WO2013006235A1 - Sulfate molecule removal through inorganic or divalent ion nuclei seeding - Google Patents

Sulfate molecule removal through inorganic or divalent ion nuclei seeding Download PDF

Info

Publication number
WO2013006235A1
WO2013006235A1 PCT/US2012/040204 US2012040204W WO2013006235A1 WO 2013006235 A1 WO2013006235 A1 WO 2013006235A1 US 2012040204 W US2012040204 W US 2012040204W WO 2013006235 A1 WO2013006235 A1 WO 2013006235A1
Authority
WO
WIPO (PCT)
Prior art keywords
separating
contacting
fluid
sulfate
series
Prior art date
Application number
PCT/US2012/040204
Other languages
French (fr)
Inventor
M. Fazrie B.A. Wahid
Original Assignee
Schlumberger Canada Limited
Services Petroliers Schlumberger
Schlumberger Holdings Limited
Schlumberger Technology B.V.
Prad Research And Development Limited
Schlumberger Technology Coproration
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/149,367 external-priority patent/US9505639B2/en
Application filed by Schlumberger Canada Limited, Services Petroliers Schlumberger, Schlumberger Holdings Limited, Schlumberger Technology B.V., Prad Research And Development Limited, Schlumberger Technology Coproration filed Critical Schlumberger Canada Limited
Publication of WO2013006235A1 publication Critical patent/WO2013006235A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/008Mobile apparatus and plants, e.g. mounted on a vehicle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention

Definitions

  • Hydraulic fracturing uses a large volume of water that is selected for its chemical properties.
  • the demand for this type of well services has increased over the past decade, especially because of its successful application for difficult conditions.
  • Horizontal wells are often standard, requiring as much as 4.2 million gallons of water per well in as many as 6 to 9 fracture stages. Because of environmental concerns and fresh water availability, salt water and the flowback and produced water are collected and used for subsequent fracture treatments.
  • Figure 1 is schematic diagram of a system to reduce the salinity of water for use in the oil field services industry.
  • Methods and apparatus of embodiments of the invention relate to treating water including contacting a liquid stream with a source comprising inorganic and/or divalent ions and separating the stream into an effluent and a fluid comprising less sulfate than the stream, wherein the effluent comprises more sulfate and more inorganic and/or divalent ions than the stream.
  • Methods and apparatus relate to treating water including a reaction unit comprising an inlet for feed fluid and an inlet for inorganic and/or divalent ions and a separator unit comprising an inlet for output from the reaction unit, an outlet for effluent, and an outlet for fluid comprising less sulfate than the feed fluid.
  • Some embodiments include introducing the fluid comprising less sulfate than the stream into a subterranean formation.
  • compositions of the present invention are described herein as comprising certain materials, it should be understood that the composition could optionally comprise two or more chemically different materials. In addition, the composition can also comprise some components other than the ones already cited.
  • Chemicals that can be used for seeding include barium chloride, calcium chloride, strontium chloride, magnesium chloride, radium chloride, beryllium chloride, barium fluoride, calcium fluoride, strontium fluoride, magnesium fluoride, radium fluoride, beryllium fluoride, barium bromide, calcium bromide, strontium bromide, magnesium bromide, radium bromide, beryllium bromide, barium iodide, calcium iodide, strontium iodide, magnesium iodide, radium iodide, beryllium iodide, and ferrous chloride.
  • an anti adhesion coating is applied so that the inorganic materials, or scales (e.g. barite or calcium sulfate, or other types of deposits crystals) formed will not stick onto the surfaces of the equipment and can be removed
  • This technique is also applicable for the removal of all inorganic crystalline materials.
  • This technology then allows the conversion of seawater or saline water into less saline fluid and is particularly useful where fresh water or access to fresh water is limited.
  • This method is applicable in the oil industry market, water industry market, desalination market, and food industry market.
  • This technology can be developed or produced in combination with other processing, injection, production and boosting systems across the different industries.
  • apparatuses 101 e.g. propellers, rods or any other mixing tools suitable
  • reaction unit (s) 102 e.g. propellers, rods or any other mixing tools suitable
  • residence time to allow optimal reactions to occur.
  • anti stick agents e.g. chemicals, polymers, nano materials.
  • a key parameter is to coat the entire, or part of the equipment with anti adhesion or coating agents prior to use.
  • the feed fluid 103 (feed 1), for example, seawater fluid containing sulfate ions, are fed into the reaction unit (s) (vessel) 102 through an inlet (or several inlets) 104.
  • Divalent ions (feed 2) 105 of equal or larger moles (or molar mass) than that of sulfate ions (present in feed fluid 103) are fed into the reaction unit(s) 102 from a different inlet 106, and the two main feed streams are mixed in the reaction unit(s) 102.
  • Feed 2 105 can be either in liquid form or solid form, e.g. powder.
  • the sulfate ion from feed 1 (103) will precipitate with the divalent ions introduced from feed 2 105 to form inorganic precipitate.
  • the outcome would be a liquid stream 107 with a significant reduction in sulfate concentration.
  • Effluent stream 111 contains crystalline barite or other inorganic materials.
  • Reactions to form the inorganic precipitate following the mixing of feeds 1 and 2 in the reaction vessel usually occur instantaneously, or within a set residence time due to kinetics effect.
  • the residence time of the mixed feed are designed as such that the maximum amount of sulfate from feed 1 have been removed from the liquid phase through precipitation of inorganic solids material.
  • the effluent from the reaction vessel 102 is then fed out into separator unit(s) 108, to separate the liquids and crystalline solids formed.
  • a metering system, or in situ analyses, or time lapse analyses can then be carried out on the output liquid stream 109 to evaluate the concentration of sulfate present.
  • this outlet line 109 from the separator may be returned by line 110 into the vessel 102 should the concentration of sulfate molecules needs to be reduced further. This will then allow any sulfate ions still present in the effluent liquid stream 107 to be removed in the reaction vessel 102 through precipitation process following further mixing with Feed 2 105. The final result would be a stream of output liquid 109 with a significantly reduced sulfate ion concentration.
  • the process may be controlled by tailoring agitation, residence time, temperature, and/or pressure of the system or components of the system. Some embodiments may benefit from compartments in the reaction vessel to facilitate surface area, agitation, and crystallization optimization. Types of reaction vessel or unit(s) that may be used by this process follow.
  • Separation unit(s) may employ gravity settling, cyclone separation, mesh, filters, or other equipment.
  • Inorganic scale typically adheres to metallic surfaces by adsorption through an ionic bond with the metal ions on the surface.
  • the key to stop the formed inorganic scale to stick onto the surfaces of the vessel is then suggested via three main methods:
  • the preferred anti-scaling deposition on a metal surface involves surface modification.
  • Types of coating materials that are also effective include the following.
  • PTFE Polytetrafluoroethylene
  • plastics and modified plastics including polycarbonate resin thermoplastics
  • This technology allows the conversion of seawater or saline water into less saline fluid.
  • a particular benefit of this technology is the ability to produce fresh water (or low salinity water) from seawater (or saline water) economically and in large quantities when access to fresh water is limited or none existent.
  • This technology then allows the conversion of seawater or saline water into less saline fluid and is particularly useful where fresh water or access to fresh water is limited.
