WO2013008959A1 - Xenograft-derived bone grafting substitute and method for manufacturing same - Google Patents

Xenograft-derived bone grafting substitute and method for manufacturing same Download PDF

Info

Publication number
WO2013008959A1
WO2013008959A1 PCT/KR2011/005018 KR2011005018W WO2013008959A1 WO 2013008959 A1 WO2013008959 A1 WO 2013008959A1 KR 2011005018 W KR2011005018 W KR 2011005018W WO 2013008959 A1 WO2013008959 A1 WO 2013008959A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
xenograft
derived
graft material
amino acid
Prior art date
Application number
PCT/KR2011/005018
Other languages
French (fr)
Korean (ko)
Inventor
정종평
박윤정
이주연
이상훈
Original Assignee
서울대학교산학협력단
주식회사 나이벡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 주식회사 나이벡 filed Critical 서울대학교산학협력단
Priority to PCT/KR2011/005018 priority Critical patent/WO2013008959A1/en
Publication of WO2013008959A1 publication Critical patent/WO2013008959A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3687Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by the use of chemical agents in the treatment, e.g. specific enzymes, detergents, capping agents, crosslinkers, anticalcification agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3608Bone, e.g. demineralised bone matrix [DBM], bone powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/365Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3691Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by physical conditions of the treatment, e.g. applying a compressive force to the composition, pressure cycles, ultrasonic/sonication or microwave treatment, lyophilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/40Preparation and treatment of biological tissue for implantation, e.g. decellularisation, cross-linking

Definitions

  • the present invention relates to a bone graft material having excellent biocompatibility, cell adhesion ability and bone conductivity and a method for producing the same using xenograft, specifically, to remove protein and fat from xenograft such as bovine bone, horse bone, pork bone and
  • the present invention relates to a method for producing a bone or bone-shaped bone graft material having excellent biocompatibility, cell adhesion, and bone conductivity by surface treatment with amino acids or addition of a bioactive substance.
  • Bone grafting substitute is a replacement for bone defects caused by various dental diseases or traumas, disease degeneration or other tissue loss, which fills the space in bone tissue and forms new bone.
  • Bone grafts include bioderived bone grafts and synthetic bone grafts.
  • Bio-derived bone grafts include autologous bone, allogeneic bone and xenograft.
  • Allogeneic bone transplantation has the potential for immune response and viral and disease infection.
  • Method for producing bone graft material using the bone of the animal is to remove the fat by adding a solvent having a boiling point of 80 °C to 120 °C bovine femoral bone, and then remove the protein and organic matter by adding ammonia or primary amine After preparing the mineral, it is composed of a step of drying by heating for several hours at a high temperature of 250 ⁇ 600 °C (US Patent No. 5,167,961, US Patent No. 5,417,975).
  • the conventional method for producing a bone-shaped bone graft material used a method of coating the ceramic on the porous polymer, heat treatment to burn the polymer and then sintering the remaining ceramic.
  • the ceramic used is an artificially synthesized bone graft material, which is different from bone graft material derived from xenograft (Korean Patent Application No. 10-2000-0046973).
  • the present inventors have obtained a patent for a method for producing bone graft material which is treated with sodium hypochlorite, pressurized and heated at high temperature to effectively remove fats and organics, so that there is no risk of infection of pathogenic substances (Korea Patent Publication No. 10 -0842012), a method for producing a bone graft material for further improving the cell adhesion and new bone conduction ability of bone graft material.
  • the present inventors made up of pure hydroxyapatite from which proteins and fats were removed, and as a result of diligently trying to produce a bone-derived bone graft material excellent in biocompatibility, cell adhesion ability, and bone conduction, sodium hypochlorite as sodium hypochlorite Treatment and heating to a high temperature to completely remove proteins and fats, and in this bone graft manufacturing process using acidic amino acids on the surface of the bone graft material can significantly increase the adhesion of cells by reducing the surface roughness, derived from extracellular matrix
  • physiologically active factors such as components and bone regeneration functional peptides were introduced into the bone graft material was confirmed that can significantly improve the conduction of new bone has been completed the present invention.
  • An object of the present invention is to provide a bone grafting bone-derived bone graft material and a method for producing the same, which are composed of pure hydroxyapatite to remove proteins and fats, thereby improving biocompatibility, cell adhesion, and bone conductivity.
  • the present invention provides a method for producing a bone bone-derived bone graft material in the form of particles comprising the following steps:
  • the present invention also provides a block-type xenograft-derived bone graft manufacturing method comprising the following steps:
  • the present invention also provides a method for producing bone xenograft-derived bone graft material in the form of particles comprising the following steps:
  • the present invention also provides a block-type xenograft-derived bone graft manufacturing method comprising the following steps:
  • the present invention also provides a xenograft-derived bone graft material in the form of a particle or block produced by the method.
  • Figure 1 is a photograph of the appearance and differential scanning electron microscope of the particle and block-shaped bone graft material prepared in Example 1.
  • Figure 2 shows the XRD measurement results of the particle and block-shaped bone graft prepared in Example 1.
  • Figure 3 shows a differential scanning electron micrograph of the surface of the bone graft material before and after treatment with the acidic amino acid in the particle and block-shaped bone graft material prepared in Example 1.
  • Figure 4 is a result of observing the adhesion of the cells before and after treatment with the acidic amino acid to the particle and block-shaped bone graft prepared in Example 1.
  • Example 5 is a result of observing bone regeneration in the skull of the rabbit after adding the extracellular matrix to the bone graft material in the form of particles prepared in Example 1.
  • Figure 6 is a result of observing the adhesion of the cells after the addition of the extracellular substrate after treatment with acidic amino acid to the bone and bone-shaped bone graft material prepared in Example 1.
  • FIG. 7 shows the results of observing bone regeneration after treating bone regeneration functional peptides in the bone-shaped bone graft material prepared in Example 1, and treating bone regeneration ability after treating the surface with acidic amino acid and then treating bone regeneration functional peptides. One result is shown.
  • the present invention relates to a method for producing bone xenograft-derived bone graft material in the form of particles comprising the following steps:
  • the step (c) of crushing the bone from which the blood components have been removed may be carried out before removing the fat and the protein from the bone, thereby increasing the surface area of the bone to facilitate the removal of the fat and the protein.
  • the step (e) of depositing the bone powder in the organic solvent is a step of removing residual fat present in the bone powder
  • the organic solvent may be characterized in that the mixed solvent of chloroform and methanol,
  • the chloroform: methanol ratio of the mixed solvent used may be from 2 to 8: 8 to 2, preferably 1: 1.
  • the step of treating with the sodium hypochlorite solution of step (g) is used to decompose and remove the residual protein of bone powder in a water-soluble state, inactivating the denatured prion protein causing mad cow disease
  • Sodium hypochlorite to be used may be a solution of a concentration of 2 to 20% (w / v), preferably a sodium hypochlorite solution of 4% (w / v) concentration is most preferred.
  • the time for treating the sodium hypochlorite is preferably treated for 72 hours or more to remove the prion and residual protein.
  • the heat treatment temperature of the step (i) may be 550 °C ⁇ 650 °C.
  • the step (k) of treating the bone powder surface with the acidic amino acid may increase cell adhesion by adjusting the surface roughness of the bone graft material.
  • the acidic amino acid glutamic acid and aspartic acid may be used.
  • the treatment concentration of the acidic amino acid may be 1-20% (w / v), more preferably 5-10% (w / v).
  • the treatment time may be 5-18 hours, more preferably 8-12 hours.
  • the present invention provides a method for producing a bone-shaped xenograft-derived bone graft material comprising the following steps:
  • the method for producing bone-derived bone graft material in the form of a block does not include the step of crushing the bone, and removes the lipid and protein from the bone. Cutting into blocks of size.
  • the step (j) of treating the surface of the bone with the acidic amino acid can be used for both particle and block-type bone graft material, and increases the cell adhesion by adjusting the surface roughness of the block-type bone graft material.
  • the acidic amino acid glutamic acid and aspartic acid may be used.
  • the treatment concentration of the acidic amino acid may be 1-20% (w / v), more preferably 5-10% (w / v).
  • the treatment time may be 5-18 hours, more preferably 8-12 hours.
  • the present invention relates to a method for producing bone xenograft-derived bone graft material in the form of particles comprising the following steps:
  • the method may further comprise treating the surface of the bone with an acidic amino acid between steps (j) and (k).
  • an acidic amino acid between steps (j) and (k).
  • the present invention provides a method for producing a bone-shaped xenograft-derived bone graft material comprising the following steps:
  • the method may further comprise treating the surface of the bone with an acidic amino acid between steps (i) and (j).
  • an acidic amino acid between steps (i) and (j).
  • new bone conduction can be promoted by adding one or more physiologically active substances selected from the group consisting of the extracellular matrix-derived component and the bone regeneration functional peptide.
  • the extracellular matrix-derived component may be selected from the group consisting of collagen, fibronectin, laminin, hyaluronic acid, and glycosaminoglycans.
  • the extracellular matrix-derived component is combined with bone graft material through physical adsorption and hydrogen bonding, and can use a chemical crosslinking agent to strengthen the binding force.
  • the bone regeneration functional peptide may be characterized in that (i) a peptide having bone regeneration ability and (ii) a peptide having an apatite binding ability.
  • the peptide having bone regeneration ability may be selected from the group consisting of amino acid sequences of SEQ ID NO: 1 to SEQ ID NO: 35,
  • the peptide having apatite binding capacity is a group consisting of the amino acid sequence of SEQ ID NO: 36 to SEQ ID NO: 39 Can be selected from.
  • the peptide having bone tissue regeneration ability is (a) the amino acid sequence of the amino acid sequence of position 2-18 of each of the amino acid sequence of bone morphogenetic protein (BMP) -2, 4 and 6 [BMP-2 (SEQ ID NO: 1), BMP-4 (SEQ ID NO: 2) and BMP-6 (SEQ ID NO: 3)], amino acid sequence of positions 16-34 of BMP-2 (SEQ ID NO: 4), positions 47-71 Amino acid sequence (SEQ ID NO: 5), amino acid sequence 73-92 (SEQ ID NO: 6), amino acid sequence 88-105 (SEQ ID NO: 7), amino acid sequence 83-302 (SEQ ID NO: 8), 335- The amino acid sequence of positions 353 (SEQ ID NO: 9) and the amino acid sequence of positions 370-396 (SEQ ID NO: 10); Amino acid sequence at positions 74-93 (SEQ ID NO: 11), amino acid sequence at positions 293-313 (SEQ ID NO: 12), amino acid sequence at positions 360-379
  • (c) at least one selected from the group consisting of amino acid sequences YGLRSKS (SEQ ID NO: 33), KKFRRPDIQYPDAT (SEQ ID NO: 34) and YGLRSKSKKFRRPDIQYPDAT (SEQ ID NO: 35) at positions 149-169 of bone sialoprotein I (BSP I, osteopontin); It may be characterized in that the peptide.
  • the peptide binding to the apatite mineral may be selected from the group consisting of SEQ ID NO: 36 STLPIPHEFSRE, SEQ ID NO: 37 (VTKHLNQISQSY), SEQ ID NO: 38 (SVSVGMKPSPRP), and SEQ ID NO: 39 (NRVFEVLRCVFD), and have bone tissue regeneration ability It is chemically added to the N-terminus of the peptide to increase the binding ability to apatite, which is a constituent of bone, so that it can stably bind to bone graft material or apatite coated implant surface and the like.
  • the bone regeneration functional peptide is (i) a peptide having bone regeneration ability and (ii) a peptide having an apatite binding ability is combined, it can be present in a stable state by binding to the surface of the apatite dental or orthopedic It can be applied to surgical bone substitutes and apatite-coated metals, natural polymers, and synthetic polymers, and promotes the transfer, proliferation and differentiation of cells related to bone tissue regeneration, and finally maximizes bone tissue regeneration ability. It can exist stably while maintaining the peptide activity is useful for the development of bone tissue regeneration treatment technology using the same.
  • the bone regeneration functional peptide is stably fixed to the apatite surface, thereby increasing the stability of the peptide and can maintain activity for a long time.
  • the bone regeneration effect by the peptide can be sustained, which has characteristics suitable for the treatment of bone and periodontal tissue regeneration.
  • the bone regeneration functional peptide can bind to apatite selected from the group consisting of bio-derived hydroxyapatite bone mineral, synthetic apatite hydroxide, apatite carbonate, tricalcium phosphate and monocalcium phosphate.
  • the dose of the bone regeneration functional peptide is preferably to contain 1-100mg per unit weight (1g) of bone graft material, more preferably may contain 20-80mg per unit weight of bone graft material have.
  • the produced peptide is stable to bone graft material It was confirmed that the binding, and the bone graft material in which the peptide is stably fixed to the surface of the apatite was implanted into the bone defect to confirm the bone regeneration ability.
  • the xylem may be characterized in that selected from the group consisting of bovine bone, horse bone and pork bone.
  • the present invention relates to a bone graft material in the form of a particle or block prepared by the method for producing a bone-derived bone graft.
  • the "bone graft substitute” is a material for filling the space in the bone tissue, the bone graft material using a method such as compression, compression, pressure contact, packing, pressing, hardening, putty, It can be used in the form of pastes, moldable strips, blocks, chips, etc., and can be formulated in the form of gels, granules, pastes, tablets, pellets, etc. using chemical additives. It is possible.
  • growth factor When the bone graft material is formulated as described above, growth factor, fibrin, bone morphogenesis factor, bone growth agent, chemotherapeutic agent, antibiotic, analgesic agent, bisphosphonate, strontum salt, fluoride salt, magnesium salt to promote bone growth And sodium salts.
  • the growth factors include bone morphogenic protein (BMP), platelet-derived growth factor (PDGF), transgenic growth factor (TGF-beta), insulin-like growth factor (IGF-I), IGF-II, and fibroblast growth factor (FGF).
  • BMP bone morphogenic protein
  • PDGF platelet-derived growth factor
  • TGF-beta transgenic growth factor
  • IGF-I insulin-like growth factor
  • IGF-II insulin-like growth factor
  • IGF-II fibroblast growth factor
  • FGF fibroblast growth factor
  • BGDF-II beta-2-microglobulin
  • the bone growth agent may be used without limitation as long as it is harmless to the human body and promotes bone growth, and may use peptides or nucleic acids that promote bone formation and antagonists of substances that inhibit bone formation.
  • Chemical additives used to formulate bone graft material in the present invention are hyaluronic acid (hyaluronic acid), collagen, hydroxyapatite, calcium carbonate, calcium phosphate, calcium sulfate, ceramics, etc. Formulation is possible in the form of granules, chips, pellets, tablets, pastes and the like.
  • Collagen, gelatin, chitosan, alginate, carboxymethylcellulose, hydroxypropylmethylcellulose, polyethyleneglycol, poloxamer, to prepare pharmaceutical compositions in the form of gels or pastes to increase the ease of use of the bone graft material of the present invention Biocompatible polymers including polylactic acid, polylactic glycolic acid, polycaprolactone and the like can be used.
  • Example 1-1 Method for producing a granular bone graft material
  • the bone obtained from the femoral region of the cow was cut to a size of about 2 cm 3 using a bone cutter.
  • the cut bone pieces were immersed in deionized water for 24 hours to remove blood components present in the bone.
  • the bone from which blood components were removed was ground to a size of 0.7 mm or less using a grinder.
  • the bone powder was boiled for 72 hours while deionized water was exchanged every 12 hours to remove the fat and protein present in the bone.
  • the bone fragments from which the fat and protein were first removed were completely dried in an oven at 60 ° C. for 24 hours.
  • a solvent in which 20 ml of chloroform and methanol were mixed in a 1: 1 volume ratio was added per 1 g of the dried bone powder, and then degreased by shaking for 24 hours at a rotation speed of 120 rpm.
  • Deionized water was added at a rate of 50 g per 1 g of bone powder in order to remove the remaining solvent in the bone powder completed degreasing and then shaken at 120 rpm for 12 hours to remove the solvent remaining in the powder. At this time, the flushing efficiency was increased by replacing with fresh deionized water every two hours.
  • the washed bone powder was completely dried in an oven at 60 °C.
  • the dried bone powder which had been degreased and deproteinized, was subjected to high temperature heat treatment to remove remaining lipids and proteins.
  • the electric furnace used for the heat treatment was heated to 2 degrees per minute, the bone powder was heat-treated at 600 °C for 3 hours and then cooled.
  • the bone powder is filtered using a sieve having a size of 212 to 1000 ⁇ m and 1000 to 2000 ⁇ m, and the filtered bone powder is washed several times with deionized water to remove the fine dust remaining on the surface and dried in an oven at 60 ° C for 24 hours. It was obtained and used as a bone graft material.
  • Example 1-2 Method for producing a block bone graft material
  • the bone obtained from the femoral region of the horse was cut into 8 cm 3 size using a bone cutter.
  • the cut bone pieces were immersed in purified water for 6-15 hours, and then purified water was removed and the blood components present in the bone pieces were removed by immersing again for 6-15 hours.
  • the bone fragments from which blood was removed with the purified water were limited to heating for at least 3 hours per day, up to 6 hours. This method was repeated for at least 72 to 80 hours to remove the fat and protein present in the bone fragments first.
  • the bone fragments from which the fat and protein were first removed were dried at 120 ° C. for 12 hours. The dried bone fragments were classified into spongy bone and dense bone, respectively.
  • the dried bone fragments were heat-treated to remove the remaining lipids and proteins.
  • the electric furnace used for the heat treatment was heated to 2 degrees per minute, the bone pieces were heat-treated at 600 °C for 3 hours and then cooled. The heat treated bone pieces are put in purified water and heated for 1 hour. Heat washing was repeated several times to remove fine dust, dried in an oven at 120 ° C. for 12 hours, and used as bone graft material.
  • the dried bone graft material was cut into blocks of the desired size.
  • Example 1-3 Observation of appearance and crystallinity of the bone graft material
  • FIG. 1a is an external photograph and a differential scanning microscope picture of the bone graft material in the form of particles
  • Figure 1b is an external view and a differential scanning microscope picture of the bone graft material in the form of a block.
  • Figure 2 is an XRD graph
  • Figure 2a is an XRD graph of the granular bone graft material
  • Figure 2b shows an XRD graph of the block-shaped bone graft material. All were confirmed to be pure apatite crystals.
  • Example 2-1 Method for producing surface treated bone graft material
  • Each 10 g of the bone graft material prepared in Example 1 was immersed in 50 mL of 5% (w / v) aspartic acid solution, and then left for 6 hours. Washed with purified water until pH 7.0 ⁇ 0.5 to remove aspartic acid solution and dried in an oven.
  • Example 2-2 Roughness observation after surface treatment
  • the bone graft material prepared in Example 2-1 was fixed with 2% glutaraldehyde solution.
  • the fixed bone graft was treated with 1% osmium tetroxide solution, washed, dehydrated and dried.
  • the surface of the bone graft material prepared as described above was observed with a differential scanning electron microscope.
  • FIG. 3a is a photograph of the surface of the bone graft material in the form of particles before and after the surface treatment
  • Figure 3b shows the surface of the bone graft material in block form before and after the surface treatment.
  • the bone graft in the form of a block seems to have pores connected to the inside, and has a structure suitable for use as a support for tissue engineering. It can also be seen that the roughness was reduced after the surface treatment with an acidic amino acid.
  • Particle-shaped, block-shaped bone graft material prepared in Example 1 was placed in a 4-well chamber slide, and incubated for 4 hours after inoculating the cells.
  • Bone graft cultured cells human osteosarcoma cell, purchased from Korea Cell Line Bank
  • the fixed bone graft was treated with 1% osmium tetroxide solution, washed, dehydrated and dried.
  • the surface of the bone graft material cultured with the differential scanning electron microscope (FIG. 4) was observed. The results were compared with those observed for cell adhesion after surface treatment with acidic amino acids as in Example 2-1.
  • the cell adhesion of the bone graft material after the surface treatment was reduced compared to the cell attachment of the bone graft material before the surface treatment of both the granular bone graft material (FIG. 4A) and the block bone graft material (FIG. 4B). It can be seen that the increase significantly. In the case of a block-type bone graft material, it was confirmed that cells were well attached into the pores. This is because the fine powder on the surface of the bone graft material is removed by acidic amino acid treatment, so that the surface of the bone graft material becomes suitable for cell attachment.
  • ribose (D-ribose) was dissolved in 50 ml of a 2% (w / v) collagen solution.
  • 10 g of the bone graft material in the form of granules or blocks, prepared in Example 1 was placed in a desiccator and maintained in a vacuum state for 1 hour to infiltrate the collagen solution to the inside of the bone graft material. It was left for 5 days in refrigeration (4 °C), and only bone graft material was collected and lyophilized. It was left to dry for 48 hours in a vacuum at 140 °C.
  • Example 3-2 Observation of bone regeneration of bone graft material by adding extracellular matrix-derived components
  • the bone graft material prepared in Example 3-1 was implanted in the rabbit's skull bone defect to determine the bone regeneration ability.
  • a circular bone defect with a diameter of 8 mm was formed in the cranial area of the anesthesia rabbit (Newzealand White rabbit, name: cuniculus), the collagen shield was covered with the bone defect, and the periosteum and the skin were double-sealed.
  • the animals were sacrificed, and the collected specimens were fixed in formalin solution, and then embedded in tissue to prepare specimens having a thickness of 20 ⁇ m.
  • the prepared specimens were stained with basic fuchsin and toluidine blue to prepare non-limeous specimens. The produced specimen was observed by optical microscope and photographed.
  • the left column is a 40x photo, and the right column is a magnified 100x square.
  • GB stands for bone graft and NB stands for new bone.
  • FIG. 5B bone graft material treated with extracellular matrix-derived components
  • FIG. 5A bone graft material not treated with extracellular matrix-derived components
  • FIG. 5 bone regeneration was increased (FIG. 5). This is because the extracellular matrix-derived components were introduced into the bone graft material, thereby creating a more suitable environment for regeneration of new bone.
  • Example 3-3 Observation of cell adhesion of bone graft material by acidic amino acid treatment + addition of extracellular matrix-derived components
  • Example 2-1 After treating the surface of the bone graft material with an acidic amino acid as in Example 2-1, it was observed whether the cell adhesion ability is further increased when the extracellular matrix-derived components are added. As a result, as shown in Figure 6, it was confirmed that the cell adhesion ability was further increased than when only acidic amino acid treatment (Fig. 4). This is because the roughness is reduced to an acidic amino acid and at the same time, the introduction of an extracellular matrix-derived component creates an environment similar to that in vivo, thereby making it more suitable for cell adhesion.
  • Example 4-1 Method for producing bone graft material containing bone regeneration functional peptide
  • F-moc solid-phase chemical synthesis using peptide synthesis apparatus to contain YLPRSKSKKFRRPDIQYPDAT (SEQ ID NO: 35) and STLPIPHEFSRE (SEQ ID NO: 36) as an apatite-binding ability as a sequence having bone regeneration effect derived from the N-terminal in order Synthesized by the method.
  • it was synthesized using a Rink resin (0.075 mmol / g, 100 to 200 mesh, 1% DVB crosslinking) combined with Fmoc- (9-Fluorenylmethoxycarbonyl) as a blocking group, and 50 mg of Rink resin in the synthesizer.
  • the synthesized peptide sequence was cleaved from the resin, washed, lyophilized and separated and purified by liquid chromatography. The purified peptide was confirmed molecular weight using MALDI analysis.
  • Example 4-2 Observation of bone regeneration ability by addition of bone regeneration functional peptide
  • SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 40 peptides were respectively coupled to the bone graft material, and transplanted from the skull cranial bone defect of the rabbit to confirm bone regeneration.
  • a circular bone defect with a diameter of 8 mm was formed on the skull portion of the anesthesia rabbit (Newzealand White rabbit, namely: cuniculus), and bone graft material containing bone graft material and peptide was transplanted by 50 mg per defect part. Periosteum and skin were double sealed.
  • the prepared specimens were stained with basic fuchsin and toluidine blue to prepare non-limeous specimens. The produced specimen was observed by optical microscope and photographed.
  • the bone regeneration function was observed by treating the bone regeneration functional peptide in the same manner as the above in the bone or bone-type bone graft material treated with the acidic amino acid prepared in Example 2.
  • Figure 7 shows the bone regeneration effect by the bone graft material added bone regeneration functional peptide
  • Figure 7a is a bone regeneration effect by the bone graft material in the form of particles before treatment
  • Figure 7b is a particle after treating the bone regeneration functional peptide
  • Figure 7c is a bone regeneration effect by the particulate bone graft material also added bone regeneration functional peptide after surface treatment with acidic amino acid.
  • the left column is a 40x photo
  • the right column is a magnified 100x square.
  • GB stands for bone graft
  • NB stands for new bone.
  • the bone regeneration effect is increased when the bone regeneration functional peptide is treated, the effect is further increased when both the acidic amino acid and + bone regeneration functional peptide is treated. Therefore, when the acidic amino acid treatment and bone regeneration functional peptides of the present invention are used in apatite-based bone grafts or apatite-coated implants, bone tissue regeneration effect is expected to be great.
  • the bone graft material manufacturing method according to the present invention completely removes proteins and fats from xenografts such as bovine bones, horse bones, pork bones, and provides a bone graft material composed of pure hydroxyapatite or a block-type bone graft material according to the conventional xenografts Compared with low protein content, it has excellent biocompatibility and can produce bone graft material that can be fused well without inflammatory reaction in the tissue of transplantation site. It can increase the adhesion ability of bone cells by treating the surface with acidic amino acid. By introducing physiologically active factors, it is possible to improve the conduction of new bone.
  • the bone graft material according to the present invention can be used to fill the bone damage in dentistry, orthopedics, plastic surgery, etc. to conduct regeneration of new bone, and also can be used as a tissue engineering support for culturing cells.

