WO2013008724A1 - Double glazed glass and method for producing same - Google Patents

Double glazed glass and method for producing same Download PDF

Info

Publication number
WO2013008724A1
WO2013008724A1 PCT/JP2012/067231 JP2012067231W WO2013008724A1 WO 2013008724 A1 WO2013008724 A1 WO 2013008724A1 JP 2012067231 W JP2012067231 W JP 2012067231W WO 2013008724 A1 WO2013008724 A1 WO 2013008724A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
sealing
glass plate
layer
plate
Prior art date
Application number
PCT/JP2012/067231
Other languages
French (fr)
Japanese (ja)
Inventor
諭司 竹田
亮太 村上
暢子 満居
山田 和夫
元司 小野
篤人 ▲橋▼本
平松 徹也
みか 横山
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013008724A1 publication Critical patent/WO2013008724A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present invention relates to a multilayer glass and a method for producing the same.
  • a double-layer glass in which a gap between two glass plates is hermetically sealed and a double-layer glass in which a gap between two glass plates is hermetically sealed (vacuum sealed) in a vacuum state (vacuum) Also known as double-glazed glass).
  • the vacuum-sealed multi-layer glass has a structure in which, for example, two glass plates are arranged opposite to each other, and a space between these two glass plates is sealed with a low-melting glass (see Patent Documents 1 and 2).
  • Patent Document 1 two glass plates laminated through a low melting point glass are heated using a firing furnace to melt the low melting point glass, and then cooled to room temperature to solidify the low melting point glass. It describes that a sealing layer (seal part) is formed.
  • Patent Document 2 after laminating two glass plates through a low-melting glass layer, the low-melting glass layer is locally heated and melted by irradiating laser light along the low-melting glass layer. The formation of a sealing layer is described.
  • Patent Document 3 after the low melting point glass layer is irradiated with laser light in an air atmosphere to form a sealing layer, it is evacuated through a through hole provided in one glass plate. The internal space between the two glass plates is in a vacuum state. The through hole is sealed after the internal space is evacuated.
  • the sealing process using local heating by laser light has advantages such as less energy consumption and reduced manufacturing steps and costs compared to heating by a firing furnace, but the low melting point glass is locally and rapidly applied. Since this is a process of heating and quenching, there is a problem that residual stress is likely to occur at or near the bonding interface between the sealing layer made of a melt-solidified layer of low-melting glass and the glass plate.
  • a window glass of a building such as a house or a building
  • an indoor and outdoor temperature difference is added to the double-glazed glass.
  • the adhesive interface between the glass plate and the sealing layer or the sealing layer may be caused by a temperature difference between the inside or outside of the room or warpage of the multilayer glass based on the difference. Cracks and cracks are likely to occur.
  • An object of the present invention is to provide a double-glazed glass and a method for producing the same capable of improving long-term reliability by reducing stress based on a temperature difference between indoors and outdoors.
  • stress based on a temperature difference between the inside and outside of the room is related to the amount of warpage of the double-glazed glass after sealing, and have completed the present invention.
  • the multilayer glass according to an aspect of the present invention has a first surface including a first sealing region, a first glass plate made of low expansion glass, and a first glass plate corresponding to the first sealing region.
  • a second surface having two sealing regions, and disposed on the first glass plate with a predetermined gap so that the second surface faces the first surface;
  • the first sealing region and the second glass plate are vacuum-sealed so that a gap between the second glass plate made of low expansion glass and the first glass plate and the second glass plate is vacuum-sealed.
  • a sealing layer made of a material obtained by melting and solidifying a sealing glass material having a laser absorption ability, which is formed between the sealing region and the sealing region.
  • the multilayer glass according to another aspect of the present invention has a first surface including a first sealing region, and corresponds to the first glass plate made of low expansion glass and the first sealing region.
  • the first sealing region and the first glass plate are vacuum-sealed so that the second glass plate made of low expansion glass and the gap between the first glass plate and the second glass plate are vacuum-sealed.
  • a sealing layer formed between two sealing regions, and the thickness of the first glass plate disposed on the high temperature side is T1
  • the second glass plate is disposed on the low temperature side.
  • the method for producing a multilayer glass includes a step of preparing a first glass plate having a first surface including a first sealing region and made of low expansion glass; A second sealing region comprising a second sealing region corresponding to the sealing region, and a sealing material layer formed on the second sealing region and made of a material obtained by baking a sealing glass material having laser absorption ability.
  • a second glass plate made of low-expansion glass, and the first surface and the second surface facing each other while the first material and the second surface are opposed to each other.
  • the gap between the first glass plate and the second glass plate is vacuum sealed by melting and solidifying. It is characterized by comprising a step of forming a sealing layer.
  • the method for producing a multilayer glass includes a step of preparing a first glass plate having a first surface including a first sealing region and made of low expansion glass, A second sealing region corresponding to one sealing region, a first sealing material layer formed on the second sealing region and made of a sealing resin material, and the second sealing region.
  • a second surface comprising a second sealing material layer formed of a material obtained by baking a sealing glass material having a laser absorption ability, which is formed on the inner peripheral side from the first sealing material layer above;
  • the double-glazed glass of the present invention low-expansion glass is applied to the first and second glass plates, and therefore stress based on the temperature difference between the inside and outside of the double-glazed glass, such as the temperature difference between the inside and outside, can be reduced. . Therefore, a multilayer glass excellent in long-term reliability can be provided.
  • FIG. 1 is a cross-sectional view showing the structure of a multilayer glass according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a process for producing a multilayer glass according to the first embodiment.
  • FIG. 3 to FIG. 6 are diagrams showing the configuration of the first and second glass plates used in the manufacturing process of the multilayer glass.
  • the multilayer glass 1 shown in these drawings includes a first glass plate 2 having a first surface 2a and a second glass plate 3 having a second surface 3a.
  • the first glass plate 2 and the second glass plate 3 are laminated with a predetermined gap so that the first surface 2a and the second surface 3a face each other.
  • the gap between the first glass plate 2 and the second glass plate 3 is hermetically sealed (vacuum) in a vacuum state by the sealing layer 4 provided in the outer peripheral region (sealing region) of the glass plates 2 and 3. Sealed). That is, the internal space 5 of the multilayer glass 1 is maintained in a predetermined vacuum state.
  • the sealing layer 4 is made of a material obtained by melting and solidifying a sealing glass material. It is preferable that the glass material for sealing has a laser absorption ability so that it may mention later.
  • the sealing layer 4 may be a material layer formed by locally irradiating a laser beam to a layer obtained by baking such a sealing glass material having laser absorption ability, and melting and solidifying the sealing glass material. preferable.
  • a plurality of spacers 6 are arranged for maintaining a desired gap. The spacer 6 is fixed to the surface 2a of the first glass plate 2, for example.
  • a low emissivity film 7 is formed on the surface 3 a of the second glass plate 3.
  • a first sealing region 8 is provided in the outer peripheral region of the surface 2 a of the first glass plate 2.
  • a second sealing region 9 corresponding to the first sealing region 8 is provided in the outer peripheral region of the surface 3 a of the second glass plate 3.
  • the first and second sealing regions 8 and 9 are regions for forming the sealing layer 4 (that is, the region for forming the sealing material layer for the first sealing region 8).
  • the sealing layer 4 is a melt in which the sealing material layer 10 formed in the sealing region 8 of the first glass plate 2 is melted with a laser beam and fixed to the sealing region 9 of the second glass plate 3. It consists of a solidified layer.
  • a frame-shaped sealing material layer 10 is formed in the sealing region 8 of the first glass plate 2 used for producing the multilayer glass 1.
  • the sealing material layer 10 formed in the sealing region 8 of the first glass plate 2 is melted and fixed to the sealing region 9 of the second glass plate 3 by the heat of the laser beam, so that the first A sealing layer 4 for vacuum-sealing the gap between the glass plate 2 and the second glass plate 3 (that is, the interval between the internal spaces 5) is formed.
  • the sealing material layer 10 is made of a material layer formed by baking a sealing glass material.
  • the glass material for sealing contains a sealing glass (glass frit) made of a low melting point glass as an essential component, and an inorganic filler such as a laser absorber or a low expansion filler as an optional component.
  • the glass material for sealing may contain other additives other than these as required.
  • Other additives include inorganic fillers other than laser absorbers and low expansion fillers. However, other additives shall exclude components that disappear during firing.
  • the combination and blending amount of the glass materials for sealing are selected in consideration of compatibility with the glass plates 2 and 3.
  • the content of the sealing glass in the sealing glass material is preferably 50 to 100% by volume.
  • the content of the inorganic filler as an optional component is preferably 0 to 50% by volume.
  • content of sealing glass 60 volume% or more is more preferable.
  • the upper limit is not particularly limited, but is preferably 97% by volume or less, and more preferably 90% by volume or less in consideration of the adjustment of the thermal expansion coefficient with respect to the glass plates 2 and 3.
  • sealing glass for example, low-melting glass such as bismuth glass, tin-phosphate glass, vanadium glass, lead glass, and silica borate alkali glass is used.
  • sealing property adheresiveness
  • tin-phosphate glass vanadium glass
  • lead glass silica borate alkali glass
  • the bismuth glass as the sealing glass is a composition containing 70 to 90% Bi 2 O 3 , 1 to 20% ZnO, and 2 to 12% B 2 O 3 in terms of the following oxide-based mass ratio ( Basically, the total amount is preferably 100%). Since the glass formed of the three components Bi 2 O 3 , ZnO, and B 2 O 3 has properties such as transparency and low glass transition point, it serves as a main component (essential component) of the glass material for sealing. Suitable for sealing glass.
  • Bi 2 O 3 is a component that forms a glass network, and is preferably contained in the sealing glass in a range of 70 to 90% by mass.
  • the content of Bi 2 O 3 is less than 70% by mass, the softening temperature of the sealing glass is increased.
  • the content of Bi 2 O 3 exceeds 90% by mass, it becomes difficult to vitrify, it becomes difficult to produce glass, and the thermal expansion coefficient tends to be too high.
  • the Bi 2 O 3 content is more preferably in the range of 78 to 87% by mass.
  • ZnO is a component that lowers the thermal expansion coefficient and softening temperature, and is preferably contained in the range of 1 to 20% by mass in the sealing glass. Vitrification becomes difficult when the content of ZnO is less than 1% by mass. If the content of ZnO exceeds 20% by mass, stability during molding of the sealed glass is lowered, devitrification is likely to occur, and glass may not be obtained. Considering the stability of glass production, the ZnO content is more preferably in the range of 7 to 12% by mass.
  • B 2 O 3 is a component that increases the range in which vitrification is possible by forming a glass skeleton, and is preferably contained in the sealing glass in the range of 2 to 12% by mass. If the content of B 2 O 3 is less than 2% by mass, vitrification becomes difficult. The content of B 2 O 3 is higher softening point exceeds 12 mass%. In consideration of the stability of the glass and the sealing temperature, the content of B 2 O 3 is more preferably in the range of 5 to 10% by mass.
  • the bismuth-based glass formed by the three components described above has a low glass transition point and is suitable for sealing glass, but Al 2 O 3 , CeO 2 , SiO 2 , Ag 2 O, WO 3 , MoO 3 , Nb 2 O 3 , Ta 2 O 5 , Ga 2 O 3 , Sb 2 O 3 , Li 2 O, Na 2 O, K 2 O, Cs 2 O, CaO, SrO, BaO, P 2 O 5 , SnO x ( x may be 1 or 2).
  • the content of any component is too large, the glass becomes unstable and devitrification may occur, or the glass transition point and softening point may increase, so the total content of any component is 10% by mass or less. Is preferred.
  • the lower limit of the total content of arbitrary components is not particularly limited, and an effective amount of optional components can be blended based on the content of addition.
  • Al 2 O 3 , SiO 2 , CaO, SrO, BaO and the like are components that contribute to glass stabilization, and the content is preferably in the range of 0 to 7% by mass.
  • Al 2 O 3 and BaO are excellent, and can be contained as the fourth component in the range of 0.1 to 7% by mass.
  • Li 2 O, Na 2 O, K 2 O, Cs 2 O and the like have an effect of lowering the softening temperature of the glass, and CeO 2 has an effect of stabilizing the fluidity of the glass.
  • the low expansion filler approximates the thermal expansion coefficient between the glass plates 2 and 3 and the sealing layer 4.
  • a low expansion filler is used to adjust the thermal expansion coefficient.
  • the low expansion filler is selected from the group consisting of silica, alumina, zirconia, zirconium silicate, aluminum titanate, mullite, cordierite, eucryptite, spodumene, zirconium phosphate compounds, tin oxide compounds, and quartz solid solutions. It is preferable to use at least one selected from the above.
  • zirconium phosphate-based compound examples include (ZrO) 2 P 2 O 7 , NaZr 2 (PO 4 ) 3 , KZr 2 (PO 4 ) 3 , Ca 0.5 Zr 2 (PO 4 ) 3 , and NbZr (PO 4 ). 3 , Zr 2 (WO 3 ) (PO 4 ) 2 , and composite compounds thereof.
  • the content of the low expansion filler is appropriately set so that the thermal expansion coefficient of the sealing layer 4 which is a melt-solidified layer of the sealing glass material approaches the thermal expansion coefficient of the glass plates 2 and 3.
  • the low expansion filler is preferably contained in the range of 0 to 50% by volume with respect to the sealing glass material, although it depends on the thermal expansion coefficient of the sealing glass and the glass plates 2 and 3.
  • content of a low expansion filler exceeds 50 volume%, there exists a possibility that the fluidity
  • the lower limit of the content of the low expansion filler is not particularly limited, and is appropriately set according to the thermal expansion coefficients of the sealing glass and the glass plates 2 and 3.
  • the preferable lower limit of the content of the low expansion filler is 3% by volume or more, more preferably 10% by volume or more.
  • the laser absorbing material is a filler that enhances the ability of the sealing glass material to absorb laser light when the sealing glass material is heated by irradiating the laser beam.
  • a laser absorber at least one metal (including an alloy) selected from the group consisting of Fe, Cr, Mn, Co, Ni, and Cu, or an oxide containing at least one metal of the metal, Ni At least one compound such as —Mn—Fe—Co—O, Co—Cr—Fe—O, and Cu—Cr—Mn—O is used.
  • the laser absorbing material may be a pigment other than these.
  • the content of the laser absorber in the sealing glass material is preferably in the range of 0.1 to 40% by volume.
  • content of the laser absorber exceeds 40% by volume, the fluidity at the time of melting of the glass material for sealing is lowered, and there is a possibility that the sealing cannot be performed satisfactorily.
  • content of a laser absorber 25 volume% or less is more preferable, More preferably, it is 20 volume% or less.
  • the first and second glass plates 2 and 3 are made of low expansion glass.
  • the low expansion glass constituting the first and second glass plates 2 and 3 has a thermal expansion coefficient of 55 ⁇ 10 ⁇ 7 / ° C. or less (thermal expansion coefficient in a temperature range of 0 to 300 ° C., and so on). Is preferred.
  • Examples of such low expansion glass include one selected from the group consisting of borosilicate glass, aluminoborosilicate glass, alkali-free aluminoborosilicate glass, alkali-free aluminosilicate glass, quartz glass, and crystallized glass. .
  • the 1st glass plate 2 and the 2nd glass plate 3 consist of the same kind or different kind of low expansion glass.
  • first and second glass plates 2 and 3 By constructing the first and second glass plates 2 and 3 with low expansion glass, a multilayer such as a temperature difference between the interior and the exterior when the multilayer glass 1 is applied to a window glass of a building such as a house or a building. The stress generated based on the temperature difference between the inside and outside of the glass 1 can be reduced.
  • the first glass plate 2 is disposed on the high temperature side (for example, the indoor side in a cold region and the outdoor side in a warm region where the temperature rises in summer), and the second glass plate 3 is disposed on the low temperature side (for example, a cold region).
  • the double-glazed glass 1 is based on the temperature difference between the inside and outside (temperature difference between the inside and outside), etc. A difference arises in the expansion amount of the plate 2 and the second glass plate 3. For this reason, although the curvature which the 2nd glass plate 3 becomes concave shape arises in the multilayer glass 1, the 1st and 2nd glass plates 2 and 3 are comprised by low expansion glass. The amount of warpage of the multi-layer glass 1, and further the warpage and stress due to repetition thereof can be reduced.
  • the multilayer glass 1 having the first and second glass plates 2 and 3 made of low expansion glass the adhesion between the glass plates 2 and 3 and the sealing layer 4 due to repeated warping and stress described above.
  • production of a crack, a crack, etc. of an interface and the sealing layer 4 can be suppressed over a long period of time. That is, it becomes possible to provide the multilayer glass 1 having excellent long-term reliability.
  • permit can be expanded by reducing the stress which generate
  • the allowable range for the temperature difference between the inside and outside of the double-glazed glass 1 is Can be spread.
  • the long-term reliability of the multi-layer glass 1 can be maintained even when the multi-layer glass 1 is installed in an environment where the temperature difference between the room and outside is, for example, 50 ° C. or more.
  • the first and second glass plates 2 and 3 have a coefficient of thermal expansion of 55 ⁇ 10 ⁇ 7 / ° C. or less in order to reduce stress due to the above-described temperature difference between the inside and outside of the room and the warp of the multilayer glass 1. It is preferable to comprise with the low expansion glass which has. By applying the low expansion glass having such a thermal expansion coefficient, it is possible to reduce stress based on the temperature difference between inside and outside of the multilayer glass 1 and warpage with good reproducibility. However, if the thermal expansion coefficient of the glass plates 2 and 3 becomes too small, the difference in thermal expansion from the glass material for sealing increases, and conversely, the stress generated in the vicinity of the sealing layer 4 may increase.
  • the thermal expansion coefficients of the glass plates 2 and 3 are preferably 20 ⁇ 10 ⁇ 7 / ° C. or more.
  • board thickness of the 1st and 2nd glass plates 2 and 3 is adjusted so that it may mention later, it is not this limitation.
  • the thicknesses of the first and second glass plates 2 and 3 are preferably in the range of 0.5 mm to 6 mm, respectively. If the thickness of the glass plates 2 and 3 is less than 0.5 mm, the strength and reliability of the multilayer glass 1 may be insufficient. On the other hand, when the thickness of the glass plates 2 and 3 exceeds 6 mm, not only the multi-layer glass 1 becomes heavy, but also warpage and stress based on the temperature difference between the inside and outside may increase. Considering the weight and reliability of the multilayer glass 1, the thickness of the glass plates 2 and 3 is more preferably 1 mm to 5 mm, still more preferably 2 mm to 5 mm.
  • the thickness T2 of the second glass plate 3 is the thickness T1 of the first glass plate 2.
  • Thinner (T2 ⁇ T1) is preferred.
  • the thickness T1 of the first glass plate 1 is in the range of 2 mm to 5 mm
  • the thickness T2 of the second glass plate 3 is different from the thickness T1 of the first glass plate 2 (T1 -T2) is preferably 1 mm to 4 mm.
  • the difference (T1 ⁇ T2) between the thickness T1 of the first glass plate 2 and the thickness T2 of the second glass plate 3 is more preferably 2 mm or more.
  • the thickness difference (T1 ⁇ T2) between the two glass plates 3 is preferably 4 mm or less.
  • board thickness ratio (T2 / T1) of the 1st glass plate 2 and the 2nd glass plate 3 0.2 or more and 0.8 or less are preferable.
  • the thermal expansion coefficient of the glass plates 2 and 3 is preferably 20 ⁇ 10 ⁇ 7 / ° C. or more.
  • the pressure of the internal space 5 of the multilayer glass 1, that is, the internal space 5 formed in the gap between the first glass plate 2 and the second glass plate 3 is appropriately determined according to the characteristics required for the multilayer glass 1. Although set, it is preferable that the vacuum state of 1.0 Pa or less is maintained. Thereby, the favorable heat insulation characteristic by the multilayer glass 1 can be obtained.
  • the pressure in the internal space 5 is more preferably 0.1 Pa or less. According to the double-glazed glass 1 according to the first embodiment, the inner space 5 in a higher vacuum state can be obtained as is apparent from the manufacturing process described later. That is, it becomes possible to provide the double-glazed glass 1 having excellent heat insulating properties.
  • the spacer 6 described above is preferably disposed, although it depends on the size of the multilayer glass 1 and the like. Thereby, the shape of the internal space 5 which is in a vacuum state such as 1.0 Pa or less can be stably maintained.
  • the spacer 6 is formed of, for example, a glass column, a resin column, or the like having a columnar shape, a prismatic shape, a ball shape, or the like. As will be described later, the spacer 6 is preferably formed of a glass column in consideration of the firing conditions at the time of forming the sealing material layer 10.
  • the spacer 6 made of a glass column can be formed, for example, by applying and baking glass frit paste. For example, as shown in FIG.
  • the spacers 6 are preferably provided so as to be scattered in a predetermined pattern in the internal space 5 of the multilayer glass 1.
  • the number and arrangement interval of the spacers 6 are appropriately set depending on the size of the multilayer glass 1, the pressure in the internal space 5, and the like.
  • the spacer 6 is not fixed to the surface 3a of the second glass plate 3, It is preferable that the first glass plate 2 is fixed only to the surface 2a.
  • the spacer 6 by fixing the spacer 6 only to the surface 2 a of the first glass plate 2, it is possible to further reduce the stress based on the temperature difference between inside and outside of the multilayer glass 1, warpage, and the like. That is, tensile stress is generated in the second glass plate 3 arranged on the low temperature side, but it can be freely deformed by not being fixed to the spacer 6. The stress based on it can be made still smaller. Therefore, the long-term reliability of the multilayer glass 1 can be further improved.
  • the gap between the first glass plate 2 and the second glass plate 3 (that is, the gap of the internal space 5) takes into consideration the thermal conductivity of the multi-layer glass 1, the formability of the sealing layer 4, and the like. It is preferably 30 ⁇ m or less, and more preferably 15 ⁇ m or less. That is, by narrowing the gap between the first glass plate 2 and the second glass plate 3, the sealing material layer 10 can be easily melted uniformly with the laser beam. Accordingly, it becomes possible to improve the formability of the sealing layer 4, the adhesiveness with the glass plates 2 and 3, and the reliability thereof. Further, the lower limit of the gap between the first glass plate 2 and the second glass plate 3 is not particularly limited, but is preferably 5 ⁇ m or more from the viewpoint of ensuring the heat insulating property of the multilayer glass.
  • the low emissivity film 7 is formed on the surface 3a of the second glass plate 3 disposed on the low temperature side, for example.
  • Various known materials can be used for the low emissivity film (Low-E film) 7.
  • the Low-E film is formed by laminating a dielectric layer and a metal layer on a base material (for example, a glass plate). (For example, see Japanese Patent Application Laid-Open No. 2000-229378 and Japanese Patent Publication No. 08-032436).
  • base material / dielectric layer / metal layer / dielectric layer “base material / dielectric layer / dielectric layer / metal layer / dielectric layer”, “base material / dielectric layer / metal layer / dielectric” Body layer / metal layer / dielectric layer ”,“ substrate / dielectric layer / dielectric layer / metal layer / dielectric layer / metal layer / dielectric layer ”,“ substrate / dielectric layer / metal layer / dielectric ” Body layer / metal layer / dielectric layer / metal layer / dielectric layer ”,“ substrate / dielectric layer / dielectric layer / metal layer / dielectric layer / metal layer / dielectric layer ” Or the like.
  • the dielectric layer present between the base material and the metal layer closest to the base material may be one layer or two or more layers.
  • the dielectric layer on the metal layer may be one layer or two or more layers.
  • a metal oxide layer is generally used, and tin oxide, zinc oxide, titanium oxide and the like are typical.
  • Typical examples of the metal layer are gold and silver.
  • the metal layer is silver, it may be 100% silver, or may be added with 3 atomic% or less of palladium.
  • the low emissivity film 7 is preferably formed inside the sealing region 9 so as not to impair the formability of the sealing layer 4.
  • the gap between the first glass plate 2 and the second glass plate 3 is the same as the surface of the low emissivity film and the first glass plate.
  • the distance from the glass plate surface In the above example, an example in which a low emissivity film is formed on the surface of the second glass plate (the surface on the gap side of the multilayer glass) is shown, but depending on the specification mode of the multilayer glass, the first A low emissivity film may be formed on the surface of the glass plate (the surface on the gap side of the multi-layer glass), or on both surfaces of the surface on the gap side of the multi-layer glass of the first and second glass plates May be.
  • the second glass plate is arranged on the low temperature side.
  • the above-described low emissivity film may be formed on either the first glass plate or the second glass plate, or may be formed on both in some cases.
  • the multi-layer glass 1 of the first embodiment is produced, for example, as follows. First, as shown in FIG. 2A, the sealing material layer 10 is formed in the sealing region of the surface 2 a of the first glass plate 2.
  • the sealing material layer 10 is made of a sealing glass material paste prepared by mixing a sealing glass, which is an essential component of a sealing glass material, and an inorganic filler, which is an optional component, with a vehicle. After being applied to the surface 2a of the film, it is formed by drying and baking.
  • a spacer glass paste prepared by mixing sealing glass with a vehicle is applied to the surface 2a of the first glass plate 2 with a predetermined coating pattern. After that, the spacer 6 is formed by drying and baking.
  • the vehicle is obtained by dissolving a resin as a binder component in a solvent.
  • resins for vehicles include cellulose resins such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, oxyethyl cellulose, benzyl cellulose, propyl cellulose, and nitrocellulose; methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-hydroxyethyl methacrylate, butyl acrylate, An organic resin such as an acrylic resin obtained by polymerizing at least one acrylic monomer such as 2-hydroxyethyl acrylate is used.
  • terpineol, butyl carbitol acetate, ethyl carbitol acetate or the like is used in the case of a cellulose resin, and methyl ethyl ketone, terpineol, butyl carbitol acetate, ethyl carbitol acetate or the like is used in the case of an acrylic resin.
  • the viscosity of the glass material paste for sealing and the glass paste for spacers may be adjusted to the viscosity corresponding to the device applied to the first glass plate 2, the ratio of the resin and solvent, the ratio of the glass material for sealing and the vehicle, It can be adjusted according to the type of sealing glass and the type of vehicle.
  • the resin is a component that disappears upon firing. You may add a well-known additive with a glass paste like a defoamer and a dispersing agent to the glass material paste for sealing, or the glass paste for spacers. These additives are also components that usually disappear during firing. A known method using a rotary mixer equipped with a stirring blade, a roll mill, a ball mill or the like can be applied to the preparation of each paste.
  • the glass material paste for sealing is apply
  • the glass material paste for sealing is applied by applying a printing method such as screen printing or gravure printing, or is applied using a dispenser or the like.
  • the width of the coating film is preferably 0.5 mm to 20 mm in order to maintain strength.
  • the thickness of the coating film is set according to the distance between the first glass plate 2 and the second glass plate 3 and can be set in consideration of the shrinkage of the film in the subsequent drying process or pre-baking process. preferable.
  • a coating film of the glass paste for spacers is formed on the surface 2 a of the first glass plate 2.
  • the coating film of the glass material paste for sealing and the glass paste for spacers is preferably dried at a temperature of 60 to 150 ° C. for 30 seconds to 10 minutes, for example, to remove the solvent in the coating film. Subsequently, after heating to a temperature 30 ° C. or more lower than the glass transition point of the sealing glass in a baking furnace to remove the binder component and the like in the coating film, the temperature above the softening point of the sealing glass (for example, the temperature of the softening point).
  • the glass material for sealing and the glass frit for spacers are baked on the first glass plate 2 by heating to a surface 2a of the first glass plate 2 to a frame-like sealing material layer. 10 and spacer 6 are formed.
  • the formation process of the sealing material layer 10 and the spacer 6 may be performed simultaneously or separately.
  • the glass transition point is defined by the temperature of the first inflection point of differential thermal analysis (DTA)
  • the glass softening point is defined by the temperature of the fourth inflection point of differential thermal analysis (DTA).
  • a low emissivity film 7 is formed on the surface 3a of the second glass plate 3 as necessary.
  • the low emissivity film 7 may be formed in a desired shape excluding the region where the sealing layer 4 is formed, or a low emissivity film is formed on the entire surface 3a of the second glass plate 3 in advance. Thereafter, a region where the sealing layer 4 is formed may be trimmed to have a desired shape.
  • the first glass plate 2 and the second glass plate 3 are placed in the vacuum chamber 11, and the inside of the vacuum chamber 11 is exhausted to a desired vacuum state.
  • the first glass plate 2 and the second glass plate 3 are laminated so that the first surface 2a having the sealing material layer 10 and the spacer 6 and the surface 3a having the low emissivity film 7 face each other.
  • the sealing material layer 10 is irradiated with the laser beam 12 through the second glass plate 3 (or the first glass plate 2).
  • the laser beam 12 is irradiated while scanning along the sealing material layer 10.
  • the laser light is not particularly limited, and laser light from a semiconductor laser, carbon dioxide laser, excimer laser, YAG laser, HeNe laser, or the like is used.
  • the sealing material layer 10 is melted in order from the portion irradiated with the laser beam 12 scanned along the sealing material layer 10, and is rapidly solidified at the end of the irradiation of the laser beam 12 to be fixed to the second glass plate 3. Then, by irradiating the entire circumference of the sealing material layer 10 with the laser beam 12, the space between the first glass plate 2 and the second glass plate 3 is hermetically sealed as shown in FIG.
  • the sealing layer 4 is formed. Since the laser beam 12 is irradiated in the vacuum chamber 11 in a desired vacuum state, the gap between the first glass plate 2 and the second glass plate 3 is kept in the vacuum state in the vacuum chamber 11. Hermetic sealing is performed in a state where the pressure is maintained (for example, 1 Pa or less).
  • the multi-layer glass 1 having the internal space 5 maintained in a desired vacuum state can be obtained. Since the sealing layer 4 made of a material obtained by melting and solidifying the sealing material layer 10 with the laser beam 12 is excellent in airtightness, the internal space 5 having a vacuum state corresponding to the vacuum pressure of the vacuum chamber 11 can be obtained with good reproducibility. The internal space 5 having such a vacuum state can be maintained for a long period of time.
  • the internal space 5 of the multilayer glass 1 according to the first embodiment can be in a vacuum state such as 1.0 Pa or less, and further 0.1 Pa or less. Furthermore, since the laser beam 12 is irradiated in the vacuum chamber 11, there is no need for a through hole or the like for evacuating the internal space later. Since the through-hole and the suction part attached to the through-hole cause a reduction in the strength of the double-glazed glass, the reliability of the double-glazed glass 1 can be improved.
  • the heating temperature of the sealing material layer 10 by the laser beam 12 is set to be equal to or higher than the softening point of the sealing glass.
  • the heating temperature is preferably (T + 200 ° C.) or more and (T + 800 ° C.) or less, for example, with respect to the softening point temperature T (° C.) of the sealing glass.
  • T softening point temperature
  • low expansion glass such as borosilicate glass, alumino borosilicate glass, quartz glass, and crystallized glass has a smaller distortion than soda lime glass.
  • the formability of the sealing layer 4 can be improved by increasing the uniform meltability of the glass. It is also effective to reduce the thickness of the sealing material layer 10.
  • FIG. 7 is a cross-sectional view showing the structure of the multilayer glass according to the second embodiment.
  • FIG. 8 is a cross-sectional view showing a process for producing a multilayer glass according to the second embodiment.
  • the double-layer glass 21 shown in these drawings is similar to the first sealing layer (sealing resin layer) 22 made of a material obtained by solidifying the sealing resin material and the sealing layer 4 in the first embodiment.
  • a second sealing layer (sealing glass layer) 23 made of a material obtained by melting and solidifying a sealing glass material.
  • the first sealing layer (sealing resin layer) 22 is provided on the outer peripheral side of the second sealing layer (sealing glass layer) 23.
  • Other configurations are the same as those in the first embodiment.
  • the multi-layer glass 21 of the second embodiment is produced as follows, for example. First, as shown to Fig.8 (a), in the sealing area
  • the 2nd sealing material layer 25 is formed in the sealing area
  • the spacer 6 is formed in the same manner as in the first embodiment simultaneously with the formation of the second sealing material layer 25 or separately from the formation of the second sealing material layer 25.
  • the first sealing material layer 24 is applied by applying a resin composition paste containing an ultraviolet curable resin such as an acrylate resin or an epoxy resin by applying a printing method such as screen printing or gravure printing, or a dispenser. Etc. are applied and formed.
  • the resin composition paste is applied to the outer peripheral side of the second sealing material layer 25 and subjected to ultraviolet treatment as necessary.
  • an ultraviolet curable resin composition is used as the material for forming the first sealing material layer 24, an ultraviolet treatment or the like may be performed before the sealing treatment to make it semi-cured.
  • an ultraviolet treatment or the like may be performed before the sealing treatment to make it semi-cured.
  • the 1st sealing material layer 24 which consists of resin materials for sealing on the outer peripheral side of the sealing area
  • the sealing material layer 25 is formed.
  • a low emissivity film 7 is formed on the surface 3a of the second glass plate 3 as necessary (FIG. 8B).
  • the low emissivity film 7 may be formed in a desired region excluding the region where the sealing layer 4 of the second glass plate 3 is formed, or may be formed on the entire surface of the second glass plate 3 in advance.
  • An emissivity film may be formed, and a region where the sealing layer 4 is formed may be trimmed to form a low emissivity film 7 having a desired shape.
  • FIG. 8C the first glass plate 2 and the second glass plate 3 are disposed in the vacuum chamber 11, and the inside of the vacuum chamber 11 is evacuated to a desired vacuum state.
  • the first glass plate 2 and the second glass plate 3 are laminated so that the first surface 2a having the sealing material layers 24 and 25 and the spacer 6 and the surface 3a having the low emissivity film 7 face each other. To do. Then, in the vacuum chamber 11 in a predetermined vacuum state, the first sealing material layer 24 is cured by ultraviolet treatment to form the first sealing layer 22.
  • the laminate of the first glass plate 2 and the second glass plate 3 on which the first sealing layer (sealing resin layer) 22 is formed is placed in an air atmosphere.
  • the second sealing material layer (sealing glass material layer) 25 is irradiated with the laser beam 12 through the second glass plate 3 (or the first glass plate 2).
  • the laser beam 12 is irradiated in the same manner as in the first embodiment except that the laser beam 12 is irradiated in an air atmosphere.
  • the laser beam 12 is irradiated over the entire circumference of the second sealing material layer 25 to hermetically seal between the first glass plate 2 and the second glass plate 3 as shown in FIG. 2 sealing layers (sealing glass layers) 23 are formed.
  • the inside of the first sealing layer 22 is the vacuum in the vacuum chamber 11.
  • the pressure is maintained according to the state. Therefore, even if the laser beam 12 is irradiated to the second sealing material layer 25 disposed inside the first sealing layer 22 in the air atmosphere, the inner side of the second sealing layer 23 is not affected.
  • the space, that is, the internal space 5 of the multilayer glass 21 can be maintained in a desired vacuum state (for example, 10 Pa or less).
  • the 2nd sealing layer 23 is excellent in airtightness, the internal space 5 which has a desired vacuum state can be obtained with sufficient reproducibility, and also the internal space 5 which has such a vacuum state is maintained over a long period of time. it can.
  • Example 1 It has a composition of Bi 2 O 3 83.2%, B 2 O 3 5.6%, ZnO 10.7%, Al 2 O 3 0.5% in terms of mass ratio in terms of oxide, and further 150 ppm in mass ratio by weight of Na 2 O, an average particle diameter (D 50) 1.0 ⁇ m bismuth-based glass (softening point: 410 ° C.) and an average particle diameter (D 50) is cordierite of 4.3 ⁇ m as a low expansion Hama material A powder and a laser absorber having a composition of Fe 2 O 3 —CuO—MnO—Al 2 O 3 and an average particle diameter (D 50 ) of 1.2 ⁇ m were prepared.
  • Particle size distribution was measured using a particle size analyzer (Nikkiso Co., Ltd., Microtrac HRA) using a laser diffraction / scattering method.
  • the measurement conditions were as follows: measurement mode: HRA-FRA mode, Particle Transparency: yes, Special Particles: no, Particle Refractive index: 1.75, Fluid Refractive index: 1.33.
  • a glass material for sealing and a glass material for spacer were prepared by mixing 66.8% by volume of the bismuth-based glass, 32.2% by volume of cordierite powder, and 1.0% by volume of the laser absorber. 83% by mass of this glass material was mixed with 17% by mass of a vehicle prepared by dissolving 5% by mass of ethyl cellulose as a resin binder component in 95% by mass of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate. Thus, a glass paste for sealing and spacers was prepared.
  • a first glass plate (dimensions: 370 mm ⁇ 370 mm ⁇ 3 mm) made of borosilicate glass having a thermal expansion coefficient (0 to 300 ° C.) of 32.5 ⁇ 10 ⁇ 7 / ° C. is prepared.
  • the spacer glass paste was applied to the inner region of the sealing region with a desired printing pattern by a screen printing method to form a spacer coating layer, and then dried under conditions of 120 ° C. ⁇ 10 minutes.
  • the printing pattern of the spacers was arranged such that dots having a diameter of 0.25 mm were arranged in a range of 340 mm ⁇ 340 mm at intervals of 20 mm according to the spacer arrangement pattern.
  • this coating film is heated under conditions of 300 ° C. ⁇ 30 minutes to remove the resin binder component, and then baked under conditions of 480 ° C. ⁇ 10 minutes in an air atmosphere, whereby a spacer having a height of 12 ⁇ m. Formed.
  • the condition is 120 ° C. ⁇ 10 minutes. And dried.
  • This print pattern was a frame-like pattern of 340 mm ⁇ 340 mm with a line width of 0.5 mm.
  • the coating film is heated at 300 ° C. for 30 minutes to remove the resin binder component, and then fired in an air atmosphere at 480 ° C. for 10 minutes to seal the film thickness to 15 ⁇ m.
  • a material layer (sealing glass material layer) was formed.
  • “ZnO / Ag / ZnO / Ag / ZnO as a low emissivity film is formed on the surface of the second glass plate (a plate made of borosilicate glass having the same composition, shape, and dimensions as the first glass plate).
  • the film formation by the sputtering method was performed by masking so that the film did not adhere to the sealing region.
  • the masking tape was peeled off after film formation. Moreover, only the sealing area
  • the inside of the vacuum chamber was evacuated.
  • the first glass plate and the second glass plate were laminated.
  • the sealing material layer is irradiated with a laser beam (CW semiconductor laser) having a wavelength of 808 nm and an output of 16 W through the second glass plate at a scanning speed of 4 mm / second to melt and rapidly solidify the sealing material layer.
  • a sealing layer for vacuum-sealing the gap between the first glass plate and the second glass plate was formed.
  • the characteristics of the multilayer glass thus obtained were evaluated as follows.
  • Example 2 A multilayer glass was produced in the same manner as in Example 1 except that glass plates having a thermal expansion coefficient and a thickness as shown in Table 1 were used as the first and second glass plates. The characteristics and the like of these multilayer glasses were measured in the same manner as in Example 1. The measurement results are also shown in Table 1.
  • Example 1 Comparative Example 1 Except for using glass plates (dimensions: 370 mm ⁇ 370 mm ⁇ 3 mm) made of soda lime glass having a thermal expansion coefficient (0 to 300 ° C.) of 85 ⁇ 10 ⁇ 7 / ° C. as the first and second glass plates.
  • a multilayer glass was produced in the same manner as in Example 1. The characteristics and the like of this multilayer glass were measured in the same manner as in Example 1. The measurement results are also shown in Table 1.
  • Example 1 A multilayer glass was produced in the same manner as in Example 1 except that the distance (that is, the gap) between the first glass plate and the second glass plate was 200 ⁇ m. The characteristics and the like of this multilayer glass were measured in the same manner as in Example 1. The measurement results are also shown in Table 1.
  • Comparative Example 2 A multilayer glass was produced in the same manner as in Comparative Example 1 except that the distance between the first glass plate and the second glass plate was 200 ⁇ m. The characteristics and the like of this multilayer glass were measured in the same manner as in Example 1. The measurement results are also shown in Table 1.
  • the expression “low temperature side / vacuum layer / high temperature side” means “low temperature side (second glass plate) / vacuum layer / high temperature side (first glass plate)”.
  • the distance between the glass plates means “the gap between the first glass plate and the second glass plate”.
  • Example 7 A first glass plate (dimensions: 370 mm ⁇ 370 mm ⁇ 3 mm) made of borosilicate glass having a thermal expansion coefficient (0 to 300 ° C.) of 32.5 ⁇ 10 ⁇ 7 / ° C. is prepared.
  • a spacer and a second sealing material layer made of a sealing glass material were formed.
  • the 1st sealing material layer which consists of a resin material for sealing was formed by apply
  • Example 2 borosilicate glass having the same composition, shape, and dimensions as the first glass plate
  • the glass plate is disposed in the vacuum chamber so that the first surface 2a having the sealing material layer, the spacer, and the sealing resin material, and the surface 3a having the low emissivity film are opposed to each other.
  • the inside of the vacuum chamber was evacuated. After the pressure in the vacuum chamber reached 0.1 Pa, the first glass plate and the second glass plate were laminated. And the 1st sealing layer (sealing resin layer) was formed by performing an ultraviolet curing process in a vacuum chamber.
  • a laser beam (CW semiconductor laser having a wavelength of 808 nm and an output of 18 W is applied to the second sealing material layer through the second glass plate. )
  • the second sealing material layer is melted and rapidly cooled and solidified to vacuum seal the gap between the first glass plate and the second glass plate.
  • a sealing layer (sealing glass layer) was formed.
  • the characteristics of the multilayer glass thus obtained were evaluated in the same manner as in Example 1. As a result, the amount of warpage of the glass plate when it was made into a multilayer glass was not deteriorated.
  • the spacer is formed with the glass material paste, but a spherical spacer such as silica particles may be used. More specifically, silica particles having a particle diameter of about 10 ⁇ m that are widely used for liquid crystal displays can be used.
  • the low expansion glass is applied to the first and second glass plates, it is possible to reduce stress based on the temperature difference between the inside and outside of the multilayer glass, such as the temperature difference between the inside and outside, and therefore It is possible to provide a multilayer glass having excellent long-term reliability.

Abstract

Provided is double glazed glass which has improved long-term reliability by reducing the stress based on the temperature difference between the inside and the outside of a room. Double glazed glass (1) comprises a first glass plate (2) and a second glass plate (3) that are arranged at a predetermined distance from each other. The space between the first glass plate (2) and the second glass plate (3) is vacuum-sealed by a sealing layer (4) which is formed of a material obtained by melting and solidifying a sealing glass material that has laser absorption ability. The first and second glass plates (2, 3) are formed of low expansion glass.

Description

複層ガラスとその製造方法Multi-layer glass and manufacturing method thereof
 本発明は、複層ガラスとその製造方法に関する。 The present invention relates to a multilayer glass and a method for producing the same.
 断熱性能の高い板ガラスとして、2枚のガラス板の間隙を気密封止した複層ガラス、さらには2枚のガラス板の間隙を真空状態で気密封止(真空封止)した複層ガラス(真空複層ガラスとも呼ばれる。)が知られている。真空封止した複層ガラスは、例えば2枚のガラス板を対向配置し、これら2枚のガラス板間を低融点ガラスで封着した構造を有している(特許文献1、2参照)。特許文献1には、低融点ガラスを介して積層した2枚のガラス板を、焼成炉を用いて加熱して低融点ガラスを溶融した後、常温まで冷却して低融点ガラスを固化させることにより封着層(シール部)を形成することが記載されている。 As a glass plate with high heat insulation performance, a double-layer glass in which a gap between two glass plates is hermetically sealed, and a double-layer glass in which a gap between two glass plates is hermetically sealed (vacuum sealed) in a vacuum state (vacuum) Also known as double-glazed glass). The vacuum-sealed multi-layer glass has a structure in which, for example, two glass plates are arranged opposite to each other, and a space between these two glass plates is sealed with a low-melting glass (see Patent Documents 1 and 2). In Patent Document 1, two glass plates laminated through a low melting point glass are heated using a firing furnace to melt the low melting point glass, and then cooled to room temperature to solidify the low melting point glass. It describes that a sealing layer (seal part) is formed.
 特許文献2には、低融点ガラス層を介して2枚のガラス板を積層した後、低融点ガラス層に沿ってレーザ光を照射することによって、低融点ガラス層を局所的に加熱・溶融して封着層を形成することが記載されている。特許文献3においては、低融点ガラス層へのレーザ光の照射を大気雰囲気下で実施して封着層を形成した後、一方のガラス板に設けられた貫通孔を介して真空排気することによって、2枚のガラス板間の内部空間を真空状態としている。貫通孔は内部空間を真空排気した後に封止される。 In Patent Document 2, after laminating two glass plates through a low-melting glass layer, the low-melting glass layer is locally heated and melted by irradiating laser light along the low-melting glass layer. The formation of a sealing layer is described. In Patent Document 3, after the low melting point glass layer is irradiated with laser light in an air atmosphere to form a sealing layer, it is evacuated through a through hole provided in one glass plate. The internal space between the two glass plates is in a vacuum state. The through hole is sealed after the internal space is evacuated.
 レーザ光による局所加熱を適用した封着工程は、焼成炉による加熱に比べて、エネルギー消費量が少ない、製造工数や製造コストを削減できる等の利点を有するものの、低融点ガラスを局所的に急熱・急冷するプロセスであるため、低融点ガラスの溶融固化層からなる封着層とガラス板との接着界面やその近傍に残留応力が生じやすいという問題がある。複層ガラスを家屋やビル等の建物の窓ガラスに適用する場合、複層ガラスには室内外の温度差が付加されることになる。この際に、封着層やその近傍に残留応力が生じていると、室内外の温度差やそれに基づく複層ガラスの反り等によって、ガラス板と封着層との接着界面や封着層にクラックや割れ等が発生しやすくなる。 The sealing process using local heating by laser light has advantages such as less energy consumption and reduced manufacturing steps and costs compared to heating by a firing furnace, but the low melting point glass is locally and rapidly applied. Since this is a process of heating and quenching, there is a problem that residual stress is likely to occur at or near the bonding interface between the sealing layer made of a melt-solidified layer of low-melting glass and the glass plate. When the double-glazed glass is applied to a window glass of a building such as a house or a building, an indoor and outdoor temperature difference is added to the double-glazed glass. At this time, if residual stress occurs in the sealing layer or in the vicinity thereof, the adhesive interface between the glass plate and the sealing layer or the sealing layer may be caused by a temperature difference between the inside or outside of the room or warpage of the multilayer glass based on the difference. Cracks and cracks are likely to occur.
日本特開2004-182567号公報Japanese Unexamined Patent Publication No. 2004-182567 国際公開第99/059931号International Publication No. 99/059931 日本特開2001-316137号公報Japanese Unexamined Patent Publication No. 2001-316137
 上述したように、複層ガラスの封着にレーザ光による局所加熱を適用した場合、急熱・急冷プロセスに起因して残留応力が生じやすく、これにより複層ガラスの信頼性を長期間にわたって維持することが難しいという問題がある。すなわち、複層ガラスにはレーザ封着時に封着層やその近傍に生じる残留応力に加えて、室内外の温度差等に基づく複層ガラスを構成する部材の膨張や収縮による応力が経時的に付加されるため、ガラス板と封着層との接着界面や封着層にクラックや割れ等が生じやすい。このようなクラックや割れ等を抑制するために、室内外の温度差等に基づく応力を低減し、複層ガラスの長期信頼性を高めることが求められている。 As mentioned above, when local heating by laser light is applied to the sealing of multi-layer glass, residual stress is likely to occur due to the rapid heating / cooling process, thereby maintaining the reliability of the multi-layer glass over a long period of time. There is a problem that it is difficult to do. In other words, in addition to the residual stress generated in the sealing layer and its vicinity during laser sealing, the multilayer glass is subject to stress over time due to expansion and contraction of the members constituting the multilayer glass based on the temperature difference between the inside and outside the room. Therefore, cracks and cracks are likely to occur at the adhesive interface between the glass plate and the sealing layer and the sealing layer. In order to suppress such cracks and cracks, it is required to reduce the stress based on the temperature difference between the inside and outside of the room and improve the long-term reliability of the multilayer glass.
 本発明の目的は、室内外の温度差等に基づく応力を低減することによって、長期信頼性を高めることを可能にした複層ガラスとその製造方法を提供することにある。 An object of the present invention is to provide a double-glazed glass and a method for producing the same capable of improving long-term reliability by reducing stress based on a temperature difference between indoors and outdoors.
 本発明者らは、「室内外の温度差等に基づく応力」は、封止後の複層ガラスの反り量と関係があることを見出し、本発明を完成するに至った。 The present inventors have found that “stress based on a temperature difference between the inside and outside of the room” is related to the amount of warpage of the double-glazed glass after sealing, and have completed the present invention.
 本発明の態様に係る複層ガラスは、第1の封止領域を備える第1の表面を有し、低膨張ガラスからなる第1のガラス板と、前記第1の封止領域に対応する第2の封止領域を備える第2の表面を有し、前記第2の表面が前記第1の表面と対向するように、前記第1のガラス板上に所定の間隙を持って配置された、低膨張ガラスからなる第2のガラス板と、前記第1のガラス板と前記第2のガラス板との間の間隙を真空封止するように、前記第1の封止領域と前記第2の封止領域との間に形成され、レーザ吸収能を有する封着用ガラス材料を溶融および固化させた材料からなる封着層とを具備することを特徴としている。 The multilayer glass according to an aspect of the present invention has a first surface including a first sealing region, a first glass plate made of low expansion glass, and a first glass plate corresponding to the first sealing region. A second surface having two sealing regions, and disposed on the first glass plate with a predetermined gap so that the second surface faces the first surface; The first sealing region and the second glass plate are vacuum-sealed so that a gap between the second glass plate made of low expansion glass and the first glass plate and the second glass plate is vacuum-sealed. And a sealing layer made of a material obtained by melting and solidifying a sealing glass material having a laser absorption ability, which is formed between the sealing region and the sealing region.
 本発明の他の態様に係る複層ガラスは、第1の封止領域を備える第1の表面を有し、低膨張ガラスからなる第1のガラス板と、前記第1の封止領域に対応する第2の封止領域を備える第2の表面を有し、前記第2の表面が前記第1の表面と対向するように、前記第1のガラス板上に所定の間隙を持って配置された、低膨張ガラスからなる第2のガラス板と、前記第1のガラス板と前記第2のガラス板との間の間隙を真空封止するように、前記第1の封止領域と前記第2の封止領域との間に形成された封着層とを具備し、高温側に配置される前記第1のガラス板の板厚をT1、低温側に配置される前記第2のガラス板の板厚をT2としたとき、前記第2のガラス板の板厚T2はT2<T1の条件を満足することを特徴としている。 The multilayer glass according to another aspect of the present invention has a first surface including a first sealing region, and corresponds to the first glass plate made of low expansion glass and the first sealing region. A second surface having a second sealing region that is disposed on the first glass plate with a predetermined gap so that the second surface faces the first surface. In addition, the first sealing region and the first glass plate are vacuum-sealed so that the second glass plate made of low expansion glass and the gap between the first glass plate and the second glass plate are vacuum-sealed. And a sealing layer formed between two sealing regions, and the thickness of the first glass plate disposed on the high temperature side is T1, and the second glass plate is disposed on the low temperature side. When the thickness of the second glass plate is T2, the thickness T2 of the second glass plate satisfies the condition of T2 <T1.
 本発明の態様に係る複層ガラスの製造方法は、第1の封止領域を備える第1の表面を有し、低膨張ガラスからなる第1のガラス板を用意する工程と、前記第1の封止領域に対応する第2の封止領域と、前記第2の封止領域上に形成され、レーザ吸収能を有する封着用ガラス材料を焼成した材料からなる封着材料層とを備える第2の表面を有し、低膨張ガラスからなる第2のガラス板を用意する工程と、前記第1の表面と前記第2の表面とを対向させつつ、前記封着材料層を介して前記第1のガラス板と前記第2のガラス板とを積層する工程と、真空雰囲気下にて前記第1または第2のガラス板を通してレーザ光を前記封着材料層に照射し、前記封着材料層を溶融および固化させて前記第1のガラス板と前記第2のガラス板との間隙を真空封止する封着層を形成する工程とを具備することを特徴としている。 The method for producing a multilayer glass according to an aspect of the present invention includes a step of preparing a first glass plate having a first surface including a first sealing region and made of low expansion glass; A second sealing region comprising a second sealing region corresponding to the sealing region, and a sealing material layer formed on the second sealing region and made of a material obtained by baking a sealing glass material having laser absorption ability. A second glass plate made of low-expansion glass, and the first surface and the second surface facing each other while the first material and the second surface are opposed to each other. The step of laminating the glass plate and the second glass plate, and irradiating the sealing material layer with laser light through the first or second glass plate in a vacuum atmosphere, The gap between the first glass plate and the second glass plate is vacuum sealed by melting and solidifying. It is characterized by comprising a step of forming a sealing layer.
 本発明の他の態様に係る複層ガラスの製造方法は、第1の封止領域を備える第1の表面を有し、低膨張ガラスからなる第1のガラス板を用意する工程と、前記第1の封止領域に対応する第2の封止領域と、前記第2の封止領域上に形成され、封着用樹脂材料からなる第1の封着材料層と、前記第2の封止領域上の第1の封着材料層より内周側に形成され、レーザ吸収能を有する封着用ガラス材料を焼成した材料からなる第2の封着材料層とを備える第2の表面を有し、低膨張ガラスからなる第2のガラス板を用意する工程と、前記第1の表面と前記第2の表面とを対向させつつ、前記第1および第2の封着材料層を介して前記第1のガラス板と前記第2のガラス板とを積層する工程と、真空雰囲気下にて前記第1の封着材料層を硬化させ、前記第1のガラス板と前記第2のガラス板との間隙を真空封止する第1の封着層を形成する工程と、大気雰囲気下にて前記第1または第2のガラス板を通してレーザ光を前記第2の封着材料層に照射し、前記第2の封着材料層を溶融および固化させて第2の封着層を形成する工程とを具備することを特徴としている。 The method for producing a multilayer glass according to another aspect of the present invention includes a step of preparing a first glass plate having a first surface including a first sealing region and made of low expansion glass, A second sealing region corresponding to one sealing region, a first sealing material layer formed on the second sealing region and made of a sealing resin material, and the second sealing region. A second surface comprising a second sealing material layer formed of a material obtained by baking a sealing glass material having a laser absorption ability, which is formed on the inner peripheral side from the first sealing material layer above; A step of preparing a second glass plate made of low expansion glass, and the first surface and the second surface are opposed to each other while the first and second sealing material layers are interposed therebetween. A step of laminating the glass plate and the second glass plate, and curing the first sealing material layer in a vacuum atmosphere, A step of forming a first sealing layer for vacuum-sealing a gap between the first glass plate and the second glass plate; and a laser beam through the first or second glass plate in an air atmosphere. And irradiating the second sealing material layer to melt and solidify the second sealing material layer to form a second sealing layer.
 本発明の複層ガラスは、第1および第2のガラス板に低膨張ガラスを適用しているため、室内外の温度差のような複層ガラスの内外の温度差等に基づく応力を低減できる。従って、長期信頼性に優れる複層ガラスを提供できる。 In the double-glazed glass of the present invention, low-expansion glass is applied to the first and second glass plates, and therefore stress based on the temperature difference between the inside and outside of the double-glazed glass, such as the temperature difference between the inside and outside, can be reduced. . Therefore, a multilayer glass excellent in long-term reliability can be provided.
本発明の第1の実施形態による複層ガラスの構成を示す断面図である。It is sectional drawing which shows the structure of the multilayer glass by the 1st Embodiment of this invention. 本発明の第1の実施形態による複層ガラスの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the multilayer glass by the 1st Embodiment of this invention. 図2に示す複層ガラスの製造工程で使用する第1のガラス板を示す平面図である。It is a top view which shows the 1st glass plate used by the manufacturing process of the multilayer glass shown in FIG. 図3のA-A線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. 図2に示す複層ガラスの製造工程で使用する第2のガラス板を示す平面図である。It is a top view which shows the 2nd glass plate used at the manufacturing process of the multilayer glass shown in FIG. 図5のA-A線に沿った断面図である。FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. 本発明の第2の実施形態による複層ガラスの構成を示す断面図である。It is sectional drawing which shows the structure of the multilayer glass by the 2nd Embodiment of this invention. 本発明の第2の実施形態による複層ガラスの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the multilayer glass by the 2nd Embodiment of this invention.
 以下、本発明を実施するための形態について、図面を参照して説明する。図1は第1の実施形態による複層ガラスの構成を示す断面図である。図2は第1の実施形態による複層ガラスの製造工程を示す断面図である。図3ないし図6は複層ガラスの製造工程で用いる第1および第2のガラス板の構成を示す図である。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the structure of a multilayer glass according to the first embodiment. FIG. 2 is a cross-sectional view showing a process for producing a multilayer glass according to the first embodiment. FIG. 3 to FIG. 6 are diagrams showing the configuration of the first and second glass plates used in the manufacturing process of the multilayer glass.
 これらの図に示す複層ガラス1は、第1の表面2aを有する第1のガラス板2と、第2の表面3aを有する第2のガラス板3とを具備している。第1のガラス板2と第2のガラス板3とは、第1の表面2aと第2の表面3aとが対向するように、所定の間隙をもって積層されている。第1のガラス板2と第2のガラス板3との間の間隙は、ガラス板2、3の外周領域(封止領域)に設けられた封着層4により真空状態で気密封止(真空封止)されている。すなわち、複層ガラス1の内部空間5は所定の真空状態に保持されている。 The multilayer glass 1 shown in these drawings includes a first glass plate 2 having a first surface 2a and a second glass plate 3 having a second surface 3a. The first glass plate 2 and the second glass plate 3 are laminated with a predetermined gap so that the first surface 2a and the second surface 3a face each other. The gap between the first glass plate 2 and the second glass plate 3 is hermetically sealed (vacuum) in a vacuum state by the sealing layer 4 provided in the outer peripheral region (sealing region) of the glass plates 2 and 3. Sealed). That is, the internal space 5 of the multilayer glass 1 is maintained in a predetermined vacuum state.
 封着層4は、封着用ガラス材料を溶融および固化させた材料からなる。封着用ガラス材料は、後述するようにレーザ吸収能を有していることが好ましい。封着層4は、そのようなレーザ吸収能を有する封着用ガラス材料を焼成した層にレーザ光を局所的に照射し、封着用ガラス材料を溶融および固化させて形成した材料層であることが好ましい。第1のガラス板2と第2のガラス板3との間の間隙には、所望の間隙を維持するための複数のスペーサ6が配置されている。スペーサ6は、例えば第1のガラス板2の表面2aに固着されている。また、第2のガラス板3の表面3aには、低放射率膜7が形成されている。 The sealing layer 4 is made of a material obtained by melting and solidifying a sealing glass material. It is preferable that the glass material for sealing has a laser absorption ability so that it may mention later. The sealing layer 4 may be a material layer formed by locally irradiating a laser beam to a layer obtained by baking such a sealing glass material having laser absorption ability, and melting and solidifying the sealing glass material. preferable. In the gap between the first glass plate 2 and the second glass plate 3, a plurality of spacers 6 are arranged for maintaining a desired gap. The spacer 6 is fixed to the surface 2a of the first glass plate 2, for example. A low emissivity film 7 is formed on the surface 3 a of the second glass plate 3.
 第1の実施形態の複層ガラス1の構成を以下に詳述する。第1のガラス板2の表面2aの外周領域には、図3および図4に示すように、第1の封止領域8が設けられている。第2のガラス板3の表面3aの外周領域には、図5および図6に示すように、第1の封止領域8に対応する第2の封止領域9が設けられている。第1および第2の封止領域8、9は封着層4の形成領域(すなわち、第1の封止領域8については封着材料層の形成領域)となる。封着層4は、第1のガラス板2の封止領域8に形成された封着材料層10をレーザ光で溶融させて、第2のガラス板3の封止領域9に固着させた溶融固化層からなる。 The configuration of the multilayer glass 1 of the first embodiment will be described in detail below. As shown in FIGS. 3 and 4, a first sealing region 8 is provided in the outer peripheral region of the surface 2 a of the first glass plate 2. As shown in FIGS. 5 and 6, a second sealing region 9 corresponding to the first sealing region 8 is provided in the outer peripheral region of the surface 3 a of the second glass plate 3. The first and second sealing regions 8 and 9 are regions for forming the sealing layer 4 (that is, the region for forming the sealing material layer for the first sealing region 8). The sealing layer 4 is a melt in which the sealing material layer 10 formed in the sealing region 8 of the first glass plate 2 is melted with a laser beam and fixed to the sealing region 9 of the second glass plate 3. It consists of a solidified layer.
 すなわち、複層ガラス1の作製に用いられる第1のガラス板2の封止領域8には、図3および図4に示すように、枠状の封着材料層10が形成されている。第1のガラス板2の封止領域8に形成された封着材料層10を、レーザ光の熱で第2のガラス板3の封止領域9に溶融して固着させることによって、第1のガラス板2と第2のガラス板3との間の間隙(すなわち、内部空間5の間隔)を真空封止する封着層4が形成される。封着材料層10は、封着用ガラス材料を焼成して形成した材料層からなる。
 なお、図1においては、第1のガラス板が下側に、第2のガラス板が上側に位置する複層ガラスについて説明しているが、図1の複層ガラスの上下を反転させ、上側のガラス板を第1のガラス板、下側のガラス板を第2のガラス板をしても同様である。また、図7の複層ガラスにおいてもこのことは同様である。
That is, as shown in FIGS. 3 and 4, a frame-shaped sealing material layer 10 is formed in the sealing region 8 of the first glass plate 2 used for producing the multilayer glass 1. The sealing material layer 10 formed in the sealing region 8 of the first glass plate 2 is melted and fixed to the sealing region 9 of the second glass plate 3 by the heat of the laser beam, so that the first A sealing layer 4 for vacuum-sealing the gap between the glass plate 2 and the second glass plate 3 (that is, the interval between the internal spaces 5) is formed. The sealing material layer 10 is made of a material layer formed by baking a sealing glass material.
In addition, in FIG. 1, although the 1st glass plate is demonstrated to the lower side and the 2nd glass plate is demonstrated about the multilayer glass, the upper and lower sides of the multilayer glass of FIG. This is the same even if the first glass plate is used as the glass plate and the second glass plate is used as the lower glass plate. The same applies to the multilayer glass of FIG.
 封着用ガラス材料は、必須成分として低融点ガラスからなる封着ガラス(ガラスフリット)を含んでおり、また任意成分としてレーザ吸収材や低膨張充填材等の無機充填材を含んでいる。封着用ガラス材料は、これら以外の他の添加材を必要に応じて含有していてもよい。他の添加材としては、レーザ吸収材および低膨張充填材以外の無機充填材が挙げられる。ただし、他の添加材は焼成の際に消失する成分を除くものとする。 The glass material for sealing contains a sealing glass (glass frit) made of a low melting point glass as an essential component, and an inorganic filler such as a laser absorber or a low expansion filler as an optional component. The glass material for sealing may contain other additives other than these as required. Other additives include inorganic fillers other than laser absorbers and low expansion fillers. However, other additives shall exclude components that disappear during firing.
 封着用ガラス材料の組合せや配合量等は、ガラス板2、3との相性等を考慮して選定される。封着用ガラス材料中の封着ガラスの含有量は50~100体積%が好ましい。任意成分である無機充填材の含有量は0~50体積%が好ましい。封着ガラスの含有量が50体積%未満であると、封着時の封着用ガラス材料の流動性が低下し、良好に封着できないおそれがある。封着ガラスの含有量は60体積%以上がより好ましい。上限値は特に限定されないが、ガラス板2、3に対する熱膨張係数の調整等を考慮して97体積%以下、さらに90体積%以下が好ましい。 The combination and blending amount of the glass materials for sealing are selected in consideration of compatibility with the glass plates 2 and 3. The content of the sealing glass in the sealing glass material is preferably 50 to 100% by volume. The content of the inorganic filler as an optional component is preferably 0 to 50% by volume. When the content of the sealing glass is less than 50% by volume, the fluidity of the glass material for sealing at the time of sealing is lowered, and there is a possibility that it cannot be satisfactorily sealed. As for content of sealing glass, 60 volume% or more is more preferable. The upper limit is not particularly limited, but is preferably 97% by volume or less, and more preferably 90% by volume or less in consideration of the adjustment of the thermal expansion coefficient with respect to the glass plates 2 and 3.
 上記した数値範囲を示す「~」とは、特段の定めがない限り、その前後に記載された数値を下限値及び上限値として含む意味で使用され、以下本明細書において「~」は、同様の意味をもって使用される。 Unless otherwise specified, “to” indicating the numerical range described above is used to mean that the numerical values described before and after it are used as a lower limit value and an upper limit value, and hereinafter “to” Used with meaning.
 封着ガラスには、例えばビスマス系ガラス、錫-リン酸系ガラス、バナジウム系ガラス、鉛系ガラス、シリカホウ酸アルカリガラス等の低融点ガラスが用いられる。これらのうち、ガラス板2、3に対する封着性(接着性)やその信頼性(接着信頼性や気密封止性)、さらには環境や人体に対する影響性等を考慮して、ビスマス系ガラスからなる封着ガラスが好ましい。 As the sealing glass, for example, low-melting glass such as bismuth glass, tin-phosphate glass, vanadium glass, lead glass, and silica borate alkali glass is used. Among these, considering the sealing property (adhesiveness) to the glass plates 2 and 3, its reliability (adhesion reliability and hermetic sealing property), and the influence on the environment and human body, etc., from bismuth-based glass A sealing glass is preferred.
