WO2013009538A2 - Microcapillary films containing phase change materials - Google Patents
Microcapillary films containing phase change materials Download PDFInfo
- Publication number
- WO2013009538A2 WO2013009538A2 PCT/US2012/045393 US2012045393W WO2013009538A2 WO 2013009538 A2 WO2013009538 A2 WO 2013009538A2 US 2012045393 W US2012045393 W US 2012045393W WO 2013009538 A2 WO2013009538 A2 WO 2013009538A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase change
- film
- change materials
- channels
- μιη
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D7/00—Producing flat articles, e.g. films or sheets
- B29D7/01—Films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
- B29C48/11—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/12—Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/19—Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their edges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/20—Articles comprising two or more components, e.g. co-extruded layers the components being layers one of the layers being a strip, e.g. a partially embedded strip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
- B29K2023/0608—PE, i.e. polyethylene characterised by its density
- B29K2023/0625—LLDPE, i.e. linear low density polyethylene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24744—Longitudinal or transverse tubular cavity or cell
Definitions
- the instant invention relates to microcapillary films containing phase change materials.
- phase change materials in heat transfer systems is generally known; however, such heat transfer systems require further improvements.
- heat transfer systems may benefit from larger surface to volume ratios in order to maintain efficient heat transfer capabilities.
- the instant invention provides microcapillary films containing phase change materials.
- the inventive microcapillary film containing phase change materials according to the present invention has a first end and a second end, and comprises: (a) a matrix comprising a thermoplastic material, (b) at least one or more channels disposed in parallel in said matrix from the first end to the second end of said microcapillary film, wherein said one or more channels are at least 5 ⁇ apart from each other, wherein each said one or more channels have a diameter in the range of at least 5 ⁇ ; and (c) at least one or more phase change materials disposed in said one or more channels; wherein said microcapillary film has a thickness in the range of from 10 ⁇ to 2000 ⁇ .
- the instant invention provides microcapillary films containing phase change materials, in accordance with any of the preceding embodiments, except that the thermoplastic material is selected from the group consisting polyolefin; polyamide; polyvinylidene chloride; polyvinylidene fluoride; polycarbonate; polystyrene; polyethylene vinyl alcohol (PVOH), polyvinyl chloride (PVC), polylactic acid (PLA) and polyethylene terephthalate.
- the thermoplastic material is selected from the group consisting polyolefin; polyamide; polyvinylidene chloride; polyvinylidene fluoride; polycarbonate; polystyrene; polyethylene vinyl alcohol (PVOH), polyvinyl chloride (PVC), polylactic acid (PLA) and polyethylene terephthalate.
- the instant invention provides microcapillary films containing phase change materials, in accordance with any of the preceding embodiments, except that the one or more channels have a cross sectional shape selected from the group consisting of circular, rectangular, oval, star, diamond, triangular, square, the like, and combinations thereof.
- the instant invention provides microcapillary films containing phase change materials, in accordance with any of the preceding embodiments, except that the one or more phase change materials are selected from the group consisting of gas, liquid, solid or combinations thereof.
- the instant invention provides microcapillary films containing phase change materials, in accordance with any of the preceding embodiments, except that the one or more phase change materials have a viscosity less than the viscosity of said thermoplastic material.
- Fig. 1 is a top view of an inventive microcapillary film containing phase change materials
- Fig. 2 is a longitudinal- sectional view of an inventive microcapillary film containing phase change materials
- Fig. 3 is a cross-sectional view of an inventive microcapillary film containing phase change materials
- Fig. 4 is an elevated view of an inventive microcapillary film containing phase change materials
- Fig. 5 is a segment of a longitudinal sectional view of the inventive microcapillary film containing phase change materials, as shown in figure 2;
- Fig. 6 is an exploded view of an inventive microcapillary film containing phase change materials
- Figs. 7a-b are schematic illustration of a microcapillary die; and Figs. 8a-b are photographs of inventive microcapiUary film 1 containing phase change materials (LLDPE/C ARB OWAXTM) .
- FIG. 1-6 a first embodiment of a microcapiUary film (10) containing phase change materials (12).
- the inventive microcapiUary film (10) containing phase change materials (12) has a first end (14) and a second end (16), and comprises: (a) a matrix (18) comprising a thermoplastic material; (b) at least one or more channels (20) disposed in parallel in said matrix (18) from the first end (14) to the second end (16) of said microcapiUary film (10), wherein said one or more channels (20) are at least 5 ⁇ apart from each other, wherein each said one or more channels (20) have a diameter in the range of at least 5 ⁇ ; and (c) at least one or more phase change materials (12) disposed in said one or more channels (20); wherein said microcapiUary film (10) has a thickness in the range of from 10 ⁇ to 2000 ⁇ .
- microcapiUary film (10) containing phase change materials (12) may have a thickness in the range of from 10 ⁇ to 2000 ⁇ ; for example, microcapiUary film (10) containing phase change materials (12) may have a thickness in the range of from 50 to 2000 ⁇ ; or in the alternative, from 100 to 1000 ⁇ ; or in the alternative, from 200 to 800 ⁇ ; or in the alternative, from 200 to 600 ⁇ ; or in the alternative, from 300 to 1000 ⁇ ; or in the alternative, from 300 to 900 ⁇ ; or in the alternative, from 300 to 700 ⁇ .
- the film thickness to microcapiUary diameter ratio is in the range of from 2: 1 to 400: 1.
- microcapiUary film refers to films as well as tapes.
- the microcapiUary film (10) containing phase change materials (12) may comprise at least 10 percent by volume of the matrix (18), based on the total volume of the microcapiUary film (10) containing phase change materials (12); for example, the microcapiUary film (10) containing phase change materials (12) may comprise from 10 to 80 percent by volume of the matrix (18), based on the total volume of the microcapiUary film (10) containing phase change materials (12); or in the alternative, from 20 to 80 percent by volume of the matrix (18), based on the total volume of the microcapiUary film (10) containing phase change materials (12); or in the alternative, from 30 to 80 percent by volume of the matrix (18), based on the total volume of the microcapiUary film (10) containing phase change materials (12).
- the microcapillary film (10) containing phase change materials (12) may comprise from 20 to 80 percent by volume of voidage, based on the total volume of the microcapillary film (10) containing phase change materials (12); for example, from 20 to 70 percent by volume of voidage, based on the total volume of the microcapillary film (10) containing phase change materials (12); or in the alternative, from 30 to 60 percent by volume of voidage, based on the total volume of the microcapillary film (10) containing phase change materials (12).
