WO2013008961A1 - System for automatically checking the connection of an optical cable in an optical ethernet transmission system having a ring-shaped network structure - Google Patents

System for automatically checking the connection of an optical cable in an optical ethernet transmission system having a ring-shaped network structure Download PDF

Info

Publication number
WO2013008961A1
WO2013008961A1 PCT/KR2011/005058 KR2011005058W WO2013008961A1 WO 2013008961 A1 WO2013008961 A1 WO 2013008961A1 KR 2011005058 W KR2011005058 W KR 2011005058W WO 2013008961 A1 WO2013008961 A1 WO 2013008961A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
remote device
central processing
optical cable
processing unit
Prior art date
Application number
PCT/KR2011/005058
Other languages
French (fr)
Korean (ko)
Inventor
홍성창
Original Assignee
주식회사 아론네트웍
(주)브레인월드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아론네트웍, (주)브레인월드 filed Critical 주식회사 아론네트웍
Priority to PCT/KR2011/005058 priority Critical patent/WO2013008961A1/en
Publication of WO2013008961A1 publication Critical patent/WO2013008961A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0791Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/275Ring-type networks
    • H04B10/2755Ring-type networks with a headend

Definitions

  • the present invention relates to an optical cable connection automatic confirmation system in an optical Ethernet transmission system having an annular network structure.
  • connection between the devices is composed of point-to-point, 1: N, and annular networks.
  • the existing PDH or SDH series equipment can check the optical path by putting a code in the connection line periodically in the channel of the frame in a synchronous manner.
  • Asynchronous devices that transmit TCP / IP packets, such as Ethernet suffer from many difficulties in initial installation and maintenance because there is no way to periodically insert code into the connection line.
  • the facility invests a lot of time and money by using various measuring equipment to check the optical line or solve it by an experienced method.
  • the reason for the need for early detection and correction of poorly installed fiber cabling sections between devices in an optical Ethernet signal transmission system is to prevent network collisions and collapses caused by loops of unexpected Ethernet data packets caused by faulty fiber cabling. Because.
  • the present invention provides an optical Ethernet transmission system having an annular network structure that can automatically check the connection state of the optical cable constituting the optical communication network through a display unit installed on the front of the remote device and the central processing unit without additional equipment. Its purpose is to provide a system for automatically checking optical fiber connections.
  • the present invention is to occupy the pay traffic space to a minimum for asynchronous events generated between nodes when switching in the optical communication network, and also for fast recovery speed and control when performing the transfer by hardware means
  • the automatic connection of the optical cable connection system each of the plurality of remote devices connected by an optical cable consisting of a working line and a protection line;
  • a central processing unit controlling the optical Ethernet signals provided to the plurality of remote devices and performing a switching operation when the optical cable connection between the plurality of remote devices is incorrect;
  • a duplicated first optical core network through which the optical data is transmitted from the central processing unit through the plurality of remote devices to the central processing unit through the working line or the protection line in a second direction opposite to the first direction and the opposite direction.
  • a second optical core network wherein the front surface of the plurality of remote devices and the central processing unit includes the plurality of remote devices and the central processing unit and a remote device or a central processing device connected to each of the front and rear ends thereof.
  • a serial interface including a display unit for automatically displaying optical cable connection information, and a test button connected to the display unit to check whether optical data is transmitted and received and the optical cable connection information using an asynchronous Ethernet frame. do.
  • the plurality of remote devices and the central processing unit may detect the optical cable connection information that is actively generated and automatically display the front display unit.
  • TPG Test Patten Generator
  • the display unit may include a plurality of LEDs, and the plurality of LEDs may indicate whether optical data from an adjacent remote device or a central processing unit is received from the corresponding device.
  • the display unit may include a plurality of LEDs, and the plurality of LEDs may represent the number of remote devices connected to the first optical core network or the second optical core network in binary.
  • the display unit may be configured of a plurality of LEDs, and the plurality of LEDs may be displayed in binary format, in which a corresponding device is connected according to a connection order of the first optical core network or the second optical core network.
  • Each remote device actively detects whether the first optical core network and the second optical core network are physically connected to form an NMS frame including the physical connection information, and converts the NMS frame into an optical Ethernet signal. Transmitting and receiving control signals using an inter packet gap (IPG) between packets, and transmitting the control signal to the central processing unit through the adjacent remote device in an asynchronous Ethernet frame for an optical cable line fault event. Is characterized in that the switching of the plurality of remote devices using the received NMS frame.
  • IPG inter packet gap
  • Each remote device actively detects whether the first optical core network and the second optical core network are physically connected to form an NMS frame including the physical connection information, and the central processing unit and the respective remote device.
  • the apparatus includes an inter-packet gap between the packet of the optical Ethernet signal and asynchronous network management data to prevent collisions and collapses of the network caused by loops of the Ethernet data packet caused by the wrong optical cable connection. It is possible to automatically prevent looping of Ethernet data packets by putting them in IPG).
  • the central processing unit and the plurality of remote devices including a field programmable gate array (FPGA), operate independently without being associated with a separate central processing unit, and operate the first optical core network and the second optical core network. Characterized in performing the transfer of.
  • FPGA field programmable gate array
  • the plurality of remote devices are configured in a plug-in manner so that each remote device is connected to the first optical core network and the second optical core network.
  • connection state of the optical cable constituting the optical communication network can be automatically checked through the display unit installed on the front of the remote device and the central processing unit without additional equipment.
  • the present invention when a large number of nodes are connected in the optical core network, if a node fails, the user can easily find the node directly in the field.
  • control information in the packet is continuously included.
  • IPG inter packet gap
  • FIG. 1 is a view showing a connection structure of the optical cable connection automatic confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention.
  • FIG. 2A is a diagram illustrating a state of a display unit when a test button of a central processing unit is pressed when an optical cable of an optical cable connection automatic checking system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected;
  • FIG. 2A is a diagram illustrating a state of a display unit when a test button of a central processing unit is pressed when an optical cable of an optical cable connection automatic checking system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected;
  • FIG. 2B is a view illustrating a state of a display unit when a test button is pressed in a first remote device when an optical cable of an optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected; .
  • FIG. 2C is a view illustrating a state of a display unit when a test button of a second remote device is pressed when the optical cable of the optical cable connection automatic checking system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected. .
  • FIG. 2D is a view illustrating a state of a display unit when a test button is pressed on a third remote device when the optical cable of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected. .
  • FIG. 3A is a diagram illustrating a state of a display unit when a test button is pressed in the central processing unit when an optical cable of an optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is incorrectly connected;
  • FIG. 3B is a view illustrating a state of a display unit when a test button is pressed on a first remote device when an optical cable of an optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is incorrectly connected; .
  • 3C is a view illustrating a state of a display unit when a test button is pressed on a second remote device when an optical cable of an optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure of FIG. .
  • FIG. 3D is a view illustrating a state of a display unit when a test button is pressed on a third remote device when an optical cable of an optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is incorrectly connected. .
  • FIGS. 3A to 3D Drawing showing the state of.
  • FIG. 5 is a diagram illustrating an optical Ethernet signal transmission flow in a general state in an optical cable connection automatic checking system in an optical Ethernet transmission system having an annular network structure according to the present invention
  • FIG. 6 is a schematic diagram illustrating the flow of data when an error occurs in a second optical core network of an optical cable connection automatic checking system in an optical Ethernet transmission system having an annular network structure according to the present invention
  • FIG. 7 is a schematic diagram illustrating the flow of data when an error occurs in a first optical core network of an optical cable connection automatic checking system in an optical Ethernet transmission system having an annular network structure according to the present invention
  • FIG. 8 is a schematic diagram showing the flow of data when abnormalities occur simultaneously in the first and second optical core networks of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having an annular network structure according to the present invention.
  • FIG. 9 is a schematic diagram illustrating the flow of data when abnormalities occur simultaneously in the first and second optical core networks of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure according to the present invention.
  • 10a and 10b is a connection of the optical cable between the central processing unit and the first remote device, the first remote device and the second remote device of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having an annular network structure according to the present invention
  • FIG. 11 is a view illustrating a connection of an optical cable between a first remote device and a second remote device, a second remote device, and a third remote device in an optical cable connection automatic confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention.
  • the figure which shows the state of a display part in case of a mistake.
  • FIG. 12 is a cross-sectional view between a central processing unit and a first remote device, a first remote device and a second remote device, and a second remote device of an automatic cable connection confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention.
  • FIG. 13 is a line fault is generated between the first remote device and the second remote device of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having an annular network structure according to the present invention, the second remote device and the third remote device
  • the figure which shows the state of a display part in the case of disconnection and the connection of the optical cable between a 3rd remote apparatus itself, and a 3rd remote apparatus and a central processing unit is wrong.
  • FIG. 14 is a view showing a display unit of a remote device for expressing the position of a remote device constituting a system for automatically checking an optical cable connection in an optical Ethernet transmission system having an annular network structure according to the present invention
  • FIG. 15 is a view showing an example of a display unit of a central processing unit expressing the number of remote devices forming an optical cable connection automatic confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention
  • 16 is a view showing a display unit and a serial interface installed on the front of the remote device and the central processing unit of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having an annular network structure according to the present invention.
  • FIG. 17 is a schematic diagram illustrating a central office terminal (COT) of a system for automatically checking a connection of an optical cable in an optical Ethernet transmission system having an annular network structure according to the present invention
  • FIG. 1 is a view showing a connection structure of the optical cable connection automatic confirmation system in an optical Ethernet transmission system having a ring network structure according to the present invention.
  • the optical cable connection automatic confirmation system in the optical Ethernet transmission system having an annular network structure is a plurality of remote devices (121, 122, 123), the central processing unit 110, the first Optical core networks ET to ER and second optical core networks WT to WR.
  • a plurality of remote devices 121, 122, 123 are each trunk walking line optical cable (Trunk) It is connected to the Working Line Optic Cable (hereinafter referred to as the "working line”) and the Trunk Protection Line Optic Cable (hereinafter referred to as the "protection line").
  • the central processing unit 110 is connected to the plurality of remote devices 121, 122, 123 connected to the front and rear ends thereof by an optical cable, and provided to the plurality of remote devices 121, 122, 123.
  • the optical Ethernet signal is controlled and the switching operation is performed when the optical cable connection between the plurality of remote devices 121, 122, 123 is wrong or when the optical cable line is disconnected.
  • the first optical core network (ET ⁇ ER) and the second optical core network (WT ⁇ WR) from the central processing unit 110 through the plurality of remote devices (121, 122, 123) the central processing unit
  • the optical data is transmitted to the first direction 910 and the second direction 920 opposite to the working line or the protection line at 110.
  • the front surface of the plurality of remote devices (121, 122, 123) and the central processing unit 110 includes a serial interface (not shown) including a test button (not shown), and by the operation of the test button Display unit for displaying the optical cable connection information with the plurality of remote devices (121, 122, 123) and the remote device (121, 122, 123) or the central processing unit 110 of the front and rear ends of the central processing unit 110, respectively 110a, 121a, 122a, and 123a are provided.
  • the plurality of remote devices 121, 122, and 123 include a distribution automation terminal, a remote meter reading terminal, a load management terminal, and the like. In addition, it can be a factory automation terminal, a terminal for pole and underground transformation, a power line communication device, a wireless internet device, and the like, and can also be used in various fields such as voice call, CCTV, and LED display board. have.
  • the remote devices 121, 122, and 123 may be widely applied to a general device configured as an optical communication network in addition to those illustrated.
  • the central processing unit 110 controls the optical Ethernet signals provided to the plurality of remote devices 121, 122, 123, and performs a switching operation when the optical cable connection between the plurality of remote devices 121, 122, 123 is wrong.
  • the central processing unit 110 means a central office terminal (COT) device, a description of the structure of the COT device will be described with reference to FIG.
  • the central processing unit 110 further includes an optical signal changing means (not shown) to convert the Ethernet signal and the optical Ethernet signal.
  • the Ethernet signal may include an RS-232 asynchronous signal, a voice IP signal (VoIP), an image signal or data of 1200 bps to 57.6 kbps.
  • the central processing unit 110 receives various server data coming into the network as an Ethernet frame of TCP / IP (Transmission Control Protocol / Internet Protocol), and reconfigures it in the central processing unit 110 according to a service to receive an optical signal. Convert to Here, the optical signal may be converted into a TCP / IP frame having a transmission width of the 100base-FX (100Mbps) or 1000Base-Fx (1Gbps) band. The converted TCP / IP frame then physically passes data through an electronic to optical to a dualized ring configuration.
  • TCP / IP Transmission Control Protocol / Internet Protocol
  • the central processing unit 110 uses a different method from the SDH series system applied to the existing annular network system, and is applied to the annular network system using general Ethernet.
  • the information transmitted through the Ethernet is not formed a separate channel, but operates with a variable bandwidth (at least 64Bype ⁇ huge frame (1916Byte), and up to jumbo packets).
  • the first optical core networks ET to ER and the second optical core networks WT to WR are connected to the central processing unit 110 from the central processing unit 110 via the plurality of remote devices 121, 122, and 123.
  • Each ring structure has a ring structure such that optical data is transmitted in a first direction 910 and a second direction 920 opposite to each other through the working line or the protection line.
  • the first optical core networks ET to ER start from the central processing unit 110 and go back to the central processing unit 110 through the respective remote devices 121, 122, and 123 to form a ring structure.
  • the second optical core networks WT to WR also form a ring structure through the central processing unit 110 and the respective remote devices 123, 122, and 121.
  • the first optical core networks ET to ER and the second optical core networks WT to WR form a dual ring structure with the central processing unit 110 and the remote devices 121, 122, and 123. do.
  • the first optical core networks ET ⁇ ER transmit data converted into an optical signal only in the first direction 910, and in the second optical core networks WT WR and the first direction 910. Only the second direction 920 in the opposite direction carries the data. Only when the first optical core networks ET to ER and the second optical core networks WT to WR transfer data in opposite directions, a partial ring configuration is possible when switching later.
  • the first optical core network (ET ⁇ ER) and the second optical core network (WT ⁇ WR) and the remote devices (121, 122, 123) is composed of a plug-in (Plug In) method has excellent expandability As a result, the unit can be easily added.
  • the present optical Ethernet signal transmission system has a first direction 910 in the first optical core networks ET to ER, and a second direction 920 in the second optical core networks WT to WR. Since data is transmitted / received in different directions from each other, the first optical core networks ET to ER and the second optical core networks WT to WR are configured as rings, thereby transmitting data in one direction. However, data can be transmitted and received from any one point in the network system to another.
  • optical Ethernet signal transmission system uses an asynchronous TCP / IP type Ethernet frame instead of the conventional PDH (Plesiochronous Digital Hierarchy) or SDH (Synchronous Digital Hierarchy) layered equipment configuration, It can be economically constructed without building an additional system. Therefore, the compatibility with the existing system is excellent.
  • the front of the plurality of remote devices (121, 122, 123) and the central processing unit 110 and the front end of the plurality of remote devices (121, 122, 123) and the central processing unit (110) and Display units 110a, 121a, 122a, and 123a for automatically displaying optical cable connection information with a remote device or a central processing unit connected to the rear end are provided.
  • the front surface of the plurality of remote devices 121, 122, 123 and the central processing unit 110 is provided with a serial interface including a test button (see FIG. 16). The serial interface is connected to the display unit 110a, 121a, 122a, 123a.
  • the test device for each optical cable line is transmitted to the next node as an asynchronous Ethernet frame.
  • the node may confirm this, check whether the optical data is transmitted and received and the optical cable connection information, and display the information through the display units 110a, 121a, 122a, and 123a.
  • each of the remote devices 121, 122, and 123 actively detects whether the first optical core networks ET to ER and the second optical core networks WT to WR are physically connected to each other so that the physical connection is performed.
  • Ethernet frame forming an NMS frame including information, transmitting and receiving a control signal using an Inter Packet Gap (IPG) between the packets of the optical Ethernet signal and asynchronous to the optical cable line fault event
  • IPG Inter Packet Gap
  • the central processing unit 110 is transmitted to the central processing unit 110 through the adjacent remote device, and the central processing unit 110 may perform the switching of the plurality of remote devices using the received NMS frame.
  • each of the remote devices 121, 122, and 123 actively detects whether the first optical core networks ET to ER and the second optical core networks WT to WR are physically connected to each other so that the physical connection is performed.
  • the central processing unit 110 and each of the remote devices 121, 122, and 123 form an NMS frame including information, and a network collision caused by a loop of an Ethernet data packet by an incorrect connection of an optical cable. And to automatically prevent looping of Ethernet data packets to prevent collapse.
  • the plurality of LEDs indicate whether optical data from an adjacent remote device 121, 122, 123 or the central processing unit 110 is received from the corresponding device.
  • the number of remote devices 121, 122, and 123 connected to the first optical core network ET to ER or the second optical core network WT to WR may be represented in binary form.
  • 121, 122, and 123 may represent the corresponding numbers in the order of connection according to the connection order of the first optical core networks ET to ER or the second optical core networks WT to WR in binary.
  • the optical cable connection information may be displayed by blinking, on, off, or the like through the LED when the optical cable is incorrectly inserted or disconnected.
  • FIGS. 2A to 4 the description of the display unit A will be described in detail with reference to FIGS. 2A to 4.
  • FIG. 2A is a diagram illustrating a state of a display unit when a test button of a central processing unit is pressed when an optical cable of an automatic cable connection checking system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected.
  • FIG. 2B is a view illustrating a state of a display unit when a test button is pressed in a first remote device when an optical cable of an optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected;
  • 2C is a view illustrating a state of the display unit when the test button of the second remote device is pressed when the optical cable of the optical cable connection automatic confirmation system of the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected.
  • FIG. 2A is a diagram illustrating a state of a display unit when a test button of a central processing unit is pressed when an optical cable of an automatic cable connection checking system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected
  • FIGS. 2A to 3D illustrates an optical network in an optical Ethernet transmission system having the annular network structure of FIG. 1.
  • the plurality of remote devices 121, 122, and 123 are described as a first remote device (RT # 1) 121 and a second remote device (RT # 2) 122 for convenience of description. It will be described as a third remote device (RT # 3) (123).
  • the display unit when the test button of the central processing unit 110 is pressed when the optical cable of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure is normally connected 110a generates line codes of (1) and (5), respectively, in the working line direction (hereinafter referred to as a walking direction) and the protection line direction (hereinafter referred to as a protection direction) in the central processing unit 110.
  • the first remote device 121 normally receives the line code (1) in the walking direction
  • the first remote device 121 blinks the EOK LED.
  • the first remote device 121 transmits the line code (2) to the second remote device 122 and the second remote device 122 normally receives it the second remote device 122 transmits an EOK LED.
  • the central processing unit 110 is to blink the EOK LED.
  • the respective remote devices 121, 122, and 123 turn on the WOK LED.
  • the final processing unit 110 finally blinks the WOK LED when the line code (8) transmitted from the first remote device 121 to the central processing unit 110 is normally received.
  • the test button of the first remote device 121 when the test button of the first remote device 121 is pressed when the optical cable of the optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure is normally connected, The first remote device 121 transmits (1) line codes in the protective direction and (3) line codes in the working direction, respectively.
  • the display unit 110a of the central processing unit 110 since the optical data is normally received from the first remote device 121 through the line code (1), the display unit 110a of the central processing unit 110 blinks the WOK LED corresponding to (1). do.
  • the display unit 122a of the second remote device 122 since the optical data is normally received from the first remote device 121 via the line code (3), the display unit 122a of the second remote device 122 blinks the EOK LED corresponding to (3). Done.
  • the central processing unit 110 and the second remote device 122 that normally receives the line code transmits (2) line code and (4) line code to the first remote device 121 in response thereto. do. Since the display unit 121a of the first remote device 121 normally receives optical data from the central processing unit 110 through line code (2), the EOK LED corresponding to (2) is blinked. In addition, since the optical data is normally received from the second remote device 122 via the line code (4) from the second remote device 122, the display unit 121a of the first remote device 121 blinks the WOK LED corresponding to (4). Done.
  • the second remote device 122 transmits (1) line cords in the protective direction and (3) line cords in the working direction, respectively.
  • the display unit 121a blinks the WOK LED corresponding to (1). Done.
  • the display unit 123a of the third remote device 123 blinks the EOK LED corresponding to (3). Done.
  • the first remote device 121 and the third remote device 123 that normally receive the line code transmit (2) line code and (4) line code to the second remote device 122 in response thereto. do. Since the display unit 122a of the second remote device 122 normally receives optical data from the first remote device 121 through the line code (2), the EOK LED corresponding to (2) is blinked. In addition, since the optical data is normally received from the third remote device 123 via the line code (4) from the third remote device 123, the display unit 122a blinks the WOK LED corresponding to (4). Will be
  • the third remote device 123 transmits (1) line codes in the protective direction and (3) line codes in the working direction, respectively.
  • the display unit 122a of the second remote device 122 blinks the WOK LED corresponding to (1). Done.
  • the display unit 110a of the central processing unit 110 blinks the EOK LED corresponding to (3). do.
  • the second remote device 122 and the central processing unit 110 having normally received the line code transmits (2) line code and (4) line code to the third remote device 123 in response thereto.
  • the display unit 123a of the third remote device 123 normally receives optical data from the second remote device 122 through the line code (2), thereby blinking the EOK LED corresponding to (2).
  • the display unit 123a of the third remote device 123 causes the WOK LED corresponding to (4) to blink.
  • FIG. 3A is a view illustrating a state of a display unit when a test button is pressed in a central processing unit when an optical cable of an optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is incorrectly connected.
  • 3B is a view illustrating a state of a display unit when a test button is pressed on a first remote device when an optical cable of an optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is incorrectly connected.
  • 3C is a view showing a state in which the test button is pressed in the second remote device when the optical cable of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is incorrectly connected.
  • 3d is an optical Ethernet transmission system having the annular network structure of FIG. This is a view showing the state of the display unit when the test button of the third remote device is pressed when the optical cable of the system is automatically connected.
  • the processing apparatus 110 when the test button of the central processing unit 110 is pressed when the optical cable of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure is connected incorrectly, The processing apparatus 110 generates line codes of (1) and (3) in the working direction and the protection direction, respectively. At this time, the display unit 121a of the first remote device 121 blinks the EOK LED because the first remote device 121 normally receives the line code (1) in the walking direction. At this time, the first remote device 121 transmits the line code (2) to the second remote device 122.
  • the second remote device 122 since the optical cable line is in a fault state (for example, the optical cable is disconnected) between the first remote device 121 and the second remote device 122, the second remote device 122 is This is not normally received, the display unit 122a of the second remote device 122 is turned off the EOK LED.
  • the display unit 123a of the third remote device 123 since the optical cable is not connected between the second remote device 122 and the third remote device 123, the display unit 123a of the third remote device 123 also turns off the EOK LED. Therefore, since the third remote device 123 does not receive the line code from the second remote device 122 and does not transmit the line code to the central processing unit 110, the display unit of the central processing unit 110 ( 110a) turns off the EOK LED.
  • the central processing unit 110 transmits the optical data to the third remote device 123 by the line code (3) in the protection direction, but the third remote device 123 is not connected because the optical cable is abnormally connected. Therefore, the display unit 123a of the third remote device 123 turns off the WOK LED. At this time, the line code (5) of the third remote device 123 is looped to itself so that optical data cannot be transmitted to the second remote device 122. Accordingly, the second remote device 121 and the first remote device 121 do not operate because they do not receive optical data in the protection direction, and the display unit 110a of the central device 110 turns off the WOK LED.
  • the test button of the first remote device 121 may be pressed when the optical cable of the optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure of FIG. 3A is incorrectly connected.
  • the first remote device 121 transmits (1) the line code to the working line and (3) the line code in the protection direction.
  • the display unit 110a of the central processing unit 110 blinks the WOK LED corresponding to (1). do.
  • the display unit 122a of the second remote device 122 does not normally receive optical data from the first remote device 121 with the line code (3), the EOK LED corresponding to (3) is turned off. Done.
  • the central processing unit 110 and the second remote device 122 will respond to it with the line code, respectively. That is, the central processing unit 110 transmits the optical data to the first remote device 121 through the line code (2), so that the display unit 121a of the first remote device 121 blocks the EOK LED. Linking.
  • the second remote device cannot (3) receive the optical data with the line code, and thus cannot transmit the optical data to the first remote device 121 through the line code, and thus the display unit of the first remote device 121 121a turns off the WOK LED.
  • the test button of the second remote device 122 may be pressed when the optical cable of the optical cable connection automatic check system of the optical Ethernet transmission system having the annular network structure of FIG. 3A is incorrectly connected.
  • the second remote device 122 transmits the optical data with the line code (1) to the first remote device 121 in the working direction, and also with the line code with respect to the second remote device 123 in the protection direction. Send the data.
  • the display unit 121a of the first remote device 121 receiving the optical data from the second remote device 122 by the line code (1) is to blink the WOK LED.
  • the first remote device 121 transmits the optical data in the line code (2) in response thereto
  • the second remote device 122 since the second remote device 122 does not receive the optical data due to the disconnection of the optical cable, The display unit 122a of the second remote device 122 turns off the EOK LED.
  • the display unit 123a of the third remote device 123 turns off the EOK LED.
  • the display unit 122a of the second remote device 122 turns off the WOK LED.
  • the test button of the third remote device 123 may be pressed when the optical cable of the optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure of FIG. 3A is incorrectly connected.
  • the line (1) formed between the third remote device 123 itself has the same optical data reception direction, but since the line code to be entered is wrong, the display unit 123a of the third remote device 123 corresponds to Turn off the WOK LED without blinking.
  • the display unit 110a of the central processing unit 110 through the line code (2) of the third remote device 123 is to blink the EOK LED, but in response thereto (3) Since the optical data of the line code is wrong, the display unit 123a of the third remote device 123 turns off the WOK LED.
  • FIG. 4 is a view illustrating a state of a display unit when an optical cable connection is wrong at a position different from the automatic optical cable connection checking system in the optical Ethernet transmission system having the annular network structure of FIGS. 3A to 3D.
  • the display unit 121a of the first remote device 121 adjacent in the protective direction receives the line code (1) of the second remote device 122 in the ER in the other direction, and the corresponding WOK LED is blinking. It is turned off.
  • the display unit 123a of the third remote device 123 adjacent in the walking direction receives the line code (3) of the second remote device 122 in the WR in the other direction and does not block the corresponding EOK. Will be turned off.
  • an example of an automatic optical cable connection checking system in an optical Ethernet transmission system having an annular network structure in which six plurality of remote devices are installed is used as an example.
  • the flow will be described.
  • 5 to 9 schematically illustrate the structures of the plurality of remote devices and the central processing device in a circular shape for convenience of description.
  • FIG. 5 is a diagram illustrating an optical Ethernet signal transmission flow in a normal state in an automatic optical cable connection confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention.
  • Both the first optical core network and the second optical core network maintain a normal communication state, and at this time, an optical Ethernet signal is transmitted through the first optical core network. As shown in FIG. 5, the flow of data 910 in this case coincides with the first direction.
  • FIG. 6 is a schematic diagram illustrating a data flow when an error occurs in a second optical core network of an automatic cable connection checking system in an optical Ethernet transmission system having an annular network structure according to the present invention.
  • the data flow in the first direction which is a general data flow direction. Since there is no problem at 910, data is transmitted using the first optical core network in a first direction such as the flow of an optical Ethernet signal in a general state.
  • FIG. 7 is a schematic diagram illustrating a data flow 920 when an error occurs in a first optical core network of a system for automatically checking a connection of an optical cable in an optical Ethernet transmission system having an annular network structure according to the present invention.
  • the central unit 110 detects an abnormality of the first optical core network in the first direction in hardware and performs a transfer to transfer data through the second optical core network immediately, and other software control. It is possible to switch in a very short time because there is no.
  • switching is controlled by hardware using a field-programmable gate array (FPGA).
  • FPGA field-programmable gate array
  • the actual data is transmitted to more than about 99% of the packet compared to the conventional method that always used a certain portion of the packet Can be used to
  • the actual traffic data amount is significantly reduced.
  • the actual traffic loss can be remarkably reduced by loading a control signal in a minimum Ethernet packet and transmitting a minimum packet asynchronously to the event. For example, for a 100 Mbyte redundant optical communication ring, the actual Ethernet transport traffic capacity is 99% or more, that is, 99 Mbyte or more.
  • FIG. 8 is a schematic diagram illustrating the flow of data when an abnormality occurs simultaneously in the first and second optical core networks of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure according to the present invention.
  • the central device may be used.
  • the three optical core network 930 is configured.
  • the sixth remote device 126, the fifth remote device 125, and the fourth remote device 124 may be started using the part of the second optical core network in the second direction starting from the central device 110. And then the entire loop using a portion of the first optical core network in the order of the fourth remote device 124, the fifth remote device 125, the sixth remote device 126 and the central device 110 in that order.
  • the fourth optical core network 940 is formed.
  • FIG. 9 is a schematic diagram illustrating the flow of data when an abnormality occurs simultaneously in the first and second optical core networks of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure according to the present invention.
  • connection portion may be connected to the portion of FIG. 8.
  • the third optical core network 930 and the fourth optical core network 940 are configured, and a fifth optical core network 950 is formed by forming a loop between remote devices separated from each other.
  • the third optical core network connects the first remote device 121 and the second remote device 122 in a first direction from the central device 110 using a part of the first optical core, Subsequently, the second remote device 122, the first remote device 121, and the central device 110 are configured using a part of the second optical core network in the second direction.
  • the fourth optical core network also includes the central unit 110, the sixth remote unit 126, the fifth remote unit 125, and again the sixth remote unit 126 and the central unit 110. If the connection between the third remote device 123 and the fourth remote device 124 is good, Ethernet data communication between the third remote device 123 and the fourth remote device 124 is possible. .
  • an optical cable breaks or a fault occurs, it is basically represented by ELF / WLF or ERF / WRF LED.
  • ELF / WLF or ERF / WRF LED since the transmission and reception of the optical data is good, but the connection without considering the direction is the same as that of the optical connection is broken, the ELF or WLF is blinked so that the installer can recognize it.
  • FIG. 10a and 10b are shown between the central processing unit 110 and the first remote device 121 of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having an annular network structure according to the present invention
  • the first remote device 121 and FIG. 11 is a view showing the states of the display units 121a and 122a when the optical cable is incorrectly connected between the second remote devices 122.
  • FIG. 11 is a view showing the states of the display units 121a and 122a when the optical cable is incorrectly connected between the second remote devices 122.
  • each node of the central processing unit 110 and the first to third remote devices 121, 122, and 123 exchanges line codes with each other in a working direction or a protection direction.
  • the first remote device 121 is sent ET line code toward the central processing unit 110
  • the WT line code is sent to the second remote device 122.
  • the central processing unit 110 should be a WT line code coming from the first remote device 121, but the ET is actually wrong, and the corresponding WLF is blinking.
  • the central processing unit 110 sends the ET line code to the first remote device 121 in response thereto.
  • the first remote device 121 is normally received by the ER to turn off the ELF.
  • the second remote device 122 receives the ELF. Blinking, and sends a WT line code to the first remote device 121 in response.
  • the WLF is turned off.
  • FX2 (ET and WR) should be connected to FX1 (ER and WT).
  • each node of the central processing unit 110 and the first to third remote devices 121, 122, and 123 exchanges line codes with each other in a working direction or a protection direction.
  • the first remote device 121 sends the ET line code toward the second remote device 122, the WT line code is sent to the central processing unit (110).
  • the central processing unit 110 since the central processing unit 110 receives the line code coming from the first remote device 121 and is normally received from the WT, the central processing unit 110 turns off the WLF. Send the ET line code to the remote device 121.
  • the first remote device 121 is received by the WR to blink the WLF.
  • the second remote device 122 since the ET line code sent from the first remote device 121 to the second remote device 122 is received by the second remote device 122 as the ER, the second remote device 122 turns off the ELF.
  • the second remote device 122 sends the WT line code to the first remote device 121.
  • the first remote device 121 receives the ER, the first remote device 121 blinks the ELF.
  • FX2 (ET and WR) should be connected to FX1 (ER and WT).
  • FIG. 11 is a view illustrating a connection of an optical cable between a first remote device and a second remote device, a second remote device, and a third remote device in an optical cable connection automatic confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention. It is a figure which shows the state of a display part in case of a mistake.
  • each node of the central processing unit 110 and the first to third remote devices 121, 122, and 123 exchanges line codes with each other in a working direction or a protection direction.
  • the second remote device 122 sends the ET line code toward the first remote device 121, and sends the WT line code toward the third remote device 123.
  • the first remote device 121 since the first remote device 121 receives the ET line code sent from the second remote device 122 in the WR, the first remote device 121 blinks the WLF and, in response, ETs the second remote device 122 to the second remote device 122.
  • the second remote device 122 is received by the WR to cause the WLF to blink.
  • the third remote device 123 blocks the ELF.
  • the third remote device 123 sends a WT line code to the second remote device 122 in response thereto. Therefore, since the second remote device 122 receives the ER, it will blink the ELF.
  • FX2 (ET and WR) should be connected to FX1 (ER and WT).
  • FIG. 12 is a cross-sectional view between a central processing unit and a first remote device, a first remote device and a second remote device, and a second remote device of an automatic cable connection confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention.
  • FIG. 11 is a diagram showing the state of the display unit when the optical cable is incorrectly connected between the third remote device and the third remote device and the central processing unit.
  • the first remote device ( 121, the connection of the optical cable between the second remote device 122, between the second remote device 122 and the third remote device 123, between the third remote device 123 and the central processing unit 110 is incorrect
  • the nodes of the central processing unit 110 and the first to third remote devices 121, 122, and 123 first exchange line codes with each other in the working direction or the protection direction.
  • the first remote device 121 sends the ET line code toward the central processing unit 110, and the WT line code toward the second remote device 122.
  • the central processing unit 110 Since the central processing unit 110 is the line code coming from the first remote device 121 should be WT coming from the ET, the WLF is blinking, in response to the ET line to the first remote device 121 Send the code. At this time, the first remote device 121 is received by the WR and the ELF is blinking.
  • the second remote device 122 transmits the WT line code toward the first remote device 121 and the ET line code toward the third remote device 123.
  • the second remote device 122 since the second remote device 122 receives the WT line code sent from the first remote device 121 to the ER, the second remote device 122 blinks the ELF and, in response, WT toward the first remote device 121. Send the line code.
  • the WLF is turned on because it is not normally received by the WR.
  • the third remote device 123 sends the ET line code toward the second remote device 122, and sends the WT line code toward the central processing unit 110.
  • the third remote device 123 receives the WT line code from the central processing unit 110 as the ER, the third remote device 123 blinks the ELF, and in response, the third remote device 123 receives the WT line code toward the central processing unit 110.
  • the central processing unit 110 receives the WT line code from the third remote device 123 to the ER, the central processing unit 110 blinks the ELF.
  • FIG. 13 is a view showing a state of the display unit when the connection of the optical cable between the central processing unit and the third remote device of the automatic check system for optical cable connection in the optical Ethernet transmission system having an annular network structure according to the present invention.
  • the WT of the third remote device 123 is looped to WR, so that The display unit 123a of the third remote device 123 recognizes this and blinks the WLF.
  • the central processing unit 110 since the ET is connected to the central processing unit 110 by the ER in the third remote device 123, the ELF is OFF, in response to the central processing unit 110 WT The line code is sent to the third remote device 123. At this time, the third remote device 123 receives the ER and blinks the ELF.
  • FIG. 14 is a view illustrating a display unit of a remote device representing a position of a remote device constituting an automatic checking system for connecting an optical cable in an optical Ethernet transmission system having a ring network structure according to the present invention
  • FIG. 15 is a ring shape according to the present invention
  • FIG. 16 is a view showing an example of a display unit of a central processing unit expressing the number of remote devices constituting the automatic checking of optical cable connection in an optical Ethernet transmission system having a network structure
  • FIG. 16 has an annular network structure according to the present invention.
  • Automatic display of optical cable connections in an optical Ethernet transmission system A diagram illustrating a display unit and a serial interface installed at a front surface of a remote device and a central processing unit.
  • the display unit of the remote device constituting the automatic checking of the optical cable connection in the optical Ethernet transmission system having the annular network structure may represent the position of the remote device on the ring network of the system in binary. For example, if the number of remote devices is six, the display unit blinks the PWR LED indicating power supply, and the front display LEDs of all the remote devices 121, 122, 123, 124, 125, and 126, In order to represent the number on the ring network in binary format, it can be turned on to indicate its number, and in the case of the central unit, the number of nodes on the ring network is represented in binary format.
  • the central processing unit 110 displays the total number of remote devices connected in the ring network in binary.
  • the optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure when a large number of nodes are connected in the optical core network, if a node fails, the user can easily find the node in the field. It becomes possible.
  • the entire node can be actively set by viewing the assigned number of nodes. User convenience can be maximized during maintenance.
  • FIG. 17 is a schematic diagram illustrating a central office terminal (COT) of an optical Ethernet signal transmission system according to the present invention.
  • the central office terminal may include a Main Processor Unit (MPU) 112, an Ethernet Transmission & Receive (ETR) 113, and a Power 111.
  • the MPU 112 functions to initialize the system and to control and monitor each module and remote device in the central unit. It also controls, configures and backs up data for central and remote devices.
  • the power 111 may be configured in redundancy.
  • the connection state of the optical cable constituting the optical communication network is not displayed on the front of the remote device and the central processing unit without any additional equipment. It can be checked automatically through the installed display.
  • the present optical Ethernet signaling system since a control signal is transmitted and received in an inter packet gap (IPG) and transmitted to each node in an asynchronous Ethernet frame with respect to an optical cable line fault event, it is controlled in a packet. Unlike the method used including information, more than 99% of packets can be used for data transmission and data communication efficiency can be maximized.
  • IPG inter packet gap

