WO2013008449A1 - Fat-checking method, fat-checking device, and fat-checking program - Google Patents

Fat-checking method, fat-checking device, and fat-checking program Download PDF

Info

Publication number
WO2013008449A1
WO2013008449A1 PCT/JP2012/004434 JP2012004434W WO2013008449A1 WO 2013008449 A1 WO2013008449 A1 WO 2013008449A1 JP 2012004434 W JP2012004434 W JP 2012004434W WO 2013008449 A1 WO2013008449 A1 WO 2013008449A1
Authority
WO
WIPO (PCT)
Prior art keywords
fat
value
layer
subcutaneous fat
fat layer
Prior art date
Application number
PCT/JP2012/004434
Other languages
French (fr)
Japanese (ja)
Inventor
平野 雅嗣
純 三浦
克人 山崎
Original Assignee
国立大学法人豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人豊橋技術科学大学 filed Critical 国立大学法人豊橋技術科学大学
Publication of WO2013008449A1 publication Critical patent/WO2013008449A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention relates to a fat inspection method, a fat inspection apparatus, and a fat inspection program for performing image processing of medical tomographic images and inspecting obesity constitution and fatty liver disease.
  • Fat is roughly classified into subcutaneous fat formed under the skin and visceral fat formed around the viscera.
  • visceral fat is attracting attention in the diagnosis of lifestyle-related diseases and the like. Therefore, it is required not only to measure the amount of body fat that reflects the total amount of fat, but also to be able to measure the amount of fat by discriminating the types of subcutaneous fat and visceral fat.
  • a technique for discriminating fat in a tomographic image obtained from a medical tomographic image apparatus such as an X-ray CT apparatus is known (see Patent Document 1).
  • a technique for discriminating fat in a tomographic image obtained from a medical tomographic image apparatus such as an X-ray CT apparatus.
  • Patent Document 1 According to the technical content disclosed in Patent Document 1, subcutaneous fat and visceral fat can be discriminated in a tomographic image of an X-ray CT apparatus.
  • the muscle pixel region representing the muscle layer (peritoneum) existing between the subcutaneous fat layer and the visceral fat layer is expanded, and the fat pixel region corresponding to the visceral fat is obtained.
  • Processing is performed to automatically correct the tomographic image so that it completely surrounds. This is done because the CT value of the muscle layer (peritoneum) declines and there are cases where it cannot be distinguished from fat, but such cases appear locally in the muscle layer,
  • the technique of Patent Document 1 has a problem that the muscle layer (peritoneum) is uniformly expanded.
  • a range of pixel values (CT values) to be determined as fat pixels and a range of pixel values to be determined as muscle pixels are set. Compared with each of these ranges, The fat layer is discriminated. Each range is set not to overlap each other. Therefore, when the CT value of the muscle layer locally decreases and overlaps with the CT value of the fat layer, there is a problem that the muscle layer is erroneously recognized as a fat layer.
  • the subcutaneous fat area and visceral fat area of each tomographic image are multiplied by the thickness of each layer, and the multiplication result is summed for all the layers, The total subcutaneous fat volume and visceral fat volume are obtained, or the obtained subcutaneous fat weight and visceral fat weight are calculated by multiplying the obtained volume by the specific gravity of fat.
  • an obesity tendency can be discriminated from the distribution of CT values of subcutaneous fat and visceral fat throughout the abdomen.
  • an object of the present invention is to provide a fat inspection method, a fat inspection apparatus, and a fat inspection program capable of determining fat with high accuracy in a tomographic image. Moreover, this invention provides what can test
  • a fat inspection method of the present invention includes an image acquisition step of acquiring a tomographic image of an abdominal tissue in a medical tomographic image apparatus, and a subcutaneous fat layer, a muscle layer, and a visceral fat using a CT value of the tomographic image.
  • a discrimination step for discriminating layers, a distribution obtaining step for obtaining a correlation distribution between the number of voxels in the discriminated subcutaneous fat layer and visceral fat layer and the CT value, and a discrimination step for discriminating an obesity tendency using the correlation distribution of the CT value Prepare.
  • the fat inspection method of the present invention it is possible to measure the volume instead of the conventional area measurement, and to show the visceral fat amount and its distribution more easily to the subject.
  • the subcutaneous fat and the visceral fat are separated on the assumption that a muscle layer always exists between the subcutaneous fat layer and the visceral fat layer.
  • the CT value HU: Hounsfield Unit
  • the CT value H.U. .
  • the discrimination step in the fat test method described above compares the measurement value of the thickness information of the subcutaneous fat layer of the previous line with the storage step of storing the thickness information of the subcutaneous fat layer of the previous line, When the difference is larger than a predetermined threshold, a change step for temporarily changing a CT value as a boundary value between the muscle layer and the subcutaneous fat layer, and a CT value of the changed boundary value between the muscle layer and the subcutaneous fat layer are used. And calculating the thickness information of the subcutaneous fat layer of the current line.
  • the CT value of the muscle layer is usually a positive value, but there are cases where the CT value of the muscle layer decreases and cannot be distinguished from fat. These cases occur locally rather than throughout the muscle layer. In the region where the CT value of the muscle layer is lowered, the CT value becomes a negative value, so that it cannot be distinguished from fat.
  • the CT value as the boundary value between the muscle layer and the subcutaneous fat layer was temporarily changed. This presupposes that the thickness of the subcutaneous fat layer does not change rapidly.
  • the CT value as the boundary value between the muscle layer and the subcutaneous fat layer is temporarily reduced. Then, the thickness of the subcutaneous fat layer in the current line is measured again. The CT value as the boundary value between the muscle layer and the subcutaneous fat layer is decreased until the difference falls within the predetermined threshold.
  • the CT value as the boundary value between the muscle layer and the subcutaneous fat layer is ⁇ 10
  • the predetermined threshold is 7 pixels. If the thickness of the subcutaneous fat layer in the immediately preceding line is 5 pixels, but the thickness of the subcutaneous fat layer measured this time is 15 pixels, the thickness difference is 10 pixels. In this case, the CT value as the boundary value between the muscle layer and the subcutaneous fat layer is changed from -10 to -15, for example, and the thickness of the subcutaneous fat layer is measured. If the thickness of the subcutaneous fat layer is 10 pixels in the measurement again, the difference in the thickness of the subcutaneous fat layer between the current line and the previous line is within a predetermined threshold (within 7 pixels), so the current subcutaneous fat layer Measurement of the thickness of is finished.
  • the difference in the thickness of the subcutaneous fat layer between the current line and the previous line is 8 pixels (13 pixels-5 pixels), and is within a predetermined threshold. Since it does not fall within (within 7 pixels), the CT value as the boundary value between the muscular layer and the subcutaneous fat layer is changed again, and the thickness is reduced from -15 to -20, for example, and the thickness of the subcutaneous fat layer is measured. In this way, rapid fluctuations in the thickness of the subcutaneous fat layer are suppressed.
  • the discrimination step in the fat inspection method described above when a peak appears in the CT value of the subcutaneous fat layer, it is discriminated as an obesity tendency.
  • the inventors investigate the change in the peak value of the correlation distribution between the number of voxels in the subcutaneous fat layer and the CT value and the change in the peak value of the correlation distribution between the number of voxels in the visceral fat layer and the CT value from the data of many subjects. Thus, it was found that it is possible to detect at an early stage that the subject's obesity constitution and the subject are obese.
  • the visceral organ is more or less visceral. An announcement can be made when the fat layer is about to accumulate.
  • the content of oleic acid that is an unsaturated fatty acid and palmitic acid or stearic acid that is a long chain fatty acid is estimated, It is determined whether adipose tissue is easy to burn.
  • the fatty acids When fatty acids are stored in the fat cells of the subcutaneous fat layer, the fatty acids first become 16 palmitic acids of carbon. Thereafter, two more carbons are added to the fatty acid to become stearic acid. Palmitic acid and stearic acid are long chain fatty acids. Stearic acid turns one carbon bond into an unsaturated bond and becomes oleic acid, which is an unsaturated fatty acid.
  • palmitic acid has a density of 0.853 (g / cm 3 ), a CT value of ⁇ 147, a melting point of 62.9 ° C., and stearic acid.
  • oleic acid has a density of 0.89 (g / cm 3 ) and a CT value of ⁇ 110.
  • Melting point 16.3 ° C. That is, when oleic acid is converted from palmitic acid or stearic acid, the melting point is greatly reduced from 60 ° C. or higher to 16.3 ° C. and becomes liquid at room temperature.
  • Oleic acid has a low melting point and can be said to be easier to fuel in the body than palmitic acid or stearic acid.
  • the CT value of oleic acid is -110, whereas the CT values of palmitic acid and stearic acid are -147 and -153, and the difference value of the CT value is large. Focusing on this, the greater the oleic acid content, the closer the CT value peak in the adipose tissue based on histogram analysis approaches the oleic acid CT value of ⁇ 110.
  • lard which is pork fat
  • head which is bovine fat
  • the CT value is -130. That is, the content of oleic acid versus palmitic acid or stearic acid can be estimated by measuring the peak of the CT value by histogram analysis in the adipose tissue.
  • the predetermined threshold is in the vicinity of -130, which is an intermediate value between the CT value of oleic acid -110 and the CT value of palmitic acid or stearic acid (-147, -153), or a value of -125 to -135.
  • the fat inspection method includes a liver region extraction step of extracting a liver region from a three-dimensional region obtained by superimposing the tomographic images obtained in the image acquisition step, and the number of voxels and CT values of the extracted liver region.
  • a liver region distribution acquisition step for acquiring a correlation distribution and a fatty liver determination step for determining fatty liver using the correlation distribution of CT values are further provided.
  • the fat inspection apparatus of the present invention discriminates a subcutaneous fat layer, a muscle layer, and a visceral fat layer using an image acquisition unit that acquires a tomographic image of an abdominal tissue in a medical tomographic image apparatus and a CT value of the tomographic image.
  • the fat inspection apparatus of the present invention it is possible to measure the volume, not the conventional area measurement, and show the visceral fat amount and distribution thereof more easily to the subject.
  • the discrimination unit in the above fat test apparatus compares the measured value of the thickness information of the subcutaneous fat layer of the previous line with the storage unit that stores the thickness information of the subcutaneous fat layer of the previous line, and the difference Is larger than a predetermined threshold, using a change unit that temporarily changes the CT value as the boundary value between the muscle layer and the subcutaneous fat layer, and the CT value of the boundary value between the changed muscle layer and the subcutaneous fat layer, It is preferable to include a calculation unit that calculates thickness information of the subcutaneous fat layer of the current line.
  • the muscle layer Similar to the fat test method described above, on the assumption that the thickness of the subcutaneous fat layer does not change abruptly, if the difference in the thickness of the subcutaneous fat layer between the current line and the previous line is greater than a predetermined threshold, the muscle layer The CT value as the boundary value between the skin layer and the subcutaneous fat layer is temporarily reduced. Then, after the change, the thickness of the subcutaneous fat layer in the current line is measured again, and the CT value as the boundary value between the muscle layer and the subcutaneous fat layer is decreased until the difference falls within a predetermined threshold.
  • the discrimination unit in the fat testing apparatus discriminates an obesity tendency when a peak appears in the CT value of the subcutaneous fat layer.
  • the discrimination unit of the fat test apparatus from the CT value of the subcutaneous fat layer, the content of oleic acid that is an unsaturated fatty acid and palmitic acid or stearic acid that is a long-chain fatty acid is estimated, It is determined whether adipose tissue is easy to burn.
  • the determination unit when the CT value peak of the subcutaneous fat layer is lower than a predetermined threshold, it is determined that the content of palmitic acid or stearic acid, which is a long chain fatty acid, is high and the fatty tissue is difficult to burn, If it is high, it is determined that the content of oleic acid, which is an unsaturated fatty acid, is high and the adipose tissue is likely to burn.
  • the fat inspection apparatus includes a liver region extraction unit that extracts a liver region from a three-dimensional region obtained by superimposing the obtained tomographic images in the image acquisition unit, and the number of voxels and CT values of the extracted liver region.
  • a liver region distribution acquisition unit that acquires the correlation distribution of the liver and a fatty liver determination unit that determines fatty liver using the correlation distribution of CT values.
  • the fat percentage of the extracted liver region is calculated from the average value of the CT values of the extracted liver region, the average value of the CT values of the healthy subject's liver region, and the average value of the CT value of fat. Is calculated.
  • the fat test program of the present invention is a program for causing a computer to execute each step in the above-described fat test method.
  • the present invention there is an effect that an obesity constitution or a fatty liver disease can be examined. According to the present invention, even if the CT value of the muscle layer is low and the fat layer may be recognized, it can be dealt with by changing the threshold in consideration of the thickness of the surrounding subcutaneous fat. Furthermore, according to the present invention, in addition to the volume and ratio of the subcutaneous fat layer and the visceral fat layer of the abdominal tissue, there is an effect that it is possible to determine fat quality and liver fat.
  • fatty liver As for fatty liver, CT imaging is frequently performed in recent years, but for example, it is also possible to test for fatty liver disease by measuring fat mass as an optional test for screening.
  • Body mass index is a value calculated by weight (kg) / (height (m) ⁇ height (m)), and is widely used as an index for knowing the degree of obesity.
  • the criteria for determining a BMI value are generally less than 18.5, “lossy”, 18.5 and less than 25, “standard”, It is determined that “obesity” is 25 or more and less than 30 and “high obesity” is 30 or more.
  • a body fat percentage value indicating what percentage of body weight is fat is also useful for examining obesity trends. Fats that cause obesity include subcutaneous fat on the subcutaneous tissue and visceral fat on the visceral tissue. Of these, visceral fat is said to be a major factor in lifestyle-related diseases, and therefore, a method capable of discriminating and measuring subcutaneous fat and visceral fat is required instead of simply measuring body fat mass.
  • Fig. 1 shows a tomographic schematic diagram of the abdomen of a subject such as a mammal such as a human or a bird.
  • a subcutaneous fat layer 12 inside the outermost skin 10
  • a muscle layer 14 inside
  • a visceral fat layer 16 a visceral tissue 18, a bone inside the muscle layer 14. 19 is present.
  • the muscle layer and the skin show positive CT values, and are negative CT values of the subcutaneous fat layer and the visceral fat layer, which are basically clearly distinguishable.
  • FIG. 2 shows a schematic configuration diagram of the fat test apparatus of the present invention.
  • the medical tomographic image apparatus 20 is an apparatus that performs X-ray CT imaging of a subject.
  • An existing X-ray CT apparatus can be used.
  • CT tomographic image data obtained by the medical tomographic image apparatus 20 is stored in the tomographic image memory 22.
  • the CT tomographic image data stored in the tomographic image memory 22 from the medical tomographic image apparatus 20 may be a map of CT values at each point in the tomographic region, or a processed image after processing the CT values.
  • the CT tomographic image data stored in the tomographic image memory 22 is processed by the arithmetic processing unit 24 to generate correlation distribution data 26 between the number of voxels and the CT value. Based on the correlation distribution data 26, an obesity tendency, a fatty liver disease tendency, and the like are determined.
  • the discrimination result can be displayed by the discrimination result display unit 28 as a slice image or a three-dimensional image of the subcutaneous fat layer and the visceral fat layer together with physical quantities (area, volume, mass, etc.) of the subcutaneous fat and the visceral fat.
  • FIG. 3 shows a schematic processing flow of the fat test method according to the embodiment of the present invention.
  • the fat inspection method includes an image acquisition step (S10) for acquiring a tomographic image of an abdominal tissue in a medical tomographic image apparatus, and subcutaneous fat using a CT value of the tomographic image.
  • a discrimination step (S12) for discriminating layers, muscle layers and visceral fat layers;
  • a distribution acquisition step (S14) for obtaining a correlation distribution between the voxel numbers of the discriminated subcutaneous fat layers and visceral fat layers and CT values;
  • a discrimination step (S16) for discriminating an obesity tendency using the correlation distribution is provided.
  • the fat test program according to the embodiment of the present invention causes the computer to execute the same steps (S10 to S16) as the flow of the fat test method of FIG.
  • the CT value (HU) of the fat layer of the subcutaneous fat layer and the visceral fat layer is in the range of ⁇ 200 to ⁇ 10 (negative value).
  • the CT value (H.U.) of No. 1 is in the range of 0 (corresponding to the CT value of water) to a positive value, and each is separated. Then, by assuming that a muscle layer always exists between the subcutaneous fat layer and the visceral fat layer, the subcutaneous fat and the visceral fat are separated and measured.
  • the distribution acquisition step (S14) not only the area and volume of subcutaneous fat and visceral fat are measured, but also the distribution of CT values is measured. That is, as before, the subcutaneous fat area and visceral fat area of each tomographic image are multiplied by the thickness of each layer, and the multiplication result is summed for all layers to obtain the subcutaneous fat volume and visceral fat in the entire abdomen. The volume is calculated, but at the same time, the distribution of CT values is also measured. The CT value of each section (voxel) is different in the subcutaneous fat layer and the visceral fat layer. The number of voxels is counted for each CT value, and correlation distribution data between the number of voxels and the CT value is acquired.
  • the discrimination step (S16) for discriminating the obesity tendency depending on whether or not there is a peak value in the correlation distribution between the number of voxels and the CT value, in particular, whether or not a peak has appeared in the CT value of the subcutaneous fat layer, It is determined whether or not the subject is obese.
  • FIG. 5 shows a schematic processing flow of a fat test method according to another embodiment of the present invention.
  • the fat inspection method shown in FIG. 5 includes an image acquisition step (S30) for acquiring a tomographic image of an abdominal tissue in a medical tomographic image apparatus, and a liver for extracting a liver region from a three-dimensional region obtained by superimposing the obtained tomographic images.
  • Region extraction step (S32), liver region distribution acquisition step (S34) for acquiring the correlation distribution between the number of voxels in the extracted liver region and the CT value, and liver fat determination for determining fatty liver using the CT value correlation distribution Step (S36) is provided.
  • the amount of fat in the liver can be estimated from the degree of decrease in CT value, and fatty liver can be determined.
  • the liver tissue of each tomographic image is multiplied by the thickness of each layer, and the multiplication result is summed for all layers to specify the three-dimensional region of the liver tissue.
  • the average CT value of the liver region of a healthy person is usually 60 (HU), whereas the average CT value of the liver region of fatty liver disease is a low value.
  • FORM. Fatty liver generally refers to a fat percentage of 30% or more in the entire liver region.
  • the average CT value of the measured liver region is reduced to 42 (H.U.)
  • the average CT value of fat is -120 (H.U.). That is, the average CT value of a normal liver region is usually 60 (HU), indicating that the fat percentage of the subject's liver region is 10%. In this case, since the fat percentage of the liver region is 10%, it can be determined that there is a fatty liver tendency although it is not a fatty liver disease.
  • FIG. 4 shows a processing flow of the fat inspection method of the first embodiment.
  • an image acquisition step (S10) for acquiring a tomographic image of an abdominal tissue in a medical tomographic image apparatus, and a subcutaneous fat layer, a muscle layer, and a visceral fat layer are discriminated using CT values of the tomographic image.
  • the CT value of the muscle layer decreases and cannot be distinguished from fat.
  • the measured value of the thickness information of the subcutaneous fat layer of the previous line is compared, and the difference is larger than a predetermined threshold
  • the CT value as the boundary value between the muscle layer and the subcutaneous fat layer is temporarily changed.
  • the threshold value For example, if the thickness of the subcutaneous fat in the immediately preceding line is 5 pixels, but the current thickness is 15 pixels, the boundary value between muscle and fat is changed to suppress the fluctuation.
  • FIG. 9 shows a correlation distribution diagram between the number of voxels in the subcutaneous fat layer and the visceral fat layer and the CT value.
  • the X axis in the figure represents the CT value
  • the Y axis represents the number of voxels, that is, the number of fats.
  • FIG. 9 (1) shows the form of a correlation distribution graph of CT value-voxel number of the general subcutaneous fat layer and visceral fat layer of obese people.
  • FIG. 9 (2) shows the form of a correlation distribution graph of CT value-number of voxels of the general subcutaneous fat layer and visceral fat layer of the lean side.
  • A indicates the subcutaneous fat layer
  • B indicates the visceral fat layer.
  • the correlation distribution diagram between the number of voxels and the CT value for obese people basically has a shape in which a CT value peak exists around -100 to -120.
  • the correlation distribution diagram between the number of voxels and the CT value of the thinner one basically exhibits a shape in which no peak of the CT value exists.
  • FIG. 10 to 12 are distribution diagrams of CT values of subcutaneous fat and visceral fat.
  • FIG. 10 shows distribution data when obesity is present
  • FIG. 11 is normal
  • FIG. 12 is thin. Since the data are centered on visceral fat and subcutaneous fat, the X-axis is -200 to 0.
  • FIG. 10 in the case of obesity, the peak of CT value appears in both subcutaneous fat and visceral fat.
  • FIG. 12 in the case of skinnyness, no peak of CT value is observed in both subcutaneous fat and visceral fat.
  • FIG. 11 in the normal case, a peak clearly appears in the CT value of subcutaneous fat, but it can be seen that a peak is being formed in visceral fat.
  • FIGS. 13 and 14 show composite graphs in which the Y-axis scales of the three graphs of FIGS. 10 to 12 are aligned.
  • FIG. 13 is a distribution graph of voxel number and CT value in visceral fat
  • FIG. 14 is a distribution graph of voxel number and CT value in subcutaneous fat.
  • no peak of the CT value is seen in both graphs, and it can be seen that the number of voxels is counted at the boundary of the CT value of about ⁇ 100.
  • the graph of FIG. 13 shows composite graphs in which the Y-axis scales of the three graphs of FIGS. 10 to 12 are aligned.
  • FIG. 13 is a distribution graph of voxel number and CT value in visceral fat
  • FIG. 14 is a distribution graph of voxel number and CT value in subcutaneous fat.
  • the subcutaneous fat in FIG. 14 forms a CT value peak faster than the visceral fat in FIG. That is, the distribution graph of the number of voxels in subcutaneous fat and the CT value can be used as judgment data for predicting obesity. Even if it seems thin, if the peak of subcutaneous fat begins to appear, it can be estimated that visceral fat accumulation will begin in the near future, and it will be possible to quickly change the lifestyle habits of people called hidden obesity You will understand.
  • FIG. 15 to 17 show CT value distribution charts of subcutaneous fat and visceral fat for three representative examples.
  • FIG. 15 is a distribution map of subjects who are male, age 52, and BMI 18.7.
  • FIG. 16 is a distribution diagram of subjects who are male, age 43, and BMI 21.2.
  • FIG. 17 is a distribution diagram of subjects who are male, age 45, and BMI 32.3.
  • the CT value of subcutaneous fat rises rapidly from ⁇ 100 to ⁇ 80, and shows a gradual downward curve from ⁇ 62.
  • the CT value of visceral fat shows a monotonous increase curve having no peak from -100 to -10.
  • the peak CT values for subcutaneous fat and visceral fat were -62 for subcutaneous fat and -10 for visceral fat.
  • the CT value of subcutaneous fat shows a unimodal curve having a peak of ⁇ 102, and has a peak at a lower CT value than that of the lean skin.
  • the CT value of visceral fat is a unimodal curve having a peak at ⁇ 97, and the CT value higher than the peak shows a gentle curve.
  • the CT value of subcutaneous fat shows a unimodal curve with a peak at ⁇ 111.
  • the CT value of visceral fat is a unimodal curve having a peak at ⁇ 110, which is similar to the CT value of subcutaneous fat.
  • the subcutaneous fat has a peak at a CT value lower than that of the built-in fat. From this, it can be seen that as fat becomes obese, fat accumulates in the subcutaneous adipose tissue and then gradually accumulates in the visceral adipose tissue. Also, from FIGS. 15 to 17, it can be confirmed that the curve tends to become sharper as it becomes obese. It is presumed that the fat purity of fat cells tends to be higher as they become obese.
  • FIG. 7 is a functional block diagram of the fat test apparatus according to the second embodiment
  • FIG. 8 is a functional block diagram of the discrimination unit.
  • the fat inspection apparatus 1 according to the second embodiment is configured to discriminate a subcutaneous fat layer, a muscle layer, and a visceral fat layer using an image acquisition unit 3 that acquires a tomographic image of an abdominal tissue in the medical tomographic image apparatus 2 and a CT value of the tomographic image.
  • a discriminating unit 4 a distribution acquiring unit 5 for acquiring a correlation distribution between the number of voxels in the discriminated subcutaneous fat layer and visceral fat layer and the CT value, and a discriminating unit 6 for discriminating an obesity tendency using the correlation distribution of the CT value.
  • the image acquisition unit 3, the discrimination unit 4, the distribution acquisition unit 5, and the determination unit 6 are each subjected to functional processing by an arithmetic processing unit of a computer.
  • the correlation distribution data of the number of voxels and the CT value is stored in the memory.
  • the discriminating unit 4 compares the measured value of the thickness information of the subcutaneous fat layer of the previous line with the storage unit 42 that stores the thickness information of the subcutaneous fat layer of the previous line.
  • the changing unit 44 that temporarily changes the CT value as the boundary value between the muscle layer and the subcutaneous fat layer, and the CT value of the boundary value between the changed muscle layer and the subcutaneous fat layer
  • a calculation unit 46 for calculating the thickness information of the subcutaneous fat layer of the current line.
  • the storage unit 42, the change unit 44, and the calculation unit 46 are each subjected to functional processing by an arithmetic processing unit of a computer.
  • the measurement value and threshold value of the thickness information of the subcutaneous fat layer of the immediately preceding line are stored in the memory.
  • a liver region extraction step for extracting a liver region from a three-dimensional region obtained by superimposing tomographic images obtained in the image acquisition step, and a correlation distribution between the number of voxels in the extracted liver region and a CT value is obtained.
  • the liver region distribution acquisition step to be acquired and the fatty liver determination step to determine fatty liver using the correlation distribution of CT values are used to estimate the amount of fat in the liver from the degree of decrease in CT values, and to determine fatty liver be able to.
  • the results of measuring the liver volume, the amount of fat in the liver, and the amount of fat (%) relative to the liver volume of 175 subjects Indicates.
  • the respective measured values are the liver volume (1062 cm 3 , 236 cm 3 ), the fat mass in the liver (149 cm 3 , 120 cm 3 ), and the ratio of the fat mass to the liver volume (5.4%, 1. 5%).
  • FIG. 18 shows the correlation between the fat amount (cm 3 ) and the ratio (%) of the fat amount to the liver volume by single regression analysis with each test item.
  • Each inspection item is weight, body mass index (BMI), waist circumference (WC), visceral fat area (VFA), subcutaneous fat area (SFA), visceral fat volume (VAT), subcutaneous fat volume (VAT) SAT: Subcutaneous adipose tissue), aspartate aminotransferase (AST), alanine aminotransferase (ALT), LDL cholesterol (LDL-C: low density lipoprotein cholesterol), HDL cholesterol (HDL-C: high density lipoprotein cholesterol), blood glucose level (BS: Blood Sugar), hemoglobin A1c (HbA1c: hemoglobinA1c), uric acid (UA), C-reactive protein (CRP), albumin (albumin), ⁇ -glutamyl transpeptidase ( ⁇ - GTP), systolic blood pressure (SBP), diastolic blood pressure (DBP
  • Fat mass (cm 3 ) in the liver showed a positive correlation with cholesterol (HDL) at a significance level of less than 1%.
  • the ratio (%) of fat mass to liver volume showed a strong positive correlation with weight, BMI, VFA, SFA, VAT, SAT, AST, ALT, and SBP at a significance level of less than 0.1%.
  • LDL showed a positive correlation with a significance level of less than 5%. That is, as weight, BMI, VFA, SFA, VAT, and SAT increase, obese people may have a higher proportion of fat contained in the liver volume than non-obese people.
  • the ratio of the amount of fat contained in the liver volume increased, it was confirmed that the values of AST and ALT indicating the liver function increased, and as a result of accumulation of fat in the liver, hepatocytes It can be seen that it has some influence. Furthermore, the ratio of the amount of fat contained in the liver volume was confirmed to have a strong positive correlation with LDL. Since LDL is a risk factor for arteriosclerosis, long-term fat accumulation in the liver can lead to progression to arteriosclerosis. By estimating the amount of fat in the liver from the degree of decrease in CT value by the fat test method of the present invention, it is possible to make a non-invasive quantitative determination of fat accumulation in the liver without performing a liver biopsy. It can be seen that liver fat and other diseases can be discriminated.
  • the fat test program according to the fourth embodiment uses the processing flow shown in FIG. 4, that is, an image acquisition step (S10) for acquiring a tomographic image of the abdominal tissue in the medical tomographic image apparatus, and a subcutaneous fat layer using CT values of the tomographic image
  • a discrimination step (S120) for discriminating between the muscle layer and the visceral fat layer a storage step (S122) for storing the thickness information of the subcutaneous fat layer of the previous line, and the thickness information of the subcutaneous fat layer of the current and previous line
  • a CT value as a boundary value between the muscle layer and the subcutaneous fat layer is temporarily set.
  • the calculation step for calculating the thickness information of the subcutaneous fat layer in the current line is calculated.
  • S14 and a determination step (S16) for determining an obesity tendency using the correlation distribution of CT values are executed by the computer.
  • FIG. 19 shows the internal configuration of computer hardware that executes a fat test program.
  • the internal configuration of the computer hardware includes a CPU 111, a ROM 112, a hard disk 113, a keyboard 114, a mouse 115, a display 116, an optical drive 117, and a RAM 118, and is connected to a system bus 119.
  • the ROM 112 stores a program such as a boot up program for starting the computer.
  • the RAM 118 temporarily stores fat test program instructions and provides a temporary storage space.
  • the hard disk 113 stores a fat test program, a system program, and data.
  • the keyboard 114 and the mouse 115 receive commands from a computer operator.
  • the display 116 displays the discrimination result of the discrimination step in the fat test program.
  • the computer may include a network card (not shown) that provides a connection to the network.
  • the fat test program only needs to include an instruction part that calls an appropriate module function and obtains a desired result for each step shown in FIG. It is well known how a computer operates, and a detailed description is omitted.
  • the computer that executes the fat test program may perform centralized processing by one (stand-alone) or may perform distributed processing by a plurality of computers connected by a network. That is, each step shown in FIG. 4 may be realized by centralized processing by a single computer, or may be realized by distributed processing by a plurality of computers.
  • the present invention can be used as an optional device of X-ray CT apparatus or a fat mass measuring device.

Abstract

Provided are a fat-checking method, fat-checking device, and fat-checking program whereby fat can be determined with high accuracy within a tomographic image and whereby a trend toward obesity and a trend toward fatty liver can be checked. The fat-checking method comprises: an image acquisition step for acquiring a tomographic image of abdominal tissue in a medical tomographic image device; a discrimination step for discriminating between a subcutaneous fat layer, muscle layer, and visceral fat layer using CT values in the tomographic image; a distribution acquisition step for acquiring a correlation distribution of the CT values and the number of voxels in the subcutaneous fat layer and visceral fat layer thus discriminated between; and a determination step for making a determination with respect to a trend toward obesity, using the correlation distribution of the CT values. According to the present invention, in addition to the volume and proportion of the subcutaneous fat layer and visceral fat layer in the abdominal tissue, the quality of fat can be determined and liver fat can be determined.

Description

脂肪検査方法、脂肪検査装置および脂肪検査プログラムFat inspection method, fat inspection device, and fat inspection program
 本発明は、医用断層画像の画像処理を行い、肥満体質や脂肪肝疾患を検査する脂肪検査方法、脂肪検査装置ならびに脂肪検査プログラムに関するものである。 The present invention relates to a fat inspection method, a fat inspection apparatus, and a fat inspection program for performing image processing of medical tomographic images and inspecting obesity constitution and fatty liver disease.
 脂肪は、皮下に形成される皮下脂肪と内臓周辺に形成される内臓脂肪とに大別され、このうち内臓脂肪は、生活習慣病等の診断において注目されている。そのため、脂肪全体の量を反映した体脂肪量の計測だけでなく、皮下脂肪と内臓脂肪の種類を判別して脂肪量などを計測できることが求められている。
 かかる状況下、X線CT装置などの医用断層画像装置から得られる断層画像内で脂肪を判別する技術が知られている(特許文献1を参照)。特許文献1に開示された技術内容によれば、X線CT装置の断層画像内において皮下脂肪と内臓脂肪とを判別することができる。
Fat is roughly classified into subcutaneous fat formed under the skin and visceral fat formed around the viscera. Of these, visceral fat is attracting attention in the diagnosis of lifestyle-related diseases and the like. Therefore, it is required not only to measure the amount of body fat that reflects the total amount of fat, but also to be able to measure the amount of fat by discriminating the types of subcutaneous fat and visceral fat.
Under such circumstances, a technique for discriminating fat in a tomographic image obtained from a medical tomographic image apparatus such as an X-ray CT apparatus is known (see Patent Document 1). According to the technical content disclosed in Patent Document 1, subcutaneous fat and visceral fat can be discriminated in a tomographic image of an X-ray CT apparatus.
 一方、肝臓内の脂肪量の計測については、正常肝、脂肪肝または肝硬変のうちのどの組織性状に相当するのかを超音波画像を用いて判定する技術が開示されている(例えば、特許文献2を参照。)。 On the other hand, with respect to the measurement of the amount of fat in the liver, a technique is disclosed in which an ultrasonic image is used to determine which tissue property corresponds to normal liver, fatty liver, or cirrhosis (for example, Patent Document 2). See).
特開2003-339694号公報JP 2003-339694 A 特開2005-110833号公報JP 2005-110833 A
 しかしながら、上記の特許文献1に開示された技術では、皮下脂肪層と内臓脂肪層の間に存在する筋肉層(腹膜)を表す筋肉画素領域を膨張させて、内臓脂肪に相当する脂肪画素領域を完全に包囲するように断層画像を自動修正する処理を行っている。これは、筋肉層(腹膜)のCT値が低下していき、脂肪と区別がつかないケースがあるために行うのであるが、そのようなケースは筋肉層の局所的に現れるにも関わらず、特許文献1の技術では一様に筋肉層(腹膜)を膨張させているという問題がある。 However, in the technique disclosed in Patent Document 1, the muscle pixel region representing the muscle layer (peritoneum) existing between the subcutaneous fat layer and the visceral fat layer is expanded, and the fat pixel region corresponding to the visceral fat is obtained. Processing is performed to automatically correct the tomographic image so that it completely surrounds. This is done because the CT value of the muscle layer (peritoneum) declines and there are cases where it cannot be distinguished from fat, but such cases appear locally in the muscle layer, The technique of Patent Document 1 has a problem that the muscle layer (peritoneum) is uniformly expanded.
 また、特許文献1の技術では、脂肪画素と判定する画素値(CT値)の範囲、筋肉画素と判定する画素値の範囲が設定されており、それらの各範囲と比較して、筋肉層と脂肪層を判別している。各範囲は互いに重ならないように設定されている。そのため、局所的に筋肉層のCT値が低下し脂肪層のCT値と重なる場合は、誤って筋肉層を脂肪層であると誤認識するという問題がある。 Further, in the technique of Patent Document 1, a range of pixel values (CT values) to be determined as fat pixels and a range of pixel values to be determined as muscle pixels are set. Compared with each of these ranges, The fat layer is discriminated. Each range is set not to overlap each other. Therefore, when the CT value of the muscle layer locally decreases and overlaps with the CT value of the fat layer, there is a problem that the muscle layer is erroneously recognized as a fat layer.
 また、従来は、腹部CTで取得した複数の断層画像について、各断層画像の皮下脂肪面積および内臓脂肪面積に対して各層の厚みを乗算して、その乗算結果を全層について総和をとり、腹部全体での皮下脂肪体積および内臓脂肪体積を求めたり、求めた体積に脂肪の比重を乗算して被験者の皮下脂肪重量および内臓脂肪重量を算出したりしている。しかしながら、腹部全体での皮下脂肪のCT値の分布および内臓脂肪のCT値の分布から、肥満傾向を判別できることは知られていない。 Further, conventionally, for a plurality of tomographic images acquired by abdominal CT, the subcutaneous fat area and visceral fat area of each tomographic image are multiplied by the thickness of each layer, and the multiplication result is summed for all the layers, The total subcutaneous fat volume and visceral fat volume are obtained, or the obtained subcutaneous fat weight and visceral fat weight are calculated by multiplying the obtained volume by the specific gravity of fat. However, it is not known that an obesity tendency can be discriminated from the distribution of CT values of subcutaneous fat and visceral fat throughout the abdomen.
 かかる状況に鑑みて、本発明は、断層画像内において高精度に脂肪を判別できる脂肪検査方法、脂肪検査装置および脂肪検査プログラムを提供することを目的とする。
 また、本発明は、肥満傾向や脂肪肝傾向を検査できるものを提供する。
In view of such a situation, an object of the present invention is to provide a fat inspection method, a fat inspection apparatus, and a fat inspection program capable of determining fat with high accuracy in a tomographic image.
Moreover, this invention provides what can test | inspect an obesity tendency and a fatty liver tendency.
 本発明者らは、高精度な脂肪の判別を目標としつつ鋭意研究開発を重ねた結果、本発明を完成した。
 上記目的を達成すべく、本発明の脂肪検査方法は、医用断層画像装置における腹部組織の断層画像を取得する画像取得ステップと、断層画像のCT値を用いて皮下脂肪層、筋肉層、内臓脂肪層を弁別する弁別ステップと、弁別した皮下脂肪層および内臓脂肪層のボクセル数とCT値の相関分布を取得する分布取得ステップと、CT値の相関分布を用いて肥満傾向について判別する判別ステップを備える。
The inventors of the present invention have completed the present invention as a result of intensive research and development while aiming at highly accurate fat discrimination.
In order to achieve the above object, a fat inspection method of the present invention includes an image acquisition step of acquiring a tomographic image of an abdominal tissue in a medical tomographic image apparatus, and a subcutaneous fat layer, a muscle layer, and a visceral fat using a CT value of the tomographic image. A discrimination step for discriminating layers, a distribution obtaining step for obtaining a correlation distribution between the number of voxels in the discriminated subcutaneous fat layer and visceral fat layer and the CT value, and a discrimination step for discriminating an obesity tendency using the correlation distribution of the CT value Prepare.
 本発明の脂肪検査方法によれば、従来の面積計測ではなく、体積を計測し被験者に対して、よりわかりやすく内臓脂肪量やその分布を示すことが可能になる。具体的には、人体を撮像するX線CT装置から得られる断層画像において、皮下脂肪層と内臓脂肪層の間には、必ず筋肉層が存在するとの仮定の下、皮下脂肪と内臓脂肪を分離し計測する。
 一般的に脂肪のCT値(H.U.:Hounsfield Unit)は、-200~-10(負の値)の範囲内に存在することが知られており、筋肉層のCT値(H.U.)は正の値となることが知られている。皮下脂肪層と内臓脂肪層の間には、必ず筋肉層が存在すると仮定することにより、皮下脂肪と内臓脂肪を分離し計測するのである。
According to the fat inspection method of the present invention, it is possible to measure the volume instead of the conventional area measurement, and to show the visceral fat amount and its distribution more easily to the subject. Specifically, in a tomographic image obtained from an X-ray CT apparatus that images the human body, the subcutaneous fat and the visceral fat are separated on the assumption that a muscle layer always exists between the subcutaneous fat layer and the visceral fat layer. And measure.
In general, it is known that the CT value (HU: Hounsfield Unit) of fat is in the range of −200 to −10 (negative value), and the CT value (H.U. .) Is known to be positive. By assuming that a muscle layer always exists between the subcutaneous fat layer and the visceral fat layer, the subcutaneous fat and the visceral fat are separated and measured.
 ここで、上記の脂肪検査方法における弁別ステップは、直前のラインの皮下脂肪層の厚み情報を記憶する記憶ステップと、現在と直前のラインの皮下脂肪層の厚み情報の計測値を比較し、その差分が所定閾値より大きい場合に、筋肉層と皮下脂肪層との境界値とするCT値を一時的に変更する変更ステップと、変更した筋肉層と皮下脂肪層の境界値のCT値を用いて、現在のラインの皮下脂肪層の厚み情報を算出する算出ステップと、を含むことが好ましい。 Here, the discrimination step in the fat test method described above compares the measurement value of the thickness information of the subcutaneous fat layer of the previous line with the storage step of storing the thickness information of the subcutaneous fat layer of the previous line, When the difference is larger than a predetermined threshold, a change step for temporarily changing a CT value as a boundary value between the muscle layer and the subcutaneous fat layer, and a CT value of the changed boundary value between the muscle layer and the subcutaneous fat layer are used. And calculating the thickness information of the subcutaneous fat layer of the current line.
 筋肉層のCT値は、通常、正の値となるのであるが、筋肉層のCT値が低下していき、脂肪と区別がつかないケースがある。こういったケースは、筋肉層の全体に生じるのではなく、局部的に生じている。筋肉層のCT値が低下した部位では、CT値が負の値となるために、脂肪と区別がつかなくなる。
 このようなケースに対処すべく、直前のラインの皮下脂肪層の厚み情報を記憶し、現在と直前のラインの皮下脂肪層の厚み情報の計測値を比較し、その差分が所定閾値より大きい場合に、筋肉層と皮下脂肪層との境界値とするCT値を一時的に変更することにした。
 これは、皮下脂肪層の厚みは急激に変化するものではないということを前提とする。現在と直前のラインの皮下脂肪層の厚みの差分が所定閾値より大きい場合、筋肉層と皮下脂肪層との境界値とするCT値を一時的に低下させることにする。そして、再度、現在のラインの皮下脂肪層の厚みを計測する。差分が所定閾値内に収まるまで、筋肉層と皮下脂肪層との境界値とするCT値を低下させていく。
The CT value of the muscle layer is usually a positive value, but there are cases where the CT value of the muscle layer decreases and cannot be distinguished from fat. These cases occur locally rather than throughout the muscle layer. In the region where the CT value of the muscle layer is lowered, the CT value becomes a negative value, so that it cannot be distinguished from fat.
In order to deal with such a case, when the thickness information of the subcutaneous fat layer of the immediately preceding line is stored, the measured value of the thickness information of the subcutaneous fat layer of the previous line is compared, and the difference is larger than a predetermined threshold In addition, the CT value as the boundary value between the muscle layer and the subcutaneous fat layer was temporarily changed.
This presupposes that the thickness of the subcutaneous fat layer does not change rapidly. When the difference in the thickness of the subcutaneous fat layer between the current line and the immediately preceding line is larger than a predetermined threshold, the CT value as the boundary value between the muscle layer and the subcutaneous fat layer is temporarily reduced. Then, the thickness of the subcutaneous fat layer in the current line is measured again. The CT value as the boundary value between the muscle layer and the subcutaneous fat layer is decreased until the difference falls within the predetermined threshold.
 例えば、筋肉層と皮下脂肪層との境界値とするCT値が-10で、所定閾値を7画素分としているとする。直前のラインの皮下脂肪層の厚みが5画素であったのに対し、今回計測した皮下脂肪層の厚みが15画素であったならば、厚みの差分が10画素分となる。この場合、筋肉層と皮下脂肪層の境界値とするCT値を例えば-10から-15に変更して、皮下脂肪層の厚みを計測する。再度の計測で皮下脂肪層の厚みが10画素になっていれば、現在と直前のラインの皮下脂肪層の厚みの差分が所定閾値内(7画素分以内)に収まるので、現在の皮下脂肪層の厚みの計測が終了する。仮に、再度の計測で皮下脂肪層の厚みが13画素になっていれば、現在と直前のラインの皮下脂肪層の厚みの差分が8画素分(13画素-5画素)であり、所定閾値内(7画素分以内)に収まらないので、再度、筋肉層と皮下脂肪層の境界値とするCT値を変更し、例えば-15から-20に低下させて皮下脂肪層の厚みを計測する。このようにして、皮下脂肪層の厚みの急激な変動を抑える。 For example, assume that the CT value as the boundary value between the muscle layer and the subcutaneous fat layer is −10, and the predetermined threshold is 7 pixels. If the thickness of the subcutaneous fat layer in the immediately preceding line is 5 pixels, but the thickness of the subcutaneous fat layer measured this time is 15 pixels, the thickness difference is 10 pixels. In this case, the CT value as the boundary value between the muscle layer and the subcutaneous fat layer is changed from -10 to -15, for example, and the thickness of the subcutaneous fat layer is measured. If the thickness of the subcutaneous fat layer is 10 pixels in the measurement again, the difference in the thickness of the subcutaneous fat layer between the current line and the previous line is within a predetermined threshold (within 7 pixels), so the current subcutaneous fat layer Measurement of the thickness of is finished. If the thickness of the subcutaneous fat layer is 13 pixels in the re-measurement, the difference in the thickness of the subcutaneous fat layer between the current line and the previous line is 8 pixels (13 pixels-5 pixels), and is within a predetermined threshold. Since it does not fall within (within 7 pixels), the CT value as the boundary value between the muscular layer and the subcutaneous fat layer is changed again, and the thickness is reduced from -15 to -20, for example, and the thickness of the subcutaneous fat layer is measured. In this way, rapid fluctuations in the thickness of the subcutaneous fat layer are suppressed.
 また、上記の脂肪検査方法における判別ステップでは、皮下脂肪層のCT値にピークが現れてきた場合に、肥満傾向と判別する。
 発明者らは、多くの被験者のデータから、皮下脂肪層のボクセル数とCT値の相関分布のピーク値の変移、内臓脂肪層のボクセル数とCT値の相関分布のピーク値の変移を調べることにより、被験者の肥満体質や被験者が肥満傾向であることを早期に発見することが可能であるとの知見を得た。
Further, in the discrimination step in the fat inspection method described above, when a peak appears in the CT value of the subcutaneous fat layer, it is discriminated as an obesity tendency.
The inventors investigate the change in the peak value of the correlation distribution between the number of voxels in the subcutaneous fat layer and the CT value and the change in the peak value of the correlation distribution between the number of voxels in the visceral fat layer and the CT value from the data of many subjects. Thus, it was found that it is possible to detect at an early stage that the subject's obesity constitution and the subject are obese.
 すなわち、皮下脂肪層と内臓脂肪層のCT値-ボクセル数の相関分布グラフから、太りやすい方、太りにくい方(痩せ)などの体質がわかるのである。
 また、種々のデータ統計から、皮下脂肪層のCT値-ボクセル数の相関分布のピークが、内臓脂肪層のピークよりも速く、-120のピークに達していることの知見も得た。ここで、-120は、脂肪の平均CT値(H.U.)である。外見は痩せている人であっても、皮下脂肪層のピークが-120に近ければ、近い将来に内臓脂肪層の蓄積が始まると推測できる。このことから、隠れ肥満と呼ばれる人たちの生活習慣の意識を早く変化させることが可能となる。すなわち、皮下脂肪層と内臓脂肪層のCT値-ボクセル数の相関分布グラフの計測から、皮下脂肪層が-120のピークに近付いている被験者がいた場合に、その被験者に対して、もう少しで内臓脂肪層の蓄積のスピードが速まる時期に近付いているとアナウンスできることになる。
That is, from the CT-voxel number correlation distribution graph of the subcutaneous fat layer and the visceral fat layer, the constitutions such as those who are likely to become fat or those who are less likely to gain weight (skin) are known.
Further, from various data statistics, it was found that the peak of the correlation distribution of CT value of the subcutaneous fat layer-voxel number reached -120 faster than the peak of the visceral fat layer. Here, −120 is the average CT value (HU) of fat. Even if the person is thin, it can be inferred that the visceral fat layer starts to accumulate in the near future if the peak of the subcutaneous fat layer is close to −120. This makes it possible to quickly change the lifestyle habits of people called hidden obesity. That is, from the measurement of the correlation distribution graph of the CT value of the subcutaneous fat layer and the visceral fat layer-the number of voxels, when there is a subject whose subcutaneous fat layer is close to the peak of -120, the visceral organ is more or less visceral. An announcement can be made when the fat layer is about to accumulate.
 また、上記の脂肪検査方法の判別ステップにおいて、更に、皮下脂肪層のCT値のピーク値から、不飽和脂肪酸であるオレイン酸と、長鎖脂肪酸であるパルミチン若しくはステアリン酸の含有率を推測し、脂肪組織が燃焼しやすいか否かを判別する。
 皮下脂肪層の脂肪細胞に脂肪酸が蓄えられるときは、最初に脂肪酸は炭素が16個のパルミチン酸になる。その後、脂肪酸はさらに炭素が2個加わりステアリン酸になる。パルミチンとステアリン酸は、長鎖脂肪酸である。ステアリン酸は炭素結合を1つ不飽和結合にして、不飽和脂肪酸であるオレイン酸になる。
Further, in the discrimination step of the fat test method, from the peak value of the CT value of the subcutaneous fat layer, the content of oleic acid that is an unsaturated fatty acid and palmitic acid or stearic acid that is a long chain fatty acid is estimated, It is determined whether adipose tissue is easy to burn.
When fatty acids are stored in the fat cells of the subcutaneous fat layer, the fatty acids first become 16 palmitic acids of carbon. Thereafter, two more carbons are added to the fatty acid to become stearic acid. Palmitic acid and stearic acid are long chain fatty acids. Stearic acid turns one carbon bond into an unsaturated bond and becomes oleic acid, which is an unsaturated fatty acid.
 ここで、パルミチン酸、ステアリン酸、オレイン酸の特性を比較すると、パルミチン酸は、密度:0.853(g/cm),CT値:-147,融点:62.9℃であり、ステアリン酸は、密度:0.847(g/cm),CT値:-153,融点:69.6℃であり、オレイン酸は、密度:0.89(g/cm),CT値:-110,融点:16.3℃である。すなわち、パルミチンやステアリン酸からオレイン酸になると、融点が60℃以上から16.3℃と大幅に低下して常温で液体になる。オレイン酸は融点が低く、パルミチン酸やステアリン酸と比較して体内で燃料しやすいと言える。 Here, comparing the properties of palmitic acid, stearic acid, and oleic acid, palmitic acid has a density of 0.853 (g / cm 3 ), a CT value of −147, a melting point of 62.9 ° C., and stearic acid. Has a density of 0.847 (g / cm 3 ), a CT value of −153, a melting point of 69.6 ° C., and oleic acid has a density of 0.89 (g / cm 3 ) and a CT value of −110. Melting point: 16.3 ° C. That is, when oleic acid is converted from palmitic acid or stearic acid, the melting point is greatly reduced from 60 ° C. or higher to 16.3 ° C. and becomes liquid at room temperature. Oleic acid has a low melting point and can be said to be easier to fuel in the body than palmitic acid or stearic acid.
 また、オレイン酸のCT値が-110であるのに対して、パルミチン酸やステアリン酸のCT値は-147や-153であり、CT値の差分値が大きい。これに着目すると、オレイン酸の含有率が多いほど、脂肪組織内のヒストグラム分析によるCT値のピークがオレイン酸のCT値-110に近づくことになる。例えば、豚の体脂肪であるラードや牛の体脂肪であるヘッドには、オレイン酸が全脂肪中50%近く含まれており、CT値は-130である。
 すなわち、脂肪組織内のヒストグラム分析によるCT値のピークを測ることにより、オレイン酸 対 パルミチン酸やステアリン酸の含有率が推測できるのである。
The CT value of oleic acid is -110, whereas the CT values of palmitic acid and stearic acid are -147 and -153, and the difference value of the CT value is large. Focusing on this, the greater the oleic acid content, the closer the CT value peak in the adipose tissue based on histogram analysis approaches the oleic acid CT value of −110. For example, lard, which is pork fat, and head, which is bovine fat, contain nearly 50% of oleic acid in the total fat, and the CT value is -130.
That is, the content of oleic acid versus palmitic acid or stearic acid can be estimated by measuring the peak of the CT value by histogram analysis in the adipose tissue.
 上記の判別ステップにおいて、皮下脂肪層のCT値のピークが、所定閾値より低い場合には長鎖脂肪酸であるパルミチン若しくはステアリン酸の含有率が高く脂肪組織が燃焼しにくいと判別し、所定閾値より高い場合には不飽和脂肪酸であるオレイン酸の含有率が高く脂肪組織が燃焼しやすいと判別する。ここで、所定閾値は、オレイン酸のCT値-110と、パルミチン酸やステアリン酸のCT値(-147,-153)の中間値である-130の近傍、若しくは-125~-135の値に設定する。 In the determination step, when the CT value peak of the subcutaneous fat layer is lower than a predetermined threshold, it is determined that the content of palmitic acid or stearic acid, which is a long chain fatty acid, is high and the fatty tissue is difficult to burn. If it is high, it is determined that the content of oleic acid, which is an unsaturated fatty acid, is high and the adipose tissue is likely to burn. Here, the predetermined threshold is in the vicinity of -130, which is an intermediate value between the CT value of oleic acid -110 and the CT value of palmitic acid or stearic acid (-147, -153), or a value of -125 to -135. Set.
 また、上記の脂肪検査方法は、上記の画像取得ステップにおいて得られた断層画像を重ね合せた三次元領域から肝臓領域を抽出する肝臓領域抽出ステップと、抽出した肝臓領域のボクセル数とCT値の相関分布を取得する肝臓領域分布取得ステップと、CT値の相関分布を用いて脂肪肝について判別する脂肪肝判別ステップを、更に備える。
 肝臓領域抽出ステップと肝臓領域分布取得ステップと脂肪肝判別ステップを更に備えることにより、脂肪肝について、CT値の低下の度合いから肝臓内の脂肪量を推定し、脂肪肝の判別をすることができる。
The fat inspection method includes a liver region extraction step of extracting a liver region from a three-dimensional region obtained by superimposing the tomographic images obtained in the image acquisition step, and the number of voxels and CT values of the extracted liver region. A liver region distribution acquisition step for acquiring a correlation distribution and a fatty liver determination step for determining fatty liver using the correlation distribution of CT values are further provided.
By further including a liver region extraction step, a liver region distribution acquisition step, and a fatty liver discrimination step, it is possible to estimate the amount of fat in the liver based on the degree of decrease in CT value and discriminate fatty liver. .
 上記の脂肪肝判別ステップでは、抽出した肝臓領域のCT値の平均値と、健常者の肝臓領域のCT値の平均値と、脂肪のCT値の平均値とから、抽出した肝臓領域の脂肪率を算出する。
 例えば、肝臓領域を抽出後、当該領域のCT値の平均が通常60(H.U.)であるのに対して、例えば、42(H.U.)に下がっていたのであれば、脂肪の平均CT値が-120(H.U.)であるとした場合、脂肪率は、(60-42)/(60-(-120))=18/180=10の計算より、10%であることがわかるといったものである。
In the fatty liver discrimination step, the fat percentage of the extracted liver region is calculated from the average value of the CT values of the extracted liver region, the average value of the CT values of the healthy subject's liver region, and the average value of the CT value of fat. Is calculated.
For example, after extracting the liver region, if the average CT value of the region is usually 60 (H.U.), for example, if it has decreased to 42 (H.U.), Assuming that the average CT value is −120 (HU), the fat percentage is 10% based on the calculation of (60−42) / (60 − (− 120)) = 18/180 = 10. You can understand that.
 次に、本発明の脂肪検査装置は、医用断層画像装置における腹部組織の断層画像を取得する画像取得部と、断層画像のCT値を用いて皮下脂肪層、筋肉層、内臓脂肪層を弁別する弁別部と、弁別した皮下脂肪層および内臓脂肪層のボクセル数とCT値の相関分布を取得する分布取得部と、CT値の相関分布を用いて肥満傾向について判別する判別部を備えた構成とされる。
 本発明の脂肪検査装置によれば、従来の面積計測ではなく、体積を計測し被験者に対して、よりわかりやすく内臓脂肪量やその分布を示すことが可能になる。前述の脂肪検査方法と同様に、人体を撮像するX線CT装置から得られる断層画像において、皮下脂肪層と内臓脂肪層の間には、必ず筋肉層が存在するとの仮定の下、皮下脂肪と内臓脂肪を分離し計測する。
Next, the fat inspection apparatus of the present invention discriminates a subcutaneous fat layer, a muscle layer, and a visceral fat layer using an image acquisition unit that acquires a tomographic image of an abdominal tissue in a medical tomographic image apparatus and a CT value of the tomographic image. A configuration including a discrimination unit, a distribution acquisition unit that acquires a correlation distribution between the number of voxels in the discriminated subcutaneous fat layer and visceral fat layer and the CT value, and a determination unit that discriminates an obesity tendency using the correlation distribution of the CT value; Is done.
According to the fat inspection apparatus of the present invention, it is possible to measure the volume, not the conventional area measurement, and show the visceral fat amount and distribution thereof more easily to the subject. Similar to the above-described fat examination method, in the tomographic image obtained from the X-ray CT apparatus for imaging the human body, it is assumed that there is always a muscle layer between the subcutaneous fat layer and the visceral fat layer. Separate and measure visceral fat.
 また、上記の脂肪検査装置における弁別部は、直前のラインの皮下脂肪層の厚み情報を記憶する記憶部と、現在と直前のラインの皮下脂肪層の厚み情報の計測値を比較し、その差分が所定閾値より大きい場合に、筋肉層と皮下脂肪層との境界値とするCT値を一時的に変更する変更部と、変更した筋肉層と皮下脂肪層の境界値のCT値を用いて、現在のラインの皮下脂肪層の厚み情報を算出する算出部を含むことが好ましい。
 前述の脂肪検査方法と同様に、皮下脂肪層の厚みは急激に変化するものではないということを前提として、現在と直前のラインの皮下脂肪層の厚みの差分が所定閾値より大きい場合、筋肉層と皮下脂肪層との境界値とするCT値を一時的に低下させることにする。そして、変更後に再度、現在のラインの皮下脂肪層の厚みを計測し、差分が所定閾値内に収まるまで、筋肉層と皮下脂肪層との境界値とするCT値を低下させていく。
In addition, the discrimination unit in the above fat test apparatus compares the measured value of the thickness information of the subcutaneous fat layer of the previous line with the storage unit that stores the thickness information of the subcutaneous fat layer of the previous line, and the difference Is larger than a predetermined threshold, using a change unit that temporarily changes the CT value as the boundary value between the muscle layer and the subcutaneous fat layer, and the CT value of the boundary value between the changed muscle layer and the subcutaneous fat layer, It is preferable to include a calculation unit that calculates thickness information of the subcutaneous fat layer of the current line.
Similar to the fat test method described above, on the assumption that the thickness of the subcutaneous fat layer does not change abruptly, if the difference in the thickness of the subcutaneous fat layer between the current line and the previous line is greater than a predetermined threshold, the muscle layer The CT value as the boundary value between the skin layer and the subcutaneous fat layer is temporarily reduced. Then, after the change, the thickness of the subcutaneous fat layer in the current line is measured again, and the CT value as the boundary value between the muscle layer and the subcutaneous fat layer is decreased until the difference falls within a predetermined threshold.
 また、上記の脂肪検査装置における判別部では、皮下脂肪層のCT値にピークが現れてきた場合に、肥満傾向と判別する。
 皮下脂肪層のボクセル数とCT値の相関分布のピーク値の変移、内臓脂肪層のボクセル数とCT値の相関分布のピーク値の変移を調べることにより、被験者の肥満体質や被験者が肥満傾向であることを判別する。
Further, the discrimination unit in the fat testing apparatus discriminates an obesity tendency when a peak appears in the CT value of the subcutaneous fat layer.
By examining the change in the peak value of the correlation distribution between the number of subcutaneous fat layers and the CT value, and the change in the peak value of the correlation distribution between the number of voxels in the visceral fat layer and the CT value, Determine that there is.
 また、上記の脂肪検査装置の判別部において、更に、皮下脂肪層のCT値のピーク値から、不飽和脂肪酸であるオレイン酸と、長鎖脂肪酸であるパルミチン若しくはステアリン酸の含有率を推測し、脂肪組織が燃焼しやすいか否かを判別する。
 上記の判別部において、皮下脂肪層のCT値のピークが、所定閾値より低い場合には長鎖脂肪酸であるパルミチン若しくはステアリン酸の含有率が高く脂肪組織が燃焼しにくいと判別し、所定閾値より高い場合には不飽和脂肪酸であるオレイン酸の含有率が高く脂肪組織が燃焼しやすいと判別する。
Further, in the discrimination unit of the fat test apparatus, from the CT value of the subcutaneous fat layer, the content of oleic acid that is an unsaturated fatty acid and palmitic acid or stearic acid that is a long-chain fatty acid is estimated, It is determined whether adipose tissue is easy to burn.
In the determination unit, when the CT value peak of the subcutaneous fat layer is lower than a predetermined threshold, it is determined that the content of palmitic acid or stearic acid, which is a long chain fatty acid, is high and the fatty tissue is difficult to burn, If it is high, it is determined that the content of oleic acid, which is an unsaturated fatty acid, is high and the adipose tissue is likely to burn.