Abstract

The present invention relates to a xenograft-derived bone grafting substitute, which has superior biocompatibility, cell adhesion, and osteoconduction, and to a method for producing same. The method for producing the bone grafting substitute according to the present invention enables production of a bone grafting substitute which, compared with existing xenograft-derived bone grafting substitutes, has superior biocompatibility due to a lower protein content and which can fuse well in the tissues of a graft site without an inflammatory reaction, and furthermore, the method can provide improved osteoblast adhesion by treating surfaces of the bone grafting substitute with an acidic amino acid, and can provide improved conduction of newly-generated bone by introducing a bioactive factor.

Description

이종골 유래 골이식재 및 그 제조방법Xenograft-derived bone graft material and its manufacturing method
본 발명은 이종골을 사용하여 생체적합성, 세포부착능 및 골전도성이 우수한 골이식재 및 그 제조방법에 관한 것으로, 구체적으로는 소뼈, 말뼈, 돼지뼈와 같은 이종골에서 단백질과 지방을 제거하고 산성 아미노산으로 표면처리하거나 생리활성물질을 첨가하여 생체적합성과 세포부착능 및 골전도성이 우수한 입자 또는 블록 형태의 골이식재를 제조하는 방법에 관한 것이다.The present invention relates to a bone graft material having excellent biocompatibility, cell adhesion ability and bone conductivity and a method for producing the same using xenograft, specifically, to remove protein and fat from xenograft such as bovine bone, horse bone, pork bone and The present invention relates to a method for producing a bone or bone-shaped bone graft material having excellent biocompatibility, cell adhesion, and bone conductivity by surface treatment with amino acids or addition of a bioactive substance.
골이식재 (Bone grafting substitute, BGS)란 여러 가지 치과질환 또는 외상, 질병에 의한 퇴화 또는 기타 조직의 손실로 인하여 뼈 조직의 결손부가 생긴 경우, 이를 대체하여 뼈 조직 내의 공간을 충진시키고 신생골의 형성을 촉진시키기 위하여 사용하는 이식재를 말한다. 골이식재에는 생체유래 골이식재와 합성 골이식재가 있다. 생체유래 골이식재에는 자가골, 동종골 및 이종골이 있다. 자가골을 얻기 위해서는 수술을 해야하는 불편함이 있으며 너무 빨리 흡수되어 버리는 단점을 있다. 반면 동종골이식은 면역반응의 우려와 바이러스 및 질병의 감염 가능성이 있다. 인공적으로 제조된 합성골의 경우, 바이러스 및 질병의 감염 가능성은 없으나, 생체유래골에 비하여 골재생능이 떨어지고, 흡수가 너무 빠른 문제가 있다. 이러한 단점을 해결하고자 사람의 뼈와 비슷한 구조를 가진 동물의 뼈에서 유래된 이종골 이식재를 사용하고 있으며, 대표적인 상품으로 가이스트리히사 (Geistlich)의 바이오오스(BioOss)를 들 수 있다. 이종골 이식재로 개발되기 위한 요건으로는 이종단백질과 그 외의 불순물을 제거하여 순수한 아파타이트만 추출해야 한다. 면역반응을 일으킬 수 있는 이종 단백질을 제거하고, 인체의 골조직 성분과 유사한 화학조성을 지니도록 제조하는 것이 가장 중요하다. 상기 동물의 뼈를 이용하여 골이식재를 제조하는 방법은 소의 대퇴부의 골을 80℃ 내지 120℃의 끓는점을 가지는 용매를 가하여 지방질을 제거한 후, 암모니아 또는 1차 아민을 가하여 단백질 및 유기질을 제거시켜 골 미네랄을 제조한 후, 이를 250~600℃의 고온에서 수 시간 동안 가열하여 건조시키는 단계로 구성되어 있다 (미국등록특허 제5,167,961호, 미국등록특허 제5,417,975호).Bone grafting substitute (BGS) is a replacement for bone defects caused by various dental diseases or traumas, disease degeneration or other tissue loss, which fills the space in bone tissue and forms new bone. Refers to the implant used to promote it. Bone grafts include bioderived bone grafts and synthetic bone grafts. Bio-derived bone grafts include autologous bone, allogeneic bone and xenograft. In order to obtain autogenous bone, there is an inconvenience of having to perform surgery and it has the disadvantage of being absorbed too quickly. Allogeneic bone transplantation, on the other hand, has the potential for immune response and viral and disease infection. In the case of artificially manufactured synthetic bone, there is no possibility of infection of viruses and diseases, but the bone regeneration ability is lower than that of biologically derived bones, and the absorption is too fast. In order to solve this disadvantage, xenograft grafts derived from bones of animals having a structure similar to human bones are used, and a typical product is Geistlich's BioOss. The requirement for developing xenografts is to extract only pure apatite by removing heterologous proteins and other impurities. It is most important to remove heterologous proteins that can cause an immune response and to have a chemical composition similar to that of human bone tissue. Method for producing bone graft material using the bone of the animal is to remove the fat by adding a solvent having a boiling point of 80 ℃ to 120 ℃ bovine femoral bone, and then remove the protein and organic matter by adding ammonia or primary amine After preparing the mineral, it is composed of a step of drying by heating for several hours at a high temperature of 250 ~ 600 ℃ (US Patent No. 5,167,961, US Patent No. 5,417,975).
한편, 기존의 블록 형태의 골이식재를 제조하는 방법은 다공성 폴리머에 세라믹을 코팅한 후, 열처리하여 폴리머를 태우고 남은 세라믹을 소결하는 방법을 사용하였다. 사용된 세라믹은 인공적으로 합성된 골이식재로 이종골에서 유래된 골이식재와 차이가 있다 (대한민국 특허출원 제10-2000-0046973호).On the other hand, the conventional method for producing a bone-shaped bone graft material used a method of coating the ceramic on the porous polymer, heat treatment to burn the polymer and then sintering the remaining ceramic. The ceramic used is an artificially synthesized bone graft material, which is different from bone graft material derived from xenograft (Korean Patent Application No. 10-2000-0046973).
동종 또는 이종의 골조직을 블록형태로 절단하여 과산화수소 처리, 염산으로 탈회, RSC 용액 처리를 한후 진공 동결 건조하여 제조하는 방법이 있으나, 잔류하는 단백질로 인해 문제를 유발할 가능성이 있다 (대한민국 특허출원 제10-2008-0138644호).There is a method of cutting homologous or heterologous bone tissue in the form of a block, followed by hydrogen peroxide treatment, demineralization with hydrochloric acid, RSC solution treatment, and vacuum freeze drying, but there is a possibility of causing problems due to the remaining protein (Korean Patent Application No. 10 -2008-0138644).
이에, 본 발명자는 말뼈를 차아염소산나트륨으로 처리하고 가압처리 및 고온처리하여 지방질과 유기질을 효과적으로 제거시켜 병원성 물질의 감염위험이 없는 골이식재 제조방법에 대해 특허를 취득하였으나 (대한민국 등록특허공보 제 10-0842012호), 골 이식재의 세포부착능과 신생골 전도능을 더욱 개선시키기 위한 골이식재 제조방법이 요구되고 있는 실정이다. Thus, the present inventors have obtained a patent for a method for producing bone graft material which is treated with sodium hypochlorite, pressurized and heated at high temperature to effectively remove fats and organics, so that there is no risk of infection of pathogenic substances (Korea Patent Publication No. 10 -0842012), a method for producing a bone graft material for further improving the cell adhesion and new bone conduction ability of bone graft material.
이에, 본 발명자들은 단백질과 지방이 제거된 순수한 하이드록시아파타이트로 구성되고, 생체적합성, 세포부착능 및 골전도성까지 우수한 이종골 유래 골이식재를 제작하고자 예의 노력한 결과, 차아염소산나트륨(sodium hypochlorite)로 처리하고 고온으로 가열하여 단백질과 지방을 완벽히 제거시키고, 이러한 골이식재 제조 공정에서 골이식재의 표면에 산성 아미노산을 사용하여 표면의 거칠기를 감소시킴으로써 세포의 부착을 현저히 증가시킬 수 있고, 세포외기질유래 성분과 골재생 기능성 펩타이드와 같은 생리활성인자를 골이식재에 도입하여 신생골의 전도를 현저히 향상시킬 수 있음을 확인하고 본 발명을 완성하게 되었다.Accordingly, the present inventors made up of pure hydroxyapatite from which proteins and fats were removed, and as a result of diligently trying to produce a bone-derived bone graft material excellent in biocompatibility, cell adhesion ability, and bone conduction, sodium hypochlorite as sodium hypochlorite Treatment and heating to a high temperature to completely remove proteins and fats, and in this bone graft manufacturing process using acidic amino acids on the surface of the bone graft material can significantly increase the adhesion of cells by reducing the surface roughness, derived from extracellular matrix By physiologically active factors such as components and bone regeneration functional peptides were introduced into the bone graft material was confirmed that can significantly improve the conduction of new bone has been completed the present invention.
발명의 요약Summary of the Invention
본 발명의 목적은 단백질과 지방을 제거하여 순수한 하이드록시아파타이트로 구성되면서 생체적합성, 세포부착능 및 골전도성이 향상된 입자형태 또는 블록형태의 이종골 유래 골이식재 및 이의 제조방법을 제공하는데 있다.Disclosure of the Invention An object of the present invention is to provide a bone grafting bone-derived bone graft material and a method for producing the same, which are composed of pure hydroxyapatite to remove proteins and fats, thereby improving biocompatibility, cell adhesion, and bone conductivity.
상기한 목적을 달성하기 위하여, 본 발명은 다음 단계를 포함하는 입자형태의 이종골 유래 골이식재 제조방법을 제공한다:In order to achieve the above object, the present invention provides a method for producing a bone bone-derived bone graft material in the form of particles comprising the following steps:
(a) 뼈를 절단하는 단계; (b) 상기 절단된 뼈의 혈액성분을 제거하는 단계; (c) 상기 혈액성분이 제거된 뼈를 분쇄하는 단계; (d) 상기 분쇄된 뼈에서 지방질과 단백질을 1차 제거하고 건조하는 단계; (e) 상기 건조된 뼈를 유기용매에 침적시켜 진탕하여 뼈의 지방질과 단백질을 2차 제거하는 단계; (f) 상기 유기용매를 제거하고 건조시키는 단계; (g) 프라이온 및 기타 단백질을 불활성화 시키기 위하여 상기 용매가 제거된 뼈 분말을 4% 농도의 차아염소산나트륨용액으로 처리하는 단계; (h) 상기 뼈 분말에서 차아염소산나트륨용액을 제거하고 건조시키는 단계; (i) 상기 건조된 뼈 분말을 열처리하여 지질과 단백질을 완전히 제거하는 단계; (j) 상기 열처리된 뼈분말을 각각 212 내지 1000㎛ 및 1000 내지 2000㎛ 의 크기의 체공을 가지는 체로 분별하는 단계; 및 (k) 산성 아미노산으로 상기 뼈 분말의 표면을 처리하는 단계.(a) cutting the bone; (b) removing blood components of the cut bone; (c) grinding the bone from which the blood component is removed; (d) first removing fat and protein from the ground bone and drying; (e) immersing the dried bone in an organic solvent and shaking to remove the lipid and protein from the bone secondly; (f) removing and drying the organic solvent; (g) treating the solvent-free bone powder with 4% sodium hypochlorite solution to inactivate prion and other proteins; (h) removing sodium hypochlorite solution from the bone powder and drying it; (i) heat treating the dried bone powder to completely remove lipids and proteins; (j) fractionating the heat treated bone powder into sieves having a pore size of 212 to 1000 µm and 1000 to 2000 µm, respectively; And (k) treating the surface of the bone powder with acidic amino acids.
본 발명은 또한, 다음 단계를 포함하는 블록형태의 이종골 유래 골이식재 제조방법을 제공한다:The present invention also provides a block-type xenograft-derived bone graft manufacturing method comprising the following steps:
(a) 뼈를 절단하는 단계; (b) 상기 절단된 뼈의 혈액성분을 제거하는 단계; (c) 상기 혈액 성분이 제거된 뼈에서 지방질과 단백질을 1차 제거하고 건조하는 단계; (d) 상기 건조된 뼈를 유기용매에 침적시켜 진탕하여 뼈의 지방질과 단백질을 2차 제거하는 단계; (e) 상기 유기용매를 제거하고 건조시키는 단계; (f) 프라이온 및 기타 단백질을 불활성화시키기 위하여 상기 용매가 제거된 뼈를 4% 농도의 차아염소산나트륨용액으로 처리하는 단계; (g) 상기 뼈에서 차아염소산나트륨용액을 제거하고 건조시키는 단계; (h) 상기 건조된 뼈를 열처리하여 지질과 단백질을 완전히 제거하는 단계; (i) 상기 뼈를 원하는 크기의 블록으로 절단하는 단계; 및 (j) 산성 아미노산으로 상기 뼈의 표면을 처리하는 단계.(a) cutting the bone; (b) removing blood components of the cut bone; (c) first removing fat and protein from the bone from which the blood components have been removed and drying; (d) immersing the dried bone in an organic solvent and shaking to remove the lipid and protein from the bone secondly; (e) removing and drying the organic solvent; (f) treating the solvent-free bone with 4% sodium hypochlorite solution to inactivate prion and other proteins; (g) removing sodium hypochlorite solution from the bone and drying; (h) heat treating the dried bone to completely remove lipids and proteins; (i) cutting the bone into blocks of the desired size; And (j) treating the surface of the bone with acidic amino acids.
본 발명은 또한, 다음 단계를 포함하는 입자형태의 이종골 유래 골이식재 제조방법을 제공한다:The present invention also provides a method for producing bone xenograft-derived bone graft material in the form of particles comprising the following steps:
(a) 뼈를 절단하는 단계; (b) 상기 절단된 뼈의 혈액성분을 제거하는 단계; (c) 상기 혈액성분이 제거된 뼈를 분쇄하는 단계; (d) 상기 분쇄된 뼈에서 지방질과 단백질을 1차 제거하고 건조하는 단계; (e) 상기 건조된 뼈를 유기용매에 침적시켜 진탕하여 뼈의 지방질과 단백질을 2차 제거하는 단계; (f) 상기 유기용매를 제거하고 건조시키는 단계; (g) 프라이온 및 기타 단백질을 불활성화 시키기 위하여 상기 용매가 제거된 뼈 분말을 4% 농도의 차아염소산나트륨용액으로 처리하는 단계; (h) 상기 뼈 분말에서 차아염소산나트륨용액을 제거하고 건조시키는 단계; (i) 상기 건조된 뼈 분말을 열처리하여 지질과 단백질을 완전히 제거하는 단계; (j) 상기 열처리된 뼈분말을 각각 212 내지 1000㎛ 및 1000 내지 2000㎛ 의 크기의 체공을 가지는 체로 분별하는 단계; 및 (k) 상기 뼈 분말에 세포외기질 유래 성분과 골재생 기능성 펩타이드로 구성된 군에서 선택된 하나 이상의 생리활성물질을 첨가하는 단계.(a) cutting the bone; (b) removing blood components of the cut bone; (c) grinding the bone from which the blood component is removed; (d) first removing fat and protein from the ground bone and drying; (e) immersing the dried bone in an organic solvent and shaking to remove the lipid and protein from the bone secondly; (f) removing and drying the organic solvent; (g) treating the solvent-free bone powder with 4% sodium hypochlorite solution to inactivate prion and other proteins; (h) removing sodium hypochlorite solution from the bone powder and drying it; (i) heat treating the dried bone powder to completely remove lipids and proteins; (j) fractionating the heat treated bone powder into sieves having a pore size of 212 to 1000 µm and 1000 to 2000 µm, respectively; And (k) adding at least one bioactive substance selected from the group consisting of an extracellular matrix-derived component and a bone regeneration functional peptide to the bone powder.
본 발명은 또한, 다음 단계를 포함하는 블록형태의 이종골 유래 골이식재 제조방법을 제공한다:The present invention also provides a block-type xenograft-derived bone graft manufacturing method comprising the following steps:
(a) 뼈를 절단하는 단계; (b) 상기 절단된 뼈의 혈액성분을 제거하는 단계; (c) 상기 혈액 성분이 제거된 뼈에서 지방질과 단백질을 1차 제거하고 건조하는 단계; (d) 상기 건조된 뼈를 유기용매에 침적시켜 진탕하여 뼈의 지방질과 단백질을 2차 제거하는 단계; (e) 상기 유기용매를 제거하고 건조시키는 단계; (f) 프라이온 및 기타 단백질을 불활성화시키기 위하여 상기 용매가 제거된 뼈를 4% 농도의 차아염소산나트륨용액으로 처리하는 단계; (g) 상기 뼈에서 차아염소산나트륨용액을 제거하고 건조시키는 단계; (h) 상기 건조된 뼈를 열처리하여 지질과 단백질을 완전히 제거하는 단계; (i) 상기 뼈를 원하는 크기의 블록으로 절단하는 단계; 및 (j) 상기 뼈에 세포외기질 유래 성분과 골재생 기능성 펩타이드로 구성된 군에서 선택된 하나 이상의 생리활성물질을 첨가하는 단계.(a) cutting the bone; (b) removing blood components of the cut bone; (c) first removing fat and protein from the bone from which the blood components have been removed and drying; (d) immersing the dried bone in an organic solvent and shaking to remove the lipid and protein from the bone secondly; (e) removing and drying the organic solvent; (f) treating the solvent-free bone with 4% sodium hypochlorite solution to inactivate prion and other proteins; (g) removing sodium hypochlorite solution from the bone and drying; (h) heat treating the dried bone to completely remove lipids and proteins; (i) cutting the bone into blocks of the desired size; And (j) adding at least one bioactive substance selected from the group consisting of an extracellular matrix-derived component and a bone regeneration functional peptide to the bone.