- the microcapillary film (10) containing phase change materials (12) may comprise from 50 to 100 percent by volume of the phase change materials (12), based on the total voidage volume, described above; for example, the microcapillary film (10) containing phase change materials (12) may comprise from 60 to 100 percent by volume of the phase change materials (12), based on the total voidage volume, described above; or in the alternative, from 70 to 100 percent by volume of the phase change materials (12), based on the total voidage volume, described above; or in the alternative, from 80 to 100 percent by volume of the phase change materials (12), based on the total voidage volume, described above.
- the inventive microcapillary film (10) containing phase change materials (12) has a first end (14) and a second end (16). At least one or more channels (20) are disposed in parallel in the matrix (18) from the first end (14) to the second end (16). The one or more channels (20) are at least 5 ⁇ apart from each other. The one or more channels (20) have a diameter in the range of at least 5 ⁇ ; for example, from 5 ⁇ to 1990 ⁇ ; or in the alternative, from 5 to 990 ⁇ ; or in the alternative, from 5 to 890 ⁇ ; or in the alternative, from 5 to 790 ⁇ ; or in the alternative, from 5 to 690 ⁇ or in the alternative, from 5 to 590 ⁇ .
- the one or more channels (20) may have a cross sectional shape selected from the group consisting of circular, rectangular, oval, star, diamond, triangular, square, the like, and combinations thereof.
- the one or more channels (20) may further include one or more seals at the first end (14), the second end (16), therebetween the first point (14) and the second end (16), and/or combinations thereof.
- the matrix (18) comprises one or more thermoplastic polymers.
- thermoplastic polymers include, but are not limited to, polyolefin; polyamide; polyvinylidene chloride;
- the matrix (18) may be reinforced via, for example, via glass or carbon fibers and/or any other mineral fillers such talc or calcium carbonate.
- Exemplary fillers include, but are not limited to, natural calcium carbonates, including chalks, calcites and marbles, synthetic carbonates, salts of magnesium and calcium, dolomites, magnesium carbonate, zinc carbonate, lime, magnesia, barium sulphate, barite, calcium sulphate, silica, magnesium silicates, talc, wollastonite, clays and aluminum silicates, kaolins, mica, oxides or hydroxides of metals or alkaline earths, magnesium hydroxide, iron oxides, zinc oxide, glass or carbon fiber or powder, wood fiber or powder or mixtures of these compounds.
- natural calcium carbonates including chalks, calcites and marbles, synthetic carbonates, salts of magnesium and calcium, dolomites, magnesium carbonate, zinc carbonate, lime, magnesia, barium sulphate, barite, calcium sulphate, silica, magnesium silicates, talc, wollastonite, clays and aluminum silicates, kaolins, mica, oxide
- thermoplastic materials include, but are not limited to, homopolymers and copolymers (including elastomers) of one or more alpha-olefins such as ethylene, propylene, 1- butene, 3-methyl-l-butene, 4-methyl-l-pentene, 3-methyl-l-pentene, 1-heptene, 1-hexene, 1-octene, 1-decene, and 1-dodecene, as typically represented by polyethylene, polypropylene, poly- 1 -butene, poly-3-methyl-l -butene, poly-3-methyl-l-pentene, poly-4-methyl-l-pentene, ethylene-propylene copolymer, ethylene-l-butene copolymer, and propylene- 1 -butene copolymer; copolymers (including elastomers) of an alpha-olefin with a conjugated or non-conjugated diene, as typically represented by ethylene-
- polyamides such as nylon 6, nylon 6,6, and nylon 12
- thermoplastic polyesters such as polyethylene terephthalate and polybutylene terephthalate
- polycarbonate polyphenylene oxide, and the like
- glassy hydrocarbon-based resins including poly-dicyclopentadiene polymers and related polymers (copolymers, terpolymers); saturated mono-olefins such as vinyl acetate, vinyl propionate, vinyl versatate, and vinyl butyrate and the like
- vinyl esters such as esters of monocarboxylic acids, including methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, n-octyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, and butyl methacrylate and the like; acrylonitrile, me
- thermoplastic polymer may, for example, comprise one or more polyolefins selected from the group consisting of ethylene-alpha olefin copolymers, propylene-alpha olefin copolymers, and olefin block copolymers.
- the thermoplastic polymer may comprise one or more non-polar polyolefins.
- polyolefins such as polypropylene, polyethylene, copolymers thereof, and blends thereof, as well as ethylene-propylene-diene terpolymers
- exemplary olefinic polymers include homogeneous polymers; high density polyethylene (HDPE); heterogeneously branched linear low density polyethylene (LLDPE);
- ultra low linear density polyethylene ULDPE
- homogeneously branched, linear ethylene/alpha-olefin copolymers homogeneously branched, substantially linear ethylene/alpha-olefin polymers
- high pressure, free radical polymerized ethylene polymers and copolymers such as low density polyethylene (LDPE) or ethylene vinyl acetate polymers (EVA).
- LDPE low density polyethylene
- EVA ethylene vinyl acetate polymers
- the ethylene-alpha olefin copolymer may, for example, be ethylene- butene, ethylene-hexene, or ethylene-octene copolymers or interpolymers.
- the propylene-alpha olefin copolymer may, for example, be a propylene-ethylene or a propylene-ethylene-butene copolymer or interpolymer.
- the thermoplastic polymer may, for example, be a semi- crystalline polymer and may have a melting point of less than 110°C. In another embodiment, the melting point may be from 25 to 100°C. In another embodiment, the melting point may be between 40 and 85°C.
- thermoplastic polymer is a propylene/a-olefin
- the interpolymer composition comprising a propylene/alpha-olefin copolymer, and optionally one or more polymers, e.g. a random copolymer polypropylene (RCP).
- the propylene/alpha-olefin copolymer is characterized as having substantially isotactic propylene sequences.
- substantially isotactic propylene sequences means that the sequences have an isotactic triad (mm) measured by C NMR of greater than about 0.85; in the alternative, greater than about 0.90; in another alternative, greater than about 0.92; and in another alternative, greater than about 0.93.
- Isotactic triads are well-known in the art and are described in, for example, U.S. Patent No. 5,504,172 and International Publication No. WO 00/01745, which refer to the isotactic sequence in terms of a triad unit in the copolymer molecular chain determined by 13 C NMR spectra.
- the propylene/alpha-olefin copolymer may have a melt flow rate in the range of from 0.1 to 500 g/10 minutes, measured in accordance with ASTM D-1238 (at 230° C / 2.16 Kg). All individual values and subranges from 0.1 to 500 g/10 minutes are included herein and disclosed herein; for example, the melt flow rate can be from a lower limit of 0.1 g/10 minutes, 0.2 g/10 minutes, or 0.5 g/10 minutes to an upper limit of 500 g/10 minutes, 200 g/10 minutes, 100 g/10 minutes, or 25 g/10 minutes.
- the propylene/alpha-olefin copolymer may have a melt flow rate in the range of from 0.1 to 200 g/10 minutes; or in the alternative, the propylene/ alpha-olefin copolymer may have a melt flow rate in the range of from 0.2 to 100 g/10 minutes; or in the alternative, the propylene/alpha-olefin copolymer may have a melt flow rate in the range of from 0.2 to 50 g/10 minutes; or in the alternative, the propylene/alpha-olefin copolymer may have a melt flow rate in the range of from 0.5 to 50 g/10 minutes; or in the alternative, the propylene/alpha-olefin copolymer may have a melt flow rate in the range of from 1 to 50 g/10 minutes; or in the alternative, the propylene/alpha-olefin copolymer may have a melt flow rate in the range of from 1 to 40 g/10 minutes; or in the alternative, the propylene
- the propylene/alpha-olefin copolymer has a crystallinity in the range of from at least 1 percent by weight (a heat of fusion of at least 2 Joules/gram) to 30 percent by weight (a heat of fusion of less than 50 Joules/gram).
- the crystallinity can be from a lower limit of 1 percent by weight (a heat of fusion of at least 2 Joules/gram), 2.5 percent (a heat of fusion of at least 4 Joules/gram), or 3 percent (a heat of fusion of at least 5 Joules/gram) to an upper limit of 30 percent by weight (a heat of fusion of less than 50 Joules/gram), 24 percent by weight (a heat of fusion of less than 40 Joules/gram), 15 percent by weight (a heat of fusion of less than 24.8 Joules/gram) or 7 percent by weight (a heat of fusion of less than 11 Joules/gram).
- the propylene/alpha-olefin copolymer may have a crystallinity in the range of from at least 1 percent by weight (a heat of fusion of at least 2 Joules/gram) to 24 percent by weight (a heat of fusion of less than 40 Joules/gram); or in the alternative, the propylene/alpha-olefin copolymer may have a crystallinity in the range of from at least 1 percent by weight (a heat of fusion of at least 2
- the propylene/alpha-olefin copolymer may have a crystallinity in the range of from at least 1 percent by weight (a heat of fusion of at least 2 Joules/gram) to 7 percent by weight (a heat of fusion of less than 11 Joules/gram); or in the alternative, the propylene/alpha-olefin copolymer may have a crystallinity in the range of from at least 1 percent by weight (a heat of fusion of at least 2 Joules/gram) to 5 percent by weight (a heat of fusion of less than 8.3 Joules/gram).
- the crystallinity is measured via DSC method.
- the propylene/alpha-olefin copolymer comprises units derived from propylene and polymeric units derived from one or more alpha-olefin comonomers.
- Exemplary comonomers utilized to manufacture the propylene/alpha-olefin copolymer are C 2 , and C 4 to C 10 alpha-olefins; for example, C 2 , C 4 , C 6 and alpha-olefins.
- the propylene/alpha-olefin copolymer comprises from 1 to 40 percent by weight of one or more alpha-olefin comonomers. All individual values and subranges from 1 to 40 weight percent are included herein and disclosed herein; for example, the comonomer content can be from a lower limit of 1 weight percent, 3 weight percent, 4 weight percent, 5 weight percent, 7 weight percent, or 9 weight percent to an upper limit of 40 weight percent, 35 weight percent, 30 weight percent, 27 weight percent, 20 weight percent, 15 weight percent, 12 weight percent, or 9 weight percent.
- the propylene/alpha-olefin copolymer comprises from 1 to 35 percent by weight of one or more alpha-olefin comonomers; or in the alternative, the propylene/alpha-olefin copolymer comprises from 1 to 30 percent by weight of one or more alpha-olefin comonomers; or in the alternative, the propylene/alpha-olefin copolymer comprises from 3 to 27 percent by weight of one or more alpha-olefin comonomers; or in the alternative, the propylene/alpha-olefin copolymer comprises from 3 to 20 percent by weight of one or more alpha-olefin comonomers; or in the alternative, the propylene/alpha-olefin copolymer comprises from 3 to 15 percent by weight of one or more alpha-olefin comonomers.
- the propylene/alpha-olefin copolymer has a molecular weight distribution (MWD), defined as weight average molecular weight divided by number average molecular weight (M w /M n ) of 3.5 or less; in the alternative 3.0 or less; or in another alternative from 1.8 to 3.0.
- MWD molecular weight distribution
- Such propylene/alpha- olefin copolymers are further described in details in the U.S. Patent Nos. 6,960,635 and 6,525,157, incorporated herein by reference.
- Such propylene/alpha-olefin copolymers are commercially available from The Dow Chemical Company, under the tradename VERSIFYTM, or from ExxonMobil Chemical Company, under the tradename VISTAMAXXTM.
- the propylene/alpha-olefin copolymers are further characterized as comprising (A) between 60 and less than 100, preferably between 80 and 99 and more preferably between 85 and 99, weight percent units derived from propylene, and (B) between greater than zero and 40, preferably between 1 and 20, more preferably between 4 and 16 and even more preferably between 4 and 15, weight percent units derived from at least one of ethylene and/or a C 4 _ 1 o cc-olefin; and containing an average of at least 0.001, preferably an average of at least 0.005 and more preferably an average of at least 0.01, long chain branches/1000 total carbons.
- long chain branch refers to a chain length of at least one (1) carbon more than a short chain branch
- short chain branch refers to a chain length of two (2) carbons less than the number of carbons in the comonomer.
- a propylene/ 1-octene interpolymer has backbones with long chain branches of at least seven (7) carbons in length, but these backbones also have short chain branches of only six (6) carbons in length.
- Such propylene/alpha-olefin copolymers are further described in details in the U.S. Provisional Patent Application No. 60/988,999 and International Patent Application No. PCT/US08/082599, each of which is incorporated herein by reference.
- the base polymer e.g. propylene/alpha-olefin copolymer
- the base polymer may, for example, be a semi-crystalline polymer and may have a melting point of less than 110°C. In preferred embodiments, the melting point may be from 25 to 100°C. In more preferred
- the melting point may be between 40 and 85°C.
- olefin block copolymers e.g., ethylene multi-block copolymer, such as those described in the International Publication No. WO2005/090427 and U.S. Patent Application Publication No. US 2006/0199930, incorporated herein by reference to the extent describing such olefin block copolymers and the test methods for measuring those properties listed below for such polymers, may be used as the thermoplastic polymer.
- Such olefin block copolymer may be an ethylene/a-olefin interpolymer: (a) having a M w /M n from about 1.7 to about 3.5, at least one melting point, T m , in degrees Celsius, and a density, d, in grams/cubic centimeter, wherein the numerical values of T m and d corresponding to the relationship:
- the CRYSTAF peak being determined using at least 5 percent of the cumulative polymer, and if less than 5 percent of the polymer having an identifiable CRYSTAF peak, then the CRYSTAF temperature being 30 °C; or
- (c) being characterized by an elastic recovery, Re, in percent at 300 percent strain and 1 cycle measured with a compression-molded film of the ethylene/a-olefin interpolymer, and having a density, d, in grams/cubic centimeter, wherein the numerical values of Re and d satisfying the following relationship when ethylene/a-olefin interpolymer being substantially free of a cross-linked phase:
- Such olefin block copolymer e.g. ethylene/a-olefin interpolymer may also:
- (a) have a molecular fraction which elutes between 40 °C and 130 °C when fractionated using TREF, characterized in that the fraction having a block index of at least 0.5 and up to about 1 and a molecular weight distribution, M w /M n , greater than about 1.3; or (b) have an average block index greater than zero and up to about 1.0 and a molecular weight distribution, M w /M n , greater than about 1.3.
- matrix 18 may further comprise a blowing agent thereby facilitating the formation a foam material.
- the matrix may be a foam, for example a closed cell foam.
- matrix 18 may further comprise one or more fillers thereby facilitating the formation a microporous matrix, for example, via orientation, e.g. biaxial orientation, or cavitation, e.g. uniaxial or biaxial orientation, or leaching, i.e. dissolving the fillers.
- Such fillers include, but are not limited to, natural calcium carbonates, including chalks, calcites and marbles, synthetic carbonates, salts of magnesium and calcium, dolomites, magnesium carbonate, zinc carbonate, lime, magnesia, barium sulphate, barite, calcium sulphate, silica, magnesium silicates, talc, wollastonite, clays and aluminum silicates, kaolins, mica, oxides or hydroxides of metals or alkaline earths, magnesium hydroxide, iron oxides, zinc oxide, glass or carbon fiber or powder, wood fiber or powder or mixtures of these compounds.
- natural calcium carbonates including chalks, calcites and marbles, synthetic carbonates, salts of magnesium and calcium, dolomites, magnesium carbonate, zinc carbonate, lime, magnesia, barium sulphate, barite, calcium sulphate, silica, magnesium silicates, talc, wollastonite, clays and aluminum silicates, kaolins, mica, oxides
- the one or more phase change materials (12) may be selected from the group consisting of gas, liquid, solid or combinations thereof. In one embodiment, the one or more phase change materials (12) may have a viscosity less than the viscosity of said thermoplastic material.
- the one or more phase change materials (12) may be any material suitable for a heat transfer system or cooling system or insulation system.
- the one or more phase change materials (12) can be any substance (or any mixture of substances) that has the capability of absorbing or releasing thermal energy to reduce or eliminate heat flow within a temperature stabilizing range.
- the temperature stabilizing range can include a particular transition temperature or a particular range of transition temperatures.
- the one or more phase change materials (12) used in conjunction with various embodiments of the invention typically are capable of inhibiting a flow of thermal energy during a time when the one or more phase change materials (12) are absorbing or releasing heat, typically as the one or more phase change materials (12) undergo a transition between two states (e.g., liquid and solid states, liquid and gaseous states, solid and gaseous states, or two solid states). This action is typically transient.
- the one or more phase change materials (12) can effectively inhibit a flow of thermal energy until a latent heat of the phase change material is absorbed or released during a heating or cooling process.
- Thermal energy can be stored or removed from the one or more phase change materials (12), and the one or more phase change materials (12) typically can be effectively recharged by a source of heat or cold.
- a microcapillary film (10) containing one or more phase change materials (12) can be designed for use in any of various products.
- the one or more phase change materials (12) can be a solid/solid phase change material.
- a solid/solid phase change material is a type of phase change material that undergoes a transition between two solid states (e.g., a crystalline or mesocrystalline phase transformation) and hence typically does not become a liquid during use.
- the phase change materials (12) can include a mixture of two or more substances. By selecting two or more different substances and forming a mixture, a temperature stabilizing range can be adjusted over a wide range for any particular application of the microcapillary film (10) containing one or more phase change materials (12). In some instances, a mixture of two or more different substances can exhibit two or more distinct transition temperatures or a single modified transition temperature when incorporated in microcapillary film (10).
- Phase change materials (12) that can be used in conjunction with various embodiments of the invention include various organic and inorganic substances.
- phase change materials (12) include, but are not limited to, hydrocarbons (e.g., straight-chain alkanes or paraffinic hydrocarbons, branched-chain alkanes, unsaturated hydrocarbons, halogenated hydrocarbons, and alicyclic hydrocarbons), hydrated salts (e.g., calcium chloride hexahydrate, calcium bromide hexahydrate, magnesium nitrate hexahydrate, lithium nitrate trihydrate, potassium fluoride tetrahydrate, ammonium alum, magnesium chloride hexahydrate, sodium carbonate decahydrate, disodium phosphate dodecahydrate, sodium sulfate decahydrate, and sodium acetate trihydrate), waxes, oils, water, fatty acids, fatty acid esters, dibasic acids, dibasic esters, 1-halides, primary alcohols, secondary alcohols, tert
- polyethylene glycol pentaerythritol, dipentaerythritol, pentaglycerine, tetramethylol ethane, neopentyl glycol, tetramethylol propane, 2-amino-2-methyl-l,3-propanediol,
- polymers e.g., polyethylene, polyethylene glycol, polyethylene oxide, polypropylene, polypropylene glycol, polytetramethylene glycol, polypropylene malonate, polyneopentyl glycol sebacate, polypentane glutarate, polyvinyl myristate, polyvinyl stearate, polyvinyl laurate, polyhexadecyl methacrylate, polyoctadecyl methacrylate, polyesters produced by polycondensation of glycols (or their derivatives) with diacids (or their derivatives), and copolymers, such as polyacrylate or poly(meth)acrylate with alkyl hydrocarbon side chain or with polyethylene glycol side chain and copolymers including polyethylene, polyethylene glycol, polyethylene oxide, polypropylene, polypropylene glycol
- phase change material (12) is typically dependent upon a desired transition temperature or a desired application of the microcapillary film (10) containing one or more phase change materials (12).
- a phase change material (12) having a transition temperature near room temperature or normal body temperature can be desirable for clothing applications.
- the phase change material (12) can have a transition temperature in the range of from -40° C to 125° C; for example, -5° C to 125° C; or in the alternative, from 0° C to 50° C; or in the alternative, 15° C to 45° C; or in the alternative, 22° C to 40° C; or in the alternative, 22° C to 28° C.
- phase change materials (12) include paraffinic hydrocarbons having from 10 to 44 carbon atoms (i.e., Cio-C44 paraffinic hydrocarbons).
- paraffinic hydrocarbons include, but are not limited to, n-Octacosane, n-Heptacosane, n-Hexacosane, n-Pentacosane, n-Tetracosane, n-Tricosane, n-Docosane, n-Heneicosane, n-Eicosane, n-Nonadecane, n-Octadecane, n-Heptadecane, n-Hexadecane, n-Pentadecane, n-Tetradecane, and n-Tridecane.
- phase change materials (12) include polymeric phase change materials having transition temperatures suitable for a desired application of the resulting microcapillary film (10) containing one or more phase change materials (12).
- a polymeric phase change material can include a polymer (or a mixture of polymers) having any of various chain structures and including one or more types of monomer units.
- a polymeric phase change material can include a linear polymer, a branched polymer (e.g., a star- branched polymer, a comb-branched polymer, or a dendritic-branched polymer), or a mixture thereof.
- a polymeric phase change material desirably includes a linear polymer or a polymer with a small amount of branching to allow for a greater density and a greater degree of ordered molecular packing and crystallization.
- a polymeric phase change material can include a homopolymer, an interpolymer, and a mixture thereof.
- the reactivity and functionality of a polymer can be altered by addition or replacement of one or more functional groups, such as, for example, amines, amides, carboxyls, hydroxyls, esters, ethers, epoxides, anhydrides, isocyanates, silanes, ketones, aldehydes, and so forth.
- a polymeric phase change material can include a polymer capable of crosslinking, entanglement, or hydrogen bonding in order to increase toughness or resistance to heat, moisture, or chemicals.
- Additional useful phase change materials include polymeric phase change materials based on polyethylene glycols that are endcapped with fatty acids.
- polyethylene glycol fatty acid diesters having a melting point in the range of about 22° C to about 35 ° C can be formed from polyethylene glycols having a number average molecular weight in the range of about 400 to about 600 that are endcapped with stearic acid or lauric acid.
- Further useful phase change materials include polymeric phase change materials based on tetramethylene glycol.
- polytetramethylene glycols having a number average molecular weight in the range of about 1,000 to about 1,800 typically have a melting point in the range of about 19 ° C to about 36 ° C.
- Polyethylene oxides having a melting point in the range of about 60 ° C to about 65 ° C also can be used as phase change materials in some
- Additional exemplary polymeric phase change materials can include Polyoctadecyl methacrylate, Polyhexadecyl methacrylate, Poly-N-tetradecyl polyacrylamide, oly-N-tetradecyl polyacrylamide-1,1, dihydroperfluoro, Poly-l-decene, Poly-l-heptene, cis-polyoctenamer,
- a polymeric phase change material having a desired transition temperature can be formed by reacting a phase change material (e.g., a phase change material discussed above) with a polymer (or a mixture of polymers).
- a phase change material e.g., a phase change material discussed above
- a polymer or a mixture of polymers.
- n-octadecylic acid i.e., stearic acid
- dodecanoic acid i.e., lauric acid
- polyvinyl alcohol to yield polyvinyl laurate.
- phase change materials e.g., phase change materials with one or more functional groups such as amine, carboxyl, hydroxyl, epoxy, silane, sulfuric, and so forth
- polymers can be reacted to yield polymeric phase change materials having desired transition temperatures.
- phase change materials can include non-paraffins including, but not limited to, Formic acid, Caprilic acid, Glycerin, D-Lattic acid, Methyl palmitate, Camphenilone, Docasyl bromide, Caprylone, Phenol, Heptadecanone, 1-Cyclohexylooctadecanem 4- Heptadacanone, /?-Joluidine, Cyanamide, Methyl eicosanate, 3-Heptadecanone, 2-Heptadecanone, Hydrocinnamic acid, Cetyl alcohol, a-Nepthylamine, Camphene, O-Nitroaniline, 9-Heptadecanone, Thymol, Methyl behenate, Diphenyl amine, p-Dichlorobenzene, Oxolate, Hypophosphoric acid, O- Xylene dichloride, ⁇ -Chloroacetic acid, Chloroacetic acid, Nitro
- Heptaudecanioc acid a-Chloroacetic acid, Bee wax, Bees wax, Glyolic acid, Glycolic acid, p- Bromophenol, Azobenzene, Acrylic acid, Dinto toluent (2,4), Phenylacetic acid, Thiosinamine, Bromcamphor, Durene, Benzylamine, Methyl brombrenzoate, Alpha napthol, Glautaric acid, p- Xylene dichloride, Catechol, Quinone, Acetanilide, Succinic anhydride, Benzoic acid, Stibene, and/or Benzamide.
- Additional exemplary phase change materials can include fatty acids including, but not limited to, Acetic acid, Polyethylene glycol 600, Capric acid, Eladic acid, Why acid, Pentadecanoic acid, Tristearin, Myristic acid, Palmatic acid, Stearic acid, Acetamide, and/or Methyl fumarate.
- fatty acids including, but not limited to, Acetic acid, Polyethylene glycol 600, Capric acid, Eladic acid, Why acid, Pentadecanoic acid, Tristearin, Myristic acid, Palmatic acid, Stearic acid, Acetamide, and/or Methyl fumarate.
- Additional exemplary phase change materials can include salt hydrates including, but not limited to, K 2 HP0 4 .6H 2 0, FeBr 3 6H 2 0, Mn(N0 3 ) 2 6H 2 0, FeBr 3 6H 2 0, CaCl 2 12H 2 0, LiN0 3 2H 2 0, LiN0 3 3H 2 0, Na 2 C0 3 10H 2 O, Na 2 S0 4 10H 2 O, KFe(S0 4 ) 2 12H 2 0, CaBr 2 6 H 2 0, LiBr 2 2H 2 0, Zn(N0 3 ) 2 6H 2 0, FeCl 3 6H 2 0, Mn(N0 3 ) 2 4H 2 0, Na 2 HP0 4 12H 2 0, CoS0 4 7H 2 0, KF 2 H 2 0,
- salt hydrates including, but not limited to, K 2 HP0 4 .6H 2 0, FeBr 3 6H 2 0, Mn(N0 3 ) 2 6H 2 0, FeBr 3 6H 2 0, CaCl 2 12H 2 0, LiN0
- Additional exemplary phase change materials can include metallics including, but not limited to, Gallium- gallium antimony eutectic, Gallium, Cerrolow eutectic, Bi-Cd-In eutectic, Cerrobend eutectic, Bi-Pb-In eutectic, Bi-In eutectic, Bi-Pb-tin eutectic, and/or Bi-Pb eutectic.
- Additional exemplary phase change materials can include organic and inorganic eutectics including, but not limited to, CaCl 2 6 H 2 0 + CaBr 2 6H 2 0, Triethylolethane + water + urea, C 14 H 2 g0 2 + C 10 H 20 O 2 , CaCl 2 + MgCl 2 6H 2 0, CH 3 CONH 2 + NH 2 CONH 2 , Triethylolethane + urea,
- the extrusion apparatus comprises screw extruder driven by a motor.
- Thermoplastic material is melted and conveyed to a die 24, as shown in Figures 7a and 7b.
- the molten thermoplastic material passes through die 24, as shown in Figures 7a and 7b, and is formed into the desired shape and cross section.
- die 24 includes an entry portion 26, a convergent portion 28, and an orifice 30, which has a predetermined shape.
- the molten thermoplastic polymer enters entry portion 26 of the die 24, and is gradually shaped by the convergent portion 28 until the melt exits the orifice 30.
- the die 24 further includes injectors 32.
- Each injector 32 has a body portion 34 having a conduit 36 therein which is fluidly connected to a phase change material source 38 by means of second conduit 40 passing through the walls of die 24 around which the molten thermoplastic material must flow to pass the orifice 30.
- the injector 30 further includes an outlet 42.
- the injector 32 is arranged such that the outlet 42 is located within the orifice 30.
- microcapillary films containing phase change materials may be used in textile (e.g. woven and nonwoven fabrics), apparel (e.g. outdoor clothing, dry suits, and protective suits), footwear (e.g. socks, boots, insoles), medical progress (e.g. thermal blankets, therapeutic pads, hot/cold packs), containers and packaging (e.g. beverage/food containers, food warmers, seat cushions), buildings (e.g. insulation or heating/cooling systems in walls, ceilings, pipes, carpets, tiles, or floors), appliances (e.g. insulation in-household appliances), furniture components such as seat cushions, , electronics (e.g. cooling of processor chips, flat screens, fuel cells), and other products (e.g. automotive lighting materials, heated seats, sleeping bags, and bedding)
- textile e.g. woven and nonwoven fabrics
- apparel e.g. outdoor clothing, dry suits, and protective suits
- footwear e.g. socks, boots, insoles
- medical progress e.g. thermal blankets, therapeutic pads, hot/cold packs
- One or more inventive microcapillary films containing one or more phase change materials may form one or more layers in a multilayer structure, for example, a laminated multilayer structure or a coextruded multilayer structure.
- the microcapillary films containing one or more phase change materials may comprise one or more parallel rows of microcapillaries (channels as shown in Fig. 3. Channels 20 (microcapillaries) may be disposed anywhere in matrix (10), as shown in Figs. 3.
- Inventive microcapillary film 1 containing a phase change material was prepared according to the following process.
- the matrix material comprised linear low density polyethylene (LLDPE), available under the tradename DOWLEXTM NG 5056 G having a density of approximately 0.919 g/cm3, according to ASTM-D792 and a melt index (I 2 ) of approximately 1.1 g/10 minutes, according to ISO 1133, from The Dow Chemical Company.
- the phase change material comprised of methoxypolyethylene glycols, available under the tradename CARBOWAXTM MPEG750 from The Dow Chemical Company.
- Primary and secondary extruders were both single screw extruders.
- the primary extruder was a Betol 1820J having a screw approximately 20 mm in diameter, which was connected to a gear pump, providing a non-pulstile polymer flow. Downstream of the microcapillary film die was a set of nip rollers with an adjustable roller gap (Dr. Collin GmbH "Techline” CR72T).
- the secondary extruder was Betol 1420 J having a screw of approximately 12 mm in diameter, which was connected to the inlet of the microcapillary film die via a heated, quarter inch, Swagelok tubing.
- the tubing was a short length of carefully shaped, quarter inch, tubing (SS-T4-S-049-6ME) that was wrapped in two 2 foot, heating tapes (Omega HTWC 102-002), which was wrapped in a Superwool mineral wool insulation that was encapsulated in masking tape.
- the tubing included k-type wire thermocouples, attached to tubes surface with 3M polyamide tape (3M 70-0062-8328-0). A small amount of copper grease (Coppaslip) was smeared onto the tips of the thermocouples to assist heat transfer.
- microcapillary film die was engineered to ensure that the open faces of the injectors were coincident with the die exit.
- Matrix material was extruded through a microcapillary film die containing a 14 microcapillary injector heads, having a diameter of approximately 900 ⁇ .
- inventive microcapillary film 1 containing phase change material (LLDPE/CARBOWAXTM) is shown in figures 8a and b.
