WO2013005994A2 - Nonflammable aluminum composite panel using a phenol resin hardened foamed body and method for manufacturing same - Google Patents

Nonflammable aluminum composite panel using a phenol resin hardened foamed body and method for manufacturing same Download PDF

Info

Publication number
WO2013005994A2
WO2013005994A2 PCT/KR2012/005327 KR2012005327W WO2013005994A2 WO 2013005994 A2 WO2013005994 A2 WO 2013005994A2 KR 2012005327 W KR2012005327 W KR 2012005327W WO 2013005994 A2 WO2013005994 A2 WO 2013005994A2
Authority
WO
WIPO (PCT)
Prior art keywords
composite panel
aluminum composite
phenol resin
combustible
aluminum
Prior art date
Application number
PCT/KR2012/005327
Other languages
French (fr)
Korean (ko)
Other versions
WO2013005994A3 (en
Inventor
김명희
이응기
이민희
김정근
김지문
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Publication of WO2013005994A2 publication Critical patent/WO2013005994A2/en
Publication of WO2013005994A3 publication Critical patent/WO2013005994A3/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/292Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and sheet metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/098Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials

Definitions

  • the present invention relates to an aluminum composite panel manufacturing technology, and more particularly, by forming a core layer between the front and rear aluminum plates with a phenol resin cured foam, high thermal insulation performance of 0.020 W / mK or less level
  • the present invention relates to a technology for providing an aluminum composite panel having a non-flammability similar to that of a second flame retardant.
  • Composite panels are commonly used for building exterior wall finishing.
  • the composite panel is composed of a steel plate such as aluminum, magnesium, iron and the front panel.
  • the core layer (core) between the front plate and the back plate is formed of a material showing an insulating effect such as glass wool, polyethylene (PE), talc (Talc).
  • the core layer is formed of polyethylene (PE)
  • PE polyethylene
  • Korean Patent Registration No. 10-0828630 (2008.05.02) includes 15 to 25% by weight of polyethylene (PE), 5 to 15% by weight of ethylene vinyl acetate (EVA) and 60 to 80 weight of a flame retardant filler.
  • PE polyethylene
  • EVA ethylene vinyl acetate
  • a flame retardant aluminum composite panel comprising a flame retardant synthetic resin mixed with%.
  • the core layer is filled with a flame retardant or an excess of talc.
  • the specific gravity is large so that the workability is difficult and the construction cost is high.
  • the panel when the glass wool or rock wool is filled in the core layer, the panel has an advantage of being nonflammable, but there is a problem that thermal insulation performance is deteriorated due to high thermal conductivity.
  • glass wool or rock wool has a problem that acts as a harmful element to the human body.
  • the present invention is an aluminum composite panel that can solve the risk of fire, a gas generation problem and construction cost problems that are a problem in the aluminum composite panel using polyethylene (PE) or talc (talc) as a core layer and It aims at providing the manufacturing method.
  • PE polyethylene
  • talc talc
  • the present invention is to provide an aluminum composite panel having a high thermal insulation performance of the level of 0.020 W / mK or less and non-combustible according to the flame retardant class 2 and a manufacturing method thereof.
  • the non-combustible aluminum composite panel according to the present invention for achieving the above object is a core layer formed of a phenol resin cured foam; And a front plate and a rear plate formed on the front and rear surfaces of the core layer, each having an aluminum layer.
  • the core layer is formed of a phenol resin cured foam, thereby ensuring heat insulation and flame retardancy. Therefore, the application of the composite panel according to the present invention to the building insulation provides a flame retardant level of flame retardancy because it provides an effect that can improve the safety in fire.
  • the heat insulation composite panel according to the present invention exhibits a high thermal insulation property of less than 0.020 W / mK thermal conductivity, there is an effect that can reduce the heating cost.
  • the present invention does not use a freon gas in the core material, using an environmentally friendly blowing agent such as hydrocarbon (hydrocarbon), not HCFC (hydro-chloro-fluoro-carbon) blowing agent, there is no risk factor for global warming and long-term high It provides the effect of maintaining insulation performance and condensation prevention.
  • an environmentally friendly blowing agent such as hydrocarbon (hydrocarbon), not HCFC (hydro-chloro-fluoro-carbon) blowing agent
  • FIG. 1 is a flow chart showing a method for producing an aluminum composite panel comprising a phenolic resin cured foam according to the invention.
  • Figure 2 is a cross-sectional view showing an aluminum composite panel comprising a phenolic resin cured foam according to the present invention.
  • FIG. 1 is a flow chart showing a method for producing an aluminum composite panel comprising a phenolic resin cured foam according to the invention.
  • the illustrated aluminum composite panel manufacturing method includes a front plate / back plate preparing step (S100), a phenol resin cured foam forming step (S110), a high temperature compression step (S120), and a curing / aging step (S130). Include.
  • the front plate and the back plate each comprise an aluminum layer.
  • the aluminum layer may be formed of one sheet or two or more aluminum plates. It is preferable that the thickness of an aluminum layer is 0.5-2 mm. At this time, when the thickness of the aluminum layer is less than 0.5 mm it is difficult to secure the strength of the panel structurally. On the contrary, when the thickness exceeds 2 mm, the weight may be increased, thereby reducing the construction efficiency.
  • a protective layer, a chromate layer, or the like may be further formed on the outer surface of the aluminum layer on the front plate or the back plate.
  • the front plate may also be added to the coating layer for improving the appearance as the exterior wall finishing material. Only one layer of these protective layers, chromate layers, paint layers, etc. may be formed on the outer surface of the aluminum layer, and a plurality of layers having the same shape as the aluminum layer / chromate layer / paint layer / protective layer It can be formed on the surface.
  • the phenol resin composition may include a foam stabilizer, a foaming agent, a curing agent, and an additive.
  • the phenol resin composition may include 1 to 10% by weight foam stabilizer, 5 to 25% by weight foaming agent, 5 to 25% by weight curing agent and 0.1 to 10% by weight additive.
  • Foam stabilizers act as surfactants.
  • the phenolic resin and the curing agent are hydrophilic and hydrocarbon-based blowing agents have hydrophobic characteristics. Foaming agents are used to help the hydrophilization of the blowing agent for mixing with the blowing agent and other compositions.
  • foam stabilizers may be silicone-based or polysiloxane-based.
  • the foaming agent When the foam stabilizer is 1 to 10% by weight of the total weight of the phenol resin composition and the content of the foam stabilizer is less than 1% by weight, the foaming agent does not have a hydrophilic function, and thus it is difficult to mix the foaming agent with the phenol resin and the curing agent. On the contrary, when the content of the foam stabilizer exceeds 10% by weight, the hydrophilization property may be excessive, resulting in a problem that the phenol resin cannot be combined with the front plate or the back plate.
  • the blowing agent is a physical blowing agent, which forms a phenol resin composition into bubbles due to the heat of reaction, and is characterized by low thermal conductivity and low boiling point.
  • the blowing agent uses an aliphatic hydrocarbon having 1 to 8 carbon atoms.
  • HCFC hydro-chloro-fluoro-carbon
  • the present invention by using a hydrocarbon as a blowing agent, it is possible to solve the burden on the risk of environmental threats as compared to the conventional.
  • the hydrocarbons that can be used as the blowing agent include cyclopentane, isopentane, isobutane, and the like, and are preferably selected in consideration of thermal conductivity and boiling point of the blowing agent.
  • the blowing agent preferably includes at least one member selected from the group consisting of at least one of isopentane, isobutane and cyclopentane.
  • the blowing agent is preferably included in 5 to 25% by weight of the total weight of the phenol resin composition.
  • the content of the blowing agent is an important factor in controlling the density of the entire phenolic resin composition, and in order to prepare a phenolic resin cured foam having a density in the range of 30 to 40 kg / m 3, it is preferable to add the above content.
  • the density of the phenol resin cured foam may exceed 40 kg / m 3
  • the density of the phenol resin cured foam is 30 kg. It may be less than / m 3 .
  • the curing agent acts as a catalyst to lower the foaming temperature and to foam at a relatively low temperature.
  • a curing agent may use benzene sulfonic acid, paratoluene sulfonic acid, xylene sulfonic acid, phenol sulfonic acid and the like.
  • curing agent is contained in 5 to 25 weight% of the total weight of a phenol resin composition. If the content of the curing agent is less than 5% by weight, the catalytic function may not be performed. If the content of the curing agent exceeds 25%, a large amount of unreacted curing agent is generated, resulting in acidity, thereby increasing corrosion of the metal.
  • the additive is an organic amino group-containing compound for reducing outgassing by removing unreacted monomers.
  • the additive is preferably included in 0.1 to 10% by weight of the total weight of the phenol resin composition. If the weight of the additive is less than 0.1% by weight, it is difficult to remove the unreacted monomer, and outgassing may occur. If the weight of the additive is more than 10% by weight, the additive acts as an impurity to improve the quality of the entire phenolic resin foam. Can be degraded.
  • the additive may comprise a neutralizing agent.
  • the neutralizing agent serves to increase the pH of the phenolic resin cured foam to about 3 to 9 bar bar, which can be used to compensate for corrosion problems on the metal adhesion surface due to the acidic curing agent.