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

The present invention relates to a system for automatically checking the connection of an optical cable in an optical Ethernet transmission system having a ring-shaped network structure. The system for automatically checking the connection of the optical cable in the optical Ethernet transmission system having the ring-shaped network structure according to the present invention comprises: a plurality of remote devices, each connected by an optical cable made of a working line and a protective line; a central processing unit controlling an optical network signal provided to the plurality of remote devices, and performing a switching operation when an optical cable connection among the plurality of remote devices is faulty; and a duplexed first optical core network and second optical core network which transmit optical data in a first direction, and in a second direction opposite thereto, through the working line and the protective line, from the central processing unit across the plurality of remote devices to the central processing unit. The plurality of remote devices and the central processing unit have a display unit and a serial interface installed at front surfaces thereof. The display unit automatically displays optical cable connection information on the remote devices or the central processing device respectively connected to front ends and rear ends of the plurality of remote devices and of the central processing unit. The serial interface is connected to the display unit, uses an asynchronous Ethernet frame, and includes a checking test button for checking both optical cable connection information and whether or not optical data is transmitted/received.

Description

환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템 Automatic checking of optical cable connection in optical Ethernet transmission system with annular network structure
본 발명은 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템에 관한 것이다.The present invention relates to an optical cable connection automatic confirmation system in an optical Ethernet transmission system having an annular network structure.
최근 이더넷을 이용한 대용량의 네트워크서비스가 증가함에 따라 많은 장비들이 증설되고, 또한 그 장비 간 연결은 점대점 및 1:N, 그리고 환형 망 등으로 구성된다. 그리고, 노드와 노드 사이에 물리적인 회선 구간을 광 케이블로 연결할 경우, 기존 PDH계열 또는 SDH계열의 장비들은 동기 방식으로 프레임의 채널 내에 주기적으로 연결 라인에 코드를 넣어 광 선로를 점검할 수 있으나, 이더넷과 같은 TCP/IP 패킷을 전송하는 비동기 장비들은 주기적으로 연결 라인에 코드를 넣을 수 있는 방법이 없어 최초 시설 및 유지보수에 많은 어려움을 겪고 있다. 이를 해결하기 위하여 시설자는 다양한 계측 장비를 동원하여 광 선로를 점검하거나 경험 치에 의한 방법으로 해결함으로써, 많은 시간과 비용을 소요하게 된다. 광 이더넷 신호 전송 시스템에서 장비간 잘못 시설된 광 케이블 연결 구간을 빨리 발견하고 수정하여야 하는 이유는, 잘못된 광 케이블의 연결에 의한 예기치 못한 이더넷 데이터 패킷의 루프로 생기는 네트워크의 충돌과 붕괴를 막을 수 있기 때문이다.With the recent increase of the large capacity network service using Ethernet, many devices are expanded, and the connection between the devices is composed of point-to-point, 1: N, and annular networks. In addition, when the physical line section between the node and the optical cable is connected, the existing PDH or SDH series equipment can check the optical path by putting a code in the connection line periodically in the channel of the frame in a synchronous manner, Asynchronous devices that transmit TCP / IP packets, such as Ethernet, suffer from many difficulties in initial installation and maintenance because there is no way to periodically insert code into the connection line. In order to solve this problem, the facility invests a lot of time and money by using various measuring equipment to check the optical line or solve it by an experienced method. The reason for the need for early detection and correction of poorly installed fiber cabling sections between devices in an optical Ethernet signal transmission system is to prevent network collisions and collapses caused by loops of unexpected Ethernet data packets caused by faulty fiber cabling. Because.
따라서, 기존 점대점 및 1:N과 같은 네트웍 구조에 비하여 회선 및 설치 비용 그리고 설치에 있어서 그 효용성이 높은 환형 망을 이용할 경우, 기존 네트웍 구조와 다른 회선 구성 방법으로 인한 연결의 복잡성으로 인하여, 최초 설치 또는 유지 보수 측면에서 더욱 광 선로를 점검할 필요성이 대두되게 되었다.Therefore, when using an annular network that has high efficiency in terms of line and installation cost and installation compared to existing point-to-point and network structures such as 1: N, due to the complexity of the connection due to the different network configuration method from the existing network structure, In terms of installation or maintenance, there is a need for further inspection of the optical lines.
따라서, 본 발명은 광통신 네트워크를 구성하는 광 케이블의 연결상태를 별도의 추가 장비없이 원격장치 및 중앙처리장치의 전면에 설치된 표시부를 통하여 자동으로 체크할 수 있는 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템을 제공하는 것을 그 목적으로 한다. Accordingly, the present invention provides an optical Ethernet transmission system having an annular network structure that can automatically check the connection state of the optical cable constituting the optical communication network through a display unit installed on the front of the remote device and the central processing unit without additional equipment. Its purpose is to provide a system for automatically checking optical fiber connections.
또한, 본 발명은 광통신 네트워크에서 절체시 노드간 발생되는 비동기적인 이벤트에 대하여 최소한으로 실 트래픽(Pay Load) 공간을 점유하도록 하고, 또한 하드웨어적인 수단으로 절체를 수행 시, 빠른 복구 속도 및 제어를 위하여 사용되는 이더넷 패킷 사용량을 대폭적으로 줄임으로써 더 많은 양의 실 트래픽 이더넷 데이터를 광 이더넷 신호 전송 시스템에게 제공할 수 있는 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템을 제공하는 것을 그 목적으로 한다.In addition, the present invention is to occupy the pay traffic space to a minimum for asynchronous events generated between nodes when switching in the optical communication network, and also for fast recovery speed and control when performing the transfer by hardware means To provide a system for automatically checking optical cable connection in an optical Ethernet transmission system having an annular network structure capable of providing a larger amount of real traffic Ethernet data to the optical Ethernet signal transmission system by drastically reducing the amount of Ethernet packets used. The purpose.
본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템은, 각각 워킹라인과 보호라인으로 이루어진 광 케이블로 연결된 복수 개의 원격장치; 상기 복수 개의 원격장치에 제공되는 광 이더넷 신호를 제어하고, 상기 복수 개의 원격장치 간의 광 케이블 연결이 잘못된 경우 절체 동작을 수행하는 중앙처리장치; 및 상기 중앙처리장치로부터 상기 복수 개의 원격장치를 거쳐 상기 중앙처리장치로 상기 워킹라인 또는 상기 보호라인을 통하여 광 테이터가 제1 방향 및 반대방향인 제2 방향으로 전송되는 이중화된 제1 광 코어망 및 제2 광 코어망;을 포함하고, 상기 복수 개의 원격장치 및 상기 중앙처리장치의 전면에는 상기 복수 개의 원격장치 및 상기 중앙처리장치와 각각의 전단 및 후단에 연결된 원격장치 또는 중앙처리장치와의 광케이블 연결 정보를 자동으로 표시하는 표시부와, 상기 표시부에 연결되어 비동기적인 이더넷 프레임을 사용하여 광 데이터의 송수신 여부와 광 케이블 연결정보를 확인하는 테스트 버튼을 포함하는 시리얼 인터페이스가 설치되어 있는 것을 특징으로 한다.In the optical Ethernet transmission system having an annular network structure according to the present invention, the automatic connection of the optical cable connection system, each of the plurality of remote devices connected by an optical cable consisting of a working line and a protection line; A central processing unit controlling the optical Ethernet signals provided to the plurality of remote devices and performing a switching operation when the optical cable connection between the plurality of remote devices is incorrect; And a duplicated first optical core network through which the optical data is transmitted from the central processing unit through the plurality of remote devices to the central processing unit through the working line or the protection line in a second direction opposite to the first direction and the opposite direction. And a second optical core network, wherein the front surface of the plurality of remote devices and the central processing unit includes the plurality of remote devices and the central processing unit and a remote device or a central processing device connected to each of the front and rear ends thereof. And a serial interface including a display unit for automatically displaying optical cable connection information, and a test button connected to the display unit to check whether optical data is transmitted and received and the optical cable connection information using an asynchronous Ethernet frame. do.
상기 복수 개의 원격장치 및 상기 중앙처리장치는 능동적으로 발생된 광케이블 연결정보에 대하여 감지하여 자동으로 전면 표시부에 표시할 수 있는 것을 특징으로 한다.The plurality of remote devices and the central processing unit may detect the optical cable connection information that is actively generated and automatically display the front display unit.
상기 시리얼 인터페이스는, 상기 테스트 버튼이 눌러지면 해당 원격장치에 광케이블 라인 별 TPG(Test Patten Generator)가 비동기적인 이더넷 프레임으로 옆 노드에 전달되어 그 노드가 이를 확인하고 광 데이터의 송수신 여부와 광 케이블 연결정보를 확인하여 상기 표시부에 표시할 수 있도록 하는 것을 특징으로 한다.In the serial interface, when the test button is pressed, TPG (Test Patten Generator) for each optical cable line is transmitted to the next node as an asynchronous Ethernet frame to the corresponding remote device, and the node confirms this and transmits and receives optical data and connects the optical cable. The information may be checked and displayed on the display unit.
상기 표시부는 복수 개의 엘이디로 구성되고, 상기 복수 개의 엘이디는 인접하는 원격장치 또는 중앙처리장치로부터 해당 장치로의 광 데이터가 수신되는지 여부를 표시하는 것을 특징으로 한다.The display unit may include a plurality of LEDs, and the plurality of LEDs may indicate whether optical data from an adjacent remote device or a central processing unit is received from the corresponding device.
상기 표시부는 복수 개의 엘이디로 구성되고, 상기 복수 개의 엘이디는 상기 제1 광 코어망 또는 상기 제2 광 코어망에 연결되는 원격장치의 개수를 2진법으로 나타낼 수 있는 것을 특징으로 한다.The display unit may include a plurality of LEDs, and the plurality of LEDs may represent the number of remote devices connected to the first optical core network or the second optical core network in binary.
상기 표시부는 복수 개의 엘이디로 구성되고, 상기 복수 개의 엘이디는 해당 장치가 상기 제1 광 코어망 또는 상기 제2 광 코어망의 연결 순서에 따라 연결된 순번을 2진법으로 나타낼 수 있는 것을 특징으로 한다.The display unit may be configured of a plurality of LEDs, and the plurality of LEDs may be displayed in binary format, in which a corresponding device is connected according to a connection order of the first optical core network or the second optical core network.
상기 각각의 원격장치는 연결된 제1 광 코어망 및 제2 광 코어망의 물리적인 연결여부를 능동적으로 감지하여 상기 물리 연결 정보를 포함하는 NMS 프레임을 형성하고, 상기 NMS 프레임을 상기 광 이더넷 신호의 패킷 사이에 존재하는 갭(Inter Packet Gap; IPG)을 이용하여 제어 신호를 송수신하고 광케이블 라인 폴트 이벤트에 대하여 비동기적인 이더넷 프레임으로 상기 인접한 원격장치를 통하여 상기 중앙처리장치에 전달하며, 상기 중앙처리장치는 전달받은 NMS 프레임을 이용하여 복수 개의 원격장치의 절체를 수행하는 것을 특징으로 한다.Each remote device actively detects whether the first optical core network and the second optical core network are physically connected to form an NMS frame including the physical connection information, and converts the NMS frame into an optical Ethernet signal. Transmitting and receiving control signals using an inter packet gap (IPG) between packets, and transmitting the control signal to the central processing unit through the adjacent remote device in an asynchronous Ethernet frame for an optical cable line fault event. Is characterized in that the switching of the plurality of remote devices using the received NMS frame.
상기 각각의 원격장치는 연결된 제1 광 코어망 및 제2 광 코어망의 물리적인 연결여부를 능동적으로 감지하여 상기 물리 연결 정보를 포함하는 NMS 프레임을 형성하고, 상기 중앙처리장치 및 상기 각각의 원격장치는 잘못된 광 케이블의 연결에 의한 이더넷 데이터 팻킷의 루프에 의하여 발생되는 네트워크의 충돌 및 붕괴를 사전에 막기 위하여 비동기적인 망관리 데이터를 상기 광 이더넷 신호의 팻킷 사이에 존재하는 갭(Inter Packet Gap; IPG)에 넣어서 노드 상호간에 주고 받음으로써 자동으로 이더넷 데이터 팻킷의 루프를 막을 수 있는 것을 특징으로 한다.Each remote device actively detects whether the first optical core network and the second optical core network are physically connected to form an NMS frame including the physical connection information, and the central processing unit and the respective remote device. The apparatus includes an inter-packet gap between the packet of the optical Ethernet signal and asynchronous network management data to prevent collisions and collapses of the network caused by loops of the Ethernet data packet caused by the wrong optical cable connection. It is possible to automatically prevent looping of Ethernet data packets by putting them in IPG).
상기 중앙처리장치 및 상기 복수 개의 원격장치는 FPGA(field programmable gate array)를 포함하여, 별도의 중앙처리장치와 연계되어 동작하지 않고 독립적으로 작동되며, 상기 제1 광 코어망 및 제2 광 코어망의 절체를 수행하는 것을 특징으로 한다.The central processing unit and the plurality of remote devices, including a field programmable gate array (FPGA), operate independently without being associated with a separate central processing unit, and operate the first optical core network and the second optical core network. Characterized in performing the transfer of.
상기 복수 개의 원격장치는 플러그 인 방식으로 구성되어 각각의 원격장치가 상기 제1 광 코어망 및 제2 광 코어망에 연결되는 것을 특징으로 한다.The plurality of remote devices are configured in a plug-in manner so that each remote device is connected to the first optical core network and the second optical core network.
상기한 바와 같이, 본 발명에 의하면, 광통신 네트워크를 구성하는 광 케이블의 연결 상태를 별도의 추가 장비없이 원격장치 및 중앙처리장치의 전면에 설치된 표시부를 통하여 자동으로 체크할 수 있다. As described above, according to the present invention, the connection state of the optical cable constituting the optical communication network can be automatically checked through the display unit installed on the front of the remote device and the central processing unit without additional equipment.
또한, 본 발명에 의하면, 광 코어망 내에 수 많은 노드가 연결되었을 경우, 어떤 노드에 장애가 발생되었다면 해당 노드를 사용자가 직접 현장에서 쉽게 찾을 수 있다.In addition, according to the present invention, when a large number of nodes are connected in the optical core network, if a node fails, the user can easily find the node directly in the field.
또한, 본 발명에 의하면, 패킷 간 갭(Inter Packet Gap; IPG)에 제어 신호를 송수신하고 광케이블 라인 폴트 이벤트에 대하여 비동기적인 이더넷 프레임으로 각 노드에게 전달하기 때문에, 패킷 내에 제어 정보들을 포함하여 연속적으로 전달하여 사용하는 기존의 방식과는 달리 전체 실 트래픽 공간 중에 약 99%이상의 실 트래픽(Pay Load) 패킷을 데이터 전송용으로 사용할 수 있어, 데이터 통신 효율을 극대화시킬 수 있다.In addition, according to the present invention, since a control signal is transmitted and received to an inter packet gap (IPG) and transmitted to each node in an asynchronous Ethernet frame for an optical cable line fault event, the control information in the packet is continuously included. Unlike the existing method of transmitting and using, more than 99% of payload packets can be used for data transmission in the total real traffic space, thereby maximizing data communication efficiency.
이상과 같은 본 발명에 대한 해결하고자 하는 과제, 과제 해결 수단, 효과 외의 구체적인 사항들은 다음에 기재할 실시예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Specific matters other than the problem to be solved, the problem solving means, and the effects of the present invention as described above are included in the following embodiments and the drawings. Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. Like reference numerals refer to like elements throughout.
도 1은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 연결구조를 나타내는 도면.1 is a view showing a connection structure of the optical cable connection automatic confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention.
도 2a는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 정상 연결되는 경우에 중앙처리장치의 테스트 버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면.FIG. 2A is a diagram illustrating a state of a display unit when a test button of a central processing unit is pressed when an optical cable of an optical cable connection automatic checking system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected; FIG.
도 2b는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 정상 연결되는 경우에 제1 원격장치에서의 테스트 버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면.FIG. 2B is a view illustrating a state of a display unit when a test button is pressed in a first remote device when an optical cable of an optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected; .
도 2c는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 정상 연결되는 경우에 제2 원격장치에서의 테스트버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면.FIG. 2C is a view illustrating a state of a display unit when a test button of a second remote device is pressed when the optical cable of the optical cable connection automatic checking system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected. .
도 2d는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 정상 연결되는 경우에 제3 원격장치에서의 테스트버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면.FIG. 2D is a view illustrating a state of a display unit when a test button is pressed on a third remote device when the optical cable of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected. .
도 3a는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 잘못 연결되었을 경우에 중앙처리장치에서의 테스트 버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면.FIG. 3A is a diagram illustrating a state of a display unit when a test button is pressed in the central processing unit when an optical cable of an optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is incorrectly connected; FIG.
도 3b는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 잘못 연결되었을 경우에 제1 원격장치에서의 테스트 버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면.FIG. 3B is a view illustrating a state of a display unit when a test button is pressed on a first remote device when an optical cable of an optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is incorrectly connected; .
도 3c는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 잘못 연결되었을 경우에 제2 원격장치에서의 테스트버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면.3C is a view illustrating a state of a display unit when a test button is pressed on a second remote device when an optical cable of an optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure of FIG. .
도 3d는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 잘못 연결되었을 경우에 제3 원격장치에서의 테스트버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면.FIG. 3D is a view illustrating a state of a display unit when a test button is pressed on a third remote device when an optical cable of an optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is incorrectly connected. .
도 4는 도 3a 내지 3d의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템과는 다른 위치에서 광 케이블 연결이 잘못되었을 경우에 제2 원격장치에서 테스트 버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면.4 is a display unit when the test button is pressed on the second remote device when the optical cable connection is wrong at a position different from the automatic checking of the optical cable connection in the optical Ethernet transmission system having the annular network structure of FIGS. 3A to 3D. Drawing showing the state of.
도 5는 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템에서 일반적인 상태의 광 이더넷 신호 전송 흐름을 나타내는 도면.FIG. 5 is a diagram illustrating an optical Ethernet signal transmission flow in a general state in an optical cable connection automatic checking system in an optical Ethernet transmission system having an annular network structure according to the present invention; FIG.
도 6은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 제2 광 코어망에 이상이 생기는 경우 데이터의 흐름을 나타내는 개략적인 도면.FIG. 6 is a schematic diagram illustrating the flow of data when an error occurs in a second optical core network of an optical cable connection automatic checking system in an optical Ethernet transmission system having an annular network structure according to the present invention; FIG.
도 7은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 제1 광 코어망에 이상이 생기는 경우 데이터의 흐름을 나타내는 개략적인 도면.FIG. 7 is a schematic diagram illustrating the flow of data when an error occurs in a first optical core network of an optical cable connection automatic checking system in an optical Ethernet transmission system having an annular network structure according to the present invention; FIG.
도 8은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 제1 및 제2 광 코어망에 동시에 이상이 생기는 경우 데이터의 흐름을 나타내는 개략적인 도면.8 is a schematic diagram showing the flow of data when abnormalities occur simultaneously in the first and second optical core networks of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having an annular network structure according to the present invention.
도 9는 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 제1 및 제2 광 코어망에 동시에 이상이 생기는 경우 데이터의 흐름을 나타내는 개략적인 도면.FIG. 9 is a schematic diagram illustrating the flow of data when abnormalities occur simultaneously in the first and second optical core networks of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure according to the present invention; FIG.
도 10a 및 10b는 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 중앙처리장치와 제1 원격장치간, 제1 원격장치 및 제2 원격장치간의 광 케이블의 연결이 잘못되었을 경우에 표시부의 상태를 나타내는 도면.10a and 10b is a connection of the optical cable between the central processing unit and the first remote device, the first remote device and the second remote device of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having an annular network structure according to the present invention The figure which shows the state of a display part in case of a mistake.
도 11은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 제1 원격장치와 제2 원격장치간, 제2 원격장치 및 제3 원격장치간의 광 케이블의 연결이 잘못되었을 경우에 표시부의 상태를 나타내는 도면.FIG. 11 is a view illustrating a connection of an optical cable between a first remote device and a second remote device, a second remote device, and a third remote device in an optical cable connection automatic confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention. The figure which shows the state of a display part in case of a mistake.
도 12는 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 중앙처리장치와 제1 원격장치간, 제1 원격장치와 제2 원격장치간, 제2 원격장치 및 제3 원격장치간, 제3 원격장치와 중앙처리장치간의 광 케이블의 연결이 잘못되었을 경우에 표시부의 상태를 나타내는 도면.12 is a cross-sectional view between a central processing unit and a first remote device, a first remote device and a second remote device, and a second remote device of an automatic cable connection confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention. A diagram showing the state of the display section when the optical cable is incorrectly connected between the third remote apparatus and the third remote apparatus and the central processing unit.
도 13은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 제1 원격장치와 제2 원격장치간에 라인폴트가 발생되고, 제2 원격장치 및 제3 원격장치간이 단선되며, 제3 원격장치 자체와 제3 원격장치 및 중앙처리장치간의 광 케이블의 연결이 잘못되었을 경우에 표시부의 상태를 나타내는 도면.13 is a line fault is generated between the first remote device and the second remote device of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having an annular network structure according to the present invention, the second remote device and the third remote device The figure which shows the state of a display part in the case of disconnection and the connection of the optical cable between a 3rd remote apparatus itself, and a 3rd remote apparatus and a central processing unit is wrong.
도 14는 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템을 구성하는 원격장치의 위치를 표현하는 원격장치의 표시부를 나타내는 도면.14 is a view showing a display unit of a remote device for expressing the position of a remote device constituting a system for automatically checking an optical cable connection in an optical Ethernet transmission system having an annular network structure according to the present invention;
도 15는 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템을 구성하는 원격장치의 수를 표현하는 중앙처리장치의 표시부의 일 예를 나타내는 도면.FIG. 15 is a view showing an example of a display unit of a central processing unit expressing the number of remote devices forming an optical cable connection automatic confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention; FIG.
도 16은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 원격장치 및 중앙처리장치의 전면에 설치되는 표시부 및 시리얼 인터페이스를 나타내는 도면.16 is a view showing a display unit and a serial interface installed on the front of the remote device and the central processing unit of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having an annular network structure according to the present invention.
도 17은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 COT(Central Office Terminal)를 나타내는 개략적인 도면.FIG. 17 is a schematic diagram illustrating a central office terminal (COT) of a system for automatically checking a connection of an optical cable in an optical Ethernet transmission system having an annular network structure according to the present invention; FIG.
이하 본 발명의 실시예에 대하여 첨부한 도면을 참조하여 상세하게 설명하기로 한다. 다만, 첨부된 도면은 본 발명의 내용을 보다 쉽게 개시하기 위하여 설명되는 것일 뿐, 본 발명의 범위가 첨부된 도면의 범위로 한정되는 것이 아님은 이 기술분야의 통상의 지식을 가진 자라면 용이하게 알 수 있을 것이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the accompanying drawings are only described in order to more easily disclose the contents of the present invention, but the scope of the present invention is not limited to the scope of the accompanying drawings that will be readily available to those of ordinary skill in the art. You will know.
도 1은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 연결구조를 나타내는 도면이다. 1 is a view showing a connection structure of the optical cable connection automatic confirmation system in an optical Ethernet transmission system having a ring network structure according to the present invention.
도 1에 도시된 바와 같이, 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템은 복수 개의 원격장치(121, 122, 123), 중앙처리장치(110), 제1 광 코어망(ET~ER) 및 제2 광 코어망(WT~WR)을 포함한다.As shown in Figure 1, the optical cable connection automatic confirmation system in the optical Ethernet transmission system having an annular network structure according to the present invention is a plurality of remote devices (121, 122, 123), the central processing unit 110, the first Optical core networks ET to ER and second optical core networks WT to WR.
본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 연결구조에 대하여 상세하게 설명하자면, 우선 복수 개의 원격장치(121, 122, 123)가 각각 트렁크 워킹라인 광케이블(Trunk Working Line Optic Cable, 이하 워킹라인이라 한다.)과 트렁크 보호라인 광케이블(Trunk Protection Line Optic Cable, 이하 보호라인이라 한다.)으로 연결된다. 또한, 중앙처리장치(110)는 그 전단 및 후단에 연결되는 상기 복수 개의 원격장치(121, 122, 123)와 광 케이블로 연결되어, 상기 복수 개의 원격장치(121, 122, 123)에 제공되는 광 이더넷 신호를 제어하고, 상기 복수 개의 원격장치(121, 122, 123) 간의 광케이블 연결이 잘못된 경우 또는 광 케이블 라인이 끊긴 경우 절체 동작을 수행한다. 또한, 제1 광 코어망(ET~ER) 및 제2 광 코어망(WT~WR)은 상기 중앙처리장치(110)로부터 상기 복수 개의 원격장치(121, 122, 123)를 거쳐 상기 중앙처리장치(110)로 상기 워킹라인 또는 상기 보호라인을 통하여 광 테이터가 제1 방향(910) 및 반대방향인 제2 방향(920)으로 전송되게 한다. 또한, 상기 복수 개의 원격장치(121, 122, 123) 및 상기 중앙처리장치(110)의 전면에는 테스트 버튼(미도시)을 포함하는 시리얼 인터페이스(미도시)와, 상기 테스트 버튼의 동작에 의하여 상기 복수 개의 원격장치(121, 122, 123) 및 상기 중앙처리장치(110)의 각각의 전단 및 후단의 원격장치(121, 122, 123) 또는 중앙처리장치(110)와의 광케이블 연결 정보를 표시하는 표시부(110a, 121a, 122a, 123a)가 설치되어 있다.To describe in detail the connection structure of the optical cable connection automatic check system in the optical Ethernet transmission system having an annular network structure according to the present invention, first, a plurality of remote devices 121, 122, 123 are each trunk walking line optical cable (Trunk) It is connected to the Working Line Optic Cable (hereinafter referred to as the "working line") and the Trunk Protection Line Optic Cable (hereinafter referred to as the "protection line"). In addition, the central processing unit 110 is connected to the plurality of remote devices 121, 122, 123 connected to the front and rear ends thereof by an optical cable, and provided to the plurality of remote devices 121, 122, 123. The optical Ethernet signal is controlled and the switching operation is performed when the optical cable connection between the plurality of remote devices 121, 122, 123 is wrong or when the optical cable line is disconnected. In addition, the first optical core network (ET ~ ER) and the second optical core network (WT ~ WR) from the central processing unit 110 through the plurality of remote devices (121, 122, 123) the central processing unit The optical data is transmitted to the first direction 910 and the second direction 920 opposite to the working line or the protection line at 110. In addition, the front surface of the plurality of remote devices (121, 122, 123) and the central processing unit 110 includes a serial interface (not shown) including a test button (not shown), and by the operation of the test button Display unit for displaying the optical cable connection information with the plurality of remote devices (121, 122, 123) and the remote device (121, 122, 123) or the central processing unit 110 of the front and rear ends of the central processing unit 110, respectively 110a, 121a, 122a, and 123a are provided.
복수 개의 원격장치(121, 122, 123)는 배전 자동화 단말기, 원격 검침 단말기, 부하 관리 단말기 등을 포함한다. 이 뿐 아니라, 공장 자동화 단말기, 주상 및 지중 변압을 위한 단말기, 전기력 통신(Power Line Communication) 장치, 무선 인터넷 장치 등이 될 수 있으며, 이외에도, 음성통화, CCTV, LED 전광판 등 다양한 분야에 이용될 수 있다. 상기 원격장치(121, 122, 123)는 예시된 것 이외에도 광 통신 네트워크로 구성되는 일반적인 장치에 널리 적용될 수 있다. The plurality of remote devices 121, 122, and 123 include a distribution automation terminal, a remote meter reading terminal, a load management terminal, and the like. In addition, it can be a factory automation terminal, a terminal for pole and underground transformation, a power line communication device, a wireless internet device, and the like, and can also be used in various fields such as voice call, CCTV, and LED display board. have. The remote devices 121, 122, and 123 may be widely applied to a general device configured as an optical communication network in addition to those illustrated.
중앙처리장치(110)는 복수 개의 원격장치(121, 122, 123)에 제공되는 광 이더넷 신호를 제어하고, 복수 개의 원격장치(121, 122, 123) 간의 광케이블 연결이 잘못된 경우 절체 동작을 수행한다. 이때, 중앙처리장치(110)는 COT(Central Office Terminal)장치를 의미하는 것으로서, COT 장치의 구조에 대한 설명은 도 17를 참조로 하여 설명하기로 한다. 또한, 중앙처리장치(110)는 광 신호 변경 수단(미도시)을 더 포함하여, 이더넷 신호와 광 이더넷 신호를 상호 변환한다. 여기서, 이더넷 신호는 1200 bps 내지 57.6 kbps의 RS-232 비동기 신호, 음성 아이피 신호(VoIP), 영상 신호 또는 데이터 등을 포함할 수 있다. The central processing unit 110 controls the optical Ethernet signals provided to the plurality of remote devices 121, 122, 123, and performs a switching operation when the optical cable connection between the plurality of remote devices 121, 122, 123 is wrong. . At this time, the central processing unit 110 means a central office terminal (COT) device, a description of the structure of the COT device will be described with reference to FIG. In addition, the central processing unit 110 further includes an optical signal changing means (not shown) to convert the Ethernet signal and the optical Ethernet signal. Here, the Ethernet signal may include an RS-232 asynchronous signal, a voice IP signal (VoIP), an image signal or data of 1200 bps to 57.6 kbps.
중앙처리장치(110)는 네트워크로 들어온 각종 서버 데이터를 TCP/IP(Transmission Control Protocol/Internet Protocol)의 이더넷(Ethernet) 프레임으로 받아들여 이를 서비스에 맞게 상기 중앙처리장치(110)에서 재구성하여 광 신호로 변환한다. 여기서, 광 신호는 100base-FX(100Mbps) 또는 1000Base-Fx(1Gbps) 대역의 전송 폭을 갖는 TCP/IP 프레임으로 변환될 수 있다. 그런 다음, 상기 변환된 TCP/IP 프레임은 물리적으로 광/전변환(Electronic to Optical)을 거쳐 2중화된 링 구성으로 데이터를 전달한다.The central processing unit 110 receives various server data coming into the network as an Ethernet frame of TCP / IP (Transmission Control Protocol / Internet Protocol), and reconfigures it in the central processing unit 110 according to a service to receive an optical signal. Convert to Here, the optical signal may be converted into a TCP / IP frame having a transmission width of the 100base-FX (100Mbps) or 1000Base-Fx (1Gbps) band. The converted TCP / IP frame then physically passes data through an electronic to optical to a dualized ring configuration.
본 중앙처리장치(110)는 기존의 환형 네트워크 시스템에 적용되는 SDH 계열의 시스템과는 다른 방식을 사용하는 것으로서, 일반적인 이더넷을 이용하여 환형 네트워크 시스템에 적용하는 방식이다. 이때, 상기 이더넷을 통하여 전송되는 정보는 별도의 채널이 형성되는 것이 아니라, 가변적인 대역(최소 64Bype ~ huge frame(1916Byte), 그리고 점보 패킷까지)폭을 갖고 운영된다.The central processing unit 110 uses a different method from the SDH series system applied to the existing annular network system, and is applied to the annular network system using general Ethernet. In this case, the information transmitted through the Ethernet is not formed a separate channel, but operates with a variable bandwidth (at least 64Bype ~ huge frame (1916Byte), and up to jumbo packets).
제1 광 코어망(ET~ER) 및 제2 광 코어망(WT~WR)은 중앙처리장치(110)로부터 상기 복수 개의 원격장치(121, 122, 123)를 거쳐 상기 중앙처리장치(110)로 상기 워킹라인 또는 상기 보호라인을 통하여 광 데이터가 제1 방향(910) 및 반대방향인 제2 방향(920)으로 전송되도록 각각 링 구조를 가지고, 이중으로 구성되어 있다. 상기 제1 광 코어망(ET~ER)은 상기 중앙처리장치(110)에서 출발하여 각각의 원격장치(121, 122, 123)를 거쳐 다시 상기 중앙처리장치(110)로 돌아와 링 구조를 형성한다. 상기 제2 광 코어망(WT~WR) 역시 상기 중앙처리장치(110)와 각각의 원격장치(123, 122, 121)를 거쳐 링 구조를 형성한다. 이로 인하여 상기 제1 광 코어망(ET~ER) 및 제2 광 코어망(WT~WR)은 상기 중앙처리장치(110) 및 상기 원격장치(121, 122, 123)과 이중화된 링 구조를 형성한다. The first optical core networks ET to ER and the second optical core networks WT to WR are connected to the central processing unit 110 from the central processing unit 110 via the plurality of remote devices 121, 122, and 123. Each ring structure has a ring structure such that optical data is transmitted in a first direction 910 and a second direction 920 opposite to each other through the working line or the protection line. The first optical core networks ET to ER start from the central processing unit 110 and go back to the central processing unit 110 through the respective remote devices 121, 122, and 123 to form a ring structure. . The second optical core networks WT to WR also form a ring structure through the central processing unit 110 and the respective remote devices 123, 122, and 121. As a result, the first optical core networks ET to ER and the second optical core networks WT to WR form a dual ring structure with the central processing unit 110 and the remote devices 121, 122, and 123. do.
상기 제1 광 코어망(ET~ER)에서는 제1 방향(910)으로만 광 신호로 변환된 데이터를 전달하고, 상기 제2 광 코어망(WT~WR)에서는 상기 제1 방향(910)과 반대방향인 제2 방향(920)만 상기 데이터를 전달한다. 상기 제1 광 코어망(ET~ER) 및 제2 광 코어망(WT~WR)이 서로 반대 방향으로 데이터를 전달하여야만 후술하는 절체 시 부분적인 링 구성이 가능하게 된다. 상기 제1 광 코어망(ET~ER) 및 제2 광 코어망(WT~WR)과 상기 원격장치들(121, 122, 123)은 플러그 인(Plug In) 방식으로 구성되어 확장성이 우수하며, 유니트를 용이하게 추가할 수 있게 된다.The first optical core networks ET ˜ER transmit data converted into an optical signal only in the first direction 910, and in the second optical core networks WT WR and the first direction 910. Only the second direction 920 in the opposite direction carries the data. Only when the first optical core networks ET to ER and the second optical core networks WT to WR transfer data in opposite directions, a partial ring configuration is possible when switching later. The first optical core network (ET ~ ER) and the second optical core network (WT ~ WR) and the remote devices (121, 122, 123) is composed of a plug-in (Plug In) method has excellent expandability As a result, the unit can be easily added.
한편, 기존의 이더넷(Ethernet) 전송 시스템의 경우에는 한 지점에서 다른 하나의 지점으로 데이터 통신이 이루어지려면, 수신받은 라인 방향으로 반드시 송신하여야 하는 한 개의 라인을 통하여 송수신이 이루어진다. 예를 들어, 중앙처리장치와 최초 혹은 최후 원격장치간 또는 각각의 원격장치간에서 한 개의 라인을 통하여 양방향으로 송수신이 이루어진다. 이와는 달리, 본 광 이더넷 신호 전송 시스템은 상기 제1 광 코어망(ET~ER)에서는 제1 방향(910)으로, 상기 제2 광 코어망(WT~WR)에서는 제 2방향(920)으로 즉, 인입과 인출이 서로 다른 방향으로 데이터가 송수신되고, 또한 상기 제1 광 코어망(ET~ER) 및 제2 광 코어망(WT~WR)이 링으로 구성되기 때문에, 한 방향으로 데이터가 전송되더라도 네트워크 시스템의 임의의 한 지점에서 다른 한 지점으로 데이터가 송신 및 수신이 가능하게 된다. Meanwhile, in the case of the existing Ethernet transmission system, in order to perform data communication from one point to another point, transmission and reception are performed through one line that must be transmitted in the received line direction. For example, transmission and reception are made in both directions through one line between the central processing unit and the first or last remote device or between each remote device. On the contrary, the present optical Ethernet signal transmission system has a first direction 910 in the first optical core networks ET to ER, and a second direction 920 in the second optical core networks WT to WR. Since data is transmitted / received in different directions from each other, the first optical core networks ET to ER and the second optical core networks WT to WR are configured as rings, thereby transmitting data in one direction. However, data can be transmitted and received from any one point in the network system to another.
또한, 본 광 이더넷 신호 전송 시스템은 기존의 PDH(Plesiochronous Digital Hierarchy) 또는 SDH(Synchronous Digital Hierarchy) 계열의 계층화된 장비의 구성에서 벗어나 비동기적인 TCP/IP 방식의 이더넷 프레임을 사용하기 때문에, 망 구성 시 별도의 부가적인 시스템을 구축하지 않고도 경제적으로 구성할 수 있게 된다. 따라서, 기존 시스템에 대한 호환성이 우수하다.In addition, the optical Ethernet signal transmission system uses an asynchronous TCP / IP type Ethernet frame instead of the conventional PDH (Plesiochronous Digital Hierarchy) or SDH (Synchronous Digital Hierarchy) layered equipment configuration, It can be economically constructed without building an additional system. Therefore, the compatibility with the existing system is excellent.
또한, 상기 복수 개의 원격장치(121, 122, 123) 및 상기 중앙처리장치(110)의 전면에는 상기 복수 개의 원격장치(121, 122, 123) 및 상기 중앙처리장치(110)와 각각의 전단 및 후단에 연결된 원격장치 또는 중앙처리장치와의 광케이블 연결 정보를 자동으로 표시하는 표시부(110a, 121a, 122a, 123a)가 설치되어 있다. 상기 복수 개의 원격장치(121, 122, 123) 및 상기 중앙처리장치(110)의 전면에는 테스트(TEST) 버튼을 포함하는 시리얼 인터페이스(도 16 참조)가 설치되어 있다. 상기 시리얼 인터페이스는 상기 표시부(110a, 121a, 122a, 123a)에 연결되어, 상기 테스트 버튼이 눌러지면 해당 원격장치에 광케이블 라인별 TPG(Test Patten Generator)가 비동기적인 이더넷 프레임으로 옆 노드에 전달되어 그 노드가 이를 확인하고 광 데이터의 송수신 여부와 광 케이블 연결정보를 확인하여 상기 표시부(110a, 121a, 122a, 123a)를 통하여 표시할 수 있다. In addition, the front of the plurality of remote devices (121, 122, 123) and the central processing unit 110 and the front end of the plurality of remote devices (121, 122, 123) and the central processing unit (110) and Display units 110a, 121a, 122a, and 123a for automatically displaying optical cable connection information with a remote device or a central processing unit connected to the rear end are provided. The front surface of the plurality of remote devices 121, 122, 123 and the central processing unit 110 is provided with a serial interface including a test button (see FIG. 16). The serial interface is connected to the display unit 110a, 121a, 122a, 123a. When the test button is pressed, the test device for each optical cable line is transmitted to the next node as an asynchronous Ethernet frame. The node may confirm this, check whether the optical data is transmitted and received and the optical cable connection information, and display the information through the display units 110a, 121a, 122a, and 123a.
또한, 상기 복수 개의 원격장치(121, 122, 123) 및 상기 중앙처리장치(110)의 전면에는 노드 간 각각 연결되는 광 인터페이스(110b, 121b, 122b, 123b)와, 외부 장비와의 이더넷 통신을 수행하기 위한 이더넷 인터페이스(110c, 121c, 122c, 123c)와, 전원을 공급하는 전원부 인터페이스(미도시)로 구성된다.In addition, the plurality of remote devices (121, 122, 123) and the front of the central processing unit 110, the optical interface (110b, 121b, 122b, 123b) connected between the nodes, respectively, and Ethernet communication with external equipment Ethernet interface (110c, 121c, 122c, 123c) for performing, and a power supply interface for supplying power (not shown).
또한, 상기 각각의 원격장치(121, 122, 123)는 연결된 제1 광 코어망(ET~ER) 및 제2 광 코어망(WT~WR)의 물리적인 연결여부를 능동적으로 감지하여 상기 물리 연결 정보를 포함하는 NMS 프레임을 형성하고, 상기 NMS 프레임을 상기 광 이더넷 신호의 패킷 사이에 존재하는 갭(Inter Packet Gap; IPG)을 이용하여 제어 신호를 송수신하고 광케이블 라인 폴트 이벤트에 대하여 비동기적인 이더넷 프레임으로 상기 인접한 원격장치를 통하여 상기 중앙처리장치(110)에 전달하며, 상기 중앙처리장치(110)는 전달받은 NMS 프레임을 이용하여 복수 개의 원격장치의 절체를 수행할 수 있다.In addition, each of the remote devices 121, 122, and 123 actively detects whether the first optical core networks ET to ER and the second optical core networks WT to WR are physically connected to each other so that the physical connection is performed. Ethernet frame forming an NMS frame including information, transmitting and receiving a control signal using an Inter Packet Gap (IPG) between the packets of the optical Ethernet signal and asynchronous to the optical cable line fault event The central processing unit 110 is transmitted to the central processing unit 110 through the adjacent remote device, and the central processing unit 110 may perform the switching of the plurality of remote devices using the received NMS frame.