본 발명은 또한, 상기 제조방법에 의해 제조된 입자형태 또는 블록형태의 이종골 유래 골이식재를 제공한다.The present invention also provides a xenograft-derived bone graft material in the form of a particle or block produced by the method.
도 1은 실시예 1에서 제조된 입자형태 및 블록형태 골이식재의 외형 및 시차주사전자현미경으로 관찰한 사진이다. Figure 1 is a photograph of the appearance and differential scanning electron microscope of the particle and block-shaped bone graft material prepared in Example 1.
도 2는 실시예 1에서 제조된 입자형태 및 블록형태 골이식재의 XRD 측정 결과를 나타낸 것이다.Figure 2 shows the XRD measurement results of the particle and block-shaped bone graft prepared in Example 1.
도 3는 실시예 1에서 제조된 입자형태 및 블록형태 골이식재에 산성아미노산으로 처리하기 전과 후의 골이식재 표면에 대한 시차주사전자형미경 사진을 나타낸 것이다. Figure 3 shows a differential scanning electron micrograph of the surface of the bone graft material before and after treatment with the acidic amino acid in the particle and block-shaped bone graft material prepared in Example 1.
도 4는 실시예 1에서 제조된 입자형태 및 블록형태 골이식재에 산성아미노산으로 처리하기 전과 후, 세포의 부착력을 관찰한 결과이다. Figure 4 is a result of observing the adhesion of the cells before and after treatment with the acidic amino acid to the particle and block-shaped bone graft prepared in Example 1.
도 5는 실시예 1에서 제조된 입자형태의 골이식재에 세포외기질을 첨가한 후, 토끼의 두개골에서의 골재생력을 관찰한 결과이다.5 is a result of observing bone regeneration in the skull of the rabbit after adding the extracellular matrix to the bone graft material in the form of particles prepared in Example 1.
도 6은 실시예 1에서 제조된 입자 및 블록 형태의 골이식재에 산성아미노산으로 처리한 뒤 세포외기질을 첨가한 후, 세포의 부착력을 관찰한 결과이다. Figure 6 is a result of observing the adhesion of the cells after the addition of the extracellular substrate after treatment with acidic amino acid to the bone and bone-shaped bone graft material prepared in Example 1.
도 7은 실시예 1에서 제조된 입자형태의 골이식재에 골재생 기능성 펩타이드를 처리한 후 골재생력을 관찰한 결과 및 표면을 산성아미노산으로 처리한 뒤 골재생 기능성 펩타이드까지 처리한 후 골재생력을 관찰한 결과를 나타낸 것이다.FIG. 7 shows the results of observing bone regeneration after treating bone regeneration functional peptides in the bone-shaped bone graft material prepared in Example 1, and treating bone regeneration ability after treating the surface with acidic amino acid and then treating bone regeneration functional peptides. One result is shown.
발명의 상세한 설명 및 구체적인 구현예Detailed Description of the Invention and Specific Embodiments
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명은 일 관점에서, 다음 단계를 포함하는 입자형태의 이종골 유래 골이식재 제조방법에 관한 것이다:The present invention relates to a method for producing bone xenograft-derived bone graft material in the form of particles comprising the following steps:
(a) 뼈를 절단하는 단계; (b) 상기 절단된 뼈의 혈액성분을 제거하는 단계; (c) 상기 혈액성분이 제거된 뼈를 분쇄하는 단계; (d) 상기 분쇄된 뼈에서 지방질과 단백질을 1차 제거하고 건조하는 단계; (e) 상기 뼈 분말을 유기용매에 침적시켜 진탕하여 뼈의 지방질과 단백질을 2차 제거하는 단계; (f) 상기 유기용매를 제거하고 건조시키는 단계; (g) 프라이온 및 기타 단백질을 불활성화 시키기 위하여 상기 용매가 제거된 뼈 분말을 4% 농도의 차아염소산나트륨용액으로 처리하는 단계; (h) 상기 뼈 분말에서 차아염소산나트륨용액을 제거하고 건조시키는 단계; (i) 상기 건조된 뼈 분말을 열처리하여 지질과 단백질을 완전히 제거하는 단계; (j) 상기 열처리된 뼈분말을 각각 212 내지 1000㎛ 및 1000 내지 2000㎛ 의 크기의 체공을 가지는 체로 분별하는 단계; 및 (k) 산성 아미노산으로 상기 뼈 분말의 표면을 처리하는 단계.(a) cutting the bone; (b) removing blood components of the cut bone; (c) grinding the bone from which the blood component is removed; (d) first removing fat and protein from the ground bone and drying; (e) immersing the bone powder in an organic solvent and shaking the secondary to remove fat and protein from the bone; (f) removing and drying the organic solvent; (g) treating the solvent-free bone powder with 4% sodium hypochlorite solution to inactivate prion and other proteins; (h) removing sodium hypochlorite solution from the bone powder and drying it; (i) heat treating the dried bone powder to completely remove lipids and proteins; (j) fractionating the heat treated bone powder into sieves having a pore size of 212 to 1000 µm and 1000 to 2000 µm, respectively; And (k) treating the surface of the bone powder with acidic amino acids.
본 발명에 있어서, 상기 혈액성분이 제거된 뼈를 분쇄하는 (c) 단계는 뼈에서 지방질과 단백질을 제거하기 이전에 시행함으로써, 뼈의 표면적을 높여 지방질과 단백질 제거를 더 용이하게 할 수 있다. In the present invention, the step (c) of crushing the bone from which the blood components have been removed may be carried out before removing the fat and the protein from the bone, thereby increasing the surface area of the bone to facilitate the removal of the fat and the protein.
본 발명에 있어서, 상기 뼈 분말을 유기용매에 침적시키는 (e)단계는 뼈 분말에 존재하는 잔여 지방질을 제거하는 단계로서, 상기 유기용매는 클로로포름과 메탄올의 혼합용매인 것을 특징으로 할 수 있고, 사용하는 혼합용매의 클로로포름:메탄올 비율은 2~8:8~2일 수 있으며, 1:1인 것이 바람직하다. In the present invention, the step (e) of depositing the bone powder in the organic solvent is a step of removing residual fat present in the bone powder, the organic solvent may be characterized in that the mixed solvent of chloroform and methanol, The chloroform: methanol ratio of the mixed solvent used may be from 2 to 8: 8 to 2, preferably 1: 1.
본 발명에 있어서, 상기 (g)단계의 차아염소산나트륨 용액으로 처리하는 단계는 뼈 분말의 잔여 단백질을 수용성 상태로 분해하여 제거시키고, 광우병을 유발하는 변성 프라이온 단백질을 불활성화 시키는 단계로서, 사용하는 차아염소산나트륨은 2~20%(w/v) 농도의 용액을 사용할 수 있으며, 바람직하게는 4%(w/v) 농도의 차아염소산나트륨 용액을 사용하는 것이 가장 바람직하다. 또한, 상기 차아염소산나트륨을 처리하는 시간은 프라이온 및 잔여 단백질을 제거하기 위하여 72시간 이상 처리하는 것이 바람직하다.In the present invention, the step of treating with the sodium hypochlorite solution of step (g) is used to decompose and remove the residual protein of bone powder in a water-soluble state, inactivating the denatured prion protein causing mad cow disease, Sodium hypochlorite to be used may be a solution of a concentration of 2 to 20% (w / v), preferably a sodium hypochlorite solution of 4% (w / v) concentration is most preferred. In addition, the time for treating the sodium hypochlorite is preferably treated for 72 hours or more to remove the prion and residual protein.
본 발명에 있어서, 상기 (i) 단계의 열처리 온도는 550℃~ 650℃일 수 있다.In the present invention, the heat treatment temperature of the step (i) may be 550 ℃ ~ 650 ℃.
본 발명에 있어서, 상기 산성 아미노산으로 뼈 분말 표면을 처리하는 (k) 단계는 골이식재의 표면 거칠기를 조정하여 세포 부착을 증가시킬 수 있다. 상기 산성아미노산으로는 글루탐산(Glutamic acid)과 아스파르트산(aspartic acid)을 사용할 수 있다. 산성아미노산의 처리농도는 1-20% (w/v)을 사용할 수 있으며, 더욱 바람직하게는 5-10% (w/v)을 사용할 수 있다. 처리시간은 5-18시간으로 할 수 있으며, 더욱 바람직하게는 8-12시간으로 할 수 있다.In the present invention, the step (k) of treating the bone powder surface with the acidic amino acid may increase cell adhesion by adjusting the surface roughness of the bone graft material. As the acidic amino acid, glutamic acid and aspartic acid may be used. The treatment concentration of the acidic amino acid may be 1-20% (w / v), more preferably 5-10% (w / v). The treatment time may be 5-18 hours, more preferably 8-12 hours.
본 발명은 또 다른 관점에서, 다음 단계를 포함하는 블록형태의 이종골 유래 골이식재 제조방법을 제공한다:In another aspect, the present invention provides a method for producing a bone-shaped xenograft-derived bone graft material comprising the following steps:
(a) 뼈를 절단하는 단계; (b) 상기 절단된 뼈의 혈액성분을 제거하는 단계; (c) 상기 혈액 성분이 제거된 뼈에서 지방질과 단백질을 1차 제거하고 건조하는 단계; (d) 상기 건조된 뼈를 유기용매에 침적시켜 진탕하여 뼈의 지방질과 단백질을 2차 제거하는 단계; (e) 상기 유기용매를 제거하고 건조시키는 단계; (f) 프라이온 및 기타 단백질을 불활성화시키기 위하여 상기 용매가 제거된 뼈를 4% 농도의 차아염소산나트륨용액으로 처리하는 단계; (g) 상기 뼈에서 차아염소산나트륨용액을 제거하고 건조시키는 단계; (h) 상기 건조된 뼈를 열처리하여 지질과 단백질을 완전히 제거하는 단계; (i) 상기 뼈를 원하는 크기의 블록으로 절단하는 단계; 및 (j) 산성 아미노산으로 상기 뼈의 표면을 처리하는 단계.(a) cutting the bone; (b) removing blood components of the cut bone; (c) first removing fat and protein from the bone from which the blood components have been removed and drying; (d) immersing the dried bone in an organic solvent and shaking to remove the lipid and protein from the bone secondly; (e) removing and drying the organic solvent; (f) treating the solvent-free bone with 4% sodium hypochlorite solution to inactivate prion and other proteins; (g) removing sodium hypochlorite solution from the bone and drying; (h) heat treating the dried bone to completely remove lipids and proteins; (i) cutting the bone into blocks of the desired size; And (j) treating the surface of the bone with acidic amino acids.
본 발명에 있어서, 상기 블록형태의 이종골 유래 골이식재 제조방법은 입자형태의 골이식재 제조방법과 달리, 뼈를 분쇄하는 (c) 단계를 포함하고 있지 않으며, 뼈에서 지질과 단백질을 제거한 뒤 원하는 크기의 블록으로 절단하는 단계를 포함하고 있다.In the present invention, the method for producing bone-derived bone graft material in the form of a block, unlike the method for producing bone graft material in the form of a particle, does not include the step of crushing the bone, and removes the lipid and protein from the bone. Cutting into blocks of size.
본 발명에 있어서, 상기 산성 아미노산으로 뼈의 표면을 처리하는 (j) 단계는 입자형태와 블록형태 골이식재 둘 모두에 이용될 수 있으며, 블록형태의 골이식재의 표면 거칠기를 조정하여 세포 부착을 증가시킬 수 있다. 상기 산성아미노산으로는 글루탐산(Glutamic acid)과 아스파르트산(aspartic acid)을 사용할 수 있다. 산성아미노산의 처리농도는 1-20% (w/v)을 사용할 수 있으며, 더욱 바람직하게는 5-10% (w/v)을 사용할 수 있다. 처리시간은 5-18시간으로 할 수 있으며, 더욱 바람직하게는 8-12시간으로 할 수 있다.In the present invention, the step (j) of treating the surface of the bone with the acidic amino acid can be used for both particle and block-type bone graft material, and increases the cell adhesion by adjusting the surface roughness of the block-type bone graft material. You can. As the acidic amino acid, glutamic acid and aspartic acid may be used. The treatment concentration of the acidic amino acid may be 1-20% (w / v), more preferably 5-10% (w / v). The treatment time may be 5-18 hours, more preferably 8-12 hours.
본 발명은 일 관점에서, 다음 단계를 포함하는 입자형태의 이종골 유래 골이식재 제조방법에 관한 것이다:The present invention relates to a method for producing bone xenograft-derived bone graft material in the form of particles comprising the following steps:
(a) 뼈를 절단하는 단계; (b) 상기 절단된 뼈의 혈액성분을 제거하는 단계; (c) 상기 혈액성분이 제거된 뼈를 분쇄하는 단계; (d) 상기 분쇄된 뼈에서 지방질과 단백질을 1차 제거하고 건조하는 단계; (e) 상기 건조된 뼈를 유기용매에 침적시켜 진탕하여 뼈의 지방질과 단백질을 2차 제거하는 단계; (f) 상기 유기용매를 제거하고 건조시키는 단계; (g) 프라이온 및 기타 단백질을 불활성화 시키기 위하여 상기 용매가 제거된 뼈 분말을 4% 농도의 차아염소산나트륨용액으로 처리하는 단계; (h) 상기 뼈 분말에서 차아염소산나트륨용액을 제거하고 건조시키는 단계; (i) 상기 건조된 뼈 분말을 열처리하여 지질과 단백질을 완전히 제거하는 단계; (j) 상기 열처리된 뼈분말을 각각 212 내지 1000㎛ 및 1000 내지 2000㎛ 의 크기의 체공을 가지는 체로 분별하는 단계; 및 (k) 상기 뼈 분말에 세포외기질 유래 성분과 골재생 기능성 펩타이드로 구성된 군에서 선택된 하나 이상의 생리활성물질을 첨가하는 단계.(a) cutting the bone; (b) removing blood components of the cut bone; (c) grinding the bone from which the blood component is removed; (d) first removing fat and protein from the ground bone and drying; (e) immersing the dried bone in an organic solvent and shaking to remove the lipid and protein from the bone secondly; (f) removing and drying the organic solvent; (g) treating the solvent-free bone powder with 4% sodium hypochlorite solution to inactivate prion and other proteins; (h) removing sodium hypochlorite solution from the bone powder and drying it; (i) heat treating the dried bone powder to completely remove lipids and proteins; (j) fractionating the heat treated bone powder into sieves having a pore size of 212 to 1000 µm and 1000 to 2000 µm, respectively; And (k) adding at least one bioactive substance selected from the group consisting of an extracellular matrix-derived component and a bone regeneration functional peptide to the bone powder.
본 발명에 있어서, 상기 방법은 (j)와 (k) 단계 사이에 산성 아미노산으로 상기 뼈의 표면을 처리하는 단계를 추가로 포함할 수 있다. 산성 아미노산으로 뼈의 표면을 처리하고, 세포외기질 유래 성분과 골재생 기능성 펩타이드로 구성된 군에서 선택된 하나 이상의 생리활성물질을 첨가하면, 세포부착이 증가함과 더불어 골재생능도 높아지는 효과를 얻을 수 있다.In the present invention, the method may further comprise treating the surface of the bone with an acidic amino acid between steps (j) and (k). By treating the surface of bone with acidic amino acids and adding one or more physiologically active substances selected from the group consisting of extracellular matrix-derived components and bone regeneration functional peptides, it is possible to increase cell adhesion and increase bone regeneration. .
본 발명은 또 다른 관점에서, 다음 단계를 포함하는 블록형태의 이종골 유래 골이식재 제조방법을 제공한다:In another aspect, the present invention provides a method for producing a bone-shaped xenograft-derived bone graft material comprising the following steps:
(a) 뼈를 절단하는 단계; (b) 상기 절단된 뼈의 혈액성분을 제거하는 단계; (c) 상기 혈액 성분이 제거된 뼈에서 지방질과 단백질을 1차 제거하고 건조하는 단계; (d) 상기 건조된 뼈를 유기용매에 침적시켜 진탕하여 뼈의 지방질과 단백질을 2차 제거하는 단계; (e) 상기 유기용매를 제거하고 건조시키는 단계; (f) 프라이온 및 기타 단백질을 불활성화시키기 위하여 상기 용매가 제거된 뼈를 4% 농도의 차아염소산나트륨용액으로 처리하는 단계; (g) 상기 뼈에서 차아염소산나트륨용액을 제거하고 건조시키는 단계; (h) 상기 건조된 뼈를 열처리하여 지질과 단백질을 완전히 제거하는 단계; (i) 상기 뼈를 원하는 크기의 블록으로 절단하는 단계; 및 (j) 상기 뼈에 세포외기질 유래 성분과 골재생 기능성 펩타이드로 구성된 군에서 선택된 하나 이상의 생리활성물질을 첨가하는 단계.(a) cutting the bone; (b) removing blood components of the cut bone; (c) first removing fat and protein from the bone from which the blood components have been removed and drying; (d) immersing the dried bone in an organic solvent and shaking to remove the lipid and protein from the bone secondly; (e) removing and drying the organic solvent; (f) treating the solvent-free bone with 4% sodium hypochlorite solution to inactivate prion and other proteins; (g) removing sodium hypochlorite solution from the bone and drying; (h) heat treating the dried bone to completely remove lipids and proteins; (i) cutting the bone into blocks of the desired size; And (j) adding at least one bioactive substance selected from the group consisting of an extracellular matrix-derived component and a bone regeneration functional peptide to the bone.