  • Embodiments of this invention are applicable in the oil industry market, water industry market, desalination market, food industry market.
  • This application may be beneficial for the oil industry where injection of seawater in a hydrocarbon reservoir is required either for reservoir pressure maintenance, hydrocarbon sweep or other reasons.
  • the use of this technology will ensure that no inorganic deposits will form as a building block required to form inorganic deposits (e.g. sulfate ions) have been removed prior to seawater injection.
  • This application may be beneficial for the oil industry where seawater is used as a base fluid for stimulation operations, for example in hydraulic fracturing fluids, or acidization, or scale squeeze treatment.
  • any well treatment that usually uses seawater as a base fluid will benefit from this technology.
  • the treatments are carried out without removing the sulfate ions from the base fluid, there is a real risk that upon injection of the seawater into the formation and mixes with the formation water, scale (inorganic deposits) will form and cause formation damage. This technology removes the risk through removal of the sulfate ions prior to injection.
  • This application may be beneficial for the oil industry where low salinity water is used for Enhanced Oil Recovery (EOR).
  • EOR Enhanced Oil Recovery
  • selective ions can be removed from the fluid in the inlet stream (feed 1) through mixing with suitable divalent or monovalent ions introduced in feed 2 to form precipitate(s).
  • feed 1 a fluid stream with only selected ions present in the liquid phase, sufficient for use for EOR processes where a low salinity fluid is required.
  • Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a topside separation system.
  • the combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
  • Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a topside separation and injection system.
  • the combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
  • Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a subsea separation system.
  • the combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
  • Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a subsea separation and injection system.
  • the combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
  • Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a downhole (subsurface) separation system.
  • the combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
  • Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a downhole (subsurface) separation and injection system.
  • the combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
  • Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a pump or booster system (subsea).
  • the combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
  • Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a pump or booster system (topside).
  • the combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
  • Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a pump or booster system (subsurface).
  • the combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
  • the technology can be used to remove selected ion molecules from the inlet stream (seawater, or other saline water source) until a low salinity fluid akin to fresh water or such is produced at the outlet stream.
  • the technology allows full control of the quality of water that is produced in the outlet stream.
  • the "reduced salinity water” from the outlet stream can then be used for example as a source of potable water, cleaning water, washing up water or for water feed for plants (agriculture), animals (farming) and in the food and beverages industry.
  • the sulfate molecules are removed through the formation of a stable and solid crystalline structure.
  • the equipment is coated with anti sticking agents (polymer, nano particles or any other materials that can reduce or eliminate scale from adhering onto surfaces)
  • the inlet streams mixing in the reaction vessel may be fully controlled
  • reaction rates occurring in the reaction vessel can be controlled
  • the process of ion removal can be carried out as a batch or continuous reaction process.
  • the final lower concentration of sulfur containing materials makes the proliferation of bacteria that require sulfur less likely. That is, embodiments of this invention remove the food supply of the bacteria and thus reduce the need for biocide.
  • the carrier fluid such as water, brines, or produced water
  • the carrier fluid may contain other additives to tailor properties of the fluid.
  • Rheological property modifiers such as friction reducers, viscosifiers, emulsions, stabilizers, solid particles such as proppant or fibers, or gases such as nitrogen may be included in the fluid.
  • the fluid may include viscosity modifying agents such as guar gum, hydroxyproplyguar, hydroxyelthylcellulose, xanthan, or
  • Water based fluids may include crosslinkers such as borate or organometallic crosslinkers.
  • the fluid may contain viscosity modifying agents that comprise viscoelastic surfactant.
  • Viscoelastic surfactants include cationic, anionic, nonionic, mixed, zwitterionic and amphoteric surfactants, especially betaine zwitterionic viscoelastic surfactant fluid systems or amidoamine oxide viscoelastic surfactant fluid systems.
  • the fluid may be used as a fracturing fluid, drilling fluid, completions fluid, coiled tubing fluid, sand control fluids, cementing operations fluid, fracturing pit fluid, or onshore or offshore water injector fluid, or any other fluid that is introduced into a subterranean formation primarily for the recovery of hydrocarbons.
  • the fluid is introduced to the subterranean formation by drilling equipment, fracturing equipment, coiled tubing equipment, cementing equipment, or onshore or offshore water injectors.
  • the formation may benefit from fracturing, drilling, controlling sand, cementing, or injecting a well.
  • An oil field services application of these methods may include delivery of the fluid to the following mechanical equipment.
  • the fluid may be delivered to the low pressure side of the operation, that is, into any low pressure hose, connection, manifold, or equipment; before or during treatment.
  • Examples of the location for addition include into pond, pit, or other water containment source; into inlet hose/manifold of water tanks (upstream of water tanks); frac tanks - all together or separate; into water tanks (frac tanks) themselves; into hose/manifold of outlet side of water tanks; into batch mixing unit; into hose/manifold in between batch mixing unit and blender; into blender itself; into exit side of blender (upstream of fracturing pumps);
  • the fluid may be delivered to the high pressure side of an operation including into any high pressure iron, anywhere.
  • Pumps that may be used, either solo or combined, include positive displacement pumps, centrifugal pumps, and additive pumps.
  • the fluid may be added to the water stream in any way. (i.e. pour from a bucket, pump it into the water, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)