 封着ガラスとしてのビスマス系ガラスは、下記酸化物換算の質量割合で70~90%のBi、1~20%のZnO、および2~12%のBを含有する組成(基本的には合計量を100%とする)が好ましい。Bi、ZnO、およびBの3成分で形成されるガラスは、透明でガラス転移点が低い等の特性を有することから、封着用ガラス材料の主成分(必須成分)としての封着ガラスに好適である。 The bismuth glass as the sealing glass is a composition containing 70 to 90% Bi 2 O 3 , 1 to 20% ZnO, and 2 to 12% B 2 O 3 in terms of the following oxide-based mass ratio ( Basically, the total amount is preferably 100%). Since the glass formed of the three components Bi 2 O 3 , ZnO, and B 2 O 3 has properties such as transparency and low glass transition point, it serves as a main component (essential component) of the glass material for sealing. Suitable for sealing glass.
 上述した3成分で形成されるビスマス系ガラスにおいて、Biはガラスの網目を形成する成分であり、封着ガラス中に70~90質量%の範囲で含有させることが好ましい。Biの含有量が70質量%未満であると封着ガラスの軟化温度が高くなる。Biの含有量が90質量%を超えるとガラス化しにくくなり、ガラスの製造が困難になると共に、熱膨張係数が高くなりすぎる傾向がある。封着温度等を考慮して、Biの含有量は78~87質量%の範囲がより好ましい。 In the bismuth-based glass formed of the three components described above, Bi 2 O 3 is a component that forms a glass network, and is preferably contained in the sealing glass in a range of 70 to 90% by mass. When the content of Bi 2 O 3 is less than 70% by mass, the softening temperature of the sealing glass is increased. When the content of Bi 2 O 3 exceeds 90% by mass, it becomes difficult to vitrify, it becomes difficult to produce glass, and the thermal expansion coefficient tends to be too high. Considering the sealing temperature and the like, the Bi 2 O 3 content is more preferably in the range of 78 to 87% by mass.
 ZnOは熱膨張係数や軟化温度を下げる成分であり、封着ガラス中に1~20質量%の範囲で含有させることが好ましい。ZnOの含有量が1質量%未満であるとガラス化が困難になる。ZnOの含有量が20質量%を超えると封着ガラス成形時の安定性が低下し、失透が発生しやすくなって、ガラスが得られないおそれがある。ガラス製造の安定性等を考慮して、ZnOの含有量は7~12質量%の範囲がより好ましい。 ZnO is a component that lowers the thermal expansion coefficient and softening temperature, and is preferably contained in the range of 1 to 20% by mass in the sealing glass. Vitrification becomes difficult when the content of ZnO is less than 1% by mass. If the content of ZnO exceeds 20% by mass, stability during molding of the sealed glass is lowered, devitrification is likely to occur, and glass may not be obtained. Considering the stability of glass production, the ZnO content is more preferably in the range of 7 to 12% by mass.
 Bはガラス骨格を形成してガラス化が可能になる範囲を広げる成分であり、封着ガラス中に2~12質量%の範囲で含有させることが好ましい。Bの含有量が2質量%未満であるとガラス化が困難になる。Bの含有量が12質量%を超えると軟化点が高くなる。ガラスの安定性や封着温度等を考慮して、Bの含有量は5~10質量%の範囲がより好ましい。 B 2 O 3 is a component that increases the range in which vitrification is possible by forming a glass skeleton, and is preferably contained in the sealing glass in the range of 2 to 12% by mass. If the content of B 2 O 3 is less than 2% by mass, vitrification becomes difficult. The content of B 2 O 3 is higher softening point exceeds 12 mass%. In consideration of the stability of the glass and the sealing temperature, the content of B 2 O 3 is more preferably in the range of 5 to 10% by mass.
 上述した3成分で形成されるビスマス系ガラスはガラス転移点が低く、封着ガラスに適したものであるが、Al、CeO、SiO、AgO、WO、MoO、Nb、Ta、Ga、Sb、LiO、NaO、KO、CsO、CaO、SrO、BaO、P、SnO(xは1または2である)等の任意成分を含有していてもよい。ただし、任意成分の含有量が多すぎるとガラスが不安定となって失透が発生したり、ガラス転移点や軟化点が上昇するおそれがあるため、任意成分の合計含有量は10質量%以下が好ましい。任意成分の合計含有量の下限値は特に限定されるものではなく、添加内容に基づいて有効量の任意成分を配合できる。 The bismuth-based glass formed by the three components described above has a low glass transition point and is suitable for sealing glass, but Al 2 O 3 , CeO 2 , SiO 2 , Ag 2 O, WO 3 , MoO 3 , Nb 2 O 3 , Ta 2 O 5 , Ga 2 O 3 , Sb 2 O 3 , Li 2 O, Na 2 O, K 2 O, Cs 2 O, CaO, SrO, BaO, P 2 O 5 , SnO x ( x may be 1 or 2). However, if the content of any component is too large, the glass becomes unstable and devitrification may occur, or the glass transition point and softening point may increase, so the total content of any component is 10% by mass or less. Is preferred. The lower limit of the total content of arbitrary components is not particularly limited, and an effective amount of optional components can be blended based on the content of addition.
 上記した任意成分のうち、Al、SiO、CaO、SrO、BaO等は、ガラスの安定化に寄与する成分であり、その含有量は0~7質量%の範囲が好ましい。中でも、AlやBaOは優れているので、0.1~7質量%の範囲で第4成分として含有させることもできる。LiO、NaO、KO、CsO等は、ガラスの軟化温度を下げる効果を有し、CeOはガラスの流動性を安定化させる効果を有する。AgO、WO、MoO、Nb、Ta、Ga、Sb、P、SnO等は、ガラスの粘性や熱膨張係数等を調整する成分として含有させることができる。これら各成分の含有量は任意成分の合計含有量が10質量%を超えない範囲内で適宜に設定できる。 Among the above-mentioned optional components, Al 2 O 3 , SiO 2 , CaO, SrO, BaO and the like are components that contribute to glass stabilization, and the content is preferably in the range of 0 to 7% by mass. Among them, Al 2 O 3 and BaO are excellent, and can be contained as the fourth component in the range of 0.1 to 7% by mass. Li 2 O, Na 2 O, K 2 O, Cs 2 O and the like have an effect of lowering the softening temperature of the glass, and CeO 2 has an effect of stabilizing the fluidity of the glass. Ag 2 O, WO 3 , MoO 3 , Nb 2 O 3 , Ta 2 O 5 , Ga 2 O 3 , Sb 2 O 3 , P 2 O 5 , SnO x, etc. adjust the viscosity and thermal expansion coefficient of the glass It can be contained as a component. The content of each of these components can be appropriately set within a range where the total content of arbitrary components does not exceed 10% by mass.
 封着用ガラス材料に任意成分として配合される無機充填材のうち、低膨張充填材は、ガラス板2、3と封着層4との熱膨張係数を近似させるものである。一般的に、封着ガラスの熱膨張係数は、ガラス板2、3のそれより大きいため、熱膨張率を調整するために低膨張充填材が用いられる。低膨張充填材としては、シリカ、アルミナ、ジルコニア、珪酸ジルコニウム、チタン酸アルミニウム、ムライト、コージェライト、ユークリプタイト、スポジュメン、リン酸ジルコニウム系化合物、酸化錫系化合物、および石英固溶体からなる群から選ばれる少なくとも1種を用いることが好ましい。リン酸ジルコニウム系化合物としては、(ZrO)、NaZr(PO、KZr(PO、Ca0.5Zr(PO、NbZr(PO、Zr(WO)(PO、これらの複合化合物が挙げられる。 Of the inorganic fillers blended in the glass material for sealing as an optional component, the low expansion filler approximates the thermal expansion coefficient between the glass plates 2 and 3 and the sealing layer 4. Generally, since the thermal expansion coefficient of the sealing glass is larger than that of the glass plates 2 and 3, a low expansion filler is used to adjust the thermal expansion coefficient. The low expansion filler is selected from the group consisting of silica, alumina, zirconia, zirconium silicate, aluminum titanate, mullite, cordierite, eucryptite, spodumene, zirconium phosphate compounds, tin oxide compounds, and quartz solid solutions. It is preferable to use at least one selected from the above. Examples of the zirconium phosphate-based compound include (ZrO) 2 P 2 O 7 , NaZr 2 (PO 4 ) 3 , KZr 2 (PO 4 ) 3 , Ca 0.5 Zr 2 (PO 4 ) 3 , and NbZr (PO 4 ). 3 , Zr 2 (WO 3 ) (PO 4 ) 2 , and composite compounds thereof.
 低膨張充填材の含有量は、封着用ガラス材料の溶融固化層である封着層4の熱膨張率がガラス板2、3の熱膨張率に近づくように適宜に設定される。低膨張充填材は、封着ガラスやガラス板2、3の熱膨張係数にもよるが、封着用ガラス材料に対して0~50体積%の範囲で含有させることが好ましい。低膨張充填材の含有量が50体積%を超えると、封着用ガラス材料の流動性が低下して接着強度が低下するおそれがある。低膨張充填材の含有量の下限値は特に限定されるものではなく、封着ガラスやガラス板2、3の熱膨張係数に応じて適宜に設定される。低膨張充填材の含有量の好ましい下限値は3体積%以上であり、より好ましくは10体積%以上である。 The content of the low expansion filler is appropriately set so that the thermal expansion coefficient of the sealing layer 4 which is a melt-solidified layer of the sealing glass material approaches the thermal expansion coefficient of the glass plates 2 and 3. The low expansion filler is preferably contained in the range of 0 to 50% by volume with respect to the sealing glass material, although it depends on the thermal expansion coefficient of the sealing glass and the glass plates 2 and 3. When content of a low expansion filler exceeds 50 volume%, there exists a possibility that the fluidity | liquidity of the glass material for sealing may fall, and adhesive strength may fall. The lower limit of the content of the low expansion filler is not particularly limited, and is appropriately set according to the thermal expansion coefficients of the sealing glass and the glass plates 2 and 3. The preferable lower limit of the content of the low expansion filler is 3% by volume or more, more preferably 10% by volume or more.
 レーザ吸収材は、封着用ガラス材料にレーザ光を照射して加熱する際に、封着用ガラス材料によるレーザ光の吸収能を高める充填材である。なお、封着ガラス自体がレーザ吸収能を有する場合には、レーザ吸収材を添加しなくてもよい。レーザ吸収材としては、Fe、Cr、Mn、Co、Ni、およびCuからなる群から選ばれる少なくとも1種の金属(合金も含む)、または前記金属の少なくとも1種の金属を含む酸化物、Ni-Mn-Fe-Co-O、Co-Cr-Fe-O、Cu-Cr-Mn-O等の化合物の少なくとも1種が用いられる。レーザ吸収材はこれら以外の顔料であってもよい。封着用ガラス材料におけるレーザ吸収材の含有量は0.1~40体積%の範囲が好ましい。レーザ吸収材の含有量が40体積%を超えると封着用ガラス材料の溶融時の流動性が低下し、良好に封着を行うことができないおそれがある。レーザ吸収材の含有量は25体積%以下がより好ましく、さらに好ましくは20体積%以下である。 The laser absorbing material is a filler that enhances the ability of the sealing glass material to absorb laser light when the sealing glass material is heated by irradiating the laser beam. In addition, when the sealing glass itself has a laser absorption ability, it is not necessary to add a laser absorber. As the laser absorber, at least one metal (including an alloy) selected from the group consisting of Fe, Cr, Mn, Co, Ni, and Cu, or an oxide containing at least one metal of the metal, Ni At least one compound such as —Mn—Fe—Co—O, Co—Cr—Fe—O, and Cu—Cr—Mn—O is used. The laser absorbing material may be a pigment other than these. The content of the laser absorber in the sealing glass material is preferably in the range of 0.1 to 40% by volume. When the content of the laser absorber exceeds 40% by volume, the fluidity at the time of melting of the glass material for sealing is lowered, and there is a possibility that the sealing cannot be performed satisfactorily. As for content of a laser absorber, 25 volume% or less is more preferable, More preferably, it is 20 volume% or less.
 第1の実施形態による複層ガラス1において、第1および第2のガラス板2、3は低膨張ガラスからなる。第1および第2のガラス板2、3を構成する低膨張ガラスは、55×10-7/℃以下の熱膨張係数(0~300℃の温度範囲における熱膨張係数。以下同様である。)が好ましい。このような低膨張ガラスとしては、例えばホウケイ酸ガラス、アルミノホウケイ酸ガラス、無アルカリアルミノホウケイ酸ガラス、無アルカリアルミノケイ酸ガラス、石英ガラス、および結晶化ガラスからなる群より選ばれる1種が挙げられる。第1のガラス板2と第2のガラス板3とは、同種または異種の低膨張ガラスからなるものである。 In the multilayer glass 1 according to the first embodiment, the first and second glass plates 2 and 3 are made of low expansion glass. The low expansion glass constituting the first and second glass plates 2 and 3 has a thermal expansion coefficient of 55 × 10 −7 / ° C. or less (thermal expansion coefficient in a temperature range of 0 to 300 ° C., and so on). Is preferred. Examples of such low expansion glass include one selected from the group consisting of borosilicate glass, aluminoborosilicate glass, alkali-free aluminoborosilicate glass, alkali-free aluminosilicate glass, quartz glass, and crystallized glass. . The 1st glass plate 2 and the 2nd glass plate 3 consist of the same kind or different kind of low expansion glass.
 第1および第2のガラス板2、3を低膨張ガラスで構成することによって、複層ガラス1を家屋やビル等の建物の窓ガラスに適用した際の室内外の温度差のような複層ガラス1の内外における温度差に基づいて発生する応力を低減できる。第1のガラス板2を高温側(例えば、寒冷地での室内側、また夏季において温度が上がる温暖地での室外側)に配置し、第2のガラス板3を低温側(例えば、寒冷地での室外側、また夏季において温度が上がる温暖地での室内側)に配置する場合、複層ガラス1にはその内外の温度差(室内外の温度差)等に基づいて、第1のガラス板2と第2のガラス板3の膨張量に差が生じる。このため、複層ガラス1には第2のガラス板3が外側に凹状となるような反りが生じるが、第1および第2のガラス板2、3を低膨張ガラスで構成しておくことで、複層ガラス1の反り量、さらには反りやその繰り返しによる応力を低減できる。 By constructing the first and second glass plates 2 and 3 with low expansion glass, a multilayer such as a temperature difference between the interior and the exterior when the multilayer glass 1 is applied to a window glass of a building such as a house or a building. The stress generated based on the temperature difference between the inside and outside of the glass 1 can be reduced. The first glass plate 2 is disposed on the high temperature side (for example, the indoor side in a cold region and the outdoor side in a warm region where the temperature rises in summer), and the second glass plate 3 is disposed on the low temperature side (for example, a cold region). When the glass is placed on the outdoor side in the room or on the indoor side in a warm area where the temperature rises in summer), the double-glazed glass 1 is based on the temperature difference between the inside and outside (temperature difference between the inside and outside), etc. A difference arises in the expansion amount of the plate 2 and the second glass plate 3. For this reason, although the curvature which the 2nd glass plate 3 becomes concave shape arises in the multilayer glass 1, the 1st and 2nd glass plates 2 and 3 are comprised by low expansion glass. The amount of warpage of the multi-layer glass 1, and further the warpage and stress due to repetition thereof can be reduced.
 従って、低膨張ガラスで構成した第1および第2のガラス板2、3を有する複層ガラス1によれば、上記した反りや応力の繰り返しによるガラス板2、3と封着層4との接着界面や封着層4のクラックや割れ等の発生を長期間にわたって抑制できる。すなわち、長期信頼性に優れる複層ガラス1の提供が可能となる。また、複層ガラス1の内外の温度差や複層ガラス1の反り等に基づいて発生する応力を低減することで、複層ガラス1が許容可能な温度差を広げられる。複層ガラス1を外側と内側の温度差が大である環境下において使用される場合、例えば複層ガラス1を寒冷地等に設置する場合、複層ガラス1の内外の温度差に対する許容範囲を広げることができる。具体的には、複層ガラス1を室内外の温度差が例えば50℃もしくはそれ以上になるような環境に設置する場合においても、複層ガラス1の長期信頼性を保つことが可能となる。 Therefore, according to the multilayer glass 1 having the first and second glass plates 2 and 3 made of low expansion glass, the adhesion between the glass plates 2 and 3 and the sealing layer 4 due to repeated warping and stress described above. Generation | occurrence | production of a crack, a crack, etc. of an interface and the sealing layer 4 can be suppressed over a long period of time. That is, it becomes possible to provide the multilayer glass 1 having excellent long-term reliability. Moreover, the temperature difference which the multilayer glass 1 can accept | permit can be expanded by reducing the stress which generate | occur | produces based on the temperature difference inside and outside the multilayer glass 1, the curvature of the multilayer glass 1, etc. When the double-glazed glass 1 is used in an environment where the temperature difference between the outside and the inside is large, for example, when the double-glazed glass 1 is installed in a cold district, the allowable range for the temperature difference between the inside and outside of the double-glazed glass 1 is Can be spread. Specifically, the long-term reliability of the multi-layer glass 1 can be maintained even when the multi-layer glass 1 is installed in an environment where the temperature difference between the room and outside is, for example, 50 ° C. or more.
 第1および第2のガラス板2、3は、上記した室内外の温度差や複層ガラス1の反り等に基づく応力を低減する上で、55×10-7/℃以下の熱膨張係数を有する低膨張ガラスで構成することが好ましい。このような熱膨張係数を有する低膨張ガラスの適用によって、複層ガラス1の内外の温度差や反り等に基づく応力を再現性よく低減できる。ただし、ガラス板2、3の熱膨張係数が小さくなりすぎると、封着用ガラス材料との熱膨張差が大きくなり、逆に封着層4の近傍等に生じる応力が上昇するおそれがある。このため、封着ガラスの熱膨張係数にもよるが、ガラス板2、3の熱膨張係数は20×10-7/℃以上であることが好ましい。なお、後述するように第1および第2のガラス板2、3の板厚を調整した場合、この限りではない。 The first and second glass plates 2 and 3 have a coefficient of thermal expansion of 55 × 10 −7 / ° C. or less in order to reduce stress due to the above-described temperature difference between the inside and outside of the room and the warp of the multilayer glass 1. It is preferable to comprise with the low expansion glass which has. By applying the low expansion glass having such a thermal expansion coefficient, it is possible to reduce stress based on the temperature difference between inside and outside of the multilayer glass 1 and warpage with good reproducibility. However, if the thermal expansion coefficient of the glass plates 2 and 3 becomes too small, the difference in thermal expansion from the glass material for sealing increases, and conversely, the stress generated in the vicinity of the sealing layer 4 may increase. Therefore, although depending on the thermal expansion coefficient of the sealing glass, the thermal expansion coefficients of the glass plates 2 and 3 are preferably 20 × 10 −7 / ° C. or more. In addition, when the plate | board thickness of the 1st and 2nd glass plates 2 and 3 is adjusted so that it may mention later, it is not this limitation.
 第1および第2のガラス板2、3の厚さは、それぞれ0.5mm~6mmの範囲であることが好ましい。ガラス板2、3の厚さが0.5mm未満であると、複層ガラス1の強度や信頼性が不充分になるおそれがある。一方、ガラス板2、3の厚さが6mmを超えると、複層ガラス1が重くなるだけでなく、内外の温度差等に基づく反りや応力も大きくなるおそれがある。複層ガラス1の重さや信頼性を考慮すると、ガラス板2、3の厚さは1mm~5mmがより好ましく、さらに好ましくは2mm~5mmである。 The thicknesses of the first and second glass plates 2 and 3 are preferably in the range of 0.5 mm to 6 mm, respectively. If the thickness of the glass plates 2 and 3 is less than 0.5 mm, the strength and reliability of the multilayer glass 1 may be insufficient. On the other hand, when the thickness of the glass plates 2 and 3 exceeds 6 mm, not only the multi-layer glass 1 becomes heavy, but also warpage and stress based on the temperature difference between the inside and outside may increase. Considering the weight and reliability of the multilayer glass 1, the thickness of the glass plates 2 and 3 is more preferably 1 mm to 5 mm, still more preferably 2 mm to 5 mm.
 さらに、第1のガラス板2を高温側に配置し、第2のガラス板3を低温側に配置する場合、第2のガラス板3の厚さT2は第1のガラス板2の厚さT1より薄い(T2<T1)ことが好ましい。具体的には、第1のガラス板1の板厚T1が2mm~5mmの範囲であるとき、第2のガラス板3の厚さT2は第1のガラス板2の厚さT1に対する差(T1-T2)が1mm~4mmであることが好ましい。このような板厚差を満足する第2のガラス板3を使用することによって、複層ガラス1の内外の温度差や反り等に基づく応力をより一層小さくできる。 Further, when the first glass plate 2 is arranged on the high temperature side and the second glass plate 3 is arranged on the low temperature side, the thickness T2 of the second glass plate 3 is the thickness T1 of the first glass plate 2. Thinner (T2 <T1) is preferred. Specifically, when the thickness T1 of the first glass plate 1 is in the range of 2 mm to 5 mm, the thickness T2 of the second glass plate 3 is different from the thickness T1 of the first glass plate 2 (T1 -T2) is preferably 1 mm to 4 mm. By using the second glass plate 3 that satisfies such a plate thickness difference, the stress based on the temperature difference between the inside and outside of the multi-layer glass 1, warpage, or the like can be further reduced.
 すなわち、第1のガラス板2の厚さT1と第2のガラス板3の厚さT2との差(T1-T2)を1mm以上とすることによって、低温側に配置されて引張り応力が発生する第2のガラス板3のガラス厚の方が、対面する第1のガラス板2よりも相対的に薄くなるので、変形により引張り応力を開放することになる。このため、複層ガラス1の内外の温度差や反り等に基づく応力がより一層小さくなる。従って、複層ガラス1の長期信頼性をより一層向上させることが可能となる。第1のガラス板2の厚さT1と第2のガラス板3の厚さT2との差(T1-T2)は2mm以上であることがより好ましい。ただし、第1のガラス板2と第2のガラス板3の板厚差が大きくなりすぎると、第2のガラス板3が薄くなり強度的に問題となるため、第1のガラス板2と第2のガラス板3の板厚差(T1-T2)は4mm以下となることが好ましい。なお、第1のガラス板2と第2のガラス板3との板厚比(T2/T1)で示した場合、0.2以上0.8以下が好ましい。 That is, by setting the difference (T1−T2) between the thickness T1 of the first glass plate 2 and the thickness T2 of the second glass plate 3 to 1 mm or more, tensile stress is generated by being disposed on the low temperature side. Since the glass thickness of the second glass plate 3 is relatively thinner than the first glass plate 2 facing, the tensile stress is released by deformation. For this reason, the stress based on the temperature difference between inside and outside of the multilayer glass 1 and warpage is further reduced. Therefore, the long-term reliability of the multilayer glass 1 can be further improved. The difference (T1−T2) between the thickness T1 of the first glass plate 2 and the thickness T2 of the second glass plate 3 is more preferably 2 mm or more. However, if the difference in thickness between the first glass plate 2 and the second glass plate 3 becomes too large, the second glass plate 3 becomes thin and causes a problem in strength. The thickness difference (T1−T2) between the two glass plates 3 is preferably 4 mm or less. In addition, when it shows with the plate | board thickness ratio (T2 / T1) of the 1st glass plate 2 and the 2nd glass plate 3, 0.2 or more and 0.8 or less are preferable.
 また、上述したような第1のガラス板2と第2のガラス板3の板厚差(T1-T2)を満足する場合には、熱膨張係数がより小さいガラスを用いるほど、応力や変形をより一層抑制可能となるため、ガラス板2、3に熱膨張係数がより小さい低膨張ガラスを適用できる。従って、複層ガラス1の内外の温度差や反り等に基づく応力をより一層低減することが可能となる。ただし、低膨張ガラスの実用的な熱膨張係数の観点から、ガラス板2、3の熱膨張係数は20×10-7/℃以上であることが好ましい。 Further, when the difference in thickness (T1-T2) between the first glass plate 2 and the second glass plate 3 as described above is satisfied, the stress and deformation are reduced as the glass having a smaller thermal expansion coefficient is used. Since it becomes possible to suppress further, low expansion glass having a smaller thermal expansion coefficient can be applied to the glass plates 2 and 3. Accordingly, it is possible to further reduce the stress based on the temperature difference between the inside and outside of the multilayer glass 1 and the warp. However, from the viewpoint of a practical thermal expansion coefficient of the low expansion glass, the thermal expansion coefficient of the glass plates 2 and 3 is preferably 20 × 10 −7 / ° C. or more.
 複層ガラス1の内部空間5、すなわち第1のガラス板2と第2のガラス板3との間隙に形成される内部空間5の圧力は、複層ガラス1に求められる特性に応じて適宜に設定されるものであるが、1.0Pa以下の真空状態に保持されていることが好ましい。これによって、複層ガラス1による良好な断熱特性を得ることができる。内部空間5の圧力は、さらに0.1Pa以下がより好ましい。第1の実施形態による複層ガラス1によれば、後述する製造工程からも明らかなように、より高真空状態の内部空間5を得ることができる。すなわち、断熱特性に優れる複層ガラス1の提供が可能となる。 The pressure of the internal space 5 of the multilayer glass 1, that is, the internal space 5 formed in the gap between the first glass plate 2 and the second glass plate 3 is appropriately determined according to the characteristics required for the multilayer glass 1. Although set, it is preferable that the vacuum state of 1.0 Pa or less is maintained. Thereby, the favorable heat insulation characteristic by the multilayer glass 1 can be obtained. The pressure in the internal space 5 is more preferably 0.1 Pa or less. According to the double-glazed glass 1 according to the first embodiment, the inner space 5 in a higher vacuum state can be obtained as is apparent from the manufacturing process described later. That is, it becomes possible to provide the double-glazed glass 1 having excellent heat insulating properties.
