve seat, to which fuel is supplied from the outer peripheral side of the valve seat when the valve body is opened;
    An injection hole plate formed of a circular plate material, and having an inner surface facing the fuel supply space and an outer surface facing the outside;
    A plurality of injection holes provided as through-holes in the nozzle hole plate, each having a fuel inlet opening on an inner surface of the nozzle hole plate and a fuel outlet opening on the outer surface;
    An uneven portion provided on the inner side surface of the nozzle hole plate, which surrounds the fuel inlet except for a portion of the entire circumference of the fuel inlet of the injection hole that is farthest from the center of the nozzle hole plate. A fuel flow restraining portion arranged as follows,
    A fuel introduction part constituted by a part where the fuel flow suppression part is not arranged in the entire circumference of the fuel inlet;
    A fuel injection valve comprising:
  4.  前記噴射孔の燃料流入口は、前記噴孔プレートの径方向に細長く延びた楕円状または長円状に形成してなる請求項3に記載の燃料噴射弁。 4. The fuel injection valve according to claim 3, wherein the fuel inlet of the injection hole is formed in an elliptical shape or an oval shape elongated in the radial direction of the injection hole plate.
  5.  前記複数の噴射孔は、前記噴孔プレートの中心に対して放射状に配置してなる請求項3または4に記載の燃料噴射弁。 The fuel injection valve according to claim 3 or 4, wherein the plurality of injection holes are arranged radially with respect to a center of the injection hole plate.
  6.  前記複数の噴射孔は、前記噴孔プレートの中心を通って径方向に延びる1つの直線に対して対称に配置してなる請求項3または4項に記載の燃料噴射弁。 The fuel injection valve according to claim 3 or 4, wherein the plurality of injection holes are arranged symmetrically with respect to one straight line extending in the radial direction through the center of the injection hole plate.
  7.  前記燃料流抑制部を少なくとも2つ以上の燃料流入口の周囲に跨って連続的に延びた凹凸部として形成してなる請求項1乃至6のうち何れか1項に記載の燃料噴射弁。 The fuel injection valve according to any one of claims 1 to 6, wherein the fuel flow suppressing portion is formed as an uneven portion continuously extending over the periphery of at least two fuel inlets.
  8.  前記燃料流抑制部は、複数の凹部及び凸部が規則的に配置されたディンプルである請求項1乃至7のうち何れか1項に記載の燃料噴射弁。 The fuel injection valve according to any one of claims 1 to 7, wherein the fuel flow suppressing portion is a dimple in which a plurality of concave portions and convex portions are regularly arranged.
PCT/JP2011/066584 2011-07-21 2011-07-21 Fuel injection valve WO2013011584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/066584 WO2013011584A1 (en) 2011-07-21 2011-07-21 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/066584 WO2013011584A1 (en) 2011-07-21 2011-07-21 Fuel injection valve

Publications (1)

Publication Number Publication Date
WO2013011584A1 true WO2013011584A1 (en) 2013-01-24

Family

ID=47557791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066584 WO2013011584A1 (en) 2011-07-21 2011-07-21 Fuel injection valve

Country Status (1)

Country Link
WO (1) WO2013011584A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208974A (en) * 2013-04-16 2014-11-06 三菱電機株式会社 Fuel injection valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043640A (en) * 1996-08-01 1998-02-17 Denso Corp Liquid jet nozzle
JP2004100500A (en) * 2002-09-06 2004-04-02 Hitachi Ltd Fuel injection valve and internal combustion engine mounting the same
JP2005207291A (en) * 2004-01-22 2005-08-04 Hitachi Ltd Fuel injection valve and fuel injection method
JP2008169722A (en) * 2007-01-10 2008-07-24 Denso Corp Fuel injection valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043640A (en) * 1996-08-01 1998-02-17 Denso Corp Liquid jet nozzle
JP2004100500A (en) * 2002-09-06 2004-04-02 Hitachi Ltd Fuel injection valve and internal combustion engine mounting the same
JP2005207291A (en) * 2004-01-22 2005-08-04 Hitachi Ltd Fuel injection valve and fuel injection method
JP2008169722A (en) * 2007-01-10 2008-07-24 Denso Corp Fuel injection valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208974A (en) * 2013-04-16 2014-11-06 三菱電機株式会社 Fuel injection valve

Similar Documents

Publication Publication Date Title
JP3745232B2 (en) Fluid injection nozzle and fluid injection valve including the fluid injection nozzle
US8231069B2 (en) Fuel injection nozzle
JP5772495B2 (en) Fuel injection valve
US6783085B2 (en) Fuel injector swirl nozzle assembly
JP4022882B2 (en) Fuel injection device
US7191961B2 (en) Injection hole plate and fuel injection apparatus having the same
US20030141387A1 (en) Fuel injector nozzle assembly with induced turbulence
US9216426B2 (en) Solid cone nozzle
US9404456B2 (en) Fuel injection valve
US20150021414A1 (en) Fuel Injector
CN104520577B (en) Fuelinjection nozzle
JP6351461B2 (en) Nozzle plate for fuel injector
JP4623175B2 (en) Fuel injection valve for internal combustion engine
JP4196194B2 (en) Injection hole member and fuel injection valve using the same
WO2013011584A1 (en) Fuel injection valve
JP2011115749A (en) Flow straightening member and nozzle provided with the same
JP3753924B2 (en) Fluid injection nozzle and fluid injection valve including the fluid injection nozzle
JP5838701B2 (en) Fuel injection valve
JP4537457B2 (en) Fuel injection valve
EP3850210A1 (en) Nozzle with microstructured through-holes
JP7298484B2 (en) Intake structure of internal combustion engine
JP4166792B2 (en) Fuel injection device
JP5605325B2 (en) Fuel injection valve
JP6654875B2 (en) Fuel injection valve
CN110185566A (en) A kind of spiral-flow type jet orifice plate and nozzle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP