WO2013010391A1 - 脉搏复现装置及其复现方法 - Google Patents

脉搏复现装置及其复现方法 Download PDF

Info

Publication number
WO2013010391A1
WO2013010391A1 PCT/CN2012/074349 CN2012074349W WO2013010391A1 WO 2013010391 A1 WO2013010391 A1 WO 2013010391A1 CN 2012074349 W CN2012074349 W CN 2012074349W WO 2013010391 A1 WO2013010391 A1 WO 2013010391A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
bionic
pulse signal
analog
oil
Prior art date
Application number
PCT/CN2012/074349
Other languages
English (en)
French (fr)
Inventor
邵光震
Original Assignee
Shao Guangzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201110204683 external-priority patent/CN102389296B/zh
Priority claimed from CN2011202594877U external-priority patent/CN202342024U/zh
Application filed by Shao Guangzhen filed Critical Shao Guangzhen
Publication of WO2013010391A1 publication Critical patent/WO2013010391A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Definitions

  • the invention relates to a traditional Chinese medicine pulse diagnosis device, in particular to a pulse reproduction device and a reproduction method thereof.
  • Judging human health through pulse is an important diagnostic tool for Chinese medicine practitioners.
  • TCM diagnosis is a method of analyzing and judging the patient's health by touching the pulse beats of the patient's wrist and wrist, the iliac crest, the ulnar, and the ulnar.
  • the diagnosis of traditional Chinese medicine is mainly based on the subjective feelings of Chinese medicine practitioners.
  • the pulse meter capable of collecting the pulse of the patient and displaying the curve of pulse pressure with time is developed and applied in practical work and life. Therefore, the pulse-pressure related data is transmitted through the communication network and real-time simulation is performed by using the reproducing device. It is possible to remotely judge the patient's pulse image according to the pulse pressure change simulated by the recurring device by the corresponding pulse.
  • the control circuit includes: a first A/D module, configured to convert an analog pressure signal output by the pressure sensor into a digital pressure signal output; and a host computer, configured to receive a digital pressure sent by the first A/D module a signal, according to the digital pressure signal, corresponding to a pulse signal output to be reproduced; a D/A conversion module, configured to acquire a pulse signal sent by the upper computer, convert the analog pulse signal output into an analog pulse signal output; And acquiring an analog pulse signal sent by the D/A conversion module, and amplifying the output pulse signal as a driving signal of the electro-hydraulic servo valve to drive the hydraulic circuit to generate a corresponding hydraulic waveform.
  • the bionic wrist includes an elastic outer layer, the bottom of the outer layer is provided with a simulated blood vessel, the bottom of the simulated blood vessel is provided with a bionic tendon layer, and the bottom of the bionic tendon layer is provided with a bionic bone.
  • Layer Three vertical lifting devices corresponding to the positions of the inch, the off, and the foot of the bionic wrist are installed in the raw bone layer, and one of the pressure sensors is mounted on the top of each of the vertical lifting devices, and each of the The top of the pressure sensor is in contact with the bottom of the bionic tendon layer, and the vertical lifting device is configured to adjust the heights of the three parts of the bionic wrist, such as the inch, the off, and the foot, so as to correspond to the pulse signal to be reproduced.
  • the height of the body is matched by the height of the inch, the off and the ruler.
  • each of the vertical lifting devices includes a motor embedded in a bottom of the bionic bone layer, and a screw is fixed to an upper end of the motor shaft, and the upper portion of the screw is screwed with a sleeve.
  • a sleeve the sleeve is sleeved with a matching sleeve holder, and the sleeve holder is fixed in the bionic bone layer, and the sleeve can only slide up and down relative to the sleeve holder.
  • the diverter valve has a valve body, and the valve body has an oil inlet hole penetrating through the left and right sides thereof, and the right end opening of the oil inlet hole sequentially passes through the first oil pipe joint and one a hard pipe is sealingly connected to one end of the simulated blood vessel, and a top of the valve body is vertically opened with a mounting hole penetrating the oil inlet hole, and the mounting hole is internally threaded with a valve core, and the mounting hole is located a screw-connected upper cover is mounted in a portion above the valve body, and a bottom portion of the valve body corresponding to the mounting hole is provided with a diverting hole penetrating the mounting hole and the oil inlet hole, a third oil passage joint is sealingly connected to the lower end opening of the split hole, and the oil return hole is further formed on the valve body, the oil return hole penetrates the bottom and the right side of the valve body, and the right side opening of the oil return hole
  • a motor holder is embedded in the bottom of the bionic bone layer, and the motor is mounted on the motor holder.
  • the outer layer is a flexible polyurethane elastomer having a thickness of about 10 mm; the bionic tendon layer is a flexible polyurethane foam having a thickness of about 5 mm; and the bionic bone layer is hard.
  • the polyurethane foam has a thickness of about 34 to 44; the simulated blood vessel is a silicone tube having an inner diameter of about 2, and the sleeve has a lifting range of ⁇ 5.
  • a single chip microcomputer configured to receive the transmitted pulse signal of the upper computer and send it to a digital to analog converter
  • a digital to analog converter for converting the pulse signal into an analog pulse signal output
  • a communication interface configured to implement communication between the single chip microcomputer and the upper computer.
  • control circuit further includes:
  • a pressure transmitter mounted on a conduit for connecting the bionic wrist to the fuel tank for converting a hydraulic waveform flowing through the bionic wrist into a corresponding simulated recurring pulse signal
  • the hydraulic circuit further includes:
  • the present invention provides a pulse recurring method of the above pulse reproducing device, comprising the following steps:
  • the pressure sensor outputs an analog pressure signal under an external force;
  • the first A/D module converts the analog pressure signal output by the pressure sensor into a digital pressure signal output
  • the host computer After receiving the digital pressure signal sent by the first A/D module, the host computer triggers the capture of the pre-stored pulse signal output;
  • the D/A conversion module acquires a pulse signal sent by the host computer, and converts it into an analog pulse signal output;
  • the amplifying circuit acquires the analog pulse signal sent by the D/A converter module, amplifies it and outputs it as a driving signal of the electro-hydraulic servo valve to drive the hydraulic circuit to generate a corresponding hydraulic waveform.
  • the pulse reproducing device of the present invention comprises a hydraulic circuit and a control circuit, wherein the hydraulic circuit comprises an electromechanical integrated pump, an electrohydraulic servo valve, a diverter valve, a bionic wrist and a fuel tank which are sequentially connected, and the inner and the bionic wrist of the bionic wrist are closed and closed.
  • a pressure sensor is respectively mounted on the corresponding positions of the three parts of the ruler. When an external force acts on one of the positions corresponding to the three positions of the inch, the off, and the ruler on the upper part of the bionic wrist, the corresponding pressure sensor outputs a simulated pressure signal.
  • FIG. 1 is a schematic structural view of a pulse reproducing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a hydraulic circuit portion of the pulse reproducing device of FIG. 1;
  • Figure 3 is a perspective view showing the structure of a bionic wrist and a diverter valve of the pulse reproducing device of Figure 1;
  • Figure 4 is a bottom view of the bionic wrist and the diverter valve of the pulse-recovering device of Figure 3 (omission of the contour layer, the simulated tendon layer and the bionic bone layer);
  • Figure 5 is a cross-sectional view showing the structure of the bionic wrist and the diverter valve of the pulse reproducing device of Figure 4;