 複層ガラス1の内部空間5には、複層ガラス1の大きさ等にもよるが、前述したスペーサ6を配置することが好ましい。これによって、例えば1.0Pa以下というような真空状態とされている内部空間5の形状を安定して維持できる。スペーサ6は、例えば円柱状、角柱状、ボール状等のガラス柱や樹脂柱等により形成される。後述するように、封着材料層10の形成時の焼成条件等を考慮して、スペーサ6はガラス柱で形成することが好ましい。ガラス柱からなるスペーサ6は、例えばガラスフリットペーストの塗布、焼成により形成できる。スペーサ6は、例えば、図3に示されるように、複層ガラス1の内部空間5に所定パターンをもって点在するように設けるのが好ましい。スペーサ6の個数や配置間隔等は、複層ガラス1の大きさ、内部空間5の圧力等により適宜に設定される。 In the internal space 5 of the multilayer glass 1, the spacer 6 described above is preferably disposed, although it depends on the size of the multilayer glass 1 and the like. Thereby, the shape of the internal space 5 which is in a vacuum state such as 1.0 Pa or less can be stably maintained. The spacer 6 is formed of, for example, a glass column, a resin column, or the like having a columnar shape, a prismatic shape, a ball shape, or the like. As will be described later, the spacer 6 is preferably formed of a glass column in consideration of the firing conditions at the time of forming the sealing material layer 10. The spacer 6 made of a glass column can be formed, for example, by applying and baking glass frit paste. For example, as shown in FIG. 3, the spacers 6 are preferably provided so as to be scattered in a predetermined pattern in the internal space 5 of the multilayer glass 1. The number and arrangement interval of the spacers 6 are appropriately set depending on the size of the multilayer glass 1, the pressure in the internal space 5, and the like.
 ここで、第1のガラス板2を高温側に配置し、第2のガラス板3を低温側に配置する場合、スペーサ6は第2のガラス板3の表面3aには固着されておらず、第1のガラス板2の表面2aのみに固着されていることが好ましい。このように、スペーサ6を第1のガラス板2の表面2aのみに固着することで、複層ガラス1の内外の温度差や反り等に基づく応力をより一層低減できる。すなわち、低温側に配置する第2のガラス板3には引張り応力が発生するが、スペーサ6に固着しないことで自由に変形可能となるため、複層ガラス1の内外の温度差や反り等に基づく応力をより一層小さくできる。従って、複層ガラス1の長期信頼性をより一層向上させることが可能となる。
 なお、第1のガラス板と第2のガラス板の複層ガラスにおける配置の位置関係について、使用環境によって、高温側に第1のガラス板を配置するということを考慮しなくてよい場合には、上記した第1のガラス板と第2のガラス板の板厚の関係については、上記限定にかぎられない。又、スペーサ6を形成するガラス板面に関しても、同様に上記関係に限定されない。
Here, when the first glass plate 2 is arranged on the high temperature side and the second glass plate 3 is arranged on the low temperature side, the spacer 6 is not fixed to the surface 3a of the second glass plate 3, It is preferable that the first glass plate 2 is fixed only to the surface 2a. Thus, by fixing the spacer 6 only to the surface 2 a of the first glass plate 2, it is possible to further reduce the stress based on the temperature difference between inside and outside of the multilayer glass 1, warpage, and the like. That is, tensile stress is generated in the second glass plate 3 arranged on the low temperature side, but it can be freely deformed by not being fixed to the spacer 6. The stress based on it can be made still smaller. Therefore, the long-term reliability of the multilayer glass 1 can be further improved.
In addition, about the positional relationship of arrangement | positioning in the multilayer glass of a 1st glass plate and a 2nd glass plate, when it is not necessary to consider having arrange | positioned a 1st glass plate on the high temperature side by use environment. The relation between the thicknesses of the first glass plate and the second glass plate is not limited to the above. Similarly, the glass plate surface on which the spacer 6 is formed is not limited to the above relationship.
 第1のガラス板2と第2のガラス板3との間の間隙(すなわち、内部空間5の間隙)は、複層ガラス1の熱貫流率や封着層4の形成性等を考慮して30μm以下が好ましく、さらに15μm以下がより好ましい。すなわち、第1のガラス板2と第2のガラス板3との間隙を狭くすることで、レーザ光で封着材料層10を均一に溶融しやすくなる。従って、封着層4の形成性、ガラス板2、3との接着性やその信頼性を高めることが可能となる。また、第1のガラス板2と第2のガラス板3との間の間隙の下限は、特に限定はないが、複層ガラスの断熱性の確保という点から、5μm以上が好ましい。 The gap between the first glass plate 2 and the second glass plate 3 (that is, the gap of the internal space 5) takes into consideration the thermal conductivity of the multi-layer glass 1, the formability of the sealing layer 4, and the like. It is preferably 30 μm or less, and more preferably 15 μm or less. That is, by narrowing the gap between the first glass plate 2 and the second glass plate 3, the sealing material layer 10 can be easily melted uniformly with the laser beam. Accordingly, it becomes possible to improve the formability of the sealing layer 4, the adhesiveness with the glass plates 2 and 3, and the reliability thereof. Further, the lower limit of the gap between the first glass plate 2 and the second glass plate 3 is not particularly limited, but is preferably 5 μm or more from the viewpoint of ensuring the heat insulating property of the multilayer glass.
 さらに、複層ガラス1の断熱特性を向上させる上で、例えば低温側に配置される第2のガラス板3の表面3aに低放射率膜7を形成することが好ましい。低放射率膜(Low-E膜)7には各種公知の材料を使用でき、例えばLow-E膜とは基材(例えば、ガラス板)上に誘電体層と金属層とが積層されたことをいう(例えば特開2000-229378号公報や特公平08-032436号公報等参照。)。例えば、「基材/誘電体層/金属層/誘電体層」、「基材/誘電体層/誘電体層/金属層/誘電体層」、「基材/誘電体層/金属層/誘電体層/金属層/誘電体層」、「基材/誘電体層/誘電体層/金属層/誘電体層/金属層/誘電体層」、「基材/誘電体層/金属層/誘電体層/金属層/誘電体層/金属層/誘電体層」、「基材/誘電体層/誘電体層/金属層/誘電体層/金属層/誘電体層/金属層/誘電体層」等の構成が考えられる。基材と基材に最も近い金属層との間に存在する誘電体層は、1層であってもよく、2層以上であってもよい。同様に、金属層上の誘電体層は、1層であってもよく、2層以上であってもよい。ここで、誘電体層としては、金属酸化物層が一般的であり、酸化錫、酸化亜鉛、酸化チタン等が代表的である。金属層としては、金、銀が代表的である。ここで、金属層が銀の場合、100%銀であってもよく、パラジウムを3原子%以下添加したものでもよい。なお、封着層4の形成性を損なわないように、低放射率膜7は封止領域9の内側に形成することが好ましい。
 なお、低放射率膜が、第2のガラス板に形成された場合の第1のガラス板2と第2のガラス板3との間の間隙は、その低放射率膜の面と第1のガラス板面との間隔をいう。
 上記した例においては、第2のガラス板の表面(複層ガラスの間隙側の表面)に低放射率膜が形成された例を示しているが、複層ガラスの仕様態様によっては、第1のガラス板の表面(複層ガラスの間隙側の表面)に低放射率膜を形成しても良いし、また第1および第2のガラス板の複層ガラスの間隙側の表面の両面に形成してもよい。
 また、第1のガラス板と第2のガラス板の複層ガラスにおける配置の位置関係について、使用環境によって、低温側に第2のガラス板を配置するということを考慮しなくてよい場合には、上記した低放射率膜は、第1のガラス板と第2のガラス板のどちらに形成してもよいし、場合によっては双方に形成してもよい。
Furthermore, in order to improve the heat insulation properties of the multilayer glass 1, it is preferable to form the low emissivity film 7 on the surface 3a of the second glass plate 3 disposed on the low temperature side, for example. Various known materials can be used for the low emissivity film (Low-E film) 7. For example, the Low-E film is formed by laminating a dielectric layer and a metal layer on a base material (for example, a glass plate). (For example, see Japanese Patent Application Laid-Open No. 2000-229378 and Japanese Patent Publication No. 08-032436). For example, “base material / dielectric layer / metal layer / dielectric layer”, “base material / dielectric layer / dielectric layer / metal layer / dielectric layer”, “base material / dielectric layer / metal layer / dielectric” Body layer / metal layer / dielectric layer ”,“ substrate / dielectric layer / dielectric layer / metal layer / dielectric layer / metal layer / dielectric layer ”,“ substrate / dielectric layer / metal layer / dielectric ” Body layer / metal layer / dielectric layer / metal layer / dielectric layer ”,“ substrate / dielectric layer / dielectric layer / metal layer / dielectric layer / metal layer / dielectric layer / metal layer / dielectric layer ” Or the like. The dielectric layer present between the base material and the metal layer closest to the base material may be one layer or two or more layers. Similarly, the dielectric layer on the metal layer may be one layer or two or more layers. Here, as the dielectric layer, a metal oxide layer is generally used, and tin oxide, zinc oxide, titanium oxide and the like are typical. Typical examples of the metal layer are gold and silver. Here, when the metal layer is silver, it may be 100% silver, or may be added with 3 atomic% or less of palladium. The low emissivity film 7 is preferably formed inside the sealing region 9 so as not to impair the formability of the sealing layer 4.
When the low emissivity film is formed on the second glass plate, the gap between the first glass plate 2 and the second glass plate 3 is the same as the surface of the low emissivity film and the first glass plate. The distance from the glass plate surface.
In the above example, an example in which a low emissivity film is formed on the surface of the second glass plate (the surface on the gap side of the multilayer glass) is shown, but depending on the specification mode of the multilayer glass, the first A low emissivity film may be formed on the surface of the glass plate (the surface on the gap side of the multi-layer glass), or on both surfaces of the surface on the gap side of the multi-layer glass of the first and second glass plates May be.
In addition, regarding the positional relationship of the arrangement of the first glass plate and the second glass plate in the multilayer glass, depending on the use environment, it is not necessary to consider that the second glass plate is arranged on the low temperature side. The above-described low emissivity film may be formed on either the first glass plate or the second glass plate, or may be formed on both in some cases.
 第1の実施形態の複層ガラス1は、例えば以下のようにして作製される。まず、図2(a)に示すように、第1のガラス板2の表面2aの封止領域に封着材料層10を形成する。封着材料層10は、封着用ガラス材料の必須成分である封着ガラスと任意成分である無機充填材とを、ビヒクルと混合して調製された封着用ガラス材料ペーストを第1のガラス板2の表面2aに塗布した後に乾燥および焼成することにより形成される。また、封着ガラスを用いてスペーサ6を形成する場合には、封着ガラスをビヒクルと混合して調製されたスペーサ用ガラスペーストを所定の塗布パターンをもって第1のガラス板2の表面2aに塗布した後に乾燥および焼成してスペーサ6を形成する。 The multi-layer glass 1 of the first embodiment is produced, for example, as follows. First, as shown in FIG. 2A, the sealing material layer 10 is formed in the sealing region of the surface 2 a of the first glass plate 2. The sealing material layer 10 is made of a sealing glass material paste prepared by mixing a sealing glass, which is an essential component of a sealing glass material, and an inorganic filler, which is an optional component, with a vehicle. After being applied to the surface 2a of the film, it is formed by drying and baking. When the spacer 6 is formed using sealing glass, a spacer glass paste prepared by mixing sealing glass with a vehicle is applied to the surface 2a of the first glass plate 2 with a predetermined coating pattern. After that, the spacer 6 is formed by drying and baking.
 ビヒクルは、バインダ成分である樹脂を溶剤に溶解したものである。ビヒクル用の樹脂としては、例えばメチルセルロース、エチルセルロース、カルボキシメチルセルロース、オキシエチルセルロース、ベンジルセルロース、プロピルセルロース、ニトロセルロース等のセルロース系樹脂;メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、2-ヒドロキシエチルメタクリレート、ブチルアクリレート、2-ヒドロキシエチルアクリレート等のアクリル系モノマーの1種以上を重合して得られるアクリル系樹脂等の有機樹脂が用いられる。溶剤としては、セルロース系樹脂の場合はターピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等が、アクリル系樹脂の場合はメチルエチルケトン、ターピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等が用いられる。 The vehicle is obtained by dissolving a resin as a binder component in a solvent. Examples of resins for vehicles include cellulose resins such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, oxyethyl cellulose, benzyl cellulose, propyl cellulose, and nitrocellulose; methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-hydroxyethyl methacrylate, butyl acrylate, An organic resin such as an acrylic resin obtained by polymerizing at least one acrylic monomer such as 2-hydroxyethyl acrylate is used. As the solvent, terpineol, butyl carbitol acetate, ethyl carbitol acetate or the like is used in the case of a cellulose resin, and methyl ethyl ketone, terpineol, butyl carbitol acetate, ethyl carbitol acetate or the like is used in the case of an acrylic resin.
 封着用ガラス材料ペーストやスペーサ用ガラスペーストの粘度は、第1のガラス板2に塗布する装置に対応した粘度に合わせればよく、樹脂と溶剤の割合、封着用ガラス材料とビヒクルとの割合や、封着ガラスの種類とビヒクルの種類とにより調整できる。なお、樹脂は焼成時に消失する成分である。封着用ガラス材料ペーストやスペーサ用ガラスペーストには、消泡剤や分散剤のようにガラスペーストで公知の添加物を加えてもよい。これらの添加物も通常焼成時に消失する成分である。各ペーストの調製には、撹拌翼を備えた回転式の混合機やロールミル、ボールミル等を用いた公知の方法が適用できる。 The viscosity of the glass material paste for sealing and the glass paste for spacers may be adjusted to the viscosity corresponding to the device applied to the first glass plate 2, the ratio of the resin and solvent, the ratio of the glass material for sealing and the vehicle, It can be adjusted according to the type of sealing glass and the type of vehicle. The resin is a component that disappears upon firing. You may add a well-known additive with a glass paste like a defoamer and a dispersing agent to the glass material paste for sealing, or the glass paste for spacers. These additives are also components that usually disappear during firing. A known method using a rotary mixer equipped with a stirring blade, a roll mill, a ball mill or the like can be applied to the preparation of each paste.
 図2(a)に示すように、封着用ガラス材料ペーストを第1のガラス板2の封止領域(外周領域)に塗布し、これを乾燥させて封着用ガラス材料ペーストの塗布膜を形成する。封着用ガラス材料ペーストは、例えばスクリーン印刷やグラビア印刷等の印刷法を適用して塗布したり、あるいはディスペンサ等を用いて塗布する。塗布膜の幅は、強度を保つために0.5mm~20mmが好ましい。塗布膜の厚さは、第1のガラス板2と第2のガラス板3との間隔に応じて設定され、次工程の乾燥工程や仮焼成工程における膜の収縮を考慮して設定することが好ましい。また、同様にしてスペーサ用ガラスペーストの塗布膜を第1のガラス板2の表面2aに形成する。 As shown to Fig.2 (a), the glass material paste for sealing is apply | coated to the sealing area | region (periphery area | region) of the 1st glass plate 2, this is dried, and the coating film of the glass material paste for sealing is formed. . The glass material paste for sealing is applied by applying a printing method such as screen printing or gravure printing, or is applied using a dispenser or the like. The width of the coating film is preferably 0.5 mm to 20 mm in order to maintain strength. The thickness of the coating film is set according to the distance between the first glass plate 2 and the second glass plate 3 and can be set in consideration of the shrinkage of the film in the subsequent drying process or pre-baking process. preferable. Similarly, a coating film of the glass paste for spacers is formed on the surface 2 a of the first glass plate 2.
 封着用ガラス材料ペーストやスペーサ用ガラスペーストの塗布膜は、例えば60~150℃の温度で30秒~10分間乾燥させ、塗布膜内の溶剤を除去することが好ましい。続いて、焼成炉で封着ガラスのガラス転移点より30℃以上低い温度に加熱し、塗布膜内のバインダ成分等を除去した後、封着ガラスの軟化点以上の温度(例えば軟化点の温度より10~100℃高い温度)に加熱し、封着用ガラス材料やスペーサ用ガラスフリットを第1のガラス板2に焼き付けることによって、第1のガラス板2の表面2aに枠状の封着材料層10やスペーサ6を形成する。封着材料層10およびスペーサ6の形成工程は同時に実施してもよいし、別々に実施してもよい。本明細書において、ガラス転移点は示差熱分析(DTA)の第1変曲点の温度で定義され、ガラス軟化点は示差熱分析(DTA)の第4変曲点の温度で定義される。 The coating film of the glass material paste for sealing and the glass paste for spacers is preferably dried at a temperature of 60 to 150 ° C. for 30 seconds to 10 minutes, for example, to remove the solvent in the coating film. Subsequently, after heating to a temperature 30 ° C. or more lower than the glass transition point of the sealing glass in a baking furnace to remove the binder component and the like in the coating film, the temperature above the softening point of the sealing glass (for example, the temperature of the softening point). The glass material for sealing and the glass frit for spacers are baked on the first glass plate 2 by heating to a surface 2a of the first glass plate 2 to a frame-like sealing material layer. 10 and spacer 6 are formed. The formation process of the sealing material layer 10 and the spacer 6 may be performed simultaneously or separately. In this specification, the glass transition point is defined by the temperature of the first inflection point of differential thermal analysis (DTA), and the glass softening point is defined by the temperature of the fourth inflection point of differential thermal analysis (DTA).
 次に、図2(b)に示すように、第2のガラス板3の表面3aに必要に応じて低放射率膜7を形成する。低放射率膜7は、封着層4が形成される領域を除く所望の形状に形成してもよいし、あるいは予め第2のガラス板3の表面3aの全面に低放射率膜を形成した後、封着層4が形成される領域をトリミングして所望の形状としてもよい。 Next, as shown in FIG. 2B, a low emissivity film 7 is formed on the surface 3a of the second glass plate 3 as necessary. The low emissivity film 7 may be formed in a desired shape excluding the region where the sealing layer 4 is formed, or a low emissivity film is formed on the entire surface 3a of the second glass plate 3 in advance. Thereafter, a region where the sealing layer 4 is formed may be trimmed to have a desired shape.
 次に、図2(c)に示すように、第1のガラス板2と第2のガラス板3を真空チャンバ11内に配置し、真空チャンバ11内を所望の真空状態となるまで排気した後、封着材料層10およびスペーサ6を有する第1の表面2aと低放射率膜7を有する表面3aとが対向するように、第1のガラス板2と第2のガラス板3とを積層する。そして、所定の真空状態とされた真空チャンバ11内で、第2のガラス板3(または第1のガラス板2)を通して封着材料層10にレーザ光12を照射する。レーザ光12は封着材料層10に沿って走査しながら照射される。レーザ光は特に限定されず、半導体レーザ、炭酸ガスレーザ、エキシマレーザ、YAGレーザ、HeNeレーザ等からのレーザ光が使用される。 Next, as shown in FIG. 2 (c), the first glass plate 2 and the second glass plate 3 are placed in the vacuum chamber 11, and the inside of the vacuum chamber 11 is exhausted to a desired vacuum state. The first glass plate 2 and the second glass plate 3 are laminated so that the first surface 2a having the sealing material layer 10 and the spacer 6 and the surface 3a having the low emissivity film 7 face each other. . Then, in the vacuum chamber 11 in a predetermined vacuum state, the sealing material layer 10 is irradiated with the laser beam 12 through the second glass plate 3 (or the first glass plate 2). The laser beam 12 is irradiated while scanning along the sealing material layer 10. The laser light is not particularly limited, and laser light from a semiconductor laser, carbon dioxide laser, excimer laser, YAG laser, HeNe laser, or the like is used.
 封着材料層10はそれに沿って走査されるレーザ光12が照射された部分から順に溶融し、レーザ光12の照射終了と共に急冷固化されて第2のガラス板3に固着する。そして、封着材料層10の全周にわたってレーザ光12を照射することで、図2(d)に示すように第1のガラス板2と第2のガラス板3との間を気密封止する封着層4が形成される。レーザ光12の照射は、所望の真空状態とされた真空チャンバ11内で実施されるため、第1のガラス板2と第2のガラス板3との間隙は、真空チャンバ11内の真空状態に応じた圧力(例えば1Pa以下)に保持された状態で気密封止される。 The sealing material layer 10 is melted in order from the portion irradiated with the laser beam 12 scanned along the sealing material layer 10, and is rapidly solidified at the end of the irradiation of the laser beam 12 to be fixed to the second glass plate 3. Then, by irradiating the entire circumference of the sealing material layer 10 with the laser beam 12, the space between the first glass plate 2 and the second glass plate 3 is hermetically sealed as shown in FIG. The sealing layer 4 is formed. Since the laser beam 12 is irradiated in the vacuum chamber 11 in a desired vacuum state, the gap between the first glass plate 2 and the second glass plate 3 is kept in the vacuum state in the vacuum chamber 11. Hermetic sealing is performed in a state where the pressure is maintained (for example, 1 Pa or less).
 すなわち、所望の真空状態に保持された内部空間5を有する複層ガラス1を得ることができる。封着材料層10をレーザ光12で溶融および固化させた材料からなる封着層4は気密性に優れるため、真空チャンバ11の真空圧に応じた真空状態を有する内部空間5を再現性よく得ることができ、そのような真空状態を有する内部空間5を長期間にわたって維持できる。第1の実施形態による複層ガラス1の内部空間5は、例えば1.0Pa以下、さらには0.1Pa以下というような真空状態にできる。さらに、レーザ光12の照射を真空チャンバ11内で実施しているため、後から内部空間を真空引きするための貫通孔等を必要としない。貫通孔やそれに装着される吸引部は複層ガラスの強度等を低下させる要因となるため、複層ガラス1の信頼性を高めることができる。 That is, the multi-layer glass 1 having the internal space 5 maintained in a desired vacuum state can be obtained. Since the sealing layer 4 made of a material obtained by melting and solidifying the sealing material layer 10 with the laser beam 12 is excellent in airtightness, the internal space 5 having a vacuum state corresponding to the vacuum pressure of the vacuum chamber 11 can be obtained with good reproducibility. The internal space 5 having such a vacuum state can be maintained for a long period of time. The internal space 5 of the multilayer glass 1 according to the first embodiment can be in a vacuum state such as 1.0 Pa or less, and further 0.1 Pa or less. Furthermore, since the laser beam 12 is irradiated in the vacuum chamber 11, there is no need for a through hole or the like for evacuating the internal space later. Since the through-hole and the suction part attached to the through-hole cause a reduction in the strength of the double-glazed glass, the reliability of the double-glazed glass 1 can be improved.
 レーザ光12による封着材料層10の加熱温度は、封着ガラスの軟化点以上とする。レーザ光12による局所加熱を適用した場合、ガラス板2、3の温度は封着材料層10の温度より低いため、焼成炉を用いた製造工程より封着材料層10の加熱温度を高く設定できる。加熱温度は、例えば封着ガラスの軟化点の温度T(℃)に対して、(T+200℃)以上で(T+800℃)以下の温度が好ましい。ここで、ガラス板2、3は低膨張ガラスからなるため、封着ガラスとの熱膨張差が大きくなりやすい。このような点に対し、特にホウケイ酸ガラス、アルミノホウケイ酸ガラス、石英ガラスおよび結晶化ガラスなどの低膨張ガラスはソーダライムガラスに比べ歪み量が小さいため、例えばレーザ光12の出力を上げて封着ガラスの均一溶融性を高めることで、封着層4の形成性を高めることができる。また、封着材料層10の膜厚を薄くすることも有効である。 The heating temperature of the sealing material layer 10 by the laser beam 12 is set to be equal to or higher than the softening point of the sealing glass. When the local heating by the laser beam 12 is applied, the temperature of the glass plates 2 and 3 is lower than the temperature of the sealing material layer 10, so that the heating temperature of the sealing material layer 10 can be set higher than the manufacturing process using the firing furnace. . The heating temperature is preferably (T + 200 ° C.) or more and (T + 800 ° C.) or less, for example, with respect to the softening point temperature T (° C.) of the sealing glass. Here, since the glass plates 2 and 3 are made of low-expansion glass, the difference in thermal expansion from the sealing glass tends to increase. In contrast, low expansion glass such as borosilicate glass, alumino borosilicate glass, quartz glass, and crystallized glass has a smaller distortion than soda lime glass. The formability of the sealing layer 4 can be improved by increasing the uniform meltability of the glass. It is also effective to reduce the thickness of the sealing material layer 10.
 次に、第2の実施形態による複層ガラスについて、図7および図8を参照して説明する。図7は第2の実施形態による複層ガラスの構成を示す断面図である。図8は第2の実施形態による複層ガラスの製造工程を示す断面図である。これらの図に示す複層ガラス21は、封着用樹脂材料を固化させた材料からなる第1の封着層(封着樹脂層)22と、第1の実施形態における封着層4と同様に、封着用ガラス材料を溶融および固化させた材料からなる第2の封着層(封着ガラス層)23とを有している。第1の封着層(封着樹脂層)22は、第2の封着層(封着ガラス層)23の外周側に設けられている。なお、これら以外の構成については、第1の実施形態と同様とされている。 Next, the multilayer glass according to the second embodiment will be described with reference to FIG. 7 and FIG. FIG. 7 is a cross-sectional view showing the structure of the multilayer glass according to the second embodiment. FIG. 8 is a cross-sectional view showing a process for producing a multilayer glass according to the second embodiment. The double-layer glass 21 shown in these drawings is similar to the first sealing layer (sealing resin layer) 22 made of a material obtained by solidifying the sealing resin material and the sealing layer 4 in the first embodiment. And a second sealing layer (sealing glass layer) 23 made of a material obtained by melting and solidifying a sealing glass material. The first sealing layer (sealing resin layer) 22 is provided on the outer peripheral side of the second sealing layer (sealing glass layer) 23. Other configurations are the same as those in the first embodiment.