- the inventive microcapillary film 1 containing phase change material (LLDPE/CARBOWAXTM) had a heat capacity storage of approximately 146 J/g, which was measured according to differential scanning calorimetry (DSC, second heat), as described herein below.
- LLDPE/CARBOWAXTM had a thickness of approximately 517 ⁇ , a width of approximately 6.44 mm, and included 19 microcapillaries, wherein each microcapillary had a diameter of
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Cosmetics (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES12735745.7T ES2666801T3 (en) | 2011-07-11 | 2012-07-03 | Microcapillary films containing phase change materials |
US14/123,904 US20140113112A1 (en) | 2011-07-11 | 2012-07-03 | Microcapillary films containing phase change materials |
CN201280034311.9A CN103649183A (en) | 2011-07-11 | 2012-07-03 | Microcapillary films containing phase change materials |
JP2014520215A JP6076973B2 (en) | 2011-07-11 | 2012-07-03 | Microcapillary film containing phase change material |
BR112014000061A BR112014000061A2 (en) | 2011-07-11 | 2012-07-03 | film, multilayer structure, article, insulation system, heating system and cooling system |
EP12735745.7A EP2731796B1 (en) | 2011-07-11 | 2012-07-03 | Microcapillary films containing phase change materials |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161506298P | 2011-07-11 | 2011-07-11 | |
US61/506,298 | 2011-07-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2013009538A2 true WO2013009538A2 (en) | 2013-01-17 |
WO2013009538A3 WO2013009538A3 (en) | 2013-02-07 |
Family
ID=46514828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/045393 WO2013009538A2 (en) | 2011-07-11 | 2012-07-03 | Microcapillary films containing phase change materials |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140113112A1 (en) |
EP (1) | EP2731796B1 (en) |
JP (1) | JP6076973B2 (en) |
CN (1) | CN103649183A (en) |
BR (1) | BR112014000061A2 (en) |
ES (1) | ES2666801T3 (en) |
WO (1) | WO2013009538A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013096714A1 (en) * | 2011-12-22 | 2013-06-27 | Dow Global Technologies Llc | Microcapillary films and foams suitable for capillary action fluid transport |
CN104153513A (en) * | 2014-07-31 | 2014-11-19 | 苏州科技学院 | Capillary based phase-change energy-storage wallboard and preparation method thereof |
WO2015191383A1 (en) * | 2014-06-13 | 2015-12-17 | Dow Global Technologies Llc | Microcapillary polymer films for drug delivery |
US9713894B2 (en) | 2012-06-28 | 2017-07-25 | Dow Global Technologies Llc | System, method and apparatus for producing a multi-layer, microcapillary film |
WO2018102109A1 (en) | 2016-11-29 | 2018-06-07 | Dow Global Technologies Llc | Microcapillary wire coating die assembly |
US10175439B2 (en) | 2014-12-19 | 2019-01-08 | Dow Global Technologies Llc | Cable jackets having designed microstructures and methods for making cable jackets having designed microstructures |
US10573429B2 (en) | 2014-12-19 | 2020-02-25 | Dow Global Technologies Llc | Cable jackets having designed microstructures and methods for making cable jackets having designed microstructures |
WO2020092762A1 (en) | 2018-11-02 | 2020-05-07 | Dow Global Technologies Llc | Coated infill and artificial turf with the coated infill |
US10793688B2 (en) | 2016-06-28 | 2020-10-06 | Dow Global Technologies Llc | Microporous films, and articles made therefrom |
US11945149B2 (en) | 2018-06-26 | 2024-04-02 | 3M Innovative Properties Company | Coextruded articles, dies and methods of making the same |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10036598B2 (en) | 2015-04-16 | 2018-07-31 | Elevance Renewable Sciences, Inc. | Aliphatic materials and uses thereof in heating and cooling applications |
GB201509179D0 (en) * | 2015-05-28 | 2015-07-15 | Dupont Nutrition Biosci Aps | Phase change material |
ES2789548T3 (en) | 2015-06-29 | 2020-10-26 | Dow Global Technologies Llc | Process to produce flexible packaging with microcapillary dispensing system |
US10730681B2 (en) | 2016-03-01 | 2020-08-04 | Dow Global Technologies Llc | Microcapillary fluid absorbing sheet |
JP6814586B2 (en) * | 2016-09-30 | 2021-01-20 | 大王製紙株式会社 | Tish paper packaging |
CN107118383B (en) * | 2017-06-16 | 2020-06-16 | 成都新柯力化工科技有限公司 | Special foaming agent for chlorine-free fluorine-free polyurethane and preparation method thereof |
US10730222B2 (en) | 2017-06-30 | 2020-08-04 | Dow Global Technologies Llc | Die assembly for producing a film |
CN107270258B (en) * | 2017-07-24 | 2024-01-12 | 广州市雅江光电设备有限公司 | Efficient radiator |
US10167116B1 (en) | 2017-08-31 | 2019-01-01 | Dow Global Technologies Llc | Flexible bag with microcapillary strip |
WO2021202091A1 (en) | 2020-03-30 | 2021-10-07 | Exxonmobil Chemical Patents Inc. | Comb-block copolymers and methods thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040224156A1 (en) * | 2003-03-19 | 2004-11-11 | Cheng Loong Corporation | Waterproof heat-preservative film and manufacture method thereof |
WO2012094317A1 (en) * | 2011-01-03 | 2012-07-12 | Dow Global Technologies Llc | Reinforced microcapillary films and foams |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8910966D0 (en) * | 1989-05-12 | 1989-06-28 | Du Pont Canada | Panel heat exchangers formed from thermoplastic polymers |
JPH0610719U (en) * | 1992-07-06 | 1994-02-10 | アイカ工業株式会社 | Heating flooring |
US5861050A (en) * | 1996-11-08 | 1999-01-19 | Store Heat And Produce Energy, Inc. | Thermally-managed fuel vapor recovery canister |
US6907921B2 (en) * | 1998-06-18 | 2005-06-21 | 3M Innovative Properties Company | Microchanneled active fluid heat exchanger |
US20020000306A1 (en) * | 1998-07-14 | 2002-01-03 | James E. Bradley | Methods and devices for storing energy |
EP1297287B1 (en) * | 2000-07-06 | 2007-01-24 | Thermagen S.A. | Adsorption refrigerating device |
US7208707B2 (en) * | 2003-06-27 | 2007-04-24 | S.C. Johnson & Son, Inc. | Dispenser assemblies and systems including a heat storage unit |
GB2408961A (en) * | 2003-12-12 | 2005-06-15 | Univ Cambridge Tech | Apparatus and method |
