WO2013010461A1 - 输出频率连续可变的自激振荡逆变电源、恒流驱动电源 - Google Patents

输出频率连续可变的自激振荡逆变电源、恒流驱动电源 Download PDF

Info

Publication number
WO2013010461A1
WO2013010461A1 PCT/CN2012/078655 CN2012078655W WO2013010461A1 WO 2013010461 A1 WO2013010461 A1 WO 2013010461A1 CN 2012078655 W CN2012078655 W CN 2012078655W WO 2013010461 A1 WO2013010461 A1 WO 2013010461A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
circuit
self
power supply
current transformer
Prior art date
Application number
PCT/CN2012/078655
Other languages
English (en)
French (fr)
Inventor
徐一珺
叶小娟
Original Assignee
张曦春
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011202520835U external-priority patent/CN202153807U/zh
Priority claimed from CN201110199913A external-priority patent/CN102316657A/zh
Application filed by 张曦春 filed Critical 张曦春
Publication of WO2013010461A1 publication Critical patent/WO2013010461A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges

Definitions

  • the invention relates to a self-oscillating inverter power source with continuously variable output frequency, and also comprises a gas discharge lamp self-excited oscillation electronic ballast or a constant current driving power source with the dimming function.
  • Self-oscillating inverter power supplies that convert DC into AC are widely used, especially in low-cost gas discharge lamp self-oscillating electronic ballasts or electronic transformers. However, it is more difficult for the self-oscillating inverter circuit to achieve an adjustable oscillation frequency or an adjustable output power.
  • U.S. Patent No. 5,596,247 discloses a relatively simple self-oscillating electronic ballast dimming scheme, but this solution will cause the opening and closing times of the upper and lower tubes of the half bridge to be different, so that the upper and lower tubes work in an asymmetrical state, bringing reliability to the circuit. influences.
  • the technical problem to be solved by the present invention is: how to make the self-oscillating inverter circuit work normally in a continuous frequency range, and can change the operating frequency as required; when the load matching circuit forms an equivalent load of non-pure resistance If the circuit can change the operating frequency, the output power can be changed.
  • the working principle of the conventional self-oscillating inverter circuit is to use a magnetic ring as a current transformer, and couple the inverter output current to the secondary side of the magnetic ring to drive the inverter switch tube to form self-oscillation.
  • the difference in the coupling relationship between the output current and the secondary side of the magnetic ring will produce different self-oscillation frequencies. For example, the saturation depth of the magnetic ring will cause the self-oscillation frequency to be different.
  • the power supply is provided with an inverter switch circuit, at least two magnetic current transformers, a load circuit and a control circuit, and constitutes a self-oscillating inverter power supply circuit, and each magnetic current transformer has a primary winding, a secondary winding, and a primary winding. After being connected in series, it is connected with the output of the inverter switch circuit and the load circuit. The secondary windings are connected in series and connected to the inverter switch circuit.
  • the output of the control circuit is connected with one winding of any magnetic current transformer to change the output impedance of the control circuit. Achieve the purpose of changing the frequency of self-oscillation.
  • the output of the control circuit is connected with the primary winding of any magnetic current transformer, and the output impedance of the control circuit is changed to achieve the purpose of changing the self-oscillation frequency.
  • the output of the control circuit is connected to any secondary winding of any of the magnetic current transformers, and the output impedance of the control circuit is changed to achieve the purpose of changing the self-oscillation frequency.
  • Any of the magnetic current transformers is wound with a control winding, and the output of the control circuit is connected with the control winding to change the output impedance of the control circuit to achieve the purpose of changing the self-oscillation frequency.
  • the control circuit is controlled by an external command to continuously change its output impedance to achieve continuous change of the inverter power frequency.
  • variable impedance is controlled by the control command to be at a certain impedance value to reach a certain frequency.
  • the control circuit includes a control module, a transistor or other on-resistance variable device, and the collector and the emitter of the transistor are connected to one of the windings of any of the magnetic current transformers or at least two input terminals of the other variable impedance device
  • One winding of the current transformer, the control module output PWM signal is filtered and connected to the base of the transistor, or connected to the control terminal of other on-resistance variable device, and the transistor or other on-resistance is changed by changing the pulse width ratio of the PWM signal.
  • the on-resistance of the variable device changes the self-oscillating frequency.
  • the controlled change of the oscillation frequency can cause a controlled change of the output power to achieve the dimming effect.
  • the input of the self-oscillating power supply is a DC input.
  • the inverter switch circuit After the inverter switch circuit obtains the DC input, it is generated by the internal oscillation circuit of the inverter switch circuit or an external circuit generates a start-up trigger pulse, so that the inverter switch circuit starts to work, and the DC input is converted into an AC output to the magnetic current transformer and the load.
  • the series circuit formed by the circuit, the two magnetic current transformers generate a coupled output from the alternating current output from the inverter switch circuit, and are connected in series to the inverter switch circuit for driving the inverter switch circuit to generate self-oscillation.
  • a constant current driving power supply is provided with an inverter switching circuit, at least two magnetic current transformers, a resonant capacitor, a resonant inductor, a control circuit, an output rectifier circuit, and a DC load, which constitute a resonant inverter circuit, each
  • the magnetic current transformer has a primary winding and a secondary winding.
  • the primary winding is connected in series with the output of the inverter switch circuit, and the other end is connected with a resonant circuit composed of a resonant capacitor and a resonant inductor.
  • the side windings are connected in series and connected to the inverter.
  • the output of the circuit is connected with one winding of any magnetic current transformer, and the resonant capacitor is connected to the output rectifier circuit.
  • the output of the output rectifier circuit is connected to the DC load, and the output impedance of the control circuit is changed to change the current output to the DC load. .
  • the DC load includes at least one light emitting diode.
  • the output rectifier circuit includes at least one light emitting diode.
  • the control circuit comprises a control module, a transistor or other on-resistance variable device, and the collector and the emitter of the transistor are connected to at least two inputs of one winding of any one of the magnetic current transformers or other on-resistance variable device Connected to one winding of any magnetic current transformer, the control module output PWM signal is filtered and connected to the base of the transistor, or connected to the control terminal of other on-resistance variable device, and the transistor or transistor is changed by changing the pulse width ratio of the PWM signal.