 第2の実施形態の複層ガラス21は、例えば以下のようにして作製される。まず、図8(a)に示すように、第1のガラス板2の表面2aの封止領域に、封着樹脂層22の形成用の封着用樹脂材料からなる第1の封着材料層(封着用樹脂材料層)24と、封着ガラス層23の形成用の封着用ガラス材料からなる第2の封着材料層(封着用ガラス材料層)25とを形成する。第2の封着材料層25は、第1の実施形態の封着材料層10と同様にして第1のガラス板2の封止領域に形成される。また、第2の封着材料層25の形成と同時に、もしくは第2の封着材料層25の形成とは別に、第1の実施形態と同様にしてスペーサ6を形成する。 The multi-layer glass 21 of the second embodiment is produced as follows, for example. First, as shown to Fig.8 (a), in the sealing area | region of the surface 2a of the 1st glass plate 2, the 1st sealing material layer which consists of the sealing resin material for formation of the sealing resin layer 22 ( A sealing resin material layer) 24 and a second sealing material layer (sealing glass material layer) 25 made of a sealing glass material for forming the sealing glass layer 23 are formed. The 2nd sealing material layer 25 is formed in the sealing area | region of the 1st glass plate 2 similarly to the sealing material layer 10 of 1st Embodiment. In addition, the spacer 6 is formed in the same manner as in the first embodiment simultaneously with the formation of the second sealing material layer 25 or separately from the formation of the second sealing material layer 25.
 第1の封着材料層24は、例えばアクリレート樹脂やエポキシ樹脂等の紫外線硬化型樹脂を含む樹脂組成物ペーストを、例えばスクリーン印刷やグラビア印刷等の印刷法を適用して塗布したり、あるいはディスペンサ等を用いて塗布して形成される。樹脂組成物ペーストは、第2の封着材料層25の外周側に塗布され、必要に応じて紫外線処理が施される。例えば、第1の封着材料層24の形成材料として紫外線硬化型樹脂組成物を用いた場合には、封止処理前に半硬化状態とするための紫外線処理等を施してもよい。このようにして、第1のガラス板2の封止領域の外周側に封着用樹脂材料からなる第1の封着材料層24を形成すると共に、内周側に封着用ガラス材料からなる第2の封着材料層25を形成する。 The first sealing material layer 24 is applied by applying a resin composition paste containing an ultraviolet curable resin such as an acrylate resin or an epoxy resin by applying a printing method such as screen printing or gravure printing, or a dispenser. Etc. are applied and formed. The resin composition paste is applied to the outer peripheral side of the second sealing material layer 25 and subjected to ultraviolet treatment as necessary. For example, when an ultraviolet curable resin composition is used as the material for forming the first sealing material layer 24, an ultraviolet treatment or the like may be performed before the sealing treatment to make it semi-cured. Thus, while forming the 1st sealing material layer 24 which consists of resin materials for sealing on the outer peripheral side of the sealing area | region of the 1st glass plate 2, it is 2nd which consists of glass material for sealing on the inner peripheral side. The sealing material layer 25 is formed.
 第2のガラス板3の表面3aには、第1の実施形態と同様に、必要に応じて低放射率膜7が形成される(図8(b))。低放射率膜7は、第2のガラス板3の封着層4が形成される領域を除く所望の領域に形成してもよいし、あるいは予め第2のガラス板3の表面の全面に低放射率膜を形成し、封着層4が形成される領域をトリミングして所望の形状の低放射率膜7としてもよい。次いで、図8(c)に示すように、第1のガラス板2と第2のガラス板3を真空チャンバ11内に配置し、真空チャンバ11内を所望の真空状態となるまで排気した後、封着材料層24、25およびスペーサ6を有する第1の表面2aと低放射率膜7を有する表面3aとが対向するように、第1のガラス板2と第2のガラス板3とを積層する。そして、所定の真空状態とされた真空チャンバ11内で、第1の封着材料層24を紫外線処理して硬化させ、第1の封着層22を形成する。 As in the first embodiment, a low emissivity film 7 is formed on the surface 3a of the second glass plate 3 as necessary (FIG. 8B). The low emissivity film 7 may be formed in a desired region excluding the region where the sealing layer 4 of the second glass plate 3 is formed, or may be formed on the entire surface of the second glass plate 3 in advance. An emissivity film may be formed, and a region where the sealing layer 4 is formed may be trimmed to form a low emissivity film 7 having a desired shape. Next, as shown in FIG. 8C, the first glass plate 2 and the second glass plate 3 are disposed in the vacuum chamber 11, and the inside of the vacuum chamber 11 is evacuated to a desired vacuum state. The first glass plate 2 and the second glass plate 3 are laminated so that the first surface 2a having the sealing material layers 24 and 25 and the spacer 6 and the surface 3a having the low emissivity film 7 face each other. To do. Then, in the vacuum chamber 11 in a predetermined vacuum state, the first sealing material layer 24 is cured by ultraviolet treatment to form the first sealing layer 22.
 次に、図8(d)に示すように、第1の封着層(封着樹脂層)22を形成した第1のガラス板2と第2のガラス板3との積層体を大気雰囲気下に晒した後、直ちに第2のガラス板3(または第1のガラス板2)を通して第2の封着材料層(封着用ガラス材料層)25にレーザ光12を照射する。レーザ光12の照射は大気雰囲気下で実施することを除いて、第1の実施形態と同様して行う。第2の封着材料層25の全周にわたってレーザ光12を照射し、図8(e)に示すように第1のガラス板2と第2のガラス板3との間を気密封止する第2の封着層(封着ガラス層)23を形成する。 Next, as shown in FIG. 8 (d), the laminate of the first glass plate 2 and the second glass plate 3 on which the first sealing layer (sealing resin layer) 22 is formed is placed in an air atmosphere. Immediately after the exposure, the second sealing material layer (sealing glass material layer) 25 is irradiated with the laser beam 12 through the second glass plate 3 (or the first glass plate 2). The laser beam 12 is irradiated in the same manner as in the first embodiment except that the laser beam 12 is irradiated in an air atmosphere. The laser beam 12 is irradiated over the entire circumference of the second sealing material layer 25 to hermetically seal between the first glass plate 2 and the second glass plate 3 as shown in FIG. 2 sealing layers (sealing glass layers) 23 are formed.
 第2の実施形態においては、第1の封着層22を所望の真空状態とされた真空チャンバ11内で形成しているため、第1の封着層22の内側は真空チャンバ11内の真空状態に応じた圧力に保持される。従って、第1の封着層22の内側に配置されている第2の封着材料層25に対するレーザ光12の照射を大気雰囲気下で実施しても、第2の封着層23の内側の空間、すなわち複層ガラス21の内部空間5を所望の真空状態(例えば10Pa以下)に保持できる。そして、第2の封着層23は気密性に優れるため、所望の真空状態を有する内部空間5を再現性よく得ることができ、さらにそのような真空状態を有する内部空間5を長期間にわたって維持できる。 In the second embodiment, since the first sealing layer 22 is formed in the vacuum chamber 11 in a desired vacuum state, the inside of the first sealing layer 22 is the vacuum in the vacuum chamber 11. The pressure is maintained according to the state. Therefore, even if the laser beam 12 is irradiated to the second sealing material layer 25 disposed inside the first sealing layer 22 in the air atmosphere, the inner side of the second sealing layer 23 is not affected. The space, that is, the internal space 5 of the multilayer glass 21 can be maintained in a desired vacuum state (for example, 10 Pa or less). And since the 2nd sealing layer 23 is excellent in airtightness, the internal space 5 which has a desired vacuum state can be obtained with sufficient reproducibility, and also the internal space 5 which has such a vacuum state is maintained over a long period of time. it can.
 次に、本発明の具体的な実施例およびその評価結果について述べる。なお、以下の説明は本発明を限定するものではく、本発明の趣旨に沿った形での改変が可能である。 Next, specific examples of the present invention and evaluation results thereof will be described. In addition, the following description does not limit this invention, The modification | change in the form along the meaning of this invention is possible.
(実施例1)
 酸化物換算の質量割合でBi 83.2%、B 5.6%、ZnO 10.7%、Al 0.5%の組成を有し、さらに質量割合で150ppmのNaOを含み、平均粒径(D50)が1.0μmのビスマス系ガラス(軟化点:410℃)と、低膨張填材として平均粒径(D50)が4.3μmのコージェライト粉末と、Fe-CuO-MnO-Alの組成を有し、平均粒径(D50)が1.2μmのレーザ吸収材とを用意した。
Example 1
It has a composition of Bi 2 O 3 83.2%, B 2 O 3 5.6%, ZnO 10.7%, Al 2 O 3 0.5% in terms of mass ratio in terms of oxide, and further 150 ppm in mass ratio by weight of Na 2 O, an average particle diameter (D 50) 1.0μm bismuth-based glass (softening point: 410 ° C.) and an average particle diameter (D 50) is cordierite of 4.3μm as a low expansion Hama material A powder and a laser absorber having a composition of Fe 2 O 3 —CuO—MnO—Al 2 O 3 and an average particle diameter (D 50 ) of 1.2 μm were prepared.
 粒度分布は、レーザ回折・散乱法を用いた粒度分析計(日機装社製、マイクロトラックHRA)を用いて測定した。測定条件は、測定モード:HRA-FRAモード、Particle Transparency:yes、Spherical Particles:no、Particle Refractive index:1.75、Fluid Refractive index:1.33とした。 Particle size distribution was measured using a particle size analyzer (Nikkiso Co., Ltd., Microtrac HRA) using a laser diffraction / scattering method. The measurement conditions were as follows: measurement mode: HRA-FRA mode, Particle Transparency: yes, Special Particles: no, Particle Refractive index: 1.75, Fluid Refractive index: 1.33.
 上述したビスマス系ガラス66.8体積%とコージェライト粉末32.2体積%とレーザ吸収材1.0体積%とを混合して封着用ガラス材料およびスペーサ用ガラス材料を調製した。このガラス材料83質量%を、樹脂バインダ成分としてのエチルセルロース5質量%を2,2,4-トリメチル-1,3ペンタンジオールモノイソブチレート95質量%に溶解して作製したビヒクル17質量%と混合して封着用およびスペーサ用のガラスペーストを調製した。 A glass material for sealing and a glass material for spacer were prepared by mixing 66.8% by volume of the bismuth-based glass, 32.2% by volume of cordierite powder, and 1.0% by volume of the laser absorber. 83% by mass of this glass material was mixed with 17% by mass of a vehicle prepared by dissolving 5% by mass of ethyl cellulose as a resin binder component in 95% by mass of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate. Thus, a glass paste for sealing and spacers was prepared.
 次に、熱膨張係数(0~300℃)が32.5×10-7/℃であるホウケイ酸ガラスからなる第1のガラス板(寸法:370mm×370mm×3mm)を用意し、このガラス板の封止領域の内側領域に所望の印刷パターンをもって上記したスペーサ用のガラスペーストをスクリーン印刷法で塗布し、スペーサ塗布層を形成した後、120℃×10分の条件で乾燥させた。スペーサの印刷パターンは、スペーサの配置パターンに応じて、直径0.25mmのドットを340mm×340mmの範囲に20mm間隔で並べる配置とした。続いて、この塗布膜を300℃×30分の条件で加熱し、樹脂バインダ成分を除去した後、大気雰囲気中にて480℃×10分の条件で焼成することによって、高さが12μmのスペーサを形成した。 Next, a first glass plate (dimensions: 370 mm × 370 mm × 3 mm) made of borosilicate glass having a thermal expansion coefficient (0 to 300 ° C.) of 32.5 × 10 −7 / ° C. is prepared. The spacer glass paste was applied to the inner region of the sealing region with a desired printing pattern by a screen printing method to form a spacer coating layer, and then dried under conditions of 120 ° C. × 10 minutes. The printing pattern of the spacers was arranged such that dots having a diameter of 0.25 mm were arranged in a range of 340 mm × 340 mm at intervals of 20 mm according to the spacer arrangement pattern. Subsequently, this coating film is heated under conditions of 300 ° C. × 30 minutes to remove the resin binder component, and then baked under conditions of 480 ° C. × 10 minutes in an air atmosphere, whereby a spacer having a height of 12 μm. Formed.
 次いで、図3のように、第1のガラス板の封止領域に上記した封着用のガラスペーストをディスペンサで額縁状に塗布し、封着材料層を形成した後、120℃×10分の条件で乾燥させた。この印刷パターンは、線幅が0.5mmの340mm×340mmの額縁状パターンとした。続いて、塗布膜を300℃×30分の条件で加熱し、樹脂バインダ成分を除去した後、大気雰囲気中にて480℃×10分の条件で焼成することによって、膜厚が15μmの封着材料層(封着用ガラス材料層)を形成した。 Next, as shown in FIG. 3, after applying the sealing glass paste to the sealing region of the first glass plate in a frame shape with a dispenser to form a sealing material layer, the condition is 120 ° C. × 10 minutes. And dried. This print pattern was a frame-like pattern of 340 mm × 340 mm with a line width of 0.5 mm. Subsequently, the coating film is heated at 300 ° C. for 30 minutes to remove the resin binder component, and then fired in an air atmosphere at 480 ° C. for 10 minutes to seal the film thickness to 15 μm. A material layer (sealing glass material layer) was formed.
 次に、第2のガラス板(第1のガラス板と同組成、同形状、同寸法のホウケイ酸ガラスからなる板)の表面に、低放射率膜として「ZnO/Ag/ZnO/Ag/ZnO」の膜をスパッタリング法により成膜した。スパッタリング法による成膜は、封止領域に膜が付着しないようにマスキングして実施した。マスキングテープは成膜後に剥離した。また、マスキングテープの粘着剤が封止領域に残留しないように、封止領域のみを有機溶剤で洗浄した。 Next, “ZnO / Ag / ZnO / Ag / ZnO as a low emissivity film is formed on the surface of the second glass plate (a plate made of borosilicate glass having the same composition, shape, and dimensions as the first glass plate). Was formed by sputtering. The film formation by the sputtering method was performed by masking so that the film did not adhere to the sealing region. The masking tape was peeled off after film formation. Moreover, only the sealing area | region was wash | cleaned with the organic solvent so that the adhesive of a masking tape might not remain in a sealing area | region.
 上述した封着材料層とスペーサとを有する第1のガラス板と、低放射率膜を有する第2のガラス板とを、封着材料層とスペーサを有する第1の表面2aと、低放射率膜を有する表面3aとが対向するように、真空チャンバ内に配置した後、真空チャンバ内を排気した。真空チャンバ内の圧力が0.1Paに到達した後、第1のガラス板と第2のガラス板とを積層した。そして、第2のガラス板を通して封着材料層に、波長808nm、出力16Wのレーザ光(CW半導体レーザ)を4mm/秒の走査速度で照射し、封着材料層を溶融ならびに急冷固化することによって、第1のガラス板と第2のガラス板との間隙を真空封止する封着層を形成した。このようにして得た複層ガラスの特性を以下のようにして評価した。 The above-described first glass plate having the sealing material layer and the spacer, and the second glass plate having the low emissivity film, the first surface 2a having the sealing material layer and the spacer, and the low emissivity. After disposing in the vacuum chamber so as to face the surface 3a having the film, the inside of the vacuum chamber was evacuated. After the pressure in the vacuum chamber reached 0.1 Pa, the first glass plate and the second glass plate were laminated. Then, the sealing material layer is irradiated with a laser beam (CW semiconductor laser) having a wavelength of 808 nm and an output of 16 W through the second glass plate at a scanning speed of 4 mm / second to melt and rapidly solidify the sealing material layer. A sealing layer for vacuum-sealing the gap between the first glass plate and the second glass plate was formed. The characteristics of the multilayer glass thus obtained were evaluated as follows.
 得られた複層ガラスの封着層の状態を観察したところ、未接着の箇所やクラック等の接着不良は見られず、十分な接着が得られていることが確認された。封着後の複層ガラスの内外に低温側-20℃、高温側+30℃の温度差を与え、複層ガラスの中央から50cmの地点での反り量を測定した。また、100枚の複層ガラスを作製し、レーザ封着による割れの発生率を測定した。これらの測定結果を併せて表1に示す。 When the state of the sealing layer of the obtained multilayer glass was observed, adhesion failure such as unbonded portions and cracks was not observed, and it was confirmed that sufficient adhesion was obtained. A temperature difference of −20 ° C. on the low temperature side and + 30 ° C. on the high temperature side was given to the inside and outside of the laminated glass after sealing, and the amount of warpage at a point 50 cm from the center of the laminated glass was measured. Moreover, 100 double-glazed glass was produced and the incidence rate of the crack by laser sealing was measured. These measurement results are shown together in Table 1.
(実施例2~6)
 第1および第2のガラス板として、表1に示すような熱膨張係数および板厚を有するガラス板を使用する以外は、実施例1と同様にして複層ガラスを作製した。これら複層ガラスの特性等を実施例1と同様にして測定した。それらの測定結果を併せて表1に示す。
(Examples 2 to 6)
A multilayer glass was produced in the same manner as in Example 1 except that glass plates having a thermal expansion coefficient and a thickness as shown in Table 1 were used as the first and second glass plates. The characteristics and the like of these multilayer glasses were measured in the same manner as in Example 1. The measurement results are also shown in Table 1.
(比較例1)
 第1および第2のガラス板として、熱膨張係数(0~300℃)が85×10-7/℃であるソーダライムガラスからなるガラス板(寸法:370mm×370mm×3mm)を使用する以外は、実施例1と同様にして複層ガラスを作製した。この複層ガラスの特性等を実施例1と同様にして測定した。それらの測定結果を併せて表1に示す。
(Comparative Example 1)
Except for using glass plates (dimensions: 370 mm × 370 mm × 3 mm) made of soda lime glass having a thermal expansion coefficient (0 to 300 ° C.) of 85 × 10 −7 / ° C. as the first and second glass plates. A multilayer glass was produced in the same manner as in Example 1. The characteristics and the like of this multilayer glass were measured in the same manner as in Example 1. The measurement results are also shown in Table 1.
(参考例1)
 第1のガラス板と第2のガラス板との間の間隔(すなわち、間隙)を200μmとする以外は、実施例1と同様にして複層ガラスを作製した。この複層ガラスの特性等を実施例1と同様にして測定した。それらの測定結果を併せて表1に示す。
(Reference Example 1)
A multilayer glass was produced in the same manner as in Example 1 except that the distance (that is, the gap) between the first glass plate and the second glass plate was 200 μm. The characteristics and the like of this multilayer glass were measured in the same manner as in Example 1. The measurement results are also shown in Table 1.
(比較例2)
 第1のガラス板と第2のガラス板との間の間隔を200μmとする以外は、比較例1と同様にして複層ガラスを作製した。この複層ガラスの特性等を実施例1と同様にして測定した。それらの測定結果を併せて表1に示す。
(Comparative Example 2)
A multilayer glass was produced in the same manner as in Comparative Example 1 except that the distance between the first glass plate and the second glass plate was 200 μm. The characteristics and the like of this multilayer glass were measured in the same manner as in Example 1. The measurement results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、「低温側/真空層/高温側」の表記は、「低温側(第2のガラス板)/真空層/高温側(第1のガラス板)」を意味する。また、表1において「ガラス板の間隔」とは「第1のガラス板と前記第2のガラス板との間の間隙」を意味する。
 表1から明らかなように、実施例1~6の複層ガラスは比較例1に比べて、複層ガラスとしたときのガラス板の反りが低減することが分かる。
In Table 1, the expression “low temperature side / vacuum layer / high temperature side” means “low temperature side (second glass plate) / vacuum layer / high temperature side (first glass plate)”. In Table 1, “the distance between the glass plates” means “the gap between the first glass plate and the second glass plate”.
As is clear from Table 1, it can be seen that the multilayer glass of Examples 1 to 6 has less warpage of the glass plate when used as the multilayer glass compared to Comparative Example 1.
(実施例7)
 熱膨張係数(0~300℃)が32.5×10-7/℃であるホウケイ酸ガラスからなる第1のガラス板(寸法:370mm×370mm×3mm)を用意し、このガラス板に実施例1と同様にしてスペーサと封着用ガラス材料からなる第2の封着材料層とを形成した。続いて、第1の封着材料層の外側にウレタンアクリレート組成の樹脂ペーストをディスペンサで塗布することによって、封着用樹脂材料からなる第1の封着材料層を形成した。
(Example 7)
A first glass plate (dimensions: 370 mm × 370 mm × 3 mm) made of borosilicate glass having a thermal expansion coefficient (0 to 300 ° C.) of 32.5 × 10 −7 / ° C. is prepared. In the same manner as in Example 1, a spacer and a second sealing material layer made of a sealing glass material were formed. Then, the 1st sealing material layer which consists of a resin material for sealing was formed by apply | coating the resin paste of a urethane acrylate composition with a dispenser on the outer side of the 1st sealing material layer.
 次に、上記した第1のガラス板と、実施例1と同様にして低放射率膜を形成した第2のガラス板(第1のガラス板と同組成、同形状、同寸法のホウケイ酸ガラスからなるガラス板)とを、封着材料層とスペーサと封着用樹脂材料を有する第1の表面2aと、低放射率膜を有する表面3aとが対向するように、真空チャンバ内に配置した後、真空チャンバ内を排気した。真空チャンバ内の圧力が0.1Paに到達した後、第1のガラス板と第2のガラス板とを積層した。そして、真空チャンバ内で紫外線硬化処理を行うことによって、第1の封着層(封着樹脂層)を形成した。 Next, the above-described first glass plate and a second glass plate having a low emissivity film formed in the same manner as in Example 1 (borosilicate glass having the same composition, shape, and dimensions as the first glass plate) After the glass plate is disposed in the vacuum chamber so that the first surface 2a having the sealing material layer, the spacer, and the sealing resin material, and the surface 3a having the low emissivity film are opposed to each other. The inside of the vacuum chamber was evacuated. After the pressure in the vacuum chamber reached 0.1 Pa, the first glass plate and the second glass plate were laminated. And the 1st sealing layer (sealing resin layer) was formed by performing an ultraviolet curing process in a vacuum chamber.
 続いて、第1の封着層を形成した積層体を大気雰囲気下に晒し、この状態で第2のガラス板を通して第2封着材料層に、波長808nm、出力18Wのレーザ光(CW半導体レーザ)を4mm/秒の走査速度で照射し、第2の封着材料層を溶融ならびに急冷固化することによって、第1のガラス板と第2のガラス板との間隙を真空封止する第2の封着層(封着ガラス層)を形成した。このようにして得た複層ガラスの特性を実施例1と同様にして評価した。その結果、複層ガラスとしたときのガラス板の反り量が悪化することはなかった。 Subsequently, the laminated body on which the first sealing layer is formed is exposed to the atmosphere, and in this state, a laser beam (CW semiconductor laser having a wavelength of 808 nm and an output of 18 W is applied to the second sealing material layer through the second glass plate. ) At a scanning speed of 4 mm / second, and the second sealing material layer is melted and rapidly cooled and solidified to vacuum seal the gap between the first glass plate and the second glass plate. A sealing layer (sealing glass layer) was formed. The characteristics of the multilayer glass thus obtained were evaluated in the same manner as in Example 1. As a result, the amount of warpage of the glass plate when it was made into a multilayer glass was not deteriorated.
 なお、上記実施例ではガラス材料ペーストでスペーサを形成したが、シリカ粒子のような球状スペーサを用いてもよい。より具体的には、液晶ディスプレイ用に広く用いられている粒径10μm程度のシリカ粒子を用いることができる。 In the above embodiment, the spacer is formed with the glass material paste, but a spherical spacer such as silica particles may be used. More specifically, silica particles having a particle diameter of about 10 μm that are widely used for liquid crystal displays can be used.
 本発明によれば、第1および第2のガラス板に低膨張ガラスを適用しているため、室内外の温度差のような複層ガラスの内外の温度差等に基づく応力を低減でき、従って長期信頼性に優れる複層ガラスを提供できる。
 なお、2011年7月8日に出願された日本特許出願2011-152320号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
According to the present invention, since the low expansion glass is applied to the first and second glass plates, it is possible to reduce stress based on the temperature difference between the inside and outside of the multilayer glass, such as the temperature difference between the inside and outside, and therefore It is possible to provide a multilayer glass having excellent long-term reliability.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2011-152320 filed on July 8, 2011 are incorporated herein as the disclosure of the present invention. .
 1,21…複層ガラス、2…第1のガラス板、3…第2のガラス板、4…封着層、5…内部空間(真空気密空間)、6…スペーサ、7…低放射率膜、8…第1の封止領域、9…第2の封止領域、10…封着材料層、11…真空チャンバ、12…レーザ光、22…第1の封着層(封着樹脂層)、23…第2の封着層(封着ガラス層)、24…第1の封着材料層(封着用樹脂材料層)、25…第2の封着材料層(封着用ガラス材料層)。 DESCRIPTION OF SYMBOLS 1,21 ... Multi-layer glass, 2 ... 1st glass plate, 3 ... 2nd glass plate, 4 ... Sealing layer, 5 ... Internal space (vacuum airtight space), 6 ... Spacer, 7 ... Low emissivity film | membrane , 8 ... 1st sealing area | region, 9 ... 2nd sealing area | region, 10 ... Sealing material layer, 11 ... Vacuum chamber, 12 ... Laser beam, 22 ... 1st sealing layer (sealing resin layer) , 23 ... second sealing layer (sealing glass layer), 24 ... first sealing material layer (sealing resin material layer), 25 ... second sealing material layer (sealing glass material layer).