본 발명에 있어서, 상기 방법은 (i)와 (j) 단계 사이에 산성 아미노산으로 상기 뼈의 표면을 처리하는 단계를 추가로 포함할 수 있다. 산성 아미노산으로 뼈의 표면을 처리하고, 세포외기질 유래 성분과 골재생 기능성 펩타이드로 구성된 군에서 선택된 하나 이상의 생리활성물질을 첨가하면, 세포부착이 증가함과 더불어 골재생능도 높아지는 효과를 얻을 수 있다.In the present invention, the method may further comprise treating the surface of the bone with an acidic amino acid between steps (i) and (j). By treating the surface of bone with acidic amino acids and adding one or more physiologically active substances selected from the group consisting of extracellular matrix-derived components and bone regeneration functional peptides, it is possible to increase cell adhesion and increase bone regeneration. .
본 발명에 있어서, 상기 세포외기질 유래 성분과 골재생 기능성 펩타이드로 구성된 군에서 선택된 하나 이상의 생리활성물질을 첨가하는 단계에 의해 신생골 전도가 촉진될 수 있다. In the present invention, new bone conduction can be promoted by adding one or more physiologically active substances selected from the group consisting of the extracellular matrix-derived component and the bone regeneration functional peptide.
상기 세포외기질 유래 성분은 콜라겐(collagen), 피브로넥틴(fibronectin), 라미닌(laminin), 히알루론산(hyaluronic acid) 및 글리코스아미노글리칸(glycosaminoglycans)으로 구성된 군에서 선택될 수 있다. 세포외기질 유래성분은 물리적인 흡착과 수소결합 등을 통해 골이식재와 결합하며, 화학적인 가교제를 사용하여 결합력을 더 강하게 할 수 있다. The extracellular matrix-derived component may be selected from the group consisting of collagen, fibronectin, laminin, hyaluronic acid, and glycosaminoglycans. The extracellular matrix-derived component is combined with bone graft material through physical adsorption and hydrogen bonding, and can use a chemical crosslinking agent to strengthen the binding force.
상기 골재생 기능성 펩타이드는 (i) 골재생능을 가지는 펩타이드와 (ii) 아파타이트 결합능을 가지는 펩타이드가 결합된 펩타이드인 것을 특징으로 할 수 있다. (i) 골재생능을 가지는 펩타이드는 서열번호 1 내지 서열번호 35의 아미노산 서열로 구성된 군에서 선택될 수 있으며, (ii) 아파타이트 결합능을 가지는 펩타이드는 서열번호 36 내지 서열번호 39의 아미노산 서열로 구성된 군에서 선택될 수 있다. The bone regeneration functional peptide may be characterized in that (i) a peptide having bone regeneration ability and (ii) a peptide having an apatite binding ability. (i) the peptide having bone regeneration ability may be selected from the group consisting of amino acid sequences of SEQ ID NO: 1 to SEQ ID NO: 35, (ii) the peptide having apatite binding capacity is a group consisting of the amino acid sequence of SEQ ID NO: 36 to SEQ ID NO: 39 Can be selected from.
구체적으로, (i) 상기 골조직재생능 가지는 펩타이드는 (a)골형성 단백질(bone morphogenetic protein, BMP)-2, 4 및 6의 아미노산 서열 중 각각 2-18위치의 아미노산 서열 [BMP-2의 경우 (서열번호1), BMP-4의 경우(서열번호 2) 및 BMP-6의 경우 (서열번호 3)], BMP-2의 16-34위치의 아미노산 서열 (서열번호 4), 47-71위치의 아미노산 서열 (서열번호 5), 73-92위치의 아미노산 서열 (서열번호 6), 88-105위치의 아미노산 서열 (서열번호 7), 83-302위치의 아미노산 서열 (서열번호 8), 335-353위치의 아미노산 서열 (서열번호 9) 및 370-396위치의 아미노산 서열 (서열번호 10); BMP-4의 74-93위치의 아미노산 서열 (서열번호 11), 293-313위치의 아미노산 서열 (서열번호 12), 360-379위치의 아미노산서열 (서열번호 13) 및 382-402위치의 아미노산서열 (서열번호 14) BMP-6의 91-110위치의 아미노산서열 (서열번호 15), 407-418위치의 아미노산서열 (서열번호 16), 472-490위치의 아미노산서열 (서열번호 17) 및 487-510위치의 아미노산서열 (서열번호 18) 및 BMP-7의 98-117위치의 아미노산서열 (서열번호 19), 320-340위치의 아미노산 서열 (서열번호 20), 400-409위치의 아미노산 서열 (서열번호 21) 및 405-423위치의 아미노산 서열 (서열번호 22);Specifically, (i) the peptide having bone tissue regeneration ability is (a) the amino acid sequence of the amino acid sequence of position 2-18 of each of the amino acid sequence of bone morphogenetic protein (BMP) -2, 4 and 6 [BMP-2 (SEQ ID NO: 1), BMP-4 (SEQ ID NO: 2) and BMP-6 (SEQ ID NO: 3)], amino acid sequence of positions 16-34 of BMP-2 (SEQ ID NO: 4), positions 47-71 Amino acid sequence (SEQ ID NO: 5), amino acid sequence 73-92 (SEQ ID NO: 6), amino acid sequence 88-105 (SEQ ID NO: 7), amino acid sequence 83-302 (SEQ ID NO: 8), 335- The amino acid sequence of positions 353 (SEQ ID NO: 9) and the amino acid sequence of positions 370-396 (SEQ ID NO: 10); Amino acid sequence at positions 74-93 (SEQ ID NO: 11), amino acid sequence at positions 293-313 (SEQ ID NO: 12), amino acid sequence at positions 360-379 (SEQ ID NO: 13), and amino acid sequence at positions 382-402; (SEQ ID NO: 14) Amino acid sequence of positions 91-110 (SEQ ID NO: 15), amino acid sequence of positions 407-418 (SEQ ID NO: 16), amino acid sequence of positions 472-490 (SEQ ID NO: 17), and 487- Amino acid sequence at position 510 (SEQ ID NO: 18) and amino acid sequence at position 98-117 (SEQ ID NO: 19) of BMP-7, amino acid sequence at position 320-340 (SEQ ID NO: 20), amino acid sequence at position 400-409 (SEQ ID NO: Number 21) and the amino acid sequence at positions 405-423 (SEQ ID NO: 22);
(b)bone sialoprotein II(BSP II)의 62-69위치의 아미노산 서열 (서열번호 23), 140-148위치의 아미노산 서열 (서열번호 24), 259-277위치의 아미노산 서열 (서열번호 25), 199-204위치의 아미노산 서열 (서열번호 26), 151-158위치의 아미노산 서열 (서열번호 27), 275-291위치의 아미노산 서열 (서열번호 28), 20-28위치의 아미노산 (서열번호 29), 65-90위치의 아미노산 서열 (서열번호 30), 150-170위치의 아미노산 (서열번호 31) 및 280-290위치의 아미노산 서열 (서열번호 32); (b) amino acid sequence at positions 62-69 of the bone sialoprotein II (BSP II) (SEQ ID NO: 23), amino acid sequence at positions 140-148 (SEQ ID NO: 24), amino acid sequence at positions 259-277 (SEQ ID NO: 25), Amino acid sequence at positions 199-204 (SEQ ID NO: 26), amino acid sequence at positions 151-158 (SEQ ID NO: 27), amino acid sequence at positions 275-291 (SEQ ID NO: 28), amino acid at positions 20-28 (SEQ ID NO: 29) , Amino acid sequences 65-90 (SEQ ID NO: 30), amino acids 150-170 (SEQ ID NO: 31) and amino acid sequences 280-290 (SEQ ID NO: 32);
(c) bone sialoprotein I(BSP I, osteopontin)의 149-169 위치의 아미노산 서열 YGLRSKS (서열번호 33), KKFRRPDIQYPDAT (서열번호 34) 및 YGLRSKSKKFRRPDIQYPDAT (서열번호 35) 로 구성된 군에서 선택되는 어느 하나의 이상의 펩타이드인 것을 특징으로 할 수 있다. (c) at least one selected from the group consisting of amino acid sequences YGLRSKS (SEQ ID NO: 33), KKFRRPDIQYPDAT (SEQ ID NO: 34) and YGLRSKSKKFRRPDIQYPDAT (SEQ ID NO: 35) at positions 149-169 of bone sialoprotein I (BSP I, osteopontin); It may be characterized in that the peptide.
(ii) 아파타이트 무기질에 결합하는 펩타이드는 서열번호36 STLPIPHEFSRE), 서열번호 37 (VTKHLNQISQSY), 서열번호 38 (SVSVGMKPSPRP) 및 서열번호 39 (NRVFEVLRCVFD)로 구성된 군에서 선택될 수 있으며, 골조직 재생능을 가지는 펩타이드의 N-말단에 화학적으로 부가되어, 뼈의 구성성분인 아파타이트에 대한 결합능을 증가시켜 골이식재 또는 아파타이트가 코팅된 임플란트 표면 등에 안정하게 결합할 수 있다.(ii) The peptide binding to the apatite mineral may be selected from the group consisting of SEQ ID NO: 36 STLPIPHEFSRE, SEQ ID NO: 37 (VTKHLNQISQSY), SEQ ID NO: 38 (SVSVGMKPSPRP), and SEQ ID NO: 39 (NRVFEVLRCVFD), and have bone tissue regeneration ability It is chemically added to the N-terminus of the peptide to increase the binding ability to apatite, which is a constituent of bone, so that it can stably bind to bone graft material or apatite coated implant surface and the like.
본 발명에 있어서, 상기 골재생 기능성 펩타이드는 (i) 골재생능을 가지는 펩타이드와 (ii) 아파타이트 결합능을 가지는 펩타이드가 결합된 펩타이드로서, 아파타이트 표면에 결합하여 안정한 상태로 존재가 가능하여 치과용 또는 정형외과용 골대체제 및 아파타이트가 코팅된 금속, 천연고분자, 합성고분자에 적용될 수 있으며, 골조직 재생에 관련된 세포의 이행, 증식 및 분화를 촉진하여 최종적으로 골조직재생력을 극대화시킬 수 있고, 생체 내에 이식하였을 때 펩타이드 활성을 유지한 채로 안정하게 존재할 수 있어 이를 이용한 골조직 재생 치료기술의 발전에 유용하다.In the present invention, the bone regeneration functional peptide is (i) a peptide having bone regeneration ability and (ii) a peptide having an apatite binding ability is combined, it can be present in a stable state by binding to the surface of the apatite dental or orthopedic It can be applied to surgical bone substitutes and apatite-coated metals, natural polymers, and synthetic polymers, and promotes the transfer, proliferation and differentiation of cells related to bone tissue regeneration, and finally maximizes bone tissue regeneration ability. It can exist stably while maintaining the peptide activity is useful for the development of bone tissue regeneration treatment technology using the same.
본 발명에 있어서, 상기 골재생 기능성 펩타이드는 아파타이트 표면에 안정적으로 고정됨으로써, 펩타이드의 안정성이 증가하고 장기간 동안 활성을 유지할 수 있다. 따라서, 체내에 이식하였을 때 이식된 국소에서 안정하게 유지됨으로써, 펩타이드에 의한 골재생 효과가 지속될 수 있으며 이는 골조직 및 치주조직 재생 치료에 적합한 특징을 갖는다.In the present invention, the bone regeneration functional peptide is stably fixed to the apatite surface, thereby increasing the stability of the peptide and can maintain activity for a long time. Thus, when implanted into the body, by maintaining a stable in the transplanted local, the bone regeneration effect by the peptide can be sustained, which has characteristics suitable for the treatment of bone and periodontal tissue regeneration.
본 발명에 있어서, 상기 골재생 기능성 펩타이드는 생물유래 수산화인회석 골미네랄, 합성 수산화아파타이트, 탄산아파타이트, 트리칼슘인산 및 모노칼슘인산으로 구성된 군에서 선택되는 아파타이트에 결합할 수 있다. In the present invention, the bone regeneration functional peptide can bind to apatite selected from the group consisting of bio-derived hydroxyapatite bone mineral, synthetic apatite hydroxide, apatite carbonate, tricalcium phosphate and monocalcium phosphate.
본 발명에 있어서, 상기 골재생 기능성 펩타이드의 용량은 골이식재의 단위무게당(1g) 1-100mg이 함유되도록 하는 것이 바람직하며, 더욱 바람직하게는 골이식재의 단위무게당 20-80mg을 함유할 수 있다.In the present invention, the dose of the bone regeneration functional peptide is preferably to contain 1-100mg per unit weight (1g) of bone graft material, more preferably may contain 20-80mg per unit weight of bone graft material have.
본 발명의 일 실시예에서는 서열번호 36의 아파타이트 결합능을 가지는 펩타이드와 서열번호 35의 골조직 재생능을 가지는 펩타이드를 결합시켜 서열번호 40의 골재생 기능성 펩타이드를 제작하고, 제작된 펩타이드가 골이식재에 안정적으로 결합하는지를 확인하였으며, 아파타이트 표면에 상기 펩타이드가 안정적으로 고정된 골이식재를 골결손부에 이식하여 골재생력을 확인하였다.In one embodiment of the present invention by combining the peptide having the apatite binding capacity of SEQ ID NO: 36 and the peptide having bone tissue regeneration ability of SEQ ID NO: 35 to prepare a bone regeneration functional peptide of SEQ ID NO: 40, the produced peptide is stable to bone graft material It was confirmed that the binding, and the bone graft material in which the peptide is stably fixed to the surface of the apatite was implanted into the bone defect to confirm the bone regeneration ability.
본 발명에 있어서, 상기 이종골은 소뼈, 말뼈 및 돼지뼈로 구성된 군에서 선택된 것을 특징으로 할 수 있다.In the present invention, the xylem may be characterized in that selected from the group consisting of bovine bone, horse bone and pork bone.
본 발명은 또 다른 관점에서, 상기 이종골 유래 골이식재 제조방법에 의해 제조된 입자형태 또는 블록형태의 골이식재에 관한 것이다.In still another aspect, the present invention relates to a bone graft material in the form of a particle or block prepared by the method for producing a bone-derived bone graft.
본 발명에 있어서, 상기 "골이식재(bone graft substitute)"는 골조직 내의 공간을 충진하기 위한 물질이며, 골이식재는 압착, 압축, 가압접촉, 패킹, 압박, 굳힘 등의 방법을 사용하여, 퍼티, 페이스트, 주형가능한 스트립, 블록, 칩 등의 형태로 성형하여 사용할 수 있고, 화학적 첨가물을 이용하여 겔, 과립, 페이스트, 정제, 펠렛 등의 형태로 제형화하여 사용할 수 있으며, 분말 형태 그대로 사용하는 것도 가능하다.In the present invention, the "bone graft substitute" is a material for filling the space in the bone tissue, the bone graft material using a method such as compression, compression, pressure contact, packing, pressing, hardening, putty, It can be used in the form of pastes, moldable strips, blocks, chips, etc., and can be formulated in the form of gels, granules, pastes, tablets, pellets, etc. using chemical additives. It is possible.
상기와 같이 골이식재를 제형화하여 사용할 경우에는 골 성장을 촉진하는 성장인자, 피브린, 골 형태 형성인자, 골성장제, 화학요법제, 항생제, 진통제, 비스포스포네이트, 스트론툼염, 불소염, 마그네슘염 및 나트륨 염 등을 사용할 수 있다. 상기 성장인자로는 BMP(bone morphogenic protein), PDGF(Platelet-derived growth factor), TGF-beta(Transgenic growth factor), IGF-I(Insulin-like growth factor), IGF-II, FGF(Fibroblast growth factor) 및 BGDF-II(beta-2-microglobulin) 등을 사용할 수 있다. 상기 골 형태 형성인자로는 오스테오칼신(osteocalcin), 본사이알로프로테인(bonesialo protein), 오스테오게닌(osteogenin), BMP 등을 사용할 수 있다. 상기 골 성장제는 인체에 무해하고 골 성장을 촉진하는 물질이라면 제한 없이 사용이 가능하며, 골 형성을 증진시키는 펩타이드나 핵산, 골형성을 억제하는 물질의 길항제 등을 사용할 수 있다.When the bone graft material is formulated as described above, growth factor, fibrin, bone morphogenesis factor, bone growth agent, chemotherapeutic agent, antibiotic, analgesic agent, bisphosphonate, strontum salt, fluoride salt, magnesium salt to promote bone growth And sodium salts. The growth factors include bone morphogenic protein (BMP), platelet-derived growth factor (PDGF), transgenic growth factor (TGF-beta), insulin-like growth factor (IGF-I), IGF-II, and fibroblast growth factor (FGF). ) And BGDF-II (beta-2-microglobulin) can be used. As the bone morphogenesis factor, osteocalcin, headquarter alloprotein, bonesialo protein, osteogenin, BMP, and the like can be used. The bone growth agent may be used without limitation as long as it is harmless to the human body and promotes bone growth, and may use peptides or nucleic acids that promote bone formation and antagonists of substances that inhibit bone formation.
본 발명에서 골이식재를 제형화하는데 사용되는 화학적 첨가물은 히알루론산(hyaluronic acid), 콜라겐, 수산화인회석, 탄산칼슘, 인산칼슘, 황산칼슘, 세라믹 등이 있으며, 상기 첨가물의 종류에 따라 겔, 스트립, 과립, 칩, 펠렛, 정제, 페이스트 등의 형태로 제형이 가능하다.Chemical additives used to formulate bone graft material in the present invention are hyaluronic acid (hyaluronic acid), collagen, hydroxyapatite, calcium carbonate, calcium phosphate, calcium sulfate, ceramics, etc. Formulation is possible in the form of granules, chips, pellets, tablets, pastes and the like.
본 발명의 골이식재의 사용의 편리성을 증가시키기 위한 젤 또는 페이스트 형태의 약제학적 조성물로 제조하기 위해 콜라겐, 젤라틴, 키토산, 알지네이트, 카복시메틸셀룰로오스, 하이드록시프로필메틸셀룰로오스, 폴리에틸렌글리콜, 폴록사머, 폴리락트산, 폴리락틱글리콜산, 폴리카프로락톤 등을 포함하는 생체적합성 고분자를 사용할 수 있다.Collagen, gelatin, chitosan, alginate, carboxymethylcellulose, hydroxypropylmethylcellulose, polyethyleneglycol, poloxamer, to prepare pharmaceutical compositions in the form of gels or pastes to increase the ease of use of the bone graft material of the present invention, Biocompatible polymers including polylactic acid, polylactic glycolic acid, polycaprolactone and the like can be used.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1 : 골이식재의 제조Example 1 Preparation of Bone Graft Materials