  • the on-resistance of other on-resistance variable devices changes the self-oscillation frequency.
  • control circuit further comprises a sampling and/or feedback module, the sampling and/or feedback module is connected to the control module, and the PWM pulse width is changed according to the difference between the sampled value of the output current collected or fed back and the reference value. Ratio, making the output current constant near the target value.
  • the reference value is changed in the control module to change the constant value of the output current.
  • the invention has the beneficial effects that the present invention provides a self-oscillating power supply with variable output frequency or variable output power, or a self-excited oscillation electronic ballast with a dimming function, and The self-oscillation mode achieves a change in output frequency or output power, and achieves a relatively low cost compared with the other oscillation circuit.
  • the invention also provides a constant current driving power supply.
  • Figure 1 is a block diagram showing the overall structure of the present invention
  • Figure 2 is a schematic view of an embodiment of the present invention.
  • Fig. 3 is a schematic view showing another example of the present invention.
  • 102a the primary side of the magnetic current transformer
  • 102b the magnetic current transformer drives the secondary side 1 ;
  • 105 the equivalent output impedance of the control circuit
  • 106 magnetic current transformer
  • 106b the secondary side of the magnetic current transformer
  • 106c the secondary side of the magnetic current transformer
  • D201 bidirectional trigger diode
  • D202 diode
  • C201 capacitor
  • R201 Chargeging resistor
  • R202 Upper tube drive resistance
  • R203 lower tube drive resistor
  • R204 variable resistor
  • Q201 upper pipe
  • Q202 lower pipe
  • T201 controllable magnetic ring current transformer
  • T201a the primary side of the controllable magnetic ring current transformer
  • T201b controllable magnetic ring current transformer upper tube driving secondary side
  • T201c controllable magnetic ring current transformer lower tube driving secondary side
  • T201d controllable magnetic loop current transformer control winding
  • T202a the primary side of the fixed magnetic ring current transformer
  • T202b fixed magnetic ring current transformer upper tube driving secondary side
  • T202c fixed magnetic loop current transformer lower tube drive secondary side
  • L201 load circuit
  • D301 bidirectional trigger diode
  • D302 diode
  • R301 charging resistor
  • R302 upper tube driving resistor
  • R303 lower tube drive resistor
  • Q301 upper tube
  • Q302 lower tube
  • T301 controllable magnetic loop current transformer
  • T301a the primary side of the controllable magnetic loop current transformer
  • T301b controllable magnetic ring current transformer upper tube driving secondary side
  • T301c controllable magnetic ring current transformer lower tube driving secondary side
  • T301d controllable magnetic loop current transformer control winding
  • T302a the primary side of the fixed magnetic ring current transformer
  • T302b fixed magnetic ring current transformer upper tube driving secondary side
  • T302c fixed magnetic loop current transformer lower tube drive secondary side
  • Lr301 resonant inductor
  • C302 filter capacitor
  • C303 resonant capacitor
  • R304 base resistor
  • Q303 control tube
  • R305 sampling resistor
  • D303 output rectifier circuit
  • ASIC 301 - control module LEDs 301 - semiconductor transmitter ⁇ : device group; VDC301—independent auxiliary DC power supply;
  • C304 Half-bridge capacitor
  • C305 Half-bridge capacitor
  • the self-oscillation power supply with continuously variable output frequency or output power of the present invention is composed of an inverter switch circuit (101), a magnetic current transformer (102), a magnetic current transformer (106), and a load.
  • the circuit (103) and the control circuit (104) are configured, and the output of the inverter switch circuit (101) is connected to the primary side (102a) of the magnetic current transformer, the primary side (106a) of the magnetic current transformer, and the load circuit (103).
  • the magnetic current transformer driving secondary side 1 (102b) and the magnetic current transformer secondary side (106b) are connected in series, and the magnetic current transformer driving secondary side 2 (102c) and the magnetic current transformer secondary side (106c) are connected in series, and then The inverter circuit (101) is separately output to the inverter switch circuit (101).
  • the magnetic current transformer (102) or the magnetic current transformer control winding (102d) is provided.
  • the output of the control circuit (104) is either connected to the primary side of the magnetic current transformer (102a), or to the secondary side of the magnetic current transformer drive 1 (102b), or to the secondary side of the magnetic current transformer drive 2 ( 102c) is connected in parallel or in parallel with the magnetic current transformer control winding (102d), and the equivalent output impedance (105) of the control circuit connected in parallel with the winding can change its impedance value as required by the external control command.
  • the output frequency shown in Figure 1 can be continuously Variable self-oscillating power supply, at initial power-on, the control circuit can set its equivalent output impedance (105) to a specific resistance value so that the output frequency at initial power-on is a specific frequency, which is consistent with the starting characteristics of the load. Requirements.
  • the input of the self-oscillating power supply described in the above scheme is a DC input.
  • the inverter switch circuit (101) obtains the DC input, it is generated by the internal oscillation line of the inverter switch circuit (101) or an external circuit generates a start-up trigger pulse to make the inverter switch circuit
  • the current oscillation frequency output to the load circuit (103) changes; when the equivalent impedance of the load circuit (103) is non-pure resistive, the change in the oscillation frequency causes the power input to the load circuit (103) to change. .
  • FIG. 2 is a schematic illustration of an embodiment of the invention.
  • the upper tube (Q201) and the lower tube (Q202) form an inverter half bridge, and the output is connected to a controllable magnetic ring current transformer (T201), a fixed magnetic ring primary side (T202a) and a load circuit (L201).
  • T201 controllable magnetic ring current transformer
  • T202a fixed magnetic ring primary side
  • L201 load circuit
  • Two magnetic rings are provided, the fixed magnetic ring current transformer primary side (T202a), the fixed magnetic ring current transformer upper tube driving secondary side (T202b) and the fixed magnetic ring current transformer lower tube driving secondary side (T202c) are the same Different windings of magnetic ring, controllable magnetic ring current transformer primary side (T201a), controllable magnetic ring current transformer upper tube driving secondary side (T201b), controllable magnetic ring current transformer lower tube driving secondary side (T201c)
  • the controllable magnetic loop current transformer control winding (T201d) is a different winding of the controllable magnetic loop current transformer (T201); the fixed magnetic loop current transformer upper tube driving secondary side (T202b), the controllable magnetic ring current transformer The upper tube driving secondary
  • the capacitor (C201) is charged via the charging resistor (R201) until the bidirectional trigger diode (D201) breaks down, generating a start-up trigger pulse to turn on the lower tube (Q202), and the circuit starts to oscillate.
  • the variable resistor (R204) is fixed at a resistance value