  • FIG. 6 is a cross-sectional view showing the B-B cross-sectional view of the bionic wrist and the diverter valve of the pulse reproducing device of FIG. 4;
  • Figure 7 is a cross-sectional view showing the structure of the bionic wrist and the diverter valve of the pulse reproducing device of Figure 4;
  • Figure 8 is an enlarged schematic view showing the structure of the bionic wrist of the pulse reproducing device of Figure 3 (omitted shunt Fig. 9 is an enlarged schematic view showing the EE sectional structure of the bionic wrist of the pulse reproducing device of Fig. 8;
  • 10 is an enlarged schematic view showing a FF cross-sectional structure of a bionic wrist of the pulse reproducing device of FIG. 8;
  • FIG 11 is a circuit diagram of the D/A conversion module and the amplifying circuit of the pulse reproducing apparatus of Figure 1.
  • the pulse reproducing device of the embodiment includes a hydraulic circuit and a control circuit, as shown in FIG. 1 , wherein the hydraulic circuit mainly includes an electromechanical integrated pump 9 , an electrohydraulic servo valve 6 , a diverter valve 3 , a bionic wrist 1 and a fuel tank which are sequentially connected. 8 hydraulic circuit.
  • the oil outlet of the oil tank 8 is connected to the oil inlet of the electromechanical integrated pump 9 through a pipeline, and the oil outlet of the electromechanical integrated pump 9 is connected to the oil inlet of the electrohydraulic servo valve 6 through a pipeline, and the electrohydraulic servo valve 6
  • the oil outlet is connected to the oil inlet of the diverter valve 3 through a pipeline, and the overflow port of the diverter valve 3 is connected to a return port of the oil tank 8 through a pipeline, and the oil outlet of the diverter valve 3 passes through the pipeline and the bionic wrist One end of the 1 is connected, and the other end of the bionic wrist 1 is connected to the other oil return port of the oil tank 8 through a pipe. As shown in FIG.
  • a pressure gauge 7 is installed on the pipeline connecting the diverter valve 3 and the electro-hydraulic servo valve 6, for conveniently viewing the real-time pressure of the hydraulic circuit, and a pipe connected to the electromechanical integrated pump 9 and the fuel tank 8 is installed.
  • the oil filter 10 usually contains particulate impurities in the hydraulic oil. If the oil filter 10 is not installed, the surface of the hydraulic circuit is relatively worn, the valve is stuck, the throttle orifice is blocked, and the system is reliable. The sex is greatly reduced.
  • the fuel tank 8 is used for oil storage and heat dissipation.
  • the electromechanical integrated pump 9 is used as a power component to start working to form a hydraulic circuit.
  • the diverter valve 3 is used to adjust the hydraulic circuit pressure to ensure system safety.
  • the control circuit includes: a pressure transmitter 11 (for example, a pressure transmitter of the type CGYL-202) installed on the pipeline connecting the bionic wrist 1 and the fuel tank 8 through a tee, for flowing
  • a pressure transmitter 11 for example, a pressure transmitter of the type CGYL-202
  • the hydraulic waveform of the bionic wrist 1 is converted into a corresponding simulated recurring pulse signal.
  • Three integrated pulse sensors 12 (for example, an integrated pulse sensor model HK2000G) mounted on the lower portion of the bionic wrist 1, the mutual spacing of the three integrated pulse sensors 12 and the inch, off, and ruler on the bionic wrist 1 The three positions correspond to each other.
  • the corresponding integrated pulse sensor 12 When an external force acts on one of the three positions of the inch, the off, and the foot on the bionic wrist 1, the corresponding integrated pulse sensor 12 outputs an analog pressure signal, so as to ensure that the three integrated pulse sensors 12 simultaneously Only one of the integrated pulse sensors 12 corresponding to the inch portion of the bionic wrist 1 has the highest priority, and the integrated pulse sensor 12 corresponding to the closed portion of the bionic wrist 1 has the highest priority.
  • the integrated pulse sensor 12 corresponding to the ruler portion on the bionic wrist 1 has the lowest priority.
  • Three first A/D modules each of the first A/D modules for converting the analog pressure signal output by the corresponding integrated pulse sensor 12 into a digital pressure signal output.
  • the upper computer is configured to receive the digital pressure signal sent by the first A/D module, and correspondingly receive the pulse signal output to be reproduced according to the digital pressure signal.
  • the D/A conversion module is configured to acquire a pulse signal sent by the host computer and convert it into an analog pulse signal output.
  • the amplifying circuit is configured to obtain an analog pulse signal sent by the D/A conversion module, and amplify the output pulse signal as a driving signal of the electro-hydraulic servo valve 6 to drive the hydraulic circuit to generate a corresponding hydraulic waveform.
  • a second A/D module for the mode The pseudo-recurring pulse signal is converted into a digital reproduction pulse signal and sent to the upper computer for comparison analysis by the upper computer to check the recurring effect.
  • the bionic wrist 1 includes an elastic outer layer 101 which is a flexible polyurethane elastomer having an average thickness of about 10 mm.
  • a simulated blood vessel 102 is provided at the bottom of the outer layer 101.
  • the simulated blood tube 102 is a silicone tube having an inner diameter of about 2 mm.
  • the bottom of the simulated blood vessel 102 is provided with a bionic tendon layer 103, which is a flexible polyurethane foam having a thickness of about 5 mm.
  • the bottom of the bionic tendon layer 103 is provided with a bionic bone layer 104.
  • the bionic bone layer 104 is a rigid polyurethane foam having a thickness of about 34 to 44 mm.
  • the bionic bone layer 104 is provided with three vertical lifting devices 2 corresponding to the relative positions of the three positions of the inch, the off, and the feet of the bionic wrist 1 (ie, the positions of the three circles in FIG. 3), the vertical lifting device 2 It is used to adjust the height of the three parts of the inch, the off and the ruler of the bionic wrist 1 so as to match the heights of the three parts of the body, the inch, the ruler and the ruler corresponding to the pulse signal to be reproduced, so as to be more accurate and more accurate.
  • An integrated pulse sensor 12 is attached to the top of each vertical lifting device 2, and the top of each integrated pulse sensor 12 is in contact with the bottom of the biomimetic tendon layer 103.
  • Each of the vertical lifting devices 2 includes a motor 201 embedded in the bottom of the bionic bone layer 104.
  • the motor 201 is mounted on the motor mounting frame 5.
  • the motor mounting frame 5 is embedded and fixed on the bottom of the bionic bone layer 104, and the upper end of the rotating shaft of the motor 201 is fixed.
  • the screw 202 is connected to the upper part of the lead screw 202 by a sleeve 203 having an octagonal prism shape.
  • the sleeve 203 is sleeved with a matching sleeve holder 204.
  • the sleeve holder 204 is fixed in the bionic bone layer 104.
  • the barrel 203 can only slide up and down with respect to the sleeve holder 204, and the sleeve 203 can be lifted up to ⁇ 5 mm.
  • the diverter valve 3 has a valve body 301.
  • the valve body 301 has an oil inlet hole 302 extending through the left and right sides thereof, and the right end opening of the oil inlet hole 302 sequentially passes through the first oil passage.
  • the joint 401 and a rigid pipe are sealingly connected to one end of the simulated blood vessel.
  • the top of the valve body 301 is vertically opened with a mounting hole 303 extending through the oil inlet hole 302.
  • the mounting hole 303 is internally threaded with a valve core 304, and the valve core 304 is
  • the top portion is provided with a flat or cross-shaped open groove.
  • the mounting hole 303 is located in a portion above the valve core 304 and is provided with a threaded upper cover 305.
  • the top of the upper cover 305 is provided with a glyph or a cross-shaped open groove.
  • a bottom portion of the valve body 301 corresponding to the mounting hole 303 defines a diverting hole 306 extending through the mounting hole 303 and the oil inlet hole 302.
  • the lower end of the diverting hole 306 is sealingly connected to the third oil passage joint 403, and the valve body 301 is further opened.
