WO2013005949A2 - Multitouch recognizing device - Google Patents

Multitouch recognizing device Download PDF

Info

Publication number
WO2013005949A2
WO2013005949A2 PCT/KR2012/005172 KR2012005172W WO2013005949A2 WO 2013005949 A2 WO2013005949 A2 WO 2013005949A2 KR 2012005172 W KR2012005172 W KR 2012005172W WO 2013005949 A2 WO2013005949 A2 WO 2013005949A2
Authority
WO
WIPO (PCT)
Prior art keywords
touch
axis
measurement signal
equation
coordinates
Prior art date
Application number
PCT/KR2012/005172
Other languages
French (fr)
Korean (ko)
Other versions
WO2013005949A3 (en
Inventor
안석민
한홍희
정구범
Original Assignee
주식회사 알엔디플러스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110088772A external-priority patent/KR101260341B1/en
Application filed by 주식회사 알엔디플러스 filed Critical 주식회사 알엔디플러스
Priority to US14/130,454 priority Critical patent/US9292132B2/en
Priority to JP2014518810A priority patent/JP5757004B2/en
Priority to CN201280032015.5A priority patent/CN103649877B/en
Publication of WO2013005949A2 publication Critical patent/WO2013005949A2/en
Publication of WO2013005949A3 publication Critical patent/WO2013005949A3/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen

Definitions

  • the touch measurement signal can be distinguished from the actual touched position and the virtually touched virtual image in the touch screen device for measuring the position of various objects by determining the path of infrared rays on the touch surface through infrared rays.
  • the present invention relates to a multi-touch recognition device that improves the touch measurement operation speed so that a user can accurately recognize a touch position even if the touch position changes rapidly.
  • Infrared touch measures the position of the object according to whether or not it is received by the infrared radiation by the object by the array of infrared transmitter touch signal measuring unit arranged.
  • the infrared signal used in this method radiates an AC signal of tens to hundreds of KHz, and then measures the magnitude of the signal by averaging the collected AC signals according to the presence or absence of an object.
  • This method introduces limitations in sensitivity and overall response speed due to the time for averaging the collected alternating signals and the remarkable degradation of the frequency response of the infrared touch measurement signal receivers by high frequency signals. Interfering with each other, the receiver cannot expect to receive the correct signal, and therefore, it is impossible to calculate the exact coordinates, and when the infrared signal is emitted between the light emitting unit and the light receiving unit, it is impossible to determine the presence or absence of an object in the hidden coordinates. There was a problem that virtual image coordinates are generated.
  • Korean Patent No. 10-1018397 proposes an apparatus and a method for removing a virtual image, and accordingly, multi-touch is detected after performing a first scan control mode to remove the virtual image. If so, the second scan control mode must be performed separately.
  • FIG. 14 is a schematic configuration diagram of an infrared touch screen device capable of removing a virtual image disclosed in Korean Patent No. 10-1018397.
  • the second scan control mode is driven to determine a virtual image of the multi-touch. If the multi-touch moves frequently or quickly, even if a new multi-touch occurs while the second scan control mode is performed, the second scan control mode is in progress and thus the new scan is not switched to the first scan control mode. There is a problem that can not measure the multi-touch.
  • the present invention has been proposed to solve the above problems, and to provide a multi-touch recognition device capable of distinguishing a position of a virtual image from a position actually touched when a multi-touch occurs in the touch screen device.
  • the present invention has been proposed to solve the above problems, to provide a multi-touch recognition device that can distinguish the virtual image by using the inclination angle measurement method.
  • the present invention is to provide a multi-touch recognition device that minimizes the time for measuring the touch position.
  • a multi-touch recognizing apparatus including: a plurality of transmitter group units grouping a touch measurement signal transmitter for transmitting radially continuous touch measurement signals toward a receiving module group unit; A plurality of receiving module group units having a plurality of receiving modules having at least three or more receiving modules to simultaneously receive the measurement signals transmitted from the transmitter group unit at right, acute, and obtuse angles at respective right, acute, and obtuse angles; A transmitter driving clock unit providing a driving clock to simultaneously drive touch measurement signal transmitters having the same index included in each of the transmitter group units; A control unit for calculating a size of an x, y coordinate or diameter of the touch area using the touch measurement signals received by the plurality of receiving module group units; And a touch panel configured to receive a touch input from the user.