 また、上記の脂肪検査装置は、上記の画像取得部において、得られた断層画像を重ね合せた三次元領域から肝臓領域を抽出する肝臓領域抽出部と、抽出した肝臓領域のボクセル数とCT値の相関分布を取得する肝臓領域分布取得部と、CT値の相関分布を用いて脂肪肝について判別する脂肪肝判別部を更に備えた構成とされる。
 肝臓領域抽出部と肝臓領域分布取得部と脂肪肝判別部を更に備えることにより、脂肪肝について、CT値の低下の度合いから肝臓内の脂肪量を推定し、脂肪肝の判別できる。
Further, the fat inspection apparatus includes a liver region extraction unit that extracts a liver region from a three-dimensional region obtained by superimposing the obtained tomographic images in the image acquisition unit, and the number of voxels and CT values of the extracted liver region. A liver region distribution acquisition unit that acquires the correlation distribution of the liver and a fatty liver determination unit that determines fatty liver using the correlation distribution of CT values.
By further including a liver region extraction unit, a liver region distribution acquisition unit, and a fatty liver determination unit, the fatty amount in the liver can be estimated from the degree of decrease in CT value for fatty liver, and fatty liver can be determined.
 上記の脂肪肝判別部では、抽出した肝臓領域のCT値の平均値と、健常者の肝臓領域のCT値の平均値と、脂肪のCT値の平均値とから、抽出した肝臓領域の脂肪率を算出する。 In the fatty liver discriminating unit, the fat percentage of the extracted liver region is calculated from the average value of the CT values of the extracted liver region, the average value of the CT values of the healthy subject's liver region, and the average value of the CT value of fat. Is calculated.
 また、本発明の脂肪検査プログラムは、前述の脂肪検査方法における各々のステップを、コンピュータに実行させるためのプログラムである。 The fat test program of the present invention is a program for causing a computer to execute each step in the above-described fat test method.
 本発明によれば、肥満体質や脂肪肝疾患を検査できるといった効果を有する。また本発明によれば、筋肉層のCT値が低く、脂肪層と認識されてしまう場合があったとしても、周囲の皮下脂肪の厚みを考慮し、閾値を変更することにより対処できる。さらに本発明によれば、腹部組織の皮下脂肪層と内臓脂肪層の体積や割合に加えて、脂肪の質の判定や肝脂肪の判定が行えるといった効果がある。 According to the present invention, there is an effect that an obesity constitution or a fatty liver disease can be examined. According to the present invention, even if the CT value of the muscle layer is low and the fat layer may be recognized, it can be dealt with by changing the threshold in consideration of the thickness of the surrounding subcutaneous fat. Furthermore, according to the present invention, in addition to the volume and ratio of the subcutaneous fat layer and the visceral fat layer of the abdominal tissue, there is an effect that it is possible to determine fat quality and liver fat.
 脂肪肝については、近年、検診でCT撮影を行うことが多くなっているが、例えば、検診のオプション検査として脂肪量を計測して脂肪肝疾患の検査を行うことも可能である。 As for fatty liver, CT imaging is frequently performed in recent years, but for example, it is also possible to test for fatty liver disease by measuring fat mass as an optional test for screening.
腹部の断層模式図Abdominal fault schematic diagram 本発明の脂肪検査装置の概略構成図Schematic configuration diagram of the fat test apparatus of the present invention 本発明の一の実施形態の脂肪検査方法の概略処理フロー図Schematic process flow diagram of a fat testing method of one embodiment of the present invention 実施例1の脂肪検査方法の処理フロー図Process flow diagram of fat test method of embodiment 1 本発明の他の実施形態の脂肪検査方法の概略処理フロー図Schematic process flow diagram of a fat testing method of another embodiment of the present invention 抽出した肝臓領域の脂肪率の算出の仕方の説明図Illustration of how to calculate the fat percentage of the extracted liver region 実施例2の脂肪検査装置の機能ブロック図Functional block diagram of the fat test apparatus according to the second embodiment 実施例2の脂肪検査装置の弁別部の機能ブロック図Functional block diagram of the discriminating part of the fat test apparatus of Embodiment 2 ボクセル数とCT値の相関分布図Correlation distribution chart of voxel number and CT value 皮下脂肪および内臓脂肪のCT値の分布図(肥満の場合)CT value distribution map of subcutaneous fat and visceral fat (in the case of obesity) 皮下脂肪および内臓脂肪のCT値の分布図(普通の場合)CT value distribution map of subcutaneous fat and visceral fat (normal case) 皮下脂肪および内臓脂肪のCT値の分布図(やせの場合)CT value distribution map of subcutaneous fat and visceral fat (in case of skinnyness) 内臓脂肪におけるボクセル数とCT値の分布図Distribution chart of voxel number and CT value in visceral fat 皮下脂肪におけるボクセル数とCT値の分布図Distribution of voxel number and CT value in subcutaneous fat 皮下脂肪と内蔵脂肪のCT値の分布図(BMI:18.7)CT value distribution map of subcutaneous fat and visceral fat (BMI: 18.7) 皮下脂肪と内蔵脂肪のCT値の分布図(BMI:21.2)CT value distribution map of subcutaneous fat and internal fat (BMI: 21.2) 皮下脂肪と内蔵脂肪のCT値の分布図(BMI:32.3)CT value distribution map of subcutaneous fat and internal fat (BMI: 32.3) 脂肪量や肝臓体積に対する脂肪量の割合と各検査項目との単回帰分析結果Results of single regression analysis of the ratio of fat mass to fat mass and liver volume and each test item コンピュータ・ハードウェアの内部構成図Internal configuration diagram of computer hardware
 以下、本発明の実施形態について、図面を参照しながら詳細に説明していく。なお、本発明の範囲は、以下の実施例や図示例に限定されるものではなく、幾多の変更及び変形が可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The scope of the present invention is not limited to the following examples and illustrated examples, and many changes and modifications can be made.
 肥満度(BMI:Body Math Index)は、体重(kg)÷(身長(m)×身長(m))で計算される値であり、肥満の程度を知るための指数として広く用いられている。BMI値の判定基準は一般的には、18.5未満で“やせ”、18.5以上25未満で“標準”、
25以上30未満で“肥満”、30以上で“高度肥満”と判定されている。また、体重の何%が脂肪なのかを示した体脂肪率の値も肥満傾向を調べるのに役立つものである。
 肥満の原因の脂肪は、皮下組織につく皮下脂肪と内臓組織につく内臓脂肪とがある。このうち内臓脂肪が生活習慣病の大きな要因と言われており、そのため、単なる体脂肪量の計測ではなく、皮下脂肪と内臓脂肪を弁別して計測できる方法が必要である。
Body mass index (BMI) is a value calculated by weight (kg) / (height (m) × height (m)), and is widely used as an index for knowing the degree of obesity. The criteria for determining a BMI value are generally less than 18.5, “lossy”, 18.5 and less than 25, “standard”,
It is determined that “obesity” is 25 or more and less than 30 and “high obesity” is 30 or more. A body fat percentage value indicating what percentage of body weight is fat is also useful for examining obesity trends.
Fats that cause obesity include subcutaneous fat on the subcutaneous tissue and visceral fat on the visceral tissue. Of these, visceral fat is said to be a major factor in lifestyle-related diseases, and therefore, a method capable of discriminating and measuring subcutaneous fat and visceral fat is required instead of simply measuring body fat mass.
 図1に、人などの哺乳類や鳥類などの被検体の腹部の断層模式図を示す。図1の模式的に示すように、最外層の皮膚10の内側に皮下脂肪層12があり、その内側に筋肉層14があり、筋肉層14の内側に内臓脂肪層16、内臓組織18、骨19が存在する構造となっている。X線CTの場合、筋肉層や皮膚は正の値のCT値を示し、皮下脂肪層および内臓脂肪層の負の値のCT値であり、基本的に明確に区別できるものとされている。 Fig. 1 shows a tomographic schematic diagram of the abdomen of a subject such as a mammal such as a human or a bird. As schematically shown in FIG. 1, there is a subcutaneous fat layer 12 inside the outermost skin 10, a muscle layer 14 inside, and a visceral fat layer 16, a visceral tissue 18, a bone inside the muscle layer 14. 19 is present. In the case of X-ray CT, the muscle layer and the skin show positive CT values, and are negative CT values of the subcutaneous fat layer and the visceral fat layer, which are basically clearly distinguishable.
 図2に本発明の脂肪検査装置の概略構成図を示す。医用断層画像装置20は被検体のX線CT撮像を行う装置である。既存のX線CT装置を用いることができる。医用断層画像装置20により得られたCT断層画像データは、断層画像メモリ22に記憶される。医用断層画像装置20から断層画像メモリ22に記憶されるCT断層画像データは、断層領域各点のCT値のマップや、或いは、CT値に対して処理を加えた後の加工画像でも構わない。 FIG. 2 shows a schematic configuration diagram of the fat test apparatus of the present invention. The medical tomographic image apparatus 20 is an apparatus that performs X-ray CT imaging of a subject. An existing X-ray CT apparatus can be used. CT tomographic image data obtained by the medical tomographic image apparatus 20 is stored in the tomographic image memory 22. The CT tomographic image data stored in the tomographic image memory 22 from the medical tomographic image apparatus 20 may be a map of CT values at each point in the tomographic region, or a processed image after processing the CT values.
 断層画像メモリ22に記憶されるCT断層画像データは、演算処理部24で処理されてボクセル数とCT値の相関分布データ26が生成される。この相関分布データ26に基づいて、肥満傾向や脂肪肝疾患傾向などが判別される。その判別結果は、判別結果表示部28により、皮下脂肪層および内臓脂肪層のスライス画像あるいは三次元画像として、皮下脂肪および内臓脂肪の物理量(面積、体積、質量など)と共に表示することができる。 The CT tomographic image data stored in the tomographic image memory 22 is processed by the arithmetic processing unit 24 to generate correlation distribution data 26 between the number of voxels and the CT value. Based on the correlation distribution data 26, an obesity tendency, a fatty liver disease tendency, and the like are determined. The discrimination result can be displayed by the discrimination result display unit 28 as a slice image or a three-dimensional image of the subcutaneous fat layer and the visceral fat layer together with physical quantities (area, volume, mass, etc.) of the subcutaneous fat and the visceral fat.
 図3は、本発明の一実施形態の脂肪検査方法の概略処理フローを示している。本発明の一実施形態の脂肪検査方法は、図3に示すように、医用断層画像装置における腹部組織の断層画像を取得する画像取得ステップ(S10)と、断層画像のCT値を用いて皮下脂肪層、筋肉層、内臓脂肪層を弁別する弁別ステップ(S12)と、弁別した皮下脂肪層および内臓脂肪層のボクセル数とCT値の相関分布を取得する分布取得ステップ(S14)と、CT値の相関分布を用いて肥満傾向について判別する判別ステップ(S16)を備える。
 また、本発明の一実施形態の脂肪検査プログラムは、図3の脂肪検査方法のフローと同様の各ステップ(S10~S16)をコンピュータに実行させる。
FIG. 3 shows a schematic processing flow of the fat test method according to the embodiment of the present invention. As shown in FIG. 3, the fat inspection method according to an embodiment of the present invention includes an image acquisition step (S10) for acquiring a tomographic image of an abdominal tissue in a medical tomographic image apparatus, and subcutaneous fat using a CT value of the tomographic image. A discrimination step (S12) for discriminating layers, muscle layers and visceral fat layers; a distribution acquisition step (S14) for obtaining a correlation distribution between the voxel numbers of the discriminated subcutaneous fat layers and visceral fat layers and CT values; A discrimination step (S16) for discriminating an obesity tendency using the correlation distribution is provided.
In addition, the fat test program according to the embodiment of the present invention causes the computer to execute the same steps (S10 to S16) as the flow of the fat test method of FIG.
 ここで、弁別ステップ(S12)では、皮下脂肪層および内臓脂肪層の脂肪層のCT値(H.U.)が-200~-10(負の値)の範囲内に存在するとし、筋肉層のCT値(H.U.)が0(水のCT値相当)~正の値の範囲内に存在するとし、それぞれを分別する。
 そして、皮下脂肪層と内臓脂肪層の間には、必ず筋肉層が存在すると仮定することにより、皮下脂肪と内臓脂肪を分離し計測する。
Here, in the discrimination step (S12), it is assumed that the CT value (HU) of the fat layer of the subcutaneous fat layer and the visceral fat layer is in the range of −200 to −10 (negative value). The CT value (H.U.) of No. 1 is in the range of 0 (corresponding to the CT value of water) to a positive value, and each is separated.
Then, by assuming that a muscle layer always exists between the subcutaneous fat layer and the visceral fat layer, the subcutaneous fat and the visceral fat are separated and measured.
 また、分布取得ステップ(S14)では、皮下脂肪と内臓脂肪の面積や体積を計測するだけでなく、CT値の分布を計測する。すなわち、従来と同様に、各断層画像の皮下脂肪面積および内臓脂肪面積に対して各層の厚みを乗算して、その乗算結果を全層について総和をとり、腹部全体での皮下脂肪体積および内臓脂肪体積を算出するのであるが、それと同時に、CT値の分布も計測する。1つ1つの区画(ボクセル)のCT値は皮下脂肪層内や内臓脂肪層内において異なる。CT値毎にボクセルの個数をカウントして、ボクセル数とCT値の相関分布データを取得する。
 そして、肥満傾向について判別する判別ステップ(S16)では、ボクセル数とCT値の相関分布においてピーク値があるか否かにより、特に、皮下脂肪層のCT値にピークが現れてきたか否かによって、被験者が肥満傾向にあるか否かを判別する。
In the distribution acquisition step (S14), not only the area and volume of subcutaneous fat and visceral fat are measured, but also the distribution of CT values is measured. That is, as before, the subcutaneous fat area and visceral fat area of each tomographic image are multiplied by the thickness of each layer, and the multiplication result is summed for all layers to obtain the subcutaneous fat volume and visceral fat in the entire abdomen. The volume is calculated, but at the same time, the distribution of CT values is also measured. The CT value of each section (voxel) is different in the subcutaneous fat layer and the visceral fat layer. The number of voxels is counted for each CT value, and correlation distribution data between the number of voxels and the CT value is acquired.
Then, in the discrimination step (S16) for discriminating the obesity tendency, depending on whether or not there is a peak value in the correlation distribution between the number of voxels and the CT value, in particular, whether or not a peak has appeared in the CT value of the subcutaneous fat layer, It is determined whether or not the subject is obese.
 図5は、本発明の他の実施形態の脂肪検査方法の概略処理フローを示している。
 図5に示される脂肪検査方法は、医用断層画像装置における腹部組織の断層画像を取得する画像取得ステップ(S30)と、得られた断層画像を重ね合せた三次元領域から肝臓領域を抽出する肝臓領域抽出ステップ(S32)と、抽出した肝臓領域のボクセル数とCT値の相関分布を取得する肝臓領域分布取得ステップ(S34)と、CT値の相関分布を用いて脂肪肝について判別する肝脂肪判別ステップ(S36)を備える。本実施形態の脂肪検査方法によれば、脂肪肝について、CT値の低下の度合いから肝臓内の脂肪量を推定し、脂肪肝の判別をすることができる。
FIG. 5 shows a schematic processing flow of a fat test method according to another embodiment of the present invention.
The fat inspection method shown in FIG. 5 includes an image acquisition step (S30) for acquiring a tomographic image of an abdominal tissue in a medical tomographic image apparatus, and a liver for extracting a liver region from a three-dimensional region obtained by superimposing the obtained tomographic images. Region extraction step (S32), liver region distribution acquisition step (S34) for acquiring the correlation distribution between the number of voxels in the extracted liver region and the CT value, and liver fat determination for determining fatty liver using the CT value correlation distribution Step (S36) is provided. According to the fat test method of the present embodiment, for fatty liver, the amount of fat in the liver can be estimated from the degree of decrease in CT value, and fatty liver can be determined.