  • There is an oil return hole 307 the oil return hole 307 penetrates the bottom and the right side of the valve body 301, and the right side opening of the oil return hole 307 is sequentially sealed through the second oil passage joint 402 and the other hard pipe and the other end of the simulated blood vessel.
  • a fourth oil passage joint 404 is connected to the bottom opening of the oil return hole 307.
  • the D/A conversion module includes a digital-to-analog converter of the type DAC1208 and its peripheral circuits
  • the model is ATmegal28L-8AC single-chip microcomputer and its peripheral circuit and model is CP2012 USB to serial port chip and its peripheral circuit constitutes the communication interface.
  • the single chip is used to receive the pulse signal sent by the host computer and send it to the digital-to-analog converter; the digital-to-analog converter is used to convert the pulse signal into an analog pulse signal output;
  • the communication interface is used to realize the connection between the single chip computer and the upper computer
  • the 2nd and 3rd pins of the MCU are respectively connected to the 26th and 25th pins of the USB to serial port chip.
  • the 44th to 51st pins of the MCU correspond to the 19th, 20th, 4th, 5th, 6th, and the
  • the 8th and 9th pins are connected.
  • the 35th to 41st pins of the MCU correspond to the 18th, 17th, 16th, 15th, 23rd, 2nd, and 1st pins of the digital-to-analog converter. Connected.
  • the amplifying circuit includes a first operational amplifier A2, a second operational amplifier A3, a third operational amplifier A4, a fourth operational amplifier A5, a fifth operational amplifier A6, a sixth operational amplifier A7, a triode Q1, and a triode Q2.
  • the inverting input terminal of the first operational amplifier A2 is connected to the output end of the digital-to-analog converter through a resistor R9.
  • the non-inverting input terminal of the first operational amplifier A2 is grounded through a resistor R6, and the reverse input end of the first operational amplifier A2 passes through
  • the first RC circuit formed by the resistor R14 and the capacitor C9 is connected to the output end of the first operational amplifier A2, the first operational amplifier
  • the output end of A2 is connected to the inverting input end of the second operational amplifier A3 through the resistor R7.
  • the positive power supply terminal and the negative power supply terminal of the first operational amplifier A2 are respectively connected to the +15V and -15V power supply, and the second operational amplifier A3
  • the non-inverting input terminal is grounded, and the inverting input terminal of the second operational amplifier A3 is connected to the output end of the second operational amplifier A3 through the series resistor R3 and the potentiometer R4, and the output terminal of the second operational amplifier A3 passes through the resistor R10 and the third terminal.
  • the inverting input terminal of the operational amplifier A4 is connected, the non-inverting input terminal of the third operational amplifier A4 is grounded, and the inverting input terminal of the third operational amplifier A4 is connected to the output end of the third operational amplifier A4 through the resistor R13, the third operational amplifier
  • the output end of A4 is connected to the adjustable end of potentiometer R15 through series resistor R13 and resistor R12.
  • the other ends of potentiometer R15 are connected to +15V and -15V respectively, and the output of the third op amp A4 is passed.
  • the resistor R8 and the resistor R25 connected in series are connected to the inverting input terminal of the fifth operational amplifier A6, and the inverting input terminal of the fourth operational amplifier A5 is connected to the output terminal thereof, and the same input terminal of the fourth operational amplifier A5 and the adjustable potential
  • the adjustable end of the R24 is connected, and the adjustable potentiometer R24 is another The outer ends are grounded, and the output end of the fourth operational amplifier A5 is sequentially connected to the inverting input terminal of the fifth operational amplifier A6 through the reversed diode D1 and the resistor R25, and the same input terminal of the sixth operational amplifier A7 passes through the resistor R23 and
  • the adjustable end of the adjustable potentiometer R24 is connected, and the resistor R20 is connected between the same input end of the sixth operational amplifier A7 and the output end thereof, and the reverse input end of the sixth operational amplifier A7 is grounded, and the sixth operational amplifier A7 is positive.
  • the power supply end and the negative power supply end are respectively connected to the +15V and -15V power supply, and the output end of the sixth operational amplifier A7 is sequentially connected to the reverse input end of the fifth operational amplifier A6 through the diode D2 and the resistor R25, and the fifth operational amplifier A6
  • the inverting input is grounded through resistor R26 and resistor R27 in sequence, the fifth op amp
  • a second RC circuit consisting of a resistor R21 and a capacitor C11 is connected between the inverting input terminal of the A6 and the output terminal thereof, and the fifth operational amplifier is connected.
  • the A6's non-inverting input is grounded, and the output of the fifth op amp A6 is grounded through resistor R17 and capacitor C10 in sequence, the fifth op amp.
  • A6 is connected to the emitter of transistor Q1 and the emitter of transistor Q2 through resistor R17 and resistor R18.
  • the base of transistor Q1 is grounded through capacitor C11.
  • the collector of transistor Q1 is connected to +15V through resistor R16.
  • the base of Q2 is grounded through capacitor C11, the collector of transistor Q2 is connected to -15V through resistor R22, and the output of transistor Q1
  • the emitters of the emitter and transistor Q2 are sequentially grounded through a resistor R19, a coil L2 of the electro-hydraulic servo valve, a resistor R5, and a resistor R27.
  • the pulse recurrence process of the above pulse reproducing device is as follows:
  • the pulse signal according to the pulse to be reproduced corresponds to the height of the three parts of the body, the size of the inch, the foot and the ruler, and the height of the three parts of the bionic wrist is adjusted by the vertical lifting device, when the doctor presses the bionic wrist
  • the finger pressure is transmitted to the corresponding integrated pulse sensor through the bionic wrist.
  • the integrated pulse sensor outputs an analog pressure signal, and the first A/D module will integrate the pulse sensor.
  • the output analog pressure signal is converted into a digital pressure signal output; after receiving the digital pressure signal sent by the first A/D module, the host computer triggers the capture of the pre-stored pulse signal output; the D/A conversion module acquires the pulse sent by the upper computer.
  • the signal is converted into an analog pulse signal output; the amplifying circuit acquires the analog pulse signal sent by the D/A converter module, amplifies it and outputs it as a driving signal of the electro-hydraulic servo valve to drive the hydraulic circuit to generate a corresponding hydraulic waveform for diagnosis by the physician After the diagnosis of this part is completed, press the inch on the bionic wrist in the same way. Guan and Chi three parts two parts additionally diagnose, so as to achieve the purpose of reproduction pulse. Repeat the above steps if you want to reproduce the next pulse signal to be reproduced.
  • the pulse repetitive device and the recurring method thereof are mainly applied to the simulation re-expansion of three parts of the human body, the inch, the foot and the ruler, which can make the pulse according to the collected three parts of the body, the inch and the ruler.
  • the signal simulation reproduces the pulse of the three parts of the body, such as inch, off and rule, thus providing a platform for remote Chinese medicine pulse diagnosis and teaching experiments, so it has high industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Business, Economics & Management (AREA)
  • Cardiology (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Physiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种脉搏复现装置及其复现方法。该装置包括液压回路和控制电路,其中液压回路包括依次相连的机电一体泵(9)、电液伺服阀(6)、分流阀(3)、仿生手腕(1)和油箱(8),仿生手腕(1)内在与仿生手腕(1)上的寸、关、尺三个部位对应的位置上分别安装有一个压力传感器(12)。当有外力作用于仿生手腕(1)上部的与寸、关、尺三个部位对应的位置之一时,对应的压力传感器(12)输出模拟压力信号,经控制电路转换为数字压力信号,用于对应调取待复现的脉搏信号,在对该脉搏信号进行数模转换和放大处理后作为电液伺服阀(6)的驱动信号以驱动液压回路产生对应的液压波形,从而实现脉搏真实复现。