  • the neutralizing agent may be a hydroxide of a metal such as aluminum hydroxide, magnesium hydroxide, calcium oxide, magnesium oxide, aluminum oxide or zinc oxide, or a metal powder such as oxide or zinc, a metal carbonate such as calcium carbonate, magnesium carbonate, barium carbonate or zinc carbonate. It may include.
  • the said neutralizing agent can be used individually by 1 type, or can be used in combination of 2 or more type.
  • the neutralizing agent is preferably included in 0.1 to 10% by weight of the total weight of the phenolic resin composition, when the content of the neutralizing agent is less than 0.1% by weight of the cured phenolic resin foam formed will be acidic, in the case of more than 10% by weight Problems may occur in which the physical properties of the formed phenol resin cured foam are changed.
  • additives may include a plasticizer.
  • the plasticizer gives flexibility to the bubble wall and prevents the wall from being broken or deteriorated so that the foaming gas in the bubble escapes and is replaced with air, thereby enhancing long-term durability.
  • Specific examples of the plasticizer may include triphenyl phosphate, dimethyl terephthalate, dimethyl isophthalate, polyethylene glycol, polyol, and the like.
  • the said plasticizer is contained in 1 to 15 weight% of the total weight of the phenol resin composition for phenol resin cured foam formation.
  • the content of the plasticizer is less than 1% by weight, the phenolic resin cured foam does not affect long-term durability, and when it exceeds 15% by weight, the performance of the phenolic resin cured foam may be impaired.
  • the independent foaming rate of the cured phenol resin formed can be determined depending on the components or foaming conditions of the phenol resin composition.
  • the closed cell content of the phenol resin cured foam is 80% or more.
  • the independent bubble ratio defines the fraction of closed bubbles among the bubbles formed in the unit area.
  • the independent bubble ratio is less than 80%, the remaining gas remains inside the phenol resin-cured foam, which results in outgassing. It may cause, and the structural strength is remarkably lowered, which may result in deterioration of the characteristics of the exterior panel.
  • an aluminum composite panel is manufactured by a T-die using an extruder, and an air layer is generated and condensation occurs due to a technology of injecting a filler such as an inorganic material into the core layer between the aluminum composite panels.
  • a filler such as an inorganic material
  • the aluminum composite panel manufacturing method of the present invention is to prepare a front plate / back plate corresponding to the outer shell material of the aluminum composite panel (S100), while injecting the phenolic resin composition there between foaming and curing (S110) Containing, by putting a phenolic resin composition between the front plate / back plate can be immediately foamed and hardened to prevent condensation.
  • the aluminum composite panel is formed by compressing the phenol resin composition introduced between the front plate and the back plate through the pressing process through the front plate and the back plate. At this time, when the size of the aluminum composite panel is determined, it can be cut to a predetermined size.
  • the pressing step is characterized in that to press the phenol resin composition at a predetermined temperature.
  • a conveyor belt capable of pressing the conveyor belt and the lower conveyor belt is rotated at a predetermined interval, the front plate, the phenol resin composition and the back plate may be introduced therebetween.
  • the operating temperature and the operating pressure of the conveyor belt are important because they act as an influence factor that the foam can have uniform and independent bubbles.
  • the pressing process may be carried out at a temperature of 65 ⁇ 100 °C, preferably 70 ⁇ 90 °C. If the running temperature in the pressing process is less than 65 °C, for example, when using the conveyor belt foam curing of the phenolic resin composition may not sufficiently occur within a limited time passing through the conveyor belt, the curing rate if the temperature exceeds 100 °C The evaporation or foaming rate of the blowing agent is more rapid, the cell (cell) becomes larger and burst, the heat insulation performance may be lowered.
  • the pressing process may be performed by applying a pressure of 0.3 ⁇ 2.0kgf / cm 2 , preferably 0.5 ⁇ 1.5kgf / cm 2 .
  • the pressure applied in the pressing process is less than 0.3kgf / cm 2 , the desired aluminum panel shape cannot be maintained because the foaming pressure does not have sufficient foaming pressure to form a sufficient phenolic resin foaming agent, and a pressure exceeding 2.0kgf / cm 2 is applied. In this case, a cell in which the foaming gas is trapped may be broken.
  • curing is made for the purpose of post-curing and includes a aging step to remove VOC (volatile organic compounds). It is preferable to put in a convection oven for 10 to 200 minutes per cm 2 of the core layer at less than 75 °C. If the curing time is less than 10 minutes, the curing and aging is not sufficiently made, the thermal conductivity may increase and the thermal insulation properties may be reduced.
  • VOC volatile organic compounds
  • the improvement of the characteristics compared to the time and cost put into the curing may result in a waste of only cost.
  • the composite panel which has the core layer formed from the phenol resin cured foam, and the front plate / back plate provided with an aluminum layer can be manufactured.
  • FIG. 2 is a cross-sectional view showing an aluminum composite panel using a phenol resin cured foam according to the present invention.
  • the illustrated aluminum composite panel includes a core layer 100, a front plate 110, and a back plate 120.
  • the core layer 100 is formed of a phenol resin cured foam.
  • the front plate 110 is formed on one surface of the core layer 100 (upper core layer in FIG. 2), and the back plate 120 is formed on the other surface of the core layer 100.
  • front plates 110 and back plates 120 are provided with aluminum layers 110d and 120b.
  • the composite panel according to the present invention can be completed only by the basic structure of the front plate 110 and the back plate 120 having the core layer 100 and the aluminum layers 110d and 120b formed of such a phenol resin cured foam. have.
  • the aluminum composite panel according to the present invention may have a separate chromate layer formed on the outer surface of the aluminum layer provided on the front plate 110 or the rear plate 120 so as to be used as an external finishing material.
  • 110c) the paint layer 110b, the protective layers 110a and 120a may be further formed.
  • the front plate 110 is defined after the construction, the name is defined based on the portion exposed to the outside, the rear plate 120 has been described as showing the opposite side, but is not limited thereto.
  • the present invention provides a high insulation non-combustible aluminum composite panel made of a phenol resin cured foam, and may exhibit non-combustibility according to thermal conductivity and flame retardant secondary level of 0.020 W / mK or less.
  • a mixture containing 4% by weight of a polysiloxane foam stabilizer (polysiloxane), 3% by weight of a neutralizer (calcium carbonate), 3% by weight of a plasticizer (polyol), 10% by weight of a blowing agent (cyclopentane), and a curing agent (paratoluene).
  • Sulphonic acid) 15 wt% of the phenolic resin composition by injecting and mixing in three phases was mixed between aluminum plates of 2 mm thickness using a conveyor belt carried out at an operating temperature of 80 ° C. and an operating pressure of 1.0 kgf / cm 2 .
  • phenol resin mixtures were foamed and cured immediately on a conveyor belt for 10 minutes to form phenol resin cured foams having an independent foam ratio of 90%. After curing and aging for 60 minutes per 1 cm 2 at 75 °C to produce an aluminum composite panel.
  • An aluminum composite panel was manufactured under the same conditions as in Example 1, but the independent bubble ratio was 80%.
  • An aluminum composite panel was manufactured under the same conditions as in Example 1, but the independent bubble ratio was 60%.
  • An aluminum composite panel was manufactured under the same conditions as in Example 1 except that polyethylene was used as the core layer instead of the phenol resin cured foam.
  • An aluminum composite panel was manufactured under the same conditions as in Example 1, except that talc was used as the core layer instead of the phenol resin cured foam.
  • the composite panel made of a phenol resin cured foam according to the present invention has excellent initial heat insulating performance and long term durability performance. Due to this high energy load reduction rate can be seen that can be used as a high-efficiency building finishing material.
  • the phenolic foam of the core layer has a semi-combustibility corresponding to the flame retardant secondary.
  • semi-combustible grade testing methods there are heat release rate tests (KS F ISO 5660-1) and gas hazard tests (KS F 2271).
  • the heat release rate test shall use a cone calorimeter method and the total heat release rate shall not exceed 8 MJ / m 2 and the maximum heat release rate shall not exceed 200 kW / m 2 when 50 kW / m 2 radiant heat is applied for 10 minutes.
  • the gas hazard test may be quasi-non-combustible if the average time of inactivity is greater than 9 minutes when observing 8 rats due to the combustion gases of the test specimen.
  • phenol foam it can be seen that the use of non-freon gas is environmentally friendly, no harmful gas is generated, and the flame retardancy is excellent, so that the risk of fire is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention relates to a highly thermally insulating nonflammable aluminum composite panel made of a phenol resin hardening foamed body, and to a method for manufacturing the panel. The aluminum composite panel of the present invention comprises a core layer formed between a front plate and a rear plate each comprising an aluminum layer, wherein a phenol resin hardened foamed body is formed in the core layer. Thus, the aluminum composite panel may have high heat insulation performance with a thermal conductivity of 0.020 W/mK or lower and nonflammability at flame retardant level 2. The panel of the present invention can be utilized as a finishing material for an outer wall for high-efficiency construction, wherein the wall may exhibit superior constructibility and prevent dew condensation.

