WO2013008453A1 - Holographic memory recording method and reproduction method, and holographic memory recording device and reproduction device - Google Patents

Holographic memory recording method and reproduction method, and holographic memory recording device and reproduction device Download PDF

Info

Publication number
WO2013008453A1
WO2013008453A1 PCT/JP2012/004455 JP2012004455W WO2013008453A1 WO 2013008453 A1 WO2013008453 A1 WO 2013008453A1 JP 2012004455 W JP2012004455 W JP 2012004455W WO 2013008453 A1 WO2013008453 A1 WO 2013008453A1
Authority
WO
WIPO (PCT)
Prior art keywords
hologram
light
signal
modulation signal
holographic memory
Prior art date
Application number
PCT/JP2012/004455
Other languages
French (fr)
Japanese (ja)
Inventor
岡本 淳
圭佑 瑞慶覧
高林 正典
敦史 渋川
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2013523829A priority Critical patent/JP5988054B2/en
Publication of WO2013008453A1 publication Critical patent/WO2013008453A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/28Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique superimposed holograms only

Definitions

  • the present invention relates to a holographic memory recording method and reproducing method, and a holographic memory recording device and reproducing device.
  • optical memory has been developed mainly for optical disks of two-dimensional recording system such as CD, DVD and Blu-ray disc.
  • the optical memory of the two-dimensional recording system has already reached the diffraction limit, and it is difficult to increase the capacity beyond this.
  • development of an optical memory of a three-dimensional recording system has been actively conducted. If the three-dimensional recording method is adopted, there is a possibility that the recording capacity can be increased 100 to 1000 times or more than that of the two-dimensional recording method. Theoretically, a 100 TB class optical disk memory can be realized.
  • the near-field light recording method is a recording method using “near-field light” which is light having a wavelength equal to or smaller than the wavelength of light. Near-field optical recording is basically a two-dimensional recording technique, but there is a possibility that high-density recording exceeding the diffraction limit can be realized by using near-field light.
  • the two-photon absorption memory is a three-dimensional recording type optical memory that can access a recording medium three-dimensionally by utilizing the intensity dependency of the nonlinear effect.
  • 3) a holographic memory can perform three-dimensional recording without multi-layering a recording medium by multiplex recording a hologram generated by interference between signal light and reference light. It is an optical memory that can be used.
  • All of the optical memories 1) to 3) have achieved a recording capacity of about 500 GB to 1 TB at present. Therefore, from the viewpoint of recording capacity, there is no significant difference between the optical memories 1) to 3).
  • a holographic memory having a spatially two-dimensional massively parallel input / output function has a great advantage.
  • a spatial light modulator Spatial Light Modulator; hereinafter abbreviated as “SLM”
  • SLM Spatial Light Modulator
  • Holographic memory is expected to be put to practical use as a next-generation optical memory because it can realize both high-density recording and high data transfer rate.
  • the recording capacity of the currently developed holographic memory is about 600 GB to 1 TB / disk (for example, see Non-Patent Document 1). Since the recording capacity of one side of one platter of HDD (3.5 inch, storage capacity 2 TB) is 333 GB, the holographic memory is in terms of recording capacity compared to a magnetic recording medium in practical use. There is an advantage of about 2 to 3 times. The holographic memory is theoretically considered to be able to expand the recording capacity up to 10 to 100 times.
  • phase modulation type holographic memory cannot detect the phase modulation signal directly by the photodetector, and therefore has a problem that it must be detected after converting the phase modulation signal into an intensity signal by some method. there were.
  • the intensity modulation method is the most common modulation method, and many examples have been reported so far (see, for example, Non-Patent Documents 1 to 3).
  • Holography was used from literature (Non-Patent Document 2) that first suggested that information can be recorded using holography to recent literature (Non-Patent Documents 1 and 3) with a view to commercialization.
  • Many of the recording methods use binary (0 and 1) intensity modulation.
  • intensity modulation has the advantage that a system can be constructed with a simple optical system, the difference in exposure intensity between the central and peripheral areas of the laser light irradiation area increases, greatly consuming the dynamic range of the recording medium. Therefore, there is a problem that the recording efficiency is poor.
  • a modulation code that expresses data by dispersing binary information into a plurality of pixels called blocks and coding them, and illuminating only some of the pixels in the block.
  • the modulation code By using the modulation code in this way, errors due to inter-pixel crosstalk can be reduced.
  • efficient recording can be performed by reducing the difference in exposure intensity between the central portion and the peripheral portion of the laser light irradiation region and increasing the number of multiple recordings (for example, non-recording).
  • the code rate defined by “(number of recording bits per block) / (number of pixels per block)” is less than 1. This means that the recording capacity per block when the modulation code is used is in principle lower than the recording capacity when the modulation code is not used.
  • a method of recording a plurality of information per pixel that is, a code rate exceeding 1 is required.
  • a code rate exceeding 1 it is necessary to use a multilevel signal exceeding 0 and 1 binary values.
  • a multi-level signal can be realized by dividing the light intensity into several stages, and thereby the code rate can be dramatically improved.
  • the signal-to-noise ratio of the reproduction light is greatly degraded due to an increase in the multi-value number (see, for example, Non-Patent Document 7).
  • the phase modulation method is a method of performing modulation using the phase of a light wave, and has recently attracted attention.
  • the phase modulation method when the phase of the light wave of a certain pixel is 0, information is expressed by setting the phase of the light wave of another pixel as ⁇ .
  • phase modulation method When the number of 0 and ⁇ pixels is the same among the pixels included in the two-dimensional page data generated by the spatial light modulator (SLM), the difference in exposure intensity between the center and the periphery of the laser light irradiation area Therefore, useless consumption of the dynamic range of the recording medium can be suppressed. This point greatly contributes to an increase in the number of multiplexed recordings.
  • a photoelectric conversion device such as a CCD has sensitivity only to the intensity of light, phase information cannot be directly detected. Therefore, in order to detect the phase information, the phase must be converted into intensity before light detection is performed. This is a major problem with the phase modulation method.
  • Non-Patent Document 4 proposes an edge-detection method as a phase detection method used for a holographic memory.
  • Non-Patent Document 8 proposes a phase detection method using a birefringent medium.
  • these methods have a problem that they are not suitable for detecting a multilevel phase modulation signal, which is an essential element for increasing the capacity of a holographic memory.
  • Non-Patent Document 9 proposes an optical phase-locked collinear holographic method as a phase modulation type holographic memory specialized for a collinear optical system that is attracting attention as a one-beam recording method.
  • the recorded hologram is simultaneously irradiated with interference light having a known phase called phase-locked light in addition to normal collinear reference light on the recorded hologram.
  • This is a method of reading information as intensity information.
  • the phase-locked light is transmitted through the recorded hologram, the phase distribution of the phase-locked light is affected by the propagation in the hologram having the phase diffraction grating. This can cause a phase error on the detection surface.
  • the hologram recorded by this method must be reproduced by an apparatus having a function of generating phase-locked light. Since the beam diameter of the phase-locked light is different from the beam diameter of the reference light, this type of reproducing apparatus is not compatible with the reproducing apparatus of the intensity modulation type hologram memory.
  • Non-Patent Document 10 proposes a dual stage holography method.
  • a spatial quadrature amplitude modulation signal including multilevel phase modulation is optically recorded, and at the time of reproduction, the optically recorded hologram is transferred to the second-stage hologram and reproduced.
  • reference light light that interferes with the diffracted light of the first stage hologram
  • the reference light necessary for generating the second-stage hologram does not pass through the recorded hologram, and thus is not affected by the phase error caused by propagating through the hologram.
  • this type of reproduction apparatus since a reference beam different from the first-stage hologram reproduction is required to generate the second-stage hologram, this type of reproduction apparatus also uses an intensity-modulated hologram. Incompatible with memory playback device.
  • the conventional intensity-modulated holographic memory has a large exposure intensity difference between the central portion and the peripheral portion of the laser light irradiation region, and consumes a large dynamic range of the recording medium.
  • the efficiency of multiple recording is poor.
  • the above problem can be avoided, but there is a problem that the recording capacity is reduced because the code rate per block is lowered.
  • phase modulation holographic memory can solve these problems.
  • the phase modulation type holographic memory has a problem that in order to detect phase information, it is necessary to convert the phase into intensity before performing light detection.
  • the intensity modulation type holographic memory has problems of accuracy and noise of the detection system as in the case of the intensity modulation type holographic memory.
  • a phase modulation holographic memory having a large multilevel number has not been realized.
  • optical phase-locked holographic methods As optical holographic memories that can handle multi-level phase modulation signals, optical phase-locked holographic methods and dual-stage holographic methods have been proposed. However, as described above, a hologram recorded by this method must be reproduced by a device having a function of generating interference light (phase-locked light or second reference light). For this reason, the reproducing apparatus of these systems is not compatible with the reproducing apparatus of the intensity modulation type hologram memory.
  • An object of the present invention is to provide a holographic memory recording method and reproducing method, and a holographic memory recording apparatus and reproducing device capable of precisely reproducing multi-level phase information using one reference beam. That is.
  • the inventor records the hologram B generated by the interference light and the reference light, in addition to the hologram A generated by the signal light and the reference light, in the same location of the holographic memory.
  • the present invention has been completed by finding out that the problem can be solved and further studying it.
  • the present invention relates to the following holographic memory recording method.
  • the signal light including the spatial phase modulation signal or the spatial quadrature amplitude modulation signal and the partial reference light A are irradiated to a specific portion of the holographic memory, and generated by the signal light and the partial reference light A. Recording the hologram A; irradiating the specific portion of the holographic memory with interference light and partial reference light B, and recording the hologram B generated by the interference light and partial reference light B And a holographic memory recording method.
  • the partial reference light A is a part of the laser light emitted from the laser light source; the partial reference light B is a part of the remaining part of the laser light emitted from the laser light source.
  • [1] A recording method of a holographic memory according to [1].
  • [3] The holographic memory recording method according to [1] or [2], wherein the hologram A and the hologram B are recorded in the holographic memory by a collinear holography method.
  • the present invention also relates to a method for reproducing the following holographic memory.
  • the spatial phase modulation signal or the spatial quadrature amplitude modulation signal includes binary phase information; and demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal includes diffracted light of the hologram A and
  • the spatial phase modulation signal or the spatial quadrature amplitude modulation signal includes multi-level phase information; and demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal includes diffracted light of the hologram A and A step of generating a hologram C from the diffracted light of the hologram B, a step of detecting an intensity distribution of the hologram C, and a demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal based on the intensity distribution
  • the interference light includes a plurality of subpixels having different phases with respect to one data pixel of the signal light, and the diffracted light of the hologram B is related to one data pixel of the diffracted light of the hologram A.
  • the hologram C includes a plurality of sub-pixels having different phases, the hologram C includes a plurality of hologram information having different phases, and is included in the hologram C in the step of demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal.
  • the signal light includes a plurality of subpixels having different phases with respect to one data pixel
  • the diffracted light of the hologram A includes a plurality of subpixels having different phases with respect to one data pixel
  • the hologram C includes a plurality of hologram information having different phases
  • the space C is based on the plurality of hologram information included in the hologram C.
  • the partial reference light A is a part of the laser light emitted from the laser light source; the partial reference light B is a part of the remaining part of the laser light emitted from the laser light source.
  • the present invention also relates to the following holographic memory recording apparatus.
  • the signal light including the spatial phase modulation signal or the spatial quadrature amplitude modulation signal and the partial reference light A are irradiated to a specific portion of the holographic memory, and generated by the signal light and the partial reference light A.
  • a holographic memory recording apparatus comprising:
  • the present invention also relates to the following holographic memory reproducing device.
  • a holographic memory reproducing device in which a spatial phase modulation signal or a spatial quadrature amplitude modulation signal is recorded by the holographic memory recording device according to [12], wherein: A hologram diffracted light generator that simultaneously irradiates the reference light A and the partial reference light B to simultaneously generate the diffracted light of the hologram A and the diffracted light of the hologram B that can interfere with the diffracted light of the hologram A;
  • a holographic memory reproducing apparatus comprising: a demodulator that demodulates the spatial phase modulation signal or the spatial quadrature amplitude modulation signal using the diffracted light of the hologram A and the diffracted light of the hologram B;
  • multi-level phase information can be accurately reproduced using a single reference beam. Therefore, according to the present invention, a holographic memory in which a spatial phase modulation signal or a spatial quadrature amplitude modulation signal is recorded can be reproduced with high accuracy.
  • FIG. 1A and 1B are schematic diagrams illustrating examples of reference light.
  • 2A and 2B are schematic diagrams showing how a phase modulation signal is recorded in a holographic memory. It is a schematic diagram which shows a mode that the phase modulation signal currently recorded on the holographic memory is reproduced
  • 5A and 5B are schematic diagrams showing a conventional reproducing method
  • FIG. 5C is a schematic diagram showing a reproducing method according to the present invention. The schematic diagram which shows a mode that it records and reproduces by a collinear holography method.
  • FIG. 7A is a diagram showing a pattern of the spatial light modulator when recording is performed by the collinear holography method
  • FIG. 7B is a diagram showing a pattern of the spatial light modulator when reproducing is performed by the collinear holography method. It is a figure which shows the pattern of the spatial light modulator in the case of combining the recording method of this invention, and a collinear holography method. It is a schematic diagram which shows a mode that page data is recorded combining the recording method of this invention, and a collinear holography method. It is a schematic diagram which shows a mode that page data is reproduced
  • 16A and 16B are diagrams showing an example of the phase distribution of signal light and interference light in the single shot / dual stage mode.
  • 17A and 17B are diagrams illustrating an example of the phase distribution of signal light and interference light in the single shot / dual stage mode.
  • FIG. 18A and FIG. 18B are schematic diagrams showing examples of reference light division patterns.
  • 2 is a diagram of a 16-value spatial quadrature amplitude modulation signal (16-SQAM) used in Example 1.
  • FIG. FIG. 20A is a diagram showing phase information of original page data
  • FIG. 20B is a diagram showing amplitude information of original page data.
  • FIG. 21A is a diagram showing an intensity pattern of partial reference light A
  • FIG. 21B is a diagram showing an intensity pattern of partial reference light B.
  • FIG. 22A to 22D are diagrams showing signal intensity distributions of the second-stage hologram (digital hologram) (reproduction in multi-shot / dual-stage mode).
  • FIG. 23A is a diagram showing phase information of demodulated page data
  • FIG. 23B is a diagram showing amplitude information of demodulated page data (reproduction in multi-shot dual stage mode). It is a graph which shows the signal point distribution of the demodulated page data (reproduction
  • FIG. 26A is a diagram showing phase information of demodulated page data
  • 26B is a diagram showing amplitude information of demodulated page data (reproduction in single shot / dual stage mode). It is a graph which shows the signal point distribution of the demodulated page data (reproduction by a single shot dual stage mode).
  • 28A is a diagram showing the phase information of the original page data # 1
  • FIG. 28B is a diagram showing the phase information of the original page data # 2
  • FIG. 28C is the phase information of the original page data # 3. It is a figure which shows information (reproduction
  • FIG. 29A is a diagram illustrating phase information (analog data) of demodulated page data # 1, FIG.
  • 29B is a diagram illustrating phase information (analog data) of demodulated page data # 2, and FIG. It is a figure which shows the phase information (analog data) of the demodulated page data # 3 (reproduction
  • 30A is a diagram showing phase information (digital data) of demodulated page data # 1
  • FIG. 30B is a diagram showing phase information (digital data) of demodulated page data # 2, and FIG. It is a figure which shows the phase information (digital data) of demodulated page data # 3 (reproduction
  • 31A is a graph showing the signal point distribution of demodulated page data # 1, FIG.
  • FIG. 31B is a graph showing the signal point distribution of demodulated page data # 2
  • FIG. 31C is demodulated page data # 3.
  • 5 is a graph showing the signal point distribution of (multi-shot / dual stage mode reproduction of multiple recording signals).
  • FIG. 6 is a schematic diagram showing a configuration of a holographic memory recording / reproducing apparatus used in Example 3. It is a figure which shows the pattern of phase modulation SLM at the time of recording the hologram B.
  • FIG. 34A and 34B are diagrams showing patterns of the phase modulation SLM when the hologram A is recorded.
  • FIGS. 35A and 35B are diagrams showing patterns of the phase modulation SLM when the hologram A and the hologram B are reproduced.
  • FIG. 36A and 36B are images showing the detected signal page data (reproduction in the direct detection mode).
  • FIG. 37A and FIG. 37B are images showing the results of performing threshold processing on the images shown in FIG. 36A and FIG. 36B, respectively (reproduction in the direct detection mode).
  • 38A is a diagram illustrating phase information of original page data
  • FIG. 38B is a diagram illustrating an intensity pattern of interference light
  • FIGS. 38C to 38E are diagrams illustrating intensity patterns of reference light.
  • 38F is a diagram showing a signal intensity distribution of the second-stage hologram (digital hologram) (reproduction in the direct detection mode).
  • 39A and 39F show the amplitude information and phase information of the original page data # 1, FIG. 39B and FIG.
  • FIGS. 39G show the amplitude information and phase information of the original page data # 2
  • FIG. 39C and FIG. 39D and 39I show the amplitude information and phase information of the original page data # 3.
  • FIGS. 39D and 39I show the amplitude information and phase information of the original page data # 4.
  • FIGS. 39E and 39J show the original page data # 3.
  • 5 shows amplitude information and phase information.
  • 40A shows the phase information of the signal page data # 1
  • FIG. 40B shows the phase distribution added to the signal light
  • FIG. 40C shows the signal page after adding the phase distribution to the phase information of the signal page data # 1.
  • 41A shows the phase information of the interference light
  • FIG. 41B shows the phase distribution added to the interference light.
  • 42A and 42B are graphs showing signal point distributions of demodulated page data.
  • the recording method of the holographic memory of the present invention is a method of recording a spatial phase modulation signal or a spatial quadrature amplitude modulation signal in the holographic memory.
  • the holographic memory reproduction method of the present invention (hereinafter also referred to as “reproduction method of the present invention”) reproduces a spatial phase modulation signal or a spatial quadrature amplitude modulation signal recorded in the holographic memory by the recording method of the present invention. It is a method to do.
  • the “spatial phase modulation signal” refers to a signal modulated by spatial phase modulation (SPM).
  • a “spatial quadrature amplitude modulation signal” refers to a signal modulated by spatial quadrature amplitude modulation (SQAM).
  • Phase modulation (hereinafter abbreviated as“ PM ”)” is a phase modulation, phase shift modulation (PSM) or phase shift used in the field of communication technology such as wireless communication and optical communication. This is a modulation method by keying (Phase Shift Keying; PSK).
  • PSK Phase Shift Keying
  • the PM transmits information by changing the phase of the carrier wave.
  • signal light whose phase is changed is recorded in the same manner as PM used in the field of communication technology.
  • the signal is modulated in a two-dimensional spatial axis direction (x, y), and is recorded and reproduced as page data.
  • phase modulation used in the present invention
  • spatial phase modulation used in the field of communication technology
  • SPM spatial phase modulation
  • SPM includes the concept of phase modulation and multi-level phase modulation used in the optical memory field.
  • Quadrature Amplitude Modulation (hereinafter abbreviated as “QAM”) is used in the field of communication technologies such as wireless communication and optical communication, and is used for amplitude modulation (AM) and phase modulation (Phase Modulation). PM) in combination.
  • QAM can transmit a plurality of information at a time by changing both amplitude and phase elements.
  • a signal in which both amplitude and phase elements are changed is recorded, similarly to QAM used in the field of communication technology.
  • the signal is modulated in a two-dimensional spatial axis direction (x, y), and is recorded and reproduced as page data.
  • the recording method and the reproducing method of the present invention are characterized by using reference light including two partial reference lights, partial reference light A and partial reference light B. For this reason, the recording method and the reproducing method of the present invention are also referred to as double reference holography.
  • signal light and interference light are multiplexed and recorded in advance using two partial reference lights, so that interference light (for example, phase-locked light) is not irradiated from the outside during reproduction.
  • interference light for example, phase-locked light
  • the spatial phase modulation signal and the spatial quadrature amplitude modulation signal can be demodulated.
  • one reference light 100 is divided into two parts, a partial reference light A110 and a partial reference light B120.
  • the shapes of the partial reference light A110 and the partial reference light B120 are not particularly limited as long as they do not overlap each other. Further, the light intensity distribution and the light phase distribution in the partial reference light A110 and the partial reference light B120 are not particularly limited.
  • the partial reference light A110 and the partial reference light B120 may have a binary random intensity distribution.
  • phase modulation signal 130 spatial phase modulation signal or spatial quadrature amplitude modulation signal
  • the phase modulation signal 130 The signal light 140 including the page data
  • the partial reference light A110 are irradiated.
  • the hologram A generated by the interference between the signal light 130 and the partial reference light A110 is recorded at a specific location of the holographic memory 200.
  • the same portion of the holographic memory 200 is irradiated with the interference light 150 and the partial reference light B120. Accordingly, the hologram B generated by the interference between the interference light 150 and the partial reference light B120 is recorded at the same location of the holographic memory 200.
  • the interference light 150 does not include information to be recorded.
  • the interference light 150 is light having a uniform light intensity distribution and phase distribution.
  • the recording order of hologram A and hologram B is not particularly limited.
  • the hologram B may be recorded after the hologram A is recorded.
  • the hologram A may be recorded after the hologram B is recorded.
  • the reference light 100 including the partial reference light A110 and the partial reference light B120 is irradiated to the same portion of the holographic memory 200.
  • the diffracted light 160 (signal light 140) of the hologram A and the diffracted light 170 (interference light 150) of the hologram B are generated simultaneously.
  • the diffracted light 170 of the hologram B needs to be light that can interfere with the diffracted light 160 of the hologram A. Therefore, normally, the light source of the partial reference light A110 and the light source of the partial reference light B120 are the same laser light source.
  • phase information (for example, 0 and ⁇ ) is included due to interference between the diffracted light 160 of the hologram A and the diffracted light 170 of the hologram B.
  • the diffracted light 160 of the hologram A is converted into diffracted light 180 (interference fringes) including intensity information (for example, 0 and 1) (see FIG. 3).
  • the phase intensity signal 130 can be demodulated by detecting the intensity distribution of the diffracted light 180 (interference fringes) by the light intensity detector 210 (an imaging device such as a CCD or CMOS).
  • phase modulation signal 130 included in the signal light 140 is a multi-level phase modulation signal
  • the diffracted light 160 of the hologram A functions as a new signal light as shown in FIG.
  • the light 170 functions as new reference light, so that a second-stage hologram 220 (hologram C) is generated.
  • the phase modulation signal 130 can be demodulated by performing electronic signal processing (described later) after the light intensity detector detects the intensity distribution of the second stage hologram 220 (hologram C). .
  • the diffracted light 170 of the hologram B is an interference light used when converting the diffracted light 160 of the hologram A including phase information into a diffracted light 180 (interference fringe) including intensity information, or the diffracted light 160 to 2 of the hologram A. It functions as reference light used when generating the stage hologram 220 (hologram C). Therefore, when recording the hologram B in the holographic memory 200, the holographic memory 200 is irradiated with the interference light 150 having an intensity distribution and a phase distribution capable of realizing these functions.
  • the second reference light necessary for multi-level phase detection is supplied from the outside.
  • the optical system becomes complicated, so that it may be weak against vibration and air fluctuation.
  • phase-locked light necessary for multi-level phase detection is supplied from the outside and transmitted through the holographic memory 200.
  • the light transmitted through the holographic memory 200 is used as the phase-locked light that interferes with the signal light, phase distortion due to transmission through the holographic memory 200 may occur.
  • the reference light for generating the second stage hologram (hologram C) necessary for multilevel phase detection is recorded in the holographic memory 200. Is supplied as diffracted light of the hologram B. Therefore, in the reproducing method of the present invention, it is not necessary to supply the reference light for generating the second stage hologram (hologram C) from the outside, and the optical system can be simplified. In addition, since phase distortion does not occur in the reference light (diffracted light of hologram B), the quality of the reference light can be improved.
  • Non-Patent Document 9 In reproduction of a holographic memory, in a conventional phase-locked reproduction method (see Non-Patent Document 9) and a conventional dual-stage reproduction method (see Non-Patent Document 10), reference light and interference light (phase-locked light or Two light beams (second reference light) are required. Moreover, since these two beams must interfere with each other, they need to be emitted from the same light source. For this reason, the reproducing device of the intensity modulation type holographic memory can reproduce the hologram by one reference light, whereas the reproducing device of the phase modulation type holographic memory increases the number of light beams for reproduction. The configuration becomes complicated, and precise adjustment of the optical system is also required. This means that the conventional intensity modulation type holographic memory reproducing apparatus cannot reproduce the holographic memory in which the phase modulation signal is recorded.
  • the reproducing method of the present invention only reference light for reproducing the first-stage hologram (hologram A and hologram B) is required.
  • the configuration of the holographic memory reproducing apparatus is greatly simplified, and the light source and the optical system at the time of reproduction have high compatibility with the reproducing apparatus of the conventional intensity modulation type holographic memory.
  • the conventional phase-locked reproducing method and the conventional dual-stage reproducing method when the recording medium moves or rotates, the diffracted light from the recording medium ( There is a possibility that the wavefront component of the signal light will change over time. For this reason, it is very difficult to always match the wavefront of the signal light with the wavefront of the interference light (phase-locked light or second reference light).
  • the reproducing method of the present invention in addition to the hologram A generated by the signal light and the partial reference light A, the hologram B generated by the interference light and the partial reference light B is recorded on the same recording medium. Phase detection is performed by interference between diffracted lights obtained by reproducing simultaneously. Therefore, in the reproducing method of the present invention, the signal light and the interference light are reproduced as diffracted light from the same recording medium. Therefore, even if the recording medium is a movable medium such as an optical disk, the relative relationship between the signal light and the interference light is The positional relationship is always constant, and stable and highly accurate signal reproduction is possible.
  • the recording method and reproducing method of the present invention can realize not only an increase in storage capacity due to a multi-level phase modulation signal but also an increase in storage capacity due to multiple recording.
  • the case where one signal light is recorded for one interference light has been described.
  • a plurality of signal lights are multiplexed and recorded for one interference light. You can also.
  • the hologram B generated by the interference light 150 and the partial reference light B120 is recorded in a specific location of the holographic memory 200 (see FIG. 2B).
  • the first signal page data 130-1 is recorded in the same location of the holographic memory 200 using the first partial reference light A110-1 shown in FIG. 1B (see FIG. 2A).
  • 1B is used as the second partial reference light A110-2 to change the second signal reference data 130-2 to the same location in the holographic memory 200.
  • Record see FIG. 2A
  • 1B is used as the third partial reference light A110-3 to change the third signal page data 130-3 to the same location in the holographic memory 200. (See FIG. 2A).
  • holograms are recorded in the holographic memory 200.
  • a) Hologram generated by the interference light 150 and the partial reference light B120 (hologram B)
  • b) Hologram (hologram A) generated by the first signal page data 130-1 and the first partial reference beam A110-1 c) Hologram generated by second signal page data 130-2 and second partial reference light A110-2 (hologram A)
  • the first signal page data 130-1 is demodulated by irradiating the holographic memory 200 with the reference light 100 including the first partial reference light A110-1 and the partial reference light B120.
  • the second signal page data 130-2 is demodulated.
  • the third signal page data 130-3 is demodulated.
  • the upper limit of the number of signal page data 130 that can be recorded in the same location of the holographic memory 200 depends on the number of patterns that the partial reference light A110 can take.
  • the number of patterns that the partial reference light A110 can take can be a very large value.
  • the recording method and reproducing method of the holographic memory have been described without any particular limitation.
  • a recording method and a reproducing method for a holographic memory when realizing the recording method and the reproducing method of the present invention while ensuring high compatibility with collinear holography will be described.
  • a two-beam interference method using light of different angles for signal light and reference light is widely known.
  • this method has a problem in consistency with the optical disc technology.
  • the signal light and the reference light are arranged on the same optical axis, and the central portion of the spatial light modulator (SLM) is used to generate the hologram signal light.
  • SLM spatial light modulator
  • laser light 310 (signal light and / or reference light) passes through the SLM 320, the half mirror 330, and the objective lens 340, and irradiates the recording medium 350 (for example, an optical disk). Is done.
  • the diffracted light extracted from the recording medium 350 is reflected by the half mirror 330 and reaches the image sensor 360.
  • FIG. 6 shows an optical arrangement of a reflection hologram, an optical arrangement of a transmission hologram may be used.
  • FIG. 7 shows an example of a spatial light modulator (SLM) pattern when recording and reproduction are performed by the collinear holography method.
  • SLM spatial light modulator
  • FIG. 7A page data separated into a central portion and an outer peripheral portion are used, the central portion is used for forming signal light, and the outer peripheral portion is used for forming reference light.
  • the light emitted from the central portion (signal light) and the light emitted from the outer peripheral portion (reference light) are condensed and irradiated onto a recording medium (for example, an optical disc) with one objective lens, and the interference pattern of both is recorded.
  • a recording medium for example, an optical disc
  • the recording method and the reproducing method of the present invention have high compatibility with the collinear holography method by dividing the ring of reference light in the collinear holography method into an outer region and an inner region. Can be made.
  • the region outside the outer peripheral portion is used for forming the partial reference light A110
  • the region inside the outer peripheral portion is used for forming the partial reference light B120.
  • the central region is used to form the signal light 140 or the interference light 150.
  • signal light 140 having information of page data to be recorded is generated by the SLM 320 in the central area, and the partial reference light A110 is generated in the outer area of the outer periphery. Generated by the SLM 320. Then, the hologram A generated by the signal light 140 and the partial reference light A110 is recorded in the holographic memory 200 (recording medium 350). At this time, the region inside the outer peripheral portion (the region where the partial reference light B120 is generated) is set in a state in which the laser light 310 is not transmitted by turning off the pixels of the SLM 320.
  • the SLM 320 generates the interference light 150 having the reference light information necessary for generating the second hologram at the time of reproduction, and the inner region of the outer peripheral portion.
  • the partial reference beam B120 is generated by the SLM 320.
  • the hologram B generated by the interference light 150 and the partial reference light B120 is recorded in the holographic memory 200 (recording medium 350).
  • the region outside the outer periphery is turned off by turning off the pixels of the SLM 320.
  • the phase distribution and intensity distribution of the interference light 150 differ depending on the operation mode described later. For example, data having the same phase and the same intensity for all data pixels is given to the SLM 320, and the output light is used as the interference light 150.
  • SLM 320 is an element that can spatially modulate the phase and / or intensity of light.
  • the holographic memory 200 is irradiated with the reference light 100 including both the partial reference light A110 and the partial reference light B120, as shown in FIG. Thereby, the diffracted light of hologram A and the diffracted light of hologram B are generated simultaneously. Then, the diffracted light of the hologram A functions as new signal light, and the diffracted light of the hologram B functions as new reference light, whereby the second-stage hologram 220 is generated on the surface of the image sensor 360. Thereafter, the phase modulation signal included in the page data can be demodulated by electronic signal processing.
  • the reproduction method of the present invention can reproduce data only by irradiating the reference light (partial reference light A110 and partial reference light B120) used at the time of recording, it is completely compatible with an intensity modulation type collinear holography method reproduction apparatus. Have sex.
  • the recording method and reproducing method of the present invention can be applied not only to the collinear holography method but also to various holography methods.
  • the recording method and reproducing method of the present invention can be applied to the two-beam interference method.
  • a recording method and a reproducing method of the holographic memory when the recording method and the reproducing method of the present invention are realized by the two-beam interference method will be described.
  • the signal light 140 or the interference light 150 is generated by the first SLM 320 (SLM1), and the partial reference light A110 or the partial reference light is generated by the second SLM 320 (SLM2).
  • B120 is generated.
  • the hologram A generated by the signal light 140 and the partial reference light A110 and the hologram B generated by the interference light 150 and the partial reference light B120 are recorded in the holographic memory 200.
  • the second SLM 320 (SLM2) is divided into a partial reference light A110 region (left half) and a partial reference light B120 region (right half).
  • a black region indicates that light is not transmitted, and other regions (regions with a pattern) transmit light while providing a phase pattern or an intensity pattern. It shows that you are letting.
  • the second SLM 320 (SLM2), no pattern is drawn in the area of the partial reference light A110 and the area of the partial reference light B120, but actually, the reference light data having a different phase or intensity for each pixel is obtained.
  • the holographic memory 200 is irradiated with the reference light 100 including both the partial reference light A110 and the partial reference light B120, as shown in FIG. Thereby, the diffracted light of hologram A and the diffracted light of hologram B are generated simultaneously. Then, the diffracted light of the hologram A functions as new signal light, and the diffracted light of the hologram B functions as new reference light, whereby the second-stage hologram 220 is generated on the surface of the image sensor 360. Thereafter, the phase modulation signal included in the page data can be demodulated by electronic signal processing.
  • the phase modulation signal can be demodulated in the direct detection mode.
  • the interference light has the same intensity and the same phase for all data pixels.
  • the diffracted light of the hologram A (binary phase modulation signal) and the diffracted light of the hologram B (interference light) interfere with each other and are converted into light (interference fringes) including binary intensity information.
  • the image sensor detects the intensity distribution in the interference fringes. Since the detected intensity distribution (for example, 0 and 1) directly corresponds to the binary phase modulation signal (for example, 0 and ⁇ ) recorded in the data page, the demodulation of the binary phase modulation signal is completed. .
  • Multi-shot dual stage mode In order to increase the capacity of the holographic memory, it is necessary to record a multilevel phase modulation signal or a spatial quadrature amplitude modulation signal.
  • Second stage hologram (digital hologram) is generated as a simple signal light (Ichirou Yamaguchi and Tong Zhang, "Phase-shifting digital holography", Optics Letters, Vol.22, No.16, pp.1268-1270 (1997 )).
  • the first stage hologram (hologram A and hologram B) is reproduced while shifting the phase of the partial reference light A or the partial reference light B, and a plurality of (at least three) digital holograms having different phases are generated. To do. Thereby, the information of the page data included in the diffracted light of the hologram A can be demodulated.
  • FIG. 14 is a conceptual diagram when four digital holograms are generated by shifting the phase of the partial reference light B.
  • the signal processing for demodulation is the same as that for holographic diversity and phase shift interferometry (AtsushiAOkamoto, kaKeisuke Kunori, Masanori Takabayashi, Akihisa Tomita and Kunihiro Sato, “Holographic diversity interferometry for optical storage”, Optics storage , Vol.19, No.14, pp.13436-13444 (2011); P. Hariharan, "Optical Holography", Cambridge University Press, pp.291-310 (1996)).
  • the “holographic diversity interferometry” is used for generating a second-stage hologram and demodulating a phase modulation signal in a dual-stage holographic method (see Non-Patent Document 10).
  • phase change of interference light as a n when the distribution of the signal intensity detected by the second-stage hologram (digital holograms) and V n (x, y), the original signal phase phi (x, y) and the amplitude A (x, y) is obtained as follows. Thereby, the phase ⁇ (x, y) and the amplitude A (x, y) of the original signal can be estimated.
  • n 1, 2, 3, and 4.
  • modulation is performed so that four data pixels (subpixels) of interference light are included in one data pixel of signal light.
  • the phase of the interference light takes four values of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2 in one data pixel of the signal light.
  • the digital hologram information for four images obtained in time series in the multi-shot mode instead of the digital hologram information for four images obtained simultaneously in the single-shot mode may be used (multi-shot). Equivalent to mode).
  • FIG. 16 is a diagram showing the phase distribution of the signal light and the interference light when giving the phase distribution to the interference light (the same contents as FIG. 15).
  • FIG. 16A shows one data pixel of signal light
  • FIG. 16B shows the phase distribution of four sub-pixels of interference light.
  • four subpixels of interference light correspond to one data pixel of signal light, and the phases of the four subpixels are different from each other.
  • FIG. 17 is a diagram showing the phase distribution of the signal light and the interference light when the phase distribution is given only to the signal light or to both the signal light and the interference light.
  • FIG. 17A shows one data pixel of signal light
  • FIG. 17B shows a phase distribution of one data pixel of interference light.
  • one data pixel of signal light is divided into four subpixels, and four subpixels of interference light correspond to each of the four subpixels of signal light.
  • phase values applied to the four subpixels of the signal light are ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, respectively.
  • the phase values of the subpixels of the interference light corresponding to the subpixels of the signal light are ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4.
  • phase of the interference light when the phase of the interference light is made constant, one data pixel of the signal light is divided into four subpixels, and 0, 3 ⁇ / 2, ⁇ , and ⁇ / 2 are added to the phase ⁇ of the signal light.
  • a phase distribution satisfying the above formulas (A1) to (A4) is added to both the sub-pixels of the signal light and the interference light, and the phase combination of each sub-pixel of the interference light is different for each data pixel of the signal light
  • the value it can be avoided that the spectrum of the interference light is concentrated at a specific position of the recording medium, and as a result, an improvement in performance can be expected (see Example 5).
  • the reference light pattern outside the outer peripheral part is used for recording signal light (partial reference light A), and the reference light pattern inside the outer peripheral part is used for recording interference light (partial reference).
  • the division pattern of the reference light is not limited to this.
  • the outer region may be used for the partial reference light B120, and the outer region may be used for the partial reference light A110.
  • the outer peripheral region may be divided in the circumferential direction.
  • one interference light is multiplexed and recorded together with n signal page data.
  • interference light (phantom) and partial reference light B (ref0) are generated by the SLM 320, and the hologram B is recorded on the recording medium 350.
  • signal light (sig 1) including page data # 1 and first partial reference light A (ref 1) are generated by the SLM, and the first hologram A is recorded on the recording medium 350.
  • signal light (sig 2) including page data # 2 and second partial reference light A (ref 2) are generated by the SLM, and the second hologram A is recorded on the recording medium 350.
  • the partial reference light A (ref1) used when recording the first signal light (sig1) and the partial reference light A (ref2) used when recording the second signal light (sig2) are: Use patterns with different phases or intensity distributions. Thereby, multiple recording of the first signal light (sig1) and the second signal light (sig2) can be realized.
  • signal light (sig3 to sign) including page data # 3 to #n can be multiplexed and recorded on the recording medium 350 by changing the pattern (ref3 to refn) of the partial reference light A.
  • partial reference light B (ref0) used for recording interference light and signal light including page data # 1 are used.
  • the reference light 100 including the first partial reference light A (ref1) used at the time of recording is generated by the SLM 320, and irradiated to the recording medium 350. Thereby, interference light (phantom; diffracted light of hologram B) and signal light (sig1; diffracted light of first hologram A) are generated simultaneously.
  • reference light including partial reference light B (ref0) and second partial reference light A (ref2) is generated by the SLM 320 and applied to the recording medium 350. Thereby, interference light (phantom; diffracted light of hologram B) and signal light (sig2; diffracted light of second hologram A) are generated simultaneously.
  • a plurality of page data can be recorded and reproduced by one interference light by multiplex recording a plurality of page data while changing the pattern of the partial reference light A with respect to one interference light. It becomes. As a result, the problem of consumption of the dynamic range due to the recording and reproduction of interference light can be greatly reduced, and the storage capacity can be greatly increased.
  • a plurality of holograms obtained by associating a plurality of signal lights (page data) with one interference light can be handled as one hologram unit.
  • a multiplex recording method such as a conventional angle multiplex method, shift multiplex method, or wavelength multiplex method
  • the recording method and reproducing method of the present invention can also be applied to optical memories other than holographic memories.
  • signal light including phase information is recorded in the optical memory A
  • interference light is recorded in the optical memory B.
  • two reproduction lights obtained by simultaneously reproducing the optical memory A and the optical memory B are caused to interfere with each other.
  • the phase information can be converted into intensity information, and the phase information recorded in the optical memory A can be demodulated by the intensity detector.
  • the recording device of the holographic memory of the present invention records a spatial phase modulation signal or a spatial quadrature amplitude modulation signal in the holographic memory by the recording method of the present invention.
  • the recording device of the holographic memory of the present invention has a hologram A recording unit and a hologram B recording unit.
  • the hologram A recording unit is generated by the signal light and the partial reference light A by irradiating a specific portion of the holographic memory with the signal light including the spatial phase modulation signal or the spatial quadrature amplitude modulation signal and the partial reference light A. Hologram A is recorded.
  • the hologram B recording unit records the hologram B generated by the interference light and the partial reference light B by irradiating the same position of the holographic memory with the interference light and the partial reference light B.
  • the hologram A recording unit and the hologram B recording unit may be realized by the same optical system.
  • the reproducing apparatus for a holographic memory according to the present invention reproduces a spatial phase modulation signal or a spatial quadrature amplitude modulation signal recorded in the holographic memory by the reproducing method according to the present invention.
  • the reproducing device for a holographic memory according to the present invention includes a hologram diffracted light generation unit and a demodulation unit.
  • the hologram diffracted light generation unit simultaneously irradiates a specific portion of the holographic memory with the partial reference light A and the partial reference light B, thereby diffracting the hologram A and the hologram B that can interfere with the diffracted light of the hologram A. It produces light at the same time.
  • the demodulation unit demodulates the spatial phase modulation signal or the spatial quadrature amplitude modulation signal using the diffracted light of the hologram A and the diffracted light of the hologram B.
  • the hologram diffracted light generation unit may be realized by one optical system.
  • Example 1 shows the results of simulation of recording and reproduction of a 16-value spatial quadrature amplitude modulation signal (16-SQAM) using the recording method and reproducing method of the holographic memory of the present invention.
  • a spatial quadrature amplitude modulation is a modulation system that gives more signal states by adding amplitude modulation to phase modulation.
  • FIG. 19 shows a diagram of the 16-value spatial quadrature amplitude modulation signal (16-SQAM) used in this example.
  • the horizontal axis in the figure is called “real axis” or “I axis”, and the vertical axis is called “imaginary axis” or “Q axis”. These correspond to the variables I and Q in equation (3).
  • the points plotted on the diagram are called “signal points”.
  • a set of modulation codes is represented by a plurality of signal points.
  • the complex plane represented by this diagram shows the amplitude and phase of the signal with the “0” point on both axes as the center.
  • the distance from the “0” point represents the amplitude
  • the angle with respect to the “0” point represents the phase. Therefore, although the symbols are located at the same distance from the center but are located at different angles with respect to the center, the symbols have the same signal waveform amplitude but different phases.
  • simulation was performed when a 16-value spatial quadrature amplitude modulation signal (16-SQAM) was recorded and reproduced using the recording method and the reproducing method of the present invention.
  • the numerical analysis tool used was FFT-BPM (Junya Tanaka, Atsushi Okamoto and Motoki Kitano, "Development of Image-Based Simulation for Holographic Data Storage System by Fast Fourier Transform Beam-Propagation Method". , Japanese Journal of Applied Physics, Vol.48, No.3 (Issue 2), pp.03A028 (1-5).).
  • Table 1 shows the parameters used for the numerical analysis.
  • the signal page data (spatial quadrature amplitude modulation signal) used for recording is shown in FIG. As shown in FIG. 20, the size of the signal page data is 32 ⁇ 32 pixels. Each pixel of the signal page data has both values of the phase information ⁇ (x, y) shown in FIG. 20A and the amplitude information A (x, y) shown in FIG. 20B. That is, one signal page data is expressed by combining the phase information ⁇ (x, y) shown in FIG. 20A and the amplitude information A (x, y) shown in FIG. 20B.
  • the phase information shown in FIG. 20A is drawn in gray scale for visualization.
  • FIG. 21 shows the intensity pattern of the reference light used for recording and reproduction.
  • FIG. 21A shows an intensity pattern of the partial reference light A, which is located outside the outer peripheral portion.
  • FIG. 21B shows an intensity pattern of the partial reference light B, which is located inside the outer peripheral portion (see FIG. 8).
  • hologram A and hologram B were irradiated with reference light (partial reference light A and partial reference light B) to generate diffracted light of hologram A and diffracted light of hologram B.
  • FIG. 22A is a digital hologram when the phase of the partial reference light B is 0,
  • FIG. 22B is a digital hologram when the phase of the partial reference light B is ⁇ / 2
  • FIG. 22C is a partial reference light B.
  • FIG. 22D is a digital hologram when the phase of the partial reference light B is 3 ⁇ / 2.
  • FIG. 23 shows the page data demodulated from the four signal intensity distributions using the above formulas (1) and (2).
  • FIG. 23A shows phase information of demodulated page data
  • FIG. 23B shows amplitude information of demodulated page data (see comparison with FIG. 20).
  • FIG. 24 is a graph showing the signal point distribution of demodulated page data. From this graph, it can be seen that the 16-value spatial quadrature amplitude modulation signal (16-SQAM) is clearly separated.
  • FIG. 25 shows a signal intensity distribution obtained by photoelectric conversion of this digital hologram.
  • the signal area (square portion at the center) shown in FIG. 25 is twice as fine as that of FIG.
  • FIG. 26 shows the page data demodulated from the signal intensity distribution using the above equations (1) and (2).
  • FIG. 26A shows phase information of demodulated page data
  • FIG. 26B shows amplitude information of demodulated page data (see comparison with FIG. 20).
  • FIG. 27 is a graph showing the signal point distribution of demodulated page data. From this graph, it can be seen that the 16-value spatial quadrature amplitude modulation signal (16-SQAM) is clearly separated.
  • the number of errors that occurred in this simulation was three. As described above, since the number of symbols in the page data is 1024, the symbol error rate is 2.93 ⁇ 10 ⁇ 3 . This is a practically sufficient performance considering the error correction capability (1 ⁇ 10 ⁇ 2 ) in the current holographic memory.
  • Example 2 In Example 2, in the recording method and the reproducing method of the holographic memory of the present invention, operation verification was performed when a plurality of signal page data was recorded in a multiplexed manner with respect to one interference light.
  • Example 1 a simulation was performed when a 4-level spatial phase modulation signal (4-SPM) was recorded and reproduced.
  • 4-SPM 4-level spatial phase modulation signal
  • the same FFT-BPM Fast Fourier Transform Beam Propagation Method
  • the parameters used for the numerical analysis are the same as in Example 1 (see Table 1).
  • FIG. 28 shows three signal page data (four-level phase modulation signal) used for recording.
  • 28A shows the phase information ⁇ (x, y) of the signal page data # 1
  • FIG. 28B shows the phase information ⁇ (x, y) of the signal page data # 2
  • FIG. 28C shows the signal page data # 1.
  • 3 shows phase information ⁇ (x, y).
  • the phase of each pixel is one of four values of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2.
  • the size of the signal page data is 32 ⁇ 32 pixels.
  • the phase information shown in FIG. 28 is drawn in gray scale for visualization.
  • hologram A and hologram B were irradiated with reference light (partial reference light A and partial reference light B) to generate diffracted light of hologram A and diffracted light of hologram B.
  • FIG. 29 shows page data (analog data) demodulated using the above equations (1) and (2) from four second-stage holograms obtained using the multi-shot dual-stage mode (see FIG. 14). Shown in 29A shows phase information of demodulated signal page data # 1, FIG. 29B shows phase information of demodulated signal page data # 2, and FIG. 29C shows phase information of demodulated signal page data # 3. ing.
  • FIG. 29 Since the signal page data in FIG. 29 is an analog value immediately after the calculation, the signal page data is converted into digital data having a phase 4 value by threshold processing.
  • the converted page data (digital data) is shown in FIG. 30A shows phase information of demodulated signal page data # 1
  • FIG. 30B shows phase information of demodulated signal page data # 2
  • FIG. 30C shows phase information of demodulated signal page data # 3. (See comparison with FIG. 28).
  • FIG. 31 is a graph showing the signal point distribution of each demodulated page data.
  • 31A shows the signal point distribution of the signal page data # 1
  • FIG. 31B shows the signal point distribution of the signal page data # 2
  • FIG. 31C shows the signal point distribution of the signal page data # 3. From these graphs, it can be seen that the quaternary spatial phase modulation signal (4-SPM) is clearly separated.
  • the number of errors that occurred in this simulation was one in total for the three signal page data. Since the number of symbols of page data is 3072 (32 ⁇ 32 ⁇ 3), the symbol error rate is 3.26 ⁇ 10 ⁇ 4 . This is a practically sufficient performance considering the error correction capability (1 ⁇ 10 ⁇ 2 ) in the current holographic memory.
  • Example 3 shows the result of actually recording and reproducing a binary spatial phase modulation signal (2-SPM) using the recording method and reproducing method of the holographic memory of the present invention.
  • FIG. 32 is a schematic diagram showing the configuration of the holographic memory recording / reproducing apparatus used in the experiment.
  • This holographic memory recording / reproducing apparatus records and reproduces holograms (hologram A and hologram B) by a collinear holography method.
  • the binary spatial phase modulation signal was detected in the direct detection mode (see FIG. 13).
  • the holographic memory recording / reproducing apparatus includes a laser light source (Laser), a beam expanding optical system (BE), a half-wave plate (HWP), a polarizer (Pol.), And a random phase plate (RPM).
  • Laser laser light source
  • BE beam expanding optical system
  • HWP half-wave plate
  • Poly polarizer
  • RPM random phase plate
  • Intensity modulation spatial light modulator SLM (Intensity)
  • first lens LensL1
  • mirror Mirror
  • second lens Lens 2
  • beam splitter BS
  • phase modulation spatial light modulator SLM (Phase)
  • third lens Lens3
  • fourth lens Lens 4
  • fifth lens Lens 5
  • sixth lens Lens 6
  • ND filter NDF
  • seventh It has a lens (Lens 7) and a CCD camera (CCD).
  • This holographic memory recording / reproducing apparatus performs recording and reproduction by installing a recording medium (Media) between the fifth lens (Lens 5) and the sixth lens (Lens 6).
  • a recording medium a photopolymer generally used for hologram recording was used.
  • the light emitted from the laser light source is enlarged to an appropriate size by a beam expanding optical system (BE), and the polarization direction is adjusted by a half-wave plate (HWP).
  • the random phase plate (RPM) has an effect of preventing the light intensity from being concentrated at the center of the hologram by giving a random phase to the light.
  • the intensity modulation SLM is composed of an SLM body and two polarizers arranged on both sides thereof.
  • the intensity modulation SLM is used for switching between the partial reference light A and the partial reference light B and for switching the irradiation of the signal light. That is, when recording the hologram B, the intensity modulation SLM transmits the partial reference light B and the interference light (signal light having the same intensity and the same phase in the entire region).
  • the intensity modulation SLM transmits the partial reference light A and the signal light.
  • the intensity modulation SLM transmits the partial reference light A and the partial reference light B, but does not transmit the signal light.
  • the light transmitted through the intensity modulation SLM is subjected to predetermined phase modulation in the phase modulation SLM.
  • FIG. 33 is a diagram showing a pattern of the phase modulation SLM when the hologram B is recorded. As shown in FIG. 33, the partial reference light B is located at the outer peripheral portion, and the interference light is located at the central portion. The partial reference light B and the interference light have the same phase throughout the entire area.
  • FIG. 34 is a diagram showing a pattern of the phase modulation SLM when the hologram A is recorded.
  • FIG. 34A is a diagram showing a pattern of phase modulation SLM when recording the signal page data # 1
  • FIG. 34B is a diagram showing a pattern of phase modulation SLM when recording the signal page data # 2.
  • the partial reference light A is located at the outer peripheral portion
  • the signal light is located at the central portion.
  • the partial reference light A and the partial reference light B are both located on the outer peripheral portion, but do not overlap each other (see FIG. 33 and FIG. 34 for comparison).
  • phase pattern of the partial reference light A when recording the signal page data # 1 and the phase pattern of the partial reference light A when recording the signal page data # 2 are different from each other (see FIGS. 34A and 34B). Comparison).
  • the phase information shown in FIG. 34 is drawn in gray scale for visualization.
  • Hologram B was recorded by irradiating the photopolymer (recording medium) with interference light and partial reference light B (see FIG. 33) generated by the phase modulation SLM.
  • the signal light including the signal page data # 1 generated by the phase modulation SLM and the partial reference light A (see FIG. 34A) for recording the signal page data # 1 are irradiated on the photopolymer to thereby generate the signal page data.
  • # 1 hologram A was recorded.
  • the signal light including the signal page data # 2 generated by the phase modulation SLM and the partial reference light A (see FIG. 34B) for recording the signal page data # 2 are irradiated to the photopolymer to thereby generate the signal page data.
  • # 2 hologram A was recorded.
  • FIG. 35 is a diagram showing a pattern of the phase modulation SLM when the hologram A and the hologram B are reproduced.
  • FIG. 35A is a diagram showing a pattern of phase modulation SLM when reproducing signal page data # 1
  • FIG. 35B is a diagram showing a pattern of phase modulation SLM when reproducing signal page data # 2.
  • the reference light includes partial reference light A and partial reference light B.
  • the reference light (see FIG. 35) generated by the phase modulation SLM was irradiated to the photopolymer to reproduce the hologram A and the hologram B, and the intensity distribution of the signal page data was detected by the CCD camera (direct detection mode).
  • FIG. 36 is an image showing the signal intensity distribution detected by the CCD camera.
  • 36A is an image showing the signal intensity distribution of the signal page data # 1
  • FIG. 36B is an image showing the signal intensity distribution of the signal page data # 2.
  • FIG. 37 shows an image (reproduction page data) obtained by performing binary threshold processing on the image shown in FIG. 36 and converting the image into binary digital data.
  • FIG. 37A shows reproduction page data of signal page data # 1
  • FIG. 36B shows reproduction page data of signal page data # 2.
  • the pattern shown in FIGS. 36 and 37 is a horizontally reversed image of the pattern shown in FIG.
  • the signal pattern emitted from the phase modulation spatial light modulator (SLM (Phase)) is reflected by the beam splitter (BS) and then detected by the CCD camera (CCD). Because.
  • SLM phase modulation spatial light modulator
  • BS beam splitter
  • CCD CCD camera
  • the number of errors that occurred in this experiment was two in total for the two signal page data. Since the number of symbols of the signal page data is 512 (16 ⁇ 16 ⁇ 2), the symbol error rate is 4 ⁇ 10 ⁇ 3 . This is a practically sufficient performance considering the error correction capability (1 ⁇ 10 ⁇ 2 ) in the current holographic memory.
  • Example 4 shows the result of a simulation of recording and reproduction of a binary spatial phase modulation signal (2-SPM) using the recording method and reproducing method of the present invention.
  • the binary spatial phase modulation signal (2-SPM) is recorded and reproduced not by the collinear holography method but by the two-beam interference method.
  • the same FFT-BPM Fast Fourier Transform Beam Propagation Method
  • the parameters used for the numerical analysis are the same as in Example 1 (see Table 1).
  • the signal page data (binary spatial phase modulation signal) used for recording is shown in FIG. 38A, and the phase pattern of the interference light is shown in FIG. 38B.
  • the phase information shown in FIGS. 38A and 38B is drawn in gray scale for visualization.
  • the size of the signal page data is 32 ⁇ 32 pixels.
  • Each pixel of the signal page data has binary phase information ⁇ (x, y) of 0 (shown in black) or ⁇ (shown in white).
  • the intensity of each pixel of the signal page data is constant.
  • the interference light is a plane wave of 32 ⁇ 32 pixels (phase and intensity are spatially constant).
  • FIG. 38C shows the intensity pattern of the partial reference light A
  • FIG. 38D shows the intensity pattern of the partial reference light B
  • FIG. 38E shows the intensity pattern of the reference light (partial reference light A and partial reference light B).
  • the partial reference light A and the partial reference light B do not overlap each other.
  • the intensity distribution of partial reference light A and partial reference light B is expressed as follows: flat cosine-squared window function (Shun-Der Wu and Elias N. Glytsis, "Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using The “finite-difference” frequency-domain “method”, “J. Opt. Soc. Am. A,” Vol.19, No.10, pp.2018-2029 (2002)).
  • FIG. 11 a standard photopolymer was assumed as a recording medium, and signal page data (signal light) and interference light were multiplexed and recorded by the two-beam interference method (see FIG. 11).
  • the recorded holograms (hologram A and hologram B) are irradiated with reference light (partial reference light A and partial reference light B) to generate diffracted light of hologram A and diffracted light of hologram B, and these diffracted lights.
  • the intensity distribution of interference fringes generated by the above was detected (see FIG. 12).
  • the phase modulation signal can be demodulated in the direct detection mode.
  • FIG. 38F shows page data (reproduced page data) reproduced as an intensity modulation signal.
  • Example 5 shows the results of simulation of recording and reproduction of a 38-value spatial quadrature amplitude modulation signal (38-SQAM) using the recording method and reproducing method of the present invention.
  • recording and reproduction of a 38-value spatial quadrature amplitude modulation signal (38-SQAM) was performed by a collinear holography method.
  • the same FFT-BPM Fast Fourier Transform Beam Propagation Method
  • the parameters used for the numerical analysis are the same as in Example 1 (see Table 1).
  • FIG. 39 shows five signal page data (38-value spatial quadrature amplitude modulation signals) used for recording.
  • 39A shows the amplitude information A (x, y) of the signal page data # 1
  • FIG. 39B shows the amplitude information A (x, y) of the signal page data # 2
  • FIG. 39C shows the signal page data # 1.
  • 3 shows amplitude information A (x, y) of FIG. 3
  • FIG. 39D shows amplitude information A (x, y) of signal page data # 4
  • FIG. 39E shows amplitude information A (x, y) of signal page data # 5.
  • 39F shows the phase information ⁇ (x, y) of the signal page data # 1, FIG.
  • FIG. 39G shows the phase information ⁇ (x, y) of the signal page data # 2
  • FIG. 39H shows the signal page
  • the phase information ⁇ (x, y) of data # 3 is shown
  • FIG. 39I shows the phase information ⁇ (x, y) of signal page data # 4
  • FIG. 39J shows the phase information ⁇ (x of signal page data # 5 x, y).
  • a square area at the center is a pattern of signal page data (signal light)
  • an annular area at the periphery is a pattern of partial reference light A.
  • the size of the signal page data is 32 ⁇ 32 pixels.
  • the phase information shown in FIGS. 39F-J is drawn in gray scale for visualization.
  • a standard photopolymer was assumed as a recording medium, and five signal page data were recorded on one interference light.
  • one data pixel was divided into four subpixels, and a phase distribution was added to both the signal light and the interference light.
  • the recorded holograms (hologram A and hologram B) are irradiated with reference light (partial reference light A and partial reference light B) to generate diffracted light of hologram A and diffracted light of hologram B.
  • the phase modulation signal was demodulated by the stage mode.
  • the phase values applied to the four subpixels of the signal light are ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, respectively.
  • the phase values of the four sub-pixels of the interference light are ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4.
  • the values of ⁇ 1 to ⁇ 4 and ⁇ 1 to ⁇ 4 were selected so as to satisfy the above.
  • ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 have different phase values.
  • ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 are also phase values different from each other.
  • FIG. 40A shows the phase information (32 ⁇ 32 pixels) of the signal page data # 1 (the same as FIG. 39F).
  • FIG. 40B shows a phase distribution (64 ⁇ 64 pixels) added to the signal light.
  • 40C shows the phase information (64 ⁇ 64 pixels) of the signal page data # 1 after adding the phase distribution shown in FIG. 40B to the phase information of the signal page data # 1 shown in FIG. 40A.
  • signal page data obtained by adding a phase distribution (see FIG. 40B) satisfying the above equations (A1) to (A4) to the original signal page data (see FIG. 40A).
  • 40C was generated by SLM and recorded on a recording medium.
  • FIG. 41A shows phase information (32 ⁇ 32 pixels) of interference light.
  • FIG. 41B is a phase distribution (64 ⁇ 64 pixels) added to the interference light.
  • the annular region in the peripheral portion shows the phase distribution of the partial reference light B.
  • interference light obtained by adding a phase distribution (see FIG. 41B) satisfying the above equations (A1) to (A4) to interference light (see FIG. 41A) is generated by the SLM. And recorded on a recording medium.
  • the phase combination of each sub-pixel of the interference light with a different value for each data pixel of the signal light, it is avoided that the spectrum of the signal light and the interference light is concentrated at a specific position on the recording medium. As a result, a reduction in errors can be expected.
  • FIG. 42 is a graph showing the signal point distribution of demodulated page data.
  • FIG. 42A shows the result of demodulating the phase modulation signal in the single shot dual stage mode by adding the phase distribution only to the interference light without adding the phase distribution to the signal light (in the above formulas (A1) to (A4)).
  • the phase modulation signal is demodulated by the single shot dual stage mode by adding the phase distribution to both the signal light and the interference light and changing the combination of the phases of each sub pixel of the interference light for each data pixel. (The method shown in FIGS. 40 and 41). From these graphs, it can be seen that the 38-value spatial quadrature amplitude modulation signal (38-SQAM) is clearly separated in any demodulation method.
  • 38-SQAM 38-value spatial quadrature amplitude modulation signal
  • the holographic memory of the present invention is not only used for consumer AV, but also for archival use in broadcasting and medical fields (data can be stored for a long period of time), optical disc systems such as data centers (power consumption is 1/6 that of HDDs) This is useful in various applications.
  • Reference light 110 Partial reference light A 120 Partial reference beam B 130 Phase modulation signal (signal page data) 140 signal light 150 interference light 160 diffracted light of hologram A 170 diffracted light of hologram B 180 diffracted light including intensity information 200 holographic memory (recording medium) 210 Light intensity detector 220 Second stage hologram (Hologram C) 310 Laser light 320 Spatial light modulator 330 Half mirror 340 Objective lens 350 Recording medium 360 Image sensor