Description

脉搏复现装置及其复现方法
技术领域
本发明涉及一种中医脉诊设备, 尤其涉及一种脉搏复现装置及其复现方法。
背景技术
通过脉象判断人体健康状况是中医的一项重要诊断手段。 中医诊脉是通过手指触摸患者 手腕部桡动脉寸、 关、 尺三个部位的脉搏跳动来对患者的健康状态进行分析判断的方法。 中 医诊脉主要是依靠中医师的主观感觉进行的。 随着科技的不断进步, 能够采集患者脉象并显 示脉压随时间变化曲线的脉象仪被研制且在实际工作生活中得以应用, 因而通过通讯网络传 输将得到脉压相关数据利用复现装置实时模拟出对应的脉象, 再由中医则根据复现装置模拟 的脉压变化情况远程判断患者的脉象已成一种可能。 而脉象复现结果的准确性与脉搏复现装 置的性能直接相关。 因此, 研发能够真实再现患者脉象的脉搏复现装置成为当前实现中医远 程脉诊所亟需解决的问题之一。
发明内容
本发明的目的在于提供一种能够真实再现患者脉象的脉搏复现装置及其复现方法。 为达到上述目的, 本发明一方面提供了一种脉搏复现装置, 所述液压回路包括依次相连 的机电一体泵、 电液伺服阀、 分流阀、 仿生手腕和油箱, 所述仿生手腕内在与所述仿生手腕 上的寸、 关、 尺三个部位对应的位置上分别安装有一个压力传感器, 当有外力作用于所述仿 生手腕上部的与所述寸、 关、 尺三个部位对应的位置之一时, 对应的压力传感器输出模拟压 力信号;
所述控制电路包括: 第一 A/D模块, 用于将所述压力传感器输出的模拟压力信号转换成 数字压力信号输出; 上位机, 用于接收所述第一 A/D模块发送的数字压力信号, 根据所述数 字压力信号对应调取待复现的脉搏信号输出; D/A转换模块, 用于获取所述上位机发送的脉 搏信号, 将其转换成模拟脉搏信号输出; 放大电路, 用于获取所述 D/A转换模块发送的模拟 脉搏信号, 将其放大后输出作为所述电液伺服阀的驱动信号以驱动所述液压回路产生对应的 液压波形。
本发明的脉搏复现装置, 所述仿生手腕包括具有弹性的外形层, 所述外形层底部设有模 拟血管, 所述模拟血管底部设有仿生肌腱层, 所述仿生肌腱层底部设有仿生骨骼层, 所述仿 生骨骼层内安装有三个与所述仿生手腕的寸、 关、 尺三个部位位置对应的竖直升降装置, 每 个所述竖直升降装置顶部安装有一个所述压力传感器, 每个所述压力传感器的顶部与所述仿 生肌腱层的底部相接触, 所述竖直升降装置用于调整所述仿生手腕的寸、 关、 尺三个部位的 高度, 使之与待复现的脉搏信号对应的人体的寸、 关、 尺三个部位的高度匹配。
本发明的脉搏复现装置, 每个所述竖直升降装置包括一个嵌入固定于所述仿生骨骼层底 部的电机, 所述电机转轴的上端固定有丝杠, 所述丝杠上部螺纹连接有套筒, 所述套筒上套 有配合的套筒固定架, 所述套筒固定架固定在所述仿生骨骼层内, 所述套筒仅能相对于所述 套筒固定架上下滑动。
本发明的脉搏复现装置, 所述分流阀具有一个阀体, 所述阀体上开有贯穿其左右两侧的 进油孔, 所述进油孔右端开口依次通过第一油路接头和一硬质管路与所述模拟血管的一端密 封连接, 所述阀体顶部竖向开有与所述进油孔贯通的安装孔, 所述安装孔内螺纹连接有阀芯, 所述安装孔位于所述阀芯上方的部分内安装有螺纹连接的上盖, 所述阀体底部与所述安装孔 对应的位置上开有与所述安装孔和所述进油孔贯通的分流孔, 所述分流孔下端开口密封连接 有第三油路接头, 所述阀体上还开有回油孔, 所述回油孔贯穿所述阀体的底部和右侧, 所述 回油孔的右侧开口依次通过第二油路接头和另一硬质管路与所述模拟血管的另一端密封连 接, 所述回油孔的底部开口密封连接有第四油路接头。
本发明的脉搏复现装置, 所述仿生骨骼层底部嵌入固定有电机固定架, 所述电机安装于 所述电机固定架上。
本发明的脉搏复现装置, 所述外形层为软质聚氨酯弹性体, 其厚度约为 10mm; 所述仿生 肌腱层为软质聚氨酯泡沫塑料, 其厚度约为 5mm; 所述仿生骨骼层为硬质聚氨酯泡沫塑料, 其厚度约为 34〜44讓;所述模拟血管是内径约为 2讓的硅胶管,所述套筒的升降范围为 ± 5讓。
本发明的脉搏复现装置, 所述 D/A转换模块包括:
单片机, 用于接收所述上位机的发送的脉搏信号并将其发送给数模转换器;
数模转换器, 用于将所述脉搏信号转换成模拟脉搏信号输出;
通讯接口, 用于实现所述单片机与所述上位机之间的通讯。
本发明的脉搏复现装置, 所述控制电路还包括:
安装在用于连接所述仿生手腕与所述油箱的管路上的压力变送器, 用于将流过所述仿生 手腕的液压波形转变成对应的模拟复现脉搏信号;
第二 A/D模块, 用于将所述模拟复现脉搏信号转变成数字复现脉搏信号发送至所述上位 机, 供所述上位机对比分析。 本发明的脉搏复现装置, 所述液压回路还包括:
安装在用于连接所述机电一体泵与所述油箱的管路上的滤油器, 用于滤除所述液压回路 的液压油内的杂质。
再一方面, 本发明还提供了一种上述脉搏复现装置的脉搏复现方法, 包括以下步骤: 压力传感器在外力作用下输出模拟压力信号;
第一 A/D模块将压力传感器输出的模拟压力信号转换成数字压力信号输出;
上位机接收到第一 A/D模块发送的数字压力信号后, 触发调取预存的脉搏信号输出;
D/A转换模块获取上位机发送的脉搏信号, 将其转换成模拟脉搏信号输出;
放大电路获取 D/A转换模块发送的模拟脉搏信号, 将其放大后输出作为电液伺服阀的驱 动信号以驱动液压回路产生对应的液压波形。
本发明的脉搏复现装置包括液压回路和控制电路, 其中, 液压回路包括依次相连的机电 一体泵、 电液伺服阀、 分流阀、 仿生手腕和油箱, 仿生手腕内在与仿生手腕上的寸、 关、 尺 三个部位对应的位置上分别安装有一个压力传感器, 当有外力作用于仿生手腕上部的与寸、 关、 尺三个部位对应的位置之一时, 对应的压力传感器输出模拟压力信号。 控制电路包括: 第一 A/D模块, 用于将压力传感器输出的模拟压力信号转换成数字压力信号输出; 上位机, 用于接收第一 A/D模块发送的数字压力信号, 根据数字压力信号对应调取待复现的脉搏信号 输出; D/A转换模块, 用于获取上位机发送的脉搏信号, 将其转换成模拟脉搏信号输出; 放 大电路, 用于获取 D/A转换模块发送的模拟脉搏信号, 将其放大后输出作为电液伺服阀的驱 动信号以驱动液压回路产生对应的液压波形。 从而实现脉搏的真实复现。