  • the primary side of the current transformer (T201a) forms a fixed coupling relationship, and the controllable magnetic loop current transformer (T201) together with the other magnetic loop current transformer determines a fixed oscillation frequency.
  • variable resistor (R204) should be placed at a specific resistance value at the initial power-on, which corresponds to The oscillating frequency is the specific starting frequency required.
  • the controllable magnetic ring upper tube drive secondary side (T201b) and the controllable magnetic ring current transformer The output of the tube drive secondary side (T201c) changes, and the controllable magnetic loop current transformer (T201) and another magnetic loop current transformer jointly generate another oscillation frequency, continuously changing the resistance of the variable resistor (R204), ie A controlled continuous change in the output frequency is achieved; if the load circuit (L201) is a non-pure resistive load, a controlled change in the oscillating frequency results in a controlled change in the power output to the load circuit (L201) for the purposes of the invention.
  • Electronic ballast is an electronic device that uses electronic technology to drive an electric light source to produce the desired illumination.
  • an inductive ballast or ballast.
  • Modern fluorescent lamps are increasingly using electronic ballasts, which are light and compact. It is even possible to integrate an electronic ballast with a lamp, etc.
  • the electronic ballast can usually function as a starter, thus eliminating the need for a separate starter. Applying the power supply of the above example to an electronic ballast can also achieve dimming efficiency.
  • a constant current driving power supply is provided with an inverter switching circuit, at least two magnetic current transformers, a resonant capacitor, a resonant inductor, a control circuit, an output rectifier circuit, and a DC load, which constitute a resonant inverter circuit, each
  • the magnetic current transformer has a primary winding and a secondary winding. The primary winding is connected in series with the output of the inverter switch circuit, the other end is connected with a resonant circuit composed of a resonant capacitor and a resonant inductor, and the secondary windings are connected in series and connected to the reverse.
  • the switching circuit the output of the control circuit is connected with one winding of any magnetic current transformer, the resonant capacitor is connected to the output rectifier circuit, the output of the output rectifier circuit is connected to the DC load, and the output impedance of the control circuit is changed to change the output to The current level of the DC load.
  • the DC load includes at least one light emitting diode.
  • the output rectifier circuit includes at least one light emitting diode.
  • the control circuit comprises a control module, a transistor or other on-resistance variable device, and the collector and the emitter of the transistor are connected to at least two inputs of one winding of any one of the magnetic current transformers or other on-resistance variable device Connected to one winding of any magnetic current transformer, the control module output PWM signal is filtered and connected to the base of the transistor, or connected to the control terminal of other on-resistance variable device, and the transistor or transistor is changed by changing the pulse width ratio of the PWM signal.
  • the on-resistance of other on-resistance variable devices changes the self-oscillation frequency.
  • control circuit further comprises a sampling and/or feedback module, the sampling and/or feedback module is connected to the control module, and the PWM pulse width is changed according to the difference between the sampled value of the output current collected or fed back and the reference value. Ratio, making the output current constant near the target value.
  • the reference value is changed in the control module to change the constant value of the output current.
  • FIG. 3 is a schematic illustration of another embodiment of the present invention which utilizes the present invention to achieve a dimmable LED constant current drive.
  • the input of this embodiment is DC, which is usually the DC output of the pre-stage rectification or APFC circuit; the charging resistor R301, the capacitor C301, the bidirectional trigger diode D301, and the diode D302 form a starting line; the inverter consisting of the upper tube Q301 and the lower tube Q302
  • the half-bridge output is connected in turn to the controllable magnetic ring current transformer primary side T301a, the fixed magnetic ring current transformer primary side T302a, the resonant inductor Lr301, the resonant capacitor C303; the other end of the resonant capacitor C303 is connected to the half-bridge capacitor C304 and the half-bridge capacitor C305 is connected to the midpoint; the resonant capacitor C303 is connected to the output rectifier circuit D303 at both ends, and the output of the output rectifier circuit D303 is connected to the
  • the controllable magnetic loop current transformer control winding T301d is connected at both ends to the emitter and collector of the control tube (Q303).
  • Control The tube (Q303) is a semiconductor transistor, or other device whose conduction resistance can be controlled to change.
  • the output of the control module (ASIC301) is connected to the base of the control tube (Q303), and the control module (ASIC301) gives a PWM pulse width modulation signal, and provides a basis to the control tube (Q303) via the filter capacitor (C302) and the base resistor (R304).
  • the pole drive, the control tube (Q303) operates in the amplification area, and changes the duty cycle of the P-signal given by the control module (ASIC301), that is, changes the magnitude of the base signal input to the control tube (Q303), thereby changing the control.
  • the on-resistance between the emitter and the collector of the tube (Q303) changes the saturation depth of the controllable magnetic loop current transformer (T301), resulting in a change in the operating frequency of the entire inverter circuit.
  • the change in the operating frequency causes the inverter half bridge output current to change, and causes the current output to the semiconductor light emitting device group LEDs 301 to change.
  • a sampling resistor (R305) is connected in series to the current path outputted to the semiconductor light emitting device group LEDs 301, and the current sampling signal obtained on the sampling resistor (R305) is fed back to the control module (ASIC301) in the control module (ASIC301) and the reference The value comparison determines the pulse width ratio of the P-signal outputted by the control module (ASIC301) according to the comparison result.
  • the P-pulse ratio is reduced, and the emitter and set of the control tube (Q303) are increased.
  • the on-resistance between the electrodes reduces the self-oscillation frequency, which leads to an increase in the output current.
  • the pulse width ratio of PLi is increased, and the emitter of the control tube (Q303) is reduced.
  • the on-resistance between the collectors increases the self-oscillation frequency, which causes the output current to decrease.
  • the external control command changes the reference value of the control module (ASIC301) to change the current value of the constant current output.
  • the constant current control can be a PWM controlled transistor or other device with variable on-resistance, including a control module and a sampling circuit, and the current sampling of the DC load is collected by the sampling circuit, and fed back to the control module, according to the difference from the reference.
  • the control module controls the duty cycle of the PWM, controls the on-resistance of the transistor or other on-resistance variable device, and controls the self-oscillation frequency to keep the current near the target value.