또한, 상기 각각의 원격장치(121, 122, 123)는 연결된 제1 광 코어망(ET~ER) 및 제2 광 코어망(WT~WR)의 물리적인 연결여부를 능동적으로 감지하여 상기 물리 연결 정보를 포함하는 NMS 프레임을 형성하고, 상기 중앙처리장치(110) 및 상기 각각의 원격장치(121, 122, 123)는 잘못된 광 케이블의 연결에 의한 이더넷 데이터 팻킷의 루프에 의하여 발생되는 네트워크의 충돌 및 붕괴를 사전에 막기 위하여 자동으로 이더넷 데이터 팻킷의 루프를 막을 수 있게 된다.In addition, each of the remote devices 121, 122, and 123 actively detects whether the first optical core networks ET to ER and the second optical core networks WT to WR are physically connected to each other so that the physical connection is performed. The central processing unit 110 and each of the remote devices 121, 122, and 123 form an NMS frame including information, and a network collision caused by a loop of an Ethernet data packet by an incorrect connection of an optical cable. And to automatically prevent looping of Ethernet data packets to prevent collapse.
표시부(A)를 보다 상세하게 설명하자면, 상기 복수 개의 엘이디는 인접하는 원격장치(121, 122, 123) 또는 중앙처리장치(110)로부터 해당 장치로의 광 데이터가 수신되는지 여부를 표시하고, 상기 제1 광 코어망(ET~ER) 또는 상기 제2 광 코어망(WT~WR)에 연결되어 있는 원격장치(121, 122, 123)의 개수를 2진법으로 나타낼 수 있으며, 또한 해당 원격장치(121, 122, 123)는 상기 제1 광 코어망(ET~ER) 또는 상기 제2 광 코어망(WT~WR)의 연결 순서에 따라 연결된 순서의 해당 번호를 2진법으로 나타낼 수도 있다. 이때, 광 케이블 연결정보는 광 케이블이 잘못 삽입되어 있거나, 단선되어 있을 경우에 엘이디를 통하여 블링킹(blinking), 온(on), 오프(off) 등의 방법으로 표시한다. 한편, 상기 표시부(A)에 대한 설명은 도 2a 내지 도 4에 관한 설명에서 보다 상세하게 다루기로 한다.To describe the display unit A in more detail, the plurality of LEDs indicate whether optical data from an adjacent remote device 121, 122, 123 or the central processing unit 110 is received from the corresponding device. The number of remote devices 121, 122, and 123 connected to the first optical core network ET to ER or the second optical core network WT to WR may be represented in binary form. 121, 122, and 123 may represent the corresponding numbers in the order of connection according to the connection order of the first optical core networks ET to ER or the second optical core networks WT to WR in binary. In this case, the optical cable connection information may be displayed by blinking, on, off, or the like through the LED when the optical cable is incorrectly inserted or disconnected. In the meantime, the description of the display unit A will be described in detail with reference to FIGS. 2A to 4.
도 2a는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 정상 연결되는 경우에 중앙처리장치의 테스트 버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면이고, 도 2b는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 정상 연결되는 경우에 제1 원격장치에서의 테스트 버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면이며, 도 2c는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 정상 연결되는 경우에 제2 원격장치에서의 테스트버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면이고, 도 2d는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 정상 연결되는 경우에 제3 원격장치에서의 테스트버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면이다. 한편, 도 2a 내지 도 3d에서는 복수 개의 원격장치(121, 122, 123)를 설명의 편의를 위하여 제1 원격장치(RT #1)(121), 제2 원격장치(RT #2)(122), 제3 원격장치(RT #3)(123)라 명명하여 설명하기로 한다.FIG. 2A is a diagram illustrating a state of a display unit when a test button of a central processing unit is pressed when an optical cable of an automatic cable connection checking system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected. FIG. 2B is a view illustrating a state of a display unit when a test button is pressed in a first remote device when an optical cable of an optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected; 2C is a view illustrating a state of the display unit when the test button of the second remote device is pressed when the optical cable of the optical cable connection automatic confirmation system of the optical Ethernet transmission system having the annular network structure of FIG. 1 is normally connected. FIG. 2D illustrates an optical network in an optical Ethernet transmission system having the annular network structure of FIG. 1. Block diagram showing a display state in the case of the optical cable of the connection automatically check system lost the test button in the third remote device when a normal connection is pressed. Meanwhile, in FIGS. 2A to 3D, the plurality of remote devices 121, 122, and 123 are described as a first remote device (RT # 1) 121 and a second remote device (RT # 2) 122 for convenience of description. It will be described as a third remote device (RT # 3) (123).
도 2a에 도시된 바와 같이, 본 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 정상 연결되는 경우에 중앙처리장치(110)의 테스트 버튼이 눌려졌을 경우의 표시부(110a)는, 중앙처리장치(110)에서 워킹라인방향(이하, 워킹방향이라 한다.)과 보호라인방향(이하, 보호방향이라 한다.)으로 각각 (1)과 (5)의 라인코드를 발생시키고, 워킹방향으로 최초 제1 원격장치(121)가 (1)라인코드를 정상적으로 수신하면, 제1 원격장치(121)는 EOK LED를 블링킹하게 된다. 또한, 제1 원격장치(121)는 제2 원격장치(122)로 (2)라인코드를 송신하여 제2 원격장치(122)가 이를 정상적으로 수신하면, 제2 원격장치(122)는 EOK LED를 블링킹하게 된다. 이와 동일한 방법으로 제2 원격장치(122) 및 제 3 원격장치(123)가 동작을 하여 최종적으로 제 3 원격장치(123)가 전달한 (4)라인코드가 정상적으로 중앙처리장치(110)로 수신되면, 중앙처리장치(110)는 EOK LED를 블링킹하게 된다. 또한, 중앙처리장치(110)에서 보호방향으로 송신되는 라인코드도 워킹방향에서 동작되는 것과 동일하게 동작하여 정상적인 광 케이블 연결이 이루어졌다면, 각각의 원격장치(121, 122, 123)들이 WOK LED를 블링킹하게 되며, 최종적으로 중앙처리장치(110)는 제1 원격장치(121)가 중앙처리장치(110)로 전달하는 (8)라인코드가 정상적으로 수신되면, WOK LED를 블링킹하게 된다.As shown in FIG. 2A, the display unit when the test button of the central processing unit 110 is pressed when the optical cable of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure is normally connected ( 110a generates line codes of (1) and (5), respectively, in the working line direction (hereinafter referred to as a walking direction) and the protection line direction (hereinafter referred to as a protection direction) in the central processing unit 110. When the first remote device 121 normally receives the line code (1) in the walking direction, the first remote device 121 blinks the EOK LED. In addition, when the first remote device 121 transmits the line code (2) to the second remote device 122 and the second remote device 122 normally receives it, the second remote device 122 transmits an EOK LED. Blinking. In the same way, when the second remote device 122 and the third remote device 123 operate and finally the line code (4) transmitted by the third remote device 123 is normally received by the central processing unit 110. , The central processing unit 110 is to blink the EOK LED. In addition, if the line cord transmitted from the central processing unit 110 in the protection direction operates in the same manner as the operation in the working direction, and a normal optical cable connection is made, the respective remote devices 121, 122, and 123 turn on the WOK LED. The final processing unit 110 finally blinks the WOK LED when the line code (8) transmitted from the first remote device 121 to the central processing unit 110 is normally received.
도 2b에 도시된 바와 같이, 본 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 정상 연결되는 경우에 제1 원격장치(121)에서의 테스트 버튼이 눌려졌을 경우, 제1 원격장치(121)는 보호방향으로 (1)라인코드를 워킹방향으로 (3)라인코드를 각각 전달하고 있다. 이때, 중앙처리장치(110)의 표시부(110a)는, 제1 원격장치(121)로부터 (1)라인코드를 통하여 광 데이터가 정상 수신되고 있으므로, (1)에 해당되는 WOK LED를 블링킹하게 된다. 또한, 제2 원격장치(122)의 표시부(122a)는, 제1 원격장치(121)로부터 (3)라인코드를 통하여 광 데이터가 정상 수신되고 있으므로, (3)에 해당되는 EOK LED를 블링킹하게 된다. 또한, 라인코드를 정상 수신하고 있는 중앙처리장치(110)와 제2 원격장치(122)는 그에 대한 응답으로 각각 (2)라인코드와 (4)라인코드를 제1 원격장치(121)로 전달한다. 제1 원격장치(121)의 표시부(121a)는 중앙처리장치(110)로부터 (2)라인코드를 통하여 광 데이터가 정상 수신되고 있으므로, (2)에 해당되는 EOK LED를 블링킹하게 된다. 또한, 제1 원격장치(121)의 표시부(121a)는, 제2 원격장치(122)로부터 (4)라인코드를 통하여 광 데이터가 정상 수신되고 있으므로, (4)에 해당되는 WOK LED를 블링킹하게 된다.As shown in FIG. 2B, when the test button of the first remote device 121 is pressed when the optical cable of the optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure is normally connected, The first remote device 121 transmits (1) line codes in the protective direction and (3) line codes in the working direction, respectively. In this case, since the optical data is normally received from the first remote device 121 through the line code (1), the display unit 110a of the central processing unit 110 blinks the WOK LED corresponding to (1). do. In addition, since the optical data is normally received from the first remote device 121 via the line code (3), the display unit 122a of the second remote device 122 blinks the EOK LED corresponding to (3). Done. In addition, the central processing unit 110 and the second remote device 122 that normally receives the line code transmits (2) line code and (4) line code to the first remote device 121 in response thereto. do. Since the display unit 121a of the first remote device 121 normally receives optical data from the central processing unit 110 through line code (2), the EOK LED corresponding to (2) is blinked. In addition, since the optical data is normally received from the second remote device 122 via the line code (4) from the second remote device 122, the display unit 121a of the first remote device 121 blinks the WOK LED corresponding to (4). Done.
도 2c에 도시된 바와 같이, 본 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 정상 연결되는 경우에 제2 원격장치(122)에서의 테스트버튼이 눌려졌을 경우, 제2 원격장치(122)는 보호방향으로 (1)라인코드를 워킹방향으로 (3)라인코드를 각각 전달하고 있다. 이때, 제1 원격장치(121)의 표시부(121a)는, 제2 원격장치(122)로부터 (1)라인코드를 통하여 광 데이터가 정상 수신되고 있으므로, (1)에 해당되는 WOK LED를 블링킹하게 된다. 또한, 제3 원격장치(123)의 표시부(123a)는, 제2 원격장치(122)로부터 (3)라인코드를 통하여 광 데이터가 정상 수신되고 있으므로, (3)에 해당되는 EOK LED를 블링킹하게 된다. 또한, 라인코드를 정상 수신한 제1 원격장치(121)와 제3 원격장치(123)는 그에 대한 응답으로 각각 (2)라인코드와 (4)라인코드를 제2 원격장치(122)로 전달한다. 제2 원격장치(122)의 표시부(122a)는 제 1 원격장치(121)로부터 (2)라인코드를 통하여 광 데이터가 정상 수신되고 있으므로, (2)에 해당되는 EOK LED를 블링킹하게 된다. 또한, 제2 원격장치(122)의 표시부(122a)는, 제3 원격장치(123)로부터 (4)라인코드를 통하여 광 데이터가 정상 수신되고 있으므로, (4)에 해당되는 WOK LED를 블링킹하게 된다As shown in FIG. 2C, when the test button of the second remote device 122 is pressed when the optical cable of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure is normally connected, The second remote device 122 transmits (1) line cords in the protective direction and (3) line cords in the working direction, respectively. In this case, since the optical data is normally received from the second remote device 122 through the line code (1) from the second remote device 122, the display unit 121a blinks the WOK LED corresponding to (1). Done. In addition, since the optical data is normally received from the second remote device 122 via the line code (3), the display unit 123a of the third remote device 123 blinks the EOK LED corresponding to (3). Done. In addition, the first remote device 121 and the third remote device 123 that normally receive the line code transmit (2) line code and (4) line code to the second remote device 122 in response thereto. do. Since the display unit 122a of the second remote device 122 normally receives optical data from the first remote device 121 through the line code (2), the EOK LED corresponding to (2) is blinked. In addition, since the optical data is normally received from the third remote device 123 via the line code (4) from the third remote device 123, the display unit 122a blinks the WOK LED corresponding to (4). Will be
도 2d에 도시된 바와 같이, 본 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 정상 연결되는 경우에 제3 원격장치(123)에서의 테스트버튼이 눌려졌을 경우, 제3 원격장치(123)는 보호방향으로 (1)라인코드를 워킹방향으로 (3)라인코드를 각각 전달하고 있다. 이때, 제2 원격장치(122)의 표시부(122a)는, 제3 원격장치(123)로부터 (1)라인코드를 통하여 광 데이터가 정상 수신되고 있으므로, (1)에 해당되는 WOK LED를 블링킹하게 된다. 또한, 중앙처리장치(110)의 표시부(110a)는, 제3 원격장치(123)로부터 (3)라인코드를 통하여 광 데이터가 정상 수신되고 있으므로, (3)에 해당되는 EOK LED를 블링킹하게 된다. 또한, 라인코드를 정상 수신한 제2 원격장치(122)와 중앙처리장치(110)는 그에 대한 응답으로 각각 (2)라인코드와 (4)라인코드를 제3 원격장치(123)로 전달한다. 제3 원격장치(123)의 표시부(123a)는 제 2 원격장치(122)로부터 (2)라인코드를 통하여 광 데이터가 정상 수신되고 있으므로, (2)에 해당되는 EOK LED를 블링킹하게 된다. 또한, 제3 원격장치(123)의 표시부(123a)는, 중앙처리장치(110)로부터 (4)라인코드를 통하여 광 데이터가 정상 수신되고 있으므로, (4)에 해당되는 WOK LED가 블링킹하게 된다As shown in FIG. 2D, when the test button of the third remote device 123 is pressed when the optical cable of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure is normally connected, The third remote device 123 transmits (1) line codes in the protective direction and (3) line codes in the working direction, respectively. In this case, since the optical data is normally received from the third remote device 123 through the line code (1), the display unit 122a of the second remote device 122 blinks the WOK LED corresponding to (1). Done. In addition, since the optical data is normally received from the third remote device 123 via the line code (3), the display unit 110a of the central processing unit 110 blinks the EOK LED corresponding to (3). do. In addition, the second remote device 122 and the central processing unit 110 having normally received the line code transmits (2) line code and (4) line code to the third remote device 123 in response thereto. . The display unit 123a of the third remote device 123 normally receives optical data from the second remote device 122 through the line code (2), thereby blinking the EOK LED corresponding to (2). Further, since the optical data is normally received from the central processing unit 110 via the line code (4) from the central processing unit 110, the display unit 123a of the third remote device 123 causes the WOK LED corresponding to (4) to blink. do
도 3a는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 잘못 연결되었을 경우에 중앙처리장치에서의 테스트 버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면이고, 도 3b는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 잘못 연결되었을 경우에 제1 원격장치에서의 테스트 버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면이며, 도 3c는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 잘못 연결되었을 경우에 제2 원격장치에서의 테스트버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면이고, 도 3d는 도 1의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 잘못 연결되었을 경우에 제3 원격장치에서의 테스트버튼이 눌려졌을 경우의 표시부의 상태를 나타내는 도면이다.FIG. 3A is a view illustrating a state of a display unit when a test button is pressed in a central processing unit when an optical cable of an optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is incorrectly connected. 3B is a view illustrating a state of a display unit when a test button is pressed on a first remote device when an optical cable of an optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is incorrectly connected. 3C is a view showing a state in which the test button is pressed in the second remote device when the optical cable of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure of FIG. 1 is incorrectly connected. 3d is an optical Ethernet transmission system having the annular network structure of FIG. This is a view showing the state of the display unit when the test button of the third remote device is pressed when the optical cable of the system is automatically connected.
도 3a에 도시된 바와 같이, 본 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 잘못 연결되었을 경우에 중앙처리장치(110)에서의 테스트 버튼이 눌려졌을 경우, 중앙처리장치(110)에서 워킹방향과 보호방향으로 각각 (1)과 (3)의 라인코드를 발생시키고 있다. 이때, 제1 원격장치(121)의 표시부(121a)는 워킹방향으로 최초 제1 원격장치(121)가 (1)라인코드를 정상적으로 수신하고 있기 때문에, EOK LED를 블링킹하게 된다. 이때, 제1 원격장치(121)는 제2 원격장치(122)로 (2)라인코드를 송신한다. 여기서, 제1 원격장치(121)와 제2 원격장치(122) 사이에 광케이블 라인이 폴트(fault)상태(예를 들면, 광 케이블 연결이 끊어진 상태)이기 때문에, 제2 원격장치(122)는 이를 정상적으로 수신하지 못하게 되고, 제2 원격장치(122)의 표시부(122a)는 EOK LED를 OFF하게 된다. 또한, 제2 원격장치(122)와 제3 원격장치(123) 사이에 광케이블이 연결되지 않고 있기 때문에, 제3 원격장치(123)의 표시부(123a)도 EOK LED를 OFF하게 된다. 따라서, 제3 원격장치(123)는 제2 원격장치(122)로부터 라인코드를 수신하지 못하게 되어 중앙처리장치(110)로 라인코드를 전달하지 못하기 때문에, 중앙처리장치(110)의 표시부(110a)는 EOK LED를 OFF하게 된다. 또한, 중앙처리장치(110)는 보호방향으로 (3)라인코드로 광 데이터를 제3 원격장치(123)에게 전달하지만, 제3 원격장치(123)는 광케이블이 비정상적으로 연결되어 이를 수신하지 못하기 때문에, 제3 원격장치(123)의 표시부(123a)는 WOK LED를 OFF하게 된다. 이때, 제3 원격장치(123)의 (5)라인코드는 자기 자신으로 루프되어 제2 원격장치(122)에 광 데이터를 전달하지 못하게 된다. 따라서, 제2 원격장치(121)와 제1 원격장치(121)는 보호방향으로 광 데이터를 수신하지 못하여 동작하지 않고, 중앙장치(110)의 표시부(110a)는 WOK LED를 OFF하게 된다.As shown in FIG. 3A, when the test button of the central processing unit 110 is pressed when the optical cable of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure is connected incorrectly, The processing apparatus 110 generates line codes of (1) and (3) in the working direction and the protection direction, respectively. At this time, the display unit 121a of the first remote device 121 blinks the EOK LED because the first remote device 121 normally receives the line code (1) in the walking direction. At this time, the first remote device 121 transmits the line code (2) to the second remote device 122. Here, since the optical cable line is in a fault state (for example, the optical cable is disconnected) between the first remote device 121 and the second remote device 122, the second remote device 122 is This is not normally received, the display unit 122a of the second remote device 122 is turned off the EOK LED. In addition, since the optical cable is not connected between the second remote device 122 and the third remote device 123, the display unit 123a of the third remote device 123 also turns off the EOK LED. Therefore, since the third remote device 123 does not receive the line code from the second remote device 122 and does not transmit the line code to the central processing unit 110, the display unit of the central processing unit 110 ( 110a) turns off the EOK LED. In addition, the central processing unit 110 transmits the optical data to the third remote device 123 by the line code (3) in the protection direction, but the third remote device 123 is not connected because the optical cable is abnormally connected. Therefore, the display unit 123a of the third remote device 123 turns off the WOK LED. At this time, the line code (5) of the third remote device 123 is looped to itself so that optical data cannot be transmitted to the second remote device 122. Accordingly, the second remote device 121 and the first remote device 121 do not operate because they do not receive optical data in the protection direction, and the display unit 110a of the central device 110 turns off the WOK LED.
도 3b에 도시된 바와 같이, 도 3a의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 잘못 연결되었을 경우에 제1 원격장치(121)에서의 테스트 버튼이 눌려졌을 경우, 제1 원격장치(121)는 보호방향으로 (1)라인코드를 워킹라인으로 (3)라인코드를 각각 전달하고 있다. 이때, 중앙처리장치(110)의 표시부(110a)는, 제1 원격장치(121)로부터 (1)라인코드를 통하여 광 데이터가 정상 수신되고 있으므로, (1)에 해당되는 WOK LED를 블링킹하게 된다. 또한, 제2 원격장치(122)의 표시부(122a)는, 제1 원격장치(121)로부터 (3)라인코드로 광 데이터를 정상 수신하지 못하기 때문에, (3)에 해당되는 EOK LED를 OFF하게 된다. 또한, 라인코드로 광 데이터를 정상 수신한다면, 중앙처리장치(110)와 제2 원격장치(122)는 각각 라인코드로 그에 대하여 응답하게 된다. 즉, 중앙처리장치(110)는 (2)라인코드를 통해 광 데이터를 제1 원격장치(121)로 전달하게 되고, 이에 따라 제1 원격장치(121)의 표시부(121a)는 EOK LED를 블링킹하게 된다. 그러나, 제2 원격장치는 (3)라인코드로 광 데이터를 수신하지 못하여, 제1 원격장치(121)로 라인코드를 통하여 광 데이터를 송신하지 못하며, 이에 따라 제1 원격장치(121)의 표시부(121a)는 WOK LED를 OFF하게 된다.As shown in FIG. 3B, the test button of the first remote device 121 may be pressed when the optical cable of the optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure of FIG. 3A is incorrectly connected. In this case, the first remote device 121 transmits (1) the line code to the working line and (3) the line code in the protection direction. In this case, since the optical data is normally received from the first remote device 121 through the line code (1), the display unit 110a of the central processing unit 110 blinks the WOK LED corresponding to (1). do. In addition, since the display unit 122a of the second remote device 122 does not normally receive optical data from the first remote device 121 with the line code (3), the EOK LED corresponding to (3) is turned off. Done. Also, if the optical data is normally received by the line code, the central processing unit 110 and the second remote device 122 will respond to it with the line code, respectively. That is, the central processing unit 110 transmits the optical data to the first remote device 121 through the line code (2), so that the display unit 121a of the first remote device 121 blocks the EOK LED. Linking. However, the second remote device cannot (3) receive the optical data with the line code, and thus cannot transmit the optical data to the first remote device 121 through the line code, and thus the display unit of the first remote device 121 121a turns off the WOK LED.