附图说明
图 1为本发明一个实施例的脉搏复现装置的结构示意图;
图 2为图 1中脉搏复现装置的液压回路部分的结构示意图;
图 3为图 1中脉搏复现装置的仿生手腕和分流阀的立体结构示意图;
图 4为图 3中脉搏复现装置的仿生手腕和分流阀的仰视结构示意图 (省略外形层、 仿真 肌腱层和仿生骨骼层);
图 5为图 4中脉搏复现装置的仿生手腕和分流阀的 A-A向剖视结构示意图;
图 6为图 4中脉搏复现装置的仿生手腕和分流阀的 B-B向剖视结构示意图;
图 7为图 4中脉搏复现装置的仿生手腕和分流阀的 C - C向剖视结构示意图; 图 8为图 3中脉搏复现装置的仿生手腕的主视剖视结构放大示意图 (省略分流阀); 图 9为图 8中脉搏复现装置的仿生手腕的 E-E断面结构放大示意图; 图 10为图 8中脉搏复现装置的仿生手腕的 F-F断面结构放大示意图;
图 11为图 1中脉搏复现装置的 D/A转换模块和放大电路的电路原理图。
下面结合附图, 通过实施例对本发明做进一步的说明;
具体实施方式
本实施例的脉搏复现装置包括液压回路和控制电路, 参考图 1所示, 其中, 液压回路主 要包括依次相连的机电一体泵 9、 电液伺服阀 6、 分流阀 3、 仿生手腕 1和油箱 8等构成的液 压回路。 其中, 油箱 8的出油口通过管路与机电一体泵 9的进油口相连, 机电一体泵 9的出 油口通过管路与电液伺服阀 6的进油口相连, 电液伺服阀 6的出油口通过管路与分流阀 3的 进油口相连, 分流阀 3的溢流口通过管路与油箱 8的一个回油口相连, 分流阀 3的出油口通 过管路与仿生手腕 1的一端相连, 仿生手腕 1的另一端通过管路与油箱 8的另一个回油口相 连。 结合图 2所示, 连接分流阀 3与电液伺服阀 6的管路上安装有一个压力表 7, 用于方便 查看液压回路的实时压力, 连接机电一体泵 9与油箱 8的管路上安装有一个滤油器 10, 通常 液压油中往往含有颗粒状杂质,如果不加装滤油器 10容易造成液压回路各相对运动元件表面 的磨损、 滑阀卡滞、 节流孔口堵塞, 使系统工作可靠性大为降低。 油箱 8用于储油、 散热, 机电一体泵 9作为动力部件在则启动后一直工作以形成液压回路, 分流阀 3用于调节液压回 路压力, 保证系统安全。
继续参考图 1, 控制电路包括: 连接仿生手腕 1与油箱 8的管路上通过一个三通管安装 的一个压力变送器 11 (例如型号为 CGYL-202的压力变送器), 用于将流过仿生手腕 1的液压 波形转变成对应的模拟复现脉搏信号。 安装在仿生手腕 1的下部上的三个集成化脉搏传感器 12 (例如型号为 HK2000G的集成化脉搏传感器), 这三个集成化脉搏传感器 12的相互间距与 仿生手腕 1上的寸、 关、 尺三个部位位置对应, 当有外力作用于仿生手腕 1上的寸、 关、 尺 三个部位之一时, 其对应集成化脉搏传感器 12输出模拟压力信号, 为保证这三个集成化脉搏 传感器 12同时只能有一个处于工作状态,要求与仿生手腕 1上的寸部位对应的集成化脉搏传 感器 12的优先级最高,与仿生手腕 1上的关部位对应的集成化脉搏传感器 12的优先级次之, 而与仿生手腕 1上的尺部位对应的集成化脉搏传感器 12的优先级最低。 三个第一 A/D模块, 每个第一 A/D模块用于将对应的集成化脉搏传感器 12输出的模拟压力信号转换成数字压力信 号输出。 上位机, 用于接收第一 A/D模块发送的数字压力信号, 根据数字压力信号对应调取 待复现的脉搏信号输出。 D/A 转换模块, 用于获取上位机发送的脉搏信号, 将其转换成模拟 脉搏信号输出。 放大电路, 用于获取 D/A转换模块发送的模拟脉搏信号, 将其放大后输出作 为电液伺服阀 6的驱动信号以驱动液压回路产生对应的液压波形。 第二 A/D模块, 用于将模 拟复现脉搏信号转变成数字复现脉搏信号发送至上位机, 供上位机对比分析, 以检验复现效 果。
结合图 3以及图 8至图 10所示, 仿生手腕 1包括具有弹性的外形层 101, 该外形层 101 为软质聚氨酯弹性体, 其平均厚度约为 10mm。 外形层 101底部设有模拟血管 102, 该模拟血 管 102是内径约为 2mm的硅胶管。模拟血管 102底部设有仿生肌腱层 103, 该仿生肌腱层 103 为软质聚氨酯泡沫塑料, 其厚度约为 5mm。仿生肌腱层 103底部设有仿生骨骼层 104, 该仿生 骨骼层 104为硬质聚氨酯泡沫塑料, 其厚度约为 34〜44mm。 仿生骨骼层 104内安装有三个其 相互间距与仿生手腕 1的寸、 关、 尺三个部位 (即图 3中三个圆圈所在位置) 的相对位置对 应的竖直升降装置 2, 竖直升降装置 2用于调整仿生手腕 1的寸、 关、 尺三个部位的高度, 使之与待复现的脉搏信号对应的人体的寸、 关、 尺三个部位的高度匹配, 以便于能够更准确 更真实的复现脉搏。 每个竖直升降装置 2顶部粘贴有一个集成化脉搏传感器 12, 每个集成化 脉搏传感器 12的顶部与仿生肌腱层 103的底部相接触。每个竖直升降装置 2包括一个嵌入固 定于仿生骨骼层 104底部的电机 201, 电机 201安装于电机固定架 5上, 电机固定架 5嵌入 固定于仿生骨骼层 104底部, 电机 201转轴的上端固定有丝杠 202, 丝杠 202上部螺纹连接 有外形为八棱柱形的套筒 203, 套筒 203上套有配合的套筒固定架 204, 套筒固定架 204固定 在仿生骨骼层 104内, 套筒 203仅能相对于套筒固定架 204上下滑动, 套筒 203的升降范围 可达 ± 5mm。