Landscapes

  • Inverter Devices (AREA)

Abstract

提供一种输出频率或输出功率能连续可变的自激振荡逆变电源,该电源设置有逆变开关电路(101)、至少两个磁性电流互感器(102,106)、负载电路(103)和控制电路(105),每个磁性电流互感器有原边绕组(102a,106a),副边绕组(102b,102c,106b,106c)或控制绕组(102d),原边绕组(102a,106a)分别与功率管的输出和负载连接,副边绕组(102b,102c,106b,106c)与逆变开关电路(101)连接驱动其功率管,控制电路(105)的输出与任一磁性电流互感器的一绕组并接,改变控制电路(105)的输出阻抗,达到改变自激荡振荡频率。该电源能提供可靠的输出频率和可变的输出功率,还可应用于恒流驱动电源或气体放电灯自激荡振荡电子镇流器。

Description

输出频率连续可变的自激振荡逆变电源、 恒流驱动电源 技术领域
本发明涉及一种输出频率连续可变的自激振荡逆变电源, 也包括其采用该电源制成的一 种具有调光功能的气体放电灯自激振荡电子镇流器或恒流驱动电源。
背景技术
将直流转变成交流的自激振荡逆变电源应用广泛, 特别常见于低成本的气体放电灯自激 振荡电子镇流器或电子变压器中。 但是自激振荡逆变电路要实现振荡频率可调或输出功率可 调, 则比较困难。
美国专利 US5596247提出了一种比较简单的自激振荡电子镇流器调光方案, 但该方案将 造成半桥上下管的开通时间不同, 使上下管工作在不对称状态, 对电路可靠性带来影响。
另一美国专利 US6696803 披露了一种能可靠工作的可改变工作频率的自激振荡电源方 案, 但该方案中辅助电源电压的波动将影响其振荡频率和输出功率, 因此对辅助电源的设计 提出了较高的要求, 成本相对较高。
发明内容
为了克服上述不足之处, 本发明的主要目的旨在提供一种能可靠工作且成本较低的输出 频率或输出功率连续可变的自激振荡电源。
本发明要解决的技术问题是: 如何使自激振荡逆变电路能在一个连续的频率范围内正常 工作, 并且能按要求改变工作频率; 当负载匹配电路形成非纯阻性的等效负载时, 若电路能 改变工作频率, 就能改变输出功率。
通常的自激振荡逆变电路的工作原理, 是利用一个磁环作为电流互感器, 将逆变输出电 流耦合到磁环副边用于驱动逆变开关管, 形成自激振荡。 当电路其他部分的参数确定时, 逆 变输出电流到磁环副边耦合关系的不同将产生不同的自激振荡频率, 例如磁环的饱和深度不 同会导致自激振荡频率不同。
基于以上原理, 本发明的目的是这样实现的:
该电源设置有逆变开关电路、 至少两个磁性电流互感器、 负载电路和控制电路, 构成自 激振荡逆变电源电路, 每个磁性电流互感器有原边绕组、 副边绕组, 原边绕组串联后与逆变 开关电路输出和负载电路连接, 副边绕组分别串联后连接至逆变开关电路, 控制电路的输出 与任一磁性电流互感器的一个绕组并接, 改变控制电路的输出阻抗, 达到改变自激振荡频率 目的。 所述控制电路的输出与任一磁性电流互感器的原边绕组并接,改变控制电路的输出阻抗, 达到改变自激振荡频率目的。
所述控制电路的输出与任一磁性电流互感器的任一副边绕组并接, 改变控制电路的输出 阻抗, 达到改变自激振荡频率目的。
所述的任一磁性电流互感器绕有一个控制绕组, 控制电路的输出与该控制绕组并接, 改 变控制电路的输出阻抗, 达到改变自激振荡频率目的。
所述控制电路由外部指令控制其输出阻抗能够连续改变, 达到连续改变逆变电源频率目 的。
自激振荡逆变电源电路在上电启动或收到外来启动命令时, 由控制指令控制可变阻抗置 于某个确定的阻抗值, 以达到一个确定频率。
控制电路包含控制模块、 晶体管或其他导通阻抗可变器件, 晶体管集电极和射极并接任 一磁性电流互感器的一个绕组或其它导通阻抗可变器件的至少两个输入端并接任一磁性电流 互感器的一个绕组, 控制模块输出 PWM信号经滤波后连接至晶体管基极, 或连接至其他导 通阻抗可变器件的控制端, 通过改变 PWM信号脉宽比例来改变晶体管或其他导通阻抗可变 器件的导通阻抗, 改变自激振荡频率。
上述方案应用到气体放电灯电子镇流器中后, 振荡频率的受控改变即能导致输出功率的 受控改变, 达到调光效果。
自激振荡电源的输入为直流输入。 逆变开关电路获得直流输入后, 由逆变开关电路内部 起振线路产生或外部电路产生起振触发脉冲, 使逆变开关电路开始工作, 将直流输入转变成 交流输出至磁性电流互感器和负载电路构成的串联回路, 两个磁性电流互感器自逆变开关电 路输出的交流电流产生耦合输出, 串联叠加后连接至逆变开关电路, 用于驱动逆变开关电路, 产生自激振荡。 当外部控制命令使控制电路的等效输出阻抗的阻值改变时, 与控制电路输出 并联的磁性电流互感器的饱和深度发生改变, 随之副边输出发生改变, 而另一个电流互感器 耦合关系未变保证电路可靠工作, 共同导致电路自激振荡频率改变, 逆变开关电路输出至负 载电路的电流振荡频率即发生改变; 当负载电路等效阻抗为非纯阻性时, 振荡频率的改变导 致输至负载电路的功率改变。
一种恒流驱动电源, 该电源设置有逆变开关电路、 至少二个磁性电流互感器、 谐振电容、 谐振电感、 控制电路、 输出整流电路、 以及直流负载, 其组成谐振逆变电路, 每个磁性电流 互感器有原边绕组、 副边绕组, 原边绕组串联后一端与逆变开关电路输出连接, 另一端和谐 振电容及谐振电感组成的谐振电路连接, 边绕组分别串联后连接至逆变开关电路, 控制电 路的输出与任一磁性电流互感器的一个绕组并接, 谐振电容并接输出整流电路, 输出整流电 路的输出并接直流负载, 改变控制电路的输出阻抗, 以改变输出至直流负载的电流大小。
直流负载包括至少一发光二极管。
输出整流电路包含至少一个发光二极管。
较佳地, 控制电路包含控制模块、 晶体管或其他导通阻抗可变器件, 晶体管集电极和射 极并接任一磁性电流互感器的一个绕组或其它导通阻抗可变器件的至少两个输入端并接任一 磁性电流互感器的一个绕组, 控制模块输出 PWM信号经滤波后连接至晶体管基极, 或连接 至其他导通阻抗可变器件的控制端, 通过改变 PWM信号脉宽比例来改变晶体管或其他导通 阻抗可变器件的导通阻抗, 改变自激振荡频率。
较佳地, 控制电路还包括采样和 /或反馈模组、 所述采样和 /或反馈模组连接控制模块, 根 据采集或反馈的输出电流的采样值与基准值比较的差异, 改变 PWM脉宽比, 使输出电流恒 定在目标值附近。
较佳地, 在所述控制模块中改变基准值, 改变输出电流的恒定值。
本发明的有益效果是: 本发明提供了一种能可靠工作的输出频率或输出功率可变的自激 振荡电源, 或具有调光功能的气体放电灯自激振荡电子镇流器, 而且由于采用自激振荡的方 式来实现输出频率或输出功率的改变, 与他激振荡电路相比较, 达到了成本相对较低的功效。 本发明还提供一种恒流驱动电源。