실시예 1-1 : 입자형태 골이식재의 제조방법Example 1-1: Method for producing a granular bone graft material
[전처리 및 분쇄공정][Pretreatment and Grinding Process]
소의 대퇴부 부위에서 취득한 뼈를 골절단기를 이용하여 약 2cm3크기로 절단하였다. 상기 절단된 뼈 조각을 탈이온수에서 24시간 동안 침적하여 뼈에 존재하는 혈액 성분을 제거하였다. 혈액성분이 제거된 뼈를 분쇄기를 이용하여 0.7mm 이하의 크기가 되도록 분쇄하였다. 상기 뼈 분말을 12시간마다 탈이온수를 교환하며 72시간 동안 끓여, 뼈에 존재하는 지방질과 단백질을 1차적으로 제거하였다. 상기 1차적으로 지방질과 단백질이 제거된 뼈 조각을 60℃의 오븐에서 24시간 동안 완전히 건조시켰다. The bone obtained from the femoral region of the cow was cut to a size of about 2 cm 3 using a bone cutter. The cut bone pieces were immersed in deionized water for 24 hours to remove blood components present in the bone. The bone from which blood components were removed was ground to a size of 0.7 mm or less using a grinder. The bone powder was boiled for 72 hours while deionized water was exchanged every 12 hours to remove the fat and protein present in the bone. The bone fragments from which the fat and protein were first removed were completely dried in an oven at 60 ° C. for 24 hours.
[탈지처리 공정][Degreasing process]
건조된 뼈 분말 1g당 20ml의 클로로포름과 메탄올이 1:1 부피비로 혼합된 용매를 첨가하고 120rpm의 회전 속도로 24시간 동안 진탕하여 탈지처리를 수행하였다. 탈지처리가 완료된 뼈 분말 중 잔존하는 용매를 제거하기 위하여 뼈 분말 1g 당 50g의 비율로 탈이온수를 첨가한 후 120rpm으로 12시간 동안 진탕하여 분말에 잔존하는 용매를 제거하였다. 이때, 매 2시간 마다 새로운 탈이온수로 교환하여 수세효율을 높였다. 수세가 완료된 뼈 분말은 60℃의 오븐에서 완전히 건조시켰다.A solvent in which 20 ml of chloroform and methanol were mixed in a 1: 1 volume ratio was added per 1 g of the dried bone powder, and then degreased by shaking for 24 hours at a rotation speed of 120 rpm. Deionized water was added at a rate of 50 g per 1 g of bone powder in order to remove the remaining solvent in the bone powder completed degreasing and then shaken at 120 rpm for 12 hours to remove the solvent remaining in the powder. At this time, the flushing efficiency was increased by replacing with fresh deionized water every two hours. The washed bone powder was completely dried in an oven at 60 ℃.
[탈단백 처리공정]Deproteinization Process
탈지 처리가 완료된 건조 뼈 분말 1g당 25ml의 4%(w/v) 농도의 차아염소산 나트륨(sodium hypochlorite) 용액을 첨가하고 120rpm의 회전속도로 24시간 동안 진탕하여 뼈 분말 중에 존재하는 단백질을 제거하였다. 탈단백 처리가 완료된 뼈 분말에 잔존하는 용매를 제거하기 위하여 뼈 분말 1g 당 50g의 탈이온수를 첨가하고 120rpm에서 72시간동안 진탕하여 잔존하는 차아염소산 나트륨을 제거하였다. 이때, 처음 12시간 동안은 매 2시간 마다 새로운 탈이온수로 교환하여 주었으며, 그 후에는 매 12시간 마다 새로운 탈이온수로 교환하였다. 수세가 완료된 뼈 분말은 60℃의 오븐에서 완전히 건조시켰다.25 g of 4% (w / v) sodium hypochlorite solution was added per 1 g of dried bone powder degreased and shaken for 24 hours at a rotational speed of 120 rpm to remove proteins present in the bone powder. . To remove the remaining solvent in the deproteinized bone powder, 50 g of deionized water was added per 1 g of bone powder and shaken at 120 rpm for 72 hours to remove the remaining sodium hypochlorite. At this time, the first 12 hours were exchanged with fresh deionized water every 2 hours, after which every 12 hours was replaced with fresh deionized water. The washed bone powder was completely dried in an oven at 60 ℃.
[열처리 공정][Heat treatment process]
탈지와 탈단백 처리가 완료된 건조 뼈 분말은 고온 열처리하여 잔존하는 지질과 단백질을 제거하였다. 열처리에 사용되는 전기로는 분당 2도로 승온시켰으며, 뼈 분말은 600℃에서 3시간 동안 열처리시킨 후 노냉시켰다.The dried bone powder, which had been degreased and deproteinized, was subjected to high temperature heat treatment to remove remaining lipids and proteins. The electric furnace used for the heat treatment was heated to 2 degrees per minute, the bone powder was heat-treated at 600 ℃ for 3 hours and then cooled.
[분별 공정][Separation process]
열처리가 완료된 뼈 분말은 212~1000㎛, 1000~2000㎛ 크기의 체를 사용하여 거르고, 걸러진 뼈 분말을 탈이온수로 수차례 수세하여 표면에 잔존하는 미세 분진들을 제거한 후 60℃ 오븐에서 24시간 건조하고 수득하여 골이식재로 사용하였다. After the heat treatment is completed, the bone powder is filtered using a sieve having a size of 212 to 1000 µm and 1000 to 2000 µm, and the filtered bone powder is washed several times with deionized water to remove the fine dust remaining on the surface and dried in an oven at 60 ° C for 24 hours. It was obtained and used as a bone graft material.
실시예 1-2 : 블록형태 골이식재의 제조방법Example 1-2: Method for producing a block bone graft material
[전처리공정][Pretreatment Process]
말의 대퇴부 부위에서 취득한 뼈를 골절단기를 이용하여 8cm3크기로 절단하였다. 상기 절단된 뼈 조각을 정제수에서 6~15시간 동안 침지 후 정제수를 갈아주고 6~15시간 동안 다시 침지하는 방법으로 뼈 조각에 존재하는 혈액 성분을 제거하였다. 상기 정제수로 혈액이 제거된 뼈 조각을 1일 3시간이상 가열, 최대 6시간으로 제한하였다. 이 방법은 최소 72시간에서 최대 80시간동안 반복하여 뼈 조각에 존재하는 지방질과 단백질을 1차적으로 제거하였다. 상기 1차적으로 지방질과 단백질이 제거된 뼈 조각을 120℃ 12시간 건조하였다. 건조된 뼈 조각에서 해면골과 치밀골로 각각 분류하였다.The bone obtained from the femoral region of the horse was cut into 8 cm 3 size using a bone cutter. The cut bone pieces were immersed in purified water for 6-15 hours, and then purified water was removed and the blood components present in the bone pieces were removed by immersing again for 6-15 hours. The bone fragments from which blood was removed with the purified water were limited to heating for at least 3 hours per day, up to 6 hours. This method was repeated for at least 72 to 80 hours to remove the fat and protein present in the bone fragments first. The bone fragments from which the fat and protein were first removed were dried at 120 ° C. for 12 hours. The dried bone fragments were classified into spongy bone and dense bone, respectively.
[탈지처리 공정][Degreasing process]
건조된 뼈 조각의 1g당 6ml의 클로로포름과 메탄올이 1:1부피비로 혼합된 용매를 첨가하고 24시간동안 침지시켜 탈지처리를 수행한 후 메탄올을 버렸다. 탈지처리가 완료된 뼈 조각 중 잔존하는 용매를 제거하기 위하여 뼈 1g당 6ml의 메탄올로 12시간동안 침지시킨 후 메탄올을 버렸다. 뼈 조각 중 잔존하는 메탄올을 제거하기 위해 뼈 조각 1g 당 10ml의 정제수로 6회 수세한 후 가압가열의 방법으로 1회 1시간씩 6회 반복하여 세척하였다. 세척이 완료된 뼈 조각은 120℃의 오븐에서 12시간 동안 완전히 건조시켰다.6 g of chloroform and methanol mixed in a 1: 1 volume ratio were added per 1 g of the dried bone pieces, and the mixture was immersed for 24 hours to degrease, and then the methanol was discarded. To remove the remaining solvent in the degreasing bone fragments, the methanol was immersed in 6 ml of methanol per 1 g for 12 hours and then discarded. In order to remove the methanol remaining in the bone fragments 6 times with 10ml purified water per 1g bone fragments and then washed repeatedly for 1 hour 1 time 1 time by the pressure heating method. The washed bone pieces were completely dried in an oven at 120 ° C. for 12 hours.
[탈단백처리 공정] Deproteinization Process
탈지 처리가 완료된 건조 뼈 조각의 1g당 8ml의 4%(w/v) 농도의 차아염소산나트륨(sodium hypochlorite) 용액을 첨가하여 약 6시간 침지 후 거품이 잦아들고 차아염소산나트륨이 무색으로 변화 시 차아염소산나트륨을 교체하였다. 이 방법을 3회 ~5회 반복하여 실시하였다. 탈단백 처리가 완료된 뼈 조각에 잔존하는 용매를 제거하기 위하여 뼈 조각을 정제수로 12시간동안 10회 세척한 후, 정제수로 1시간에 한 번씩 총 10회 Lab Stirrer로 세척하였다. 10회 세척이 끝난 후 다시 정제수 10L를 채운 후 30분간 가열 후 버리는 방법을 2회 반복하였다. 세척이 끝난 뼈 조각을 120℃ 12시간 동안 완전히 건조하였다.Sodium hypochlorite solution at 4% (w / v) concentration of 8 ml per 1 g of dried bone pieces degreased is added, and after 6 hours of soaking, the bubbles disappear and the sodium hypochlorite turns colorless. Sodium chlorate was replaced. This method was repeated 3 to 5 times. In order to remove the remaining solvent in the deproteinized bone fragments, the bone fragments were washed 10 times with purified water for 12 hours, and then washed with Lab Stirrer a total of 10 times once every hour with purified water. After washing 10 times, 10L of purified water was filled again, and then heated and discarded twice for 30 minutes. The washed bone pieces were completely dried at 120 ° C. for 12 hours.
[열처리 공정][Heat treatment process]
탈지와 탈단백 처리가 완료된 건조 뼈 조각은 고온 열처리하여 잔존하는 지질과 단백질을 제거하였다. 열처리에 사용되는 전기로는 분당 2도로 승온시켰으며, 뼈 조각은 600℃에서 3시간 동안 열처리 시킨 후 노냉시켰다. 열처리가 완료된 뼈 조각을 정제수를 넣어 1시간동안 가열한다. 가열세척을 수차례 반복하여 미세 분진들을 제거한 후 120℃ 12시간 오븐에서 건조하고 수득하여 골이식재로 사용하였다.After degreasing and deproteinization, the dried bone fragments were heat-treated to remove the remaining lipids and proteins. The electric furnace used for the heat treatment was heated to 2 degrees per minute, the bone pieces were heat-treated at 600 ℃ for 3 hours and then cooled. The heat treated bone pieces are put in purified water and heated for 1 hour. Heat washing was repeated several times to remove fine dust, dried in an oven at 120 ° C. for 12 hours, and used as bone graft material.
[블럭으로 절단하는 공정][Process to cut into blocks]
건조된 골이식재를 원하는 크기의 블록으로 절단하였다.The dried bone graft material was cut into blocks of the desired size.
실시예 1-3: 상기 골이식재의 외형 및 결정도 관찰Example 1-3: Observation of appearance and crystallinity of the bone graft material
상기 실시예 1-1 및 1-2에서 제조된 입자형태 및 블록형태 골이식재의 외형과 내부를 관찰하였다. 내부는 시차주사전자현미경을 이용하였다. 더불어, 상기와 같이 제조된 골이식재가 아파타이트 결정으로 이루어졌는지 확인하기 위해 XRD를 측정하여 결정화도를 분석하였다. 도 1a는 입자형태의 골이식재의 외형 사진 및 시차주사현미경 사진이고, 도 1b는 블록형태의 골이식재의 외형 사진 및 시차주사현미경 사진이다. 도 2는 XRD 그래프로서, 도 2a는 입자형태 골이식재의 XRD 그래프이고, 도 2b는 블록형태 골이식재의 XRD 그래프를 나타낸 것이다. 모두 순수한 아파타이트 결정으로 이루어진 것을 확인할 수 있었다.The appearance and inside of the particle and block bone grafts prepared in Examples 1-1 and 1-2 were observed. Internally, a differential scanning electron microscope was used. In addition, XRD was measured to determine whether the bone graft material prepared as described above was made of apatite crystals and analyzed the crystallinity. Figure 1a is an external photograph and a differential scanning microscope picture of the bone graft material in the form of particles, Figure 1b is an external view and a differential scanning microscope picture of the bone graft material in the form of a block. Figure 2 is an XRD graph, Figure 2a is an XRD graph of the granular bone graft material, Figure 2b shows an XRD graph of the block-shaped bone graft material. All were confirmed to be pure apatite crystals.
실시예 2 : 산성아미노산으로의 처리Example 2 Treatment with Acidic Amino Acids
실시예 2-1 : 표면처리된 골이식재의 제조방법Example 2-1: Method for producing surface treated bone graft material
실시예 1에서 제조한 골이식재 10g 각각을 5%(w/v) 아스파르트산 용액 50mL에 넣어 침지한 후, 6시간 동안 방치하였다. 아스파르트산 용액을 제거하기 위해 pH 7.0 ± 0.5 이 될 때까지 정제수로 세척하고, 오븐에서 건조하였다. Each 10 g of the bone graft material prepared in Example 1 was immersed in 50 mL of 5% (w / v) aspartic acid solution, and then left for 6 hours. Washed with purified water until pH 7.0 ± 0.5 to remove aspartic acid solution and dried in an oven.
실시예 2-2 : 표면처리 후 거칠기 관찰Example 2-2: Roughness observation after surface treatment
실시예 2-1에서 제조된 골이식재를 2% 글루타르알데히드(glutaraldehyde) 용액으로 고정하였다. 고정된 골이식재를 1%의 오스뮴 테트르옥시드(osmium tetroxide) 용액으로 처리한 후 세척하고, 탈수 및 건조하였다. 상기와 같이 제조된 골이식재의 표면을 시차주사전자현미경으로 관찰하였다.The bone graft material prepared in Example 2-1 was fixed with 2% glutaraldehyde solution. The fixed bone graft was treated with 1% osmium tetroxide solution, washed, dehydrated and dried. The surface of the bone graft material prepared as described above was observed with a differential scanning electron microscope.
상기 관찰 결과를 도 3에서 골이식재의 시차주사전자현미경 사진으로 나타내었다. 도 3a는 표면처리 전과 후의 입자형태의 골이식재의 표면사진이며, 도 3b는 표면처리 전후 블록형태의 골이식재의 표면을 나타낸 것이다.The observation results are shown in the differential scanning electron micrograph of the bone graft material in FIG. Figure 3a is a photograph of the surface of the bone graft material in the form of particles before and after the surface treatment, Figure 3b shows the surface of the bone graft material in block form before and after the surface treatment.
블록형태의 골이식재는 내부까지 기공이 연결된 것으로 보이며, 조직공학용지지체로 사용하기에 적합한 구조를 가지고 있다. 또한 산성아미노산으로 표면처리 후에 거칠기가 감소한 것을 알 수 있다. The bone graft in the form of a block seems to have pores connected to the inside, and has a structure suitable for use as a support for tissue engineering. It can also be seen that the roughness was reduced after the surface treatment with an acidic amino acid.
실시예 2-3 : 표면처리에 의한 골이식재의 세포부착능 관찰Example 2-3 observation of cell adhesion of bone graft material by surface treatment
실시예 1에서 제조된 입자형태, 블록형태 골이식재를 4-well chamber slide에 넣고, 세포를 접종한 후 각각 4시간 동안 배양하였다. 세포(human osteosarcoma cell, 한국세포주은행에서 구입)가 배양된 골이식재를 2% 글루타르알데히드(glutaraldehyde) 용액으로 고정하였다. 고정된 골이식재를 1%의 오스뮴 테트르옥시드(osmium tetroxide) 용액으로 처리한 후 세척하고, 탈수 및 건조하였다. 시차주사전자현미경으로 세포가 배양된 골이식재의 표면을 관찰하였다(도 4). 상기 결과를 실시예 2-1에서와 같이 산성 아미노산으로 표면처리한 뒤의 세포 부착능에 대한 관찰 결과와 비교하였다.Particle-shaped, block-shaped bone graft material prepared in Example 1 was placed in a 4-well chamber slide, and incubated for 4 hours after inoculating the cells. Bone graft cultured cells (human osteosarcoma cell, purchased from Korea Cell Line Bank) were fixed with 2% glutaraldehyde solution. The fixed bone graft was treated with 1% osmium tetroxide solution, washed, dehydrated and dried. The surface of the bone graft material cultured with the differential scanning electron microscope (FIG. 4) was observed. The results were compared with those observed for cell adhesion after surface treatment with acidic amino acids as in Example 2-1.
그 결과, 도 4에서와 같이, 입자형태 골이식재와 (도 4a), 블록형태 골이식재(도 4b) 모두, 표면처리하기 전의 골이식재의 세포부착에 비해, 표면처리 후 골이식재의 세포부착이 현저히 증가된 것을 알 수 있다. 블록형태의 골이식재의 경우 기공안으로 세포가 잘 부착되어 있는 것을 확인할 수 있었다. 산성 아미노산 처리에 의해 골이식재 표면의 미분말이 제거되면서, 골이식재의 표면이 세포가 부착되기에 적합하게 되었기 때문이다. As a result, as shown in FIG. 4, the cell adhesion of the bone graft material after the surface treatment was reduced compared to the cell attachment of the bone graft material before the surface treatment of both the granular bone graft material (FIG. 4A) and the block bone graft material (FIG. 4B). It can be seen that the increase significantly. In the case of a block-type bone graft material, it was confirmed that cells were well attached into the pores. This is because the fine powder on the surface of the bone graft material is removed by acidic amino acid treatment, so that the surface of the bone graft material becomes suitable for cell attachment.