结合图 3以及图 4至图 7所示, 分流阀 3具有一个阀体 301, 阀体 301上开有贯穿其左 右两侧的进油孔 302, 进油孔 302右端开口依次通过第一油路接头 401和一硬质管路与模拟 血管的一端密封连接, 阀体 301顶部竖向开有与进油孔 302贯通的安装孔 303, 安装孔 303 内螺纹连接有阀芯 304, 阀芯 304的顶部设有一字形或十字形开口槽, 安装孔 303位于阀芯 304上方的部分内安装有螺纹连接的上盖 305, 上盖 305顶部设有一字形或十字形开口槽, 当 需要调整分流阀 3流量时, 首先用螺丝刀插入上盖 305的开口槽内旋出上盖 305后, 再用螺 丝刀插入阀芯 304的开口槽旋拧阀芯 304, 使阀芯 304在安装孔 303向上或向下运动, 从而 调整分流量, 调整完毕后再装上盖 305 。 阀体 301底部与安装孔 303对应的位置上开有与安 装孔 303和进油孔 302贯通的分流孔 306,分流孔 306下端开口密封连接有第三油路接头 403, 阀体 301上还开有回油孔 307, 回油孔 307贯穿阀体 301的底部和右侧, 回油孔 307的右侧 开口依次通过第二油路接头 402和另一硬质管路与模拟血管的另一端密封连接, 回油孔 307 的底部开口密封连接有第四油路接头 404。
结合图 11所示, 其中, D/A转换模块包括型号为 DAC1208的数模转换器及其外围电路、 型号为 ATmegal28L-8AC的单片机及其外围电路和型号为 CP2012的 USB转串口芯片及其外围 电路构成的通讯接口。 其中, 单片机用于接收上位机的发送的脉搏信号并将其发送给数模转 换器; 数模转换器用于将脉搏信号转换成模拟脉搏信号输出; 通讯接口用于实现单片机与上 位机之间的通讯, 单片机的第 2、第 3管脚分别对应与 USB转串口芯片的第 26、第 25管脚相 连。 单片机的第 44〜第 51管脚分别对应与数模转换器的第 19、 第 20、 第 4、 第 5、 第 6、 第
7、 第 8、 第 9管脚相连, 单片机的第 35〜第 41管脚分别对应与数模转换器的第 18、 第 17、 第 16、 第 15、 第 23、 第 2、 第 1管脚相连。
结合图 11所示, 放大电路包括第一运放 A2、 第二运放 A3、 第三运放 A4、 第四运放 A5、 第五运放 A6、 第六运放 A7、 三极管 Q1和三极管 Q2, 第一运放 A2的反向输入端通过电阻 R9 与数模转换器的输出端相连, 第一运放 A2的同向输入端通过电阻 R6接地, 第一运放 A2的反 向输入端通过电阻 R14和电容 C9构成的第一 RC电路与第一运放 A2的输出端相连,第一运放
A2的输出端通过电阻 R7与第二运放 A3的反向输入端相连, 第一运放 A2的正电源端和负电 源端分别对应接 +15V和 -15V接电源, 第二运放 A3的同向输入端接地, 第二运放 A3的反向输 入端通过串联的电阻 R3和电位器 R4与第二运放 A3的输出端相连, 第二运放 A3的输出端通 过电阻 R10与第三运放 A4的反向输入端相连, 第三运放 A4的同向输入端接地, 第三运放 A4 的反向输入端通过电阻 R13与第三运放 A4的输出端相连, 第三运放 A4的输出端依次通过串 联的电阻 R13、电阻 R12与电位器 R15的可调端相连, 电位器 R15的另外两端分别对应接 +15V 和 -15V接电源, 第三运放 A4的输出端通过依次串联的电阻 R8、 电阻 R25与第五运放 A6的反 向输入端相连, 第四运放 A5的反向输入端与其输出端相连, 第四运放 A5的同向输入端与可 调电位器 R24的可调端相连, 可调电位器 R24的另外两端接地, 第四运放 A5的输出端依次通 过反接的二极管 D1和电阻 R25与第五运放 A6的反向输入端相连,第六运放 A7的同向输入端 通过电阻 R23与可调电位器 R24的可调端相连,第六运放 A7的同向输入端与其输出端之间连 接有电阻 R20, 第六运放 A7的反向输入端接地, 第六运放 A7的正电源端和负电源端分别对 应接 +15V和 -15V接电源, 第六运放 A7的输出端依次通过二极管 D2、 电阻 R25与第五运放 A6 的反向输入端相连, 第五运放 A6的反向输入端依次通过电阻 R26和电阻 R27接地, 第五运放
A6的反向输入端和其输出端之间接有由电阻 R21和电容 C11构成的第二 RC电路, 第五运放
A6的同向输入端接地, 第五运放 A6的输出端依次通过电阻 R17和电容 C10接地, 第五运放
A6的输出端依次通过电阻 R17、 电阻 R18与三极管 Q1的发射极和三极管 Q2的发射极相连, 三极管 Q1的基极通过电容 C11接地, 三极管 Q1的集电极通过电阻 R16接 +15V电源, 三极管
Q2的基极通过电容 C11接地, 三极管 Q2的集电极通过电阻 R22接 -15V电源, 三极管 Q1的发 射极和三极管 Q2的发射极依次通过电阻 R19、 电液伺服阀的线圈 L2、 电阻 R5和电阻 R27接 地。
上述脉搏复现装置的脉搏复现过程如下:
在根据待复现的脉搏信号对应人体的寸、 关、 尺三个部位的高度并通过竖直升降装置调 整好仿生手腕好的寸、 关、 尺三个部位的高度之后, 当医师按压仿生手腕上的寸、 关、 尺三 个部位之一时, 手指压力通过仿生手腕传到对应的集成化脉搏传感器上, 该集成化脉搏传感 器输出模拟压力信号, 对应第一 A/D模块将集成化脉搏传感器输出的模拟压力信号转换成数 字压力信号输出; 上位机接收到该第一 A/D模块发送的数字压力信号后, 触发调取预存的脉 搏信号输出; D/A转换模块获取上位机发送的脉搏信号, 将其转换成模拟脉搏信号输出; 放 大电路获取 D/A转换模块发送的模拟脉搏信号, 将其放大后输出作为电液伺服阀的驱动信号 以驱动液压回路产生对应的液压波形供医师诊断, 本部位诊断完毕后, 再用同样的方式分别 按压仿生手腕上的寸、 关、尺三个部位中另外两个部位进行诊断, 从而达到脉搏的复现目的。 如果要复现下一个待复现脉搏信号则重复上述步骤。
以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定, 在不脱离本发明设计精神的前提下, 本领域普通工程技术人员对本发明的技术方案作出的各 种变形和改进, 均应落入本发明的权利要求书确定的保护范围内。
工业实用性
本发明的脉搏复现装置及其复现方法, 主要应用于人体寸、 关、尺三个部位的仿真复现, 其使得可以根据采集到的某一人体寸、 关、 尺三个部位的脉搏信号仿真再现该人体寸、 关、 尺三个部位的脉象, 从而为远程中医脉诊和教学实验提供了设备平台, 因此具有很高的工业 实用性。