Abstract

A hologram (A) generated by a signal beam and a partial reference beam (A), and a hologram (B) generated by an interference beam and a partial reference beam (B) are recorded in a specific location in a holographic memory. The specific location in the holographic memory is simultaneously irradiated with the partial reference beam (A) and the partial reference beam (B), simultaneously generating diffracted light of the hologram (A) and diffracted light of the hologram (B). From the diffracted light of the hologram (A) and the diffracted light of the hologram (B), the phase modulated signal contained in the signal beam is demodulated.

Description

ホログラフィックメモリの記録方法および再生方法ならびにホログラフィックメモリの記録装置および再生装置Holographic memory recording method and reproducing method, and holographic memory recording device and reproducing device
 本発明は、ホログラフィックメモリの記録方法および再生方法ならびにホログラフィックメモリの記録装置および再生装置に関する。 The present invention relates to a holographic memory recording method and reproducing method, and a holographic memory recording device and reproducing device.
 これまで、光メモリは、CDやDVD、ブルーレイディスクなどの2次元記録方式の光ディスクを中心に発展してきた。しかし、2次元記録方式の光メモリはすでに回折限界に到達しており、これ以上の大容量化は困難である。そこで、近年、3次元記録方式の光メモリの開発が活発に行われている。3次元記録方式を採用すれば2次元記録方式よりも記録容量を100~1000倍以上に大きくできる可能性がある。理論上は100TB級の光ディスクメモリも実現可能である。 So far, optical memory has been developed mainly for optical disks of two-dimensional recording system such as CD, DVD and Blu-ray disc. However, the optical memory of the two-dimensional recording system has already reached the diffraction limit, and it is difficult to increase the capacity beyond this. In recent years, therefore, development of an optical memory of a three-dimensional recording system has been actively conducted. If the three-dimensional recording method is adopted, there is a possibility that the recording capacity can be increased 100 to 1000 times or more than that of the two-dimensional recording method. Theoretically, a 100 TB class optical disk memory can be realized.
 光メモリの大容量化に向けた技術としては、1)近接場光記録方式、2)2光子吸収メモリ、3)ホログラフィックメモリの3つが挙げられる。1)近接場光記録方式は、光の波長サイズ以下の光である「近接場光」を用いる記録方式である。近接場光記録方式は、基本的に2次元記録方式の技術であるが、近接場光を用いることで回折限界を超える高密度記録を実現できる可能性がある。また、2)2光子吸収メモリは、非線形効果の強度依存性を利用することで記録媒体に対して3次元的にアクセスを行うことができる3次元記録方式の光メモリである。これらの技術に対し、3)ホログラフィックメモリは、信号光と参照光との干渉により生成されるホログラムを多重記録することによって、記録媒体を多層化することなく3次元的に記録を行うことができる光メモリである。 There are three technologies for increasing the capacity of optical memories: 1) near-field optical recording, 2) two-photon absorption memory, and 3) holographic memory. 1) The near-field light recording method is a recording method using “near-field light” which is light having a wavelength equal to or smaller than the wavelength of light. Near-field optical recording is basically a two-dimensional recording technique, but there is a possibility that high-density recording exceeding the diffraction limit can be realized by using near-field light. 2) The two-photon absorption memory is a three-dimensional recording type optical memory that can access a recording medium three-dimensionally by utilizing the intensity dependency of the nonlinear effect. In contrast to these technologies, 3) a holographic memory can perform three-dimensional recording without multi-layering a recording medium by multiplex recording a hologram generated by interference between signal light and reference light. It is an optical memory that can be used.
 上記1)~3)の光メモリは、現時点においていずれも約500GB~1TB程度の記録容量を達成している。したがって、記録容量の観点からは、上記1)~3)の光メモリの間に優劣の大きな差はない。しかしながら、データ転送速度の観点からは、上記1)~3)の光メモリの中でも空間的に2次元の超並列型入出力機能を有するホログラフィックメモリに大きな優位性がある。最近では、マイクロ秒を超える高速応答の空間光変調器(Spatial Light Modulator;以下「SLM」と略記することもある)も開発されている。このような高速応答のSLMをホログラフィックメモリに適用することで、100Gbpsを超える転送速度を実現できる可能性がある。 All of the optical memories 1) to 3) have achieved a recording capacity of about 500 GB to 1 TB at present. Therefore, from the viewpoint of recording capacity, there is no significant difference between the optical memories 1) to 3). However, from the viewpoint of data transfer speed, among the optical memories 1) to 3), a holographic memory having a spatially two-dimensional massively parallel input / output function has a great advantage. Recently, a spatial light modulator (Spatial Light Modulator; hereinafter abbreviated as “SLM”) having a response time exceeding microseconds has been developed. By applying such a high-speed response SLM to the holographic memory, there is a possibility that a transfer rate exceeding 100 Gbps can be realized.
 ホログラフィックメモリは、高密度記録と高データ転送レートの両方を実現することができることから、次世代の光メモリとして実用化が期待されている。現在開発されているホログラフィックメモリの記録容量は、600GB~1TB/ディスク程度である(例えば、非特許文献1参照)。HDD(3.5インチ、記憶容量2TB)の1枚のプラッタの片面の記録容量は333GBであることから、ホログラフィックメモリは、実用化されている磁気記録媒体と比較すると記録容量の観点からは2~3倍程度の優位性がある。また、ホログラフィックメモリは、理論的にはさらに10~100倍まで記録容量を拡大できると考えられている。このような状況下において、ホログラフィックメモリの記録容量を増大させることを目的として、これまでの強度変調方式だけでなく、位相変調方式のホログラフィックメモリも検討されている。しかしながら、位相変調方式のホログラフィックメモリには、光検出器では位相変調信号を直接検出することができないため、何らかの方法で位相変調信号を強度信号に変換してから検出しなければならないという問題があった。 Holographic memory is expected to be put to practical use as a next-generation optical memory because it can realize both high-density recording and high data transfer rate. The recording capacity of the currently developed holographic memory is about 600 GB to 1 TB / disk (for example, see Non-Patent Document 1). Since the recording capacity of one side of one platter of HDD (3.5 inch, storage capacity 2 TB) is 333 GB, the holographic memory is in terms of recording capacity compared to a magnetic recording medium in practical use. There is an advantage of about 2 to 3 times. The holographic memory is theoretically considered to be able to expand the recording capacity up to 10 to 100 times. Under such circumstances, for the purpose of increasing the recording capacity of the holographic memory, not only the conventional intensity modulation system but also a phase modulation holographic memory has been studied. However, the phase modulation type holographic memory cannot detect the phase modulation signal directly by the photodetector, and therefore has a problem that it must be detected after converting the phase modulation signal into an intensity signal by some method. there were.
 強度変調方式は最も一般的な変調方法であって、これまでに多くの事例が報告されている(例えば、非特許文献1~3参照)。ホログラフィを用いて情報の記録が可能であると初めて示唆した文献(非特許文献2)から、製品化を視野に入れた最近の文献(非特許文献1,3)に至るまで、ホログラフィを利用した記録方式の多くは、2値(0および1)の強度変調を用いたものである。しかしながら、強度変調は簡易な光学系でシステムを構築できるという利点がある一方で、レーザ光の照射領域の中央部と周辺部との露光強度差が大きくなり、記録媒体のダイナミックレンジを大幅に消費してしまうため、記録効率が悪いという問題を有している。この問題は、一般的なフーリエ変換ホログラムにおいて、フーリエ変換像の中央付近の強度がすべてのピクセルの振幅の和に比例するため、レーザ光の照射領域の中央付近と周辺部での露光強度差が大きくなってしまうことが原因で起こる(例えば、非特許文献4参照)。 The intensity modulation method is the most common modulation method, and many examples have been reported so far (see, for example, Non-Patent Documents 1 to 3). Holography was used from literature (Non-Patent Document 2) that first suggested that information can be recorded using holography to recent literature (Non-Patent Documents 1 and 3) with a view to commercialization. Many of the recording methods use binary (0 and 1) intensity modulation. However, while intensity modulation has the advantage that a system can be constructed with a simple optical system, the difference in exposure intensity between the central and peripheral areas of the laser light irradiation area increases, greatly consuming the dynamic range of the recording medium. Therefore, there is a problem that the recording efficiency is poor. This problem is that in general Fourier transform holograms, the intensity near the center of the Fourier transform image is proportional to the sum of the amplitudes of all pixels, so the difference in exposure intensity between the center of the laser light irradiation area and the peripheral area is small. This occurs because of an increase in size (for example, see Non-Patent Document 4).
 この強度変調方式の問題を緩和するための手法としては、2値情報をブロックと呼ばれる複数のピクセルに分散してコード化し、ブロック内の一部のピクセルのみを光らせることでデータを表現する変調コードを用いる方法がある。このように変調コードを用いることで、ピクセル間クロストークによるエラーを減らすことができる。また、変調コードを用いることで、レーザ光の照射領域の中央付近と周辺部との露光強度差を小さくして多重記録数を増大することで、効率的な記録も可能となる(例えば、非特許文献5,6参照)。しかしながら、変調コードを使うと、「(1ブロックあたりの記録ビット数)/(1ブロックあたりのピクセル数)」で定義されるコードレートが1を下回ってしまう。このことは、変調コードを用いた場合のブロックあたりの記録容量が、変調コードを用いない場合の記録容量を原理的に下回ることを意味している。 As a technique to alleviate the problem of this intensity modulation method, a modulation code that expresses data by dispersing binary information into a plurality of pixels called blocks and coding them, and illuminating only some of the pixels in the block. There is a method of using. By using the modulation code in this way, errors due to inter-pixel crosstalk can be reduced. In addition, by using the modulation code, efficient recording can be performed by reducing the difference in exposure intensity between the central portion and the peripheral portion of the laser light irradiation region and increasing the number of multiple recordings (for example, non-recording). (See Patent Documents 5 and 6). However, when a modulation code is used, the code rate defined by “(number of recording bits per block) / (number of pixels per block)” is less than 1. This means that the recording capacity per block when the modulation code is used is in principle lower than the recording capacity when the modulation code is not used.
 ホログラフィックメモリの記録容量を拡大するためには、1つのピクセルあたりに複数の情報を記録する、すなわちコードレートが1を超える手法が必要となる。1を超えるコードレートを実現するためには、0,1の2値を超える多値信号を用いることが必要となる。多値信号は光強度を数段階に分けることによって実現でき、それによってコードレートを飛躍的に向上させることができる。しかしながら、現状の直接検波方式においては、検出系の精度および雑音のため、多値数の増大により再生光の信号対雑音比が大きく劣化してしまう(例えば、非特許文献7参照)。 In order to expand the recording capacity of the holographic memory, a method of recording a plurality of information per pixel, that is, a code rate exceeding 1 is required. In order to realize a code rate exceeding 1, it is necessary to use a multilevel signal exceeding 0 and 1 binary values. A multi-level signal can be realized by dividing the light intensity into several stages, and thereby the code rate can be dramatically improved. However, in the current direct detection method, due to the accuracy and noise of the detection system, the signal-to-noise ratio of the reproduction light is greatly degraded due to an increase in the multi-value number (see, for example, Non-Patent Document 7).
 強度変調方式において、レーザ光の照射領域の中央部と周辺部との露光強度差が大きくなり、記録媒体のダイナミックレンジを大幅に消費してしまうという問題は、位相変調方式によっても解決することができる。位相変調方式は、光波の位相を用いて変調を行う方式であり、近年注目を集めている。位相変調方式では、あるピクセルの光波の位相を0としたとき、別のピクセルの光波の位相をπとして情報を表現する。空間光変調器(SLM)で生成される2次元のページデータに含まれるピクセルのうち、0とπのピクセルが同数である場合、レーザ光の照射領域の中央付近と周辺部での露光強度差が生じず、記録媒体のダイナミックレンジの無駄な消費を抑えることができる。この点は、多重記録数の増大に大きく寄与する。しかしながら、CCDなどの光電変換デバイスは光の強度にのみ感度を有するため、位相情報を直接検出することはできない。したがって、位相情報を検出するためには、光検出を行う前に位相を強度に変換しなければならない。位相変調方式では、この点が大きな問題点となる。 In the intensity modulation method, the problem that the difference in exposure intensity between the central portion and the peripheral portion of the laser light irradiation area becomes large and consumes a large dynamic range of the recording medium can be solved by the phase modulation method. it can. The phase modulation method is a method of performing modulation using the phase of a light wave, and has recently attracted attention. In the phase modulation method, when the phase of the light wave of a certain pixel is 0, information is expressed by setting the phase of the light wave of another pixel as π. When the number of 0 and π pixels is the same among the pixels included in the two-dimensional page data generated by the spatial light modulator (SLM), the difference in exposure intensity between the center and the periphery of the laser light irradiation area Therefore, useless consumption of the dynamic range of the recording medium can be suppressed. This point greatly contributes to an increase in the number of multiplexed recordings. However, since a photoelectric conversion device such as a CCD has sensitivity only to the intensity of light, phase information cannot be directly detected. Therefore, in order to detect the phase information, the phase must be converted into intensity before light detection is performed. This is a major problem with the phase modulation method.
 位相変調型ホログラフィックメモリを実現するための位相検出手法はこれまでにいくつか提案されている(例えば、非特許文献4,8~10参照)。 Several phase detection methods for realizing a phase modulation holographic memory have been proposed so far (see, for example, Non-Patent Documents 4, 8 to 10).
 非特許文献4では、ホログラフィックメモリに用いる位相検出手法として、エッジ検出(Edge-Detection)法が提案されている。また、非特許文献8では、複屈折媒質を用いた位相検出法が提案されている。しかしながら、これらの手法は、ホログラフィックメモリの大容量化に不可欠な要素である多値位相変調信号の検出に適していないという問題を有している。 Non-Patent Document 4 proposes an edge-detection method as a phase detection method used for a holographic memory. Non-Patent Document 8 proposes a phase detection method using a birefringent medium. However, these methods have a problem that they are not suitable for detecting a multilevel phase modulation signal, which is an essential element for increasing the capacity of a holographic memory.
 非特許文献9では、一光束記録方式として注目されるコリニア光学系に特化した位相変調型ホログラフィックメモリとして、光フェーズロック方式コリニア・ホログラフィ法が提案されている。この方式は、ホログラフィックメモリの再生時に、記録されたホログラムに対して通常のコリニア参照光の他に、フェーズロック光と称される位相が既知の干渉光を同時に照射することで、記録した位相情報を強度情報として読み取る方式である。この方式では、記録されたホログラム内をフェーズロック光が透過するため、フェーズロック光の位相分布が位相回折格子を有するホログラム内の伝搬による影響を受ける。このことは、検出面において位相誤差が生ずる原因となりうる。また、この方式で記録されたホログラムは、フェーズロック光を発生させる機能を有する装置で再生しなければならない。フェーズロック光のビーム径は、参照光のビーム径と異なるため、この方式の再生装置は、強度変調型ホログラムメモリの再生装置と互換性がない。 Non-Patent Document 9 proposes an optical phase-locked collinear holographic method as a phase modulation type holographic memory specialized for a collinear optical system that is attracting attention as a one-beam recording method. In this method, at the time of reproduction of the holographic memory, the recorded hologram is simultaneously irradiated with interference light having a known phase called phase-locked light in addition to normal collinear reference light on the recorded hologram. This is a method of reading information as intensity information. In this method, since the phase-locked light is transmitted through the recorded hologram, the phase distribution of the phase-locked light is affected by the propagation in the hologram having the phase diffraction grating. This can cause a phase error on the detection surface. Moreover, the hologram recorded by this method must be reproduced by an apparatus having a function of generating phase-locked light. Since the beam diameter of the phase-locked light is different from the beam diameter of the reference light, this type of reproducing apparatus is not compatible with the reproducing apparatus of the intensity modulation type hologram memory.
 非特許文献10では、デュアルステージ方式ホログラフィ法が提案されている。この方式では、多値位相変調を含む空間直交振幅変調信号の記録を光学的に行い、再生時には光学的に記録されたホログラムを2段目のホログラムに転写してから再生する。この方式でも、2段目のホログラムを生成するために、1段目のホログラムの再生に用いる参照光とは別の参照光(1段目のホログラムの回折光と干渉する光)が必要である。しかしながら、光フェーズロック方式とは異なり、2段目のホログラムの生成に必要な参照光は、記録されたホログラム内を透過しないため、ホログラム内を伝搬することによる位相誤差の影響を受けない。一方で、光フェーズロック方式と同様に、2段目のホログラムの生成のために1段目のホログラム再生とは別の参照光が必要であるため、この方式の再生装置も、強度変調型ホログラムメモリの再生装置と互換性がない。 Non-Patent Document 10 proposes a dual stage holography method. In this method, a spatial quadrature amplitude modulation signal including multilevel phase modulation is optically recorded, and at the time of reproduction, the optically recorded hologram is transferred to the second-stage hologram and reproduced. Also in this method, in order to generate the second stage hologram, reference light (light that interferes with the diffracted light of the first stage hologram) different from the reference light used for reproducing the first stage hologram is required. . However, unlike the optical phase lock method, the reference light necessary for generating the second-stage hologram does not pass through the recorded hologram, and thus is not affected by the phase error caused by propagating through the hologram. On the other hand, similar to the optical phase-lock method, since a reference beam different from the first-stage hologram reproduction is required to generate the second-stage hologram, this type of reproduction apparatus also uses an intensity-modulated hologram. Incompatible with memory playback device.
 以上のように、従来の強度変調型ホログラフィックメモリには、レーザ光の照射領域の中央部と周辺部との露光強度差が大きくなり、記録媒体のダイナミックレンジを大幅に消費してしまうため、多重記録の効率が悪いという問題がある。変調コードを用いる方式では、上記問題を回避することができるが、ブロックあたりのコードレートが低くなるため、記録容量が小さくなってしまうという問題がある。コードレートを高めるためには多値強度信号を用いる必要があるが、検出系の精度や雑音により、大きな多値数を有する強度変調型ホログラフィックメモリは実現していない。 As described above, the conventional intensity-modulated holographic memory has a large exposure intensity difference between the central portion and the peripheral portion of the laser light irradiation region, and consumes a large dynamic range of the recording medium. There is a problem that the efficiency of multiple recording is poor. In the method using the modulation code, the above problem can be avoided, but there is a problem that the recording capacity is reduced because the code rate per block is lowered. In order to increase the code rate, it is necessary to use a multilevel intensity signal, but an intensity modulation type holographic memory having a large multilevel number has not been realized due to the accuracy and noise of the detection system.
 位相変調型ホログラフィックメモリは、これらの問題を解決することができる。しかしながら、位相変調型ホログラフィックメモリには、位相情報を検出するために、光検出を行う前に位相を強度に変換しなければならないという問題がある。また、変換後の強度信号を検出する際には、強度変調型ホログラフィックメモリと同様に検出系の精度や雑音の問題が存在する。結果として、大きな多値数を有する位相変調型ホログラフィックメモリは実現していない。 The phase modulation holographic memory can solve these problems. However, the phase modulation type holographic memory has a problem that in order to detect phase information, it is necessary to convert the phase into intensity before performing light detection. In addition, when detecting the intensity signal after conversion, there are problems of accuracy and noise of the detection system as in the case of the intensity modulation type holographic memory. As a result, a phase modulation holographic memory having a large multilevel number has not been realized.
 多値の位相変調信号を扱うことができるホログラフィックメモリとしては、光フェーズロック方式ホログラフィ法およびデュアルステージ方式ホログラフィ法が提案されている。しかしながら、前述の通り、この方式で記録されたホログラムは、干渉光(フェーズロック光または第二の参照光)を発生させる機能を有する装置で再生しなければならない。このため、これらの方式の再生装置は、強度変調型ホログラムメモリの再生装置と互換性がない。 As optical holographic memories that can handle multi-level phase modulation signals, optical phase-locked holographic methods and dual-stage holographic methods have been proposed. However, as described above, a hologram recorded by this method must be reproduced by a device having a function of generating interference light (phase-locked light or second reference light). For this reason, the reproducing apparatus of these systems is not compatible with the reproducing apparatus of the intensity modulation type hologram memory.
 本発明の目的は、1つの参照光を用いて、多値の位相情報を精密に再生することができる、ホログラフィックメモリの記録方法および再生方法ならびにホログラフィックメモリの記録装置および再生装置を提供することである。 An object of the present invention is to provide a holographic memory recording method and reproducing method, and a holographic memory recording apparatus and reproducing device capable of precisely reproducing multi-level phase information using one reference beam. That is.
 本発明者は、ホログラフィックメモリの同一箇所に、信号光と参照光とにより生成されたホログラムAに加えて、干渉光と参照光とにより生成されたホログラムBも記録することで、上記課題を解決できることを見出し、さらに検討を加えて本発明を完成させた。 The inventor records the hologram B generated by the interference light and the reference light, in addition to the hologram A generated by the signal light and the reference light, in the same location of the holographic memory. The present invention has been completed by finding out that the problem can be solved and further studying it.
 すなわち、本発明は、以下のホログラフィックメモリの記録方法に関する。
 [1]ホログラフィックメモリの特定箇所に、空間位相変調信号または空間直交振幅変調信号を含む信号光と部分参照光Aとを照射して、前記信号光と前記部分参照光Aとにより生成されるホログラムAを記録するステップと;前記ホログラフィックメモリの前記特定箇所に、干渉光と部分参照光Bとを照射して、前記干渉光と前記部分参照光Bとにより生成されるホログラムBを記録するステップとを有する、ホログラフィックメモリの記録方法。
 [2]前記部分参照光Aは、レーザ光源から出射されたレーザ光の一部であり;前記部分参照光Bは、前記レーザ光源から出射された前記レーザ光の残部の一部である、[1]に記載のホログラフィックメモリの記録方法。
 [3]前記ホログラムAおよび前記ホログラムBは、コリニア・ホログラフィ法で前記ホログラフィックメモリに記録される、[1]または[2]に記載のホログラフィックメモリの記録方法。
That is, the present invention relates to the following holographic memory recording method.
[1] The signal light including the spatial phase modulation signal or the spatial quadrature amplitude modulation signal and the partial reference light A are irradiated to a specific portion of the holographic memory, and generated by the signal light and the partial reference light A. Recording the hologram A; irradiating the specific portion of the holographic memory with interference light and partial reference light B, and recording the hologram B generated by the interference light and partial reference light B And a holographic memory recording method.
[2] The partial reference light A is a part of the laser light emitted from the laser light source; the partial reference light B is a part of the remaining part of the laser light emitted from the laser light source. [1] A recording method of a holographic memory according to [1].
[3] The holographic memory recording method according to [1] or [2], wherein the hologram A and the hologram B are recorded in the holographic memory by a collinear holography method.
 また、本発明は、以下のホログラフィックメモリの再生方法に関する。
 [4][1]~[3]のいずれか一項に記載のホログラフィックメモリの記録方法により空間位相変調信号または空間直交振幅変調信号が記録されたホログラフィックメモリの再生方法であって:前記ホログラフィックメモリの特定箇所に、前記部分参照光Aおよび前記部分参照光Bを同時に照射して、前記ホログラムAの回折光と、前記ホログラムAの回折光に干渉しうる前記ホログラムBの回折光とを同時に生成するステップと;前記ホログラムAの回折光および前記ホログラムBの回折光を用いて、前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップとを有する、ホログラフィックメモリの再生方法。
 [5]前記空間位相変調信号または前記空間直交振幅変調信号は、2値の位相情報を含み;前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップは、前記ホログラムAの回折光と前記ホログラムBの回折光とから、干渉縞を生成するステップと、前記干渉縞の強度分布を検出するステップとを含む、[4]に記載のホログラフィックメモリの再生方法。
 [6]前記空間位相変調信号または前記空間直交振幅変調信号は、多値の位相情報を含み;前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップは、前記ホログラムAの回折光と前記ホログラムBの回折光とから、ホログラムCを生成するステップと、前記ホログラムCの強度分布を検出するステップと、前記強度分布に基づいて、前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップとを含む、[4]に記載のホログラフィックメモリの再生方法。
 [7]前記ホログラムAの回折光と前記ホログラムBの回折光とを同時に生成するステップでは、前記特定箇所に、前記部分参照光Aまたは前記部分参照光Bの位相をシフトしながら前記部分参照光Aおよび前記部分参照光Bを複数回同時に照射することで、前記ホログラムAまたは前記ホログラムBの回折光の位相が互いに異なる前記ホログラムAの回折光と前記ホログラムBの回折光との複数の組み合わせを生成し、前記ホログラムCを生成するステップでは、前記複数の組み合わせから、互いに強度分布が異なる複数のホログラムCを生成し、前記ホログラムCの強度分布を検出するステップでは、前記複数のホログラムCのそれぞれの強度分布を検出し、前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップでは、前記複数の強度分布に基づいて、前記空間位相変調信号または前記空間直交振幅変調信号を復調する、[6]に記載のホログラフィックメモリの再生方法。
 [8]前記干渉光は、前記信号光の1つのデータピクセルについて、互いに位相の異なる複数のサブピクセルを含み、前記ホログラムBの回折光は、前記ホログラムAの回折光の1つのデータピクセルについて、互いに位相の異なる複数のサブピクセルを含み、前記ホログラムCは、互いに位相の異なる複数のホログラム情報を含み、前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップでは、前記ホログラムCに含まれる複数のホログラム情報に基づいて、前記空間位相変調信号または前記空間直交振幅変調信号を復調する、[6]に記載のホログラフィックメモリの再生方法。
 [9]前記信号光は、1つのデータピクセルについて、互いに位相の異なる複数のサブピクセルを含み、前記ホログラムAの回折光は、1つのデータピクセルについて、互いに位相の異なる複数のサブピクセルを含み、前記ホログラムCは、互いに位相の異なる複数のホログラム情報を含み、前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップでは、前記ホログラムCに含まれる複数のホログラム情報に基づいて、前記空間位相変調信号または前記空間直交振幅変調信号を復調する、[6]に記載のホログラフィックメモリの再生方法。
 [10]前記部分参照光Aは、レーザ光源から出射されたレーザ光の一部であり;前記部分参照光Bは、前記レーザ光源から出射された前記レーザ光の残部の一部である、[4]~[9]のいずれか一項に記載のホログラフィックメモリの再生方法。
 [11]前記ホログラムAおよび前記ホログラムBは、コリニア・ホログラフィ法で前記ホログラフィックメモリから再生される、[4]~[10]のいずれか一項に記載のホログラフィックメモリの再生方法。
The present invention also relates to a method for reproducing the following holographic memory.
[4] A method for reproducing a holographic memory in which a spatial phase modulation signal or a spatial quadrature amplitude modulation signal is recorded by the holographic memory recording method according to any one of [1] to [3], wherein: The partial reference light A and the partial reference light B are simultaneously irradiated onto a specific portion of the holographic memory, and the diffracted light of the hologram A and the diffracted light of the hologram B that can interfere with the diffracted light of the hologram A And simultaneously demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal using the diffracted light of the hologram A and the diffracted light of the hologram B. .
[5] The spatial phase modulation signal or the spatial quadrature amplitude modulation signal includes binary phase information; and demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal includes diffracted light of the hologram A and The method for reproducing a holographic memory according to [4], comprising: generating an interference fringe from the diffracted light of the hologram B; and detecting an intensity distribution of the interference fringe.
[6] The spatial phase modulation signal or the spatial quadrature amplitude modulation signal includes multi-level phase information; and demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal includes diffracted light of the hologram A and A step of generating a hologram C from the diffracted light of the hologram B, a step of detecting an intensity distribution of the hologram C, and a demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal based on the intensity distribution The method for reproducing a holographic memory according to [4], including the step of:
[7] In the step of simultaneously generating the diffracted light of the hologram A and the diffracted light of the hologram B, the partial reference light while shifting the phase of the partial reference light A or the partial reference light B to the specific location A plurality of combinations of the diffracted light of the hologram A and the diffracted light of the hologram B having different phases of the diffracted light of the hologram A or the hologram B by irradiating A and the partial reference light B simultaneously at a plurality of times In the step of generating and generating the hologram C, a plurality of holograms C having different intensity distributions are generated from the plurality of combinations, and in the step of detecting the intensity distribution of the hologram C, each of the plurality of holograms C is generated. Detecting the intensity distribution of the signal and demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal. , Based on the plurality of intensity distribution, said demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal, a holographic memory reproducing method according to [6].
[8] The interference light includes a plurality of subpixels having different phases with respect to one data pixel of the signal light, and the diffracted light of the hologram B is related to one data pixel of the diffracted light of the hologram A. The hologram C includes a plurality of sub-pixels having different phases, the hologram C includes a plurality of hologram information having different phases, and is included in the hologram C in the step of demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal The method for reproducing a holographic memory according to [6], wherein the spatial phase modulation signal or the spatial quadrature amplitude modulation signal is demodulated based on a plurality of hologram information.
[9] The signal light includes a plurality of subpixels having different phases with respect to one data pixel, and the diffracted light of the hologram A includes a plurality of subpixels having different phases with respect to one data pixel, The hologram C includes a plurality of hologram information having different phases, and in the step of demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal, the space C is based on the plurality of hologram information included in the hologram C. The method for reproducing a holographic memory according to [6], wherein the phase modulation signal or the spatial quadrature amplitude modulation signal is demodulated.
[10] The partial reference light A is a part of the laser light emitted from the laser light source; the partial reference light B is a part of the remaining part of the laser light emitted from the laser light source. [4] The reproduction method of a holographic memory according to any one of [9].
[11] The method for reproducing a holographic memory according to any one of [4] to [10], wherein the hologram A and the hologram B are reproduced from the holographic memory by a collinear holography method.
 また、本発明は、以下のホログラフィックメモリ記録装置に関する。
 [12]ホログラフィックメモリの特定箇所に、空間位相変調信号または空間直交振幅変調信号を含む信号光と部分参照光Aとを照射して、前記信号光と前記部分参照光Aとにより生成されるホログラムAを記録するホログラムA記録部と;前記ホログラフィックメモリの前記特定箇所に、干渉光と部分参照光Bとを照射して、前記干渉光と前記部分参照光Bとにより生成されるホログラムBを記録するホログラムB記録部とを有する、ホログラフィックメモリ記録装置。
The present invention also relates to the following holographic memory recording apparatus.
[12] The signal light including the spatial phase modulation signal or the spatial quadrature amplitude modulation signal and the partial reference light A are irradiated to a specific portion of the holographic memory, and generated by the signal light and the partial reference light A. Hologram A recording unit for recording hologram A; Hologram B generated by irradiating interference light and partial reference light B to the specific location of the holographic memory and generating the interference light and partial reference light B A holographic memory recording apparatus, comprising:
 また、本発明は、以下のホログラフィックメモリ再生装置に関する。
 [13][12]に記載のホログラフィックメモリ記録装置により空間位相変調信号または空間直交振幅変調信号が記録されたホログラフィックメモリの再生装置であって:前記ホログラフィックメモリの特定箇所に、前記部分参照光Aおよび前記部分参照光Bを同時に照射して、前記ホログラムAの回折光と、前記ホログラムAの回折光に干渉しうる前記ホログラムBの回折光とを同時に生成するホログラム回折光生成部と;前記ホログラムAの回折光および前記ホログラムBの回折光を用いて、前記空間位相変調信号または前記空間直交振幅変調信号を復調する復調部とを有する、ホログラフィックメモリ再生装置。
The present invention also relates to the following holographic memory reproducing device.
[13] A holographic memory reproducing device in which a spatial phase modulation signal or a spatial quadrature amplitude modulation signal is recorded by the holographic memory recording device according to [12], wherein: A hologram diffracted light generator that simultaneously irradiates the reference light A and the partial reference light B to simultaneously generate the diffracted light of the hologram A and the diffracted light of the hologram B that can interfere with the diffracted light of the hologram A; A holographic memory reproducing apparatus comprising: a demodulator that demodulates the spatial phase modulation signal or the spatial quadrature amplitude modulation signal using the diffracted light of the hologram A and the diffracted light of the hologram B;
 本発明によれば、1つの参照光を用いて、多値の位相情報を精密に再生することができる。したがって、本発明によれば、空間位相変調信号または空間直交振幅変調信号を記録されたホログラフィックメモリを高精度に再生することができる。 According to the present invention, multi-level phase information can be accurately reproduced using a single reference beam. Therefore, according to the present invention, a holographic memory in which a spatial phase modulation signal or a spatial quadrature amplitude modulation signal is recorded can be reproduced with high accuracy.
図1Aおよび図1Bは、参照光の例を示す模式図である。1A and 1B are schematic diagrams illustrating examples of reference light. 図2Aおよび図2Bは、ホログラフィックメモリに位相変調信号を記録する様子を示す模式図である。2A and 2B are schematic diagrams showing how a phase modulation signal is recorded in a holographic memory. ホログラフィックメモリに記録されている位相変調信号を再生する様子を示す模式図である。It is a schematic diagram which shows a mode that the phase modulation signal currently recorded on the holographic memory is reproduced | regenerated. ホログラフィックメモリに記録されている位相変調信号を再生する様子を示す模式図である。It is a schematic diagram which shows a mode that the phase modulation signal currently recorded on the holographic memory is reproduced | regenerated. 図5Aおよび図5Bは、従来方式の再生方法を示す模式図であり、図5Cは、本発明の方式の再生方法を示す模式図である。5A and 5B are schematic diagrams showing a conventional reproducing method, and FIG. 5C is a schematic diagram showing a reproducing method according to the present invention. コリニア・ホログラフィ法で記録および再生をする様子を示す模式図。The schematic diagram which shows a mode that it records and reproduces by a collinear holography method. 図7Aは、コリニア・ホログラフィ法で記録するときの空間光変調器のパターンを示す図であり、図7Bは、コリニア・ホログラフィ法で再生するときの空間光変調器のパターンを示す図である。FIG. 7A is a diagram showing a pattern of the spatial light modulator when recording is performed by the collinear holography method, and FIG. 7B is a diagram showing a pattern of the spatial light modulator when reproducing is performed by the collinear holography method. 本発明の記録方法とコリニア・ホログラフィ法とを組み合わせる場合の空間光変調器のパターンを示す図である。It is a figure which shows the pattern of the spatial light modulator in the case of combining the recording method of this invention, and a collinear holography method. 本発明の記録方法とコリニア・ホログラフィ法とを組み合わせてページデータを記録する様子を示す模式図である。It is a schematic diagram which shows a mode that page data is recorded combining the recording method of this invention, and a collinear holography method. 本発明の再生方法とコリニア・ホログラフィ法とを組み合わせてページデータを再生する様子を示す模式図である。It is a schematic diagram which shows a mode that page data is reproduced | regenerated combining the reproduction | regenerating method of this invention, and a collinear holography method. 本発明の記録方法と2光束干渉法とを組み合わせてページデータを記録する様子を示す模式図である。It is a schematic diagram which shows a mode that page data is recorded combining the recording method of this invention, and 2 light beam interferometry. 本発明の再生方法と2光束干渉法とを組み合わせてページデータを再生する様子を示す模式図である。It is a schematic diagram which shows a mode that page data is reproduced | regenerated combining the reproduction | regenerating method of this invention and the two light beam interferometry. 直接検出モードで位相変調信号を復調する様子を示す模式図である。It is a schematic diagram which shows a mode that a phase modulation signal is demodulated in direct detection mode. マルチショット・デュアルステージモードで位相変調信号を復調する様子を示す模式図である。It is a schematic diagram which shows a mode that a phase modulation signal is demodulated in multi-shot dual stage mode. シングルショット・デュアルステージモードで位相変調信号を復調する様子を示す模式図である。It is a schematic diagram which shows a mode that a phase modulation signal is demodulated in single shot dual stage mode. 図16A,Bは、シングルショット・デュアルステージモードにおける信号光および干渉光の位相分布の一例を示す図である。16A and 16B are diagrams showing an example of the phase distribution of signal light and interference light in the single shot / dual stage mode. 図17A,Bは、シングルショット・デュアルステージモードにおける信号光および干渉光の位相分布の一例を示す図である。17A and 17B are diagrams illustrating an example of the phase distribution of signal light and interference light in the single shot / dual stage mode. 図18Aおよび図18Bは、参照光の分割パターンの例を示す模式図である。FIG. 18A and FIG. 18B are schematic diagrams showing examples of reference light division patterns. 実施例1で使用した16値空間直交振幅変調信号(16-SQAM)のダイアグラムである。2 is a diagram of a 16-value spatial quadrature amplitude modulation signal (16-SQAM) used in Example 1. FIG. 図20Aは、オリジナルのページデータの位相情報を示す図であり、図20Bは、オリジナルのページデータの振幅情報を示す図である。FIG. 20A is a diagram showing phase information of original page data, and FIG. 20B is a diagram showing amplitude information of original page data. 図21Aは、部分参照光Aの強度パターンを示す図であり、図21Bは、部分参照光Bの強度パターンを示す図である。FIG. 21A is a diagram showing an intensity pattern of partial reference light A, and FIG. 21B is a diagram showing an intensity pattern of partial reference light B. 図22A~Dは、2段目のホログラム(デジタルホログラム)の信号強度分布を示す図である(マルチショット・デュアルステージモードによる再生)。22A to 22D are diagrams showing signal intensity distributions of the second-stage hologram (digital hologram) (reproduction in multi-shot / dual-stage mode). 図23Aは、復調したページデータの位相情報を示す図であり、図23Bは、復調したページデータの振幅情報を示す図である(マルチショット・デュアルステージモードによる再生)。FIG. 23A is a diagram showing phase information of demodulated page data, and FIG. 23B is a diagram showing amplitude information of demodulated page data (reproduction in multi-shot dual stage mode). 復調したページデータの信号点分布を示すグラフである(マルチショット・デュアルステージモードによる再生)。It is a graph which shows the signal point distribution of the demodulated page data (reproduction | regeneration by multi-shot dual stage mode). 2段目のホログラム(デジタルホログラム)の信号強度分布を示す図である(シングルショット・デュアルステージモードによる再生)。It is a figure which shows signal intensity distribution of the hologram (digital hologram) of the 2nd step (reproduction | regeneration by a single shot dual stage mode). 図26Aは、復調したページデータの位相情報を示す図であり、図26Bは、復調したページデータの振幅情報を示す図である(シングルショット・デュアルステージモードによる再生)。FIG. 26A is a diagram showing phase information of demodulated page data, and FIG. 26B is a diagram showing amplitude information of demodulated page data (reproduction in single shot / dual stage mode). 復調したページデータの信号点分布を示すグラフである(シングルショット・デュアルステージモードによる再生)。It is a graph which shows the signal point distribution of the demodulated page data (reproduction by a single shot dual stage mode). 図28Aは、オリジナルのページデータ#1の位相情報を示す図であり、図28Bは、オリジナルのページデータ#2の位相情報を示す図であり、図28Cは、オリジナルのページデータ#3の位相情報を示す図である(マルチショット・デュアルステージモードによる多重記録信号の再生)。28A is a diagram showing the phase information of the original page data # 1, FIG. 28B is a diagram showing the phase information of the original page data # 2, and FIG. 28C is the phase information of the original page data # 3. It is a figure which shows information (reproduction | regeneration of the multiplex recording signal by multi-shot dual stage mode). 図29Aは、復調したページデータ#1の位相情報(アナログデータ)を示す図であり、図29Bは、復調したページデータ#2の位相情報(アナログデータ)を示す図であり、図29Cは、復調したページデータ#3の位相情報(アナログデータ)を示す図である(マルチショット・デュアルステージモードによる多重記録信号の再生)。FIG. 29A is a diagram illustrating phase information (analog data) of demodulated page data # 1, FIG. 29B is a diagram illustrating phase information (analog data) of demodulated page data # 2, and FIG. It is a figure which shows the phase information (analog data) of the demodulated page data # 3 (reproduction | regeneration of the multiplex recording signal by multi-shot dual stage mode). 図30Aは、復調したページデータ#1の位相情報(デジタルデータ)を示す図であり、図30Bは、復調したページデータ#2の位相情報(デジタルデータ)を示す図であり、図30Cは、復調したページデータ#3の位相情報(デジタルデータ)を示す図である(マルチショット・デュアルステージモードによる多重記録信号の再生)。30A is a diagram showing phase information (digital data) of demodulated page data # 1, FIG. 30B is a diagram showing phase information (digital data) of demodulated page data # 2, and FIG. It is a figure which shows the phase information (digital data) of demodulated page data # 3 (reproduction | regeneration of the multiplex recording signal by a multi-shot dual stage mode). 図31Aは、復調したページデータ#1の信号点分布を示すグラフであり、図31Bは、復調したページデータ#2の信号点分布を示すグラフであり、図31Cは、復調したページデータ#3の信号点分布を示すグラフである(マルチショット・デュアルステージモードによる多重記録信号の再生)。31A is a graph showing the signal point distribution of demodulated page data # 1, FIG. 31B is a graph showing the signal point distribution of demodulated page data # 2, and FIG. 31C is demodulated page data # 3. 5 is a graph showing the signal point distribution of (multi-shot / dual stage mode reproduction of multiple recording signals). 実施例3で使用したホログラフィックメモリ記録再生装置の構成を示す模式図である。FIG. 6 is a schematic diagram showing a configuration of a holographic memory recording / reproducing apparatus used in Example 3. ホログラムBを記録する時の位相変調SLMのパターンを示す図である。It is a figure which shows the pattern of phase modulation SLM at the time of recording the hologram B. FIG. 図34Aおよび図34Bは、ホログラムAを記録する時の位相変調SLMのパターンを示す図である。34A and 34B are diagrams showing patterns of the phase modulation SLM when the hologram A is recorded. 図35Aおよび図35Bは、ホログラムAおよびホログラムBを再生する時の位相変調SLMのパターンを示す図である。FIGS. 35A and 35B are diagrams showing patterns of the phase modulation SLM when the hologram A and the hologram B are reproduced. 図36Aおよび図36Bは、検出された信号ページデータを示す画像である(直接検出モードによる再生)。36A and 36B are images showing the detected signal page data (reproduction in the direct detection mode). 図37Aおよび図37Bは、それぞれ図36Aおよび図36Bに示される画像に閾値処理を行った結果を示す画像である(直接検出モードによる再生)。FIG. 37A and FIG. 37B are images showing the results of performing threshold processing on the images shown in FIG. 36A and FIG. 36B, respectively (reproduction in the direct detection mode). 図38Aは、オリジナルのページデータの位相情報を示す図であり、図38Bは、干渉光の強度パターンを示す図であり、図38C~Eは、参照光の強度パターンを示す図であり、図38Fは、2段目のホログラム(デジタルホログラム)の信号強度分布を示す図である(直接検出モードによる再生)。38A is a diagram illustrating phase information of original page data, FIG. 38B is a diagram illustrating an intensity pattern of interference light, and FIGS. 38C to 38E are diagrams illustrating intensity patterns of reference light. 38F is a diagram showing a signal intensity distribution of the second-stage hologram (digital hologram) (reproduction in the direct detection mode). 図39Aおよび図39Fは、オリジナルのページデータ#1の振幅情報および位相情報を示し、図39Bおよび図39Gは、オリジナルのページデータ#2の振幅情報および位相情報を示し、図39Cおよび図39Hは、オリジナルのページデータ#3の振幅情報および位相情報を示し、図39Dおよび図39Iは、オリジナルのページデータ#4の振幅情報および位相情報を示し、図39Eおよび図39Jは、オリジナルのページデータ#5の振幅情報および位相情報を示している。39A and 39F show the amplitude information and phase information of the original page data # 1, FIG. 39B and FIG. 39G show the amplitude information and phase information of the original page data # 2, and FIG. 39C and FIG. 39D and 39I show the amplitude information and phase information of the original page data # 3. FIGS. 39D and 39I show the amplitude information and phase information of the original page data # 4. FIGS. 39E and 39J show the original page data # 3. 5 shows amplitude information and phase information. 図40Aは、信号ページデータ#1の位相情報であり、図40Bは、信号光に加える位相分布であり、図40Cは、信号ページデータ#1の位相情報に位相分布を加えた後の信号ページデータ#1の位相情報である。40A shows the phase information of the signal page data # 1, FIG. 40B shows the phase distribution added to the signal light, and FIG. 40C shows the signal page after adding the phase distribution to the phase information of the signal page data # 1. This is phase information of data # 1. 図41Aは、干渉光の位相情報であり、図41Bは、干渉光に加える位相分布である。41A shows the phase information of the interference light, and FIG. 41B shows the phase distribution added to the interference light. 図42Aおよび図42Bは、復調したページデータの信号点分布を示すグラフである。42A and 42B are graphs showing signal point distributions of demodulated page data.
 本発明のホログラフィックメモリの記録方法(以下「本発明の記録方法」ともいう)は、空間位相変調信号または空間直交振幅変調信号をホログラフィックメモリに記録する方法である。また、本発明のホログラフィックメモリの再生方法(以下「本発明の再生方法」ともいう)は、本発明の記録方法によりホログラフィックメモリに記録された空間位相変調信号または空間直交振幅変調信号を再生する方法である。ここで、「空間位相変調信号」とは、空間位相変調(SPM)により変調された信号をいう。また、「空間直交振幅変調信号」とは、空間直交振幅変調(SQAM)により変調された信号をいう。 The recording method of the holographic memory of the present invention (hereinafter also referred to as “recording method of the present invention”) is a method of recording a spatial phase modulation signal or a spatial quadrature amplitude modulation signal in the holographic memory. The holographic memory reproduction method of the present invention (hereinafter also referred to as “reproduction method of the present invention”) reproduces a spatial phase modulation signal or a spatial quadrature amplitude modulation signal recorded in the holographic memory by the recording method of the present invention. It is a method to do. Here, the “spatial phase modulation signal” refers to a signal modulated by spatial phase modulation (SPM). A “spatial quadrature amplitude modulation signal” refers to a signal modulated by spatial quadrature amplitude modulation (SQAM).
 「位相変調(Phase Modulation;以下「PM」と略記する)」は、無線通信や光通信などの通信技術の分野で使用される、位相変調、位相シフト変調(Phase Shift Modulation;PSM)または位相シフトキーイング(Phase Shift Keying;PSK)による変調方式である。PMは、搬送波の位相を変化させることで情報を伝達する。本発明のホログラフィックメモリでは、通信技術の分野で使用されるPMと同様に、位相を変化させた信号光を記録する。しかしながら、ホログラフィックメモリでは、時間軸方向に信号を変調する通信とは異なり、2次元の空間軸方向(x,y)に信号を変調し、ページデータとしてこれを記録および再生する。そこで、本願明細書では、本発明で使用する位相変調による変調方式を、通信技術の分野で使用される「位相変調(PM)」と区別するために「空間位相変調(Spatial Phase Modulation;SPM)」と呼ぶ。SPMは、光メモリ分野において用いられる位相変調および多値位相変調の概念を含む。 “Phase modulation (hereinafter abbreviated as“ PM ”)” is a phase modulation, phase shift modulation (PSM) or phase shift used in the field of communication technology such as wireless communication and optical communication. This is a modulation method by keying (Phase Shift Keying; PSK). The PM transmits information by changing the phase of the carrier wave. In the holographic memory of the present invention, signal light whose phase is changed is recorded in the same manner as PM used in the field of communication technology. However, in the holographic memory, unlike communication that modulates a signal in the time axis direction, the signal is modulated in a two-dimensional spatial axis direction (x, y), and is recorded and reproduced as page data. Therefore, in the present specification, in order to distinguish the modulation method by phase modulation used in the present invention from “phase modulation (PM)” used in the field of communication technology, “spatial phase modulation (SPM)” is used. " SPM includes the concept of phase modulation and multi-level phase modulation used in the optical memory field.
 「直交振幅変調(Quadrature Amplitude Modulation;以下「QAM」と略記する)」は、無線通信や光通信などの通信技術の分野で使用される、振幅変調(Amplitude Modulation;AM)と位相変調(Phase Modulation;PM)を組み合わせた変調方式である。QAMは、振幅および位相の両方の要素を変化させることで複数の情報を一度に伝達することができる。本発明のホログラフィックメモリでは、通信技術の分野で使用されるQAMと同様に、振幅および位相の両方の要素を変化させた信号を記録する。しかしながら、ホログラフィックメモリでは、時間軸方向に信号を変調する通信とは異なり、2次元の空間軸方向(x,y)に信号を変調し、ページデータとしてこれを記録および再生する。そこで、本願明細書では、本発明で使用する振幅変調と位相変調とを組み合わせた変調方式を、通信技術の分野で使用される「直交振幅変調(QAM)」と区別するために「空間直交振幅変調(Spatial Quadrature Amplitude Modulation;SQAM)」と呼ぶ。 “Quadrature Amplitude Modulation” (hereinafter abbreviated as “QAM”) is used in the field of communication technologies such as wireless communication and optical communication, and is used for amplitude modulation (AM) and phase modulation (Phase Modulation). PM) in combination. QAM can transmit a plurality of information at a time by changing both amplitude and phase elements. In the holographic memory of the present invention, a signal in which both amplitude and phase elements are changed is recorded, similarly to QAM used in the field of communication technology. However, in the holographic memory, unlike communication that modulates a signal in the time axis direction, the signal is modulated in a two-dimensional spatial axis direction (x, y), and is recorded and reproduced as page data. Therefore, in this specification, in order to distinguish the modulation method combining amplitude modulation and phase modulation used in the present invention from “quadrature amplitude modulation (QAM)” used in the field of communication technology, “spatial quadrature amplitude” is used. Modulation (Spatial Quadrature Amplitude Modulation; SQAM) ".
 本発明の記録方法および再生方法は、部分参照光Aおよび部分参照光Bの2つの部分参照光を含む参照光を使用することを特徴とする。このため、本発明の記録方法および再生方法は、ダブルリファレンシャル・ホログラフィ(Double Referential Holography)とも称される。本発明の再生方法は、2つの部分参照光を使用して、信号光および干渉光を予め多重記録しておくことで、再生時に干渉光(例えば、フェーズロック光)を外部から照射することなく、空間位相変調信号および空間直交振幅変調信号を復調することができる。 The recording method and the reproducing method of the present invention are characterized by using reference light including two partial reference lights, partial reference light A and partial reference light B. For this reason, the recording method and the reproducing method of the present invention are also referred to as double reference holography. In the reproducing method of the present invention, signal light and interference light are multiplexed and recorded in advance using two partial reference lights, so that interference light (for example, phase-locked light) is not irradiated from the outside during reproduction. The spatial phase modulation signal and the spatial quadrature amplitude modulation signal can be demodulated.
 図1Aに示されるように、本発明の記録方法および再生方法では、1つの参照光100を部分参照光A110および部分参照光B120の2つに分けて使用する。部分参照光A110および部分参照光B120の形状(参照光100の光軸に直交する断面における形状)は、互いに重ならなければ特に限定されない。また、部分参照光A110および部分参照光B120における光の強度分布および光の位相分布も、特に限定されない。たとえば、図1Bに示されるように、部分参照光A110および部分参照光B120は、2値のランダムな強度分布を有していてもよい。 As shown in FIG. 1A, in the recording method and reproducing method of the present invention, one reference light 100 is divided into two parts, a partial reference light A110 and a partial reference light B120. The shapes of the partial reference light A110 and the partial reference light B120 (the shape in the cross section orthogonal to the optical axis of the reference light 100) are not particularly limited as long as they do not overlap each other. Further, the light intensity distribution and the light phase distribution in the partial reference light A110 and the partial reference light B120 are not particularly limited. For example, as shown in FIG. 1B, the partial reference light A110 and the partial reference light B120 may have a binary random intensity distribution.
 ホログラフィックメモリ(記録媒体)に位相変調信号(空間位相変調信号または空間直交振幅変調信号)を記録する場合は、図2Aに示されるように、ホログラフィックメモリ200の特定箇所に位相変調信号130(ページデータ)を含む信号光140と部分参照光A110とを照射する。これにより、ホログラフィックメモリ200の特定箇所に、信号光130と部分参照光A110との干渉により生成されるホログラムAが記録される。 When recording a phase modulation signal (spatial phase modulation signal or spatial quadrature amplitude modulation signal) in the holographic memory (recording medium), as shown in FIG. 2A, the phase modulation signal 130 ( The signal light 140 including the page data) and the partial reference light A110 are irradiated. Thus, the hologram A generated by the interference between the signal light 130 and the partial reference light A110 is recorded at a specific location of the holographic memory 200.
 また、図2Bに示されるように、ホログラフィックメモリ200の同一箇所に干渉光150と部分参照光B120とを照射する。これにより、ホログラフィックメモリ200の同一箇所に、干渉光150と部分参照光B120との干渉により生成されるホログラムBが記録される。干渉光150は、記録する情報を含んでいない。たとえば、干渉光150は、光の強度分布および位相分布が均一な光である。 Further, as shown in FIG. 2B, the same portion of the holographic memory 200 is irradiated with the interference light 150 and the partial reference light B120. Accordingly, the hologram B generated by the interference between the interference light 150 and the partial reference light B120 is recorded at the same location of the holographic memory 200. The interference light 150 does not include information to be recorded. For example, the interference light 150 is light having a uniform light intensity distribution and phase distribution.
 ホログラムAの記録およびホログラムBの記録の順番は、特に限定されない。たとえば、ホログラムAを記録した後にホログラムBを記録してもよい。また、ホログラムBを記録した後にホログラムAを記録してもよい。 The recording order of hologram A and hologram B is not particularly limited. For example, the hologram B may be recorded after the hologram A is recorded. Further, the hologram A may be recorded after the hologram B is recorded.
 ホログラフィックメモリに記録されている位相変調信号130を再生する場合は、図3に示されるように、ホログラフィックメモリ200の同一箇所に部分参照光A110および部分参照光B120を含む参照光100を照射する。これにより、ホログラムAの回折光160(信号光140)およびホログラムBの回折光170(干渉光150)が同時に生成される。ホログラムBの回折光170は、ホログラムAの回折光160に干渉しうる光である必要がある。したがって、通常は、部分参照光A110の光源および部分参照光B120の光源は、同一のレーザ光源である。 When reproducing the phase modulation signal 130 recorded in the holographic memory, as shown in FIG. 3, the reference light 100 including the partial reference light A110 and the partial reference light B120 is irradiated to the same portion of the holographic memory 200. To do. Thereby, the diffracted light 160 (signal light 140) of the hologram A and the diffracted light 170 (interference light 150) of the hologram B are generated simultaneously. The diffracted light 170 of the hologram B needs to be light that can interfere with the diffracted light 160 of the hologram A. Therefore, normally, the light source of the partial reference light A110 and the light source of the partial reference light B120 are the same laser light source.
 信号光140に含まれる位相変調信号130が2値位相変調信号である場合は、ホログラムAの回折光160とホログラムBの回折光170との干渉により、位相情報(例えば、0とπ)を含むホログラムAの回折光160が、強度情報(例えば、0と1)を含む回折光180(干渉縞)に変換される(図3参照)。この場合は、光強度検出器210(CCDやCMOSなどの撮像素子)が回折光180(干渉縞)の強度分布を検出することで、位相変調信号130を復調することができる。 When the phase modulation signal 130 included in the signal light 140 is a binary phase modulation signal, phase information (for example, 0 and π) is included due to interference between the diffracted light 160 of the hologram A and the diffracted light 170 of the hologram B. The diffracted light 160 of the hologram A is converted into diffracted light 180 (interference fringes) including intensity information (for example, 0 and 1) (see FIG. 3). In this case, the phase intensity signal 130 can be demodulated by detecting the intensity distribution of the diffracted light 180 (interference fringes) by the light intensity detector 210 (an imaging device such as a CCD or CMOS).
 一方、信号光140に含まれる位相変調信号130が多値位相変調信号である場合は、図4に示されるように、ホログラムAの回折光160が新たな信号光として機能し、ホログラムBの回折光170が新たな参照光として機能することで、2段目のホログラム220(ホログラムC)が生成される。この場合は、光強度検出器が2段目のホログラム220(ホログラムC)の強度分布を検出した後に、電子的な信号処理(後述)を行うことにより、位相変調信号130を復調することができる。 On the other hand, when the phase modulation signal 130 included in the signal light 140 is a multi-level phase modulation signal, the diffracted light 160 of the hologram A functions as a new signal light as shown in FIG. The light 170 functions as new reference light, so that a second-stage hologram 220 (hologram C) is generated. In this case, the phase modulation signal 130 can be demodulated by performing electronic signal processing (described later) after the light intensity detector detects the intensity distribution of the second stage hologram 220 (hologram C). .
 ホログラムBの回折光170は、位相情報を含むホログラムAの回折光160を強度情報を含む回折光180(干渉縞)に変換する際に使用される干渉光、またはホログラムAの回折光160から2段目のホログラム220(ホログラムC)を生成する際に使用される参照光として機能する。したがって、ホログラフィックメモリ200にホログラムBを記録するときには、これらの機能を実現できる強度分布および位相分布を有する干渉光150をホログラフィックメモリ200に照射する。 The diffracted light 170 of the hologram B is an interference light used when converting the diffracted light 160 of the hologram A including phase information into a diffracted light 180 (interference fringe) including intensity information, or the diffracted light 160 to 2 of the hologram A. It functions as reference light used when generating the stage hologram 220 (hologram C). Therefore, when recording the hologram B in the holographic memory 200, the holographic memory 200 is irradiated with the interference light 150 having an intensity distribution and a phase distribution capable of realizing these functions.
 図5Aに示されるように、従来のデュアルステージ方式の再生方法(非特許文献10参照)では、多値位相検出に必要な第2の参照光を外部から供給する。このように信号光と干渉させる参照光として、第2の参照光を別途外部から供給する場合、光学系が複雑になるため、振動や空気揺らぎに対して弱くなる可能性がある。 As shown in FIG. 5A, in the conventional dual-stage reproduction method (see Non-Patent Document 10), the second reference light necessary for multi-level phase detection is supplied from the outside. As described above, when the second reference light is separately supplied from the outside as the reference light that interferes with the signal light, the optical system becomes complicated, so that it may be weak against vibration and air fluctuation.
 また、図5Bに示されるように、従来のフェーズロック方式の再生方法(非特許文献9参照)では、多値位相検出に必要なフェーズロック光を外部から供給し、ホログラフィックメモリ200を透過させる。このように信号光と干渉させるフェーズロック光として、ホログラフィックメモリ200を透過させた光を使用する場合、ホログラフィックメモリ200を透過することによる位相歪が発生する可能性がある。 As shown in FIG. 5B, in the conventional phase-locked reproduction method (see Non-Patent Document 9), phase-locked light necessary for multi-level phase detection is supplied from the outside and transmitted through the holographic memory 200. . As described above, when the light transmitted through the holographic memory 200 is used as the phase-locked light that interferes with the signal light, phase distortion due to transmission through the holographic memory 200 may occur.