Description

페놀 수지 경화 발포체를 이용한 불연 알루미늄 복합 판넬 및 그 제조 방법Non-combustible aluminum composite panel using phenol resin cured foam and its manufacturing method
본 발명은 알루미늄 복합 판넬 제조 기술에 관한 것으로, 보다 상세하게는 전면과 후면 알루미늄 판 사이의 코어(core)층을 페놀 수지 경화 발포체로 형성함으로써, 열전도도가 0.020 W/mK 이하 수준의 높은 단열성능과 난연 2급에 준하는 불연성을 가진 알루미늄 복합 판넬을 제공하는 기술에 관한 것이다.The present invention relates to an aluminum composite panel manufacturing technology, and more particularly, by forming a core layer between the front and rear aluminum plates with a phenol resin cured foam, high thermal insulation performance of 0.020 W / mK or less level The present invention relates to a technology for providing an aluminum composite panel having a non-flammability similar to that of a second flame retardant.
복합 판넬은 일반적으로 건축물 외벽 마감재용으로 쓰이고 있다. 이러한 복합판넬은 전면판과 후면판이 알루미늄, 마그네슘, 철 등 강판으로 이루어져있다.Composite panels are commonly used for building exterior wall finishing. The composite panel is composed of a steel plate such as aluminum, magnesium, iron and the front panel.
그리고 전면판과 후면판 사이인 코어층(core)은 유리면(glass wool), 폴리에틸렌(PE), 탈크(Talc) 등과 같은 단열효과를 보이는 소재로 형성된다. In addition, the core layer (core) between the front plate and the back plate is formed of a material showing an insulating effect such as glass wool, polyethylene (PE), talc (Talc).
여기서, 코어층이 폴리에틸렌(PE)으로 형성되는 경우, 폴리에틸렌에 불이 붙기 쉬어 화재의 위험에 매우 취약하다. Here, when the core layer is formed of polyethylene (PE), the polyethylene is likely to catch fire, which is very vulnerable to the risk of fire.
그 일예로, 대한민국 특허등록공보 제10-0828630호(2008.05.02)에는 폴리에틸렌(PE) 15~25 중량%, 에틸렌비닐아세테이트(EVA) 5~15 중량% 및 난연성 필러(filler) 60~80 중량%를 혼합시킨 난연성 합성수지를 포함하는 난연성 알루미늄 복합패널이 개시되어 있다.As an example, Korean Patent Registration No. 10-0828630 (2008.05.02) includes 15 to 25% by weight of polyethylene (PE), 5 to 15% by weight of ethylene vinyl acetate (EVA) and 60 to 80 weight of a flame retardant filler. Disclosed is a flame retardant aluminum composite panel comprising a flame retardant synthetic resin mixed with%.
따라서, 코어층에 난연재 또는 과량의 탈크 (talc)를 충전하는데, 이 경우에는 비중이 커서 시공성이 어렵고, 시공비가 많이 드는 단점이 있다.Therefore, the core layer is filled with a flame retardant or an excess of talc. In this case, the specific gravity is large so that the workability is difficult and the construction cost is high.
또한 유리면(glass wool)이나 암면(rock wool)을 코어층에 충전할 경우에는 판넬은 불연성이라는 장점이 있지만, 열전도도가 높아 단열성능이 저하되는 문제가 있다. 아울러, 유리면 또는 암면은 인체에 유해한 요소로 작용되는 문제가 있다.In addition, when the glass wool or rock wool is filled in the core layer, the panel has an advantage of being nonflammable, but there is a problem that thermal insulation performance is deteriorated due to high thermal conductivity. In addition, glass wool or rock wool has a problem that acts as a harmful element to the human body.
본 발명은 폴리에틸렌(PE)나 탈크(talc)등을 코어층으로 사용하는 알루미늄 복합 판넬에서 문제가 되던 화재발생의 위험, 연소시 인체에 유해한 가스발생 문제 및 시공비 문제를 해결할 수 있는 알루미늄 복합 판넬 및 그 제조 방법을 제공하는 것을 그 목적으로 한다.The present invention is an aluminum composite panel that can solve the risk of fire, a gas generation problem and construction cost problems that are a problem in the aluminum composite panel using polyethylene (PE) or talc (talc) as a core layer and It aims at providing the manufacturing method.
또한, 본 발명은 열전도도가 0.020 W/mK 이하 수준의 높은 단열성능과 난연 2급에 준하는 불연성을 갖는 알루미늄 복합 판넬 및 그 제조 방법을 제공하는 것이다.In addition, the present invention is to provide an aluminum composite panel having a high thermal insulation performance of the level of 0.020 W / mK or less and non-combustible according to the flame retardant class 2 and a manufacturing method thereof.
상기 목적을 달성하기 위한 본 발명에 따른 불연 알루미늄 복합 판넬 제조 방법은 (a) 알루미늄층을 포함하는 전면판 및 후면판을 마련하는 단계; (b) 상기 전면판 및 후면판 사이에 발포제를 포함하는 페놀 수지 조성물을 투입한 후, 발포 경화시켜 페놀 수지 경화 발포체를 포함하는 복합 판넬을 형성하는 단계; 및 (c) 상기 복합 판넬에 포함된 페놀 수지 경화 발포체를 양생 및 숙성하는 단계;를 포함하는 것을 특징으로 한다. Non-combustible aluminum composite panel manufacturing method according to the present invention for achieving the above object comprises the steps of (a) providing a front plate and a back plate comprising an aluminum layer; (b) injecting a phenol resin composition comprising a blowing agent between the front plate and the back plate, and then foaming and curing to form a composite panel including a phenol resin cured foam; And (c) curing and aging the phenolic resin cured foam contained in the composite panel.
또한, 상기 목적을 달성하기 위한 본 발명에 따른 불연 알루미늄 복합 판넬은 페놀 수지 경화 발포체로 형성되는 코어(core)층; 및 상기 코어층의 전면 및 후면에 형성되며, 각각 알루미늄층을 구비하는 전면판과 후면판을 포함하는 것을 특징으로 한다. In addition, the non-combustible aluminum composite panel according to the present invention for achieving the above object is a core layer formed of a phenol resin cured foam; And a front plate and a rear plate formed on the front and rear surfaces of the core layer, each having an aluminum layer.
본 발명에 따른 알루미늄 복합 판넬은 코어층을 페놀 수지 경화 발포체로 형성함으로써, 단열성과 난연성을 확보할 수 있다. 따라서, 본 발명에 따른 복합 판넬을 건축용 단열재에 적용을 하면 불연 수준의 난연성을 가지고 있기 때문에 화재시 안전성을 향상시킬 수 있는 효과를 제공한다.In the aluminum composite panel according to the present invention, the core layer is formed of a phenol resin cured foam, thereby ensuring heat insulation and flame retardancy. Therefore, the application of the composite panel according to the present invention to the building insulation provides a flame retardant level of flame retardancy because it provides an effect that can improve the safety in fire.
또한, 본 발명에 따른 단열 복합 판넬은 열전도도가 0.020 W/mK 이하인 고단열 특성을 나타내므로, 난방 비용을 절감할 수 있는 효과가 있다. In addition, the heat insulation composite panel according to the present invention exhibits a high thermal insulation property of less than 0.020 W / mK thermal conductivity, there is an effect that can reduce the heating cost.
아울러, 본 발명에서는 심재에 프레온 가스를 사용하지 않고, HCFC (hydro-chloro-fluoro-carbon) 발포제가 아닌 탄화수소(hydrocarbon)과 같은 친환경적인 발포제를 사용하여 지구온난화에 대한 위험요소가 없고 장기적으로 높은 단열성능과 결로방지를 유지할 수 있는 효과를 제공한다.In addition, the present invention does not use a freon gas in the core material, using an environmentally friendly blowing agent such as hydrocarbon (hydrocarbon), not HCFC (hydro-chloro-fluoro-carbon) blowing agent, there is no risk factor for global warming and long-term high It provides the effect of maintaining insulation performance and condensation prevention.
도 1은 발명에 따른 페놀 수지 경화 발포체를 포함하는 알루미늄 복합 판넬을 제조 하는 방법을 나타낸 순서도이다.1 is a flow chart showing a method for producing an aluminum composite panel comprising a phenolic resin cured foam according to the invention.
도 2는 본 발명에 따른 페놀 수지 경화 발포체를 포함하는 알루미늄 복합 판넬을 나타낸 단면도이다.Figure 2 is a cross-sectional view showing an aluminum composite panel comprising a phenolic resin cured foam according to the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 페놀 수지 경화 발포체를 이용한 고단열성 불연 알루미늄 복합 판넬 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.Hereinafter, a high thermal insulation non-combustible aluminum composite panel using a phenol resin cured foam according to a preferred embodiment of the present invention and a method of manufacturing the same will be described in detail with reference to the accompanying drawings.
본 발명에 따른 복합 판넬 제조를 위해서는 전면판과 후면판이 되는 제1 및 제2 알루미늄층을 각각 형성하는 단계와, 상기 제1 및 제2 알루미늄층 사이에 페놀 수지 혼합용액을 투입하고 발포 경화시키는 단계와, 고온 압축으로 판넬 형성을 제조하고 필요한 크기만큼 재단하는 단계와, 양생 및 숙성하여 열전도도를 낮추고 난연 특성을 향상시키는 단계를 수행한다.In order to manufacture the composite panel according to the present invention, the steps of forming the first and second aluminum layers to be the front plate and the back plate, respectively, and adding a phenol resin mixed solution between the first and second aluminum layers and foam hardening And preparing a panel formed by high-temperature compression and cutting it to a required size, and curing and aging to lower thermal conductivity and improve flame retardant properties.
도 1은 발명에 따른 페놀 수지 경화 발포체를 포함하는 알루미늄 복합 판넬을 제조 하는 방법을 나타낸 순서도이다.1 is a flow chart showing a method for producing an aluminum composite panel comprising a phenolic resin cured foam according to the invention.
도 1을 참조하면, 도시된 알루미늄 복합 판넬 제조 방법은 전면판/후면판 마련 단계(S100), 페놀 수지 경화 발포체 형성 단계(S110), 고온압축 단계(S120) 및 양생/숙성 단계(S130)를 포함한다. Referring to FIG. 1, the illustrated aluminum composite panel manufacturing method includes a front plate / back plate preparing step (S100), a phenol resin cured foam forming step (S110), a high temperature compression step (S120), and a curing / aging step (S130). Include.
먼저, 전면판/후면판 마련 단계(S100)에서는 알루미늄 복합패널의 외피에 해당하는 전면판 및 후면판을 마련한다(S100). First, in the front plate / back plate preparing step (S100) to prepare a front plate and a back plate corresponding to the outer shell of the aluminum composite panel (S100).
전면판 및 후면판은 각각 알루미늄층을 포함한다. 알루미늄층은 1장 혹은 2 이상의 알루미늄 판으로 형성될 수 있다. 알루미늄층의 두께는 0.5 ~ 2 mm인 것이 바람직하다. 이때, 알루미늄층의 두께가 0.5 mm 미만일 경우 구조적으로 판넬의 강도를 확보하기 어렵다. 반대로, 두께가 2 mm를 초과할 경우에는 무게가 증가되어 시공 효율이 상대적으로 저하 시킬 수 있다. The front plate and the back plate each comprise an aluminum layer. The aluminum layer may be formed of one sheet or two or more aluminum plates. It is preferable that the thickness of an aluminum layer is 0.5-2 mm. At this time, when the thickness of the aluminum layer is less than 0.5 mm it is difficult to secure the strength of the panel structurally. On the contrary, when the thickness exceeds 2 mm, the weight may be increased, thereby reducing the construction efficiency.
아울러, 전면판 또는 후면판에서 알루미늄층의 외표면에는 보호층, 크로메이트층 등이 더 형성될 수 있다. 또한, 전면판에는 외벽 마감재로서 미관 향상을 위한 도장층도 추가될 수 있다. 이들 보호층, 크로메이트층, 도장층 등은 어느 하나의 층만이 알루미늄층의 외표면에 형성될 수 있으며, 알루미늄층/크로메이트층/도장층/보호층과 같은 형태의 다수의 층이 알루미늄층의 외표면에 형성될 수 있다. In addition, a protective layer, a chromate layer, or the like may be further formed on the outer surface of the aluminum layer on the front plate or the back plate. In addition, the front plate may also be added to the coating layer for improving the appearance as the exterior wall finishing material. Only one layer of these protective layers, chromate layers, paint layers, etc. may be formed on the outer surface of the aluminum layer, and a plurality of layers having the same shape as the aluminum layer / chromate layer / paint layer / protective layer It can be formed on the surface.
다음으로, 페놀 수지 경화 발포체 형성 단계(S110)에서는 전면판 및 후면판 사이에 페놀 수지 조성물을 투입하고 발포시킴으로써, 전면판 및 후면판 사이에 코어 경화 발포체를 형성한다.Next, in the step of forming a phenol resin cured foam (S110) by inserting and foaming the phenol resin composition between the front plate and the back plate, to form a core cured foam between the front plate and the back plate.
이때, 페놀 수지 조성물은 정포제, 발포제, 경화제 및 첨가제를 포함할 수 있다. In this case, the phenol resin composition may include a foam stabilizer, a foaming agent, a curing agent, and an additive.
보다 구체적으로, 상기 페놀 수지 조성물은 정포제 1~ 10 중량%, 발포제 5~ 25 중량%, 경화제 5 ~ 25 중량% 및 첨가제 0.1~ 10 중량%를 포함할 수 있다. More specifically, the phenol resin composition may include 1 to 10% by weight foam stabilizer, 5 to 25% by weight foaming agent, 5 to 25% by weight curing agent and 0.1 to 10% by weight additive.
정포제는 계면활성화제 (surfactant)의 역할을 한다. 페놀 수지와 경화제가 친수성이고 탄화수소계인 발포제는 소수성의 특징을 가지고 있다. 발포제와 다른 조성물과의 혼합을 위해서 발포제의 친수화를 도와주는 역할로 정포제가 사용된다. 이러한 정포제는 실리콘계, 폴리실록산계 등을 이용할 수 있다. Foam stabilizers act as surfactants. The phenolic resin and the curing agent are hydrophilic and hydrocarbon-based blowing agents have hydrophobic characteristics. Foaming agents are used to help the hydrophilization of the blowing agent for mixing with the blowing agent and other compositions. Such foam stabilizers may be silicone-based or polysiloxane-based.
정포제는 페놀 수지 조성물 전체중량의 1~10 중량%이며 정포제의 함량이 1 중량% 미만일 경우에는 발포제의 친수화 기능을 하지 못하여 발포제와 페놀 수지 및 경화제의 혼합이 어렵다. 반대로 정포제의 함량이 10 중량%를 초과할 경우에는 친수화 특성이 지나치게 되어 페놀수지가 전면판이나 후면판과 결합되지 못하는 문제가 발생할 수 있다.When the foam stabilizer is 1 to 10% by weight of the total weight of the phenol resin composition and the content of the foam stabilizer is less than 1% by weight, the foaming agent does not have a hydrophilic function, and thus it is difficult to mix the foaming agent with the phenol resin and the curing agent. On the contrary, when the content of the foam stabilizer exceeds 10% by weight, the hydrophilization property may be excessive, resulting in a problem that the phenol resin cannot be combined with the front plate or the back plate.
발포제는 물리적 발포제로서 반응열로 인해 페놀 수지 조성물을 기포로 형성하는 역할로서 낮은 열전도율과 끓는 점(Boiling point)가 낮다는 것이 특징이다. The blowing agent is a physical blowing agent, which forms a phenol resin composition into bubbles due to the heat of reaction, and is characterized by low thermal conductivity and low boiling point.
본 발명에서, 발포제는 탄소수가 1~8인 지방족 탄화수소(hydrocarbon)를 사용한다. 기존에는 프레온 가스 또는 HCFC(hydro-chloro-fluoro-carbon)를 발포제로 사용하여 오존층 파괴로 인한 지구 온난화의 문제가 있다. 그러나, 본 발명에서는 탄화수소를 발포제로 이용함에 따라 종래에 비하여 환경 위협의 위험성 에 대한 부담을 해소할 수 있다.In the present invention, the blowing agent uses an aliphatic hydrocarbon having 1 to 8 carbon atoms. Conventionally, there is a problem of global warming due to ozone layer destruction using freon gas or HCFC (hydro-chloro-fluoro-carbon) as a blowing agent. However, in the present invention, by using a hydrocarbon as a blowing agent, it is possible to solve the burden on the risk of environmental threats as compared to the conventional.
여기에서 발포제로 사용할 수 있는 탄화수소의 종류로는 싸이클로펜탄, 이소펜탄, 이소부탄 등이 있으며 발포제의 열전도율과 끓는 점을 고려하여 선정하는 것이 바람직하다. Here, the hydrocarbons that can be used as the blowing agent include cyclopentane, isopentane, isobutane, and the like, and are preferably selected in consideration of thermal conductivity and boiling point of the blowing agent.
상기 발포제는 이소펜탄(Isopentane), 이소부탄(isobutane) 및 싸이클로펜탄 (Cyclopentane) 중 하나 이상으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것이 바람직하다. 발포제는 페놀 수지 조성물 전체 중량의 5~ 25 중량%로 포함되는 것이 바람직하다. 발포제의 함량은 페놀 수지 조성물 전체의 밀도를 제어하는 데 중요한 요인이며 밀도 30~ 40 kg/m3 범위의 페놀 수지 경화 발포체 제조하기 위해서는 상기 함량을 첨가하면 바람직하다. 즉, 발포제의 함량이 5 중량% 미만일 경우에는 페놀 수지 경화 발포체의 밀도가 40 kg/m3 초과할 수 있으며, 발포제의 함량이 25 중량%를 초과할 경우에는 페놀 수지 경화 발포체의 밀도가 30 kg/m3 미만일 우려가 있다.The blowing agent preferably includes at least one member selected from the group consisting of at least one of isopentane, isobutane and cyclopentane. The blowing agent is preferably included in 5 to 25% by weight of the total weight of the phenol resin composition. The content of the blowing agent is an important factor in controlling the density of the entire phenolic resin composition, and in order to prepare a phenolic resin cured foam having a density in the range of 30 to 40 kg / m 3, it is preferable to add the above content. That is, when the content of the blowing agent is less than 5% by weight, the density of the phenol resin cured foam may exceed 40 kg / m 3 , and when the content of the blowing agent exceeds 25% by weight, the density of the phenol resin cured foam is 30 kg. It may be less than / m 3 .
경화제는 발포온도를 낮추어서 상대적으로 낮은 온도에서 발포하여 경화가 가능하도록 촉매역할을 한다. 경화제는 벤젠술폰산, 파라톨루엔술폰산, 자일렌술폰산, 페놀술폰산 등을 이용할 수 있다. The curing agent acts as a catalyst to lower the foaming temperature and to foam at a relatively low temperature. A curing agent may use benzene sulfonic acid, paratoluene sulfonic acid, xylene sulfonic acid, phenol sulfonic acid and the like.
경화제는 페놀 수지 조성물 전체 중량의 5~25 중량%로 포함되는 것이 바람직하다. 경화제의 함량이 5 중량% 미만일 경우에는 촉매 기능이 수행되지 않을 수 있으며, 경화제의 함량이 25%를 초과하면 미반응 경화제가 많이 발생하여 산성을 띄게 되어 금속의 부식성이 높아지는 문제가 있다. It is preferable that a hardening | curing agent is contained in 5 to 25 weight% of the total weight of a phenol resin composition. If the content of the curing agent is less than 5% by weight, the catalytic function may not be performed. If the content of the curing agent exceeds 25%, a large amount of unreacted curing agent is generated, resulting in acidity, thereby increasing corrosion of the metal.
첨가제는 미반응 모노머(monomer)를 제거하여 아웃가싱을 줄이기 위한 유기 아미노기 함유 화합물 있다. The additive is an organic amino group-containing compound for reducing outgassing by removing unreacted monomers.
첨가제는 페놀 수지 조성물의 전체 중량의 0.1~10 중량%로 포함되는 것이 바람직하다. 첨가제의 중량이 0.1 중량% 미만일 경우에는 미반응 모노머를 제거하기 어려워 아웃가싱이 발생할 수 있으며, 첨가제의 중량이 10 중량%를 초과할 경우에는 첨가제가 불순물로 작용되어 전체 페놀 수지 경화 발포체의 품질이 저하될 수 있다.The additive is preferably included in 0.1 to 10% by weight of the total weight of the phenol resin composition. If the weight of the additive is less than 0.1% by weight, it is difficult to remove the unreacted monomer, and outgassing may occur. If the weight of the additive is more than 10% by weight, the additive acts as an impurity to improve the quality of the entire phenolic resin foam. Can be degraded.
상기 첨가제는 중화제를 포함할 수 있다. 상기 중화제는 페놀 수지 경화 발포체의 pH를 3~9정도로 높여 주는 역할을 하는바, 이를 이용하여 중성을 띄는 바 산성 경화제로 인한 금속 접착면에서의 부식문제를 보완할 수 있다. The additive may comprise a neutralizing agent. The neutralizing agent serves to increase the pH of the phenolic resin cured foam to about 3 to 9 bar bar, which can be used to compensate for corrosion problems on the metal adhesion surface due to the acidic curing agent.
상기 중화제는 수산화알루미늄, 수산화마그네슘, 산화칼슘, 산화마그네슘, 산화알루미늄, 산화아연 등의 금속의 수산화물이나 산화물, 아연 등의 금속 분말, 탄산칼슘, 탄산마그네슘, 탄산바륨, 탄산아연 등의 금속의 탄산염을 포함할 수 있다. 상기 중화제는 1종을 단독으로 이용하거나, 2종 이상을 조합해서 이용할 수 있다. The neutralizing agent may be a hydroxide of a metal such as aluminum hydroxide, magnesium hydroxide, calcium oxide, magnesium oxide, aluminum oxide or zinc oxide, or a metal powder such as oxide or zinc, a metal carbonate such as calcium carbonate, magnesium carbonate, barium carbonate or zinc carbonate. It may include. The said neutralizing agent can be used individually by 1 type, or can be used in combination of 2 or more type.