附图说明
下面结合附图和实施例对本发明进一步说明。
图 1是本发明的总体结构方框图;
图 2是本发明的一实施例示意图;
图 3是本发明的另一实例示意图。
附图中标号说明:
101—逆变开关电路;
102—磁性电流互感器;
102a—磁性电流互感器原边; 102b—磁性电流互感器驱动副边 1 ;
102c—磁性电流互感器驱动副边 2;
102d—磁性电流互感器控制绕组;
103—负载电路; 104—控制电路;
105—控制电路的等效输出阻抗; 106—磁性电流互感器;
106a—磁性电流互感器原边;
106b—磁性电流互感器副边; 106c—磁性电流互感器副边;
D201—双向触发二极管; D202—二极管; C201—电容;
R201—充电电阻; R202—上管驱动电阻;
R203—下管驱动电阻; R204—可变电阻;
Q201—上管; Q202—下管; T201—可控磁环电流互感器;
T201a—可控磁环电流互感器原边;
T201b—可控磁环电流互感器上管驱动副边;
T201c—可控磁环电流互感器下管驱动副边;
T201d—可控磁环电流互感器控制绕组;
T202a—固定磁环电流互感器原边;
T202b—固定磁环电流互感器上管驱动副边;
T202c—固定磁环电流互感器下管驱动副边; L201—负载电路
D301—双向触发二极管; D302—二极管;
C301—电容;
R301—充电电阻; R302—上管驱动电阻;
R303—下管驱动电阻;
Q301—上管; Q302—下管;
T301—可控磁环电流互感器;
T301a—可控磁环电流互感器原边;
T301b—可控磁环电流互感器上管驱动副边;
T301c—可控磁环电流互感器下管驱动副边;
T301d—可控磁环电流互感器控制绕组;
T302a—固定磁环电流互感器原边;
T302b—固定磁环电流互感器上管驱动副边;
T302c—固定磁环电流互感器下管驱动副边; Lr301—谐振电感;
C302—滤波电容; C303—谐振电容; R304—基极电阻;
Q303—控制管; R305—采样电阻; D303—输出整流电路;
ASIC301—控制模块; LEDs301—半导体发^:器件组; VDC301—独立辅助直流电源;
C304—半桥电容上; C305—半桥电容下。
具体实施方式
请参阅附图 1所示, 本发明的输出频率或输出功率连续可变的自激振荡电源由逆变开关 电路 (101)、 磁性电流互感器 (102)、 磁性电流互感器 (106)、 负载电路 (103)和控制电路 (104)构成, 逆变开关电路(101) 的输出连接至磁性电流互感器原边(102a)、 磁性电流互 感器原边 (106a) 和负载电路 (103) 构成的串联回路, 磁性电流互感器驱动副边 1 (102b) 和磁性电流互感器副边 (106b) 串联, 磁性电流互感器驱动副边 2 (102c) 和磁性电流互感 器副边 (106c) 串联, 然后分别输出至逆变开关电路 (101) 作为逆变开关电路 (101) 的驱 动。其中磁性电流互感器(102)或设置有磁性电流互感器控制绕组(102d)。控制电路(104) 的输出或与磁性电流互感器原边 (102a) 相并接, 或与磁性电流互感器驱动副边 1 (102b) 相并接,或与磁性电流互感器驱动副边 2( 102c)相并接,或与磁性电流互感器控制绕组(102d) 相并接, 与所述绕组并联连接的控制电路的等效输出阻抗(105)可按外来控制命令的要求改 变其阻抗值。
某些负载在上电启动时对输至负载的频率或功率有特定要求, 只有符合要求的频率或功 率才能保证负载正常启动, 在连接这类负载时, 附图 1所示的输出频率连续可变的自激振荡 电源, 在初始上电时, 控制电路可置其等效输出阻抗(105)于一特定阻值使初始上电时的输 出频率为一特定频率, 该频率符合负载的启动特性的要求。
上述方案所述自激振荡电源的输入为直流输入。 逆变开关电路 (101) 获得直流输入后, 由逆变开关电路 (101) 内部起振线路产生或外部电路产生起振触发脉冲, 使逆变开关电路
(101)开始工作,将直流输入转变成交流输出至磁性电流互感器(102)、磁性电流互感器(106) 和负载电路 (103) 构成的串联回路, 两个磁性电流互感器自逆变开关电路 (101) 输出的交 流电流产生耦合, 叠加后连接至逆变开关电路 (101), 用于驱动逆变开关电路 (101), 产生 自激振荡。 当外部控制命令使控制电路的等效输出阻抗(105)改变阻值时, 磁性电流互感器
(102) 的饱和深度发生改变, 随之副边输出发生改变, 而磁性电流互感器 (106) 耦合关系 未变使电路能可靠工作, 两个互感器输出叠加导致电路自激振荡频率改变, 逆变开关电路
(101)输出至负载电路(103) 的电流振荡频率即发生改变; 当负载电路(103) 的等效阻抗 为非纯阻性时, 振荡频率的改变导致输至负载电路 (103) 的功率改变。
附图 2是本发明的一实施例示意图。 上管 (Q201)和下管 (Q202)组成逆变半桥, 输出 连接至由可控磁环电流互感器 (T201)、 固定磁环原边 (T202a) 和负载电路 (L201) 构成的 串联回路; 充电电阻 (R201)、 电容 (C201) 和双向触发二极管 (D201) 组成起振线路, 二极管 (D202)在电路起振后将电容 (C201)篏在低电平避免重复触发; 电路中设置有两个 磁环, 固定磁环电流互感器原边(T202a)、 固定磁环电流互感器上管驱动副边(T202b)和固 定磁环电流互感器下管驱动副边(T202c)为同一磁环的不同绕组, 可控磁环电流互感器原边 (T201a)、 可控磁环电流互感器上管驱动副边 (T201b)、 可控磁环电流互感器下管驱动副边 (T201c) 和可控磁环电流互感器控制绕组 (T201d) 为可控磁环电流互感器 (T201) 的不同 绕组;固定磁环电流互感器上管驱动副边(T202b)、可控磁环电流互感器上管驱动副边(T201b) 和上管驱动电阻 (R202) 串联后连接至上管 (Q201) 的基极和发射极; 固定磁环电流互感器 下管驱动副边(T202c)、可控磁环电流互感器下管驱动副边(T201c)和下管驱动电阻(R203) 串联后连接至下管 (Q202) 的基极和发射极; 可控磁环电流互感器控制绕组 (T201d) 的两 端连接可变电阻 (R204)。
直流电压施加到直流输入端后, 经充电电阻 (R201) 向电容 (C201) 充电, 直至双向 触发二极管 (D201) 击穿, 产生起振触发脉冲使下管 (Q202) 导通, 电路起振。 当可变电 阻 (R204) 固定于一阻值时, 可控磁环电流互感器上管驱动副边 (T201b)、 可控磁环电流互 感器下管驱动副边 (T201c) 与可控磁环电流互感器原边 (T201a) 形成一固定的耦合关系, 可控磁环电流互感器 (T201) 与另一磁环电流互感器共同决定一固定的振荡频率。