 これに対し、本発明の再生方法では、図5Cに示されるように、多値位相検出に必要な2段目のホログラム(ホログラムC)を生成するための参照光を、ホログラフィックメモリ200に記録されたホログラムBの回折光として供給する。したがって、本発明の再生方法では、2段目のホログラム(ホログラムC)を生成するための参照光を外部から供給する必要がなく、光学系も単純にすることができる。また、参照光(ホログラムBの回折光)に位相歪が発生することもないため、参照光の品質を高めることができる。 On the other hand, in the reproducing method of the present invention, as shown in FIG. 5C, the reference light for generating the second stage hologram (hologram C) necessary for multilevel phase detection is recorded in the holographic memory 200. Is supplied as diffracted light of the hologram B. Therefore, in the reproducing method of the present invention, it is not necessary to supply the reference light for generating the second stage hologram (hologram C) from the outside, and the optical system can be simplified. In addition, since phase distortion does not occur in the reference light (diffracted light of hologram B), the quality of the reference light can be improved.
 ホログラフィックメモリの再生において、従来のフェーズロック方式の再生方法(非特許文献9参照)および従来のデュアルステージ方式の再生方法(非特許文献10参照)では、参照光および干渉光(フェーズロック光または第2の参照光)の2つの光ビームが必要である。また、これらの2つのビームは、互いに干渉するものでなければならないため、同一光源から出射されたものである必要がある。このため、強度変調型ホログラフィックメモリの再生装置は、1つの参照光によってホログラムを再生できるのに対し、位相変調型ホログラフィックメモリの再生装置は、再生用の光ビームの数が増加するため、構成が複雑になり、光学系の精密な調整も必要になる。このことは、従来の強度変調型ホログラフィックメモリの再生装置では、位相変調信号が記録されたホログラフィックメモリを再生できないことを意味している。 In reproduction of a holographic memory, in a conventional phase-locked reproduction method (see Non-Patent Document 9) and a conventional dual-stage reproduction method (see Non-Patent Document 10), reference light and interference light (phase-locked light or Two light beams (second reference light) are required. Moreover, since these two beams must interfere with each other, they need to be emitted from the same light source. For this reason, the reproducing device of the intensity modulation type holographic memory can reproduce the hologram by one reference light, whereas the reproducing device of the phase modulation type holographic memory increases the number of light beams for reproduction. The configuration becomes complicated, and precise adjustment of the optical system is also required. This means that the conventional intensity modulation type holographic memory reproducing apparatus cannot reproduce the holographic memory in which the phase modulation signal is recorded.
 一方、本発明の再生方法では、1段目のホログラム(ホログラムAおよびホログラムB)を再生するための参照光のみが必要である。本発明の再生方法では、ホログラフィックメモリ再生装置の構成が大幅に簡略化されるともに、再生時の光源および光学系は、従来の強度変調型ホログラフィックメモリの再生装置と高い互換性を有する。 On the other hand, in the reproducing method of the present invention, only reference light for reproducing the first-stage hologram (hologram A and hologram B) is required. In the reproducing method of the present invention, the configuration of the holographic memory reproducing apparatus is greatly simplified, and the light source and the optical system at the time of reproduction have high compatibility with the reproducing apparatus of the conventional intensity modulation type holographic memory.
 また、記録媒体が光ディスクなどの可動式媒体である場合、従来のフェーズロック方式の再生方法および従来のデュアルステージ方式の再生方法では、記録媒体の移動または回転に伴い、記録媒体からの回折光(信号光)の波面成分が時間的に変化してしまう可能性がある。このため、信号光の波面と、干渉光(フェーズロック光または第2の参照光)の波面とを常に一致させることは非常に困難である。 Further, when the recording medium is a movable medium such as an optical disk, the conventional phase-locked reproducing method and the conventional dual-stage reproducing method, when the recording medium moves or rotates, the diffracted light from the recording medium ( There is a possibility that the wavefront component of the signal light will change over time. For this reason, it is very difficult to always match the wavefront of the signal light with the wavefront of the interference light (phase-locked light or second reference light).
 一方、本発明の再生方法では、信号光および部分参照光Aにより生成されるホログラムAに加えて、干渉光および部分参照光Bにより生成されるホログラムBも同一の記録媒体に記録し、これらを同時に再生することで得られる回折光同士の干渉によって位相検出を行う。したがって、本発明の再生方法では、信号光および干渉光が同一の記録媒体からの回折光として再生されるので、記録媒体が光ディスクなどの可動式媒体であっても、信号光と干渉光の相対的な位置関係は常に一定であり、安定かつ高精度な信号再生が可能になる。 On the other hand, in the reproducing method of the present invention, in addition to the hologram A generated by the signal light and the partial reference light A, the hologram B generated by the interference light and the partial reference light B is recorded on the same recording medium. Phase detection is performed by interference between diffracted lights obtained by reproducing simultaneously. Therefore, in the reproducing method of the present invention, the signal light and the interference light are reproduced as diffracted light from the same recording medium. Therefore, even if the recording medium is a movable medium such as an optical disk, the relative relationship between the signal light and the interference light is The positional relationship is always constant, and stable and highly accurate signal reproduction is possible.
 本発明の記録方法および再生方法は、多値位相変調信号による記憶容量の増大だけではなく、多重記録による記憶容量の増大を実現することもできる。これまでの説明では、1つの干渉光に対して1つの信号光を記録する場合について説明してきたが、本発明の記録方法では、1つの干渉光に対して複数の信号光を多重記録することもできる。 The recording method and reproducing method of the present invention can realize not only an increase in storage capacity due to a multi-level phase modulation signal but also an increase in storage capacity due to multiple recording. In the description so far, the case where one signal light is recorded for one interference light has been described. However, in the recording method of the present invention, a plurality of signal lights are multiplexed and recorded for one interference light. You can also.
 たとえば、図1Bに示される部分参照光B120を用いて、干渉光150と部分参照光B120とにより生成されるホログラムBをホログラフィックメモリ200の特定箇所に記録する(図2B参照)。次いで、図1Bに示される第1の部分参照光A110-1を用いて、1枚目の信号ページデータ130-1をホログラフィックメモリ200の同一箇所に記録する(図2A参照)。次いで、図1Bに示される部分参照光Aのパターンを変えたものを第2の部分参照光A110-2として用いて、2枚目の信号ページデータ130-2をホログラフィックメモリ200の同一箇所に記録する(図2A参照)。次いで、図1Bに示される部分参照光Aのパターンをさらに変えたものを第3の部分参照光A110-3として用いて、3枚目の信号ページデータ130-3をホログラフィックメモリ200の同一箇所に記録する(図2A参照)。 For example, by using the partial reference light B120 shown in FIG. 1B, the hologram B generated by the interference light 150 and the partial reference light B120 is recorded in a specific location of the holographic memory 200 (see FIG. 2B). Next, the first signal page data 130-1 is recorded in the same location of the holographic memory 200 using the first partial reference light A110-1 shown in FIG. 1B (see FIG. 2A). 1B is used as the second partial reference light A110-2 to change the second signal reference data 130-2 to the same location in the holographic memory 200. Record (see FIG. 2A). 1B is used as the third partial reference light A110-3 to change the third signal page data 130-3 to the same location in the holographic memory 200. (See FIG. 2A).
 この時点で、ホログラフィックメモリ200には、以下の4つのホログラムが記録されている。
 a)干渉光150と部分参照光B120とにより生成されるホログラム(ホログラムB)
 b)1枚目の信号ページデータ130-1と第1の部分参照光A110-1とにより生成されるホログラム(ホログラムA)
 c)2枚目の信号ページデータ130-2と第2の部分参照光A110-2とにより生成されるホログラム(ホログラムA)
 d)3枚目の信号ページデータ130-3と第3の部分参照光A110-3とにより生成されるホログラム(ホログラムA)
At this time, the following four holograms are recorded in the holographic memory 200.
a) Hologram generated by the interference light 150 and the partial reference light B120 (hologram B)
b) Hologram (hologram A) generated by the first signal page data 130-1 and the first partial reference beam A110-1
c) Hologram generated by second signal page data 130-2 and second partial reference light A110-2 (hologram A)
d) Hologram (hologram A) generated by the third signal page data 130-3 and the third partial reference light A110-3
 再生時には、第1の部分参照光A110-1および部分参照光B120を含む参照光100をホログラフィックメモリ200に照射することで、1枚目の信号ページデータ130-1が復調される。同様に、第2の部分参照光A110-2および部分参照光B120を含む参照光100をホログラフィックメモリ200に照射することで、2枚目の信号ページデータ130-2が復調される。第3の部分参照光A110-3および部分参照光B120を含む参照光100をホログラフィックメモリ200に照射することで、3枚目の信号ページデータ130-3が復調される。 During reproduction, the first signal page data 130-1 is demodulated by irradiating the holographic memory 200 with the reference light 100 including the first partial reference light A110-1 and the partial reference light B120. Similarly, by irradiating the holographic memory 200 with the reference light 100 including the second partial reference light A110-2 and the partial reference light B120, the second signal page data 130-2 is demodulated. By irradiating the holographic memory 200 with the reference light 100 including the third partial reference light A110-3 and the partial reference light B120, the third signal page data 130-3 is demodulated.
 ホログラフィックメモリ200の同一箇所に記録できる信号ページデータ130の数の上限は、部分参照光A110が取りうるパターンの数に依存する。部分参照光A110が取りうるパターンの数は、非常に大きな値とすることができる。このように、本発明の記録方法では、1つの干渉光に対して複数の信号ページデータ(信号光)を多重記録することが可能であり、上記a)~d)のホログラムを1つのホログラムユニットとして扱うことが可能である。このホログラムユニットを、従来の角度多重方式や、シフト多重方式、波長多重方式などと組み合わせることで、飛躍的に記憶容量を向上させることができる。 The upper limit of the number of signal page data 130 that can be recorded in the same location of the holographic memory 200 depends on the number of patterns that the partial reference light A110 can take. The number of patterns that the partial reference light A110 can take can be a very large value. As described above, in the recording method of the present invention, it is possible to multiplex-record a plurality of signal page data (signal light) with respect to one interference light, and the holograms a) to d) described above are formed into one hologram unit. Can be treated as By combining this hologram unit with a conventional angle multiplexing method, shift multiplexing method, wavelength multiplexing method, etc., the storage capacity can be dramatically improved.
 以上の説明では、ホログラフィックメモリの記録方式および再生方式について、特に限定せずに説明した。以下の説明では、コリニア・ホログラフィと高い互換性を確保しつつ、本発明の記録方法および再生方法を実現する場合の、ホログラフィックメモリの記録方法および再生方法について説明する。 In the above description, the recording method and reproducing method of the holographic memory have been described without any particular limitation. In the following description, a recording method and a reproducing method for a holographic memory when realizing the recording method and the reproducing method of the present invention while ensuring high compatibility with collinear holography will be described.
 ホログラムの記録方式としては、信号光と参照光とで異なる角度の光を用いる2光束干渉法が広く知られている。しかしながら、この方式は、光ディスク技術との整合性に問題がある。この問題を解消した方式としては、図6に示されるように、信号光と参照光とを同一光軸に配置して、空間光変調器(SLM)の中心部をホログラム信号光の生成に用い、外周部を参照光パターンの生成に用いるコリニア・ホログラフィ法がある(Hideyoshi Horimai, Xiaodi Tan and Jun Li, "Collinear Holography", Appl. Opt., Vol.44, pp.2575-2579.)。図6に示されるように、記録時および再生時には、レーザ光310(信号光および/または参照光)は、SLM320、ハーフミラー330および対物レンズ340を通り、記録媒体350(例えば、光ディスク)に照射される。再生時には、記録媒体350から取り出された回折光は、ハーフミラー330で反射され、撮像素子360に到達する。なお、図6には、反射型ホログラムの光学配置を示しているが、透過型ホログラムの光学配置であってもよい。 As a hologram recording method, a two-beam interference method using light of different angles for signal light and reference light is widely known. However, this method has a problem in consistency with the optical disc technology. As a method for solving this problem, as shown in FIG. 6, the signal light and the reference light are arranged on the same optical axis, and the central portion of the spatial light modulator (SLM) is used to generate the hologram signal light. There is a collinear holography method in which the outer periphery is used to generate a reference light pattern (Hideyoshi Horimai, Xiaodi Tan and Jun Li, Col "Collinear Holography", Appl. Opt., Vol.44, pp.2575-2579.). As shown in FIG. 6, during recording and reproduction, laser light 310 (signal light and / or reference light) passes through the SLM 320, the half mirror 330, and the objective lens 340, and irradiates the recording medium 350 (for example, an optical disk). Is done. At the time of reproduction, the diffracted light extracted from the recording medium 350 is reflected by the half mirror 330 and reaches the image sensor 360. Although FIG. 6 shows an optical arrangement of a reflection hologram, an optical arrangement of a transmission hologram may be used.
 図7に、コリニア・ホログラフィ法で記録および再生をするときの空間光変調器(SLM)のパターンの一例を示す。記録時には、図7Aに示されるように、中心部と外周部に分離したページデータを用い、中心部を信号光の形成、外周部を参照光の形成に用いる。中心部から出射する光(信号光)および外周部から出射する光(参照光)を1つの対物レンズで記録媒体(例えば、光ディスク)に集光照射して、両者の干渉パターンを記録する。再生時には、図7Bに示されるように、外周部から出射する光(参照光)のみを記録媒体に集光照射して、記録媒体から記録データを回折光として取り出す。コリニア・ホログラフィ法では、光スポットの位置を空間的にわずかにずらすことで、多重記録を行うことができる(シフト多重)。 FIG. 7 shows an example of a spatial light modulator (SLM) pattern when recording and reproduction are performed by the collinear holography method. At the time of recording, as shown in FIG. 7A, page data separated into a central portion and an outer peripheral portion are used, the central portion is used for forming signal light, and the outer peripheral portion is used for forming reference light. The light emitted from the central portion (signal light) and the light emitted from the outer peripheral portion (reference light) are condensed and irradiated onto a recording medium (for example, an optical disc) with one objective lens, and the interference pattern of both is recorded. At the time of reproduction, as shown in FIG. 7B, only the light (reference light) emitted from the outer peripheral portion is condensed and irradiated onto the recording medium, and the recording data is extracted from the recording medium as diffracted light. In the collinear holography method, multiple recording can be performed by slightly shifting the position of the light spot spatially (shift multiplexing).
 本発明の記録方法および再生方法では、図8に示されるように、コリニア・ホログラフィ法における参照光のリングを外側の領域と内側の領域に分けることで、コリニア・ホログラフィ法と高い互換性を持たせることができる。図8に示される例では、外周部外側の領域は、部分参照光A110の形成に使用され、外周部内側の領域が、部分参照光B120の形成に使用される。また、中心部の領域は、信号光140または干渉光150の形成に使用される。 As shown in FIG. 8, the recording method and the reproducing method of the present invention have high compatibility with the collinear holography method by dividing the ring of reference light in the collinear holography method into an outer region and an inner region. Can be made. In the example shown in FIG. 8, the region outside the outer peripheral portion is used for forming the partial reference light A110, and the region inside the outer peripheral portion is used for forming the partial reference light B120. The central region is used to form the signal light 140 or the interference light 150.
 記録時には、図9に示されるように、まず、中心部の領域において、記録対象のページデータの情報を有する信号光140をSLM320で生成するとともに、外周部外側の領域において、部分参照光A110をSLM320で生成する。そして、信号光140と部分参照光A110とにより生成されるホログラムAをホログラフィックメモリ200(記録媒体350)に記録する。このとき、外周部内側の領域(部分参照光B120を生成する領域)については、SLM320のピクセルをオフにすることで、レーザ光310が透過しない状態とする。 At the time of recording, as shown in FIG. 9, first, signal light 140 having information of page data to be recorded is generated by the SLM 320 in the central area, and the partial reference light A110 is generated in the outer area of the outer periphery. Generated by the SLM 320. Then, the hologram A generated by the signal light 140 and the partial reference light A110 is recorded in the holographic memory 200 (recording medium 350). At this time, the region inside the outer peripheral portion (the region where the partial reference light B120 is generated) is set in a state in which the laser light 310 is not transmitted by turning off the pixels of the SLM 320.
 次いで、図9に示されるように、中心部の領域において、再生時に第2のホログラムを生成するために必要な参照光の情報を有する干渉光150をSLM320で生成するとともに、外周部内側の領域において、部分参照光B120をSLM320で生成する。そして、干渉光150と部分参照光B120とにより生成されるホログラムBをホログラフィックメモリ200(記録媒体350)に記録する。このとき、外周部外側の領域については、SLM320のピクセルをオフにすることで、レーザ光310が透過しない状態とする。干渉光150の位相分布および強度分布は、後述する動作形態によって異なる。たとえば、全データピクセルについて同一位相かつ同一強度としたデータをSLM320に与え、出力された光を干渉光150として使用する。 Next, as shown in FIG. 9, in the central region, the SLM 320 generates the interference light 150 having the reference light information necessary for generating the second hologram at the time of reproduction, and the inner region of the outer peripheral portion. The partial reference beam B120 is generated by the SLM 320. Then, the hologram B generated by the interference light 150 and the partial reference light B120 is recorded in the holographic memory 200 (recording medium 350). At this time, the region outside the outer periphery is turned off by turning off the pixels of the SLM 320. The phase distribution and intensity distribution of the interference light 150 differ depending on the operation mode described later. For example, data having the same phase and the same intensity for all data pixels is given to the SLM 320, and the output light is used as the interference light 150.
 なお、図8および図9において、部分参照光A110の領域および部分参照光B120の領域には、パターンが描かれていないが、実際には、ピクセルごとに異なる位相または強度を有する参照光データをSLM320によって与える。ここで用いるSLM320は、光の位相もしくは強度またはその両方を空間的に変調できる素子である。 In FIGS. 8 and 9, no pattern is drawn in the region of the partial reference light A110 and the region of the partial reference light B120, but actually, the reference light data having a different phase or intensity for each pixel. Provided by SLM 320. The SLM 320 used here is an element that can spatially modulate the phase and / or intensity of light.
 再生時には、図10に示されるように、部分参照光A110および部分参照光B120の両方を含む参照光100をホログラフィックメモリ200に照射する。これにより、ホログラムAの回折光およびホログラムBの回折光が、同時に生成する。そして、ホログラムAの回折光が新たな信号光として機能し、ホログラムBの回折光が新たな参照光として機能することで、撮像素子360の面上に2段目のホログラム220が生成される。この後、電子的な信号処理によって、ページデータに含まれる位相変調信号を復調することができる。本発明の再生方法は、記録時に使用した参照光(部分参照光A110および部分参照光B120)を照射するのみでデータを再生できるため、強度変調型のコリニア・ホログラフィ法の再生装置と完全な互換性を有する。 During reproduction, the holographic memory 200 is irradiated with the reference light 100 including both the partial reference light A110 and the partial reference light B120, as shown in FIG. Thereby, the diffracted light of hologram A and the diffracted light of hologram B are generated simultaneously. Then, the diffracted light of the hologram A functions as new signal light, and the diffracted light of the hologram B functions as new reference light, whereby the second-stage hologram 220 is generated on the surface of the image sensor 360. Thereafter, the phase modulation signal included in the page data can be demodulated by electronic signal processing. Since the reproduction method of the present invention can reproduce data only by irradiating the reference light (partial reference light A110 and partial reference light B120) used at the time of recording, it is completely compatible with an intensity modulation type collinear holography method reproduction apparatus. Have sex.
 なお、本発明の記録方法および再生方法は、コリニア・ホログラフィ法だけではなく、様々なホログラフィ法に適用することができる。たとえば、本発明の記録方法および再生方法は、2光束干渉法にも適用することができる。以下の説明では、2光束干渉法により本発明の記録方法および再生方法を実現する場合の、ホログラフィックメモリの記録方法および再生方法について説明する。 Note that the recording method and reproducing method of the present invention can be applied not only to the collinear holography method but also to various holography methods. For example, the recording method and reproducing method of the present invention can be applied to the two-beam interference method. In the following description, a recording method and a reproducing method of the holographic memory when the recording method and the reproducing method of the present invention are realized by the two-beam interference method will be described.
 記録時には、図11に示されるように、まず、第1のSLM320(SLM1)で信号光140または干渉光150を生成するとともに、第2のSLM320(SLM2)で、部分参照光A110または部分参照光B120を生成する。そして、信号光140と部分参照光A110とにより生成されるホログラムA、および干渉光150と部分参照光B120とにより生成されるホログラムBをホログラフィックメモリ200に記録する。 At the time of recording, as shown in FIG. 11, first, the signal light 140 or the interference light 150 is generated by the first SLM 320 (SLM1), and the partial reference light A110 or the partial reference light is generated by the second SLM 320 (SLM2). B120 is generated. The hologram A generated by the signal light 140 and the partial reference light A110 and the hologram B generated by the interference light 150 and the partial reference light B120 are recorded in the holographic memory 200.
 なお、図11に示される例では、第2のSLM320(SLM2)を部分参照光A110の領域(左側半分)および部分参照光B120の領域(右側半分)に分けて使用している。第2のSLM320(SLM2)において、黒い領域は、光を透過させないことを示しており、それ以外の領域(模様を付されている領域)は、位相パターンまたは強度パターンを付与しつつ光を透過させていることを示している。第2のSLM320(SLM2)において、部分参照光A110の領域および部分参照光B120の領域にはパターンが描かれていないが、実際には、ピクセルごとに異なる位相または強度を有する参照光データを第2のSLM320(SLM2)によって与える。 In the example shown in FIG. 11, the second SLM 320 (SLM2) is divided into a partial reference light A110 region (left half) and a partial reference light B120 region (right half). In the second SLM 320 (SLM 2), a black region indicates that light is not transmitted, and other regions (regions with a pattern) transmit light while providing a phase pattern or an intensity pattern. It shows that you are letting. In the second SLM 320 (SLM2), no pattern is drawn in the area of the partial reference light A110 and the area of the partial reference light B120, but actually, the reference light data having a different phase or intensity for each pixel is obtained. 2 SLM320 (SLM2).
 再生時には、図12に示されるように、部分参照光A110および部分参照光B120の両方を含む参照光100をホログラフィックメモリ200に照射する。これにより、ホログラムAの回折光およびホログラムBの回折光が、同時に生成する。そして、ホログラムAの回折光が新たな信号光として機能し、ホログラムBの回折光が新たな参照光として機能することで、撮像素子360の面上に2段目のホログラム220が生成される。この後、電子的な信号処理によって、ページデータに含まれる位相変調信号を復調することができる。 During reproduction, the holographic memory 200 is irradiated with the reference light 100 including both the partial reference light A110 and the partial reference light B120, as shown in FIG. Thereby, the diffracted light of hologram A and the diffracted light of hologram B are generated simultaneously. Then, the diffracted light of the hologram A functions as new signal light, and the diffracted light of the hologram B functions as new reference light, whereby the second-stage hologram 220 is generated on the surface of the image sensor 360. Thereafter, the phase modulation signal included in the page data can be demodulated by electronic signal processing.
 本発明の再生方法において、位相変調信号を復調する3つの態様について説明する。 In the reproduction method of the present invention, three modes for demodulating the phase modulation signal will be described.
 1)直接検出モード(図13参照)
 記録されているページデータが2値位相変調信号の場合、直接検出モードで位相変調信号を復調することができる。干渉光は、全データピクセルについて同一強度かつ同一位相とする。再生時には、ホログラムAの回折光(2値位相変調信号)とホログラムBの回折光(干渉光)とが干渉して、2値の強度情報を含む光(干渉縞)に変換される。撮像素子は、この干渉縞における強度分布を検出する。検出された強度分布(例えば、0と1)が、データページに記録された2値位相変調信号(例えば、0とπ)にそのまま対応しているため、2値位相変調信号の復調は完了する。
1) Direct detection mode (see Fig. 13)
When the recorded page data is a binary phase modulation signal, the phase modulation signal can be demodulated in the direct detection mode. The interference light has the same intensity and the same phase for all data pixels. During reproduction, the diffracted light of the hologram A (binary phase modulation signal) and the diffracted light of the hologram B (interference light) interfere with each other and are converted into light (interference fringes) including binary intensity information. The image sensor detects the intensity distribution in the interference fringes. Since the detected intensity distribution (for example, 0 and 1) directly corresponds to the binary phase modulation signal (for example, 0 and π) recorded in the data page, the demodulation of the binary phase modulation signal is completed. .
 2)マルチショット・デュアルステージモード(図14参照)
 ホログラフィックメモリの容量を増大させるためには、多値位相変調信号または空間直交振幅変調信号を記録する必要がある。
2) Multi-shot dual stage mode (see Fig. 14)
In order to increase the capacity of the holographic memory, it is necessary to record a multilevel phase modulation signal or a spatial quadrature amplitude modulation signal.
 多値位相変調信号または空間直交振幅変調信号をマルチショット・デュアルステージモードで復調する場合、ホログラムBの回折光(干渉光)を新たな参照光とし、同時に生成されたホログラムAの回折光を新たな信号光として、2段目のホログラム(デジタルホログラム)を生成する(Ichirou Yamaguchi and Tong Zhang, "Phase-shifting digital holography", Optics Letters, Vol.22, No.16, pp.1268-1270 (1997))。このとき、部分参照光Aまたは部分参照光Bの位相をシフトしながら1段目のホログラム(ホログラムAおよびホログラムB)を再生して、位相の異なる複数(少なくとも3つ以上)のデジタルホログラムを生成する。これにより、ホログラムAの回折光に含まれるページデータの情報を復調することができる。 When demodulating a multi-level phase modulation signal or spatial quadrature amplitude modulation signal in the multi-shot dual stage mode, the diffracted light (interference light) of hologram B is used as a new reference light, and the diffracted light of hologram A generated simultaneously is newly added. Second stage hologram (digital hologram) is generated as a simple signal light (Ichirou Yamaguchi and Tong Zhang, "Phase-shifting digital holography", Optics Letters, Vol.22, No.16, pp.1268-1270 (1997 )). At this time, the first stage hologram (hologram A and hologram B) is reproduced while shifting the phase of the partial reference light A or the partial reference light B, and a plurality of (at least three) digital holograms having different phases are generated. To do. Thereby, the information of the page data included in the diffracted light of the hologram A can be demodulated.
 図14は、部分参照光Bの位相をシフトして、4枚のデジタルホログラムを生成する場合の概念図である。復調する際の信号処理は、ホログラフィックダイバシティ干渉法および位相シフト干渉法と同じ処理である(Atsushi Okamoto, Keisuke Kunori, Masanori Takabayashi, Akihisa Tomita and Kunihiro Sato, “Holographic diversity interferometry for optical storage", Optics Express, Vol.19, No.14, pp.13436-13444 (2011);P. Hariharan, "Optical Holography", Cambridge University Press, pp.291-310 (1996))。「ホログラフィックダイバシティ干渉法」は、デュアルステージ方式ホログラフィック法(非特許文献10参照)における2段目のホログラムの生成と位相変調信号の復調に用いられる。 FIG. 14 is a conceptual diagram when four digital holograms are generated by shifting the phase of the partial reference light B. The signal processing for demodulation is the same as that for holographic diversity and phase shift interferometry (AtsushiAOkamoto, kaKeisuke Kunori, Masanori Takabayashi, Akihisa Tomita and Kunihiro Sato, “Holographic diversity interferometry for optical storage”, Optics storage , Vol.19, No.14, pp.13436-13444 (2011); P. Hariharan, "Optical Holography", Cambridge University Press, pp.291-310 (1996)). The “holographic diversity interferometry” is used for generating a second-stage hologram and demodulating a phase modulation signal in a dual-stage holographic method (see Non-Patent Document 10).
 干渉光の位相変化をaとして、2段目のホログラム(デジタルホログラム)で検出される信号強度の分布をV(x,y)とすると、元信号の位相φ(x,y)および振幅A(x,y)は、以下のように求められる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 これにより、元信号の位相φ(x,y)および振幅A(x,y)を推定することができる。ここで、4枚のデジタルホログラムを生成する場合、n=1,2,3,4である。
The phase change of interference light as a n, when the distribution of the signal intensity detected by the second-stage hologram (digital holograms) and V n (x, y), the original signal phase phi (x, y) and the amplitude A (x, y) is obtained as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Thereby, the phase φ (x, y) and the amplitude A (x, y) of the original signal can be estimated. Here, when generating four digital holograms, n = 1, 2, 3, and 4.
 3)シングルショット・デュアルステージモード(図15参照)
 マルチショット・デュアルステージモードでは、多値位相変調信号を検出するために、部分参照光Bの位相をシフトしながら、再生を複数回行う必要がある。この点を改善するため、図15に示されるように、高精細なSLMを使用してデータピクセルよりも細かい位相分布を与えた干渉光をホログラフィックメモリに記録する。これにより得られるホログラムBの回折光(干渉光)を新たな参照光とし、同時に生成されたホログラムAの回折光を新たな信号光として、2段目のホログラム(デジタルホログラム)を生成する。これにより、1回の参照光の照射(シングルショット)で、位相シフトした複数のデジタルホログラム情報を検出することができる。
3) Single-shot / dual-stage mode (see Fig. 15)