상기 중화제는 페놀 수지 조성물의 전체 중량의 0.1~10중량%로 포함되는 것이 바람직한바, 상기 중화제의 함량이 0.1중량% 미만인 경우 형성된 페놀 수지 경화 발포체가 산성을 띄게 되고, 10중량%초과의 경우에는 형성된 페놀 수지 경화 발포체의 물성이 변화하는 문제가 발생할 수 있다. The neutralizing agent is preferably included in 0.1 to 10% by weight of the total weight of the phenolic resin composition, when the content of the neutralizing agent is less than 0.1% by weight of the cured phenolic resin foam formed will be acidic, in the case of more than 10% by weight Problems may occur in which the physical properties of the formed phenol resin cured foam are changed.
추가적으로 상기 첨가제 이외에 가소제를 포함할 수 있다. 상기 가소제는 기포 벽면에 유연성을 주어 벽면이 깨지거나 열화되어 기포 내의 발포가스가 빠져나가며 공기와 치환되는 것을 막아 장기내구성을 높이는 역할을 한다. 상기 가소제의 구체적인 예로 인산트리페닐, 테레프탈산디메틸, 이소프탈산디메틸, 폴리에틸렌글리콜, 폴리올 등을 이용할 수 있다. In addition to the above additives may include a plasticizer. The plasticizer gives flexibility to the bubble wall and prevents the wall from being broken or deteriorated so that the foaming gas in the bubble escapes and is replaced with air, thereby enhancing long-term durability. Specific examples of the plasticizer may include triphenyl phosphate, dimethyl terephthalate, dimethyl isophthalate, polyethylene glycol, polyol, and the like.
상기 가소제는 페놀 수지 경화 발포체 형성용 페놀 수지 조성물의 전체 중량의 1~15중량%로 포함되는 것이 바람직하다. 상기 가소제의 함량이 1중량% 미만인 경우 페놀 수지 경화 발포체가 장기내구성에 영향을 주지 못하고, 15중량%를 초과하는 경우에는 페놀 수지 경화 발포체의 성능을 저해할 수 있다.It is preferable that the said plasticizer is contained in 1 to 15 weight% of the total weight of the phenol resin composition for phenol resin cured foam formation. When the content of the plasticizer is less than 1% by weight, the phenolic resin cured foam does not affect long-term durability, and when it exceeds 15% by weight, the performance of the phenolic resin cured foam may be impaired.
한편, 페놀수지 조성물의 성분 혹은 발포 조건에 따라, 형성되는 페놀 수지 경화 발포체의 독립기포율이 결정될 수 있다. 본 발명에서는 페놀 수지 경화 발포체의 독립기포율(Closed Cell Content)이 80% 이상이 되도록 하는 것이 바람직하다.On the other hand, depending on the components or foaming conditions of the phenol resin composition, the independent foaming rate of the cured phenol resin formed can be determined. In the present invention, it is preferable that the closed cell content of the phenol resin cured foam is 80% or more.
독립기포율은 단위 면적에 형성된 기포들 중, 닫혀진 기포의 분율을 정의하는데, 본 발명에서 독립기포율이 80% 미만이 될 경우 잔여 기체가 페놀수지 경화 발포체 내부에 남아서 아웃가싱(out gassing)의 원인이 될 수 있으며, 구조적 강도가 현저히 떨어져 외장용 판넬로서의 특성이 저하될 수 있다.The independent bubble ratio defines the fraction of closed bubbles among the bubbles formed in the unit area. In the present invention, when the independent bubble ratio is less than 80%, the remaining gas remains inside the phenol resin-cured foam, which results in outgassing. It may cause, and the structural strength is remarkably lowered, which may result in deterioration of the characteristics of the exterior panel.
종래의 기술에서는 압출기를 이용하여 티-다이(T-die)로 알루미늄 복합패널을 제조하고, 상기 알루미늄 복합패널 사이에 코어층으로 무기물 등 충진재를 주입하는 기술로 인해 공기층이 생기고 결로가 발생이 되어 단열성능이 떨어지거나 내구성이 낮아지는 단점이 있었다.In the prior art, an aluminum composite panel is manufactured by a T-die using an extruder, and an air layer is generated and condensation occurs due to a technology of injecting a filler such as an inorganic material into the core layer between the aluminum composite panels. There was a disadvantage that the insulation performance is lowered or the durability is lowered.
그러나, 본 발명의 알루미늄 복합판넬 제조방법은 알루미늄 복합판넬의 외피재에 해당하는 전면판/후면판을 마련하고(S100), 그 사이에 페놀 수지 조성물을 투입하면서 이를 발포하고 경화하는 단계(S110)를 포함하는바, 상기 전면판/후면판 사이에 페놀 수지 조성물을 투입하여 즉각적으로 발포 경화함으로써 결로가 발생되지 않게 할 수 있다. However, the aluminum composite panel manufacturing method of the present invention is to prepare a front plate / back plate corresponding to the outer shell material of the aluminum composite panel (S100), while injecting the phenolic resin composition there between foaming and curing (S110) Containing, by putting a phenolic resin composition between the front plate / back plate can be immediately foamed and hardened to prevent condensation.
다음으로, 고온 압축 단계(S120)에서는 프레싱 공정을 통해서 전면판과 후면판으로 상기 전면판과 후면판 사이에 투입된 페놀 수지 조성물을 압축하여 알루미늄 복합 판넬을 형성한다. 이때, 알루미늄 복합 판넬의 사이즈가 정해져 있는 경우, 정해진 사이즈로 재단할 수 있다. Next, in the high temperature compression step (S120), the aluminum composite panel is formed by compressing the phenol resin composition introduced between the front plate and the back plate through the pressing process through the front plate and the back plate. At this time, when the size of the aluminum composite panel is determined, it can be cut to a predetermined size.
상기 프레싱 공정은 상기 페놀 수지 조성물을 소정온도에서 가압하는 것을 특징으로 한다. 구체적으로, 프레싱이 가능한 컨베이어 벨트를 이용할 수 있고, 상기 컨베이어 벨트와 하부 컨베이어 벨트가 일정간격을 두고 회전하며, 그 사이에 상기 전면판, 페놀수지 조성물 및 후면판이 투입될 수 있다. 이 때, 컨베이어 벨트의 작동온도와 작동압력은 발포체가 균일하고 독립된 기포를 가질 수 있을 수 있는 영향인자로 작용이 되기 때문에 중요하다.The pressing step is characterized in that to press the phenol resin composition at a predetermined temperature. Specifically, it is possible to use a conveyor belt capable of pressing, the conveyor belt and the lower conveyor belt is rotated at a predetermined interval, the front plate, the phenol resin composition and the back plate may be introduced therebetween. At this time, the operating temperature and the operating pressure of the conveyor belt are important because they act as an influence factor that the foam can have uniform and independent bubbles.
상기 프레싱 공정은 65~100℃, 바람직하게는 70~90℃의 온도에서 수행될 수 있다. 상기 프레싱 공정에서의 수행온도가 65℃ 미만인 경우, 예를 들어 컨베이어 벨트 이용시 컨베이어 벨트를 통과하는 제한된 시간 내에 충분히 페놀수지 조성물의 발포 경화가 일어나지 않을 수 있고, 100℃의 온도를 초과하는 경우 경화속도보다 발포제의 기화나 발포속도가 빨라져 셀(cell)이 커지고 터져서 단열성능이 저하될 수 있다.The pressing process may be carried out at a temperature of 65 ~ 100 ℃, preferably 70 ~ 90 ℃. If the running temperature in the pressing process is less than 65 ℃, for example, when using the conveyor belt foam curing of the phenolic resin composition may not sufficiently occur within a limited time passing through the conveyor belt, the curing rate if the temperature exceeds 100 ℃ The evaporation or foaming rate of the blowing agent is more rapid, the cell (cell) becomes larger and burst, the heat insulation performance may be lowered.
또한, 상기 프레싱 공정은 0.3~2.0kgf/cm2, 바람직하게는 0.5~1.5kgf/cm2의 압력을 가하여 수행될 수 있다. 상기 프레싱 공정에서 가해진 압력이 0.3kgf/cm2 미만인 경우 충분한 페놀수지 경화 발포제를 형성하는 발포압을 가지지 못하기 때문에 원하는 알루미늄 판넬의 형상을 유지할 수 없고, 2.0kgf/cm2를 초과하여 압력을 가하는 경우 발포가스가 트랩된 셀(cell)이 깨질 수 있다. In addition, the pressing process may be performed by applying a pressure of 0.3 ~ 2.0kgf / cm 2 , preferably 0.5 ~ 1.5kgf / cm 2 . When the pressure applied in the pressing process is less than 0.3kgf / cm 2 , the desired aluminum panel shape cannot be maintained because the foaming pressure does not have sufficient foaming pressure to form a sufficient phenolic resin foaming agent, and a pressure exceeding 2.0kgf / cm 2 is applied. In this case, a cell in which the foaming gas is trapped may be broken.
다음으로, 양생/숙성 단계에서는 복합 판넬에 포함된 페놀수지 경화발포체를 양생 및 숙성시켜서 고단열성 불연 알루미늄 복합 판넬을 완성한다. Next, in the curing / aging step, curing and aging of the phenol resin cured foam contained in the composite panel to complete a high insulation non-combustible aluminum composite panel.
이때, 양생은 후경화의 목적으로 이루어지며 VOC(휘발성 유기화합물)를 제거하기 위한 숙성 단계도 포함이 된다. 일반적인(convection) 오븐에 넣고 75℃미만에서 코어층 1cm2 당 10 ~ 200분 동안 수행하는 것이 바람직하다. 양생시간이 10분 미만일 경우에는 양생 및 숙성이 충분히 이루어지지 않아서 열전도가 증가되고 단열특성이 저하될 수 있다.At this time, curing is made for the purpose of post-curing and includes a aging step to remove VOC (volatile organic compounds). It is preferable to put in a convection oven for 10 to 200 minutes per cm 2 of the core layer at less than 75 ℃. If the curing time is less than 10 minutes, the curing and aging is not sufficiently made, the thermal conductivity may increase and the thermal insulation properties may be reduced.
또한, 양생시간이 200분을 초과할 경우에는 양생에 투입되는 시간 및 비용에 비하여 개선되는 특성 정도가 미약하여 비용만 낭비되는 결과가 나타날 수 있다.In addition, when the curing time exceeds 200 minutes, the improvement of the characteristics compared to the time and cost put into the curing may result in a waste of only cost.
상기와 같은 판넬 제조 방법에 의해서, 페놀 수지 경화 발포체로 형성된 코어층과, 알루미늄층을 구비하는 전면판/후면판을 갖는 복합 판넬을 제조할 수 있다.By the above panel manufacturing method, the composite panel which has the core layer formed from the phenol resin cured foam, and the front plate / back plate provided with an aluminum layer can be manufactured.
도 2는 본 발명에 따른 페놀 수지 경화 발포체를 이용한 알루미늄 복합 판넬을 나타낸 단면도이다.2 is a cross-sectional view showing an aluminum composite panel using a phenol resin cured foam according to the present invention.
도 2를 참조하면, 도시된 알루미늄 복합 판넬은 코어층(100), 전면판(110) 및 후면판(120)을 포함한다. Referring to FIG. 2, the illustrated aluminum composite panel includes a core layer 100, a front plate 110, and a back plate 120.