 肝臓領域抽出ステップ(S32)は、各断層画像の肝臓組織に対して各層の厚みを乗算して、その乗算結果を全層について総和をとり、肝臓組織の三次元領域を特定する。また、肝脂肪判別ステップ(S36)は、健常者の肝臓領域の平均CT値が通常60(H.U.)であるのに対して、脂肪肝疾患の肝臓領域の平均CT値は低い値となる。脂肪肝は、一般的には肝臓領域全体における脂肪率が30%以上をいう。 In the liver region extraction step (S32), the liver tissue of each tomographic image is multiplied by the thickness of each layer, and the multiplication result is summed for all layers to specify the three-dimensional region of the liver tissue. In the liver fat discrimination step (S36), the average CT value of the liver region of a healthy person is usually 60 (HU), whereas the average CT value of the liver region of fatty liver disease is a low value. Become. Fatty liver generally refers to a fat percentage of 30% or more in the entire liver region.
 図6に示すような図で説明すると、計測した肝臓領域の平均CT値が42(H.U.)に低下していたのであれば、脂肪の平均CT値が-120(H.U.)であること、正常な肝臓領域の平均CT値が通常60(H.U.)であること、から被験者の肝臓領域の脂肪率が10%であることがわかるといったものである。この場合、肝臓領域の脂肪率が10%であることから、脂肪肝疾患ではないが脂肪肝傾向があると判別できる。 If the average CT value of the measured liver region is reduced to 42 (H.U.), the average CT value of fat is -120 (H.U.). That is, the average CT value of a normal liver region is usually 60 (HU), indicating that the fat percentage of the subject's liver region is 10%. In this case, since the fat percentage of the liver region is 10%, it can be determined that there is a fatty liver tendency although it is not a fatty liver disease.
(肥満傾向の判別のための脂肪検査方法)
 図4は、実施例1の脂肪検査方法の処理フローを示している。
 実施例1の脂肪検査方法は、医用断層画像装置における腹部組織の断層画像を取得する画像取得ステップ(S10)と、断層画像のCT値を用いて皮下脂肪層、筋肉層、内臓脂肪層を弁別する弁別ステップ(S120)と、直前のラインの皮下脂肪層の厚み情報を記憶する記憶ステップ(S122)と、現在と直前のラインの皮下脂肪層の厚み情報の計測値を比較する比較ステップ(S124)と、比較ステップ(S124)において比較した結果、その差分が所定閾値より大きい場合に、筋肉層と皮下脂肪層との境界値とするCT値を一時的に変更する変更ステップ(S126)と、変更した筋肉層と皮下脂肪層の境界値のCT値を用いて、現在のラインの皮下脂肪層の厚み情報を算出する算出ステップ(S128)と、比較ステップ(S124)において比較した結果、その差分が所定閾値内に収まる場合に、皮下脂肪層および内臓脂肪層のボクセル数とCT値の相関分布を取得する分布取得ステップ(S14)と、CT値の相関分布を用いて肥満傾向について判別する判別ステップ(S16)を備える。
(Fat test method for discrimination of obesity tendency)
FIG. 4 shows a processing flow of the fat inspection method of the first embodiment.
In the fat inspection method of the first embodiment, an image acquisition step (S10) for acquiring a tomographic image of an abdominal tissue in a medical tomographic image apparatus, and a subcutaneous fat layer, a muscle layer, and a visceral fat layer are discriminated using CT values of the tomographic image. Discriminating step (S120), storing step (S122) for storing the thickness information of the subcutaneous fat layer of the immediately preceding line, and comparing step (S124) for comparing the measured values of the thickness information of the subcutaneous fat layer of the current and immediately preceding line ) And the comparison step (S124), and if the difference is larger than a predetermined threshold, the change step (S126) for temporarily changing the CT value as the boundary value between the muscle layer and the subcutaneous fat layer, A calculation step (S128) for calculating thickness information of the subcutaneous fat layer of the current line using the CT value of the boundary value between the changed muscle layer and subcutaneous fat layer, and a comparison step (S 24) a distribution acquisition step (S14) for acquiring a correlation distribution between the number of voxels in the subcutaneous fat layer and the visceral fat layer and the CT value when the difference falls within a predetermined threshold, and a correlation distribution of the CT value And determining step (S16) for determining obesity tendency.
 局部的に、筋肉層のCT値が低下していき、脂肪と区別がつかないケースがある。このようなケースに対処すべく、直前のラインの皮下脂肪層の厚み情報を記憶し、現在と直前のラインの皮下脂肪層の厚み情報の計測値を比較し、その差分が所定閾値より大きい場合に、筋肉層と皮下脂肪層との境界値とするCT値を一時的に変更する。周囲の皮下脂肪の厚みを考慮し、閾値を変更することにより筋肉層を脂肪層と誤認識する不具合を解決する。例えば、直前のラインの皮下脂肪の厚みが5画素であったのに対し、今回の厚みが15画素であったならば、筋肉と脂肪の境界値を変更し、変動を抑える。 Locally, there are cases in which the CT value of the muscle layer decreases and cannot be distinguished from fat. In order to deal with such a case, when the thickness information of the subcutaneous fat layer of the immediately preceding line is stored, the measured value of the thickness information of the subcutaneous fat layer of the previous line is compared, and the difference is larger than a predetermined threshold In addition, the CT value as the boundary value between the muscle layer and the subcutaneous fat layer is temporarily changed. Considering the thickness of surrounding subcutaneous fat, the problem of misrecognizing a muscle layer as a fat layer is solved by changing the threshold value. For example, if the thickness of the subcutaneous fat in the immediately preceding line is 5 pixels, but the current thickness is 15 pixels, the boundary value between muscle and fat is changed to suppress the fluctuation.
 次に、実施例1の脂肪検査方法における判別ステップにおいて、皮下脂肪層と内臓脂肪層のCT値-ボクセル数の相関分布グラフを用いて、太りやすい体質、太りにくい体質を判別する方法について説明する。
 図9は、皮下脂肪層および内臓脂肪層のボクセル数とCT値の相関分布図を示している。図のX軸がCT値を表しており、Y軸はボクセル数、すなわち脂肪の個数を示している。図9(1)は肥満の方の一般的な皮下脂肪層と内臓脂肪層のCT値-ボクセル数の相関分布グラフの形を示している。また、図9(2)はやせの方の一般的な皮下脂肪層と内臓脂肪層のCT値-ボクセル数の相関分布グラフの形を示している。図においてAが皮下脂肪層を示しており、Bが内臓脂肪層を示している。図9(1)に示されるように、肥満の方のボクセル数とCT値の相関分布図は、基本的に-100~-120の辺りにCT値のピークが存在する形状を呈する。一方、図9(2)に示されるように、やせの方のボクセル数とCT値の相関分布図は、基本的にCT値のピークが存在しない形状を呈する。
Next, in the discrimination step in the fat test method of the first embodiment, a method for discriminating an easily fattened constitution and a less faty constitution using a CT-voxel number correlation distribution graph of the subcutaneous fat layer and the visceral fat layer will be described. .
FIG. 9 shows a correlation distribution diagram between the number of voxels in the subcutaneous fat layer and the visceral fat layer and the CT value. The X axis in the figure represents the CT value, and the Y axis represents the number of voxels, that is, the number of fats. FIG. 9 (1) shows the form of a correlation distribution graph of CT value-voxel number of the general subcutaneous fat layer and visceral fat layer of obese people. FIG. 9 (2) shows the form of a correlation distribution graph of CT value-number of voxels of the general subcutaneous fat layer and visceral fat layer of the lean side. In the figure, A indicates the subcutaneous fat layer, and B indicates the visceral fat layer. As shown in FIG. 9 (1), the correlation distribution diagram between the number of voxels and the CT value for obese people basically has a shape in which a CT value peak exists around -100 to -120. On the other hand, as shown in FIG. 9 (2), the correlation distribution diagram between the number of voxels and the CT value of the thinner one basically exhibits a shape in which no peak of the CT value exists.
 具体的なデータで説明する。図10~12は、皮下脂肪および内臓脂肪のCT値の分布図であり、図10が肥満の場合、図11が普通の場合、図12がやせの場合の分布データである。データは内臓脂肪、皮下脂肪を中心としていることから、X軸は-200~0としている。図10に示すように、肥満の場合、皮下脂肪と内臓脂肪の双方にCT値のピークが現れている。一方、図12に示すように、やせの場合、皮下脂肪と内臓脂肪の双方にCT値のピークは見られない。また、図11に示すように、普通の場合、皮下脂肪のCT値に明らかにピークが現れているが、内臓脂肪にはピークができつつあるような状態であるのがわかる。 Explain with specific data. 10 to 12 are distribution diagrams of CT values of subcutaneous fat and visceral fat. FIG. 10 shows distribution data when obesity is present, FIG. 11 is normal, and FIG. 12 is thin. Since the data are centered on visceral fat and subcutaneous fat, the X-axis is -200 to 0. As shown in FIG. 10, in the case of obesity, the peak of CT value appears in both subcutaneous fat and visceral fat. On the other hand, as shown in FIG. 12, in the case of skinnyness, no peak of CT value is observed in both subcutaneous fat and visceral fat. In addition, as shown in FIG. 11, in the normal case, a peak clearly appears in the CT value of subcutaneous fat, but it can be seen that a peak is being formed in visceral fat.
 図10~12の3つのグラフのY軸スケールをそろえた合成グラフを図13,14に示す。図13は内臓脂肪におけるボクセル数とCT値の分布グラフであり、図14は皮下脂肪におけるボクセル数とCT値の分布グラフである。
 図13,14のグラフにおいて、やせの場合、双方のグラフにはCT値のピークは見られず、CT値が-100程度を境にして、ボクセル数がカウントされている様子が見られる。また、図13のグラフでは、普通の場合、-74付近にCT値のピークが見られ、やせの場合に比べてボクセル数が増加していることがわかる。また、図14のグラフでは、普通の場合、-92付近にCT値のピークが見られ、やせの場合に比べてボクセル数が増加していることがわかる。そして、図13,14のグラフにおいて、肥満の場合、双方のグラフには、半値幅の25~30程度で、-110付近にCT値のピークがはっきりと見られる。
FIGS. 13 and 14 show composite graphs in which the Y-axis scales of the three graphs of FIGS. 10 to 12 are aligned. FIG. 13 is a distribution graph of voxel number and CT value in visceral fat, and FIG. 14 is a distribution graph of voxel number and CT value in subcutaneous fat.
In the graphs of FIGS. 13 and 14, in the case of skinnyness, no peak of the CT value is seen in both graphs, and it can be seen that the number of voxels is counted at the boundary of the CT value of about −100. Further, in the graph of FIG. 13, in the normal case, a peak of the CT value is seen in the vicinity of −74, and it can be seen that the number of voxels is increased as compared with the case of the skinnyness. Further, in the graph of FIG. 14, in the normal case, a peak of the CT value is seen in the vicinity of −92, and it can be seen that the number of voxels is increased as compared with the case of the thin case. In the graphs of FIGS. 13 and 14, in the case of obesity, in both graphs, the peak of the CT value is clearly seen in the vicinity of −110 with a half width of about 25-30.
 普通の人の傾向から、図14の皮下脂肪の方が図13の内臓脂肪よりも、速くCT値のピークが形成されることがわかる。すなわち、皮下脂肪におけるボクセル数とCT値の分布グラフが、肥満の予測の判断データとすることができるのである。見かけはやせている人でも、皮下脂肪のピークが現れ始めれば、近い将来に内臓脂肪の蓄積が始まると推測でき、隠れ肥満と呼ばれる人たちの生活習慣の意識を早く変化させることも可能になることがわかるであろう。 From the tendency of ordinary people, it can be seen that the subcutaneous fat in FIG. 14 forms a CT value peak faster than the visceral fat in FIG. That is, the distribution graph of the number of voxels in subcutaneous fat and the CT value can be used as judgment data for predicting obesity. Even if it seems thin, if the peak of subcutaneous fat begins to appear, it can be estimated that visceral fat accumulation will begin in the near future, and it will be possible to quickly change the lifestyle habits of people called hidden obesity You will understand.
 図15~17は、代表的な3例について、皮下脂肪と内蔵脂肪のCT値の分布図を示す。図15は男性,年齢52歳,BMI18.7の被験者の分布図である。図16は男性,年齢43歳,BMI21.2の被験者の分布図である。図17は男性,年齢45歳,BMI32.3の被験者の分布図である。 15 to 17 show CT value distribution charts of subcutaneous fat and visceral fat for three representative examples. FIG. 15 is a distribution map of subjects who are male, age 52, and BMI 18.7. FIG. 16 is a distribution diagram of subjects who are male, age 43, and BMI 21.2. FIG. 17 is a distribution diagram of subjects who are male, age 45, and BMI 32.3.
 図15の場合、皮下脂肪のCT値は-100から-80まで急激に上昇し、-62から緩やかな下降曲線を示している。一方、内臓脂肪のCT値は-100から-10までピークを持たない単調な増加曲線を示している。皮下脂肪と内蔵脂肪のCT値のピークは、皮下脂肪が-62、内臓脂肪が-10であった。
 図16の場合、皮下脂肪のCT値は-102をピークとする単峰性の曲線を示し、やせに比べて低いCT値にピークがある。一方、内臓脂肪のCT値は-97をピークとする単峰性の曲線で、ピークよりCT値が高い側は穏やかな曲線を示している。
 図17の場合、皮下脂肪のCT値は-111をピークとする単峰性の曲線を示している。一方、内臓脂肪のCT値は-110をピークとする単峰性の曲線で皮下脂肪のCT値と同様な曲線を示している。但し、図16に示すBMI21.2の被験者のCT値の曲線と比べて、更に低いCT値にピークがあり、曲線が鋭くなる傾向がある。
In the case of FIG. 15, the CT value of subcutaneous fat rises rapidly from −100 to −80, and shows a gradual downward curve from −62. On the other hand, the CT value of visceral fat shows a monotonous increase curve having no peak from -100 to -10. The peak CT values for subcutaneous fat and visceral fat were -62 for subcutaneous fat and -10 for visceral fat.
In the case of FIG. 16, the CT value of subcutaneous fat shows a unimodal curve having a peak of −102, and has a peak at a lower CT value than that of the lean skin. On the other hand, the CT value of visceral fat is a unimodal curve having a peak at −97, and the CT value higher than the peak shows a gentle curve.
In the case of FIG. 17, the CT value of subcutaneous fat shows a unimodal curve with a peak at −111. On the other hand, the CT value of visceral fat is a unimodal curve having a peak at −110, which is similar to the CT value of subcutaneous fat. However, as compared with the CT value curve of the subject of BMI 21.2 shown in FIG.
 図15~17のいずれにおいても、皮下脂肪が内蔵脂肪より低いCT値にピークを有している。このことから、やせから肥満になるにつれて皮下脂肪組織に脂肪が蓄積されてから、次第に内臓脂肪組織に蓄積されていく可能性があることがわかる。また、図15~17から、肥満になるにつれて、曲線が鋭くなる傾向があることが確認できる。肥満になるにつれて脂肪細胞の脂肪の純度が高い傾向にあると推察する。 15 to 17, the subcutaneous fat has a peak at a CT value lower than that of the built-in fat. From this, it can be seen that as fat becomes obese, fat accumulates in the subcutaneous adipose tissue and then gradually accumulates in the visceral adipose tissue. Also, from FIGS. 15 to 17, it can be confirmed that the curve tends to become sharper as it becomes obese. It is presumed that the fat purity of fat cells tends to be higher as they become obese.
(脂肪検査装置)
 次に、本発明の脂肪検査装置について説明する。図7は実施例2の脂肪検査装置の機能ブロック図、図8は弁別部の機能ブロック図を示している。