In the multi-shot dual stage mode, it is necessary to perform reproduction a plurality of times while shifting the phase of the partial reference light B in order to detect a multi-level phase modulation signal. In order to improve this point, as shown in FIG. 15, interference light having a finer phase distribution than the data pixel is recorded in the holographic memory using a high-definition SLM. The diffracted light (interference light) of hologram B thus obtained is used as a new reference light, and the diffracted light of hologram A generated at the same time is used as a new signal light to generate a second-stage hologram (digital hologram). As a result, a plurality of phase-shifted digital hologram information can be detected by one reference light irradiation (single shot).
 たとえば、図15に示されるように、信号光の1つのデータピクセルの中に干渉光のデータピクセル(サブピクセル)が4つ含まれるように変調する。干渉光の位相は、信号光の1つのデータピクセルの中で、0,π/2,π,3π/2の4つの値をとる。この場合、1回の検出で、位相シフトした4枚分のデジタルホログラム情報を検出することができる。復調のための信号処理は、マルチショットモードにおいて時系列に得られる4枚分のデジタルホログラム情報の代わりに、シングルショットモードでは同時に得られる4枚分のデジタルホログラム情報を使用すればよい(マルチショットモードと等価な処理)。 For example, as shown in FIG. 15, modulation is performed so that four data pixels (subpixels) of interference light are included in one data pixel of signal light. The phase of the interference light takes four values of 0, π / 2, π, and 3π / 2 in one data pixel of the signal light. In this case, it is possible to detect the digital hologram information for four sheets shifted in phase by one detection. In the signal processing for demodulation, instead of the digital hologram information for four images obtained in time series in the multi-shot mode, the digital hologram information for four images obtained simultaneously in the single-shot mode may be used (multi-shot). Equivalent to mode).
 なお、シングルショット・デュアルステージモードでは、干渉光ではなく、信号光または信号光と干渉光の両方に位相分布を与えてもよい。図16は、干渉光に位相分布を与える場合の信号光および干渉光の位相分布を示す図である(図15と同じ内容)。図16Aは、信号光の1つのデータピクセルを示し、図16Bは、干渉光の4つのサブピクセルの位相分布を示す図である。この態様では、信号光の1つのデータピクセルに対し、干渉光の4つのサブピクセルが対応しており、4つのサブピクセルの位相を互いに異なるものとしている。 In the single shot / dual stage mode, the phase distribution may be given not to the interference light but to the signal light or both the signal light and the interference light. FIG. 16 is a diagram showing the phase distribution of the signal light and the interference light when giving the phase distribution to the interference light (the same contents as FIG. 15). FIG. 16A shows one data pixel of signal light, and FIG. 16B shows the phase distribution of four sub-pixels of interference light. In this aspect, four subpixels of interference light correspond to one data pixel of signal light, and the phases of the four subpixels are different from each other.
 図17は、信号光のみ、または信号光と干渉光の両方に位相分布を与える場合の信号光および干渉光の位相分布を示す図である。図17Aは、信号光の1つのデータピクセルを示し、図17Bは、干渉光の1つのデータピクセルの位相分布を示す図である。この態様では、信号光の1つのデータピクセルが4つのサブピクセルに分割されており、信号光の4つのサブピクセルのそれぞれに干渉光の4つのサブピクセルが対応している。 FIG. 17 is a diagram showing the phase distribution of the signal light and the interference light when the phase distribution is given only to the signal light or to both the signal light and the interference light. FIG. 17A shows one data pixel of signal light, and FIG. 17B shows a phase distribution of one data pixel of interference light. In this aspect, one data pixel of signal light is divided into four subpixels, and four subpixels of interference light correspond to each of the four subpixels of signal light.
 図17に示される例において、信号光の4つのサブピクセルに加える位相値をそれぞれα1,α2,α3,α4とする。また、信号光の各サブピクセルに対応する干渉光のサブピクセルの位相値をβ1,β2,β3,β4とする。このとき、
  β1-α1=0              …(A1)
  β2-α2=π/2(または-3π/2)  …(A2)
  β3-α3=π(または-π)       …(A3)
  β4-α4=3π/2(または-π/2)  …(A4)
 を満たすように、α1~α4およびβ1~β4の値を選択することで、図15に示される態様と同様に、1回の検出で、位相シフトした4枚分のデジタルホログラム情報を検出することができる。たとえば、干渉光の位相を一定にして、信号光の1つのデータピクセルを4つのサブピクセルに分割し、信号光の位相φに0,3π/2,π,π/2を加える場合、
  β1=β2=β3=β4=0
  α1=0,α2=3π/2,α3=π,α4=π/2
 となる。また、信号光および干渉光の両方のサブピクセルに上記式(A1)~(A4)を満たす位相分布を加え、かつ干渉光の各サブピクセルの位相の組み合わせを、信号光のデータピクセルごとに異なる値とすることで、干渉光のスペクトルが記録媒体の特定位置に集中することを避けることができ、結果として性能の向上を期待することができる(実施例5参照)。
In the example shown in FIG. 17, the phase values applied to the four subpixels of the signal light are α1, α2, α3, and α4, respectively. Further, the phase values of the subpixels of the interference light corresponding to the subpixels of the signal light are β1, β2, β3, and β4. At this time,
β1-α1 = 0 (A1)
β2-α2 = π / 2 (or -3π / 2) (A2)
β3-α3 = π (or -π) (A3)
β4-α4 = 3π / 2 (or -π / 2) (A4)
By selecting the values of α1 to α4 and β1 to β4 so as to satisfy the conditions, the digital hologram information for the four phase-shifted images can be detected by one detection as in the embodiment shown in FIG. Can do. For example, when the phase of the interference light is made constant, one data pixel of the signal light is divided into four subpixels, and 0, 3π / 2, π, and π / 2 are added to the phase φ of the signal light.
β1 = β2 = β3 = β4 = 0
α1 = 0, α2 = 3π / 2, α3 = π, α4 = π / 2
It becomes. Further, a phase distribution satisfying the above formulas (A1) to (A4) is added to both the sub-pixels of the signal light and the interference light, and the phase combination of each sub-pixel of the interference light is different for each data pixel of the signal light By setting the value, it can be avoided that the spectrum of the interference light is concentrated at a specific position of the recording medium, and as a result, an improvement in performance can be expected (see Example 5).
 以上のコリニア・ホログラフィ法に関する説明では、外周部外側の参照光パターンを信号光の記録に使用し(部分参照光A)、外周部内側の参照光パターンを干渉光の記録に使用した(部分参照光B)が、参照光の分割パターンはこれに限定されない。たとえば、図18Aに示されるように、外周部外側の領域を部分参照光B120に使用し、外周部内側の領域を部分参照光A110に使用してもよい。また、図18Bに示されるように、外周部の領域を円周方向に分割してもよい。 In the above description of the collinear holography method, the reference light pattern outside the outer peripheral part is used for recording signal light (partial reference light A), and the reference light pattern inside the outer peripheral part is used for recording interference light (partial reference). For the light B), the division pattern of the reference light is not limited to this. For example, as shown in FIG. 18A, the outer region may be used for the partial reference light B120, and the outer region may be used for the partial reference light A110. Further, as shown in FIG. 18B, the outer peripheral region may be divided in the circumferential direction.
 本発明の記録方法では、信号光に加えて干渉光も記録するため、記録媒体のダイナミックレンジの消費が問題となる。しかしながら、この問題は、1つの干渉光に複数の信号光(ページデータ)を対応させることで容易に解決することができる。 In the recording method of the present invention, since interference light is recorded in addition to signal light, consumption of the dynamic range of the recording medium becomes a problem. However, this problem can be easily solved by making a plurality of signal lights (page data) correspond to one interference light.
 たとえば、図9および図11に示されるように、n枚の信号ページデータと共に1つの干渉光を多重記録する。この場合、まず、SLM320により干渉光(phantom)および部分参照光B(ref0)を生成し、記録媒体350にホログラムBを記録する。次いで、SLMによりページデータ#1を含む信号光(sig1)および第1の部分参照光A(ref1)を生成して、記録媒体350に第1のホログラムAを記録する。次いで、SLMによりページデータ#2を含む信号光(sig2)および第2の部分参照光A(ref2)を生成して、記録媒体350に第2のホログラムAを記録する。ここで、第1の信号光(sig1)を記録する時に使用する部分参照光A(ref1)と、第2の信号光(sig2)を記録する時に使用する部分参照光A(ref2)とは、位相または強度分布の異なるパターンを用いる。これにより、第1の信号光(sig1)および第2の信号光(sig2)の多重記録を実現することができる。同様に、ページデータ#3~#nを含む信号光(sig3~sign)についても、部分参照光Aのパターン(ref3~refn)を変化させて記録媒体350に多重記録することができる。 For example, as shown in FIGS. 9 and 11, one interference light is multiplexed and recorded together with n signal page data. In this case, first, interference light (phantom) and partial reference light B (ref0) are generated by the SLM 320, and the hologram B is recorded on the recording medium 350. Next, signal light (sig 1) including page data # 1 and first partial reference light A (ref 1) are generated by the SLM, and the first hologram A is recorded on the recording medium 350. Next, signal light (sig 2) including page data # 2 and second partial reference light A (ref 2) are generated by the SLM, and the second hologram A is recorded on the recording medium 350. Here, the partial reference light A (ref1) used when recording the first signal light (sig1) and the partial reference light A (ref2) used when recording the second signal light (sig2) are: Use patterns with different phases or intensity distributions. Thereby, multiple recording of the first signal light (sig1) and the second signal light (sig2) can be realized. Similarly, signal light (sig3 to sign) including page data # 3 to #n can be multiplexed and recorded on the recording medium 350 by changing the pattern (ref3 to refn) of the partial reference light A.
 再生時には、図10および図12に示されるように、ページデータ#1を再生したい場合には、干渉光の記録に用いた部分参照光B(ref0)と、ページデータ#1を含む信号光を記録したときに用いた第1の部分参照光A(ref1)とを含む参照光100をSLM320で生成して、記録媒体350に照射する。これにより、干渉光(phantom;ホログラムBの回折光)および信号光(sig1;第1のホログラムAの回折光)が同時に生成する。同様に、ページデータ#2を再生したい場合には、部分参照光B(ref0)および第2の部分参照光A(ref2)を含む参照光をSLM320で生成して、記録媒体350に照射する。これにより、干渉光(phantom;ホログラムBの回折光)および信号光(sig2;第2のホログラムAの回折光)が同時に生成する。 At the time of reproduction, as shown in FIGS. 10 and 12, when it is desired to reproduce page data # 1, partial reference light B (ref0) used for recording interference light and signal light including page data # 1 are used. The reference light 100 including the first partial reference light A (ref1) used at the time of recording is generated by the SLM 320, and irradiated to the recording medium 350. Thereby, interference light (phantom; diffracted light of hologram B) and signal light (sig1; diffracted light of first hologram A) are generated simultaneously. Similarly, when it is desired to reproduce the page data # 2, reference light including partial reference light B (ref0) and second partial reference light A (ref2) is generated by the SLM 320 and applied to the recording medium 350. Thereby, interference light (phantom; diffracted light of hologram B) and signal light (sig2; diffracted light of second hologram A) are generated simultaneously.
 このように、1つの干渉光に対して、部分参照光Aのパターンを変化させながら複数のページデータを多重記録することで、1つの干渉光によって複数のページデータを記録および再生することが可能となる。その結果、干渉光の記録および再生によるダイナミックレンジの消費の問題を大きく低減すると共に、記憶容量の大幅な増大が可能となる。 As described above, a plurality of page data can be recorded and reproduced by one interference light by multiplex recording a plurality of page data while changing the pattern of the partial reference light A with respect to one interference light. It becomes. As a result, the problem of consumption of the dynamic range due to the recording and reproduction of interference light can be greatly reduced, and the storage capacity can be greatly increased.
 さらに、本発明の記録方法および再生方法では、1つの干渉光に対して複数の信号光(ページデータ)を対応させることで得られる複数のホログラムを1つのホログラムユニットとして扱うことが可能である。このホログラムユニットを、従来の角度多重方式やシフト多重方式、波長多重方式などの多重記録方法と組み合わせることで、飛躍的な記憶容量の向上を実現することができる。 Furthermore, in the recording method and reproducing method of the present invention, a plurality of holograms obtained by associating a plurality of signal lights (page data) with one interference light can be handled as one hologram unit. By combining this hologram unit with a multiplex recording method such as a conventional angle multiplex method, shift multiplex method, or wavelength multiplex method, a dramatic improvement in storage capacity can be realized.
 なお、本発明の記録方法および再生方法は、ホログラフィックメモリ以外の光メモリにも適用可能である。たとえば、位相情報を含む信号光を光メモリAに記録し、干渉光を光メモリBに記録する。その後、光メモリAおよび光メモリBを同時に再生することで得られる2つの再生光を互いに干渉させる。このようにすることで、位相情報を強度情報に変換して、光メモリAに記録された位相情報を強度検出器によって復調することができる。 Note that the recording method and reproducing method of the present invention can also be applied to optical memories other than holographic memories. For example, signal light including phase information is recorded in the optical memory A, and interference light is recorded in the optical memory B. Thereafter, two reproduction lights obtained by simultaneously reproducing the optical memory A and the optical memory B are caused to interfere with each other. By doing so, the phase information can be converted into intensity information, and the phase information recorded in the optical memory A can be demodulated by the intensity detector.
 本発明のホログラフィックメモリの記録装置は、本発明の記録方法により、ホログラフィックメモリに空間位相変調信号または空間直交振幅変調信号を記録する。本発明のホログラフィックメモリの記録装置は、ホログラムA記録部およびホログラムB記録部を有する。ホログラムA記録部は、ホログラフィックメモリの特定箇所に、空間位相変調信号または空間直交振幅変調信号を含む信号光と部分参照光Aとを照射して、信号光と部分参照光Aとにより生成されるホログラムAを記録する。ホログラムB記録部は、ホログラフィックメモリの同一箇所に、干渉光と部分参照光Bとを照射して、干渉光と部分参照光Bとにより生成されるホログラムBを記録する。後述する実施例3に示されるように、ホログラムA記録部およびホログラムB記録部は、同一の光学系により実現されていてもよい。 The recording device of the holographic memory of the present invention records a spatial phase modulation signal or a spatial quadrature amplitude modulation signal in the holographic memory by the recording method of the present invention. The recording device of the holographic memory of the present invention has a hologram A recording unit and a hologram B recording unit. The hologram A recording unit is generated by the signal light and the partial reference light A by irradiating a specific portion of the holographic memory with the signal light including the spatial phase modulation signal or the spatial quadrature amplitude modulation signal and the partial reference light A. Hologram A is recorded. The hologram B recording unit records the hologram B generated by the interference light and the partial reference light B by irradiating the same position of the holographic memory with the interference light and the partial reference light B. As shown in Example 3 described later, the hologram A recording unit and the hologram B recording unit may be realized by the same optical system.
 本発明のホログラフィックメモリの再生装置は、本発明の再生方法により、ホログラフィックメモリに記録された空間位相変調信号または空間直交振幅変調信号を再生する。本発明のホログラフィックメモリの再生装置は、ホログラム回折光生成部および復調部を有する。ホログラム回折光生成部は、ホログラフィックメモリの特定箇所に、部分参照光Aおよび部分参照光Bを同時に照射して、ホログラムAの回折光と、ホログラムAの回折光に干渉しうるホログラムBの回折光とを同時に生成する。復調部は、ホログラムAの回折光およびホログラムBの回折光を用いて、前記空間位相変調信号または前記空間直交振幅変調信号を復調する。後述する実施例3に示されるように、ホログラム回折光生成部は、1つの光学系により実現されていてもよい。 The reproducing apparatus for a holographic memory according to the present invention reproduces a spatial phase modulation signal or a spatial quadrature amplitude modulation signal recorded in the holographic memory by the reproducing method according to the present invention. The reproducing device for a holographic memory according to the present invention includes a hologram diffracted light generation unit and a demodulation unit. The hologram diffracted light generation unit simultaneously irradiates a specific portion of the holographic memory with the partial reference light A and the partial reference light B, thereby diffracting the hologram A and the hologram B that can interfere with the diffracted light of the hologram A. It produces light at the same time. The demodulation unit demodulates the spatial phase modulation signal or the spatial quadrature amplitude modulation signal using the diffracted light of the hologram A and the diffracted light of the hologram B. As shown in Example 3 to be described later, the hologram diffracted light generation unit may be realized by one optical system.
 以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 [実施例1]
 実施例1では、本発明のホログラフィックメモリの記録方法および再生方法を用いて、16値空間直交振幅変調信号(16-SQAM)の記録および再生のシミュレーションを行った結果を示す。
[Example 1]
Example 1 shows the results of simulation of recording and reproduction of a 16-value spatial quadrature amplitude modulation signal (16-SQAM) using the recording method and reproducing method of the holographic memory of the present invention.
 信号点を円上に並べるだけでは8つ程度の位相状態より多くを配列しようとすると互いの信号波形が類似してしまい、位相変調だけで多くの信号状態を詰め込むのは好ましくない。そこで、位相変調に振幅変調も加えることでより多くの信号状態を持たせた変調方式が空間直交振幅変調(SQAM)である。 で は Arranging more than 8 phase states just by arranging signal points on a circle makes the signal waveforms similar to each other, and it is not preferable to pack many signal states by phase modulation alone. Therefore, a spatial quadrature amplitude modulation (SQAM) is a modulation system that gives more signal states by adding amplitude modulation to phase modulation.
 変調する信号の同相成分をIとし、直交成分をQとしたとき、これらの信号はそれぞれ以下のように表すことができる。
Figure JPOXMLDOC01-appb-M000003
When the in-phase component of the signal to be modulated is I and the quadrature component is Q, these signals can be expressed as follows.
Figure JPOXMLDOC01-appb-M000003
 ここで、光波の角周波数をωとし、時間をtとし、波数をkとし、空間変数をrとすると、三角関数の加法定理より、
Figure JPOXMLDOC01-appb-M000004
 と表される。すなわち、信号の同相成分Iおよび直交成分Qを変調することは、光波の振幅Aと位相φを変調することと等価である。以上より、空間直交振幅変調信号の記録および再生が可能であるということは、多値位相変調信号、多値振幅変調信号およびこれらを組み合わせた様々な変調信号を記録再生することが可能であることを意味する。
Here, when the angular frequency of the light wave is ω, the time is t, the wave number is k, and the spatial variable is r, from the addition theorem of the trigonometric function,
Figure JPOXMLDOC01-appb-M000004
It is expressed. That is, modulating the in-phase component I and the quadrature component Q of the signal is equivalent to modulating the amplitude A and the phase φ of the light wave. From the above, the fact that recording and reproduction of spatial quadrature amplitude modulation signals is possible means that it is possible to record and reproduce multilevel phase modulation signals, multilevel amplitude modulation signals, and various modulation signals combining these. Means.
 本実施例で用いた16値空間直交振幅変調信号(16-SQAM)のダイアグラムを図19に示す。図の横軸は「実軸」または「I軸」と呼ばれ、縦軸は「虚軸」または「Q軸」と呼ばれる。これらは、式(3)の変数IおよびQに対応する。ダイアグラム上にプロットされている点は、「信号点」と呼ばれる。複数の信号点によって、1セットの変調符号が表される。また、このダイアグラムが表す複素平面は、両軸の「0」点を中心として信号の振幅および位相を示している。「0」点からの距離が振幅を表し、「0」点に対する角度が位相を表している。したがって、中心から等距離に位置するが、中心に対して異なる角度に位置する複数のシンボルは、信号波形の振幅は等しいが、位相は互いに異なっている。 FIG. 19 shows a diagram of the 16-value spatial quadrature amplitude modulation signal (16-SQAM) used in this example. The horizontal axis in the figure is called “real axis” or “I axis”, and the vertical axis is called “imaginary axis” or “Q axis”. These correspond to the variables I and Q in equation (3). The points plotted on the diagram are called “signal points”. A set of modulation codes is represented by a plurality of signal points. Further, the complex plane represented by this diagram shows the amplitude and phase of the signal with the “0” point on both axes as the center. The distance from the “0” point represents the amplitude, and the angle with respect to the “0” point represents the phase. Therefore, although the symbols are located at the same distance from the center but are located at different angles with respect to the center, the symbols have the same signal waveform amplitude but different phases.
 本実施例では、本発明の記録方法および再生方法を用いて、16値空間直交振幅変調信号(16-SQAM)を記録および再生した場合のシミュレーションを行った。数値解析ツールは、FFT-BPM(高速フーリエ変換ビーム伝搬法)を用いた(Junya Tanaka, Atsushi Okamoto and Motoki Kitano, "Development of Image-Based Simulation for Holographic Data Storage System by Fast Fourier Transform Beam-Propagation Method", Japanese Journal of Applied Physics, Vol.48, No.3 (Issue 2), pp.03A028(1-5).)。数値解析に用いたパラメータを表1に示す。
Figure JPOXMLDOC01-appb-T000001
In this example, simulation was performed when a 16-value spatial quadrature amplitude modulation signal (16-SQAM) was recorded and reproduced using the recording method and the reproducing method of the present invention. The numerical analysis tool used was FFT-BPM (Junya Tanaka, Atsushi Okamoto and Motoki Kitano, "Development of Image-Based Simulation for Holographic Data Storage System by Fast Fourier Transform Beam-Propagation Method". , Japanese Journal of Applied Physics, Vol.48, No.3 (Issue 2), pp.03A028 (1-5).). Table 1 shows the parameters used for the numerical analysis.
Figure JPOXMLDOC01-appb-T000001
 記録に用いた信号ページデータ(空間直交振幅変調信号)を図20に示す。図20に示されるように、信号ページデータの大きさは32×32ピクセルである。信号ページデータの各ピクセルは、図20Aに示される位相情報φ(x,y)および図20Bに示される振幅情報A(x,y)の両方の値を有している。すなわち、図20Aに示される位相情報φ(x,y)および図20Bに示される振幅情報A(x,y)を合わせて1つの信号ページデータが表現される)。図20Aに示される位相情報は、可視化のためグレースケールで描かれている。 The signal page data (spatial quadrature amplitude modulation signal) used for recording is shown in FIG. As shown in FIG. 20, the size of the signal page data is 32 × 32 pixels. Each pixel of the signal page data has both values of the phase information φ (x, y) shown in FIG. 20A and the amplitude information A (x, y) shown in FIG. 20B. That is, one signal page data is expressed by combining the phase information φ (x, y) shown in FIG. 20A and the amplitude information A (x, y) shown in FIG. 20B. The phase information shown in FIG. 20A is drawn in gray scale for visualization.
 また、記録および再生に用いた参照光の強度パターンを図21に示す。図21Aは、部分参照光Aの強度パターンであり、外周部外側に位置している。図21Bは、部分参照光Bの強度パターンであり、外周部内側に位置している(図8参照)。 FIG. 21 shows the intensity pattern of the reference light used for recording and reproduction. FIG. 21A shows an intensity pattern of the partial reference light A, which is located outside the outer peripheral portion. FIG. 21B shows an intensity pattern of the partial reference light B, which is located inside the outer peripheral portion (see FIG. 8).
 今回のシミュレーションでは、記録媒体として標準的なフォトポリマーを仮定し、信号ページデータ(信号光)および干渉光を多重記録した。記録されたホログラム(ホログラムAおよびホログラムB)に、参照光(部分参照光Aおよび部分参照光B)を照射して、ホログラムAの回折光およびホログラムBの回折光を発生させた。 In this simulation, a standard photopolymer was assumed as a recording medium, and signal page data (signal light) and interference light were multiplexed and recorded. The recorded holograms (hologram A and hologram B) were irradiated with reference light (partial reference light A and partial reference light B) to generate diffracted light of hologram A and diffracted light of hologram B.
 (マルチショット・デュアルステージモードによる復調)
 マルチショット・デュアルステージモード(図14参照)では、再生時に部分参照光Bの位相をSLMによって0,π/2,π,3π/2と順次変化させて、ホログラムBの回折光の位相を0,π/2,π,3π/2と順次変化させることで、4枚の2段目のホログラム(デジタルホログラム)が得られた。これら4枚のデジタルホログラムを光電変換して得られる信号強度分布を図22に示す。図22Aは、部分参照光Bの位相が0のときのデジタルホログラムであり、図22Bは、部分参照光Bの位相がπ/2のときのデジタルホログラムであり、図22Cは、部分参照光Bの位相がπのときのデジタルホログラムであり、図22Dは、部分参照光Bの位相が3π/2のときのデジタルホログラムである。
(Demodulation by multi-shot dual stage mode)
In the multi-shot dual stage mode (see FIG. 14), the phase of the partial reference light B is sequentially changed to 0, π / 2, π, 3π / 2 by the SLM during reproduction, and the phase of the diffracted light of the hologram B is 0. , Π / 2, π, and 3π / 2 were sequentially changed to obtain four second-stage holograms (digital holograms). The signal intensity distribution obtained by photoelectric conversion of these four digital holograms is shown in FIG. 22A is a digital hologram when the phase of the partial reference light B is 0, FIG. 22B is a digital hologram when the phase of the partial reference light B is π / 2, and FIG. 22C is a partial reference light B. FIG. 22D is a digital hologram when the phase of the partial reference light B is 3π / 2.
 これらの4枚の信号強度分布から、上記式(1)および式(2)を用いて復調したページデータを図23に示す。図23Aは、復調したページデータの位相情報であり、図23Bは、復調したページデータの振幅情報である(図20と比較参照)。 FIG. 23 shows the page data demodulated from the four signal intensity distributions using the above formulas (1) and (2). FIG. 23A shows phase information of demodulated page data, and FIG. 23B shows amplitude information of demodulated page data (see comparison with FIG. 20).
 図24は、復調したページデータの信号点分布を示すグラフである。このグラフから、16値空間直交振幅変調信号(16-SQAM)が明瞭に分離されていることがわかる。 FIG. 24 is a graph showing the signal point distribution of demodulated page data. From this graph, it can be seen that the 16-value spatial quadrature amplitude modulation signal (16-SQAM) is clearly separated.
 今回のシミュレーションで生じたエラーの数は2個であった。ページデータのシンボル数は1024個(32×32)であることから、シンボルエラーレートは1.95×10-3である。これは、現状のホログラフィックメモリにおけるエラー訂正能力(1×10-2)を考慮すると、実用上十分な性能といえる。 The number of errors that occurred in this simulation was two. Since the number of symbols of page data is 1024 (32 × 32), the symbol error rate is 1.95 × 10 −3 . This is a practically sufficient performance considering the error correction capability (1 × 10 −2 ) in the current holographic memory.
 (シングルショット・デュアルステージモードによる復調)
 シングルショット・デュアルステージモード(図15参照)では、記録時に干渉光の位相をSLMによって変化させることで、1つの信号データピクセルの中に4つの異なる位相(0,π/2,π,3π/2)を持った1枚の2段目のホログラム(デジタルホログラム)が得られた。このデジタルホログラムを光電変換して得られる信号強度分布を図25に示す。図25に示される信号領域(中央の四角い部分)は、図22と比較すると縦横それぞれ2倍、すなわち4倍の細かさを有している。
(Demodulation by single shot / dual stage mode)
In the single shot dual stage mode (see FIG. 15), the phase of the interference light is changed by the SLM during recording, so that four different phases (0, π / 2, π, 3π / One second-stage hologram (digital hologram) having 2) was obtained. FIG. 25 shows a signal intensity distribution obtained by photoelectric conversion of this digital hologram. The signal area (square portion at the center) shown in FIG. 25 is twice as fine as that of FIG.
 この信号強度分布から、上記式(1)および式(2)を用いて復調したページデータを図26に示す。図26Aは、復調したページデータの位相情報であり、図26Bは、復調したページデータの振幅情報である(図20と比較参照)。 FIG. 26 shows the page data demodulated from the signal intensity distribution using the above equations (1) and (2). FIG. 26A shows phase information of demodulated page data, and FIG. 26B shows amplitude information of demodulated page data (see comparison with FIG. 20).
 図27は、復調したページデータの信号点分布を示すグラフである。このグラフから、16値空間直交振幅変調信号(16-SQAM)が明瞭に分離されていることがわかる。 FIG. 27 is a graph showing the signal point distribution of demodulated page data. From this graph, it can be seen that the 16-value spatial quadrature amplitude modulation signal (16-SQAM) is clearly separated.
 今回のシミュレーションで生じたエラーの数は3個であった。前述の通り、ページデータのシンボル数は1024個であることから、シンボルエラーレートは2.93×10-3である。これは、現状のホログラフィックメモリにおけるエラー訂正能力(1×10-2)を考慮すると、実用上十分な性能といえる。 The number of errors that occurred in this simulation was three. As described above, since the number of symbols in the page data is 1024, the symbol error rate is 2.93 × 10 −3 . This is a practically sufficient performance considering the error correction capability (1 × 10 −2 ) in the current holographic memory.
 [実施例2]
 実施例2では、本発明のホログラフィックメモリの記録方法および再生方法において、1つの干渉光に対して複数の信号ページデータを多重記録する場合の動作検証を行った。
[Example 2]
In Example 2, in the recording method and the reproducing method of the holographic memory of the present invention, operation verification was performed when a plurality of signal page data was recorded in a multiplexed manner with respect to one interference light.
 本実施例では、4値空間位相変調信号(4-SPM)を記録および再生した場合のシミュレーションを行った。数値解析ツールとしては、実施例1と同一のFFT-BPM(高速フーリエ変換ビーム伝搬法)を用いた。数値解析に用いたパラメータは、実施例1と同様である(表1参照)。 In this example, a simulation was performed when a 4-level spatial phase modulation signal (4-SPM) was recorded and reproduced. As the numerical analysis tool, the same FFT-BPM (Fast Fourier Transform Beam Propagation Method) as in Example 1 was used. The parameters used for the numerical analysis are the same as in Example 1 (see Table 1).
 記録に用いた3枚の信号ページデータ(4値位相変調信号)を図28に示す。図28Aは、信号ページデータ#1の位相情報φ(x,y)を示し、図28Bは、信号ページデータ#2の位相情報φ(x,y)を示し、図28Cは、信号ページデータ#3の位相情報φ(x,y)を示している。各ピクセルの位相は、0,π/2,π,3π/2の4値のいずれかである。図28に示されるように、信号ページデータの大きさは32×32ピクセルである。図28に示される位相情報は、可視化のためグレースケールで描かれている。 FIG. 28 shows three signal page data (four-level phase modulation signal) used for recording. 28A shows the phase information φ (x, y) of the signal page data # 1, FIG. 28B shows the phase information φ (x, y) of the signal page data # 2, and FIG. 28C shows the signal page data # 1. 3 shows phase information φ (x, y). The phase of each pixel is one of four values of 0, π / 2, π, and 3π / 2. As shown in FIG. 28, the size of the signal page data is 32 × 32 pixels. The phase information shown in FIG. 28 is drawn in gray scale for visualization.
 今回のシミュレーションでは、記録媒体として標準的なフォトポリマーを仮定し、1つの干渉光に対して3枚の信号ページデータを多重記録した。記録されたホログラム(ホログラムAおよびホログラムB)に、参照光(部分参照光Aおよび部分参照光B)を照射して、ホログラムAの回折光およびホログラムBの回折光を発生させた。 In this simulation, assuming that a standard photopolymer was used as a recording medium, three signal page data were multiplexed and recorded for one interference light. The recorded holograms (hologram A and hologram B) were irradiated with reference light (partial reference light A and partial reference light B) to generate diffracted light of hologram A and diffracted light of hologram B.