Abstract

Methods and apparatus of embodiments of the invention relate to treating water including contacting a liquid stream with a source comprising inorganic and/or divalent ions and separating the stream into an effluent and a fluid comprising less sulfate than the stream, wherein the effluent comprises more sulfate and more inorganic and/or divalent ions than the stream. Methods and apparatus relate to treating water including a reaction unit comprising an inlet for feed fluid and an inlet for inorganic and/or divalent ions and a separator unit comprising an inlet for output from the reaction unit, an outlet for effluent, and an outlet for fluid comprising less sulfate than the feed fluid. Some embodiments include introducing the fluid comprising less sulfate than the stream into a subterranean formation.

Description

SULFATE MOLECULE REMOVAL THROUGH INORGANIC OR DIVALENT ION
NUCLEI SEEDING
BACKGROUND
[0001] Hydraulic fracturing uses a large volume of water that is selected for its chemical properties. The demand for this type of well services has increased over the past decade, especially because of its successful application for difficult conditions. Horizontal wells are often standard, requiring as much as 4.2 million gallons of water per well in as many as 6 to 9 fracture stages. Because of environmental concerns and fresh water availability, salt water and the flowback and produced water are collected and used for subsequent fracture treatments.
[0002] Scale formation due to seawater injection into an oilfield reservoir often causes significant impairment to production. In some cases, sulfate reduction plants are used for example using membrane technologies / reverse osmosis, which can be economically expensive. For cases where seawater is used as a base liquid during stimulation operations, installing a sulfate removal plant can be uneconomical.
[0003] Various different methods can be applied to reduce water salinity and to prevent bacteria growth and reduce operational expenses related to corrosion prevention, remediation of corrosion effects, and remediation of emulsion-like produced fluids. Historically, removing sulfate is performed by using a membrane (or other filtration techniques) to filter out the sulfate molecules whereby the feed seawater are partially desalinated. Also, previous methods remove the sulfate ions through filtering technologies, rather than through precipitating out unwanted metal ions by reacting it with non metal ions. While some solutions are technically feasible, the economics and operational requirements are quite costly. A simple, cheap, and highly efficient technology to remove sulfate from a stream of saline liquid that is compatible with other fluid additives and that is easily transportable is needed.
FIGURE
[0004] Figure 1 is schematic diagram of a system to reduce the salinity of water for use in the oil field services industry. SUMMARY
[0005] Methods and apparatus of embodiments of the invention relate to treating water including contacting a liquid stream with a source comprising inorganic and/or divalent ions and separating the stream into an effluent and a fluid comprising less sulfate than the stream, wherein the effluent comprises more sulfate and more inorganic and/or divalent ions than the stream. Methods and apparatus relate to treating water including a reaction unit comprising an inlet for feed fluid and an inlet for inorganic and/or divalent ions and a separator unit comprising an inlet for output from the reaction unit, an outlet for effluent, and an outlet for fluid comprising less sulfate than the feed fluid. Some embodiments include introducing the fluid comprising less sulfate than the stream into a subterranean formation.
DETAILED DESCRIPTION
[0006] At the outset, it should be noted that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The description and examples are presented solely for the purpose of illustrating the preferred embodiments of the invention and should not be construed as a limitation to the scope and applicability of the invention. While the compositions of the present invention are described herein as comprising certain materials, it should be understood that the composition could optionally comprise two or more chemically different materials. In addition, the composition can also comprise some components other than the ones already cited.
[0007] In the summary of the invention and this description, each numerical value should be read once as modified by the term "about" (unless already expressly so modified), and then read again as not so modified unless otherwise indicated in context. Also, in the summary of the invention and this detailed description, it should be understood that a concentration range listed or described as being useful, suitable, or the like, is intended that any and every concentration within the range, including the end points, is to be considered as having been stated. For example, "a range of from 1 to 10" is to be read as indicating each and every possible number along the continuum between about 1 and about 10. Thus, even if specific data points within the range, or even no data points within the range, are explicitly identified or refer to only a few specific, it is to be understood that inventors appreciate and understand that any and all data points within the range are to be considered to have been specified, and that inventors have disclosed and enabled the entire range and all points within the range.
[0008] The removal of sulfate ions uses a simple and cheap technique including seeding the seawater rich in sulfate ion (or liquid rich in sulfate ions) with divalent ions to form barite crystal (or divalent ion based crystals) in a reaction vessel, then passing the output through a separation unit. Chemicals that can be used for seeding include barium chloride, calcium chloride, strontium chloride, magnesium chloride, radium chloride, beryllium chloride, barium fluoride, calcium fluoride, strontium fluoride, magnesium fluoride, radium fluoride, beryllium fluoride, barium bromide, calcium bromide, strontium bromide, magnesium bromide, radium bromide, beryllium bromide, barium iodide, calcium iodide, strontium iodide, magnesium iodide, radium iodide, beryllium iodide, and ferrous chloride.
[0010] In some embodiments, throughout the whole system, an anti adhesion coating is applied so that the inorganic materials, or scales (e.g. barite or calcium sulfate, or other types of deposits crystals) formed will not stick onto the surfaces of the equipment and can be removed
downstream at the separation unit. This technique is also applicable for the removal of all inorganic crystalline materials. This technology then allows the conversion of seawater or saline water into less saline fluid and is particularly useful where fresh water or access to fresh water is limited. This method is applicable in the oil industry market, water industry market, desalination market, and food industry market. This technology can be developed or produced in combination with other processing, injection, production and boosting systems across the different industries.
[0011] The process is shown in Figure 1. The reactions are controlled through mixing
apparatuses 101 (e.g. propellers, rods or any other mixing tools suitable) in reaction unit (s) 102 and residence time to allow optimal reactions to occur. Problems with the formed crystalline structures adhering to surfaces and impacting the separation process are mitigated by coating the inside of all the equipments with anti stick agents (e.g. chemicals, polymers, nano materials). [0012] A key parameter is to coat the entire, or part of the equipment with anti adhesion or coating agents prior to use. The feed fluid 103 (feed 1), for example, seawater fluid containing sulfate ions, are fed into the reaction unit (s) (vessel) 102 through an inlet (or several inlets) 104. Divalent ions (feed 2) 105 of equal or larger moles (or molar mass) than that of sulfate ions (present in feed fluid 103) are fed into the reaction unit(s) 102 from a different inlet 106, and the two main feed streams are mixed in the reaction unit(s) 102. Feed 2 105 can be either in liquid form or solid form, e.g. powder. When mixed in the reaction unit(s) 102, the sulfate ion from feed 1 (103) will precipitate with the divalent ions introduced from feed 2 105 to form inorganic precipitate. The outcome would be a liquid stream 107 with a significant reduction in sulfate concentration. Effluent stream 111 contains crystalline barite or other inorganic materials.
[0013] Reactions to form the inorganic precipitate following the mixing of feeds 1 and 2 in the reaction vessel usually occur instantaneously, or within a set residence time due to kinetics effect. The residence time of the mixed feed are designed as such that the maximum amount of sulfate from feed 1 have been removed from the liquid phase through precipitation of inorganic solids material. The effluent from the reaction vessel 102 is then fed out into separator unit(s) 108, to separate the liquids and crystalline solids formed. A metering system, or in situ analyses, or time lapse analyses can then be carried out on the output liquid stream 109 to evaluate the concentration of sulfate present. Depending on the concentration of sulfate present, this outlet line 109 from the separator may be returned by line 110 into the vessel 102 should the concentration of sulfate molecules needs to be reduced further. This will then allow any sulfate ions still present in the effluent liquid stream 107 to be removed in the reaction vessel 102 through precipitation process following further mixing with Feed 2 105. The final result would be a stream of output liquid 109 with a significantly reduced sulfate ion concentration.
[0014] The process may be controlled by tailoring agitation, residence time, temperature, and/or pressure of the system or components of the system. Some embodiments may benefit from compartments in the reaction vessel to facilitate surface area, agitation, and crystallization optimization. Types of reaction vessel or unit(s) that may be used by this process follow.
• Fiber reinforced pressure vessels
• Vacuum pressure vessels
• Mixing vessels • Jacketed vessels (including thermal jacketed)
• Limpet coil in body flange
• Welded types
• Top open
• Top dish
• Ribbon blender and mixer
• Glass based vessels
• Cryogenic reaction vessels
• Teflon lined reaction vessel
• Polymer lined reaction vessels
• Stainless steel reaction vessel
• Alloy based reaction vessel
• Polymer lined vessel
• Internal spiral mixing system
• Rubber sealed glass
[0015] Types of mixing apparatus 101 that may be used by this process follow.
• Propeller(s)
• Impeller(s)
• Anchor type agitator(s)
• Blade / turbine(s)
• Rotating rod(s)
• Magnetic mixer
• Pitch blade turbine
• Helical agitators
• Single and multiple motion mixing equipments
[0016] Reaction control equipment that may be used by this process follow.
• Silicone • Speed homogenizer
• Heating / or cooling equipments
• Electrical bar heating
• Steam heating
• Conduction
• Freon
• Conduction oil hydronic hearing
• Pressurization (controlled and non controlled)
• Computerized / manual control on both pressure and temperature
[0017] Separation unit(s) may employ gravity settling, cyclone separation, mesh, filters, or other equipment.
[0018] Inorganic scale typically adheres to metallic surfaces by adsorption through an ionic bond with the metal ions on the surface. The key to stop the formed inorganic scale to stick onto the surfaces of the vessel is then suggested via three main methods:
1. Use of anti-agglomerates
2. Use of a non metal surface for the reactor
3. Line the surface with an inert chemical / particle that does not allow bonding to occur
[0019] The preferred anti-scaling deposition on a metal surface involves surface modification. Types of coating materials that are also effective include the following.
• Special surface finishing
• Glass
• Rubber
• Fiber glass
• Polytetrafluoroethylene (PTFE), including etched, tubes, sheets, hose types PTFEs
• Perfluoroalkoxy
• Fluorinated ethylene propylene
• Magnesium coating
• Teflon • Poeton
• Poly(dimethyl siloxane), including modified chains
• nanotubes coatings
• silicone resins
• plastics and modified plastics, including polycarbonate resin thermoplastics
• Alumina coatings
[0020] This technology allows the conversion of seawater or saline water into less saline fluid. A particular benefit of this technology is the ability to produce fresh water (or low salinity water) from seawater (or saline water) economically and in large quantities when access to fresh water is limited or none existent. This technology then allows the conversion of seawater or saline water into less saline fluid and is particularly useful where fresh water or access to fresh water is limited. Embodiments of this invention are applicable in the oil industry market, water industry market, desalination market, food industry market.
[0021] In the oil industry, examples include the following.
1. This application may be beneficial for the oil industry where injection of seawater in a hydrocarbon reservoir is required either for reservoir pressure maintenance, hydrocarbon sweep or other reasons. As the injected seawater mixes with formation water, particularly in areas of risks (e.g. near the producer wells, inside the producer wells, pipeline or subsea pipelines, wellhead template, topside equipment), scale (inorganic deposits) may form and cause blockage. The use of this technology will ensure that no inorganic deposits will form as a building block required to form inorganic deposits (e.g. sulfate ions) have been removed prior to seawater injection.
2. This application may be beneficial for the oil industry where seawater is used as a base fluid for stimulation operations, for example in hydraulic fracturing fluids, or acidization, or scale squeeze treatment. In essence, any well treatment that usually uses seawater as a base fluid will benefit from this technology. For example, if the treatments are carried out without removing the sulfate ions from the base fluid, there is a real risk that upon injection of the seawater into the formation and mixes with the formation water, scale (inorganic deposits) will form and cause formation damage. This technology removes the risk through removal of the sulfate ions prior to injection. 3. This application may be beneficial for the oil industry where low salinity water is used for Enhanced Oil Recovery (EOR). For example, selective ions can be removed from the fluid in the inlet stream (feed 1) through mixing with suitable divalent or monovalent ions introduced in feed 2 to form precipitate(s). The outcome would be a fluid stream with only selected ions present in the liquid phase, sufficient for use for EOR processes where a low salinity fluid is required.
4. Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a topside separation system. The combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
5. Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a topside separation and injection system. The combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
6. Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a subsea separation system. The combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
7. Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a subsea separation and injection system. The combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
8. Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a downhole (subsurface) separation system. The combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
9. Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a downhole (subsurface) separation and injection system. The combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
10. Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a pump or booster system (subsea). The combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
11. Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a pump or booster system (topside). The combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
12. Some embodiments may benefit from combining the sulfate reducing plant, or ion / molecule removal plant with a pump or booster system (subsurface). The combined system may be in modular form, integrated form, and may be arranged either in parallel to each other, or in series to each other.
[0022] For the desalination, food or water industry market, the technology can be used to remove selected ion molecules from the inlet stream (seawater, or other saline water source) until a low salinity fluid akin to fresh water or such is produced at the outlet stream. The technology allows full control of the quality of water that is produced in the outlet stream. The "reduced salinity water" from the outlet stream can then be used for example as a source of potable water, cleaning water, washing up water or for water feed for plants (agriculture), animals (farming) and in the food and beverages industry.
[0023] Some of the advantages of this process are briefly listed here.
1. The sulfate molecules are removed through the formation of a stable and solid crystalline structure.
2. The equipment is coated with anti sticking agents (polymer, nano particles or any other materials that can reduce or eliminate scale from adhering onto surfaces)
3. The inlet streams mixing in the reaction vessel may be fully controlled
4. The reaction rates occurring in the reaction vessel can be controlled
5. The process of ion removal can be carried out as a batch or continuous reaction process. 6. The final lower concentration of sulfur containing materials makes the proliferation of bacteria that require sulfur less likely. That is, embodiments of this invention remove the food supply of the bacteria and thus reduce the need for biocide.
Other Fluid Additives
[0024] The carrier fluid, such as water, brines, or produced water, may contain other additives to tailor properties of the fluid. Rheological property modifiers such as friction reducers, viscosifiers, emulsions, stabilizers, solid particles such as proppant or fibers, or gases such as nitrogen may be included in the fluid. The fluid may include viscosity modifying agents such as guar gum, hydroxyproplyguar, hydroxyelthylcellulose, xanthan, or
carboxymethylhydroxypropylguar, diutan, chitosan, or other polymers or additives used to modify viscosity for use in the oil field services industry . Water based fluids may include crosslinkers such as borate or organometallic crosslinkers. In some embodiments, the fluid may contain viscosity modifying agents that comprise viscoelastic surfactant. Viscoelastic surfactants include cationic, anionic, nonionic, mixed, zwitterionic and amphoteric surfactants, especially betaine zwitterionic viscoelastic surfactant fluid systems or amidoamine oxide viscoelastic surfactant fluid systems.
Applications
[0025] The fluid may be used as a fracturing fluid, drilling fluid, completions fluid, coiled tubing fluid, sand control fluids, cementing operations fluid, fracturing pit fluid, or onshore or offshore water injector fluid, or any other fluid that is introduced into a subterranean formation primarily for the recovery of hydrocarbons. The fluid is introduced to the subterranean formation by drilling equipment, fracturing equipment, coiled tubing equipment, cementing equipment, or onshore or offshore water injectors. During, before, or after the fluid is added to a subterranean formation, the formation may benefit from fracturing, drilling, controlling sand, cementing, or injecting a well.
[0026] An oil field services application of these methods may include delivery of the fluid to the following mechanical equipment. The fluid may be delivered to the low pressure side of the operation, that is, into any low pressure hose, connection, manifold, or equipment; before or during treatment. Examples of the location for addition include into pond, pit, or other water containment source; into inlet hose/manifold of water tanks (upstream of water tanks); frac tanks - all together or separate; into water tanks (frac tanks) themselves; into hose/manifold of outlet side of water tanks; into batch mixing unit; into hose/manifold in between batch mixing unit and blender; into blender itself; into exit side of blender (upstream of fracturing pumps);
hose/manifold; directly into low pressure side of pump manifold (missile). The fluid may be delivered to the high pressure side of an operation including into any high pressure iron, anywhere. Pumps that may be used, either solo or combined, include positive displacement pumps, centrifugal pumps, and additive pumps. The fluid may be added to the water stream in any way. (i.e. pour from a bucket, pump it into the water, etc.).
[0027] The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.