도 3c에 도시된 바와 같이, 도 3a의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 잘못 연결되었을 경우에 제2 원격장치(122)에서의 테스트버튼이 눌려졌을 경우, 제2 원격장치(122)는 워킹방향으로 제1 원격장치(121)에게 (1)라인코드로 광 데이터를 송신하고, 또한 보호방향으로 제2 원격장치(123)에 대하여 라인코드로 광 데이터를 송신한다. 제2 원격장치(122)로부터 (1)라인코드로 광 데이터를 수신한 제1 원격장치(121)의 표시부(121a)는 WOK LED를 블링킹하게 된다. 또한, 제1 원격장치(121)는 그에 대한 응답으로 (2)라인코드로 광 데이터를 송신하게 되지만, 광 케이블의 단선으로 인하여 제2 원격장치(122)가 광 데이터를 수신하지 못하기 때문에, 제2 원격장치(122)의 표시부(122a)는 EOK LED를 OFF하게 된다. 또한, 제2 원격장치(122)와 제3 원격장치(123)간의 광 케이블이 단선되어 광 데이터를 송수신하지 못하기 때문에, 제3 원격장치(123)의 표시부(123a)는 EOK LED를 OFF하게 되고, 제2 원격장치(122)의 표시부(122a)는 WOK LED를 OFF하게 된다.As shown in FIG. 3C, the test button of the second remote device 122 may be pressed when the optical cable of the optical cable connection automatic check system of the optical Ethernet transmission system having the annular network structure of FIG. 3A is incorrectly connected. In this case, the second remote device 122 transmits the optical data with the line code (1) to the first remote device 121 in the working direction, and also with the line code with respect to the second remote device 123 in the protection direction. Send the data. The display unit 121a of the first remote device 121 receiving the optical data from the second remote device 122 by the line code (1) is to blink the WOK LED. In addition, although the first remote device 121 transmits the optical data in the line code (2) in response thereto, since the second remote device 122 does not receive the optical data due to the disconnection of the optical cable, The display unit 122a of the second remote device 122 turns off the EOK LED. In addition, since the optical cable between the second remote device 122 and the third remote device 123 is disconnected to transmit and receive optical data, the display unit 123a of the third remote device 123 turns off the EOK LED. The display unit 122a of the second remote device 122 turns off the WOK LED.
도 3d에 도시된 바와 같이, 도 3a의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 광 케이블이 잘못 연결되었을 경우에 제3 원격장치(123)에서의 테스트버튼이 눌려졌을 경우, 제3 원격장치(123) 자체간에 형성된 (1)라인은 비록 광 데이터 수신방향은 같지만, 들어와야 할 라인코드가 잘못되어 있기 때문에, 이에 해당되는 제3 원격장치(123)의 표시부(123a)는 WOK LED를 블링킹하지 않고 오프 되도록 한다. 또한, 제3 원격장치(123)의 (2)라인코드를 통해 중앙처리장치(110)의 표시부(110a)는 EOK LED를 블링킹하게 되지만, 그에 대한 응답으로 중앙처리장치(110)에서 송신한 (3)라인코드는 그 광 데이터가 틀리기 때문에, 제3 원격장치(123)의 표시부(123a)는 WOK LED를 오프하게 된다.As shown in FIG. 3D, the test button of the third remote device 123 may be pressed when the optical cable of the optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure of FIG. 3A is incorrectly connected. In this case, the line (1) formed between the third remote device 123 itself has the same optical data reception direction, but since the line code to be entered is wrong, the display unit 123a of the third remote device 123 corresponds to Turn off the WOK LED without blinking. In addition, the display unit 110a of the central processing unit 110 through the line code (2) of the third remote device 123 is to blink the EOK LED, but in response thereto (3) Since the optical data of the line code is wrong, the display unit 123a of the third remote device 123 turns off the WOK LED.
도 4는 도 3a 내지 3d의 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템과는 다른 위치에서 광 케이블 연결이 잘못되었을 경우의 표시부의 상태를 나타내는 도면이다. FIG. 4 is a view illustrating a state of a display unit when an optical cable connection is wrong at a position different from the automatic optical cable connection checking system in the optical Ethernet transmission system having the annular network structure of FIGS. 3A to 3D.
도 4에 도시된 바와 같이, 본 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 중앙처리장치(110)와 제1 원격장치(121)간, 제3 원격장치(123)와 중앙처리장치(110)간 그리고 제1 원격장치(121)과 제2 원격장치(122)간 마지막으로 제2 원격장치(122)와 제3 원격장치(123)간의 라인코드가 잘못 연결된 경우, 제2 원격장치(122)에서 테스트 버튼을 누른 경우에 제2 원격장치(121)의 표시부(122a)는, (2)라인코드를 다른 방향의 ER로 수신하여 이에 해당되는 WOK LED는 블링킹하지 않고 오프 상태에 놓이게 되고, 또한 (4)라인코드를 다른 방향의 WR로 수신하여 이에 해당되는 EOK LED가 블링킹하지 않고 오프 상태에 놓이게 된다. 또한, 보호방향으로 인접하는 제1 원격장치(121)의 표시부(121a)는, 제2 원격장치(122)의 (1)라인코드를 다른 방향의 ER로 수신하여 이에 해당되는 WOK LED는 블링킹하지 않고 오프 상태에 놓이게 된다. 또한, 워킹방향으로 인접하는 제3 원격장치(123)의 표시부(123a)는, 제2 원격장치(122)의 (3)라인코드를 다른 방향의 WR로 수신하여 이에 해당되는 EOK가 블링킹하지 않고 오프 상태에 놓이게 된다.As shown in Figure 4, between the central processing unit 110 and the first remote device 121 of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure, and the third remote device 123 and When the line code between the central processing unit 110 and the first remote device 121 and the second remote device 122 and the second remote device 122 and the third remote device 123 is incorrectly connected, 2 When the test button is pressed on the remote device 122, the display unit 122a of the second remote device 121 receives (2) the line code through the ER in the other direction and does not blink the corresponding WOK LED. In the off state, (4) the line code is received by the WR in the other direction and the corresponding EOK LED is in the off state without blinking. In addition, the display unit 121a of the first remote device 121 adjacent in the protective direction receives the line code (1) of the second remote device 122 in the ER in the other direction, and the corresponding WOK LED is blinking. It is turned off. In addition, the display unit 123a of the third remote device 123 adjacent in the walking direction receives the line code (3) of the second remote device 122 in the WR in the other direction and does not block the corresponding EOK. Will be turned off.
이하 도 5 내지 도 9에서는, 상기 복수 개의 원격장치가 6개 설치되어 있는 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템을 일 예로 들어, 광 케이블 연결 구간이 끊어진 경우에 데이터의 흐름에 관하여 설명하기로 한다. 도 5 내지 도 9에서는 복수 개의 원격장치와 중앙처리장치의 구조를 설명의 편의를 위하여 원형 형상으로 간략하게 도시하였다.5 to 9 below, an example of an automatic optical cable connection checking system in an optical Ethernet transmission system having an annular network structure in which six plurality of remote devices are installed is used as an example. The flow will be described. 5 to 9 schematically illustrate the structures of the plurality of remote devices and the central processing device in a circular shape for convenience of description.
도 5는 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템에서 정상 상태에서의 광 이더넷 신호 전송 흐름을 나타내는 도면이다. FIG. 5 is a diagram illustrating an optical Ethernet signal transmission flow in a normal state in an automatic optical cable connection confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention.
상기 제1 광 코어망 및 제2 광 코어망은 모두 정상적인 통신 상태를 유지하고 있으며, 이때에는 상기 제1 광 코어망을 통하여 광 이더넷 신호를 전달한다. 도 5에 도시되어 있는 바와 같이 이 경우 데이터의 흐름(910)은 상기 제1 방향과 일치한다.Both the first optical core network and the second optical core network maintain a normal communication state, and at this time, an optical Ethernet signal is transmitted through the first optical core network. As shown in FIG. 5, the flow of data 910 in this case coincides with the first direction.
도 6은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 제2 광 코어망에 이상이 생기는 경우 데이터의 흐름을 나타내는 개략적인 도면이다. FIG. 6 is a schematic diagram illustrating a data flow when an error occurs in a second optical core network of an automatic cable connection checking system in an optical Ethernet transmission system having an annular network structure according to the present invention.
도 6에 도시된 바와 같이, 상기 제3 원격장치(123) 및 제 4 원격장치(124) 사이의 제2 광 코어망에 이상이 발생한 경우에는, 일반적인 데이터 흐름 방향인 상기 제1 방향의 데이터 흐름(910)에는 문제가 없으므로, 일반적인 상태의 광 이더넷 신호의 흐름과 같은 제1 방향을 상기 제1 광 코어망을 이용하여 데이터를 전송한다.As shown in FIG. 6, when an abnormality occurs in the second optical core network between the third remote device 123 and the fourth remote device 124, the data flow in the first direction which is a general data flow direction. Since there is no problem at 910, data is transmitted using the first optical core network in a first direction such as the flow of an optical Ethernet signal in a general state.
도 7은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 제1 광 코어망에 이상이 생기는 경우 데이터의 흐름(920)을 나타내는 개략적인 도면이다. FIG. 7 is a schematic diagram illustrating a data flow 920 when an error occurs in a first optical core network of a system for automatically checking a connection of an optical cable in an optical Ethernet transmission system having an annular network structure according to the present invention.
도 7에 도시된 바와 같이, 상기 제2 원격장치(122)및 제3 원격장치(123)에 존재하는 상기 제1 광 코어망의 일부에 이상이 발생한 경우에는, 상기 제1 광 코어망을 통하여 전체 루프를 형성할 수 없으므로, 상기 제2 광 코어망을 통하여 제2 방향으로 데이터를 전송한다(920). 이 경우 상기 중앙 장치(110)는 하드웨어적으로 상기 제1 방향의 제1 광 코어망의 이상을 감지하고 바로 상기 제2 광 코어망을 통하여 데이터를 전달하는 절체를 수행하게 되고, 기타 소프트웨어적인 제어가 없기 때문에 아주 짧은 시간에 절체가 가능하게 된다. 본 광 이더넷 신호 전송 시스템에서는 FPGA(Field-Programmable Gate Array)를 이용하여 하드웨어적으로 절체를 제어한다. 기존의 소프트웨어에 의한 이더넷 절체의 경우 절체를 위한 제어 신호들을 실 트래픽 상에 실어서 전송하고, 이를 제어하기 위하여 또 제어를 담당하는 컴퓨터에서 별도의 리소스를 이용하여 절체를 수행한다. 따라서, 기존의 소프트웨어적인 방법으로 절체를 수행하는 경우 절체를 통한 복구에 수백 밀리세컨(ms)의 시간이 걸리며, 회사별 특정 소프트웨어 기법을 사용하여 상단 망과의 연결 시 별도의 라우터 등 첨가된 많은 부가장비를 필요로 하는 단점이 있다. 이에 반하여 본 광 이더넷 신호 전송 시스템에서는 하드웨어적으로 이더넷 절체를 수행하기 때문에, 별도의 시스템 상의 리소스를 사용하지 않고 일반적인 이더넷 장비와 호환을 맞추어 기존장비에 그대로 사용할 수 있다. 또한 하드웨어적으로 절체를 수행하기 때문에 망의 이상 징후를 판별하여 망 절체 후 복구까지 노드간 절체속도는 128 마이크로 세컨(us) 이내로 신뢰성 있는 데이터를 전달할 수 있다. As shown in FIG. 7, when an error occurs in a part of the first optical core network existing in the second remote apparatus 122 and the third remote apparatus 123, the first optical core network is connected to the first optical core network. Since the entire loop cannot be formed, data is transmitted in the second direction through the second optical core network (920). In this case, the central unit 110 detects an abnormality of the first optical core network in the first direction in hardware and performs a transfer to transfer data through the second optical core network immediately, and other software control. It is possible to switch in a very short time because there is no. In the optical Ethernet signal transmission system, switching is controlled by hardware using a field-programmable gate array (FPGA). In case of Ethernet switching by existing software, control signals for switching are carried on the real traffic and transmitted, and switching is performed by using a separate resource in a computer in charge of the control to control the switching. Therefore, when the transfer is performed by the existing software method, recovery through the transfer takes hundreds of milliseconds (ms), and when a company-specific software technique is used to connect to the upper network, a lot of added routers, etc. are added. There is a disadvantage that requires additional equipment. On the contrary, since the optical Ethernet signal transmission system performs Ethernet switching in hardware, it is compatible with general Ethernet equipment without using resources on a separate system and can be used as existing equipment. In addition, since the switchover is performed by hardware, it is possible to transfer reliable data within 128 microseconds (us) between nodes to determine the abnormality of the network and recover after the network transfer.
또한, 상기 절체에 이용되는 제어신호들을 패킷 간 갭(Inter Packet Gap; IPG)에 실어 보냄으로써, 패킷의 일정부분을 상시 사용하던 종래의 방식과 비교하여 패킷의 약 99% 이상을 실제 데이터를 전송하는 데에 사용할 수 있다.In addition, by transmitting the control signals used in the transfer in the inter packet gap (IPG), the actual data is transmitted to more than about 99% of the packet compared to the conventional method that always used a certain portion of the packet Can be used to
앞서 언급하였던 것처럼, 기존 시스템의 경우 패킷 상에 제어 신호를 실어 보내기 때문에, 이러한 제어 신호들이 누적되거나, 복잡해 지는 경우에는 실제 데이터들을 수송해야 하는 패킷 상에 데이터가 오히려 많은 제어 신호들이 자리 잡게 된다. 따라서, 실 트래픽 데이터 양이 현저하게 줄어들게 된다. 하지만, 본 광 이더넷 신호 전송 시스템에서는 최소한의 이더넷 패킷에 제어 신호를 싣고 그 이벤트에 대하여 비동기적으로 최소한의 팻킷을 전송함으로써 실 트래픽 손실을 현저하게 줄일 수 있다. 예를 들어, 100Mbyte 용량의 이중화 광통신 링에 대하여 실제 이더넷 전송 트래픽 용량은 99%이상 즉, 99Mbyte 이상을 구현할 수 있게 된다. As mentioned above, in the conventional system, since control signals are carried on a packet, when the control signals accumulate or become complicated, many control signals are placed on a packet that must carry actual data. Therefore, the actual traffic data amount is significantly reduced. However, in the present optical Ethernet signal transmission system, the actual traffic loss can be remarkably reduced by loading a control signal in a minimum Ethernet packet and transmitting a minimum packet asynchronously to the event. For example, for a 100 Mbyte redundant optical communication ring, the actual Ethernet transport traffic capacity is 99% or more, that is, 99 Mbyte or more.
도 8은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 제1 및 제2 광 코어망에 동시에 이상이 생기는 경우 데이터의 흐름을 나타내는 개략적인 도면이다. 8 is a schematic diagram illustrating the flow of data when an abnormality occurs simultaneously in the first and second optical core networks of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure according to the present invention.
도 8에 도시된 바와 같이, 상기 제3 원격장치(123) 및 상기 제4 원격장치(124) 사이에 상기 제1 광 코어망 및 제2 광 코어망이 동시에 이상이 생기는 경우에는, 상기 중앙 장치(110)으로부터 상기 제1 방향으로 제1 광 코어망의 일부를 통하여 상기 제1 원격장치(121), 제2 원격장치(122), 제3 원격장치(123)의 순으로 연결되고, 이어서 제2 방향으로 제2 광 코어망의 일부를 통하여 제3 원격장치(123), 제2 원격장치(122), 제1 원격장치(121) 및 중앙 장치(110)의 순으로 연결되어 전체적인 루프인 제3 광 코어망(930)을 구성하게 된다. As illustrated in FIG. 8, when the first optical core network and the second optical core network have abnormalities simultaneously between the third remote device 123 and the fourth remote device 124, the central device may be used. The first remote device 121, the second remote device 122, and the third remote device 123 in the first direction from the 110 to the first optical core network; The third remote device 123, the second remote device 122, the first remote device 121 and the central device 110 in the second direction through a part of the second optical core network in the second loop as a whole loop The three optical core network 930 is configured.
마찬가지로, 상기 중앙 장치(110)에서 출발하여 제2 방향으로 상기 제6 원격장치(126), 제5 원격장치(125), 제4 원격장치(124)를 제2 광 코어망의 일부를 이용하여 연결하고, 이어서, 제4 원격장치(124), 제5 원격장치(125), 제6 원격장치(126) 및 중앙 장치(110)의 순으로 상기 제1 광 코어망의 일부를 이용하여 전체적인 루프인 제4 광 코어망(940)을 구성하게 된다. Similarly, the sixth remote device 126, the fifth remote device 125, and the fourth remote device 124 may be started using the part of the second optical core network in the second direction starting from the central device 110. And then the entire loop using a portion of the first optical core network in the order of the fourth remote device 124, the fifth remote device 125, the sixth remote device 126 and the central device 110 in that order. The fourth optical core network 940 is formed.
따라서, 상기 제3 원격장치(123)와 제 4 원격장치(124) 간에 연결에 이상이 발생한다 하더라도, 상기 원격장치들(121, 122, 123, 124, 125, 126) 모두는 이러한 절체를 통하여 네트워크 연결 장치를 유지할 수 있다. Therefore, even if an abnormality occurs in the connection between the third remote device 123 and the fourth remote device 124, all of the remote devices 121, 122, 123, 124, 125, 126 through this transfer. Maintain network connected devices.
도 9는 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 제1 및 제2 광 코어망에 동시에 이상이 생기는 경우 데이터의 흐름을 나타내는 개략적인 도면이다. 9 is a schematic diagram illustrating the flow of data when an abnormality occurs simultaneously in the first and second optical core networks of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure according to the present invention.
도 9에 도시된 바와 같이, 도 8에 도시된 망의 구조와는 달리 제1 광 코어망과 제2 광 코어망의 이상이 생긴 부위가 떨어져서 발생한 경우에는, 연결이 가능한 부분까지 상기 도 8의 경우와 마찬가지로, 제3 광 코어망(930) 및 제4 광 코어망(940)을 구성하고, 따로 떨어진 원격장치간에 루프를 형성하여 제5 광 코어망(950)을 구성한다. 이 때에는, 상기 제3 광 코어망은 상기 중앙 장치(110)에서 제1 방향으로 제1 원격장치(121), 제2 원격장치(122)를 상기 제1 광 코어의 일부를 이용하여 연결하고, 이어서, 제2 방향으로 상기 제2 원격장치(122), 제1 원격장치(121), 중앙 장치(110)으로 제2 광 코어망의 일부를 이용하여 구성된다. 제4 광 코어망의 경우도 도 8의 경우와 유사하게 중앙 장치(110), 제6 원격장치(126), 제5 원격장치(125), 다시 제6 원격장치(126), 중앙 장치(110)의 순으로 구성되게 되며, 제3 원격장치(123)과 제4 원격장치(124)간에 연결이 양호하다면 제3 원격장치(123)와 제4 원격장치(124)간에 이더넷 데이터 통신이 가능하다.As illustrated in FIG. 9, unlike the structure of the network illustrated in FIG. 8, when a portion in which an abnormality occurs between the first optical core network and the second optical core network is generated apart from each other, the connection portion may be connected to the portion of FIG. 8. As in the case, the third optical core network 930 and the fourth optical core network 940 are configured, and a fifth optical core network 950 is formed by forming a loop between remote devices separated from each other. In this case, the third optical core network connects the first remote device 121 and the second remote device 122 in a first direction from the central device 110 using a part of the first optical core, Subsequently, the second remote device 122, the first remote device 121, and the central device 110 are configured using a part of the second optical core network in the second direction. Similarly to the case of FIG. 8, the fourth optical core network also includes the central unit 110, the sixth remote unit 126, the fifth remote unit 125, and again the sixth remote unit 126 and the central unit 110. If the connection between the third remote device 123 and the fourth remote device 124 is good, Ethernet data communication between the third remote device 123 and the fourth remote device 124 is possible. .
한편, 광 케이블이 끊어지거나 폴트(Fault)가 발생하면, 기본적으로 ELF / WLF 또는 ERF / WRF LED를 통해 표현된다. 그러나, 광 데이터의 송수신 연결은 잘 되었으나 방향성을 고려하지 않은 연결은 광 연결이 끊어진 것과 동일하기 때문에, ELF 또는 WLF를 블링킹 하도록 하여 이를 설치자가 인식 할 수 있도록 하였다.On the other hand, if an optical cable breaks or a fault occurs, it is basically represented by ELF / WLF or ERF / WRF LED. However, since the transmission and reception of the optical data is good, but the connection without considering the direction is the same as that of the optical connection is broken, the ELF or WLF is blinked so that the installer can recognize it.
도 10a 및 10b는 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 중앙처리장치(110)와 제1 원격장치(121)간, 제1 원격장치(121) 및 제2 원격장치(122)간의 광 케이블의 연결이 잘못되었을 경우에 표시부(121a, 122a)의 상태를 나타내는 도면이다.10a and 10b are shown between the central processing unit 110 and the first remote device 121 of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having an annular network structure according to the present invention, the first remote device 121 and FIG. 11 is a view showing the states of the display units 121a and 122a when the optical cable is incorrectly connected between the second remote devices 122. FIG.