Claims

权 利 要 求
1、 一种脉搏复现装置, 其特征在于, 包括液压回路和控制电路;
所述液压回路包括依次相连的机电一体泵 (9)、 电液伺服阀 (6 )、 分流阀 (3)、 仿生手 腕 (1 )和油箱 (8), 所述仿生手腕 (1 ) 内在与所述仿生手腕 (1 ) 上的寸、 关、 尺三个部位 对应的位置上分别安装有一个压力传感器 (12 ), 当有外力作用于所述仿生手腕 (1 ) 上部的 与所述寸、 关、 尺三个部位对应的位置之一时, 对应的压力传感器(12)输出模拟压力信号; 所述控制电路包括: 第一 A/D模块, 用于将所述压力传感器 (12) 输出的模拟压力信号 转换成数字压力信号输出; 上位机, 用于接收所述第一 A/D模块发送的数字压力信号, 根据 所述数字压力信号对应调取待复现的脉搏信号输出; D/A转换模块, 用于获取所述上位机发 送的脉搏信号, 将其转换成模拟脉搏信号输出; 放大电路, 用于获取所述 D/A转换模块发送 的模拟脉搏信号, 将其放大后输出作为所述电液伺服阀(6)的驱动信号以驱动所述液压回路 产生对应的液压波形。
2、 根据权利要求 1所述的脉搏复现装置, 其特征在于, 所述仿生手腕 (1 ) 包括具有弹 性的外形层 (101 ), 所述外形层 (101 ) 底部设有模拟血管 (102), 所述模拟血管 (102 ) 底 部设有仿生肌腱层 (103), 所述仿生肌腱层 (103)底部设有仿生骨骼层 (104), 所述仿生骨 骼层 (104) 内安装有三个与所述仿生手腕 (1 ) 的寸、 关、 尺三个部位位置对应的竖直升降 装置 (2), 每个所述竖直升降装置 (2) 顶部安装有一个所述压力传感器 (12), 每个所述压 力传感器 (12) 的顶部与所述仿生肌腱层 (103) 的底部相接触, 所述竖直升降装置 (2) 用 于调整所述仿生手腕(1 ) 的寸、 关、 尺三个部位的高度, 使之与待复现的脉搏信号对应的人 体的寸、 关、 尺三个部位的高度匹配。
3、 根据权利要求 2所述的脉搏复现装置, 其特征在于, 每个所述竖直升降装置 (2) 包 括一个嵌入固定于所述仿生骨骼层 (104) 底部的电机 (201 ), 所述电机 (201 ) 转轴的上端 固定有丝杠 (202 ), 所述丝杠 (202) 上部螺纹连接有套筒 (203), 所述套筒 (203) 上套有 配合的套筒固定架 (204), 所述套筒固定架 (204) 固定在所述仿生骨骼层 (104) 内, 所述 套筒 (203) 仅能相对于所述套筒固定架 (204) 上下滑动。
4、 根据权利要求 3所述的脉搏复现装置, 其特征在于, 所述分流阀 (3) 具有一个阀体 ( 301 ), 所述阀体 (301 ) 上开有贯穿其左右两侧的进油孔 (302), 所述进油孔 (302) 右端 开口依次通过第一油路接头 (401 ) 和一硬质管路与所述模拟血管 (102) 的一端密封连接, 所述阀体(301 )顶部竖向开有与所述进油孔(302)贯通的安装孔(303), 所述安装孔(303) 内螺纹连接有阀芯 (304), 所述安装孔 (303) 位于所述阀芯 (304) 上方的部分内安装有螺 纹连接的上盖 (305), 所述阀体 (301) 底部与所述安装孔 (303) 对应的位置上开有与所述 安装孔 (303)和所述进油孔 (302) 贯通的分流孔 (306), 所述分流孔 (306) 下端开口密封 连接有第三油路接头 (403), 所述阀体 (301) 上还开有回油孔 (307), 所述回油孔 (307) 贯穿所述阀体 (301) 的底部和右侧, 所述回油孔 (307) 的右侧开口依次通过第二油路接头 (402)和另一硬质管路与所述模拟血管 (102) 的另一端密封连接, 所述回油孔(307) 的底 部开口密封连接有第四油路接头 (404)。
5、 根据权利要求 4所述的脉搏复现装置, 其特征在于, 所述仿生骨骼层 (104) 底部嵌 入固定有电机固定架 (5), 所述电机 (201) 安装于所述电机固定架 (5) 上。
6、 根据权利要求 5所述的脉搏复现装置, 其特征在于, 所述外形层 (101) 为软质聚氨 酯弹性体, 其厚度约为 10mm; 所述仿生肌腱层 (103) 为软质聚氨酯泡沫塑料, 其厚度约为 5mm; 所述仿生骨骼层 (104) 为硬质聚氨酯泡沫塑料, 其厚度约为 34〜44mm; 所述模拟血管
(102) 是内径约为 2讓的硅胶管, 所述套筒 (203) 的升降范围为 ±5讓。
7、 根据权利要求 6所述的脉搏复现装置, 其特征在于, 所述 D/A转换模块包括: 单片机, 用于接收所述上位机的发送的脉搏信号并将其发送给数模转换器;
数模转换器, 用于将所述脉搏信号转换成模拟脉搏信号输出;
通讯接口, 用于实现所述单片机与所述上位机之间的通讯。
8、 根据权利要求 7所述的脉搏复现装置, 其特征在于, 所述控制电路还包括: 安装在用于连接所述仿生手腕(1) 与所述油箱(8) 的管路上的压力变送器(11), 用于 将流过所述仿生手腕 (1) 的液压波形转变成对应的模拟复现脉搏信号;
第二 A/D模块, 用于将所述模拟复现脉搏信号转变成数字复现脉搏信号发送至所述上位 机, 供所述上位机对比分析。
9、 根据权利要求 8所述的脉搏复现装置, 其特征在于, 所述液压回路还包括: 安装在用于连接所述机电一体泵 (9) 与所述油箱(8) 的管路上的滤油器(10), 用于滤 除所述液压回路的液压油内的杂质。
10、 一种权利要求 1至 9任意一项所述的脉搏复现装置的脉搏复现方法, 其特征在于, 包括以下步骤:
压力传感器在外力作用下输出模拟压力信号;
第一 A/D模块将压力传感器输出的模拟压力信号转换成数字压力信号输出;
上位机接收到第一 A/D模块发送的数字压力信号后, 触发调取预存的脉搏信号输出; D/A转换模块获取上位机发送的脉搏信号, 将其转换成模拟脉搏信号输出; 放大电路获取 D/A转换模块发送的模拟脉搏信号, 将其放大后输出作为电液伺服阀的驱 动信号以驱动液压回路产生对应的液压波形。
PCT/CN2012/074349 2011-07-21 2012-04-19 脉搏复现装置及其复现方法 WO2013010391A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110204683.9 2011-07-21
CN 201110204683 CN102389296B (zh) 2011-07-21 2011-07-21 脉搏复现装置及其复现方法
CN201120259487.7 2011-07-21
CN2011202594877U CN202342024U (zh) 2011-07-21 2011-07-21 脉搏复现装置