Claims

CLAIMS What is claimed is:
1. A method for treating water, comprising:
contacting a liquid stream with a source comprising ions that are ionic or inorganic or both in a sulfate reducing plant or ion and/or molecule removal plant; and
separating the stream into an effluent and a fluid comprising less sulfate than the stream, wherein the effluent comprises more sulfate and more ions that are ionic or inorganic or both than the stream.
2. The method of claim 1, wherein the separating occurs in a topside separation system.
3. The method of claim 2, wherein contacting and separating occur in modular form or integrated form, and are arranged in parallel or in series to each other.
4. The method of claim 1, wherein the separating occurs in a topside separation and injection system.
5. The method of claim 4, wherein contacting and separating occur in modular form or integrated form, and are arranged in parallel or in series to each other.
6. The method of claim 1, wherein the separating occurs in a subsea separation system.
7. The method of claim 6, wherein contacting and separating occur in modular form or integrated form, and are arranged in parallel or in series to each other.
8. The method of claim 1, wherein the contacting and separating occur in a sulfate reducing plant, or ion / molecule removal plant with a subsea separation and injection system.
9. The method of claim 8, wherein contacting and separating occur in modular form or integrated form, and are arranged in parallel or in series to each other.
10. The method of claim 1, wherein separating occurs in a downhole (subsurface) separation system.
11. The method of claim 10, wherein contacting and separating occur in modular form or integrated form, and are arranged in parallel or in series to each other.
12. The method of claim 1, wherein contacting and separating occur in a downhole (subsurface) separation and injection system.
13. The method of claim 12, wherein contacting and separating occur in modular form or integrated form, and are arranged in parallel or in series to each other.
14. The method of claim 1, wherein contacting and separating use a pump or booster system (subsea).
15. The method of claim 14, wherein contacting and separating occur in modular form or integrated form, and are arranged in parallel or in series to each other.
16. The method of claim 1, wherein contacting and separating use a pump or booster system (topside).
17. The method of claim 16, wherein contacting and separating occur in modular form or integrated form, and are arranged in parallel or in series to each other.
18. The method of claim 1, wherein contacting and separating use a pump or subsurface booster system
19. The method of claim 18, wherein contacting and separating occur in modular form or integrated form, and are arranged in parallel or in series to each other.
20. Apparatus for treating water, comprising:
a reaction unit comprising an inlet for feed fluid and an inlet for ions that are ionic or ionoganic or both; and
a separator unit comprising an inlet for output from the reaction unit, an outlet for effluent, and an outlet for fluid comprising less sulfate than the feed fluid,
wherein the reaction and separation units are in modular form or integrated form and are arranged in parallel or in series to each other.
PCT/US2012/040204 2011-05-31 2012-05-31 Sulfate molecule removal through inorganic or divalent ion nuclei seeding WO2013006235A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/149,367 2011-05-31
US13/149,367 US9505639B2 (en) 2010-12-22 2011-05-31 Sulfate molecule removal through inorganic or divalent ion nuclei seeding
US97613911A 2011-12-22 2011-12-22
US12/976,139 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013006235A1 true WO2013006235A1 (en) 2013-01-10