도 10a에 도시된 바와 같이, 중앙처리장치(110)와 제1 원격장치(121)간, 제1 원격장치(121) 및 제2 원격장치(122)간의 광 케이블의 연결이 잘못되었을 경우에, 중앙처리장치(110)와 제1 내지 제3 원격장치(121, 122, 123)의 각 노드들은 우선 워킹방향 또는 보호방향으로 라인코드를 서로 주고 받게 된다. 이때, 제1 원격장치(121)는 중앙처리장치(110) 쪽으로 ET라인코드가 발송되고, 제2 원격장치(122) 쪽으로 WT라인코드가 발송되게 됩니다. 중앙처리장치(110)는 제1 원격장치(121)에서 들어오는 라인코드는 WT이어야 하지만, 실제로ET가 들어와서 잘못된 것이고, 해당 WLF를 블링킹하게 된다. 또한, 중앙처리장치(110)는 그에 대한 응답으로 제1 원격장치(121)로 ET라인코드를 발송하게 된다. 또한, 제1 원격장치(121)는 ER로 정상 수신되어서 ELF를 OFF되게 한다. 이때, 제1 원격장치(121)에서 제2 원격장치(122)로 발송되는 발송되는 WT라인코드는 제2 원격장치(122)에 의하여 ER로 수신되므로, 제2 원격장치(122)는 ELF를 블링킹하게 되고, 그에 대한 응답으로 제1 원격장치(121)에 WT라인코드를 발송한다. 또한, 제1 원격장치(121)는 WR로 수신하므로 WLF를 OFF되게 한다.As shown in FIG. 10A, when the optical cable is incorrectly connected between the central processing unit 110 and the first remote device 121 and between the first remote device 121 and the second remote device 122, Each node of the central processing unit 110 and the first to third remote devices 121, 122, and 123 exchanges line codes with each other in a working direction or a protection direction. At this time, the first remote device 121 is sent ET line code toward the central processing unit 110, the WT line code is sent to the second remote device 122. The central processing unit 110 should be a WT line code coming from the first remote device 121, but the ET is actually wrong, and the corresponding WLF is blinking. In addition, the central processing unit 110 sends the ET line code to the first remote device 121 in response thereto. In addition, the first remote device 121 is normally received by the ER to turn off the ELF. At this time, since the WT line code sent from the first remote device 121 to the second remote device 122 is received as the ER by the second remote device 122, the second remote device 122 receives the ELF. Blinking, and sends a WT line code to the first remote device 121 in response. In addition, since the first remote device 121 receives the WR, the WLF is turned off.
한편, 도 10a의 정상적인 광케이블 연결구성은 FX2(ET 및 WR)는 FX1(ER 및 WT)와 연결되어야 한다.On the other hand, in the normal optical cable connection configuration of Figure 10a FX2 (ET and WR) should be connected to FX1 (ER and WT).
도 10b에 도시된 바와 같이, 중앙처리장치(110)와 제1 원격장치(121)간, 제1 원격장치(121) 및 제2 원격장치(122)간의 광 케이블의 연결이 잘못되었을 경우에, 중앙처리장치(110)와 제1 내지 제3 원격장치(121, 122, 123)의 각 노드들은 우선 워킹방향 또는 보호방향으로 라인코드를 서로 주고 받게 된다. 이때, 제1 원격장치(121)는 제2 원격장치(122) 쪽으로 ET 라인코드를 발송하고, 중앙처리장치(110) 쪽으로 WT라인코드가 발송하게 된다. 또한, 중앙처리장치(110)는 제1 원격장치(121)로부터 들어오는 라인코드는 WT로부터 WR로 들어와 정상적으로 수신되기 때문에, WLF를 OFF되게 하고, 그에 대한 응답으로 중앙처리장치(110)는 제1 원격장치(121)로 ET라인코드를 발송한다. 이때, 제1 원격장치(121)는 WR로 수신되어 WLF를 블링킹하게 된다. 또한, 제1 원격장치(121)에서 제2 원격장치(122)로 발송되는 ET라인코드는 제2 원격장치(122)에 의하여 ER로 수신되기 때문에, 제2 원격장치(122)는 ELF를 OFF되게 하고, 그에 대한 응답으로 제2 원격장치(122)는 제1 원격장치(121)로 WT라인코드를 발송한다. 또한, 제1 원격장치(121)는 ER로 수신하므로 ELF를 블링킹하게 된다.As shown in FIG. 10B, when the connection of the optical cable between the central processing unit 110 and the first remote device 121 and the first remote device 121 and the second remote device 122 is incorrect, Each node of the central processing unit 110 and the first to third remote devices 121, 122, and 123 exchanges line codes with each other in a working direction or a protection direction. At this time, the first remote device 121 sends the ET line code toward the second remote device 122, the WT line code is sent to the central processing unit (110). In addition, since the central processing unit 110 receives the line code coming from the first remote device 121 and is normally received from the WT, the central processing unit 110 turns off the WLF. Send the ET line code to the remote device 121. At this time, the first remote device 121 is received by the WR to blink the WLF. In addition, since the ET line code sent from the first remote device 121 to the second remote device 122 is received by the second remote device 122 as the ER, the second remote device 122 turns off the ELF. In response, the second remote device 122 sends the WT line code to the first remote device 121. In addition, since the first remote device 121 receives the ER, the first remote device 121 blinks the ELF.
한편, 도 10b의 정상적인 광케이블 연결구성은 FX2(ET 및 WR)는 FX1(ER 및 WT)와 연결되어야 한다.On the other hand, in the normal optical cable connection configuration of Figure 10b FX2 (ET and WR) should be connected to FX1 (ER and WT).
도 11은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 제1 원격장치와 제2 원격장치간, 제2 원격장치 및 제3 원격장치간의 광 케이블의 연결이 잘못되었을 경우에 표시부의 상태를 나타내는 도면이다.FIG. 11 is a view illustrating a connection of an optical cable between a first remote device and a second remote device, a second remote device, and a third remote device in an optical cable connection automatic confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention. It is a figure which shows the state of a display part in case of a mistake.
도 11에 도시된 바와 같이, 제1 원격장치(121)와 제2 원격장치(122)간, 제2 원격장치(122) 및 제3 원격장치(123)간의 광 케이블의 연결이 잘못되었을 경우에, 중앙처리장치(110)와 제1 내지 제3 원격장치(121, 122, 123)의 각 노드들은 우선 워킹방향 또는 보호방향으로 라인코드를 서로 주고 받게 된다. 이때, 제2 원격장치(122)는 제1 원격장치(121) 쪽으로 ET 라인코드를 발송하고, 제3 원격장치(123) 쪽으로 WT라인코드를 발송한다. 이때, 제1 원격장치(121)는 제2 원격장치(122)에서 발송하는 ET 라인코드를 WR로 수신하기 때문에, WLF를 블링킹하게 되고, 그에 대한 응답으로 제2 원격장치(122)로 ET라인코드를 발송한다. 따라서, 제2 원격장치(122)는 WR로 수신되어 WLF를 블링킹하게 된다. 이때, 제2 원격장치(122)에서 제3 원격장치(123)로 발송되는 WT라인코드는 제3 원격장치(123)에 의하여 ER로 수신되기 때문에, 제3 원격장치(123)는 ELF를 블링킹하게 되고, 그에 대한 응답으로 제3 원격장치(123)는 제2 원격장치(122)로 WT라인코드를 발송한다. 따라서, 제2 원격장치(122)는 ER로 수신하기 때문에, ELF를 블링킹하게 된다.As shown in FIG. 11, when the connection of the optical cable between the first remote device 121 and the second remote device 122 and the second remote device 122 and the third remote device 123 is incorrect. Each node of the central processing unit 110 and the first to third remote devices 121, 122, and 123 exchanges line codes with each other in a working direction or a protection direction. At this time, the second remote device 122 sends the ET line code toward the first remote device 121, and sends the WT line code toward the third remote device 123. At this time, since the first remote device 121 receives the ET line code sent from the second remote device 122 in the WR, the first remote device 121 blinks the WLF and, in response, ETs the second remote device 122 to the second remote device 122. Send the line code. Accordingly, the second remote device 122 is received by the WR to cause the WLF to blink. At this time, since the WT line code sent from the second remote device 122 to the third remote device 123 is received by the third remote device 123 as an ER, the third remote device 123 blocks the ELF. The third remote device 123 sends a WT line code to the second remote device 122 in response thereto. Therefore, since the second remote device 122 receives the ER, it will blink the ELF.
한편, 도 11의 정상적인 광케이블 연결구성은 FX2(ET 및 WR)가 FX1(ER 및 WT)와 연결되어야 한다.Meanwhile, in the normal optical cable connection configuration of FIG. 11, FX2 (ET and WR) should be connected to FX1 (ER and WT).
도 12는 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 중앙처리장치와 제1 원격장치간, 제1 원격장치와 제2 원격장치간, 제2 원격장치 및 제3 원격장치간, 제3 원격장치와 중앙처리장치간의 광 케이블의 연결이 잘못되었을 경우에 표시부의 상태를 나타내는 도면이다.12 is a cross-sectional view between a central processing unit and a first remote device, a first remote device and a second remote device, and a second remote device of an automatic cable connection confirmation system in an optical Ethernet transmission system having an annular network structure according to the present invention. FIG. 11 is a diagram showing the state of the display unit when the optical cable is incorrectly connected between the third remote device and the third remote device and the central processing unit.
도 12에 도시된 바와 같이, 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 중앙처리장치(110)와 제1 원격장치(121)간, 제1 원격장치(121)와 제2 원격장치(122)간, 제2 원격장치(122) 및 제3 원격장치(123)간, 제3 원격장치(123)와 중앙처리장치(110)간의 광 케이블의 연결이 잘못되었을 경우에는, 중앙처리장치(110)와 제1 내지 제3 원격장치(121, 122, 123)의 각 노드들은 우선 워킹방향 또는 보호방향으로 라인코드를 서로 주고 받게 된다. 이때, 제1 원격장치(121)는 중앙처리장치(110) 쪽으로 ET 라인코드를 발송하고, 제2 원격장치(122) 쪽으로는 WT 라인코드를 발송한다. As shown in Figure 12, between the central processing unit 110 and the first remote device 121 of the optical cable connection automatic confirmation system in the optical Ethernet transmission system having an annular network structure according to the present invention, the first remote device ( 121, the connection of the optical cable between the second remote device 122, between the second remote device 122 and the third remote device 123, between the third remote device 123 and the central processing unit 110 is incorrect In this case, the nodes of the central processing unit 110 and the first to third remote devices 121, 122, and 123 first exchange line codes with each other in the working direction or the protection direction. At this time, the first remote device 121 sends the ET line code toward the central processing unit 110, and the WT line code toward the second remote device 122.
중앙처리장치(110)는 제1 원격장치(121)로부터 들어오는 라인코드는 WT이어야 하는데 ET로부터 들어오고 있기 때문에, WLF가 블링킹하게 되고, 이에 대한 응답으로 제1 원격장치(121)로 ET 라인코드를 발송한다. 이때, 제1 원격장치(121)는 WR로 수신되어 ELF가 블링킹하게 된다. Since the central processing unit 110 is the line code coming from the first remote device 121 should be WT coming from the ET, the WLF is blinking, in response to the ET line to the first remote device 121 Send the code. At this time, the first remote device 121 is received by the WR and the ELF is blinking.
또한, 제2 원격장치(122)는 제1 원격장치(121) 쪽으로 WT라인코드를 발송하고, 제3 원격장치(123) 쪽으로 ET 라인코드를 발송한다. 이때, 제2 원격장치(122)는 제1 원격장치(121)로부터 발송되는 WT 라인코드를 ER로 수신하기 때문에, ELF를 블링킹하게 되고, 이에 대한 응답으로 제1 원격장치(121) 쪽으로 WT 라인코드를 발송한다. 또한, 제2 원격장치(122)가 제3 원격장치(123)와 광 케이블 연결이 끊어진 경우라면, WR로 정상 수신되지 않기 때문에, WLF를 온 되게 한다.In addition, the second remote device 122 transmits the WT line code toward the first remote device 121 and the ET line code toward the third remote device 123. At this time, since the second remote device 122 receives the WT line code sent from the first remote device 121 to the ER, the second remote device 122 blinks the ELF and, in response, WT toward the first remote device 121. Send the line code. In addition, when the second remote device 122 is disconnected from the optical cable and the third remote device 123, the WLF is turned on because it is not normally received by the WR.
또한, 제3 원격장치(123)는 제2 원격장치(122) 쪽으로 ET라인코드를 발송하고, 중앙처리장치(110) 쪽으로 WT라인코드를 발송한다. 이때, 제3 원격장치(123)는 제2 원격장치(122)와 광 케이블 연결이 끊어진 경우라면, WR로 정상수신되지 않기 때문에, WLF를 온되게 한다. 또한, 제3 원격장치(123)는 중앙처리장치(110)로부터 WT라인코드를 ER로 수신하기 때문에, ELF를 블링킹하게 되고, 이에 대한 응답으로 중앙처리장치(110) 쪽으로 WT라인코드를 ER로 발송한다. 이렇게 되면, 중앙처리장치(110)는 제3 원격장치(123)로부터 WT라인코드를 ER로 수신하기 때문에, ELF를 블링킹하게 된다.In addition, the third remote device 123 sends the ET line code toward the second remote device 122, and sends the WT line code toward the central processing unit 110. In this case, when the optical cable is disconnected from the second remote device 122, the third remote device 123 is not normally received by the WR, so that the WLF is turned on. In addition, since the third remote device 123 receives the WT line code from the central processing unit 110 as the ER, the third remote device 123 blinks the ELF, and in response, the third remote device 123 receives the WT line code toward the central processing unit 110. Ship to In this case, since the central processing unit 110 receives the WT line code from the third remote device 123 to the ER, the central processing unit 110 blinks the ELF.
도 13은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 중앙처리장치 및 제3 원격장치 간에 광 케이블의 연결이 잘못되었을 경우에 표시부의 상태를 나타내는 도면이다.13 is a view showing a state of the display unit when the connection of the optical cable between the central processing unit and the third remote device of the automatic check system for optical cable connection in the optical Ethernet transmission system having an annular network structure according to the present invention.
도 13에 도시된 바와 같이, 중앙처리장치(110) 및 제3 원격장치(123) 간에 광 케이블의 연결이 잘못되었을 경우에, 제3 원격장치(123)의 WT는 WR로 자체 루프가 되었으므로, 제3 원격장치(123)의 표시부(123a)는 이를 인식하여 WLF를 블링킹하게 된다. 또한, 중앙처리장치(110)는, 제3 원격장치(123)에서 ET가 중앙처리장치(110)에 ER로 연결되었기 때문에, ELF가 OFF되며, 이에 대한 응답으로 중앙처리장치(110)가 WT라인코드를 제3 원격장치(123)로 발송한다. 이때, 제3 원격장치(123)는 ER로 수신하여 ELF를 블링킹하게 된다.As shown in FIG. 13, when the connection of the optical cable between the central processing unit 110 and the third remote device 123 is wrong, the WT of the third remote device 123 is looped to WR, so that The display unit 123a of the third remote device 123 recognizes this and blinks the WLF. In addition, the central processing unit 110, since the ET is connected to the central processing unit 110 by the ER in the third remote device 123, the ELF is OFF, in response to the central processing unit 110 WT The line code is sent to the third remote device 123. At this time, the third remote device 123 receives the ER and blinks the ELF.
도 14는 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템을 구성하는 원격장치의 위치를 표현하는 원격장치의 표시부를 나타내는 도면이고, 도 15는 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템을 구성하는 원격장치의 수를 표현하는 중앙처리장치의 표시부의 일 예를 나타내는 도면이고, 도 16은 본 발명에 따른 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템의 원격장치 및 중앙처리장치의 전면에 설치되는 표시부 및 시리얼 인터페이스를 나타내는 도면이다.FIG. 14 is a view illustrating a display unit of a remote device representing a position of a remote device constituting an automatic checking system for connecting an optical cable in an optical Ethernet transmission system having a ring network structure according to the present invention, and FIG. 15 is a ring shape according to the present invention. FIG. 16 is a view showing an example of a display unit of a central processing unit expressing the number of remote devices constituting the automatic checking of optical cable connection in an optical Ethernet transmission system having a network structure, and FIG. 16 has an annular network structure according to the present invention. Automatic display of optical cable connections in an optical Ethernet transmission system. A diagram illustrating a display unit and a serial interface installed at a front surface of a remote device and a central processing unit.
도 14에 도시된 바와 같이, 본 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템을 구성하는 원격장치의 표시부는, 시스템의 링 네트웍 상에서 자신이 위치를 이진법으로 나타낼 수 있다. 예를 들어, 원격장치의 개수가 6개일 경우, 표시부는 전원공급을 나타내는 PWR 엘이디가 블링킹됨과 동시에, 원격장치(121, 122, 123, 124, 125, 126) 모두의 전면 표시부 LED는 자신이 링 네트웍 상에서 몇 번째인지를 2진법으로 표현되도록, 온이 되어 그 번호를 나타낼 수 있으며, 중앙장치의 경우 링 네트웍 상에 몇 개의 노드가 있는 지를 2진법으로 표현되도록 하였다..As shown in FIG. 14, the display unit of the remote device constituting the automatic checking of the optical cable connection in the optical Ethernet transmission system having the annular network structure may represent the position of the remote device on the ring network of the system in binary. For example, if the number of remote devices is six, the display unit blinks the PWR LED indicating power supply, and the front display LEDs of all the remote devices 121, 122, 123, 124, 125, and 126, In order to represent the number on the ring network in binary format, it can be turned on to indicate its number, and in the case of the central unit, the number of nodes on the ring network is represented in binary format.
또한, 도 15에 도시된 바와 같이, 중앙처리장치(110)의 경우에는 링 네트웍 내에 연결된 전체 원격장치들의 수를 2진법으로 표시한다. In addition, as shown in FIG. 15, the central processing unit 110 displays the total number of remote devices connected in the ring network in binary.
따라서, 본 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템에 의하면, 광 코어망 내에 수 많은 노드가 연결되었을 경우, 어떤 노드에 장애가 발생되었다면 해당 노드를 사용자가 직접 현장에서 쉽게 찾을 수 있게 된다. 또한, 링 네트웍 내에 노드의 추가 및 삭제 시 플러그 인 플레이(Plug-In-Play) 방식에 의한 자동인식 기능을 통하여, 전체 노드가 노드의 부여된 번호를 보고 능동적으로 셋팅이 가능하도록 함으로써, 설치 및 유지보수 시 사용자의 편리성을 극대화시킬 수 있다.Therefore, according to the optical cable connection automatic check system in the optical Ethernet transmission system having the annular network structure, when a large number of nodes are connected in the optical core network, if a node fails, the user can easily find the node in the field. It becomes possible. In addition, through the automatic recognition function by the plug-in-play method when adding and deleting nodes in the ring network, the entire node can be actively set by viewing the assigned number of nodes. User convenience can be maximized during maintenance.
도 17은 본 발명에 따른 광 이더넷 신호 전송 시스템의 COT(Central Office Terminal)를 나타내는 개략적인 도면이다. 17 is a schematic diagram illustrating a central office terminal (COT) of an optical Ethernet signal transmission system according to the present invention.
상기 COT(Central Office Terminal)는, MPU(Main Processor Unit, 112), ETR(Ethernet Transmission & Receive, 113), 파워(Power, 111)를 포함할 수 있다. 상기 MPU(112)는 시스템을 초기화 하고 중앙장치 내의 각 모듈 및 원격장치를 제어하고, 또한 감시하는 기능을 한다. 또한, 중앙장치 및 원격장치들의 프로비젼을 제어하고, 설정하며 데이터를 백업하는 기능을 한다. 이때, 상기 파워(111)는 이중화로 구성될 수 있다. The central office terminal (COT) may include a Main Processor Unit (MPU) 112, an Ethernet Transmission & Receive (ETR) 113, and a Power 111. The MPU 112 functions to initialize the system and to control and monitor each module and remote device in the central unit. It also controls, configures and backs up data for central and remote devices. In this case, the power 111 may be configured in redundancy.
상기한 바와 같이, 본 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템에 의하면, 광통신 네트워크를 구성하는 광 케이블의 연결상태를 별도의 추가 장비없이 원격장치 및 중앙처리장치의 전면에 설치된 표시부를 통하여 자동으로 체크할 수 있다. 또한, 본 광 이더넷 신호전송 시스템에 의하면, 패킷 간 갭(Inter Packet Gap; IPG)에 제어 신호를 송수신하고 광케이블 라인 폴트 이벤트에 대하여 비동기적인 이더넷 프레임으로 각 노드에게 전달하기 때문에, 기존에 패킷 내에 제어 정보들을 포함하여 사용하였던 방식과는 달리 약 99%이상의 패킷을 데이터 전송용으로 쓸 수 있고, 데이터 통신효율을 극대화시킬 수 있다.As described above, according to the optical cable connection automatic confirmation system in the optical Ethernet transmission system having the annular network structure, the connection state of the optical cable constituting the optical communication network is not displayed on the front of the remote device and the central processing unit without any additional equipment. It can be checked automatically through the installed display. In addition, according to the present optical Ethernet signaling system, since a control signal is transmitted and received in an inter packet gap (IPG) and transmitted to each node in an asynchronous Ethernet frame with respect to an optical cable line fault event, it is controlled in a packet. Unlike the method used including information, more than 99% of packets can be used for data transmission and data communication efficiency can be maximized.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As such, the technical configuration of the present invention described above will be understood by those skilled in the art that the present invention can be implemented in other specific forms without changing the technical spirit or essential features of the present invention.
그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the exemplary embodiments described above are to be understood as illustrative and not restrictive in all respects, and the scope of the present invention is indicated by the following claims rather than the detailed description, and the meaning and scope of the claims and their All changes or modifications derived from equivalent concepts should be construed as being included in the scope of the present invention.