 実施例2の脂肪検査装置1は、医用断層画像装置2における腹部組織の断層画像を取得する画像取得部3と、断層画像のCT値を用いて皮下脂肪層、筋肉層、内臓脂肪層を弁別する弁別部4と、弁別した皮下脂肪層および内臓脂肪層のボクセル数とCT値の相関分布を取得する分布取得部5と、CT値の相関分布を用いて肥満傾向について判別する判別部6を備える。画像取得部3、弁別部4、分布取得部5、判別部6は、コンピュータの演算処理部でそれぞれの機能処理が行われる。ボクセル数とCT値の相関分布データはメモリに記憶される。
(Fat testing device)
Next, the fat test apparatus of the present invention will be described. FIG. 7 is a functional block diagram of the fat test apparatus according to the second embodiment, and FIG. 8 is a functional block diagram of the discrimination unit.
The fat inspection apparatus 1 according to the second embodiment is configured to discriminate a subcutaneous fat layer, a muscle layer, and a visceral fat layer using an image acquisition unit 3 that acquires a tomographic image of an abdominal tissue in the medical tomographic image apparatus 2 and a CT value of the tomographic image. A discriminating unit 4, a distribution acquiring unit 5 for acquiring a correlation distribution between the number of voxels in the discriminated subcutaneous fat layer and visceral fat layer and the CT value, and a discriminating unit 6 for discriminating an obesity tendency using the correlation distribution of the CT value. Prepare. The image acquisition unit 3, the discrimination unit 4, the distribution acquisition unit 5, and the determination unit 6 are each subjected to functional processing by an arithmetic processing unit of a computer. The correlation distribution data of the number of voxels and the CT value is stored in the memory.
 また、図8に示すように、弁別部4では、直前のラインの皮下脂肪層の厚み情報を記憶する記憶部42と、現在と直前のラインの皮下脂肪層の厚み情報の計測値を比較し、その差分が閾値より大きい場合に、筋肉層と皮下脂肪層との境界値とするCT値を一時的に変更する変更部44と、変更した筋肉層と皮下脂肪層の境界値のCT値を用いて、現在のラインの皮下脂肪層の厚み情報を算出する算出部46を有する。
 記憶部42,変更部44、算出部46は、コンピュータの演算処理部でそれぞれの機能処理が行われる。直前のラインの皮下脂肪層の厚み情報の計測値や閾値は、メモリに記憶される。
Further, as shown in FIG. 8, the discriminating unit 4 compares the measured value of the thickness information of the subcutaneous fat layer of the previous line with the storage unit 42 that stores the thickness information of the subcutaneous fat layer of the previous line. When the difference is larger than the threshold, the changing unit 44 that temporarily changes the CT value as the boundary value between the muscle layer and the subcutaneous fat layer, and the CT value of the boundary value between the changed muscle layer and the subcutaneous fat layer And a calculation unit 46 for calculating the thickness information of the subcutaneous fat layer of the current line.
The storage unit 42, the change unit 44, and the calculation unit 46 are each subjected to functional processing by an arithmetic processing unit of a computer. The measurement value and threshold value of the thickness information of the subcutaneous fat layer of the immediately preceding line are stored in the memory.
(肝臓内の脂肪量の統計解析)
 本発明の脂肪検査方法において、画像取得ステップにおいて得られた断層画像を重ね合せた三次元領域から肝臓領域を抽出する肝臓領域抽出ステップと、抽出した肝臓領域のボクセル数とCT値の相関分布を取得する肝臓領域分布取得ステップと、CT値の相関分布を用いて脂肪肝について判別する脂肪肝判別ステップにより、CT値の低下の度合いから肝臓内の脂肪量を推定し、脂肪肝の判別をすることができる。
 実際に、被験者175人(男性、年齢40~69歳、平均年齢56.4、標準偏差10.6歳)の肝臓体積、肝臓内の脂肪量、肝臓体積に対する脂肪量(%)を測定した結果を示す。それぞれの測定値(平均,標準偏差)は、肝臓体積(1062cm,236cm)、肝臓内の脂肪量(149cm,120cm)、肝臓体積に対する脂肪量の割合(5.4%,1.5%)であった。
(Statistical analysis of fat mass in the liver)
In the fat inspection method of the present invention, a liver region extraction step for extracting a liver region from a three-dimensional region obtained by superimposing tomographic images obtained in the image acquisition step, and a correlation distribution between the number of voxels in the extracted liver region and a CT value is obtained. The liver region distribution acquisition step to be acquired and the fatty liver determination step to determine fatty liver using the correlation distribution of CT values are used to estimate the amount of fat in the liver from the degree of decrease in CT values, and to determine fatty liver be able to.
Actually, the results of measuring the liver volume, the amount of fat in the liver, and the amount of fat (%) relative to the liver volume of 175 subjects (male, age 40 to 69 years, average age 56.4, standard deviation 10.6 years) Indicates. The respective measured values (average, standard deviation) are the liver volume (1062 cm 3 , 236 cm 3 ), the fat mass in the liver (149 cm 3 , 120 cm 3 ), and the ratio of the fat mass to the liver volume (5.4%, 1. 5%).
 図18に、脂肪量(cm)や肝臓体積に対する脂肪量の割合(%)と各検査項目との単回帰分析による相関関係を示す。各々の検査項目は、体重(weight)、body mass
index(BMI)、腹囲(WC: waist circumference)、内臓脂肪面積(VFA: visceral fat area)、皮下脂肪面積(SFA: Subcutaneous fat area)、内臓脂肪体積(VAT: visceral adipose tissue)、皮下脂肪体積(SAT: Subcutaneous adipose tissue)、アスパラギン酸アミノトランスフェラーゼ(AST)、アラニンアミノトランスフェラーゼ(ALT)、LDLコレステロール(LDL-C: low density lipoprotein cholesterol)、HDLコレステロール(HDL-C: high density lipoprotein cholesterol)、血糖値(BS: Blood Sugar)、ヘモグロビンA1c (HbA1c: hemoglobinA1c)、尿酸(UA: uric acid)、C反応性タンパク質(CRP: C-reactive protein)、アルブミン(albumin)、γ-グルタミルトランスペプチターゼ(γ-GTP)、収縮期血圧(SBP: systolic blood pressure)、拡張期血圧(DBP: diastolic blood pressure)、中性脂肪(TG: Triglyceride)である。
 図18において、相関係数の右にマークが付されている項目は、相関があることを示している。
FIG. 18 shows the correlation between the fat amount (cm 3 ) and the ratio (%) of the fat amount to the liver volume by single regression analysis with each test item. Each inspection item is weight, body mass
index (BMI), waist circumference (WC), visceral fat area (VFA), subcutaneous fat area (SFA), visceral fat volume (VAT), subcutaneous fat volume (VAT) SAT: Subcutaneous adipose tissue), aspartate aminotransferase (AST), alanine aminotransferase (ALT), LDL cholesterol (LDL-C: low density lipoprotein cholesterol), HDL cholesterol (HDL-C: high density lipoprotein cholesterol), blood glucose level (BS: Blood Sugar), hemoglobin A1c (HbA1c: hemoglobinA1c), uric acid (UA), C-reactive protein (CRP), albumin (albumin), γ-glutamyl transpeptidase (γ- GTP), systolic blood pressure (SBP), diastolic blood pressure (DBP), neutral fat ( G: Triglyceride) is.
In FIG. 18, an item with a mark to the right of the correlation coefficient indicates that there is a correlation.
 肝臓内の脂肪量(cm)は、コレステロール(HDL)と1%未満の有意水準で正の相関を示した。また、肝臓体積に対する脂肪量の割合(%)は、weight、BMI、VFA、SFA、VAT、SAT、AST、ALT、SBPと0.1%未満の有意水準で強い正の相関を示した。また、LDLは5%未満の有意水準で正の相関を示した。
 すなわち、weight、BMI、VFA、SFA、VAT、SATのそれぞれが増加するにつれて、肥満者は非肥満者に比べ、肝臓体積に含まれる脂肪の割合が増加している可能性があることがわかる。
Fat mass (cm 3 ) in the liver showed a positive correlation with cholesterol (HDL) at a significance level of less than 1%. Moreover, the ratio (%) of fat mass to liver volume showed a strong positive correlation with weight, BMI, VFA, SFA, VAT, SAT, AST, ALT, and SBP at a significance level of less than 0.1%. LDL showed a positive correlation with a significance level of less than 5%.
That is, as weight, BMI, VFA, SFA, VAT, and SAT increase, obese people may have a higher proportion of fat contained in the liver volume than non-obese people.
 また、肝臓体積に含まれる脂肪量の割合が増加するにつれて、肝機能を示すASTやALTの値が上昇することが確認できたことから、肝臓内へ脂肪が蓄積していくことで、肝細胞に何らかの影響を与えることがわかる。さらに、肝臓体積に含まれる脂肪量の割合はLDLと強い正の相関が確認できた。LDLは動脈硬化の危険因子であるため、肝臓への長期にわたる脂肪蓄積は動脈硬化への進展につながる可能性がある。
 本発明の脂肪検査方法によりCT値の低下の度合いから肝臓内の脂肪量を推定することで、肝生検を行わなくても、非侵襲で肝臓内の脂肪蓄積の定量的な判断が可能となり、肝脂肪やその他の疾病の判別を行える可能性があることがわかる。
In addition, as the ratio of the amount of fat contained in the liver volume increased, it was confirmed that the values of AST and ALT indicating the liver function increased, and as a result of accumulation of fat in the liver, hepatocytes It can be seen that it has some influence. Furthermore, the ratio of the amount of fat contained in the liver volume was confirmed to have a strong positive correlation with LDL. Since LDL is a risk factor for arteriosclerosis, long-term fat accumulation in the liver can lead to progression to arteriosclerosis.
By estimating the amount of fat in the liver from the degree of decrease in CT value by the fat test method of the present invention, it is possible to make a non-invasive quantitative determination of fat accumulation in the liver without performing a liver biopsy. It can be seen that liver fat and other diseases can be discriminated.
 実施例4では、実施例1の脂肪検査方法の各ステップをコンピュータに実行させるための脂肪検査プログラムについて説明する。
 実施例4の脂肪検査プログラムは、図4に示す処理フロー、すなわち、医用断層画像装置における腹部組織の断層画像を取得する画像取得ステップ(S10)と、断層画像のCT値を用いて皮下脂肪層、筋肉層、内臓脂肪層を弁別する弁別ステップ(S120)と、直前のラインの皮下脂肪層の厚み情報を記憶する記憶ステップ(S122)と、現在と直前のラインの皮下脂肪層の厚み情報の計測値を比較する比較ステップ(S124)と、比較ステップ(S124)において比較した結果、その差分が所定閾値より大きい場合に、筋肉層と皮下脂肪層との境界値とするCT値を一時的に変更する変更ステップ(S126)と、変更した筋肉層と皮下脂肪層の境界値のCT値を用いて、現在のラインの皮下脂肪層の厚み情報を算出する算出ステップ(S128)と、比較ステップ(S124)において比較した結果、その差分が所定閾値内に収まる場合に、皮下脂肪層および内臓脂肪層のボクセル数とCT値の相関分布を取得する分布取得ステップ(S14)と、CT値の相関分布を用いて肥満傾向について判別する判別ステップ(S16)をコンピュータに実行させる。
In the fourth embodiment, a fat test program for causing a computer to execute each step of the fat test method of the first embodiment will be described.
The fat test program according to the fourth embodiment uses the processing flow shown in FIG. 4, that is, an image acquisition step (S10) for acquiring a tomographic image of the abdominal tissue in the medical tomographic image apparatus, and a subcutaneous fat layer using CT values of the tomographic image A discrimination step (S120) for discriminating between the muscle layer and the visceral fat layer, a storage step (S122) for storing the thickness information of the subcutaneous fat layer of the previous line, and the thickness information of the subcutaneous fat layer of the current and previous line As a result of the comparison in the comparison step (S124) for comparing the measured values and the comparison step (S124), if the difference is larger than a predetermined threshold, a CT value as a boundary value between the muscle layer and the subcutaneous fat layer is temporarily set. Using the changing step (S126) to be changed and the CT value of the boundary value between the changed muscle layer and subcutaneous fat layer, the calculation step for calculating the thickness information of the subcutaneous fat layer in the current line is calculated. (S128) and a distribution acquisition step of acquiring a correlation distribution between the number of voxels of the subcutaneous fat layer and the visceral fat layer and the CT value when the difference is within a predetermined threshold as a result of the comparison in the comparison step (S124). (S14) and a determination step (S16) for determining an obesity tendency using the correlation distribution of CT values are executed by the computer.
 図19は、脂肪検査プログラムを実行するコンピュータ・ハードウェアの内部構成を示す。図19において、コンピュータ・ハードウェアの内部構成は、CPU111、ROM112、ハードディスク113、キーボード114、マウス115、ディスプレイ116、光学式ドライブ117、RAM118を備えており、システムバス119に接続されている。ROM112はコンピュータを起動するためのブートアッププログラム等のプログラムを記憶する。RAM118は脂肪検査プログラムの命令を一時的に記憶するとともに一時記憶空間を提供する。ハードディスク113は脂肪検査プログラム、システムプログラム及びデータを記憶する。キーボード114、マウス115は、コンピュータの操作者からの命令を受け付ける。ディスプレイ116は、脂肪検査プログラムにおける判別ステップの判別結果を表示する。なお、コンピュータは、ネットワークへの接続を提供するネットワークカード(図示しない)を含んでもよい。 FIG. 19 shows the internal configuration of computer hardware that executes a fat test program. 19, the internal configuration of the computer hardware includes a CPU 111, a ROM 112, a hard disk 113, a keyboard 114, a mouse 115, a display 116, an optical drive 117, and a RAM 118, and is connected to a system bus 119. The ROM 112 stores a program such as a boot up program for starting the computer. The RAM 118 temporarily stores fat test program instructions and provides a temporary storage space. The hard disk 113 stores a fat test program, a system program, and data. The keyboard 114 and the mouse 115 receive commands from a computer operator. The display 116 displays the discrimination result of the discrimination step in the fat test program. The computer may include a network card (not shown) that provides a connection to the network.
 脂肪検査プログラムは、図4に示す各々のステップについて、適切なモジュール関数を呼び出し、所望の結果が得られるようにする命令の部分のみを含んでいれば良い。コンピュータがどのように動作するかは周知であり、詳細な説明は割愛する。脂肪検査プログラムを実行するコンピュータは、1台(スタンドアロン)で集中処理を行ってもよく、或いは、ネットワークによって接続された複数台で分散処理を行っても構わない。すなわち、図4に示す各ステップは、単一のコンピュータによって集中処理されることによって実現されてもよく、また複数のコンピュータによって分散処理されることによって実現されてもよい。 The fat test program only needs to include an instruction part that calls an appropriate module function and obtains a desired result for each step shown in FIG. It is well known how a computer operates, and a detailed description is omitted. The computer that executes the fat test program may perform centralized processing by one (stand-alone) or may perform distributed processing by a plurality of computers connected by a network. That is, each step shown in FIG. 4 may be realized by centralized processing by a single computer, or may be realized by distributed processing by a plurality of computers.
 本発明は、X線CT装置のオプション装置や脂肪量測定装置として利用できる。 The present invention can be used as an optional device of X-ray CT apparatus or a fat mass measuring device.
 1  脂肪検査装置
 2  医用断層画像装置
 3  画像取得部
 4  弁別部
 5  分布取得部
 6  判別部
 10 皮膚
 12 皮下脂肪層
 14 筋肉層
 16 内臓脂肪層
 18 内臓組織
 19 骨
DESCRIPTION OF SYMBOLS 1 Fat test | inspection apparatus 2 Medical tomographic image apparatus 3 Image acquisition part 4 Discrimination part 5 Distribution acquisition part 6 Discrimination part 10 Skin 12 Subcutaneous fat layer 14 Muscle layer 16 Visceral fat layer 18 Visceral tissue 19 Bone