코어층(100)은 페놀 수지 경화 발포체로 형성된다. The core layer 100 is formed of a phenol resin cured foam.
전면판(110)은 코어층(100) 일면(도 2에서 코어층 상부)에 형성되고, 후면판(120)은 코어층(100)의 타면에 형성된다.The front plate 110 is formed on one surface of the core layer 100 (upper core layer in FIG. 2), and the back plate 120 is formed on the other surface of the core layer 100.
이들 전면판(110) 및 후면판(120)은 알루미늄층(110d, 120b)을 구비한다. These front plates 110 and back plates 120 are provided with aluminum layers 110d and 120b.
이와 같은 페놀 수지 경화 발포체로 형성되는 코어층(100) 및 알루미늄층(110d, 120b)을 구비하는 전면판(110)과 후면판(120)의 기본 구조만으로도 본 발명에 따른 복합 판넬이 완성될 수 있다.The composite panel according to the present invention can be completed only by the basic structure of the front plate 110 and the back plate 120 having the core layer 100 and the aluminum layers 110d and 120b formed of such a phenol resin cured foam. have.
그러나, 도 2에 나타낸 바와 같이, 본 발명에 따른 알루미늄 복합 판넬은 외부 마감재로 사용될 수 있도록, 전면판(110)이나 후면판(120)에 구비되는 알루미늄층 외표면에 형성되는 별도의 크로메이트층(110c), 도장층(110b), 보호층(110a, 120a) 등이 더 형성될 수 있다.However, as shown in FIG. 2, the aluminum composite panel according to the present invention may have a separate chromate layer formed on the outer surface of the aluminum layer provided on the front plate 110 or the rear plate 120 so as to be used as an external finishing material. 110c), the paint layer 110b, the protective layers 110a and 120a may be further formed.
이때, 전면판(110)은 시공 후, 외부에 노출되는 부분을 기준으로 명칭이 정의된 것이고, 후면판(120)은 그 반대 면을 나타낸 것으로 설명하였으나, 이에 제한되는 것은 아니다.At this time, the front plate 110 is defined after the construction, the name is defined based on the portion exposed to the outside, the rear plate 120 has been described as showing the opposite side, but is not limited thereto.
본 발명은 페놀 수지 경화 발포체로 이루어진 고단열성 불연 알루미늄 복합패널을 제공하며, 0.020 W/mK 이하 수준의 열전도도 및 난연 2급에 준하는 불연성을 나타낼 수 있다. The present invention provides a high insulation non-combustible aluminum composite panel made of a phenol resin cured foam, and may exhibit non-combustibility according to thermal conductivity and flame retardant secondary level of 0.020 W / mK or less.
이와 같이 우수한 단열 성능과 불연 성능에 대해여 그 구체적인 실시예를 살펴보면 다음과 같다.As such, a detailed embodiment of the excellent thermal insulation and non-combustible performance will be described.
[복합 판넬의 제조][Manufacture of Composite Panel]
실시예 1Example 1
먼저, 페놀수지에 폴리 실록산계 정포제(폴리실록산) 4중량%와 중화제(탄산칼슘) 3중량%, 가소제(폴리올) 3중량%를 포함한 혼합물과 발포제 (싸이클로펜탄) 10중량%, 경화제(파라톨루엔술폰산) 15중량%를 3상으로 주입 및 믹싱을 하여 혼합된 페놀 수지 조성물을 80℃의 작동온도, 1.0kgf/cm2의 작동압력에서 수행되는 컨베이어 벨트를 이용하여 두께가 각각 2mm의 알루미늄 판 사이에 투입하고, 10분 동안 컨베이어 벨트에서 즉각적으로 페놀수지 혼합물을 발포 경화시킴으로써 독립기포율이 90%인 페놀 수지 경화 발포체를 형성하였다. 이후 75℃에서 1cm2당 60분 동안 양생 및 숙성을 시켜서 알루미늄 복합 판넬을 제조하였다.First, a mixture containing 4% by weight of a polysiloxane foam stabilizer (polysiloxane), 3% by weight of a neutralizer (calcium carbonate), 3% by weight of a plasticizer (polyol), 10% by weight of a blowing agent (cyclopentane), and a curing agent (paratoluene). Sulphonic acid) 15 wt% of the phenolic resin composition by injecting and mixing in three phases was mixed between aluminum plates of 2 mm thickness using a conveyor belt carried out at an operating temperature of 80 ° C. and an operating pressure of 1.0 kgf / cm 2 . And phenol resin mixtures were foamed and cured immediately on a conveyor belt for 10 minutes to form phenol resin cured foams having an independent foam ratio of 90%. After curing and aging for 60 minutes per 1 cm 2 at 75 ℃ to produce an aluminum composite panel.
실시예 2Example 2
상기 실시예 1과 동일한 조건으로 알루미늄 복합 판넬을 제조하되, 상기 독립기포율이 80%가 되도록 하였다.An aluminum composite panel was manufactured under the same conditions as in Example 1, but the independent bubble ratio was 80%.
비교예1Comparative Example 1
상기 실시예 1과 동일한 조건으로 알루미늄 복합 판넬을 제조하되, 상기 독립기포율이 60%가 되도록 하였다.An aluminum composite panel was manufactured under the same conditions as in Example 1, but the independent bubble ratio was 60%.
비교예 2Comparative Example 2
페놀수지 경화 발포체 대신, 코어층으로 폴리에틸렌을 이용한 것을 제외하고는 실시예 1과 동일한 조건으로 알루미늄 복합 판넬을 제조하였다. An aluminum composite panel was manufactured under the same conditions as in Example 1 except that polyethylene was used as the core layer instead of the phenol resin cured foam.
비교예 3Comparative Example 3
페놀수지 경화 발포체 대신, 코어층으로 탈크를 이용한 것을 제외하고는 실시예 1과 동일한 조건으로 알루미늄 복합 판넬을 제조하였다. An aluminum composite panel was manufactured under the same conditions as in Example 1, except that talc was used as the core layer instead of the phenol resin cured foam.
[성능 시험 및 평가][Performance Test and Evaluation]
상기한 실시예 1~2 및 비교예 1~3에 따라 제조된 복합 판넬을 85℃의 항온 챔버에 각각 넣고 3개월 간 유지하면서, 전체 가열을 실시하지 않은 것과 열전도율을 비교하면서 실시하였다. 이때, 열전도율의 측정에는 HC-074-200(EKO사 제조) 열전도 측정기를 사용하였다. 다음으로, 가속 펙터를 적용하여 0 ~ 10년까지의 열전도율을 예측하였으며, 결과는 단열값(W/mK)으로 환산하여 하기 표 1과 같이 나타내었다.The composite panels prepared according to the above Examples 1 to 2 and Comparative Examples 1 to 3 were placed in a constant temperature chamber at 85 ° C., respectively, and maintained for 3 months while comparing the thermal conductivity with those for which no full heating was performed. At this time, HC-074-200 (manufactured by EKO) thermal conductivity meter was used for the measurement of thermal conductivity. Next, by applying an acceleration factor to predict the thermal conductivity up to 0 ~ 10 years, the results are shown in Table 1 in terms of adiabatic value (W / mK).
표 1
단열값(W/mK)
초기 1년 2년 3년 4년 5년 6년 7년 8년 9년 10년
실시예1 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.0191 0.0192 0.0192 0.0193
실시예2 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.0201 0.0202 0.0204 0.0205
비교예1 0.024 0.024 0.024 0.024 0.0241 0.0242 0.0242 0.0243 0.0245 0.0246 0.0247
비교예2 0.042 0.043 0.044 0.045 0.046 0.048 0.050 0.053 0.055 0.057 0.059
비교예3 0.045 0.046 0.047 0.048 0.049 0.050 0.051 0.054 0.057 0.060 0.063
Table 1
Insulation value (W / mK)
Early 1 year 2 years 3 years 4 years 5 years 6 years 7 years 8 years 9 years 10 years
Example 1 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.0191 0.0192 0.0192 0.0193
Example 2 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.0201 0.0202 0.0204 0.0205
Comparative Example 1 0.024 0.024 0.024 0.024 0.0241 0.0242 0.0242 0.0243 0.0245 0.0246 0.0247
Comparative Example 2 0.042 0.043 0.044 0.045 0.046 0.048 0.050 0.053 0.055 0.057 0.059
Comparative Example 3 0.045 0.046 0.047 0.048 0.049 0.050 0.051 0.054 0.057 0.060 0.063
실시예 1~2의 경우, 초기 열전도도가 비교예들 보다 낮을 뿐만 아니라, 시간에 따른 증가량도 비교예들 보다 낮게 나타남을 알 수 있다.In Examples 1 and 2, the initial thermal conductivity is not only lower than the comparative examples, it can be seen that the increase with time is also lower than the comparative examples.
따라서, 본 발명에 따른 페놀 수지 경화 발포체로 이루어진 복합 패널의 경우 초기 단열 성능과 장기 내구 성능이 모두 우수함을 알 수 있다. 이로 인하여 에너지 부하 절감율이 높아 고효율 건축물 마감재로 이용이 가능함을 알 수 있다.Therefore, it can be seen that the composite panel made of a phenol resin cured foam according to the present invention has excellent initial heat insulating performance and long term durability performance. Due to this high energy load reduction rate can be seen that can be used as a high-efficiency building finishing material.
또한 코어층의 페놀 폼은 난연 2급에 준하는 준불연성을 가진다. 준불연 등급 인증 실험방법에 있어서, 열방출률 시험(KS F ISO 5660-1)과 가스 유해성 시험 (KS F 2271)이 있다. 열방출률 시험은 콘칼로리미터법을 사용하여 50 kW/m2의 복사열을 10분 동안 가했을 때 총 방출열량이 8MJ/m2이하, 최대 열방출률이 200kW/m2를 초과하지 않아야 한다. 가스 유해성 시험은 시험체의 연소가스로 인해 쥐 8마리를 관찰 할 때 평균 행동정지시간이 9분 이상이면 준불연 인증을 받을 수 있다. 페놀 폼 같은 경우는 비프레온 가스를 사용함으로써 친환경적이고, 유해가스가 발생하지 않으며 난연성이 우수하여 화재의 위험도가 낮음을 알 수 있다. In addition, the phenolic foam of the core layer has a semi-combustibility corresponding to the flame retardant secondary. For semi-combustible grade testing methods, there are heat release rate tests (KS F ISO 5660-1) and gas hazard tests (KS F 2271). The heat release rate test shall use a cone calorimeter method and the total heat release rate shall not exceed 8 MJ / m 2 and the maximum heat release rate shall not exceed 200 kW / m 2 when 50 kW / m 2 radiant heat is applied for 10 minutes. The gas hazard test may be quasi-non-combustible if the average time of inactivity is greater than 9 minutes when observing 8 rats due to the combustion gases of the test specimen. In the case of phenol foam, it can be seen that the use of non-freon gas is environmentally friendly, no harmful gas is generated, and the flame retardancy is excellent, so that the risk of fire is low.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the above embodiments and can be manufactured in various forms, and having ordinary skill in the art to which the present invention pertains. It will be understood by those skilled in the art that the present invention may be embodied in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (16)