 (マルチショット・デュアルステージモードによる復調)
 マルチショット・デュアルステージモード(図14参照)を用いて得られる4枚の2段目のホログラムから、上記式(1)および式(2)を用いて復調したページデータ(アナログデータ)を図29に示す。図29Aは、復調した信号ページデータ#1の位相情報を示し、図29Bは、復調した信号ページデータ#2の位相情報を示し、図29Cは、復調した信号ページデータ#3の位相情報を示している。
(Demodulation by multi-shot dual stage mode)
FIG. 29 shows page data (analog data) demodulated using the above equations (1) and (2) from four second-stage holograms obtained using the multi-shot dual-stage mode (see FIG. 14). Shown in 29A shows phase information of demodulated signal page data # 1, FIG. 29B shows phase information of demodulated signal page data # 2, and FIG. 29C shows phase information of demodulated signal page data # 3. ing.
 図29の信号ページデータは、演算直後のアナログ値であるため、閾値処理により位相4値のデジタルデータに変換した。変換されたページデータ(デジタルデータ)を図30に示す。図30Aは、復調した信号ページデータ#1の位相情報を示し、図30Bは、復調した信号ページデータ#2の位相情報を示し、図30Cは、復調した信号ページデータ#3の位相情報を示している(図28と比較参照)。 29. Since the signal page data in FIG. 29 is an analog value immediately after the calculation, the signal page data is converted into digital data having a phase 4 value by threshold processing. The converted page data (digital data) is shown in FIG. 30A shows phase information of demodulated signal page data # 1, FIG. 30B shows phase information of demodulated signal page data # 2, and FIG. 30C shows phase information of demodulated signal page data # 3. (See comparison with FIG. 28).
 図31は、復調した各ページデータの信号点分布を示すグラフである。図31Aは、信号ページデータ#1の信号点分布を示し、図31Bは、信号ページデータ#2の信号点分布を示し、図31Cは、信号ページデータ#3の信号点分布を示している。これらのグラフから、4値空間位相変調信号(4-SPM)が明瞭に分離されていることがわかる。 FIG. 31 is a graph showing the signal point distribution of each demodulated page data. 31A shows the signal point distribution of the signal page data # 1, FIG. 31B shows the signal point distribution of the signal page data # 2, and FIG. 31C shows the signal point distribution of the signal page data # 3. From these graphs, it can be seen that the quaternary spatial phase modulation signal (4-SPM) is clearly separated.
 今回のシミュレーションで生じたエラーの数は、3枚の信号ページデータの合計で1個であった。ページデータのシンボル数は3072個(32×32×3)であることから、シンボルエラーレートは3.26×10-4である。これは、現状のホログラフィックメモリにおけるエラー訂正能力(1×10-2)を考慮すると、実用上十分な性能といえる。 The number of errors that occurred in this simulation was one in total for the three signal page data. Since the number of symbols of page data is 3072 (32 × 32 × 3), the symbol error rate is 3.26 × 10 −4 . This is a practically sufficient performance considering the error correction capability (1 × 10 −2 ) in the current holographic memory.
 [実施例3]
 実施例3では、本発明のホログラフィックメモリの記録方法および再生方法を用いて、2値空間位相変調信号(2-SPM)の記録および再生を実際に行った結果を示す。
[Example 3]
Example 3 shows the result of actually recording and reproducing a binary spatial phase modulation signal (2-SPM) using the recording method and reproducing method of the holographic memory of the present invention.
 図32は、実験に用いたホログラフィックメモリ記録再生装置の構成を示す模式図である。このホログラフィックメモリ記録再生装置は、コリニア・ホログラフィ法によりホログラム(ホログラムAおよびホログラムB)の記録および再生を行う。2値空間位相変調信号の検出は、直接検出モードで行った(図13参照)。 FIG. 32 is a schematic diagram showing the configuration of the holographic memory recording / reproducing apparatus used in the experiment. This holographic memory recording / reproducing apparatus records and reproduces holograms (hologram A and hologram B) by a collinear holography method. The binary spatial phase modulation signal was detected in the direct detection mode (see FIG. 13).
 図32に示されるように、ホログラフィックメモリ記録再生装置は、レーザ光源(Laser)、ビーム拡大光学系(BE)、半波長板(HWP)、偏光子(Pol.)、ランダム位相板(RPM)、強度変調空間光変調器(SLM(Intensity))、第1のレンズ(Lens 1)、ミラー(Mirror)、第2のレンズ(Lens 2)、ビームスプリッタ(BS)、位相変調空間光変調器(SLM(Phase))、第3のレンズ(Lens3)、第4のレンズ(Lens 4)、第5のレンズ(Lens 5)、第6のレンズ(Lens 6)、NDフィルタ(NDF)、第7のレンズ(Lens 7)およびCCDカメラ(CCD)を有する。このホログラフィックメモリ記録再生装置は、第5のレンズ(Lens 5)と第6のレンズ(Lens 6)との間に記録媒体(Media)を設置して、記録および再生を行う。記録媒体には、ホログラム記録に一般的に使用されているフォトポリマーを使用した。 As shown in FIG. 32, the holographic memory recording / reproducing apparatus includes a laser light source (Laser), a beam expanding optical system (BE), a half-wave plate (HWP), a polarizer (Pol.), And a random phase plate (RPM). , Intensity modulation spatial light modulator (SLM (Intensity)), first lens (LensL1), mirror (Mirror), second lens (Lens 2), beam splitter (BS), phase modulation spatial light modulator ( SLM (Phase)), third lens (Lens3), fourth lens (Lens 4), fifth lens (Lens 5), sixth lens (Lens 6), ND filter (NDF), seventh It has a lens (Lens 7) and a CCD camera (CCD). This holographic memory recording / reproducing apparatus performs recording and reproduction by installing a recording medium (Media) between the fifth lens (Lens 5) and the sixth lens (Lens 6). As a recording medium, a photopolymer generally used for hologram recording was used.
 図32に示されるように、レーザ光源から射出された光は、ビーム拡大光学系(BE)で適切な大きさに拡大され、半波長板(HWP)により偏光方向が調整される。ランダム位相板(RPM)には、光にランダムな位相を付与することで、ホログラムの中心部に光強度が集中することを防ぐ効果がある。 32, the light emitted from the laser light source is enlarged to an appropriate size by a beam expanding optical system (BE), and the polarization direction is adjusted by a half-wave plate (HWP). The random phase plate (RPM) has an effect of preventing the light intensity from being concentrated at the center of the hologram by giving a random phase to the light.
 強度変調SLMは、SLM本体と、その両側に配置された2つの偏光子により構成される。強度変調SLMは、部分参照光Aと部分参照光Bとの切り替え、および信号光の照射切り替えに使用される。すなわち、ホログラムBを記録する時には、強度変調SLMは、部分参照光Bおよび干渉光(全領域において同一強度かつ同一位相の信号光)を透過させる。ホログラムAを記録する時には、強度変調SLMは、部分参照光Aおよび信号光を透過させる。一方、ホログラムAおよびホログラムBを再生する時には、強度変調SLMは、部分参照光Aおよび部分参照光Bを透過させるが、信号光は透過させない。強度変調SLMを透過した光は、位相変調SLMにおいて所定の位相変調が加えられる。 The intensity modulation SLM is composed of an SLM body and two polarizers arranged on both sides thereof. The intensity modulation SLM is used for switching between the partial reference light A and the partial reference light B and for switching the irradiation of the signal light. That is, when recording the hologram B, the intensity modulation SLM transmits the partial reference light B and the interference light (signal light having the same intensity and the same phase in the entire region). When recording the hologram A, the intensity modulation SLM transmits the partial reference light A and the signal light. On the other hand, when reproducing the hologram A and the hologram B, the intensity modulation SLM transmits the partial reference light A and the partial reference light B, but does not transmit the signal light. The light transmitted through the intensity modulation SLM is subjected to predetermined phase modulation in the phase modulation SLM.
 図33は、ホログラムBを記録する時の位相変調SLMのパターンを示す図である。図33に示されるように、部分参照光Bは外周部に位置し、干渉光は中央部に位置する。部分参照光Bおよび干渉光は、いずれも全領域に亘って同一の位相である。 FIG. 33 is a diagram showing a pattern of the phase modulation SLM when the hologram B is recorded. As shown in FIG. 33, the partial reference light B is located at the outer peripheral portion, and the interference light is located at the central portion. The partial reference light B and the interference light have the same phase throughout the entire area.
 図34は、ホログラムAを記録する時の位相変調SLMのパターンを示す図である。本実験では、2枚の信号ページデータ(16×16)を多重記録した。図34Aは、信号ページデータ#1を記録する時の位相変調SLMのパターンを示す図であり、図34Bは、信号ページデータ#2を記録する時の位相変調SLMのパターンを示す図である。図34に示されるように、部分参照光Aは外周部に位置し、信号光は中央部に位置する。部分参照光Aおよび部分参照光Bは、いずれも外周部に位置するが、互いに重なっていない(図33と図34を比較参照)。また、信号ページデータ#1を記録する時の部分参照光Aの位相パターンと、信号ページデータ#2を記録する時の部分参照光Aの位相パターンとは、互いに異なる(図34Aと図34Bを比較参照)。図34に示される位相情報は、可視化のためグレースケールで描かれている。2値の位相は、白色=0、黒色=πである。 FIG. 34 is a diagram showing a pattern of the phase modulation SLM when the hologram A is recorded. In this experiment, two signal page data (16 × 16) were multiplexed and recorded. FIG. 34A is a diagram showing a pattern of phase modulation SLM when recording the signal page data # 1, and FIG. 34B is a diagram showing a pattern of phase modulation SLM when recording the signal page data # 2. As shown in FIG. 34, the partial reference light A is located at the outer peripheral portion, and the signal light is located at the central portion. The partial reference light A and the partial reference light B are both located on the outer peripheral portion, but do not overlap each other (see FIG. 33 and FIG. 34 for comparison). The phase pattern of the partial reference light A when recording the signal page data # 1 and the phase pattern of the partial reference light A when recording the signal page data # 2 are different from each other (see FIGS. 34A and 34B). Comparison). The phase information shown in FIG. 34 is drawn in gray scale for visualization. The binary phase is white = 0 and black = π.
 位相変調SLMで生成された干渉光および部分参照光B(図33参照)をフォトポリマー(記録媒体)に照射してホログラムBを記録した。次いで、位相変調SLMで生成された信号ページデータ#1を含む信号光と信号ページデータ#1を記録するための部分参照光A(図34A参照)とをフォトポリマーに照射して、信号ページデータ#1のホログラムAを記録した。次いで、位相変調SLMで生成された信号ページデータ#2を含む信号光と信号ページデータ#2を記録するための部分参照光A(図34B参照)とをフォトポリマーに照射して、信号ページデータ#2のホログラムAを記録した。 Hologram B was recorded by irradiating the photopolymer (recording medium) with interference light and partial reference light B (see FIG. 33) generated by the phase modulation SLM. Next, the signal light including the signal page data # 1 generated by the phase modulation SLM and the partial reference light A (see FIG. 34A) for recording the signal page data # 1 are irradiated on the photopolymer to thereby generate the signal page data. # 1 hologram A was recorded. Next, the signal light including the signal page data # 2 generated by the phase modulation SLM and the partial reference light A (see FIG. 34B) for recording the signal page data # 2 are irradiated to the photopolymer to thereby generate the signal page data. # 2 hologram A was recorded.
 図35は、ホログラムAおよびホログラムBを再生する時の位相変調SLMのパターンを示す図である。図35Aは、信号ページデータ#1を再生する時の位相変調SLMのパターンを示す図であり、図35Bは、信号ページデータ#2を再生する時の位相変調SLMのパターンを示す図である。図35に示されるように、参照光は、部分参照光Aおよび部分参照光Bを含む。 FIG. 35 is a diagram showing a pattern of the phase modulation SLM when the hologram A and the hologram B are reproduced. FIG. 35A is a diagram showing a pattern of phase modulation SLM when reproducing signal page data # 1, and FIG. 35B is a diagram showing a pattern of phase modulation SLM when reproducing signal page data # 2. As shown in FIG. 35, the reference light includes partial reference light A and partial reference light B.
 位相変調SLMで生成された参照光(図35参照)をフォトポリマーに照射してホログラムAおよびホログラムBを再生し、CCDカメラで信号ページデータの強度分布を検出した(直接検出モード)。 The reference light (see FIG. 35) generated by the phase modulation SLM was irradiated to the photopolymer to reproduce the hologram A and the hologram B, and the intensity distribution of the signal page data was detected by the CCD camera (direct detection mode).
 図36は、CCDカメラで検出した信号強度分布を示す画像である。図36Aは、信号ページデータ#1の信号強度分布を示す画像であり、図36Bは、信号ページデータ#2の信号強度分布を示す画像である。 FIG. 36 is an image showing the signal intensity distribution detected by the CCD camera. 36A is an image showing the signal intensity distribution of the signal page data # 1, and FIG. 36B is an image showing the signal intensity distribution of the signal page data # 2.
 図37は、図36に示される画像に対して2値の閾値処理を行って、2値のデジタルデータに変換した画像(再生ページデータ)である。図37Aは、信号ページデータ#1の再生ページデータであり、図36Bは、信号ページデータ#2の再生ページデータである。 FIG. 37 shows an image (reproduction page data) obtained by performing binary threshold processing on the image shown in FIG. 36 and converting the image into binary digital data. FIG. 37A shows reproduction page data of signal page data # 1, and FIG. 36B shows reproduction page data of signal page data # 2.
 なお、図36および図37に示されるパターンは、図34に示されるパターンの左右反転像である。これは、図32に示されるように、位相変調空間光変調器(SLM(Phase))から出た信号パターンが、ビームスプリッタ(BS)によって反射された後に、CCDカメラ(CCD)で検出されるためである。 Note that the pattern shown in FIGS. 36 and 37 is a horizontally reversed image of the pattern shown in FIG. As shown in FIG. 32, the signal pattern emitted from the phase modulation spatial light modulator (SLM (Phase)) is reflected by the beam splitter (BS) and then detected by the CCD camera (CCD). Because.
 今回の実験で生じたエラーの数は、2枚の信号ページデータの合計で2個であった。信号ページデータのシンボル数は512個(16×16×2)であることから、シンボルエラーレートは4×10-3である。これは、現状のホログラフィックメモリにおけるエラー訂正能力(1×10-2)を考慮すると、実用上十分な性能といえる。 The number of errors that occurred in this experiment was two in total for the two signal page data. Since the number of symbols of the signal page data is 512 (16 × 16 × 2), the symbol error rate is 4 × 10 −3 . This is a practically sufficient performance considering the error correction capability (1 × 10 −2 ) in the current holographic memory.
 [実施例4]
 実施例4では、本発明の記録方法および再生方法を用いて、2値空間位相変調信号(2-SPM)の記録および再生のシミュレーションを行った結果を示す。なお、本実施例では、コリニア・ホログラフィ法ではなく2光束干渉法により、2値空間位相変調信号(2-SPM)の記録および再生を行った。数値解析ツールとしては、実施例1と同一のFFT-BPM(高速フーリエ変換ビーム伝搬法)を用いた。数値解析に用いたパラメータは、実施例1と同様である(表1参照)。
[Example 4]
Example 4 shows the result of a simulation of recording and reproduction of a binary spatial phase modulation signal (2-SPM) using the recording method and reproducing method of the present invention. In the present embodiment, the binary spatial phase modulation signal (2-SPM) is recorded and reproduced not by the collinear holography method but by the two-beam interference method. As the numerical analysis tool, the same FFT-BPM (Fast Fourier Transform Beam Propagation Method) as in Example 1 was used. The parameters used for the numerical analysis are the same as in Example 1 (see Table 1).
 記録に用いた信号ページデータ(2値空間位相変調信号)を図38Aに示し、干渉光の位相パターンを図38Bに示す。図38Aおよび図38Bに示される位相情報は、可視化のためグレースケールで描かれている。図38Aに示されるように、信号ページデータの大きさは32×32ピクセルである。信号ページデータの各ピクセルは、0(黒色で示す)またはπ(白色で示す)の2値の位相情報φ(x,y)を有している。信号ページデータの各ピクセルの強度は、一定である。また、図38Bに示されるように、干渉光は、32×32ピクセルの平面波(位相および強度が空間的に一定)である。 The signal page data (binary spatial phase modulation signal) used for recording is shown in FIG. 38A, and the phase pattern of the interference light is shown in FIG. 38B. The phase information shown in FIGS. 38A and 38B is drawn in gray scale for visualization. As shown in FIG. 38A, the size of the signal page data is 32 × 32 pixels. Each pixel of the signal page data has binary phase information φ (x, y) of 0 (shown in black) or π (shown in white). The intensity of each pixel of the signal page data is constant. Further, as shown in FIG. 38B, the interference light is a plane wave of 32 × 32 pixels (phase and intensity are spatially constant).
 また、部分参照光Aの強度パターンを図38Cに示し、部分参照光Bの強度パターンを図38Dに示し、参照光(部分参照光Aおよび部分参照光B)の強度パターンを図38Eに示す。図38Eに示されるように、部分参照光Aおよび部分参照光Bは、互いに重なっていない。部分参照光Aおよび部分参照光Bの強度分布は、flat cosine-squared window function(Shun-Der Wu and Elias N. Glytsis, "Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method", J. Opt. Soc. Am. A, Vol.19, No.10, pp.2018-2029 (2002))により得られる。 38C shows the intensity pattern of the partial reference light A, FIG. 38D shows the intensity pattern of the partial reference light B, and FIG. 38E shows the intensity pattern of the reference light (partial reference light A and partial reference light B). As shown in FIG. 38E, the partial reference light A and the partial reference light B do not overlap each other. The intensity distribution of partial reference light A and partial reference light B is expressed as follows: flat cosine-squared window function (Shun-Der Wu and Elias N. Glytsis, "Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using The “finite-difference” frequency-domain “method”, “J. Opt. Soc. Am. A,” Vol.19, No.10, pp.2018-2029 (2002)).
 今回のシミュレーションでは、記録媒体として標準的なフォトポリマーを仮定し、信号ページデータ(信号光)および干渉光を2光束干渉法で多重記録した(図11参照)。記録されたホログラム(ホログラムAおよびホログラムB)に、参照光(部分参照光Aおよび部分参照光B)を照射して、ホログラムAの回折光およびホログラムBの回折光を発生させ、これらの回折光により生成される干渉縞の強度分布を検出した(図12参照)。本実施例では、記録されているページデータが2値位相変調信号であるため、直接検出モードで位相変調信号を復調することができる。図38Fは、強度変調信号として再生されたページデータ(再生ページデータ)である。 In this simulation, a standard photopolymer was assumed as a recording medium, and signal page data (signal light) and interference light were multiplexed and recorded by the two-beam interference method (see FIG. 11). The recorded holograms (hologram A and hologram B) are irradiated with reference light (partial reference light A and partial reference light B) to generate diffracted light of hologram A and diffracted light of hologram B, and these diffracted lights. The intensity distribution of interference fringes generated by the above was detected (see FIG. 12). In this embodiment, since the recorded page data is a binary phase modulation signal, the phase modulation signal can be demodulated in the direct detection mode. FIG. 38F shows page data (reproduced page data) reproduced as an intensity modulation signal.
 これらの結果から、2光束干渉法を利用しても、本発明の記録方法および再生方法により、信号ページデータの記録および再生を行いうることがわかる。 From these results, it can be seen that signal page data can be recorded and reproduced by the recording method and reproducing method of the present invention even if the two-beam interference method is used.
 [実施例5]
 実施例5では、本発明の記録方法および再生方法を用いて、38値空間直交振幅変調信号(38-SQAM)の記録および再生のシミュレーションを行った結果を示す。なお、本実施例では、コリニア・ホログラフィ法により、38値空間直交振幅変調信号(38-SQAM)の記録および再生を行った。数値解析ツールとしては、実施例1と同一のFFT-BPM(高速フーリエ変換ビーム伝搬法)を用いた。数値解析に用いたパラメータは、実施例1と同様である(表1参照)。
[Example 5]
Example 5 shows the results of simulation of recording and reproduction of a 38-value spatial quadrature amplitude modulation signal (38-SQAM) using the recording method and reproducing method of the present invention. In this example, recording and reproduction of a 38-value spatial quadrature amplitude modulation signal (38-SQAM) was performed by a collinear holography method. As the numerical analysis tool, the same FFT-BPM (Fast Fourier Transform Beam Propagation Method) as in Example 1 was used. The parameters used for the numerical analysis are the same as in Example 1 (see Table 1).
 記録に用いた5枚の信号ページデータ(38値空間直交振幅変調信号)を図39に示す。図39Aは、信号ページデータ#1の振幅情報A(x,y)を示し、図39Bは、信号ページデータ#2の振幅情報A(x,y)を示し、図39Cは、信号ページデータ#3の振幅情報A(x,y)を示し、図39Dは、信号ページデータ#4の振幅情報A(x,y)を示し、図39Eは、信号ページデータ#5の振幅情報A(x,y)を示している。また、図39Fは、信号ページデータ#1の位相情報φ(x,y)を示し、図39Gは、信号ページデータ#2の位相情報φ(x,y)を示し、図39Hは、信号ページデータ#3の位相情報φ(x,y)を示し、図39Iは、信号ページデータ#4の位相情報φ(x,y)を示し、図39Jは、信号ページデータ#5の位相情報φ(x,y)を示している。これらの図において、中央部の正方形の領域が信号ページデータ(信号光)のパターンであり、周辺部の円環状の領域が部分参照光Aのパターンである。信号ページデータの大きさは、32×32ピクセルである。図39F~Jに示される位相情報は、可視化のためグレースケールで描かれている。 FIG. 39 shows five signal page data (38-value spatial quadrature amplitude modulation signals) used for recording. 39A shows the amplitude information A (x, y) of the signal page data # 1, FIG. 39B shows the amplitude information A (x, y) of the signal page data # 2, and FIG. 39C shows the signal page data # 1. 3 shows amplitude information A (x, y) of FIG. 3, FIG. 39D shows amplitude information A (x, y) of signal page data # 4, and FIG. 39E shows amplitude information A (x, y) of signal page data # 5. y). 39F shows the phase information φ (x, y) of the signal page data # 1, FIG. 39G shows the phase information φ (x, y) of the signal page data # 2, and FIG. 39H shows the signal page The phase information φ (x, y) of data # 3 is shown, FIG. 39I shows the phase information φ (x, y) of signal page data # 4, and FIG. 39J shows the phase information φ (x of signal page data # 5 x, y). In these figures, a square area at the center is a pattern of signal page data (signal light), and an annular area at the periphery is a pattern of partial reference light A. The size of the signal page data is 32 × 32 pixels. The phase information shown in FIGS. 39F-J is drawn in gray scale for visualization.
 今回のシミュレーションでは、記録媒体として標準的なフォトポリマーを仮定し、1つの干渉光に対して5枚の信号ページデータを多重記録した。このとき、図17に示されるように、信号光および干渉光について1つのデータピクセルを4つのサブピクセルに分割するとともに、信号光と干渉光の両方に位相分布を加えた。記録されたホログラム(ホログラムAおよびホログラムB)に、参照光(部分参照光Aおよび部分参照光B)を照射して、ホログラムAの回折光およびホログラムBの回折光を発生させ、シングルショット・デュアルステージモードにより位相変調信号を復調した。 In this simulation, a standard photopolymer was assumed as a recording medium, and five signal page data were recorded on one interference light. At this time, as shown in FIG. 17, for the signal light and the interference light, one data pixel was divided into four subpixels, and a phase distribution was added to both the signal light and the interference light. The recorded holograms (hologram A and hologram B) are irradiated with reference light (partial reference light A and partial reference light B) to generate diffracted light of hologram A and diffracted light of hologram B. The phase modulation signal was demodulated by the stage mode.
 図17に示される例において、信号光の4つのサブピクセルに加える位相値をそれぞれα1,α2,α3,α4とする。また、干渉光の4つのサブピクセルの位相値をβ1,β2,β3,β4とする。このとき、
  β1-α1=0              …(A1)
  β2-α2=π/2(または-3π/2)  …(A2)
  β3-α3=π(または-π)       …(A3)
  β4-α4=3π/2(または-π/2)  …(A4)
 を満たすように、α1~α4およびβ1~β4の値を選択した。このとき、α1,α2,α3,α4は、互いに異なる位相値である。また、β1,β2,β3,β4も、互いに異なる位相値である。
In the example shown in FIG. 17, the phase values applied to the four subpixels of the signal light are α1, α2, α3, and α4, respectively. In addition, the phase values of the four sub-pixels of the interference light are β1, β2, β3, and β4. At this time,
β1-α1 = 0 (A1)
β2-α2 = π / 2 (or -3π / 2) (A2)
β3-α3 = π (or -π) (A3)
β4-α4 = 3π / 2 (or -π / 2) (A4)
The values of α1 to α4 and β1 to β4 were selected so as to satisfy the above. At this time, α1, α2, α3, and α4 have different phase values. Β1, β2, β3, and β4 are also phase values different from each other.
 図40Aは、信号ページデータ#1の位相情報(32×32ピクセル)である(図39Fと同じ)。図40Bは、信号光に加える位相分布(64×64ピクセル)である。図40Cは、図40Aに示される信号ページデータ#1の位相情報に、図40Bに示される位相分布を加えた後の、信号ページデータ#1の位相情報(64×64ピクセル)である。これらの図に示されるように、オリジナルの信号ページデータ(図40A参照)に、上記式(A1)~(A4)を満たす位相分布(図40B参照)を加えることで得られる信号ページデータ(図40C参照)をSLMで生成して、記録媒体に記録した。 FIG. 40A shows the phase information (32 × 32 pixels) of the signal page data # 1 (the same as FIG. 39F). FIG. 40B shows a phase distribution (64 × 64 pixels) added to the signal light. 40C shows the phase information (64 × 64 pixels) of the signal page data # 1 after adding the phase distribution shown in FIG. 40B to the phase information of the signal page data # 1 shown in FIG. 40A. As shown in these drawings, signal page data (see FIG. 40B) obtained by adding a phase distribution (see FIG. 40B) satisfying the above equations (A1) to (A4) to the original signal page data (see FIG. 40A). 40C) was generated by SLM and recorded on a recording medium.
 図41Aは、干渉光の位相情報(32×32ピクセル)である。図41Bは、干渉光に加える位相分布(64×64ピクセル)である。図41Aにおいて、周辺部の円環状の領域は、部分参照光Bの位相分布を示している。これらの図に示されるように、干渉光(図41A参照)に、上記式(A1)~(A4)を満たす位相分布(図41B参照)を加えることで得られる干渉光をSLMで生成して、記録媒体に記録した。このように、干渉光の各サブピクセルの位相の組み合わせを、信号光のデータピクセルごとに異なる値とすることで、信号光および干渉光のスペクトルが記録媒体の特定位置に集中することを避けることができ、結果としてエラーの低減を期待することができる。 FIG. 41A shows phase information (32 × 32 pixels) of interference light. FIG. 41B is a phase distribution (64 × 64 pixels) added to the interference light. In FIG. 41A, the annular region in the peripheral portion shows the phase distribution of the partial reference light B. As shown in these figures, interference light obtained by adding a phase distribution (see FIG. 41B) satisfying the above equations (A1) to (A4) to interference light (see FIG. 41A) is generated by the SLM. And recorded on a recording medium. In this way, by combining the phase combination of each sub-pixel of the interference light with a different value for each data pixel of the signal light, it is avoided that the spectrum of the signal light and the interference light is concentrated at a specific position on the recording medium. As a result, a reduction in errors can be expected.
 図42は、復調したページデータの信号点分布を示すグラフである。図42Aは、信号光に位相分布を加えずに干渉光のみに位相分布を加えて、シングルショット・デュアルステージモードにより位相変調信号を復調した結果である(上記式(A1)~(A4)において、α1=α2=α3=α4=0、β1=0,β2=π/2,β3=π,β4=3π/2)。一方、図42Bは、信号光および干渉光の両方に位相分布を加え、かつ干渉光の各サブピクセルの位相の組み合わせをデータピクセルごとに変えて、シングルショット・デュアルステージモードにより位相変調信号を復調した結果である(図40および図41に示される方法)。これらのグラフから、いずれの復調方法においても、38値空間直交振幅変調信号(38-SQAM)が明瞭に分離されていることがわかる。 FIG. 42 is a graph showing the signal point distribution of demodulated page data. FIG. 42A shows the result of demodulating the phase modulation signal in the single shot dual stage mode by adding the phase distribution only to the interference light without adding the phase distribution to the signal light (in the above formulas (A1) to (A4)). Α1 = α2 = α3 = α4 = 0, β1 = 0, β2 = π / 2, β3 = π, β4 = 3π / 2). On the other hand, in FIG. 42B, the phase modulation signal is demodulated by the single shot dual stage mode by adding the phase distribution to both the signal light and the interference light and changing the combination of the phases of each sub pixel of the interference light for each data pixel. (The method shown in FIGS. 40 and 41). From these graphs, it can be seen that the 38-value spatial quadrature amplitude modulation signal (38-SQAM) is clearly separated in any demodulation method.
 干渉光のみに位相分布を加えてシングルショット・デュアルステージモードで復調した場合(図42A参照)、シンボルエラーレートは0.8%であった。一方、信号光および干渉光の両方に位相分布を加え、かつ干渉光の各サブピクセルの位相の組み合わせをデータピクセルごとに変えて、シングルショット・デュアルステージモードで復調した場合(図42B参照)、シンボルエラーレートは0.5%であった。 When the phase distribution was added to only the interference light and demodulated in the single shot / dual stage mode (see FIG. 42A), the symbol error rate was 0.8%. On the other hand, when the phase distribution is added to both the signal light and the interference light, and the phase combination of each sub-pixel of the interference light is changed for each data pixel and demodulated in the single shot / dual stage mode (see FIG. 42B), The symbol error rate was 0.5%.
 これらの結果から、シングルショット・デュアルステージモードにより復調する際に、信号光および干渉光の両方に上記式(A1)~(A4)を満たす位相分布を加え、かつ干渉光の各サブピクセルの取りうる位相の組み合わせをデータピクセルごとに変えることで、復調の精度を向上させうることがわかる。 From these results, when demodulating in the single shot / dual stage mode, the phase distribution satisfying the above equations (A1) to (A4) is added to both the signal light and the interference light, and the subpixels of the interference light are captured. It can be seen that the accuracy of demodulation can be improved by changing the combination of possible phases for each data pixel.
 本出願は、2011年7月11日出願の特願2011-152685に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2011-152585 filed on July 11, 2011. The contents described in the application specification and the drawings are all incorporated herein by reference.
 本発明のホログラフィックメモリは、コンシューマ向けのAV用途のみならず、放送や医療分野におけるアーカイバル用途(データの長期保存が可能)や、データセンターなどの光ディスクシステム(消費電力がHDDの1/6程度)などの様々な用途において有用である。 The holographic memory of the present invention is not only used for consumer AV, but also for archival use in broadcasting and medical fields (data can be stored for a long period of time), optical disc systems such as data centers (power consumption is 1/6 that of HDDs) This is useful in various applications.
 100 参照光
 110 部分参照光A
 120 部分参照光B
 130 位相変調信号(信号ページデータ)
 140 信号光
 150 干渉光
 160 ホログラムAの回折光
 170 ホログラムBの回折光
 180 強度情報を含む回折光
 200 ホログラフィックメモリ(記録媒体)
 210 光強度検出器
 220 2段目のホログラム(ホログラムC)
 310 レーザ光
 320 空間光変調器
 330 ハーフミラー
 340 対物レンズ
 350 記録媒体
 360 撮像素子
100 Reference light 110 Partial reference light A
120 Partial reference beam B
130 Phase modulation signal (signal page data)
140 signal light 150 interference light 160 diffracted light of hologram A 170 diffracted light of hologram B 180 diffracted light including intensity information 200 holographic memory (recording medium)
210 Light intensity detector 220 Second stage hologram (Hologram C)
310 Laser light 320 Spatial light modulator 330 Half mirror 340 Objective lens 350 Recording medium 360 Image sensor