Claims (15)

  1.  医用断層画像装置における腹部組織の断層画像を取得する画像取得ステップと、
     断層画像のCT値を用いて皮下脂肪層、筋肉層、内臓脂肪層を弁別する弁別ステップと、
     弁別した皮下脂肪層および内臓脂肪層のボクセル数とCT値の相関分布を取得する分布取得ステップと、
     前記CT値の相関分布を用いて肥満傾向について判別する判別ステップを、
     備えたことを特徴とする脂肪検査方法。
    An image acquisition step of acquiring a tomographic image of the abdominal tissue in the medical tomographic image apparatus;
    A discrimination step of discriminating a subcutaneous fat layer, a muscle layer, and a visceral fat layer using a CT value of a tomographic image;
    A distribution acquisition step of acquiring a correlation distribution between the discriminated subcutaneous fat layer and visceral fat layer and the CT value;
    A determination step of determining an obesity tendency using the correlation distribution of the CT values,
    A fat test method comprising:
  2.  前記弁別ステップにおいて、直前のラインの皮下脂肪層の厚み情報を記憶する記憶ステップと、
     現在と直前のラインの皮下脂肪層の厚み情報の計測値を比較し、その差分が所定閾値より大きい場合に、筋肉層と皮下脂肪層との境界値とするCT値を一時的に変更する変更ステップと、
     変更した筋肉層と皮下脂肪層の境界値のCT値を用いて、現在のラインの皮下脂肪層の厚み情報を算出する算出ステップと、
     を含むことを特徴とする請求項1に記載の脂肪検査方法。
    In the discrimination step, a storage step of storing thickness information of the subcutaneous fat layer of the immediately preceding line;
    A change that temporarily changes the CT value as the boundary value between the muscle layer and the subcutaneous fat layer when the measured value of the thickness information of the subcutaneous fat layer in the current and previous lines is compared and the difference is greater than a predetermined threshold Steps,
    A calculation step of calculating the thickness information of the subcutaneous fat layer of the current line using the CT value of the boundary value of the changed muscle layer and subcutaneous fat layer;
    The fat test method according to claim 1, comprising:
  3.  前記判別ステップにおいて、皮下脂肪層のCT値にピークが現れてきた場合に、肥満傾向と判別することを特徴とする請求項1又は2に記載の脂肪検査方法。 3. The fat inspection method according to claim 1, wherein, in the determination step, when a peak appears in the CT value of the subcutaneous fat layer, it is determined as an obesity tendency.
  4.  前記判別ステップにおいて、皮下脂肪層のCT値のピーク値から、不飽和脂肪酸であるオレイン酸と、長鎖脂肪酸であるパルミチン若しくはステアリン酸の含有率を推測し、脂肪組織が燃焼しやすいか否かを判別することを特徴とする請求項1~3のいずれかに記載の脂肪検査方法。 In the discrimination step, the content of oleic acid, which is an unsaturated fatty acid, and palmitic acid, or stearic acid, which is a long-chain fatty acid, is estimated from the peak CT value of the subcutaneous fat layer, and whether or not adipose tissue is easily burned. The fat testing method according to any one of claims 1 to 3, characterized in that:
  5.  前記判別ステップにおいて、皮下脂肪層のCT値のピークが、所定閾値より低い場合には長鎖脂肪酸であるパルミチン若しくはステアリン酸の含有率が高く脂肪組織が燃焼しにくいと判別し、所定閾値より高い場合には不飽和脂肪酸であるオレイン酸の含有率が高く脂肪組織が燃焼しやすいと判別することを特徴とする請求項4に記載の脂肪検査方法。 In the determination step, when the CT value peak of the subcutaneous fat layer is lower than a predetermined threshold, it is determined that the content of long-chain fatty acid palmitic acid or stearic acid is high and the fatty tissue is difficult to burn, and is higher than the predetermined threshold. In this case, it is determined that the content of oleic acid, which is an unsaturated fatty acid, is high and the adipose tissue is easily combusted.
  6.  前記画像取得ステップにおいて得られた断層画像を重ね合せた三次元領域から肝臓領域を抽出する肝臓領域抽出ステップと、
     抽出した肝臓領域のボクセル数とCT値の相関分布を取得する肝臓領域分布取得ステップと、
     前記CT値の相関分布を用いて脂肪肝について判別する脂肪肝判別ステップと、
     を更に備えたことを特徴とする請求項1~4のいずれかに記載の脂肪検査方法。
    A liver region extraction step for extracting a liver region from a three-dimensional region obtained by superimposing the tomographic images obtained in the image acquisition step;
    A liver region distribution acquisition step of acquiring a correlation distribution between the number of voxels in the extracted liver region and the CT value;
    A fatty liver determination step for determining fatty liver using the correlation distribution of the CT values;
    The fat test method according to any one of claims 1 to 4, further comprising:
  7.  前記脂肪肝判別ステップにおいて、抽出した肝臓領域のCT値の平均値と、健常者の肝臓領域のCT値の平均値と、脂肪のCT値の平均値とから、抽出した肝臓領域の脂肪率を算出することを特徴とする請求項6に記載の脂肪検査方法。 In the fatty liver discrimination step, the fat percentage of the extracted liver region is calculated from the average value of the CT value of the extracted liver region, the average value of the CT value of the healthy subject's liver region, and the average value of the CT value of fat. The fat test method according to claim 6, wherein the fat test method is calculated.
  8.  医用断層画像装置における腹部組織の断層画像を取得する画像取得部と、
     断層画像のCT値を用いて皮下脂肪層、筋肉層、内臓脂肪層を弁別する弁別部と、
     弁別した皮下脂肪層および内臓脂肪層のボクセル数とCT値の相関分布を取得する分布取得部と、
     前記CT値の相関分布を用いて肥満傾向について判別する判別部と、
     を備えたことを特徴とする脂肪検査装置。
    An image acquisition unit for acquiring a tomographic image of the abdominal tissue in the medical tomographic image apparatus;
    A discriminating unit for discriminating a subcutaneous fat layer, a muscle layer, and a visceral fat layer using a CT value of a tomographic image;
    A distribution acquisition unit that acquires a correlation distribution of the CT value and the number of voxels in the discriminated subcutaneous fat layer and visceral fat layer;
    A discriminator for discriminating an obesity tendency using the correlation distribution of the CT values;
    A fat testing apparatus comprising:
  9.  前記弁別部において、直前のラインの皮下脂肪層の厚み情報を記憶する記憶部と、
     現在と直前のラインの皮下脂肪層の厚み情報の計測値を比較し、その差分が所定閾値より大きい場合に、筋肉層と皮下脂肪層との境界値とするCT値を一時的に変更する変更部と、
     変更した筋肉層と皮下脂肪層の境界値のCT値を用いて、現在のラインの皮下脂肪層の厚み情報を算出する算出部と、
     を含むことを特徴とする請求項8に記載の脂肪検査装置。
    In the discrimination unit, a storage unit for storing thickness information of the subcutaneous fat layer of the immediately preceding line;
    A change that temporarily changes the CT value as the boundary value between the muscle layer and the subcutaneous fat layer when the measured value of the thickness information of the subcutaneous fat layer in the current and previous lines is compared and the difference is greater than a predetermined threshold And
    Using the CT value of the boundary value between the changed muscle layer and subcutaneous fat layer, a calculation unit that calculates the thickness information of the subcutaneous fat layer of the current line;
    The fat test | inspection apparatus of Claim 8 characterized by the above-mentioned.
  10.  前記判別部において、皮下脂肪層のCT値にピークが現れてきた場合に、肥満傾向と判別することを特徴とする請求項8又は9に記載の脂肪検査装置。 10. The fat test apparatus according to claim 8, wherein the discrimination unit discriminates an obesity tendency when a peak appears in the CT value of the subcutaneous fat layer.
  11.  前記判別部において、皮下脂肪層のCT値のピーク値から、不飽和脂肪酸であるオレイン酸と、長鎖脂肪酸であるパルミチン若しくはステアリン酸の含有率を推測し、脂肪組織が燃焼しやすいか否かを判別することを特徴とする請求項8~10のいずれかに記載の脂肪検査装置。 Whether the fatty tissue is likely to burn by estimating the content of unsaturated fatty acid oleic acid and long-chain fatty acid palmitic acid or stearic acid from the CT value peak value of the subcutaneous fat layer in the discrimination unit The fat test apparatus according to any one of claims 8 to 10, wherein:
  12.  前記判別部において、皮下脂肪層のCT値のピークが、所定閾値より低い場合には長鎖脂肪酸であるパルミチン若しくはステアリン酸の含有率が高く脂肪組織が燃焼しにくいと判別し、所定閾値より高い場合には不飽和脂肪酸であるオレイン酸の含有率が高く脂肪組織が燃焼しやすいと判別することを特徴とする請求項11に記載の脂肪検査装置。 In the determination unit, when the CT value peak of the subcutaneous fat layer is lower than a predetermined threshold value, it is determined that the content of palmitic acid or stearic acid, which is a long chain fatty acid, is high and the fatty tissue is difficult to burn, and is higher than the predetermined threshold value. The fat test apparatus according to claim 11, wherein in this case, it is determined that the content of oleic acid, which is an unsaturated fatty acid, is high and the adipose tissue is easily combusted.
  13.  前記画像取得部において得られた断層画像を重ね合せた三次元領域から肝臓領域を抽出する肝臓領域抽出部と、
     抽出した肝臓領域のボクセル数とCT値の相関分布を取得する肝臓領域分布取得部と、
     前記CT値の相関分布を用いて脂肪肝について判別する脂肪肝判別部と、
     を更に備えたことを特徴とする請求項8~11のいずれかに記載の脂肪検査装置。
    A liver region extraction unit that extracts a liver region from a three-dimensional region obtained by superimposing the tomographic images obtained in the image acquisition unit;
    A liver region distribution acquisition unit that acquires a correlation distribution between the number of voxels in the extracted liver region and the CT value;
    A fatty liver discriminating unit for discriminating fatty liver using the correlation distribution of the CT values;
    The fat test apparatus according to any one of claims 8 to 11, further comprising:
  14.  前記脂肪肝判別部において、抽出した肝臓領域のCT値の平均値と、健常者の肝臓領域のCT値の平均値と、脂肪のCT値の平均値とから、抽出した肝臓領域の脂肪率を算出することを特徴とする請求項13に記載の脂肪検査装置。 In the fatty liver discriminating unit, the fat percentage of the extracted liver region is calculated from the average value of the CT value of the extracted liver region, the average value of the CT value of the healthy subject's liver region, and the average value of the CT value of fat. The fat test apparatus according to claim 13, wherein the fat test apparatus calculates the fat test apparatus.
  15.  請求項1~7のいずれかに記載の脂肪検査方法における各々のステップを、
     コンピュータに実行させるための脂肪検査プログラム。
     