Family

ID=47437345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/040204 WO2013006235A1 (en) 2011-05-31 2012-05-31 Sulfate molecule removal through inorganic or divalent ion nuclei seeding

Country Status (1)

Country Link
WO (1) WO2013006235A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108439518A (en) * 2018-04-03 2018-08-24 下发明(北京)科技有限公司 A kind of oil field extracted water short route processing method and its device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009030903A2 (en) * 2007-09-05 2009-03-12 Halliburton Energy Services, Inc. Mobile systems and methods of sufficiently treating water so that the treated water may be utilized in well-treatment operations
WO2009065858A1 (en) * 2007-11-19 2009-05-28 M-I Swaco Norge As Wellbore fluid mixing system
EA012350B1 (en) * 2005-06-16 2009-10-30 Бп Эксплорейшн Оперейтинг Компани Лимитед Water flooding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA012350B1 (en) * 2005-06-16 2009-10-30 Бп Эксплорейшн Оперейтинг Компани Лимитед Water flooding method
WO2009030903A2 (en) * 2007-09-05 2009-03-12 Halliburton Energy Services, Inc. Mobile systems and methods of sufficiently treating water so that the treated water may be utilized in well-treatment operations
WO2009065858A1 (en) * 2007-11-19 2009-05-28 M-I Swaco Norge As Wellbore fluid mixing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108439518A (en) * 2018-04-03 2018-08-24 下发明(北京)科技有限公司 A kind of oil field extracted water short route processing method and its device

Similar Documents

Publication Publication Date Title
US9266754B2 (en) Sulfate molecule removal through inorganic or divalent ion nuclei seeding
US20090114247A1 (en) Method of Treating Flow Conduits and Vessels with Foamed Composition
NO321002B1 (en) Control of particle backflow in underground wells
CA2599223C (en) Inhibition of paraffin wall deposition in oil lines
US20200002206A1 (en) Compositions and methods for scale inhibition
WO2019152042A1 (en) Proppant treatments for mitigating erosion of equipment in subterranean fracturing operations
US20180105737A1 (en) Activator for breaking system in high-temperature fracturing fluids
WO2020205358A1 (en) Methods of inhibiting scale with alkyl diphenyloxide sulfonates
US20160289534A1 (en) Double hydrophilic block copolymer on particulate surface in wells to reduce scale
US9505639B2 (en) Sulfate molecule removal through inorganic or divalent ion nuclei seeding
CA2960662C (en) Method for forming a high-performance aqueous-phase polymer fluid and system for drilling wellbores in low-gradient formations
US10113102B2 (en) Activity enhanced scale dispersant for treating inorganic sulfide scales
WO2013006235A1 (en) Sulfate molecule removal through inorganic or divalent ion nuclei seeding
Zhang et al. Optimal treatment and reuse of flowback and produced water: Selective removal of problematic cations for stability of friction reducers
Budiman et al. Seawater-Based Fracturing Fluid: A Review
CA3110500C (en) Methods for wastewater treatment using alcohol ethoxylate surfactants
WO2021066798A1 (en) Means and methods for managing ammonia, amine and normal salt fouling in oil production and refining
Al-Murayri et al. Impact of Produced EOR Polymer on Production Facilities
US20170203236A1 (en) Method of Treating Flowback Fluid from a Well
Maulidani et al. Comparison of Water Treatment Plant and Water Source Well: Field Evaluation of Waterflooding Project in Shushufindi-Aguarico Field
US20230331598A1 (en) Removal of sulfate from seawater
CA2676517C (en) Method of treating flow conduits and vessels with foamed composition
Carpenter Overcoming Challenges in Chemical EOR During Polymer Breakthrough
Mahat et al. Evaluation of Green Silica Scale Inhibitors Performance Using Dynamic Tube Blocking Test
CA3222452A1 (en) Production of barium sulfate and fracturing fluid via mixing of produced water and seawater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807031

Country of ref document: EP

Kind code of ref document: A1