Claims (13)

  1.  ホログラフィックメモリの特定箇所に、空間位相変調信号または空間直交振幅変調信号を含む信号光と部分参照光Aとを照射して、前記信号光と前記部分参照光Aとにより生成されるホログラムAを記録するステップと、
     前記ホログラフィックメモリの前記特定箇所に、干渉光と部分参照光Bとを照射して、前記干渉光と前記部分参照光Bとにより生成されるホログラムBを記録するステップと、
     を有する、ホログラフィックメモリの記録方法。
    A specific portion of the holographic memory is irradiated with signal light including a spatial phase modulation signal or spatial quadrature amplitude modulation signal and the partial reference light A, and a hologram A generated by the signal light and the partial reference light A is generated. Recording step;
    Irradiating the specific portion of the holographic memory with interference light and partial reference light B, and recording the hologram B generated by the interference light and partial reference light B;
    A holographic memory recording method comprising:
  2.  前記部分参照光Aは、レーザ光源から出射されたレーザ光の一部であり、
     前記部分参照光Bは、前記レーザ光源から出射された前記レーザ光の残部の一部である、
     請求項1に記載のホログラフィックメモリの記録方法。
    The partial reference light A is a part of the laser light emitted from the laser light source,
    The partial reference light B is a part of the remaining part of the laser light emitted from the laser light source.
    The holographic memory recording method according to claim 1.
  3.  前記ホログラムAおよび前記ホログラムBは、コリニア・ホログラフィ法で前記ホログラフィックメモリに記録される、請求項1に記載のホログラフィックメモリの記録方法。 The holographic memory recording method according to claim 1, wherein the hologram A and the hologram B are recorded in the holographic memory by a collinear holography method.
  4.  請求項1に記載のホログラフィックメモリの記録方法により空間位相変調信号または空間直交振幅変調信号が記録されたホログラフィックメモリの再生方法であって、
     前記ホログラフィックメモリの特定箇所に、前記部分参照光Aおよび前記部分参照光Bを同時に照射して、前記ホログラムAの回折光と、前記ホログラムAの回折光に干渉しうる前記ホログラムBの回折光とを同時に生成するステップと、
     前記ホログラムAの回折光および前記ホログラムBの回折光を用いて、前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップと、
     を有する、ホログラフィックメモリの再生方法。
    A method for reproducing a holographic memory in which a spatial phase modulation signal or a spatial quadrature amplitude modulation signal is recorded by the holographic memory recording method according to claim 1,
    The partial reference light A and the partial reference light B are simultaneously irradiated onto a specific portion of the holographic memory, and the diffracted light of the hologram A and the diffracted light of the hologram B that can interfere with the diffracted light of the hologram A And simultaneously generating and
    Demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal using the diffracted light of the hologram A and the diffracted light of the hologram B;
    A method for reproducing a holographic memory, comprising:
  5.  前記空間位相変調信号または前記空間直交振幅変調信号は、2値の位相情報を含み、
     前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップは、
     前記ホログラムAの回折光と前記ホログラムBの回折光とから、干渉縞を生成するステップと、
     前記干渉縞の強度分布を検出するステップと、を含む、
     請求項4に記載のホログラフィックメモリの再生方法。
    The spatial phase modulation signal or the spatial quadrature amplitude modulation signal includes binary phase information;
    Demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal comprises:
    Generating interference fringes from the diffracted light of the hologram A and the diffracted light of the hologram B;
    Detecting an intensity distribution of the interference fringes,
    The method for reproducing a holographic memory according to claim 4.
  6.  前記空間位相変調信号または前記空間直交振幅変調信号は、多値の位相情報を含み、
     前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップは、
     前記ホログラムAの回折光と前記ホログラムBの回折光とから、ホログラムCを生成するステップと、
     前記ホログラムCの強度分布を検出するステップと、
     前記強度分布に基づいて、前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップと、を含む、
     請求項4に記載のホログラフィックメモリの再生方法。
    The spatial phase modulation signal or the spatial quadrature amplitude modulation signal includes multi-level phase information,
    Demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal comprises:
    Generating a hologram C from the diffracted light of the hologram A and the diffracted light of the hologram B;
    Detecting the intensity distribution of the hologram C;
    Demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal based on the intensity distribution;
    The method for reproducing a holographic memory according to claim 4.
  7.  前記ホログラムAの回折光と前記ホログラムBの回折光とを同時に生成するステップでは、前記特定箇所に、前記部分参照光Aまたは前記部分参照光Bの位相をシフトしながら前記部分参照光Aおよび前記部分参照光Bを複数回同時に照射することで、前記ホログラムAまたは前記ホログラムBの回折光の位相が互いに異なる前記ホログラムAの回折光と前記ホログラムBの回折光との複数の組み合わせを生成し、
     前記ホログラムCを生成するステップでは、前記複数の組み合わせから、互いに強度分布が異なる複数のホログラムCを生成し、
     前記ホログラムCの強度分布を検出するステップでは、前記複数のホログラムCのそれぞれの強度分布を検出し、
     前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップでは、前記複数の強度分布に基づいて、前記空間位相変調信号または前記空間直交振幅変調信号を復調する、
     請求項6に記載のホログラフィックメモリの再生方法。
    In the step of simultaneously generating the diffracted light of the hologram A and the diffracted light of the hologram B, the partial reference light A and the partial reference light A and the partial reference light A are shifted to the specific location while shifting the phase of the partial reference light A or the partial reference light B. By simultaneously irradiating the partial reference light B a plurality of times, a plurality of combinations of the diffracted light of the hologram A and the diffracted light of the hologram B with different phases of the diffracted light of the hologram A or the hologram B are generated,
    In the step of generating the hologram C, a plurality of holograms C having different intensity distributions are generated from the plurality of combinations,
    In the step of detecting the intensity distribution of the hologram C, the intensity distribution of each of the plurality of holograms C is detected,
    In the step of demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal, the spatial phase modulation signal or the spatial quadrature amplitude modulation signal is demodulated based on the plurality of intensity distributions.
    The method for reproducing a holographic memory according to claim 6.
  8.  前記干渉光は、前記信号光の1つのデータピクセルについて、互いに位相の異なる複数のサブピクセルを含み、
     前記ホログラムBの回折光は、前記ホログラムAの回折光の1つのデータピクセルについて、互いに位相の異なる複数のサブピクセルを含み、
     前記ホログラムCは、互いに位相の異なる複数のホログラム情報を含み、
     前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップでは、前記ホログラムCに含まれる複数のホログラム情報に基づいて、前記空間位相変調信号または前記空間直交振幅変調信号を復調する、
     請求項6に記載のホログラフィックメモリの再生方法。
    The interference light includes a plurality of subpixels having different phases with respect to one data pixel of the signal light,
    The diffracted light of the hologram B includes a plurality of subpixels having different phases with respect to one data pixel of the diffracted light of the hologram A,
    The hologram C includes a plurality of hologram information having different phases from each other,
    In the step of demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal, the spatial phase modulation signal or the spatial quadrature amplitude modulation signal is demodulated based on a plurality of pieces of hologram information included in the hologram C.
    The method for reproducing a holographic memory according to claim 6.
  9.  前記信号光は、1つのデータピクセルについて、互いに位相の異なる複数のサブピクセルを含み、
     前記ホログラムAの回折光は、1つのデータピクセルについて、互いに位相の異なる複数のサブピクセルを含み、
     前記ホログラムCは、互いに位相の異なる複数のホログラム情報を含み、
     前記空間位相変調信号または前記空間直交振幅変調信号を復調するステップでは、前記ホログラムCに含まれる複数のホログラム情報に基づいて、前記空間位相変調信号または前記空間直交振幅変調信号を復調する、
     請求項6に記載のホログラフィックメモリの再生方法。
    The signal light includes a plurality of subpixels having different phases with respect to one data pixel,
    The diffracted light of the hologram A includes a plurality of subpixels having different phases with respect to one data pixel,
    The hologram C includes a plurality of hologram information having different phases from each other,
    In the step of demodulating the spatial phase modulation signal or the spatial quadrature amplitude modulation signal, the spatial phase modulation signal or the spatial quadrature amplitude modulation signal is demodulated based on a plurality of pieces of hologram information included in the hologram C.
    The method for reproducing a holographic memory according to claim 6.
  10.  前記部分参照光Aは、レーザ光源から出射されたレーザ光の一部であり、
     前記部分参照光Bは、前記レーザ光源から出射された前記レーザ光の残部の一部である、
     請求項4に記載のホログラフィックメモリの再生方法。
    The partial reference light A is a part of the laser light emitted from the laser light source,
    The partial reference light B is a part of the remaining part of the laser light emitted from the laser light source.
    The method for reproducing a holographic memory according to claim 4.
  11.  前記ホログラムAおよび前記ホログラムBは、コリニア・ホログラフィ法で前記ホログラフィックメモリから再生される、請求項4に記載のホログラフィックメモリの再生方法。 The method for reproducing a holographic memory according to claim 4, wherein the hologram A and the hologram B are reproduced from the holographic memory by a collinear holography method.
  12.  ホログラフィックメモリの特定箇所に、空間位相変調信号または空間直交振幅変調信号を含む信号光と部分参照光Aとを照射して、前記信号光と前記部分参照光Aとにより生成されるホログラムAを記録するホログラムA記録部と、
     前記ホログラフィックメモリの前記特定箇所に、干渉光と部分参照光Bとを照射して、前記干渉光と前記部分参照光Bとにより生成されるホログラムBを記録するホログラムB記録部と、
     を有する、ホログラフィックメモリ記録装置。
    A specific portion of the holographic memory is irradiated with signal light including a spatial phase modulation signal or spatial quadrature amplitude modulation signal and the partial reference light A, and a hologram A generated by the signal light and the partial reference light A is generated. A hologram A recording section for recording;
    A hologram B recording unit that records the hologram B generated by the interference light and the partial reference light B by irradiating the specific portion of the holographic memory with the interference light and the partial reference light B;
    A holographic memory recording device.
  13.  請求項12に記載のホログラフィックメモリ記録装置により空間位相変調信号または空間直交振幅変調信号が記録されたホログラフィックメモリの再生装置であって、
     前記ホログラフィックメモリの特定箇所に、前記部分参照光Aおよび前記部分参照光Bを同時に照射して、前記ホログラムAの回折光と、前記ホログラムAの回折光に干渉しうる前記ホログラムBの回折光とを同時に生成するホログラム回折光生成部と、
     前記ホログラムAの回折光および前記ホログラムBの回折光を用いて、前記空間位相変調信号または前記空間直交振幅変調信号を復調する復調部と、
     を有する、ホログラフィックメモリ再生装置。
    A reproducing apparatus for a holographic memory in which a spatial phase modulation signal or a spatial quadrature amplitude modulation signal is recorded by the holographic memory recording apparatus according to claim 12,
    The partial reference light A and the partial reference light B are simultaneously irradiated onto a specific portion of the holographic memory, and the diffracted light of the hologram A and the diffracted light of the hologram B that can interfere with the diffracted light of the hologram A And a hologram diffracted light generator that simultaneously generates
    A demodulator that demodulates the spatial phase modulation signal or the spatial quadrature amplitude modulation signal using the diffracted light of the hologram A and the diffracted light of the hologram B;
    A holographic memory reproducing device.
PCT/JP2012/004455 2011-07-11 2012-07-10 Holographic memory recording method and reproduction method, and holographic memory recording device and reproduction device WO2013008453A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013523829A JP5988054B2 (en) 2011-07-11 2012-07-10 Holographic memory recording method and reproducing method, and holographic memory recording device and reproducing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-152685 2011-07-11
JP2011152685 2011-07-11