    Each step in the fat testing method according to any one of claims 1 to 7,
    A fat test program to be executed by a computer.
PCT/JP2012/004434 2011-07-08 2012-07-09 Fat-checking method, fat-checking device, and fat-checking program WO2013008449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011152131 2011-07-08
JP2011-152131 2011-07-08

Publications (1)

Publication Number Publication Date
WO2013008449A1 true WO2013008449A1 (en) 2013-01-17

Family

ID=47505753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004434 WO2013008449A1 (en) 2011-07-08 2012-07-09 Fat-checking method, fat-checking device, and fat-checking program

Country Status (2)

Country Link
JP (1) JPWO2013008449A1 (en)
WO (1) WO2013008449A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198981A1 (en) * 2018-04-10 2019-10-17 가톨릭관동대학교산학협력단 Method for analyzing health condition and providing information on basis of captured image, device therefor, and recording medium therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110415246B (en) * 2019-08-06 2023-05-16 东北大学 Analysis method of abdomen fat component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773291A (en) * 1993-09-02 1995-03-17 Res Dev Corp Of Japan Image processor
JP2000093424A (en) * 1998-07-23 2000-04-04 Ge Yokogawa Medical Systems Ltd X-ray ct instrument and image diagnosing device
JP2003339694A (en) * 2002-05-22 2003-12-02 Aloka Co Ltd Tomographic image processor
JP2004081394A (en) * 2002-08-26 2004-03-18 Ge Medical Systems Global Technology Co Llc In-tissue fat evaluating method, image processor, and x-ray computerized tomography (ct) system
JP2009022576A (en) * 2007-07-20 2009-02-05 Fujifilm Corp Diagnosis index acquisition method
JP2009247505A (en) * 2008-04-03 2009-10-29 Fujifilm Corp Equipment, method, and program for detecting three-dimensional peritoneal cavity region

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773291A (en) * 1993-09-02 1995-03-17 Res Dev Corp Of Japan Image processor
JP2000093424A (en) * 1998-07-23 2000-04-04 Ge Yokogawa Medical Systems Ltd X-ray ct instrument and image diagnosing device
JP2003339694A (en) * 2002-05-22 2003-12-02 Aloka Co Ltd Tomographic image processor
JP2004081394A (en) * 2002-08-26 2004-03-18 Ge Medical Systems Global Technology Co Llc In-tissue fat evaluating method, image processor, and x-ray computerized tomography (ct) system
JP2009022576A (en) * 2007-07-20 2009-02-05 Fujifilm Corp Diagnosis index acquisition method
JP2009247505A (en) * 2008-04-03 2009-10-29 Fujifilm Corp Equipment, method, and program for detecting three-dimensional peritoneal cavity region

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TORU YOSHIZUMI ET AL.: "CT ni yoru Fukubu Shibo Bunpu Hyokaho no Fukyu o Mezashite -Hyojunteki CT Gazo Satsuei Joken no Kakuritsu Oyobi Pasokon-ban Shibo Menseki Keisoku Software no Kaihatsu", JOURNAL OF JAPAN SOCIETY FOR THE STUDY OF OBESITY, vol. 6, no. 2, August 2000 (2000-08-01), pages 193 - 199 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198981A1 (en) * 2018-04-10 2019-10-17 가톨릭관동대학교산학협력단 Method for analyzing health condition and providing information on basis of captured image, device therefor, and recording medium therefor

Also Published As

Publication number Publication date
JPWO2013008449A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP6235583B2 (en) Method for detecting and staging liver fibrosis from image acquisition data
Lin et al. Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat using a new quantitative ultrasound technique
Loizou et al. Snakes based segmentation of the common carotid artery intima media
US7970196B2 (en) Automatic detection and quantification of plaque in the coronary arteries of subjects from CT scans
Linguraru et al. Assessing splenomegaly: automated volumetric analysis of the spleen
Salaffi et al. Computer-aided quantification of interstitial lung disease from high resolution computed tomography images in systemic sclerosis: correlation with visual reader-based score and physiologic tests
Coxson et al. Selection of patients for lung volume reduction surgery using a power law analysis of the computed tomographic scan
Huo et al. Fully automatic liver attenuation estimation combing CNN segmentation and morphological operations
Dournes et al. Airway remodelling in asthma and COPD: findings, similarities, and differences using quantitative CT
Kontopodis et al. Value of volume measurements in evaluating abdominal aortic aneurysms growth rate and need for surgical treatment
De Lucia Rolfe et al. Validity of ultrasonography to assess hepatic steatosis compared to magnetic resonance spectroscopy as a criterion method in older adults
Park et al. Assessment of epicardial fat volume with threshold-based 3-dimensional segmentation in CT: comparison with the 2-dimensional short axis-based method
Ge et al. Clinical value of real‑time elastography quantitative parameters in evaluating the stage of liver fibrosis and cirrhosis
Cuadrado-Godia et al. Morphologic TPA (mTPA) and composite risk score for moderate carotid atherosclerotic plaque is strongly associated with HbA1c in diabetes cohort
US6656121B2 (en) Method of quantitatively measuring fat content in target organ from ultrasound visual image
JP2007275318A (en) Image display device, image display method, and its program
Yao et al. Fully automated adipose tissue measurement on abdominal CT
Ando et al. Quantitative CT analysis of small pulmonary vessels in lymphangioleiomyomatosis
WO2013008449A1 (en) Fat-checking method, fat-checking device, and fat-checking program
CN114758175A (en) Method, system, equipment and storage medium for classifying esophagus and stomach junction tumor images
WO2011139232A1 (en) Automated identification of adipose tissue, and segmentation of subcutaneous and visceral abdominal adipose tissue
Yow et al. Automated in vivo 3D high-definition optical coherence tomography skin analysis system
CN115516498A (en) Automated classification of liver disease severity by non-invasive radiological imaging
KR100440255B1 (en) System of measuring fat content in target organ and sotoring medium of storing fat content measuring program
JP2018512208A (en) Computerized optical analysis method of MR (magnetic resonance) images for quantifying or determining liver lesions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523826

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811638

Country of ref document: EP

Kind code of ref document: A1