Claims (10)

  1. 각각 워킹라인과 보호라인으로 이루어진 광케이블로 연결된 복수 개의 원격장치;A plurality of remote devices connected by optical cables each consisting of a working line and a protection line;
    상기 복수 개의 원격장치에 제공되는 광 이더넷 신호를 제어하고, 상기 복수 개의 원격장치 간 또는 중앙장치 간의 광케이블 연결이 잘못된 경우 절체 동작을 수행하는 중앙처리장치; 및A central processing unit controlling the optical Ethernet signals provided to the plurality of remote devices and performing a switching operation when the optical cable connection between the plurality of remote devices or the central device is wrong; And
    상기 중앙처리장치로부터 상기 복수 개의 원격장치를 거쳐 상기 중앙처리장치로 상기 워킹라인 또는 상기 보호라인을 통하여 광 테이터가 제1 방향 및 반대방향인 제2 방향으로 전송되는 이중화된 제1 광 코어망 및 제2 광 코어망;을 포함하고, A duplicated first optical core network through which the optical data is transmitted from the central processing unit through the plurality of remote devices to the central processing unit via the working line or the protection line in a second direction opposite to the first direction and the opposite direction; A second optical core network;
    상기 복수 개의 원격장치 및 상기 중앙처리장치의 전면에는 상기 복수 개의 원격장치 및 상기 중앙처리장치와 각각의 전단 및 후단에 연결된 원격장치 또는 중앙처리장치와의 광케이블 연결 정보를 자동으로 표시하는 표시부와, 상기 표시부에 연결되어 비동기적인 이더넷 프레임을 사용하여 광 데이터의 송수신 여부와 광 케이블 연결정보를 확인하는 테스트 버튼을 포함하는 시리얼 인터페이스가 설치되어 있는 것을 특징으로 하는 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템.A display unit for automatically displaying optical cable connection information between the plurality of remote devices and the central processing device and the remote devices or central processing devices connected to the front and rear ends of the plurality of remote devices and the central processing device; In the optical Ethernet transmission system having an annular network structure is connected to the display unit is provided with a serial interface including a test button for checking the optical data transmission and reception and optical cable connection information using an asynchronous Ethernet frame is installed. Automatic connection system of optical cable.
  2. 제1항에 있어서, The method of claim 1,
    상기 복수 개의 원격장치 및 상기 중앙처리장치는 능동적으로 발생된 광케이블 연결정보에 대하여 감지하여 자동으로 전면 표시부에 표시할 수 있는 것을 특징으로 하는 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템.The plurality of remote devices and the central processing unit automatically detects the optical cable connection information that is actively generated, and automatically displays the optical cable connection in the optical Ethernet transmission system having an annular network structure, characterized in that it can be displayed on the front display automatically. system.
  3. 제1항에 있어서,The method of claim 1,
    상기 시리얼 인터페이스는, 상기 테스트 버튼이 눌러지면 해당 원격장치에 광케이블 라인 별 TPG(Test Patten Generator)가 비동기적인 이더넷 프레임으로 옆 노드에 전달되어 그 노드가 이를 확인하고 광 데이터의 송수신 여부와 광 케이블 연결정보를 확인하여 상기 표시부에 표시할 수 있도록 하는 것을 특징으로 하는 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템.In the serial interface, when the test button is pressed, TPG (Test Patten Generator) for each optical cable line is transmitted to the next node as an asynchronous Ethernet frame to the corresponding remote device, and the node confirms this and transmits and receives optical data and connects the optical cable. Automatic checking of the optical cable connection in the optical Ethernet transmission system having an annular network structure characterized in that to check the information to display on the display.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 표시부는 복수 개의 엘이디로 구성되고, 상기 복수 개의 엘이디는 인접하는 원격장치 또는 중앙처리장치로부터 해당 장치로의 광 데이터가 수신되는지 여부를 표시하는 것을 특징으로 하는 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템.The display unit is composed of a plurality of LEDs, the plurality of LEDs is an optical Ethernet transmission system having an annular network structure, characterized in that indicating whether the optical data from the adjacent remote device or the central processing unit to the corresponding device is received. Automatic cable connection check system
  5. 제1항에 있어서,The method of claim 1,
    상기 표시부는 복수 개의 엘이디로 구성되고, 상기 복수 개의 엘이디는 상기 제1 광 코어망 또는 상기 제2 광 코어망에 연결되는 원격장치의 개수를 2진법으로 나타낼 수 있는 것을 특징으로 하는 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템.The display unit may include a plurality of LEDs, and the plurality of LEDs may represent a number of remote devices connected to the first optical core network or the second optical core network in binary format. Automatic connection system of optical cable in optical Ethernet transmission system.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 표시부는 복수 개의 엘이디로 구성되고, 상기 복수 개의 엘이디는 해당 장치가 상기 제1 광 코어망 또는 상기 제2 광 코어망의 연결 순서에 따라 연결된 순번을 2진법으로 나타낼 수 있는 것을 특징으로 하는 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템.The display unit may include a plurality of LEDs, and the plurality of LEDs may be represented in binary format, in which a corresponding device is connected in the order of connection of the first optical core network or the second optical core network. Automatic connection system of optical cable in optical Ethernet transmission system with network structure.
  7. 제1항에 있어서,The method of claim 1,
    상기 각각의 원격장치는 연결된 제1 광 코어망 및 제2 광 코어망의 물리적인 연결여부를 능동적으로 감지하여 상기 물리 연결 정보를 포함하는 NMS 프레임을 형성하고, Each remote device actively detects whether the first optical core network and the second optical core network are physically connected to form an NMS frame including the physical connection information.
    상기 NMS 프레임을 상기 광 이더넷 신호의 패킷 사이에 존재하는 갭(Inter Packet Gap; IPG)을 이용하여 제어 신호를 송수신하고 광케이블 라인 폴트에 대하여 비동기적인 이더넷 프레임으로 상기 인접한 원격장치를 통하여 상기 중앙처리장치에 전달하며,The NMS frame transmits and receives a control signal using an inter packet gap (IPG) between the packets of the optical Ethernet signal, and the central processing unit through the adjacent remote device in an Ethernet frame asynchronous to the optical cable line fault. Forward to
    상기 중앙처리장치는 전달받은 NMS 프레임을 이용하여 복수 개의 원격장치의 절체를 수행하는 것을 특징으로 하는 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템.The central processing unit automatically checks the optical cable connection in the optical Ethernet transmission system having an annular network structure, characterized in that for performing the switching of a plurality of remote devices using the received NMS frame.
  8. 제1항에 있어서,The method of claim 1,
    상기 각각의 원격장치는 연결된 제1 광 코어망 및 제2 광 코어망의 물리적인 연결여부를 능동적으로 감지하여 상기 물리 연결 정보를 포함하는 NMS 프레임을 형성하고,Each remote device actively detects whether the first optical core network and the second optical core network are physically connected to form an NMS frame including the physical connection information.
    상기 중앙처리장치 및 상기 각각의 원격장치는 잘못된 광 케이블의 연결에 의한 이더넷 데이터 팻킷의 루프에 의하여 발생되는 네트워크의 충돌 및 붕괴를 사전에 막기 위하여 비동기적인 망관리 데이터를 상기 광 이더넷 신호의 팻킷 사이에 존재하는 갭(Inter Packet Gap; IPG)에 넣어서 노드 상호간에 주고 받음으로써 자동으로 이더넷 데이터 팻킷의 루프를 막을 수 있는 것을 특징으로 하는 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템.The central processing unit and each of the remote devices may transmit asynchronous network management data between the packets of the optical Ethernet signal to prevent collisions and collapses of the network caused by loops of the Ethernet data packets caused by the connection of the wrong optical cable. Automatic connection system for optical cables in an optical Ethernet transmission system having an annular network structure, by inserting into an inter packet gap (IPG) present in the network to automatically exchange loops of Ethernet data packets. .
  9. 제1항에 있어서,The method of claim 1,
    상기 중앙처리장치 및 상기 복수 개의 원격장치는 FPGA(field programmable gate array)를 포함하여, 별도의 중앙처리장치와 연계되어 동작하지 않고 독립적으로 작동되며, 상기 제1 광 코어망 및 제2 광 코어망의 절체를 수행하는 것을 특징으로 하는 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템.The central processing unit and the plurality of remote devices, including a field programmable gate array (FPGA), operate independently without being associated with a separate central processing unit and operate independently of the first optical core network and the second optical core network. Automatic checking of the optical cable connection in the optical Ethernet transmission system having an annular network structure, characterized in that for performing the switching of.
  10. 제1항에 있어서,The method of claim 1,
    상기 복수 개의 원격장치는 플러그 인 방식으로 구성되어 각각의 원격장치가 상기 제1 광 코어망 및 제2 광 코어망에 연결되는 것을 특징으로 하는 환형망 구조를 가지는 광 이더넷 전송 시스템에서의 광케이블 연결 자동 확인 시스템.The plurality of remote devices are configured in a plug-in manner so that each of the remote devices is connected to the first optical core network and the second optical core network. Confirmation system.
PCT/KR2011/005058 2011-07-11 2011-07-11 System for automatically checking the connection of an optical cable in an optical ethernet transmission system having a ring-shaped network structure WO2013008961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005058 WO2013008961A1 (en) 2011-07-11 2011-07-11 System for automatically checking the connection of an optical cable in an optical ethernet transmission system having a ring-shaped network structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005058 WO2013008961A1 (en) 2011-07-11 2011-07-11 System for automatically checking the connection of an optical cable in an optical ethernet transmission system having a ring-shaped network structure