  1. (a) 알루미늄층을 포함하는 전면판 및 후면판을 마련하는 단계;(a) providing a front plate and a back plate comprising an aluminum layer;
    (b) 상기 전면판 및 후면판 사이에 발포제를 포함하는 페놀 수지 조성물을 투입한 후, 발포 경화시켜 페놀 수지 경화 발포체를 포함하는 복합 판넬을 형성하는 단계; 및(b) injecting a phenol resin composition comprising a blowing agent between the front plate and the back plate, and then foaming and curing to form a composite panel including a phenol resin cured foam; And
    (c) 상기 복합 판넬에 포함된 페놀 수지 경화 발포체를 양생 및 숙성하는 단계;를 포함하는 것을 특징으로 하는 불연 알루미늄 복합 판넬 제조 방법.(c) curing and aging the phenolic resin cured foam contained in the composite panel; non-combustible aluminum composite panel manufacturing method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 페놀 수지 조성물을 소정온도에서 가압하는 프레싱 공정을 거친 후에, After the pressing step of pressing the phenol resin composition at a predetermined temperature,
    발포 경화시켜 페놀 수지 경화 발포체를 포함하는 복합 판넬을 형성하는 단계를 수행하는 것을 특징으로 하는 불연 알루미늄 복합 판넬 제조방법.A method of producing a non-combustible aluminum composite panel, comprising performing foaming and curing to form a composite panel comprising a phenol resin cured foam.
  3. 제2항에 있어서,The method of claim 2,
    상기 프레싱 공정은 The pressing process
    65~100℃의 온도에서 수행되는 것을 특징으로 하는 불연 알루미늄 복합 판넬 제조방법.Non-combustible aluminum composite panel manufacturing method characterized in that carried out at a temperature of 65 ~ 100 ℃.
  4. 제2항에 있어서,The method of claim 2,
    상기 프레싱 공정은 The pressing process
    0.3~2.0kgf/cm2의 압력을 가하여 수행되는 것을 특징으로 하는 불연 알루미늄 복합 판넬 제조방법.Non-combustible aluminum composite panel manufacturing method characterized in that carried out by applying a pressure of 0.3 ~ 2.0kgf / cm 2 .
  5. 제 1항에 있어서,The method of claim 1,
    상기 페놀 수지 조성물은 The phenolic resin composition
    정포제 1~10 중량%, 발포제 5~25 중량%, 경화제 5~ 25 중량% 및 첨가제 0.1~10 중량%를 포함하는 것을 특징으로 하는 불연 알루미늄 복합 판넬 제조방법.A method for producing a non-combustible aluminum composite panel, comprising 1 to 10 wt% of foam stabilizers, 5 to 25 wt% of blowing agents, 5 to 25 wt% of curing agents, and 0.1 to 10 wt% of additives.
  6. 제 1항에 있어서,The method of claim 1,
    상기 페놀 수지 조성물은The phenolic resin composition
    가소제 1~15중량%를 추가로 포함하는 것을 특징으로 하는 불연 알루미늄 복합 판넬 제조방법.Non-flammable aluminum composite panel manufacturing method characterized in that it further comprises 1 to 15% by weight of a plasticizer.
  7. 제1항에 있어서,The method of claim 1,
    상기 발포제는 이소펜탄(Isopentane), 이소부탄(isobutane) 및 싸이클로펜탄 (Cyclopentane) 중 하나 이상으로 이루어진 군 (탄화수소)에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 불연 알루미늄 복합 판넬 제조 방법.The blowing agent is a non-combustible aluminum composite panel manufacturing method characterized in that it comprises at least one selected from the group consisting of one or more (hydrocarbon) of isopentan (Isopentane), isobutane (isobutane) and cyclopentane (Cyclopentane).
  8. 제1항에 있어서,The method of claim 1,
    상기 제1 및 제2 알루미늄층은 각각The first and second aluminum layers are each
    0.5 ~ 2mm의 두께로 형성하는 것을 특징으로 하는 불연 알루미늄 복합 판넬 제조 방법.Method for producing a non-combustible aluminum composite panel, characterized in that formed to a thickness of 0.5 ~ 2mm.
  9. 제1항에 있어서,The method of claim 1,
    상기 발포 경화는The foam curing is
    상기 페놀 수지 경화 발포체의 독립기포율이 80% 이상이 되도록 하는 것을 특징으로 하는 불연 알루미늄 복합 판넬 제조 방법.Method for producing a non-combustible aluminum composite panel, characterized in that the independent foam ratio of the phenol resin cured foam is 80% or more.
  10. 제1항에 있어서,The method of claim 1,
    상기 양생 및 숙성은The curing and aging
    상기 페놀 수지 경화 발포체 1cm2 당 10 ~ 200분 동안 수행하는 것을 특징으로 하는 불연 알루미늄 복합 판넬 제조 방법.Method for producing a non-combustible aluminum composite panel, characterized in that performed for 10 to 200 minutes per 1 cm 2 of the phenol resin cured foam.
  11. 제1항에 있어서, The method of claim 1,
    상기 (b) 단계 이후, After step (b),
    상기 복합 판넬을 정해진 사이즈로 재단하는 단계를 더 포함하는 것을 특징으로 하는 불연 알루미늄 복합 판넬 제조 방법. Non-combustible aluminum composite panel manufacturing method further comprising the step of cutting the composite panel to a predetermined size.
  12. 페놀 수지 경화 발포체로 형성되는 코어(core)층; 및A core layer formed of a phenol resin cured foam; And
    상기 코어층의 전면 및 후면에 형성되며, 각각 알루미늄층을 구비하는 전면판과 후면판;을 포함하는 것을 특징으로 하는 불연 알루미늄 복합 판넬.Non-combustible aluminum composite panel, characterized in that it is formed on the front and rear of the core layer, each having a front plate and a back plate having an aluminum layer.
  13. 제12항에 있어서,The method of claim 12,
    상기 페놀 수지 경화 발포체는 The phenol resin cured foam
    독립기포율이 80% 이상인 것을 특징으로 하는 불연 알루미늄 복합 판넬. Non-combustible aluminum composite panel, characterized in that the independent bubble ratio is more than 80%.
  14. 제12항에 있어서,The method of claim 12,
    상기 알루미늄층은 The aluminum layer
    0.5 ~ 2mm의 두께를 갖는 것을 특징으로 하는 불연 알루미늄 복합 판넬. Non-combustible aluminum composite panel, characterized in that having a thickness of 0.5 ~ 2mm.
  15. 제12항에 있어서,The method of claim 12,
    상기 전면판 또는 후면판에서,In the front panel or the back panel,
    상기 알루미늄층의 외표면에 크로메이트층, 보호층 및 도장층 중 하나 이상이 더 형성되어 있는 것을 특징으로 하는 불연 알루미늄 복합 판넬.Non-combustible aluminum composite panel, characterized in that at least one of a chromate layer, a protective layer and a coating layer is further formed on the outer surface of the aluminum layer.
  16. 제12항에 있어서,The method of claim 12,
    상기 복합 판넬은The composite panel is
    열전도도가 0.02 W/mK 이하인 것을 특징으로 하는 불연 알루미늄 복합 판넬.Non-combustible aluminum composite panel, characterized in that the thermal conductivity is 0.02 W / mK or less.
PCT/KR2012/005327 2011-07-07 2012-07-05 Nonflammable aluminum composite panel using a phenol resin hardened foamed body and method for manufacturing same WO2013005994A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110067334A KR101382045B1 (en) 2011-07-07 2011-07-07 Aluminum composite panel using phenolic foam and method for fabricating the same
KR10-2011-0067334 2011-07-07