  • Another multi-touch recognition device for achieving the above object is a transmitting module including one or more transmitting elements for radially transmitting a touch measurement signal including a pulse;
  • a receiving module including one or more receiving elements for receiving the touch measurement signal transmitted from the transmitting module;
  • a controller configured to calculate a size of a coordinate or diameter of a touch area from the touch measurement signal received by the receiving module;
  • a touch panel configured to receive a touch input from a user, wherein the receiving device positioned at right, obtuse, and acute angles of the touch measurement signals radially transmitted from the transmitting device receives the touch signals at right, acute, or obtuse angles continuously. Characterized in that the multi-touch recognition device.
  • the multi-touch recognizing apparatus having the above-described configuration can effectively distinguish between the position of the multi-touch and the position of the virtual image when the multi-touch occurs in the multi-touch screen device, and the multi-touch of the tilt angle measuring method.
  • the position measuring method and the reference coordinate calculation method it is possible to efficiently distinguish the virtual image, and by minimizing the time for measuring the multi-touch position, it is possible to effectively measure the multi-touch even if it moves or changes quickly.
  • FIG. 1 is a schematic block diagram of a multi-touch recognition device according to an embodiment of the present invention.
  • FIGS. 2 to 3 are diagrams for explaining a principle of recognizing touch points in the multi-touch recognition apparatus according to the present invention.
  • FIG. 4 is another diagram for describing a principle of recognizing a touch point when a specific touch transport module has failed in the multi-touch recognition device according to the present invention.
  • FIG. 5 is a flowchart illustrating a process of distinguishing a point actually touched and a touch point of a virtual image in the multi-touch recognition apparatus according to the present invention.
  • FIG. 6 is a view for explaining the principle of removing the virtual image by the transmission angle of the touch measurement signal transmission unit in the multi-touch input position recognition apparatus according to the present invention.
  • FIG. 7 to 10 are views for explaining a process of removing a virtual image by the transmission angle of the touch measurement signal transmission unit in the multi-touch recognition device according to the present invention.
  • FIG. 11 is a block diagram illustrating a touch measurement signal receiver in a modular form according to another exemplary embodiment of the multi-touch recognition apparatus according to the present invention.
  • FIG. 12 is a diagram for describing an operation of a multi-touch recognition device including a touch measurement signal receiver in a modular form of the present invention.
  • 13 is a view for explaining the principle that the receiver module is interlocked with each other in the adjacent transport module group.
  • FIG. 14 is a schematic configuration diagram of a multi-touch screen device according to the prior art.
  • FIG. 1 is a schematic configuration diagram of a multi-touch device according to the present invention.
  • Multi-touch recognition device X-axis touch measurement signal receiver 110, X-axis touch measurement signal transmitter 120, Y-axis touch measurement signal receiver 130, Y-axis touch measurement signal transmitter 140, an X-axis receiver driver 111, an X-axis transmitter driver 121, a Y-axis receiver driver 131, a Y-axis transmitter driver 141, and a controller 230.
  • At least two or more X-axis touch measurement signal receivers 110 are continuously arranged to form an entire receiver to receive infrared rays transmitted from the transmitter. At least two or more X-axis touch measurement signal transmitters 120 are continuously arranged to transmit the touch measurement signal to the touch plane at the X-axis touch measurement signal receiver 110.
  • At least two or more Y-axis touch measurement signal receivers 130 are continuously arranged to form an entire receiver to receive infrared rays transmitted from the transmitter. At least two or more Y-axis touch measurement signal transmitters 140 are continuously arranged to transmit a touch measurement signal to the touch plane at the Y-axis touch measurement signal receiver 130.
  • the X and Y axis transmitter drivers 121 and 141 drive the X and Y axis touch measurement signal transmitters 120 and 140 at regular time intervals to convert touch measurement signals, for example, infrared signals, into the touch plane of the multi-touch screen.
  • the X, Y-axis receiver drivers 121 and 141 drive the X- and Y-axis touch measurement signal receivers 110 and 130 at regular time intervals, for example, an infrared signal and an external noise signal. For example, it may receive sunlight, low frequency noise, and the like.