若本电源的负载具有特定的启动特性, 要求初始上电时振荡频率为一特定值, 则在初始 上电的时刻应将可变电阻 (R204) 置于一特定阻值, 该阻值对应自激振荡频率为所要求的特 定启动频率。
当需要调频时, 改变可变电阻 (R204) 的阻值至另一值, 可控磁环电流互感器上管驱动 副边(T201b)、可控磁环电流互感器下管驱动副边(T201c)与可控磁环电流互感器原边(T201a) 之间的耦合关系受控制绕组负载变化的影响被改变, 可控磁环上管驱动副边(T201b)和可控 磁环电流互感器下管驱动副边(T201c) 的输出发生改变, 可控磁环电流互感器(T201)与另 一磁环电流互感器共同产生另一振荡频率, 连续改变可变电阻 (R204) 的阻值, 即实现输出 频率的受控连续改变; 若负载电路 (L201) 为非纯阻性负载, 则振荡频率的受控改变导致输 出至负载电路 (L201) 的功率的受控改变, 达到发明目的。
应用例一
上述的该些实例的电源可直接应用于气体放电灯电子镇流器。 电子镇流器 (Electricalballast) , 是指采用电子技术驱动电光源, 使之产生所需照明的电子设备。 与 之对应的是电感式镇流器 (或镇流器)。 现代日光灯越来越多的使用电子镇流器, 轻便小巧, 甚至可以将电子镇流器与灯管等集成在一起, 同时, 电子镇流器通常可以兼具起辉器功能, 故此又可省去单独的起辉器。 将上述实例的电源应用于电子镇流器中, 还能达到调光功效。 应用例二
一种恒流驱动电源, 该电源设置有逆变开关电路、 至少二个磁性电流互感器、 谐振电容、 谐振电感、 控制电路、 输出整流电路、 以及直流负载, 其组成谐振逆变电路, 每个磁性电流 互感器有原边绕组、 副边绕组, 原边绕组串联后一端与逆变开关电路输出连接, 另一端和谐 振电容及谐振电感组成的谐振电路连接, 副边绕组分别串联后连接至逆变开关电路, 控制电 路的输出与任一磁性电流互感器的一个绕组并接, 谐振电容并接输出整流电路, 输出整流电 路的输出并接直流负载, 改变控制电路的输出阻抗, 以改变输出至直流负载的电流大小。
直流负载包括至少一发光二极管。
输出整流电路包含至少一个发光二极管。
较佳地, 控制电路包含控制模块、 晶体管或其他导通阻抗可变器件, 晶体管集电极和射 极并接任一磁性电流互感器的一个绕组或其它导通阻抗可变器件的至少两个输入端并接任一 磁性电流互感器的一个绕组, 控制模块输出 PWM信号经滤波后连接至晶体管基极, 或连接 至其他导通阻抗可变器件的控制端, 通过改变 PWM信号脉宽比例来改变晶体管或其他导通 阻抗可变器件的导通阻抗, 改变自激振荡频率。
较佳地, 控制电路还包括采样和 /或反馈模组、所述采样和 /或反馈模组连接控制模块, 根 据采集或反馈的输出电流的采样值与基准值比较的差异, 改变 PWM脉宽比, 使输出电流恒 定在目标值附近。
较佳地, 在所述控制模块中改变基准值, 改变输出电流的恒定值。
附图 3是本发明的另一实施例示意图, 该实施例利用本发明实现了可调光 LED恒电流驱 动。 该实施例的输入为直流, 通常为前级整流或 APFC 电路的直流输出; 充电电阻 R301、 电 容 C301、 双向触发二极管 D301、 二极管 D302组成起振线路; 上管 Q301和下管 Q302组成的 逆变半桥输出依次连接可控磁环电流互感器原边 T301a、 固定磁环电流互感器原边 T302a、谐 振电感 Lr301、 谐振电容 C303; 谐振电容 C303另一端接半桥电容上 C304和半桥电容下 C305 的连接中点; 谐振电容 C303两端并接至输出整流电路 D303, 输出整流电路 D303的输出并接 半导体发光器件组 LEDs301 ; 输出整流电路 D303中还可以包含至少一个发光二极管; 上述电 路结构输出至半导体发光器件组 LEDs301的电流值受 LED导通压降的影响较小, 是一种较好 的 LED驱动电路。
可控磁环电流互感器控制绕组 T301d 两端连接控制管 (Q303 ) 的发射极和集电极。 控 制管 (Q303)是半导体三极管, 或其他导通阻抗可受控改变的器件。 控制模块(ASIC301 )输 出与控制管(Q303)基极连接,控制模块(ASIC301 )给出 PWM脉宽调制信号,经滤波电容(C302) 和基极电阻 (R304) 向控制管 (Q303) 提供基极驱动, 置控制管 (Q303) 工作于放大区, 则 改变控制模块(ASIC301 )给出的 P丽信号的占空比, 即改变输入到控制管(Q303)基极信号 的大小, 从而改变控制管 (Q303 ) 的发射极和集电极之间的导通阻抗, 改变可控磁环电流互 感器 (T301 ) 的饱和深度, 导致改变整个逆变电路的工作频率。 因为谐振电感 Lr301、 谐振 电容 C303、 输出整流电路 D303和半导体发光器件组 LEDs301形成感性负载, 工作频率的改 变导致逆变半桥输出电流改变, 并导致输出至半导体发光器件组 LEDs301的电流改变。 在输 出至半导体发光器件组 LEDs301的电流路径上串联接入采样电阻(R305),将采样电阻(R305) 上获得的电流采样信号反馈到控制模块(ASIC301 ),在控制模块(ASIC301 )内与基准值比较, 根据比较结果决定控制模块(ASIC301 )输出的 P丽信号的脉宽比例, 当负载电流低于基准值 时, 縮小 P丽脉宽比, 增大控制管 (Q303) 的发射极和集电极之间的导通阻抗, 降低自激振 荡频率, 即导致输出电流增大; 当负载电流高于基准值时, 加大 P丽的脉宽比, 减小控制管 (Q303) 的发射极和集电极之间的导通阻抗, 提高自激振荡频率, 即导致输出电流减小; 通 过以上负反馈, 最终使得输出至半导体发光器件组 LEDs301的电流稳定在目标值附近, 达到 恒流输出的效果。 外部控制命令改变控制模块(ASIC301 ) 的基准值, 即可改变恒流输出的电 流值的大小。
也就是说, 恒流控制可以由 PWM控制的晶体管或其他导通阻抗可变的器件, 包括控制 模块和采样电路, 通过采样电路采集直流负载的电流采样, 反馈至控制模块, 根据与基准的 差异, 控制模块控制 PWM的占空比, 控制晶体管或其他导通阻抗可变器件的导通阻抗, 控 制自激振荡频率, 以将电流恒定在目标值附近。 应当理解的是, 这里所描述的方法可以以各种形式的硬件、 软件、 固件、 专用处理机或 者它们的组合实现。 系统模块 (或者方法步骤的逻辑流程) 之间的连接可能不同, 根据这里 给出的指导, 相关领域的普通技术人员将能够设计出本发明的这些以及类似的实施方式, 都 应落入本发明的范围内。 以上公开了本发明的多个方面和实施方式, 本领域的技术人员会明 白本发明的其它方面和实施方式。 本发明中公开的多个方面和实施方式只是用于举例说明, 并非是对本发明的限定, 本发明的真正保护范围和精神应当以权利要求书为准。