Publications (2)

Publication Number Publication Date
WO2013005994A2 true WO2013005994A2 (en) 2013-01-10
WO2013005994A3 WO2013005994A3 (en) 2013-03-14

Family

ID=47437568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005327 WO2013005994A2 (en) 2011-07-07 2012-07-05 Nonflammable aluminum composite panel using a phenol resin hardened foamed body and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101382045B1 (en)
WO (1) WO2013005994A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102326998B1 (en) * 2017-09-15 2021-11-16 (주)엘엑스하우시스 Phenolic foam and method for manufacturing the same
KR102057228B1 (en) 2018-05-29 2019-12-18 정도영 Composition for manufacturing aluminum composite panel core material and method for manufacturing master batch chip for manufacturing aluminum composite panel core material and aluminum composite panel using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056089A (en) * 2001-08-20 2003-02-26 Comany Inc Connecting member for heat insulating noncombustible panel
KR20080053285A (en) * 2005-09-08 2008-06-12 아사히 유키자이 고교 가부시키가이샤 Expandable resol type phenolic resin molding material and phenolic resin foam
KR20110049004A (en) * 2009-11-04 2011-05-12 서희교 A prefabricated block

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339472A (en) * 2001-05-15 2002-11-27 Comany Inc Heat insulating incombustible panel
JP4370414B2 (en) * 2004-04-06 2009-11-25 鹿島建設株式会社 Resin panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056089A (en) * 2001-08-20 2003-02-26 Comany Inc Connecting member for heat insulating noncombustible panel
KR20080053285A (en) * 2005-09-08 2008-06-12 아사히 유키자이 고교 가부시키가이샤 Expandable resol type phenolic resin molding material and phenolic resin foam
KR20110049004A (en) * 2009-11-04 2011-05-12 서희교 A prefabricated block

Also Published As

Publication number Publication date
KR101382045B1 (en) 2014-04-14
WO2013005994A3 (en) 2013-03-14
KR20130005747A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
KR101976417B1 (en) Flame resistance insulating panel and manufacturing method thereof
ES2389123T3 (en) Composition composition of ceramic materials for fire protection
WO2013109076A1 (en) Hvac duct using phenol foam and method for manufacturing same
WO2004035711A1 (en) Fire resistant polymeric compositions
US9650484B2 (en) Fire-resistant polyurethane material and fire-resistant structure
KR20160061608A (en) Fire Sealing Composition and Intumescent FireSealing Belt
KR101963166B1 (en) Flame resistance insulating foam metal panel and manufacturing method thereof
WO2013009080A2 (en) Sandwich panel comprising phenolic resin cured foam, and production method therefor
KR20190068453A (en) Non-combustible thermal insulation
CN113150235A (en) Expandable graphite hard polyurethane composite thermal insulation material and preparation method thereof
WO2016056717A1 (en) Flame retardant coating agent composition for expanded polystyrene
KR20180117511A (en) Method for fabricating of noncombustible styrofoam panel
WO2013085300A1 (en) Eco-friendly phenolic foam resin composition having improved insulation properties and phenolic foam using same
CN107586415B (en) Rubber composite material capable of expanding under heat and being flame-retardant, and manufacturing method and application thereof
WO2013005994A2 (en) Nonflammable aluminum composite panel using a phenol resin hardened foamed body and method for manufacturing same
KR101489583B1 (en) Non-Flammable composite for expanded polystyrene foam and manufacturing method thereof
KR101494305B1 (en) Urethane Foam Composition with Excellent Flame ersistance and Insulation Wall Construction Method Using the Same
CN107117925A (en) High-flame-retardant heat-insulating material
KR101979449B1 (en) Fire Retardant Coating Composition insulater
KR102556207B1 (en) Organic-inorganic hybrid flame retarding compositions for preparing flame retarding EPS beads, the flame retarding EPS beads coated by the compositions and the method for preparing the same
WO2021100964A1 (en) Phenolic foam insulation material and preparation method therefor
KR102097511B1 (en) Inner material for fire protection, Door and panel having inner material
CN117801434B (en) Light composite material for prefabricated building component
CN116622136B (en) Flexible foaming material for battery pack and preparation method
WO2018062606A1 (en) Honeycomb panel filled with eco-friendly semi-incombustible foam

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807025

Country of ref document: EP

Kind code of ref document: A2