실시예 3 : 세포외기질 유래 성분 첨가Example 3: Addition of extracellular matrix-derived components
실시예 3-1: 세포외기질 유래 성분 함유한 골이식재의 제조Example 3-1 Preparation of Bone Graft Materials Containing Extracellular Matrix-Derived Components
2% (w/v) 콜라겐 용액에 50ml에 100mg의 리보오스 (D-ribose)를 넣고 용해하였다. 실시예 1에서 제조된 입자형태 또는 블록형태의 골이식재 10g을 넣은 후, 데시케이터 안에 넣고 진공상태로 1시간 유지하여 골이식재 내부까지 콜라겐 용액이 스며들게 하였다. 냉장 (4℃)에서 5일간 방치하고, 골이식재만 수거하여 동결건조 하였다. 140℃ 진공하에서 48시간동안 방치하여 건조하였다.100 mg of ribose (D-ribose) was dissolved in 50 ml of a 2% (w / v) collagen solution. 10 g of the bone graft material in the form of granules or blocks, prepared in Example 1, was placed in a desiccator and maintained in a vacuum state for 1 hour to infiltrate the collagen solution to the inside of the bone graft material. It was left for 5 days in refrigeration (4 ℃), and only bone graft material was collected and lyophilized. It was left to dry for 48 hours in a vacuum at 140 ℃.
실시예 3-2: 세포외기질 유래 성분 추가에 의한 골이식재의 골재생능 관찰Example 3-2: Observation of bone regeneration of bone graft material by adding extracellular matrix-derived components
상기 실시예 3-1에서 제조한 골이식재를 토끼의 두개골 원형골 결손부에서 이식하여 골 재생능을 확인하였다. 마취시킨 토끼 (Newzealand White rabbit, 종명: cuniculus)의 두개골부위에 직경 8㎜의 원형 골결손부를 형성시키고, 상기 골결손부에 콜라겐 차폐막을 덮고, 골막과 피부를 이중봉합하였다. 이식 4주 후에 동물을 희생시키고, 채취한 표본은 포르말린 용액에 넣어 고정시킨 후, 조직을 포매하여(embedding) 두께 20㎛의 시편으로 제작하였다. 제작된 시편은 염기성 푹신과 톨루이딘 블루로 염색하여 비탈회 표본을 제작하였다. 제작된 표본은 광학현미경으로 관찰하여 사진 촬영을 실시하였다. The bone graft material prepared in Example 3-1 was implanted in the rabbit's skull bone defect to determine the bone regeneration ability. A circular bone defect with a diameter of 8 mm was formed in the cranial area of the anesthesia rabbit (Newzealand White rabbit, name: cuniculus), the collagen shield was covered with the bone defect, and the periosteum and the skin were double-sealed. After 4 weeks of implantation, the animals were sacrificed, and the collected specimens were fixed in formalin solution, and then embedded in tissue to prepare specimens having a thickness of 20 μm. The prepared specimens were stained with basic fuchsin and toluidine blue to prepare non-limeous specimens. The produced specimen was observed by optical microscope and photographed.
왼쪽의 열은 40배율의 사진이며, 오른쪽 열은 왼쪽 열의 사각형 부분을 100배율로 확대한 사진이다. GB는 골이식재, NB는 신생골을 뜻한다. 세포외기질 유래 성분을 처리하지 않은 골이식재 (도 5a) 보다 세포외기질 유래 성분을 처리한 골이식재 (도 5b)의 경우 골재생능이 증가된 것을 확인하였다 (도 5). 이는 세포외기질 유래 성분을 골이식재에 도입함으로써 신생골이 재생되기에 더 적합한 환경을 조성해 주었기 때문이다. The left column is a 40x photo, and the right column is a magnified 100x square. GB stands for bone graft and NB stands for new bone. In the case of bone graft material treated with extracellular matrix-derived components (FIG. 5B) than bone graft material not treated with extracellular matrix-derived components (FIG. 5A), bone regeneration was increased (FIG. 5). This is because the extracellular matrix-derived components were introduced into the bone graft material, thereby creating a more suitable environment for regeneration of new bone.
실시예 3-3: 산성 아미노산 처리 + 세포외기질 유래 성분 추가에 의한 골이식재의 세포부착능 관찰Example 3-3: Observation of cell adhesion of bone graft material by acidic amino acid treatment + addition of extracellular matrix-derived components
상기 실시예 2-1과 같이 산성아미노산으로 골이식재의 표면을 처리한 뒤, 상기 세포외기질 유래 성분을 추가할 경우, 세포 부착능이 더욱 증가하는지 관찰해보았다. 그 결과, 도 6에서 보이는 바와 같이, 산성 아미노산만을 처리한 경우(도 4)보다 세포 부착능이 더욱 증가된 것을 확인할 수 있었다. 이는, 산성 아미노산으로 거칠기가 감소됨과 동시에 세포외기질 유래성분의 도입으로 생체내와 유사한 환경을 조성하여 세포부착에 더 적합하게 되었기 때문이다. After treating the surface of the bone graft material with an acidic amino acid as in Example 2-1, it was observed whether the cell adhesion ability is further increased when the extracellular matrix-derived components are added. As a result, as shown in Figure 6, it was confirmed that the cell adhesion ability was further increased than when only acidic amino acid treatment (Fig. 4). This is because the roughness is reduced to an acidic amino acid and at the same time, the introduction of an extracellular matrix-derived component creates an environment similar to that in vivo, thereby making it more suitable for cell adhesion.
실시예 4 : 골재생 기능성 펩타이드 첨가Example 4 Addition of Bone Regeneration Functional Peptides
실시예 4-1 : 골재생 기능성 펩타이드를 함유한 골이식재의 제조방법Example 4-1: Method for producing bone graft material containing bone regeneration functional peptide
N 말단으로부터 순서대로 Osteopontin에서 유래된 골재생 효과가 있는 서열로서 YGLRSKSKKFRRPDIQYPDAT (서열번호 35), 아파타이트 결합능이 있는 펩타이드로서 STLPIPHEFSRE (서열번호 36)를 함유하도록 펩타이드 합성장치를 이용하여 F-moc 고상 화학합성 방법으로 합성하였다. 즉, 블로킹 그룹(Blocking group)으로 Fmoc-(9-Fluorenylmethoxycarbonyl)이 결합된 Rink resin (0.075mmol/g, 100 ~ 200 mesh, 1% DVB crosslinking)을 사용하여 합성하였으며, 합성기에 50㎎의 Rink resin을 넣은 뒤 DMF로 resin을 스웰링(swelling) 시킨 후 Fmoc-group의 제거를 위해 20% piperidine/DMF 용액을 사용하였다. C말단부터 서열대로 0.5M amino acid 용액(용매: DMF), 1.0M DIPEA(용매: DMF&NMP), 0.5M HBTU (용매: DMF)를 각각 5, 10, 5 당량씩 넣어 질소 기류하에서 1~2시간 동안 반응시켰다. 상기 디프로텍션(deprotection)과 커플링(coupling) 단계가 끝날 때마다 DMF와 NMP로 두 번씩 세척하는 과정을 거쳤다. 마지막 아미노산을 커플링(coupling) 시킨 후에도 디프로텍션(deprotection)을 해주어 Fmoc-group을 제거하였다. F-moc solid-phase chemical synthesis using peptide synthesis apparatus to contain YLPRSKSKKFRRPDIQYPDAT (SEQ ID NO: 35) and STLPIPHEFSRE (SEQ ID NO: 36) as an apatite-binding ability as a sequence having bone regeneration effect derived from the N-terminal in order Synthesized by the method. In other words, it was synthesized using a Rink resin (0.075 mmol / g, 100 to 200 mesh, 1% DVB crosslinking) combined with Fmoc- (9-Fluorenylmethoxycarbonyl) as a blocking group, and 50 mg of Rink resin in the synthesizer. After swelling the resin with DMF, 20% piperidine / DMF solution was used to remove the Fmoc-group. From the end of C, add 0.5M amino acid solution (solvent: DMF), 1.0M DIPEA (solvent: DMF & NMP), and 0.5M HBTU (solvent: DMF) in 5, 10, 5 equivalents, respectively, for 1 to 2 hours under nitrogen stream. Reacted for a while. Each time the deprotection and coupling steps were completed, washing was performed twice with DMF and NMP. Fcoc-group was removed by deprotection even after the last amino acid was coupled.
합성의 확인은 닌하이드린 테스트(ninhydrin test) 방법을 이용하였고, 테스트를 거치고 합성이 완료된 resin은 THF나 DCM으로 건조시킨 후 TFA cleavage cocktail을 resin 1g당 20ml의 비율로 넣어 3시간 shaking 시킨 후 필터링을 통해 resin 과 펩타이드가 녹아 있는 cocktail을 분리하였다. 필터로 걸러진 용액을 진공증발농축기(rotary evaporator)를 이용하여 제거한 후 콜드 에테르(cold ether)를 넣어주거나 펩타이드가 녹아있는 TFA cocktail용액에 직접 콜드 에테르를 과량 넣어주어 펩타이드를 고체상으로 결정화시키고 이를 원심분리하여 분리해내었다. 이때 에테르로 여러 번 세척과 원심분리 과정을 거쳐 TFA cocktail을 완전히 제거하였다. 이렇게 해서 얻어진 펩타이드는 증류수에 녹여 동결건조하였다. Synthesis was confirmed using the ninhydrin test method. After the test was completed, the synthesized resin was dried with THF or DCM, and TFA cleavage cocktail was added at a rate of 20 ml per 1g of resin. Through the cocktail was dissolved resin and peptide dissolved. The filtered solution was removed using a rotary evaporator, and then cold ether was added or an excessive amount of cold ether was directly added to the TFA cocktail solution in which the peptide was dissolved to crystallize the peptide into a solid phase. Separated. At this time, the TFA cocktail was completely removed by washing and centrifuging with ether several times. The peptide thus obtained was dissolved in distilled water and lyophilized.
NH2-STLPIPHEFSRE-YGLRSKSKKFRRPDIQYPDAT-COONH2(서열번호 40)NH 2 -STLPIPHEFSRE-YGLRSKSKKFRRPDIQYPDAT-COONH 2 (SEQ ID NO: 40)
합성된 펩타이드 서열은 레진으로부터 절단시켜 세척과정을 거쳐 동결건조 후 액체크로마토그래피에 의해 분리, 정제되었다. 정제된 펩타이드는 MALDI분석을 이용하여 분자량을 확인하였다. The synthesized peptide sequence was cleaved from the resin, washed, lyophilized and separated and purified by liquid chromatography. The purified peptide was confirmed molecular weight using MALDI analysis.
체내에서 안정성을 시험하기 위해 서열번호 40의 제조시 N 말단에 10당량의 FITC(Fluorescein isothicyanate) 를 triethylamine (resin 1g당 1ml) 을 이용하여 결합시켰으며 이를 MALDI-TOF를 이용하여 분자량을 측정함으로써 그 합성을 확인하였다.In the preparation of SEQ ID NO: 40, 10 equivalents of Fluorescein isothicyanate (FITC) was bound to the N-terminus using triethylamine (1 ml per 1 g of resin) at the N-terminus, and the molecular weight was measured using MALDI-TOF. Synthesis was confirmed.
이렇게 제조된 펩타이드 1200 mg을 3차 증류수 1 mL에 용해한 후, 실시예 1에서 제조된 골이식재 4 g에 가하고 24시간 동안 침적시킨 후, 동결건조하였다.1200 mg of the peptide thus prepared was dissolved in 1 mL of tertiary distilled water, and then added to 4 g of the bone graft material prepared in Example 1, which was deposited for 24 hours, and then lyophilized.
실시예 4-2 : 골재생 기능성 펩타이드 첨가에 의핸 골재생능 관찰Example 4-2: Observation of bone regeneration ability by addition of bone regeneration functional peptide
실시예 4-1와 같이 서열번호 35, 서열번호 36, 서열번호 40 펩타이드를 각각 골이식재에 결합시킨 후, 토끼의 두개골 원형골결손부에서 이식하여 골재생력을 확인하였다. 마취시킨 토끼(Newzealand White rabbit, 종명: cuniculus)의 두개골부위에 직경 8㎜의 원형골결손부를 형성시키고, 상기 골결손부에 골이식재 및 펩타이드가 포함된 골이식재를 결손부당 50 mg씩 이식하고, 골막과 피부를 이중봉합하였다. 이식 2주 후에 동물을 희생시키고, 채취한 표본은 포르말린 용액에 넣어 고정시킨 후 조직을 포매하여 두께 20 ㎛의 시편으로 제작하였다. 제작된 시편은 염기성 푹신과 톨루이딘 블루로 염색하여 비탈회 표본을 제작하였다. 제작된 표본은 광학현미경으로 관찰하여 사진 촬영을 실시하였다. As in Example 4-1, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 40 peptides were respectively coupled to the bone graft material, and transplanted from the skull cranial bone defect of the rabbit to confirm bone regeneration. A circular bone defect with a diameter of 8 mm was formed on the skull portion of the anesthesia rabbit (Newzealand White rabbit, namely: cuniculus), and bone graft material containing bone graft material and peptide was transplanted by 50 mg per defect part. Periosteum and skin were double sealed. Two weeks after the implantation, the animals were sacrificed, and the collected specimens were fixed in formalin solution and embedded in tissue to prepare specimens having a thickness of 20 μm. The prepared specimens were stained with basic fuchsin and toluidine blue to prepare non-limeous specimens. The produced specimen was observed by optical microscope and photographed.
이와 더불어, 실시예 2에서 제조된 산성아미노산으로 표면처리된 입자형태 또는 블록형태의 골이식재에도 상기와 동일한 방법으로 골재생 기능성 펩타이드를 처리하여 골재생효과를 관찰하였다. In addition, the bone regeneration function was observed by treating the bone regeneration functional peptide in the same manner as the above in the bone or bone-type bone graft material treated with the acidic amino acid prepared in Example 2.
도 7은 골재생 기능성 펩타이드가 추가된 골이식재에 의한 골재생효과를 나타낸 것으로, 도 7a는 처리하기 전 입자형태의 골이식재에 의한 골재생 효과, 도 7b는 골재생 기능성 펩타이드를 처리한 후의 입자형태의 골이식재에 의한 골재생 효과, 도 7c는 산성 아미노산으로 표면처리 한 후 골재생 기능성 펩타이드도 추가한 입자형 골이식재에 의한 골재생 효과이다. 왼쪽의 열은 40배율의 사진이며, 오른쪽 열은 왼쪽 열의 사각형 부분을 100배율로 확대한 사진이다. GB는 골이식재, NB는 신생골을 뜻한다.Figure 7 shows the bone regeneration effect by the bone graft material added bone regeneration functional peptide, Figure 7a is a bone regeneration effect by the bone graft material in the form of particles before treatment, Figure 7b is a particle after treating the bone regeneration functional peptide Bone regeneration effect by the bone graft of the form, Figure 7c is a bone regeneration effect by the particulate bone graft material also added bone regeneration functional peptide after surface treatment with acidic amino acid. The left column is a 40x photo, and the right column is a magnified 100x square. GB stands for bone graft and NB stands for new bone.
그 결과, 골재생기능성 펩타이드를 처리한 경우 골 재생효과가 증가된 것을 알 수 있으며, 산성 아미노산과 + 골재생 기능성 펩타이드를 모두 처리한 경우 효과가 더욱 증대됨을 알 수 있다. 따라서 본 발명의 산성아미노산 처리 및 골재생 기능성 펩타이드를 아파타이트로 된 골이식재 또는 아파타이트가 코팅된 임플란트에 사용할 경우, 골조직 재생 효과가 클 것으로 기대된다.As a result, it can be seen that the bone regeneration effect is increased when the bone regeneration functional peptide is treated, the effect is further increased when both the acidic amino acid and + bone regeneration functional peptide is treated. Therefore, when the acidic amino acid treatment and bone regeneration functional peptides of the present invention are used in apatite-based bone grafts or apatite-coated implants, bone tissue regeneration effect is expected to be great.
본 발명에 따른 골이식재 제조방법은 소뼈, 말뼈, 돼지뼈와 같은 이종골에서 단백질과 지방을 완벽히 제거하여 순수한 하이드록시아파타이트로 구성된 입자 또는 블록 형태의 골이식재를 제공하여 기존의 이종골 유래 골이식재에 비해 단백질의 함량이 낮아 생체적합성이 우수하여 이식부위의 조직에서 염증반응 없이 잘 융합될 수 있는 골이식재를 제조할 수 있으며, 산성 아미노산으로 표면을 처리하여 골세포의 부착능을 증가시킬 수 있으며, 생리활성인자를 도입하여 신생골의 전도를 향상시킬 수 있다. 본 발명에 따른 골이식재는 치과, 정형외과, 성형외과등에서 골 손상부를 채워주어 신생골의 재생을 전도하는데 이용될 수 있고, 또한 세포를 배양할 수 있는 조직공학용 지지체로도 사용될 수 있다. The bone graft material manufacturing method according to the present invention completely removes proteins and fats from xenografts such as bovine bones, horse bones, pork bones, and provides a bone graft material composed of pure hydroxyapatite or a block-type bone graft material according to the conventional xenografts Compared with low protein content, it has excellent biocompatibility and can produce bone graft material that can be fused well without inflammatory reaction in the tissue of transplantation site. It can increase the adhesion ability of bone cells by treating the surface with acidic amino acid. By introducing physiologically active factors, it is possible to improve the conduction of new bone. The bone graft material according to the present invention can be used to fill the bone damage in dentistry, orthopedics, plastic surgery, etc. to conduct regeneration of new bone, and also can be used as a tissue engineering support for culturing cells.
전자파일 첨부하였음.Electronic file attached.