Claims

权 利 要 求 书
1、 一种输出频率连续可变的自激振荡逆变电源, 其特征在于, 该电源设置有逆变开关电路、 至少两个磁性电流互感器、 负载电路和控制电路, 构成自激振荡逆变电源电路, 每个磁性电 流互感器有原边绕组、 副边绕组, 原边绕组串联后与逆变开关电路输出和负载电路连接, 副 边绕组分别串联后连接至逆变开关电路, 控制电路的输出与任一磁性电流互感器的一个绕组 并接, 改变控制电路的输出阻抗, 达到改变自激振荡频率目的。
2、 按权利要求 1所述的输出频率连续可变的自激振荡逆变电源, 其特征在于, 所述控制电路 的输出与任一磁性电流互感器的原边绕组并接, 改变控制电路的输出阻抗, 达到改变自激振 荡频率目的。
3、 按权利要求 1所述的输出频率连续可变的自激振荡逆变电源, 其特征在于, 所述控制电路 的输出与任一磁性电流互感器的任一副边绕组并接, 改变控制电路的输出阻抗, 达到改变自 激振荡频率目的。
4、按权利要求 1所述的输出频率连续可变的自激振荡逆变电源, 其特征在于, 所述的任一磁 性电流互感器绕有一个控制绕组, 控制电路的输出与该控制绕组并接, 改变控制电路的输出 阻抗, 达到改变自激振荡频率目的。
5、按权利要求 1至 4中任意一项所述的输出频率连续可变的自激振荡逆变电源,其特征在于, 所述控制电路由外部指令控制其输出阻抗能够连续改变, 达到连续改变逆变电源频率目的。
6、按权利要求 1至 4中任意一项所述的输出频率连续可变的自激振荡逆变电源,其特征在于, 自激振荡逆变电源电路在上电启动或收到外来启动命令时, 由控制指令控制可变阻抗置于某 个确定的阻抗值, 以达到一个确定频率。
7、如权利要求 1至 4中任意一项所述的输出频率连续可变的自激振荡逆变电源,其特征在于, 控制电路包含控制模块、 晶体管或其他导通阻抗可变器件, 晶体管集电极和射极并接任一磁 性电流互感器的一个绕组或其它导通阻抗可变器件的至少两个输入端并接任一磁性电流互感 器的一个绕组, 控制模块输出 PWM信号经滤波后连接至晶体管基极, 或连接至其他导通阻 抗可变器件的控制端, 通过改变 PWM信号脉宽比例来改变晶体管或其他导通阻抗可变器件 的导通阻抗, 改变自激振荡频率。
8、 一种气体放电灯电子镇流器, 其特征在于, 包括如权利要求 1至 7所述的任意一种自激振 荡逆变电源。
9、一种恒流驱动电源,其特征在于, 该电源设置有逆变开关电路、至少二个磁性电流互感器、 谐振电容、 谐振电感、 控制电路、 输出整流电路、 以及直流负载, 其组成谐振逆变电路, 每 个磁性电流互感器有原边绕组、 副边绕组, 原边绕组串联后一端与逆变开关电路输出连接,
权 利 要 求 书 另一端和谐振电容及谐振电感组成的谐振电路连接, 副边绕组分别串联后连接至逆变开关电 路, 控制电路的输出与任一磁性电流互感器的一个绕组并接, 谐振电容并接输出整流电路, 输出整流电路的输出并接直流负载, 改变控制电路的输出阻抗, 以改变输出至直流负载的电 流大小。
10、 如权利要求 9所述的恒流驱动电源, 其特征在于, 直流负载包括至少一发光二极管。
11、 如权利要求 9所述的恒流驱动电源, 其特征在于, 输出整流电路包含至少一个发光二极 管。
12、 如权利要求 9至 11中任意一项所述的恒流驱动电源, 其特征在于, 控制电路包含控制模 块、 晶体管或其他导通阻抗可变器件, 晶体管集电极和射极并接任一磁性电流互感器的一个 绕组或其它导通阻抗可变器件的至少两个输入端并接任一磁性电流互感器的一个绕组, 控制 模块输出 PWM信号经滤波后连接至晶体管基极,或连接至其他导通阻抗可变器件的控制端, 通过改变 PWM信号脉宽比例来改变晶体管或其他导通阻抗可变器件的导通阻抗, 改变自激 振荡频率。
13、 如权利要求 12所述的恒流驱动电源, 其特征在于, 控制电路还包括采样和 /或反馈模组、 所述采样和 /或反馈模组连接控制模块, 根据采集或反馈的输出电流的采样值与基准值比较的 差异, 改变 PWM脉宽比, 使输出电流恒定在目标值附近。
14、 如权利要求 12或 13所述的恒流驱动电源, 其特征在于, 在所述控制模块中改变基准值, 改变输出电流的恒定值。
PCT/CN2012/078655 2011-07-18 2012-07-13 输出频率连续可变的自激振荡逆变电源、恒流驱动电源 WO2013010461A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2011202520835U CN202153807U (zh) 2011-07-18 2011-07-18 输出频率连续可变的自激振荡逆变电源
CN201120252083.5 2011-07-18
CN201110199913.7 2011-07-18
CN201110199913A CN102316657A (zh) 2011-07-18 2011-07-18 输出频率连续可变的自激振荡逆变电源