Publications (1)

Publication Number Publication Date
WO2013010391A1 true WO2013010391A1 (zh) 2013-01-24

Family

ID=47557659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074349 WO2013010391A1 (zh) 2011-07-21 2012-04-19 脉搏复现装置及其复现方法

Country Status (1)

Country Link
WO (1) WO2013010391A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839471A (zh) * 2014-01-08 2014-06-04 牛欣 脉诊属性定量反馈训练装置及方法
US20160331246A1 (en) * 2015-05-15 2016-11-17 National Tsing Hua University Pulse diagnostic examination system and its instrument operation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1226811A (zh) * 1997-03-28 1999-08-25 精工爱普生株式会社 触觉检测器,触觉报告器,信息输入器,触觉复现器,触觉传输系统,脉博诊断器,脉博诊断训练器以及脉博诊断信息传输器
CN1687980A (zh) * 2005-04-11 2005-10-26 天津大学 中医脉象教学考试仪
CN2812837Y (zh) * 2005-07-18 2006-09-06 中国医学科学院基础医学研究所 一种远程中医脉诊系统
CN2884382Y (zh) * 2006-02-24 2007-03-28 中国医学科学院基础医学研究所 一种脉象模拟器
CN101606840A (zh) * 2009-07-15 2009-12-23 北京交通大学 一种远程脉象交互检测系统
CN102129804A (zh) * 2011-03-02 2011-07-20 上海亚太计算机信息系统有限公司 脉象模拟手及其实现脉象模拟方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1226811A (zh) * 1997-03-28 1999-08-25 精工爱普生株式会社 触觉检测器,触觉报告器,信息输入器,触觉复现器,触觉传输系统,脉博诊断器,脉博诊断训练器以及脉博诊断信息传输器
CN1687980A (zh) * 2005-04-11 2005-10-26 天津大学 中医脉象教学考试仪
CN2812837Y (zh) * 2005-07-18 2006-09-06 中国医学科学院基础医学研究所 一种远程中医脉诊系统
CN2884382Y (zh) * 2006-02-24 2007-03-28 中国医学科学院基础医学研究所 一种脉象模拟器
CN101606840A (zh) * 2009-07-15 2009-12-23 北京交通大学 一种远程脉象交互检测系统
CN102129804A (zh) * 2011-03-02 2011-07-20 上海亚太计算机信息系统有限公司 脉象模拟手及其实现脉象模拟方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839471A (zh) * 2014-01-08 2014-06-04 牛欣 脉诊属性定量反馈训练装置及方法
US20160331246A1 (en) * 2015-05-15 2016-11-17 National Tsing Hua University Pulse diagnostic examination system and its instrument operation method

Similar Documents

Publication Publication Date Title
TW201304740A (zh) 脈搏複現裝置及其複現方法
CN206045302U (zh) 一种新型握力器
CN105030214A (zh) 一种智能诊脉分析仪
CN204654887U (zh) 基于云端的中医脉象辅助诊断系统
CN201175331Y (zh) 指夹式脉搏血氧仪
CN202342024U (zh) 脉搏复现装置
CN109717846A (zh) 一种基于柔性传感器的自动脉象检测系统及检测方法
CN106264472A (zh) 一种基于石墨烯柔性压力传感器的脉诊仪
CN103750832A (zh) 实时无线血压监控系统、血压测量装置及血压分析方法
WO2013010391A1 (zh) 脉搏复现装置及其复现方法
CN201248702Y (zh) 一种基于压力传感阵列的柔性脉象检测探头
CN102579019B (zh) 交互式远程中医诊脉系统及其实现方法
CN202446076U (zh) 一次性使用颅内压动态监测仪
CN2613269Y (zh) 医用加压输注灌注器
CN200963147Y (zh) 一种多功能听诊器
CN206039882U (zh) 电子诊脉练习器
CN206621366U (zh) 一种基于多媒体方式的心理咨询装置
CN104799967B (zh) 一体式哺乳类动物缺氧实验模拟装置及方法
CN202981984U (zh) 一种具有心率血压显示功能的台式血压计
CN207804243U (zh) 一种便于使用的电子血压仪计
CN208208158U (zh) 一种用于小儿推拿的穴位教学模型
CN102525446A (zh) 一次性使用颅内压动态监测仪
CN201814659U (zh) 智能化喉疾诊断仪
CN209863797U (zh) 一种基于柔性传感器的自动脉象检测系统
CN206491784U (zh) 一种基于石墨烯柔性压力传感器的脉诊仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814290

Country of ref document: EP

Kind code of ref document: A1