  • the infrared signal is exemplified as the touch measurement signal, it should be noted that the RF signal and the LED emission signal may also be used as the touch measurement signal.
  • FIG. 1 illustrates a structure in which a transmitter and a receiver are disposed to face each other, that is, a structure in which only one transmitting module is arranged on one side and only a receiving module is arranged on the other side, but the transmitting and receiving modules are alternately arranged on both sides as necessary. Note that it is also possible.
  • the controller 150 processes the touch measurement signal received by the X-axis touch measurement signal receiver 110 and the Y-axis touch measurement signal receiver 130 to calculate characteristics of the touched point on the touch panel by the user.
  • the diameter may be calculated as an example of the size of the touched point as well as the coordinates of the X-axis and the Y-axis.
  • the entire X-axis touch measurement signal receiver 110 and the X-axis touch measurement signal transmitter 130 according to the present invention include N transmitters and receivers on the horizontal axis, and Y-axis touch measurement signal receiver 120 and Y-axis touch measurement.
  • the signal transmitter 140 has M transmitters and receivers arranged on the vertical axis.
  • the X-axis touch measurement signal receiver 110 and the X-axis touch measurement signal transmitter 130 are alternately arranged, the X-axis touch measurement signal receiver 110 and the X-axis touch measurement signal transmitter 130
  • the total number of N is 2N, N is arranged on one side of the horizontal axis, N is arranged on the other side of the horizontal axis, the number of Y-axis touch measurement signal receiver 120 and Y-axis touch measurement signal transmitter 140
  • the sum total is 2M and M pieces are arranged on one side of the vertical axis and M pieces are arranged on the other side of the vertical axis.
  • the multi-touch recognition apparatus having the above structure, a method of calculating the characteristics of the touch point, that is, the coordinates and the size of the touch area, will be described.
  • the magnitude of the infrared light received by the horizontal axis (X-axis) touch measurement signal receiver facing each other is X (0)
  • the magnitude of the infrared light received by the second touch measurement signal receiver is X (1)
  • the third touch measurement signal is X (2)
  • the size of the infrared light received at the receiving unit of the kth receiving module is X (k-1)
  • the size of the infrared light received at the receiving unit of the Nth receiving module is X ( N-1).
  • the amount of infrared light received by the receiver of the receiving module is Y (0)
  • the amount of infrared light received by the receiver of the second receiving module is Y (1)
  • the infrared light is received by the receiver of the third receiving module.
  • the size of the light is defined as Y (2)
  • the size of the infrared light received at the receiving unit of the kth receiving module is Y (k-1)
  • the size of the infrared light received at the receiving unit of the Mth receiving module is defined as Y (M). .
  • Each X-axis touch measurement signal receiver receives 0 to N-1th values and Y (k) from 0 to M to determine whether the touch measurement signal sent from the transmitter to recognize the touch input has been interfered by the object. Perform a scan that sequentially measures the -1 value.
  • k is 1 to N for the X axis and 1 to N for the X axis.
  • the entire touch measurement signal receiver receives the received value of the touch measurement signal according to each scan and uses this value to multiply the objects that obstruct the movement of the touch measurement signal transmitted by the touch measurement signal transmitter. Find the coordinates and diameters of these objects.
  • the received value of the touch measurement signal is normalized through equations (1) through (2).
  • n is a natural number such as 1 or 2, which determines whether the response of the noise component of the signal is linear or nonlinear.
  • n 1
  • n> 1 is an advantageous measurement method when there are many base noise signals.
  • G is a scaling value and is generally set to 1 or 100.
  • the measured value obtained in Equation 1 is a normalized value of the measured value on the X axis.
  • the Y-axis can also be obtained in the same way as the X-axis.
  • the measured value obtained in Equation 2 is a normalized value of the measured value on the Y axis.
  • X max and Y max are defined as the largest values of the touch signals measured on the X and Y axes, respectively.
  • the X coordinate corresponding to the nth is obtained by the following equation (3), and the Y coordinate is obtained by the following equation (4).