Publications (1)

Publication Number Publication Date
WO2013010461A1 true WO2013010461A1 (zh) 2013-01-24

Family

ID=47557668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078655 WO2013010461A1 (zh) 2011-07-18 2012-07-13 输出频率连续可变的自激振荡逆变电源、恒流驱动电源

Country Status (1)

Country Link
WO (1) WO2013010461A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904904A (en) * 1987-11-09 1990-02-27 Lumintech, Inc. Electronic transformer system for powering gaseous discharge lamps
JP2006059761A (ja) * 2004-08-23 2006-03-02 Nitta Ind Corp 高周波電流点灯装置
US20090097293A1 (en) * 2007-10-10 2009-04-16 Chang Shuai High-frequency power supply
CN101652015A (zh) * 2008-08-13 2010-02-17 安德鲁·鲍拜尔 亮度可调型节能灯的高功率因数镇流器
CN101873739A (zh) * 2009-04-27 2010-10-27 台达电子工业股份有限公司 多组直流负载的电流平衡供电电路
CN102316657A (zh) * 2011-07-18 2012-01-11 晴飞照明电器(上海)有限公司 输出频率连续可变的自激振荡逆变电源
CN202153807U (zh) * 2011-07-18 2012-02-29 晴飞照明电器(上海)有限公司 输出频率连续可变的自激振荡逆变电源

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904904A (en) * 1987-11-09 1990-02-27 Lumintech, Inc. Electronic transformer system for powering gaseous discharge lamps
JP2006059761A (ja) * 2004-08-23 2006-03-02 Nitta Ind Corp 高周波電流点灯装置
US20090097293A1 (en) * 2007-10-10 2009-04-16 Chang Shuai High-frequency power supply
CN101652015A (zh) * 2008-08-13 2010-02-17 安德鲁·鲍拜尔 亮度可调型节能灯的高功率因数镇流器
CN101873739A (zh) * 2009-04-27 2010-10-27 台达电子工业股份有限公司 多组直流负载的电流平衡供电电路
CN102316657A (zh) * 2011-07-18 2012-01-11 晴飞照明电器(上海)有限公司 输出频率连续可变的自激振荡逆变电源
CN202153807U (zh) * 2011-07-18 2012-02-29 晴飞照明电器(上海)有限公司 输出频率连续可变的自激振荡逆变电源

Similar Documents

Publication Publication Date Title
JP6031669B2 (ja) 低出力照明ユニットを動作させる回路装置及びそれを動作させる方法
EP2131631B1 (en) Electric discharge lamp operating device, lighting equipment and lighting system
US6172466B1 (en) Phase-controlled dimmable ballast
JP2008544440A (ja) フライバックキャットイア電源を備えた電子バラスト
US8531124B2 (en) High pressure discharge lamp lighting device and illumination instrument
TWI473403B (zh) 一種降低電容值使用量的方法及其裝置
JP5069573B2 (ja) 高圧放電灯点灯装置、照明器具
US20130234614A1 (en) Replaceable electrical ballast tube
WO2013010461A1 (zh) 输出频率连续可变的自激振荡逆变电源、恒流驱动电源
TWM382691U (en) Novel self-oscillating dimmable electronic ballast with high power factor correction
US20050062439A1 (en) Dimming control techniques using self-excited gate circuits
JP5460065B2 (ja) 放電灯点灯回路
CN101753043A (zh) 单级高功因回授变频式谐振能量之控制电路
JP2001128457A (ja) 電源装置
US8674612B2 (en) Fluorescent tube driving device
KR101439899B1 (ko) 엘이디 조명 구동제어회로
JP4948496B2 (ja) 放電灯点灯装置及び照明装置
KR100829238B1 (ko) 프리와트형 형광램프용 전자식 안정기
JP2010056042A (ja) 放電灯点灯装置
JP2006351449A (ja) ランプ点灯装置におけるランプ電流検出回路
JP5491716B2 (ja) 放電灯点灯装置
JP3319894B2 (ja) 放電灯点灯装置
JP2003323993A (ja) 放電ランプ点灯装置および照明器具
JP3945715B2 (ja) 照明用点灯装置
US8441203B1 (en) Dimming electronic ballast for true parallel lamp operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12815551

Country of ref document: EP

Kind code of ref document: A1