Claims (20)

  1.  第1の封止領域を備える第1の表面を有し、低膨張ガラスからなる第1のガラス板と、
     前記第1の封止領域に対応する第2の封止領域を備える第2の表面を有し、前記第2の表面が前記第1の表面と対向するように、前記第1のガラス板上に所定の間隙を持って配置された、低膨張ガラスからなる第2のガラス板と、
     前記第1のガラス板と前記第2のガラス板との間の間隙を真空封止するように、前記第1の封止領域と前記第2の封止領域との間に形成され、レーザ吸収能を有する封着用ガラス材料を溶融および固化させた材料からなる封着層と
     を具備することを特徴とする複層ガラス。
    A first glass plate having a first surface with a first sealing region and made of low expansion glass;
    The first glass plate has a second surface having a second sealing region corresponding to the first sealing region, and the second surface is opposed to the first surface. A second glass plate made of low expansion glass, disposed with a predetermined gap between
    Laser absorption is formed between the first sealing region and the second sealing region so as to vacuum-seal the gap between the first glass plate and the second glass plate. And a sealing layer made of a material obtained by melting and solidifying a sealing glass material having a function.
  2.  前記低膨張ガラスは55×10-7/℃以下の熱膨張係数を有することを特徴とする請求項1記載の複層ガラス。 The multilayer glass according to claim 1, wherein the low expansion glass has a thermal expansion coefficient of 55 × 10 −7 / ° C. or less.
  3.  前記第1および第2のガラス板は、ホウケイ酸ガラス、アルミノホウケイ酸ガラス、無アルカリアルミノホウケイ酸ガラス、無アルカリアルミノケイ酸ガラス、石英ガラス、および結晶化ガラスからなる群より選ばれる同種または異種のガラスからなることを特徴とする請求項1または2記載の複層ガラス。 The first and second glass plates may be the same or different selected from the group consisting of borosilicate glass, aluminoborosilicate glass, alkali-free aluminoborosilicate glass, alkali-free aluminosilicate glass, quartz glass, and crystallized glass. The multilayer glass according to claim 1 or 2, wherein the glass is made of glass.
  4.  前記第1のガラス板と前記第2のガラス板との間の間隙が30μm以下であることを特徴とする請求項1ないし3のいずれか1項記載の複層ガラス。 The multi-layer glass according to any one of claims 1 to 3, wherein a gap between the first glass plate and the second glass plate is 30 µm or less.
  5.  前記第1のガラス板と前記第2のガラス板との間の間隙に、複数のスペーサが配置されていることを特徴とする請求項1ないし4のいずれか1項記載の複層ガラス。 5. The multi-layer glass according to claim 1, wherein a plurality of spacers are arranged in a gap between the first glass plate and the second glass plate.
  6.  高温側に配置される前記第1のガラス板の板厚をT1、低温側に配置される前記第2のガラス板の板厚をT2としたとき、前記第2のガラス板の板厚T2はT2<T1の条件を満足することを特徴とする請求項1ないし5のいずれか1項記載の複層ガラス。 When the plate thickness of the first glass plate arranged on the high temperature side is T1, and the plate thickness of the second glass plate arranged on the low temperature side is T2, the plate thickness T2 of the second glass plate is The multilayer glass according to any one of claims 1 to 5, wherein a condition of T2 <T1 is satisfied.
  7.  前記第1のガラス板の板厚T1が2mm~5mmの範囲であると共に、前記第1のガラス板の板厚T1と前記第2のガラス板の板厚T2との差(T1-T2)が1mm~4mmであることを特徴とする請求項6記載の複層ガラス。 The thickness T1 of the first glass plate is in the range of 2 mm to 5 mm, and the difference (T1−T2) between the thickness T1 of the first glass plate and the thickness T2 of the second glass plate is The multi-layer glass according to claim 6, wherein the thickness is 1 mm to 4 mm.
  8.  前記第1のガラス板と前記第2のガラス板との間の間隙に、複数のスペーサが配置されていると共に、前記スペーサは前記第1のガラス板の前記第1の表面のみに固着されていることを特徴とする請求項6または7記載の複層ガラス。 A plurality of spacers are disposed in a gap between the first glass plate and the second glass plate, and the spacers are fixed only to the first surface of the first glass plate. The multilayer glass according to claim 6 or 7, wherein
  9.  前記封着用ガラス材料は、下記酸化物換算の質量割合で70~90%のBi、1~20%のZnO、および2~12%のBを含むビスマス系ガラスからなる封着ガラスを含有し、かつ0.1~40体積%のレーザ吸収材と0~50体積%の低膨張充填材とを、前記レーザ吸収材と前記低膨張充填材との合計量として0.1~50体積%の範囲で含有することを特徴とする請求項1ないし8のいずれか1項記載の複層ガラス。 The sealing glass material is made of a bismuth-based glass containing 70 to 90% Bi 2 O 3 , 1 to 20% ZnO, and 2 to 12% B 2 O 3 in a mass ratio in terms of the following oxides. 0.1 to 40% by volume of the laser absorbing material and 0 to 50% by volume of the low expansion filler are contained in a total amount of the laser absorbing material and the low expansion filler. The multilayer glass according to any one of claims 1 to 8, which is contained in a range of -50% by volume.
  10.  前記第1および第2のガラス板は、真空引き用の貫通孔を有しないことを特徴とする請求項1ないし9のいずれか1項記載の複層ガラス。 The multi-layer glass according to any one of claims 1 to 9, wherein the first and second glass plates do not have a through hole for vacuuming.
  11.  前記第1のガラス板と前記第2のガラス板との間の間隙は1.0Pa以下の真空状態に保持されていることを特徴とする請求項1ないし10のいずれか1項記載の複層ガラス。 The multi-layer according to any one of claims 1 to 10, wherein a gap between the first glass plate and the second glass plate is maintained in a vacuum state of 1.0 Pa or less. Glass.
  12.  前記第1のガラス板の第1の表面および前記第2のガラス板の第2の表面の少なくともいずれか一方に、低放射率膜が設けられていることを特徴とする請求項1ないし11のいずれか1項記載の複層ガラス。 The low emissivity film | membrane is provided in at least any one of the 1st surface of the said 1st glass plate, and the 2nd surface of the said 2nd glass plate of Claim 1 thru | or 11 characterized by the above-mentioned. The multilayer glass of any one of Claims.
  13.  前記封着用ガラス材料を溶融および固化させた材料からなる前記封着層の外周側に、さらに封着用樹脂材料を硬化させた材料からなる封着樹脂層が設けられていることを特徴とする請求項1ないし12のいずれか1項記載の複層ガラス。 A sealing resin layer made of a material obtained by further curing a sealing resin material is provided on the outer peripheral side of the sealing layer made of a material obtained by melting and solidifying the sealing glass material. Item 13. The multilayer glass according to any one of Items 1 to 12.
  14.  第1の封止領域を備える第1の表面を有し、低膨張ガラスからなる第1のガラス板と、
     前記第1の封止領域に対応する第2の封止領域を備える第2の表面を有し、前記第2の表面が前記第1の表面と対向するように、前記第1のガラス板上に所定の間隙を持って配置された、低膨張ガラスからなる第2のガラス板と、
     前記第1のガラス板と前記第2のガラス板との間の間隙を真空封止するように、前記第1の封止領域と前記第2の封止領域との間に形成された封着層とを具備し、
     高温側に配置される前記第1のガラス板の板厚をT1、低温側に配置される前記第2のガラス板の板厚をT2としたとき、前記第2のガラス板の板厚T2はT2<T1の条件を満足することを特徴とする複層ガラス。
    A first glass plate having a first surface with a first sealing region and made of low expansion glass;
    The first glass plate has a second surface having a second sealing region corresponding to the first sealing region, and the second surface is opposed to the first surface. A second glass plate made of low expansion glass, disposed with a predetermined gap between
    Sealing formed between the first sealing region and the second sealing region so as to vacuum seal a gap between the first glass plate and the second glass plate. Comprising a layer,
    When the plate thickness of the first glass plate arranged on the high temperature side is T1, and the plate thickness of the second glass plate arranged on the low temperature side is T2, the plate thickness T2 of the second glass plate is A multilayer glass characterized by satisfying a condition of T2 <T1.
  15.  前記第1のガラス板の板厚T1が2mm~5mmの範囲であると共に、前記第1のガラス板の板厚T1と前記第2のガラス板の板厚T2との差(T1-T2)が1mm~4mmであることを特徴とする請求項14記載の複層ガラス。 The thickness T1 of the first glass plate is in the range of 2 mm to 5 mm, and the difference (T1−T2) between the thickness T1 of the first glass plate and the thickness T2 of the second glass plate is The multilayer glass according to claim 14, wherein the thickness is 1 mm to 4 mm.
  16.  第1の封止領域を備える第1の表面を有し、低膨張ガラスからなる第1のガラス板を用意する工程と、
     前記第1の封止領域に対応する第2の封止領域と、前記第2の封止領域上に形成され、レーザ吸収能を有する封着用ガラス材料を焼成した材料からなる封着材料層とを備える第2の表面を有し、低膨張ガラスからなる第2のガラス板を用意する工程と、
     前記第1の表面と前記第2の表面とを対向させつつ、前記封着材料層を介して前記第1のガラス板と前記第2のガラス板とを積層する工程と、
     真空雰囲気下にて前記第1または第2のガラス板を通してレーザ光を前記封着材料層に照射し、前記封着材料層を溶融および固化させて前記第1のガラス板と前記第2のガラス板との間隙を真空封止する封着層を形成する工程と
     を具備することを特徴とする複層ガラスの製造方法。
    Providing a first glass plate having a first surface with a first sealing region and made of low expansion glass; and
    A second sealing region corresponding to the first sealing region; and a sealing material layer formed on the second sealing region and made of a material obtained by baking a sealing glass material having a laser absorption capability; Preparing a second glass plate made of low expansion glass having a second surface comprising:
    Laminating the first glass plate and the second glass plate via the sealing material layer while facing the first surface and the second surface;
    The sealing material layer is irradiated with laser light through the first or second glass plate in a vacuum atmosphere, and the sealing material layer is melted and solidified so that the first glass plate and the second glass are used. And a step of forming a sealing layer for vacuum-sealing a gap between the plate and the plate.
  17.  第1の封止領域を備える第1の表面を有し、低膨張ガラスからなる第1のガラス板を用意する工程と、
     前記第1の封止領域に対応する第2の封止領域と、前記第2の封止領域上に形成され、封着用樹脂材料からなる第1の封着材料層と、前記第2の封止領域上の第1の封着材料層より内周側に形成され、レーザ吸収能を有する封着用ガラス材料を焼成した材料からなる第2の封着材料層とを備える第2の表面を有し、低膨張ガラスからなる第2のガラス板を用意する工程と、
     前記第1の表面と前記第2の表面とを対向させつつ、前記第1および第2の封着材料層を介して前記第1のガラス板と前記第2のガラス板とを積層する工程と、
     真空雰囲気下にて前記第1の封着材料層を硬化させ、前記第1のガラス板と前記第2のガラス板との間隙を真空封止する第1の封着層を形成する工程と、
     大気雰囲気下にて前記第1または第2のガラス板を通してレーザ光を前記第2の封着材料層に照射し、前記第2の封着材料層を溶融および固化させて第2の封着層を形成する工程と
     を具備することを特徴とする複層ガラスの製造方法。
    Providing a first glass plate having a first surface with a first sealing region and made of low expansion glass; and
    A second sealing region corresponding to the first sealing region; a first sealing material layer formed on the second sealing region and made of a sealing resin material; and the second sealing. A second sealing material layer formed on the inner peripheral side of the first sealing material layer on the stop region and having a second sealing material layer made of a fired sealing glass material having a laser absorption capability. And preparing a second glass plate made of low expansion glass;
    Laminating the first glass plate and the second glass plate through the first and second sealing material layers while facing the first surface and the second surface; ,
    Curing the first sealing material layer in a vacuum atmosphere and forming a first sealing layer for vacuum-sealing a gap between the first glass plate and the second glass plate;
    A second sealing layer is formed by irradiating the second sealing material layer with laser light through the first or second glass plate in an air atmosphere to melt and solidify the second sealing material layer. And a step of forming a glass.
  18.  前記第1のガラス板と前記第2のガラス板との間の間隙を1.0Pa以下の真空状態に保持することを特徴とする請求項16または17記載の複層ガラスの製造方法。 The method for producing a multilayer glass according to claim 16 or 17, wherein a gap between the first glass plate and the second glass plate is maintained in a vacuum state of 1.0 Pa or less.
  19.  前記低膨張ガラスは55×10-7/℃以下の熱膨張係数を有することを特徴とする請求項16ないし18のいずれか1項記載の複層ガラスの製造方法。 The method for producing a multi-layer glass according to any one of claims 16 to 18, wherein the low expansion glass has a thermal expansion coefficient of 55 x 10 -7 / ° C or less.
  20.  高温側に配置される前記第1のガラス板の板厚をT1、低温側に配置される前記第2のガラス板の板厚をT2としたとき、前記第2のガラス板の板厚T2はT2<T1の条件を満足することを特徴とする請求項16ないし19のいずれか1項記載の複層ガラスの製造方法。 When the plate thickness of the first glass plate arranged on the high temperature side is T1, and the plate thickness of the second glass plate arranged on the low temperature side is T2, the plate thickness T2 of the second glass plate is The method for producing a double-glazed glass according to any one of claims 16 to 19, wherein a condition of T2 <T1 is satisfied.
PCT/JP2012/067231 2011-07-08 2012-07-05 Double glazed glass and method for producing same WO2013008724A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-152320 2011-07-08
JP2011152320 2011-07-08