Claims (13)

  1. 다음 단계를 포함하는 입자형태의 이종골 유래 골이식재 제조방법:Method for producing bone bone-derived bone graft material in the form of particles comprising the following steps:
    (a) 이종골을 절단하는 단계; (b) 상기 절단된 이종골의 혈액성분을 제거하는 단계; (c) 상기 혈액성분이 제거된 이종골을 분쇄하는 단계; (d) 상기 분쇄된 이종골에서 지방질과 단백질을 1차 제거하고 건조하는 단계; (e) 상기 건조된 이종골을 유기용매에 침적시켜 진탕하여 이종골의 지방질과 단백질을 2차 제거하는 단계; (f) 상기 유기용매를 제거하고 건조시키는 단계; (g) 프라이온 및 기타 단백질을 불활성화 시키기 위하여 상기 용매가 제거된 이종골 분말을 약 4% 농도의 차아염소산나트륨용액으로 처리하는 단계; (h) 상기 이종골 분말에서 차아염소산나트륨용액을 제거하고 건조시키는 단계; (i) 상기 건조된 이종골 분말을 열처리하여 지질과 단백질을 완전히 제거하는 단계; (j) 상기 열처리된 이종골 분말을 212 내지 1000㎛의 체공을 가지는 체로 분별한 다음, 1000 내지 2000㎛의 체공을 가지는 체로 분별하는 단계; 및 (k) 산성 아미노산으로 상기 이종골 분말의 표면을 처리하는 단계.(a) cutting the xenograft; (b) removing blood components of the cut xenograft; (c) grinding the xenograft from which the blood component is removed; (d) first removing fat and protein from the ground xenograft and drying; (e) immersing the dried xenograft in an organic solvent and shaking the secondary to remove fat and protein from xenograft; (f) removing and drying the organic solvent; (g) treating the solvent-free xylem powder with sodium hypochlorite solution at a concentration of about 4% to inactivate prion and other proteins; (h) removing sodium hypochlorite solution from the xenograft powder and drying the solution; (i) heat treating the dried xenograft powder to completely remove lipids and proteins; (j) fractionating the heat treated hetero bone powder into a sieve having a pore size of 212 to 1000 μm, and then fractionating the sieve bone having a pore size of 1000 to 2000 μm; And (k) treating the surface of the hetero bone powder with an acidic amino acid.
  2. 다음 단계를 포함하는 블록형태의 이종골 유래 골이식재 제조방법:Method for producing a bone-shaped xenograft-derived bone graft material comprising the following steps:
    (a) 이종골을 절단하는 단계; (b) 상기 절단된 이종골의 혈액성분을 제거하는 단계; (c) 상기 혈액 성분이 제거된 이종골에서 지방질과 단백질을 1차 제거하고 건조하는 단계; (d) 상기 건조된 이종골을 유기용매에 침적시켜 진탕하여 이종골의 지방질과 단백질을 2차 제거하는 단계; (e) 상기 유기용매를 제거하고 건조시키는 단계; (f) 프라이온 및 기타 단백질을 불활성화시키기 위하여 상기 용매가 제거된 이종골을 약 4% 농도의 차아염소산나트륨용액으로 처리하는 단계; (g) 상기 이종골에서 차아염소산나트륨용액을 제거하고 건조시키는 단계; (h) 상기 건조된 이종골을 열처리하여 지질과 단백질을 완전히 제거하는 단계; (i) 상기 이종골을 원하는 크기의 블록으로 절단하는 단계; 및 (j) 산성 아미노산으로 상기 이종골의 표면을 처리하는 단계.(a) cutting the xenograft; (b) removing blood components of the cut xenograft; (c) first removing fat and protein from the xenograft from which the blood component is removed and drying; (d) immersing the dried xenograft in an organic solvent and shaking the secondary to remove fat and protein from xenograft; (e) removing and drying the organic solvent; (f) treating said solvent free xenograft with sodium hypochlorite solution at a concentration of about 4% to inactivate prion and other proteins; (g) removing sodium hypochlorite solution from the xylem and drying; (h) heat treating the dried xenograft to completely remove lipids and proteins; (i) cutting the xylem into blocks of a desired size; And (j) treating the surface of the xylem with an acidic amino acid.
  3. 제 1항 또는 제 2항에 있어서, 상기 산성 아미노산은 글루탐산(Glutamic acid) 또는 아스파르트산(aspartic acid)인 것을 특징으로 하는 이종골 유래 골이식재 제조방법.The method of claim 1 or 2, wherein the acidic amino acid is glutamic acid (Glutamic acid) or aspartic acid (aspartic acid) characterized in that the bone graft-derived bone manufacturing method.
  4. 제 1항 또는 제 2항에 있어서, 상기 산성 아미노산은 1-20% (w/v)의 농도로 6 내지 18시간 동안 처리하는 것을 특징으로 하는 이종골 유래 골이식재 제조방법.The method of claim 1 or 2, wherein the acidic amino acid is a bone-derived bone graft manufacturing method characterized in that the treatment for 6 to 18 hours at a concentration of 1-20% (w / v).
  5. 다음 단계를 포함하는 입자형태의 이종골 유래 골이식재 제조방법:Method for producing bone bone-derived bone graft material in the form of particles comprising the following steps:
    (a) 이종골을 절단하는 단계; (b) 상기 절단된 이종골의 혈액성분을 제거하는 단계; (c) 상기 혈액성분이 제거된 이종골을 분쇄하는 단계; (d) 상기 분쇄된 이종골에서 지방질과 단백질을 1차 제거하고 건조하는 단계; (e) 상기 건조된 이종골을 유기용매에 침적시켜 진탕하여 이종골의 지방질과 단백질을 2차 제거하는 단계; (f) 상기 유기용매를 제거하고 건조시키는 단계; (g) 프라이온 및 기타 단백질을 불활성화 시키기 위하여 상기 용매가 제거된 이종골 분말을 약 4% 농도의 차아염소산나트륨용액으로 처리하는 단계; (h) 상기 이종골 분말에서 차아염소산나트륨용액을 제거하고 건조시키는 단계; (i) 상기 건조된 이종골 분말을 열처리하여 지질과 단백질을 완전히 제거하는 단계; (j) 상기 열처리된 이종골 분말을 212 내지 1000㎛의 체공을 가지는 체로 분별한 다음, 1000 내지 2000㎛의 체공을 가지는 체로 분별하는 단계; 및 (k) 상기 이종골 분말에 세포외기질 유래 성분과 골재생 기능성 펩타이드로 구성된 군에서 선택된 하나 이상의 생리활성물질을 첨가하는 단계.(a) cutting the xenograft; (b) removing blood components of the cut xenograft; (c) grinding the xenograft from which the blood component is removed; (d) first removing fat and protein from the ground xenograft and drying; (e) immersing the dried xenograft in an organic solvent and shaking the secondary to remove fat and protein from xenograft; (f) removing and drying the organic solvent; (g) treating the solvent-free xylem powder with sodium hypochlorite solution at a concentration of about 4% to inactivate prion and other proteins; (h) removing sodium hypochlorite solution from the xenograft powder and drying the solution; (i) heat treating the dried xenograft powder to completely remove lipids and proteins; (j) fractionating the heat treated hetero bone powder into a sieve having a pore size of 212 to 1000 μm, and then fractionating the sieve bone having a pore size of 1000 to 2000 μm; And (k) adding at least one bioactive substance selected from the group consisting of extracellular matrix-derived components and bone regeneration functional peptides to the xenograft powder.
  6. 제 5항에 있어서, 상기 (j)와 (k) 단계 사이에, 산성 아미노산으로 상기 이공골 분말 표면을 처리하는 단계를 추가로 포함하는 것을 특징으로 하는, 이종골 유래 골이식재 제조방법.According to claim 5, Between (j) and (k), characterized in that it further comprises the step of treating the surface of the bone bone powder with acidic amino acid, xenograft-derived bone graft material manufacturing method.
  7. 다음 단계를 포함하는 블록형태의 이종골 유래 골이식재 제조방법:Method for producing a bone-shaped xenograft-derived bone graft material comprising the following steps:
    (a) 이종골을 절단하는 단계; (b) 상기 절단된 이종골의 혈액성분을 제거하는 단계; (c) 상기 혈액 성분이 제거된 이종골에서 지방질과 단백질을 1차 제거하고 건조하는 단계; (d) 상기 건조된 이종골을 유기용매에 침적시켜 진탕하여 이종골의 지방질과 단백질을 2차 제거하는 단계; (e) 상기 유기용매를 제거하고 건조시키는 단계; (f) 프라이온 및 기타 단백질을 불활성화시키기 위하여 상기 용매가 제거된 이종골을 약 4% 농도의 차아염소산나트륨용액으로 처리하는 단계; (g) 상기 이종골에서 차아염소산나트륨용액을 제거하고 건조시키는 단계; (h) 상기 건조된 이종골을 열처리하여 지질과 단백질을 완전히 제거하는 단계; (i) 상기 이종골을 원하는 크기의 블록으로 절단하는 단계; 및 (j) 상기 이종골에 세포외기질 유래 성분과 골재생 기능성 펩타이드로 구성된 군에서 선택된 하나 이상의 생리활성물질을 첨가하는 단계.(a) cutting the xenograft; (b) removing blood components of the cut xenograft; (c) first removing fat and protein from the xenograft from which the blood component is removed and drying; (d) immersing the dried xenograft in an organic solvent and shaking the secondary to remove fat and protein from xenograft; (e) removing and drying the organic solvent; (f) treating said solvent free xenograft with sodium hypochlorite solution at a concentration of about 4% to inactivate prion and other proteins; (g) removing sodium hypochlorite solution from the xylem and drying; (h) heat treating the dried xenograft to completely remove lipids and proteins; (i) cutting the xylem into blocks of a desired size; And (j) adding at least one bioactive substance selected from the group consisting of extracellular matrix-derived components and bone regeneration functional peptides to the xenograft.
  8. 제 7항에 있어서, 상기 (i)와 (j) 단계 사이에, 산성 아미노산으로 상기 이공골 표면을 처리하는 단계를 추가로 포함하는 것을 특징으로 하는, 이종골 유래 골이식재 제조방법.According to claim 7, Between (i) and (j), further comprising the step of treating the surface of the bone bone with acidic amino acid, xenograft-derived bone graft material manufacturing method.
  9. 제 5항 또는 제 7항에 있어서, 상기 세포외기질 유래 성분은 콜라겐(collagen), 피브로넥틴(fibronectin), 라미닌(laminin), 히알루론산(hyaluronic acid) 및 글리코스아미노글리칸(glycosaminoglycans)으로 구성된 군에서 선택된 것을 특징으로 하는 이종골 유래 골이식재 제조방법.According to claim 5 or 7, wherein the extracellular matrix-derived components are collagen (collagen), fibronectin (fibronectin), laminin (laminin), hyaluronic acid (hyaluronic acid) and a group consisting of glycosaminoglycans (glycosaminoglycans) Method for producing bone graft derived from xenograft, characterized in that selected from.
  10. 제 5항 또는 제 7항에 있어서, 상기 골재생 기능성 펩타이드는 서열번호 1 내지 서열번호 35의 아미노산 서열로 구성된 군에서 선택된 하나 이상의 펩타이드와 서열번호 36 내지 서열번호 39의 아미노산 서열로 구성된 군에서 선택된 하나의 펩타이드가 결합된 펩타이드인 것을 특징으로 하는 이종골 유래 골이식재 제조방법.The method of claim 5 or 7, wherein the bone regeneration functional peptide is selected from the group consisting of one or more peptides selected from the group consisting of amino acid sequences of SEQ ID NO: 1 to SEQ ID NO: 35 and amino acid sequences of SEQ ID NO: 36 to SEQ ID NO: 39 Method for producing bone bone-derived bone graft, characterized in that one peptide is a peptide combined.
  11. 제 5항 또는 제 7항에 있어서, 상기 골재생 기능성 펩타이드는 서열번호 40의 아미노산 서열로 표시되는 펩타이드인 것을 특징으로 하는 이종골 유래 골이식재 제조방법.According to claim 5 or 7, wherein the bone regeneration functional peptide is bone bone derived bone graft manufacturing method characterized in that the peptide represented by the amino acid sequence of SEQ ID NO: 40.
  12. 제 1항, 제 2항, 제 5항 또는 제 7항 중 어느 한 항에 있어서, 상기 이종골은 소뼈, 말뼈 및 돼지뼈로 구성된 군에서 선택된 것을 특징으로 하는 이종골 유래 골이식재 제조방법.The method of claim 1, 2, 5 or 7, wherein the xenograft is bone bone, horse bone, and bone bone derived bone graft material manufacturing method, characterized in that selected from the group consisting of pork bone.
  13. 제 1항, 제 2항, 제 5항 또는 제 7항 중 어느 한 항의 제조방법으로 제조된 골이식재와 콜라겐, 젤라틴, 키토산, 알지네이트, 카복시메틸셀룰로오스, 하이드록시프로필메틸셀룰로오스, 폴리에틸렌글리콜, 폴록사머, 폴리락트산, 폴리락틱글리콜산 및 폴리카프로락톤으로 구성된 군에서 선택된 하나 이상의 고분자를 포함하는 젤 또는 페이스트 형태의 골 이식용 조성물.Claims 1, 2, 5 or 7, the bone graft material prepared by the method of any one of claims, collagen, gelatin, chitosan, alginate, carboxymethyl cellulose, hydroxypropyl methyl cellulose, polyethylene glycol, poloxamer A composition for bone graft in the form of a gel or paste comprising at least one polymer selected from the group consisting of polylactic acid, polylactic glycolic acid and polycaprolactone.
PCT/KR2011/005018 2011-07-08 2011-07-08 Xenograft-derived bone grafting substitute and method for manufacturing same WO2013008959A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005018 WO2013008959A1 (en) 2011-07-08 2011-07-08 Xenograft-derived bone grafting substitute and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005018 WO2013008959A1 (en) 2011-07-08 2011-07-08 Xenograft-derived bone grafting substitute and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2013008959A1 true WO2013008959A1 (en) 2013-01-17