CN101292064A (en) * | 2005-09-15 | 2008-10-22 | 纤维创新技术公司 | Multicomponent fiber comprising a phase change material |
SG142174A1 (en) * | 2006-10-11 | 2008-05-28 | Iplato Pte Ltd | Method for heat transfer and device therefor |
GB0620246D0 (en) * | 2006-10-12 | 2006-11-22 | Univ Cambridge Tech | Extruded materials having capillary channels |
US20080138598A1 (en) * | 2006-12-08 | 2008-06-12 | 3M Innovative Properties Company | Apparatus and Method for Co-Extrusion of Articles Having Discontinuous Phase Inclusions |
US8919426B2 (en) * | 2007-10-22 | 2014-12-30 | The Peregrine Falcon Corporation | Micro-channel pulsating heat pipe |
US20130288016A1 (en) * | 2011-01-03 | 2013-10-31 | Dow Global Technologies Llc | Microcapillary films and foams containing functional filler materials |
-
2012
- 2012-07-03 EP EP12735745.7A patent/EP2731796B1/en not_active Not-in-force
- 2012-07-03 WO PCT/US2012/045393 patent/WO2013009538A2/en active Application Filing
- 2012-07-03 BR BR112014000061A patent/BR112014000061A2/en active Search and Examination
- 2012-07-03 CN CN201280034311.9A patent/CN103649183A/en active Pending
- 2012-07-03 JP JP2014520215A patent/JP6076973B2/en not_active Expired - Fee Related
- 2012-07-03 ES ES12735745.7T patent/ES2666801T3/en active Active
- 2012-07-03 US US14/123,904 patent/US20140113112A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040224156A1 (en) * | 2003-03-19 | 2004-11-11 | Cheng Loong Corporation | Waterproof heat-preservative film and manufacture method thereof |
WO2012094317A1 (en) * | 2011-01-03 | 2012-07-12 | Dow Global Technologies Llc | Reinforced microcapillary films and foams |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013096714A1 (en) * | 2011-12-22 | 2013-06-27 | Dow Global Technologies Llc | Microcapillary films and foams suitable for capillary action fluid transport |
US9701798B2 (en) | 2011-12-22 | 2017-07-11 | Dow Global Technologies Llc | Microcapillary films and foams suitable for capillary action fluid transport |
US9713894B2 (en) | 2012-06-28 | 2017-07-25 | Dow Global Technologies Llc | System, method and apparatus for producing a multi-layer, microcapillary film |
WO2015191383A1 (en) * | 2014-06-13 | 2015-12-17 | Dow Global Technologies Llc | Microcapillary polymer films for drug delivery |
US20170119692A1 (en) * | 2014-06-13 | 2017-05-04 | Dow Global Technologies Llc | Microcapillary polymer films for drug delivery |
CN104153513A (en) * | 2014-07-31 | 2014-11-19 | 苏州科技学院 | Capillary based phase-change energy-storage wallboard and preparation method thereof |
US10175439B2 (en) | 2014-12-19 | 2019-01-08 | Dow Global Technologies Llc | Cable jackets having designed microstructures and methods for making cable jackets having designed microstructures |
US10573429B2 (en) | 2014-12-19 | 2020-02-25 | Dow Global Technologies Llc | Cable jackets having designed microstructures and methods for making cable jackets having designed microstructures |
US10793688B2 (en) | 2016-06-28 | 2020-10-06 | Dow Global Technologies Llc | Microporous films, and articles made therefrom |
WO2018102109A1 (en) | 2016-11-29 | 2018-06-07 | Dow Global Technologies Llc | Microcapillary wire coating die assembly |
US11945149B2 (en) | 2018-06-26 | 2024-04-02 | 3M Innovative Properties Company | Coextruded articles, dies and methods of making the same |
WO2020092762A1 (en) | 2018-11-02 | 2020-05-07 | Dow Global Technologies Llc | Coated infill and artificial turf with the coated infill |
Also Published As
Publication number | Publication date |
---|---|
US20140113112A1 (en) | 2014-04-24 |
CN103649183A (en) | 2014-03-19 |
JP2014520931A (en) | 2014-08-25 |
EP2731796B1 (en) | 2018-02-28 |
BR112014000061A2 (en) | 2017-02-07 |
ES2666801T3 (en) | 2018-05-07 |
JP6076973B2 (en) | 2017-02-08 |
EP2731796A2 (en) | 2014-05-21 |
WO2013009538A3 (en) | 2013-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140113112A1 (en) | Microcapillary films containing phase change materials | |
EP1472078B1 (en) | Thermal barriers with reversible enhanced thermal properties | |
US7135424B2 (en) | Coated articles having enhanced reversible thermal properties and exhibiting improved flexibility, softness, air permeability, or water vapor transport properties | |
EP1319095B1 (en) | Multi-component fibers having reversible thermal properties | |
EP2392712B1 (en) | Polymeric composites having enhanced reversible thermal properties and methods of forming thereof | |
US20140072776A1 (en) | Reinforced microcapillary films and foams | |
EP2877803B1 (en) | Systems, structures and materials for electronic device cooling | |
EP1651806B1 (en) | Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof | |
US6855422B2 (en) | Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof | |
WO2012094315A1 (en) | Microcapillary films and foams containing functional filler materials | |
US20030124278A1 (en) | Thermal barriers with solid/solid phase change materials | |
JP5763819B1 (en) | Laminated body | |
Dash et al. | A review on organic phase change materials and their applications | |
US20220082337A1 (en) | Heat storage using phase change material coated with nanoparticles | |
EP1715088B1 (en) | Multi-component fibers having reversible thermal properties | |
TW200403333A (en) | Heat-storage material, composition thereof, and uses of these | |
EP3524658B1 (en) | Resin member and sheet using same, and heat storage material and heat control sheet using same | |
CA2369146A1 (en) | Thermal managing foam insulation | |
Sundararajan et al. | Organic Phase Change Materials: Synthesis, Processing, and Applications | |
Negev | Organic Phase Change Materials: Synthesis, Processing, and Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12735745 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14123904 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014520215 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012735745 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014000061 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014000061 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140103 |