Publications (1)

Publication Number Publication Date
WO2013008724A1 true WO2013008724A1 (en) 2013-01-17

Family

ID=47506015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067231 WO2013008724A1 (en) 2011-07-08 2012-07-05 Double glazed glass and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2013008724A1 (en)
WO (1) WO2013008724A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043889A (en) * 2013-01-30 2013-04-17 徐林波 New laser sealing method and process for hollow and vacuum glass
JP2016088775A (en) * 2014-10-30 2016-05-23 パナソニックIpマネジメント株式会社 Method for producing glass panel unit
WO2017095784A1 (en) * 2015-11-30 2017-06-08 Corning Incorporated Laser welding transparent glass panes using a low emissivity coating
WO2017170379A1 (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Glass panel unit production method, fitting production method, glass panel unit production device, and glass panel unit
WO2019145332A1 (en) * 2018-01-23 2019-08-01 Agc Glass Europe Asymmetrical vacuum-insulated gazing unit
WO2019207971A1 (en) * 2018-04-26 2019-10-31 パナソニックIpマネジメント株式会社 Glass panel unit, partly-finished product of glass panel unit, assembled product of glass panel unit, and method for manufacturing glass panel unit
WO2019219590A1 (en) * 2018-05-14 2019-11-21 Agc Glass Europe Asymmetrical vacuum-insulated glazing unit
US10487568B2 (en) 2015-09-29 2019-11-26 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit and glass window
WO2020002134A1 (en) * 2018-06-29 2020-01-02 Vkr Holding A/S Vacuum insulated glazing unit having a separation distance between a side seal and a low emissivity coating, and associated methods of manufacturing same
JP2020507544A (en) * 2017-02-06 2020-03-12 ショット ジェムトロン コーポレイションSCHOTT Gemtron Corporation Insulated glass laminate having a non-uniform coating layer and a sealed cavity for gas molecules
JP2020520887A (en) * 2017-05-19 2020-07-16 スコット プリモセラー オサケユイチアSchott Primoceler Oy Method and apparatus for manufacturing airtight vacuum joints at low temperatures
CN111688303A (en) * 2020-05-11 2020-09-22 湖南盾神科技有限公司 Composite safety glass structure composed of asymmetric vacuum glass
WO2020203012A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Glass panel unit and glass window
WO2020209371A1 (en) * 2019-04-10 2020-10-15 日本板硝子株式会社 Glass unit
CN112513399A (en) * 2018-05-14 2021-03-16 旭硝子欧洲玻璃公司 Asymmetric vacuum insulated glazing unit
US10988973B2 (en) 2015-09-29 2021-04-27 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit, glass window provided with same, and method for manufacturing glass panel unit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063156A (en) * 1998-08-11 2000-02-29 Nippon Sheet Glass Co Ltd Sealing structure for peripheral part of glass panel and sealing method
JP2000103651A (en) * 1998-07-30 2000-04-11 Central Glass Co Ltd Low-pressure multiple glass and its production
JP2001316138A (en) * 2000-04-28 2001-11-13 Nippon Sheet Glass Co Ltd Glass panel
JP2005145725A (en) * 2003-11-11 2005-06-09 Nippon Sheet Glass Co Ltd Double-glazed glass
JP2009057256A (en) * 2007-08-31 2009-03-19 Toshiba Corp Method for joining glass substrate, and display device using glass substrate
WO2010061853A1 (en) * 2008-11-26 2010-06-03 旭硝子株式会社 Glass member having sealing/bonding material layer, electronic device using same, and manufacturing method thereof
WO2010071176A1 (en) * 2008-12-19 2010-06-24 旭硝子株式会社 Glass member with seal-bonding material layer and method for producing same, and electronic device and method for manufacturing same
WO2010128679A1 (en) * 2009-05-08 2010-11-11 旭硝子株式会社 Glass member with sealing material layer, electronic device using same, and manufacturing method thereof
JP2011011925A (en) * 2009-06-30 2011-01-20 Asahi Glass Co Ltd Glass member with sealing material layer, electronic device using the same and method for producing the electronic device
WO2011010489A1 (en) * 2009-07-23 2011-01-27 旭硝子株式会社 Method and apparatus for manufacturing glass member provided with sealing material layer and method for manufacturing electronic device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103651A (en) * 1998-07-30 2000-04-11 Central Glass Co Ltd Low-pressure multiple glass and its production
JP2000063156A (en) * 1998-08-11 2000-02-29 Nippon Sheet Glass Co Ltd Sealing structure for peripheral part of glass panel and sealing method
JP2001316138A (en) * 2000-04-28 2001-11-13 Nippon Sheet Glass Co Ltd Glass panel
JP2005145725A (en) * 2003-11-11 2005-06-09 Nippon Sheet Glass Co Ltd Double-glazed glass
JP2009057256A (en) * 2007-08-31 2009-03-19 Toshiba Corp Method for joining glass substrate, and display device using glass substrate
WO2010061853A1 (en) * 2008-11-26 2010-06-03 旭硝子株式会社 Glass member having sealing/bonding material layer, electronic device using same, and manufacturing method thereof
WO2010071176A1 (en) * 2008-12-19 2010-06-24 旭硝子株式会社 Glass member with seal-bonding material layer and method for producing same, and electronic device and method for manufacturing same
WO2010128679A1 (en) * 2009-05-08 2010-11-11 旭硝子株式会社 Glass member with sealing material layer, electronic device using same, and manufacturing method thereof
JP2011011925A (en) * 2009-06-30 2011-01-20 Asahi Glass Co Ltd Glass member with sealing material layer, electronic device using the same and method for producing the electronic device
WO2011010489A1 (en) * 2009-07-23 2011-01-27 旭硝子株式会社 Method and apparatus for manufacturing glass member provided with sealing material layer and method for manufacturing electronic device

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043889A (en) * 2013-01-30 2013-04-17 徐林波 New laser sealing method and process for hollow and vacuum glass
JP2016088775A (en) * 2014-10-30 2016-05-23 パナソニックIpマネジメント株式会社 Method for producing glass panel unit
US10941608B2 (en) 2015-09-29 2021-03-09 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit and glass window
US10988973B2 (en) 2015-09-29 2021-04-27 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit, glass window provided with same, and method for manufacturing glass panel unit
US10487568B2 (en) 2015-09-29 2019-11-26 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit and glass window
WO2017095784A1 (en) * 2015-11-30 2017-06-08 Corning Incorporated Laser welding transparent glass panes using a low emissivity coating
JP7221339B2 (en) 2015-11-30 2023-02-13 コーニング インコーポレイテッド Clear flat glass for laser welding with low emissivity coating
JP2019502627A (en) * 2015-11-30 2019-01-31 コーニング インコーポレイテッド Transparent glass sheet for laser welding using low emissivity coating
JP2021183561A (en) * 2015-11-30 2021-12-02 コーニング インコーポレイテッド Laser welding transparent glass panes using low emissivity coating
US10954160B2 (en) 2015-11-30 2021-03-23 Corning Incorporated Laser welding transparent glass panes using a low emissivity coating
US11254600B2 (en) 2016-03-31 2022-02-22 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit manufacturing method, building component manufacturing method, glass panel unit manufacturing system, and glass panel unit
US10974985B2 (en) 2016-03-31 2021-04-13 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit manufacturing method, building component manufacturing method, glass panel unit manufacturing system, and glass panel unit
WO2017170379A1 (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Glass panel unit production method, fitting production method, glass panel unit production device, and glass panel unit
US10858279B2 (en) 2016-03-31 2020-12-08 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit manufacturing method, building component manufacturing method, glass panel unit manufacturing system, and glass panel unit
US10941068B2 (en) 2016-03-31 2021-03-09 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit manufacturing method, building component manufacturing method, glass panel unit manufacturing system, and glass panel unit
JPWO2017170379A1 (en) * 2016-03-31 2019-02-28 パナソニックIpマネジメント株式会社 Glass panel unit manufacturing method, joinery manufacturing method, glass panel unit manufacturing apparatus, and glass panel unit
JP7060604B2 (en) 2017-02-06 2022-04-26 ショット ジェムトロン コーポレイション Insulated glass laminate with non-uniform coating layer and sealed cavities of gas molecules
JP2020507544A (en) * 2017-02-06 2020-03-12 ショット ジェムトロン コーポレイションSCHOTT Gemtron Corporation Insulated glass laminate having a non-uniform coating layer and a sealed cavity for gas molecules
JP2020520887A (en) * 2017-05-19 2020-07-16 スコット プリモセラー オサケユイチアSchott Primoceler Oy Method and apparatus for manufacturing airtight vacuum joints at low temperatures
US11529701B2 (en) 2017-05-19 2022-12-20 Schott Primoceler Oy Method and apparatus for producing a hermetic vacuum joint at low temperature
JP7113891B2 (en) 2017-05-19 2022-08-05 ショット プリモセラー オサケユイチア Method and apparatus for manufacturing articles
EA039820B1 (en) * 2018-01-23 2022-03-16 Агк Гласс Юроп Asymmetrical vacuum insulating gazing unit
WO2019145332A1 (en) * 2018-01-23 2019-08-01 Agc Glass Europe Asymmetrical vacuum-insulated gazing unit
JP7387637B2 (en) 2018-01-23 2023-11-28 エージーシー グラス ユーロップ Asymmetric vacuum-insulated glazing unit
JP2021510672A (en) * 2018-01-23 2021-04-30 エージーシー グラス ユーロップAgc Glass Europe Asymmetric vacuum insulated glazing unit
CN111886394A (en) * 2018-01-23 2020-11-03 旭硝子欧洲玻璃公司 Asymmetric vacuum insulation staring unit
US11174669B2 (en) 2018-01-23 2021-11-16 Agc Glass Europe Asymmetrical vacuum-insulated gazing unit
WO2019207971A1 (en) * 2018-04-26 2019-10-31 パナソニックIpマネジメント株式会社 Glass panel unit, partly-finished product of glass panel unit, assembled product of glass panel unit, and method for manufacturing glass panel unit
JPWO2019207971A1 (en) * 2018-04-26 2021-06-10 パナソニックIpマネジメント株式会社 Glass panel unit, work-in-process of glass panel unit, assembly of glass panel unit, manufacturing method of glass panel unit
JP7029703B2 (en) 2018-04-26 2022-03-04 パナソニックIpマネジメント株式会社 Glass panel unit, manufacturing method of glass panel unit
EA039272B1 (en) * 2018-05-14 2021-12-27 Агк Гласс Юроп Asymmetrical vacuum-insulated glazing unit
JP7337847B2 (en) 2018-05-14 2023-09-04 エージーシー グラス ユーロップ Asymmetric vacuum-insulated glazing unit
WO2019219590A1 (en) * 2018-05-14 2019-11-21 Agc Glass Europe Asymmetrical vacuum-insulated glazing unit
CN112513399A (en) * 2018-05-14 2021-03-16 旭硝子欧洲玻璃公司 Asymmetric vacuum insulated glazing unit
US11125007B2 (en) 2018-05-14 2021-09-21 Agc Glass Europe Asymmetrical vacuum-insulated glazing unit
JP2021523083A (en) * 2018-05-14 2021-09-02 エージーシー グラス ユーロップAgc Glass Europe Asymmetric vacuum insulation glazing unit
CN112534112A (en) * 2018-05-14 2021-03-19 旭硝子欧洲玻璃公司 Asymmetric vacuum insulated glazing unit
WO2020002134A1 (en) * 2018-06-29 2020-01-02 Vkr Holding A/S Vacuum insulated glazing unit having a separation distance between a side seal and a low emissivity coating, and associated methods of manufacturing same
US11952832B2 (en) 2018-06-29 2024-04-09 Vkr Holding A/S Vacuum insulated glazing unit having a separation distance between a side seal and a low emissivity coating, and associated methods of manufacturing same
WO2020203012A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Glass panel unit and glass window
WO2020209371A1 (en) * 2019-04-10 2020-10-15 日本板硝子株式会社 Glass unit
EP4183755A1 (en) * 2019-04-10 2023-05-24 Nippon Sheet Glass Company, Limited Glass unit
CN113677644A (en) * 2019-04-10 2021-11-19 日本板硝子株式会社 Glass unit
CN111688303A (en) * 2020-05-11 2020-09-22 湖南盾神科技有限公司 Composite safety glass structure composed of asymmetric vacuum glass

Also Published As

Publication number Publication date
JPWO2013008724A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
WO2013008724A1 (en) Double glazed glass and method for producing same
TWI482743B (en) A glass member having a sealing material layer and an electronic device using the same, and a method of manufacturing the same
TWI482745B (en) A glass member having a sealing material layer, and an electronic device using the same, and a method of manufacturing the same
JP5692218B2 (en) Electronic device and manufacturing method thereof
JP5716743B2 (en) SEALING PASTE AND ELECTRONIC DEVICE MANUFACTURING METHOD USING THE SAME
JP5494831B2 (en) Glass member with sealing material layer, electronic device using the same, and manufacturing method thereof
WO2010055888A1 (en) Method for producing glass member provided with sealing material layer, and method for manufacturing electronic device
WO2012117978A1 (en) Airtight member and method for producing same
WO2011158873A1 (en) Electronic device
WO2010067848A1 (en) Sealing glass, glass member having sealing material layer, and electronic device and method for producing the same
JP6357937B2 (en) Sealing material and sealing package
JP2010228998A (en) Glass member with sealing material layer, electronic device using the same, and production method thereof
JP2012041196A (en) Glass member with sealing material layer, electronic device using the same, and method for producing the electronic device
WO2014123220A1 (en) Multilayer glass and production method for same
JP2011011925A (en) Glass member with sealing material layer, electronic device using the same and method for producing the electronic device
US20140342136A1 (en) Member with sealing material layer, electronic device, and method of manufacturing electronic device
WO2012077771A1 (en) Reflective mirror and manufacturing method therefor
JP2013216502A (en) Glass member with bonding layer
WO2012128227A1 (en) Reflective mirror
JP2013227181A (en) Sealing structure and manufacturing method therefor
JP2014005177A (en) Airtight member and method of manufacturing the same
JP2014221695A (en) Sealed package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12810544

Country of ref document: EP

Kind code of ref document: A1