Family

ID=47506229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005018 WO2013008959A1 (en) 2011-07-08 2011-07-08 Xenograft-derived bone grafting substitute and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013008959A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460048B2 (en) 2020-06-11 2024-04-02 ユルドゥズ テクニク ウニヴェルシテシ Production of xenografts from animal bone

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331990B1 (en) * 1999-05-29 2002-04-10 정종평 Bone substituent consisting of biodegradable porous calcium metaphosphate and its process of preparation
JP2002532159A (en) * 1998-12-14 2002-10-02 オステオテック インコーポレーテッド Bone graft and guided bone regeneration
KR20030036620A (en) * 2000-07-19 2003-05-09 오스테오테크 주식회사 Osteoimplant and method of making same
KR20040087438A (en) * 2003-04-08 2004-10-14 김영균 Restorative and Grafting Material for Hard Tissue Defect and Fabrication Method of The Same Using Animal Teeth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532159A (en) * 1998-12-14 2002-10-02 オステオテック インコーポレーテッド Bone graft and guided bone regeneration
KR100331990B1 (en) * 1999-05-29 2002-04-10 정종평 Bone substituent consisting of biodegradable porous calcium metaphosphate and its process of preparation
KR20030036620A (en) * 2000-07-19 2003-05-09 오스테오테크 주식회사 Osteoimplant and method of making same
KR20040087438A (en) * 2003-04-08 2004-10-14 김영균 Restorative and Grafting Material for Hard Tissue Defect and Fabrication Method of The Same Using Animal Teeth

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM ET AL., ORAL SURG, ORAL MED, ORAL PATHOL, ORAL RADIOL, ENDOD, vol. 109, no. 4, 2010, pages 496 - 503 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460048B2 (en) 2020-06-11 2024-04-02 ユルドゥズ テクニク ウニヴェルシテシ Production of xenografts from animal bone

Similar Documents

Publication Publication Date Title
WO2013009057A9 (en) Xenograft-derived bone grafting substitute and method for manufacturing same
CA1259914A (en) Methods of bone repair using collagen
US5162114A (en) Bone collagen matrix for xenogenic implants
JP5514441B2 (en) Keratin bioceramic composition
US4789663A (en) Methods of bone repair using collagen
KR100842012B1 (en) Metohd for Preparing Bone Grafting Substitute from Horse Bone
KR100871396B1 (en) Method for Manufacturing Bioactive Apatite
WO2012144719A1 (en) Surface-active collagen membrane by peptide
JP2665385B2 (en) Refined particulate bone mineral products
JPH02218372A (en) Improving method for fixing implant
AU2003200603B2 (en) Resorbable extracellular matrix for reconstruction of bone
KR101348336B1 (en) Osteoconductive Bone graft and use thereof
US8858981B2 (en) Bone healing material comprising matrix carrying bone-forming cells
WO2012033268A1 (en) Peptide having the ability to regenerate bone tissue and for binding to apatite
WO2003070290A1 (en) Composite biomaterial containing phospholine
JP2005536489A (en) Osteoinductive biomaterial
WO2021040249A1 (en) Foraminifera-derived bone graft material
US8586099B2 (en) Method for preparing a prion-free bond grafting substitute
WO2013008959A1 (en) Xenograft-derived bone grafting substitute and method for manufacturing same
WO2012081944A2 (en) Dental membrane and method of manufacturing the same
WO2012144778A2 (en) Surface-active collagen barrier membrane to which a peptide is bound
KR100635385B1 (en) Method for Preparing a Prion-free Bone Grafting Substitute
JPH0326616B2 (en)
AU2012200086A1 (en) Resorbable Extracellular Matrix for Reconstruction of Bone
AU2007254593A1 (en) Resorbable Extracellular Matrix for Reconstruction of Bone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869200

Country of ref document: EP

Kind code of ref document: A1