Publications (1)

Publication Number Publication Date
WO2013008961A1 true WO2013008961A1 (en) 2013-01-17

Family

ID=47506231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005058 WO2013008961A1 (en) 2011-07-11 2011-07-11 System for automatically checking the connection of an optical cable in an optical ethernet transmission system having a ring-shaped network structure

Country Status (1)

Country Link
WO (1) WO2013008961A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112202492A (en) * 2020-09-01 2021-01-08 中国移动通信集团广东有限公司 Optical cable fault positioning method and device and electronic equipment
CN113271340A (en) * 2021-04-26 2021-08-17 中国电建集团华东勘测设计研究院有限公司 Network networking and monitoring system configuration structure suitable for offshore wind farm
CN116545864A (en) * 2023-07-06 2023-08-04 国网浙江省电力有限公司湖州供电公司 Data processing method and platform suitable for optical cable line management system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010038608A1 (en) * 2000-02-18 2001-11-08 Claudio De Girolamo Traffic protection mechanism for a fiber optic network having a linear topology
KR200281519Y1 (en) * 2001-12-04 2002-07-12 케이엔씨정보통신(주) The bi-directional ethernet fiber optic transmission device for common using in transmission speed 10Mbps and 100Mbps through one or two fiber optic cable
KR20050119015A (en) * 2004-06-15 2005-12-20 에스케이 텔레콤주식회사 Real-time optical cable management system
JP2006518132A (en) * 2003-01-21 2006-08-03 富士通株式会社 Optical network protection switching architecture
KR20090032572A (en) * 2007-09-28 2009-04-01 한국전력공사 Real-time monictoring apparatus and method for obstacle in optical cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010038608A1 (en) * 2000-02-18 2001-11-08 Claudio De Girolamo Traffic protection mechanism for a fiber optic network having a linear topology
KR200281519Y1 (en) * 2001-12-04 2002-07-12 케이엔씨정보통신(주) The bi-directional ethernet fiber optic transmission device for common using in transmission speed 10Mbps and 100Mbps through one or two fiber optic cable
JP2006518132A (en) * 2003-01-21 2006-08-03 富士通株式会社 Optical network protection switching architecture
KR20050119015A (en) * 2004-06-15 2005-12-20 에스케이 텔레콤주식회사 Real-time optical cable management system
KR20090032572A (en) * 2007-09-28 2009-04-01 한국전력공사 Real-time monictoring apparatus and method for obstacle in optical cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112202492A (en) * 2020-09-01 2021-01-08 中国移动通信集团广东有限公司 Optical cable fault positioning method and device and electronic equipment
CN113271340A (en) * 2021-04-26 2021-08-17 中国电建集团华东勘测设计研究院有限公司 Network networking and monitoring system configuration structure suitable for offshore wind farm
CN113271340B (en) * 2021-04-26 2023-03-28 中国电建集团华东勘测设计研究院有限公司 Network networking and monitoring system configuration structure suitable for offshore wind farm
CN116545864A (en) * 2023-07-06 2023-08-04 国网浙江省电力有限公司湖州供电公司 Data processing method and platform suitable for optical cable line management system
CN116545864B (en) * 2023-07-06 2023-09-05 国网浙江省电力有限公司湖州供电公司 Data processing method and platform suitable for optical cable line management system

Similar Documents

Publication Publication Date Title
US5003531A (en) Survivable network using reverse protection ring
US5717796A (en) Optical fiber transmission system utilizing a line switched ring to provide protection
JP3195477B2 (en) Ring node and communication line protection switching method used in bidirectional ring transmission system
WO2014038835A1 (en) Network backup device and network system including the device
KR101020053B1 (en) Auto-detecting system for optical cable connection in the optical ethernet signal transmitting system having ring network structure
JPH07212382A (en) Communication system
CN1949700B (en) Method and apparatus for mixed network protection
CN100493017C (en) A method of automatic switching for primary standby equipment
WO2014175516A1 (en) Optical network system
JPH07264229A (en) Virtual ring configuration system
CN101262406A (en) Two-way loop network system and its control method
WO2013008961A1 (en) System for automatically checking the connection of an optical cable in an optical ethernet transmission system having a ring-shaped network structure
EP1361700A1 (en) Service channel over the ethernet inter-frame gap
JP2812834B2 (en) Node device for multi-ring circuit and multi-ring network using the node device
JPH08213965A (en) Radio channel relieving method and radio equipment in sdh network
WO2004088929A1 (en) End office repeater, repeating method
WO2015002445A1 (en) Optical line state monitoring device and method
KR102585840B1 (en) Active patch panel and integrated data distribution system using the same
US6839319B2 (en) Office recognition method in ring network
CN112449148B (en) Camera, camera system and data transmission system
CN103125099A (en) Transmission device, transmission system, and fault notification method
JP2001326620A (en) Standby path access method and system
WO2012043918A1 (en) Data packet transmission/reception method in ring network and ring network node terminal therefor
JP2544329B2 (en) Concentrator diagnosis and fault isolation method
JP2003018159A (en) Protocol converter and communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869387

Country of ref document: EP

Kind code of ref document: A1