Publications (1)

Publication Number Publication Date
WO2013008453A1 true WO2013008453A1 (en) 2013-01-17

Family

ID=47505757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004455 WO2013008453A1 (en) 2011-07-11 2012-07-10 Holographic memory recording method and reproduction method, and holographic memory recording device and reproduction device

Country Status (2)

Country Link
JP (1) JP5988054B2 (en)
WO (1) WO2013008453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020994A1 (en) * 2014-08-06 2016-02-11 株式会社日立製作所 Otical information recording device and optical information reproduction device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173469A (en) * 1991-12-20 1993-07-13 Dainippon Printing Co Ltd Hologram and hologram recording information reading method
JP2008293554A (en) * 2007-05-22 2008-12-04 Sony Corp Recording device, recording and reproducing method, and reproducing method
WO2009025024A1 (en) * 2007-08-20 2009-02-26 Fujitsu Limited Hologram recording device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019984A (en) * 2008-07-09 2010-01-28 Sony Corp Reproducing device and reproducing method
JP5409479B2 (en) * 2010-03-29 2014-02-05 日立コンシューマエレクトロニクス株式会社 Optical information reproducing apparatus, optical information recording apparatus, and information recording method
EP2631909B1 (en) * 2010-10-19 2019-09-25 National University Corporation Hokkaido University Holographic memory reproduction device and holographic memory reproduction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173469A (en) * 1991-12-20 1993-07-13 Dainippon Printing Co Ltd Hologram and hologram recording information reading method
JP2008293554A (en) * 2007-05-22 2008-12-04 Sony Corp Recording device, recording and reproducing method, and reproducing method
WO2009025024A1 (en) * 2007-08-20 2009-02-26 Fujitsu Limited Hologram recording device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATSUSHI OKAMOTO: "Holographic diversity interferometry for optical storage", OPTICS EXPRESS, vol. 19, no. 14, 4 July 2011 (2011-07-04), pages 13436 - 13444 *
MITSUTERU INOUE: "Optical phase-lock collinear holography", OPTRONICS, December 2008 (2008-12-01), pages 76 - 80 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020994A1 (en) * 2014-08-06 2016-02-11 株式会社日立製作所 Otical information recording device and optical information reproduction device
JPWO2016020994A1 (en) * 2014-08-06 2017-04-27 株式会社日立製作所 Optical information recording apparatus and optical information reproducing apparatus

Also Published As

Publication number Publication date
JPWO2013008453A1 (en) 2015-02-23
JP5988054B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5862896B2 (en) Holographic memory reproducing apparatus, holographic memory reproducing method, demodulating apparatus and demodulating method, and observing apparatus and observing method
JP4407724B2 (en) Recording / reproducing apparatus, recording / reproducing method, reproducing apparatus, and reproducing method
CN102347034B (en) Optical information record/reproduction apparatus and reproduction apparatus
JP2007508651A5 (en)
JP2009048761A (en) Phase mask for holographic data storage
JP6245551B2 (en) Hologram recording apparatus and hologram recording method
JP2014098797A (en) Hologram recording and reproducing device and method
US7929397B2 (en) Holographic storage medium, and method and apparatus for recording/reproducing data on/from the holographic storage medium
WO2014076830A1 (en) Optical information recording device, optical information recording/reproduction device, optical information recording method, optical information recording/reproduction method, and optical element
JP5988054B2 (en) Holographic memory recording method and reproducing method, and holographic memory recording device and reproducing device
JP5190980B2 (en) Holographic storage system based on common path interferometer
JP2008130137A (en) Information recording device and information reproducing device
JP2006220933A (en) Optical information recording method and apparatus using holography
JP2007273068A (en) Hologram recording and reproducing apparatus
JP2007513458A (en) Holographic storage device
JP5517912B2 (en) Optical information recording / reproducing method and optical information recording / reproducing apparatus
JP6037311B2 (en) Hologram reproduction method, optical phase intensity conversion method, decryption method of encrypted phase modulation signal, hologram recording / reproduction apparatus, and optical phase intensity converter
JP2010238305A (en) Device and method for recording information
JP2010019984A (en) Reproducing device and reproducing method
WO2016194155A1 (en) Holographic memory device and optical information detecting method
KR20070116885A (en) Method for recording data in holographic data storage systems
JP2008033260A (en) Hologram recording apparatus, hologram reproducing apparatus, hologram recording method, and hologram reproducing method
WO2007102570A1 (en) Information recorder and information reproducer
JP2008287107A (en) Hologram copying device, and hologram copying method
Kunori et al. Holographic Diversity Detection of Spatial Quadrature Amplitude Modulation Signal for Dual-Stage Holographic Memory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811902

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013523829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811902

Country of ref document: EP

Kind code of ref document: A1