  • I is a natural number from 0 to N
  • j is a natural number from 0 to M
  • w is the number of X-axis touch area receivers
  • h is the number of Y-axis touch area receivers.
  • the diameter of the X coordinate corresponding to the nth is obtained by the following equation (5)
  • the diameter of the Y coordinate is obtained by the following equation (6).
  • I is a natural number from 0 to N
  • j is a natural number from 0 to M
  • w is the number of X-axis touch area receivers
  • h is the number of Y-axis touch area receivers.
  • N x (k) and N y (k) which are normalized measured values measured by the touch measurement signal receiver, are calculated, and this value is the first reference value. Measure the case of greater than T lower , wherein at least one of these values is from the equations 3 to 3 from successive values that meet the conditions of the second reference value T higher > N x (k), N y (k) Find the coordinates and diameter through 6.
  • the validity of the touch coordinate may be determined by measuring a probability density value in the touched area.
  • the probability density measurement values of the touch area are defined as shown in Equations 7 and 8.
  • the values determined by the specific probability density function according to Equations 7 and 8 may be set to the first reference value T lower and the second reference value T higher used in Equations 3 to 6.
  • FIG. 2 to 3 are diagrams for explaining a principle of recognizing touch points in a multi-touch recognition apparatus according to the present invention
  • FIG. 5 is a diagram illustrating a method of distinguishing a touch point from a virtual touch point according to a first embodiment of the present invention. A flow chart showing the process.
  • the touch measurement signal receiver measures a maximum value of the touch measurement signals transmitted from the touch measurement signal transmitter, that is, values corresponding to X max (k) and Y max (k) (S501).
  • step S502 It is determined whether the measurement of X max (k) and Y max (k) is completed, and when it is completed (step S502), the process moves to step S503.
  • the measurement value is considered to be that an object that obstructs infrared rays does not exist on the touch surface.
  • each touch measurement signal receiver measures X (k) and Y (k).
  • step S504 If it is determined in step S504 whether the measurement is complete, and moves to step S505.
  • n is the number of coordinates and diameters of the touch points obtained on the X axis
  • m is the number of coordinates and diameters of the touch points obtained on the Y axis
  • i is an index of the sensor part value X (k) of the X axis from 0.
  • N is the index of the sensor unit value Y (k) on the Y axis from 0 to M
  • S is the maximum resolution of the screen.
  • step S506 the equations (1) and (2) are calculated.
  • step S507 the normalized N x (k) and N y (k) are calculated, and the corresponding value for calculating the case where the value is larger than the first reference value T lower is moved to step S511. If it is not greater than the first reference value T lower , the flow proceeds to step S508.
  • step S508 it is determined whether the W and H values are zero, and if it is not zero, it is determined that there is a press on the touch and moves to step S514 for final coordinate calculation. If zero, go to step S509.
  • step S509 W and H are initialized, and x (n) and y (m) are calculated using Equations 3 and 4 above.
  • step S510 W and H are initialized, and dx (n) and dy (m) are calculated by using Equations 5 and 6.
  • step S511 when the first reference value T lower among the N x (k) and N y (k) values measured in step S507 is determined to be an interference to the touch measurement signal, the values of w and h are increased by one. .
  • step S512 if the calculated coordinates and diameters are limited, for example, a condition that is not recognized as a touch by one or more limitations of a specific diameter is determined, and if the determination result is satisfied, the process moves to step S513. Delete the coordinate information and go to step S514.
  • the condition measurement may be a determination condition as in Equations 7 and 8 above.
  • step S513 the index values of n and m are increased by one, and in step S514, the index values of i and j are increased by one.
  • the measurement of the touch measurement signal is completed at the coordinate of n ⁇ m, and only the coordinates of the actual touch point are distinguished by removing the virtual image from which the presence or absence of an object cannot be measured.
  • step S508 it is determined whether the W and H values are zero, and if it is not zero, it is determined that there is a press on the touch and moves to step S514 for final coordinate calculation. If zero, go to step S509.
  • the coordinates are transmitted to the information device and the process moves to step S503 to measure new coordinates.
  • step S501 If the touch-up continues for a certain time, the process moves to step S501 to re-measure X max (k) and Y max (k), otherwise go to step S503.
  • Sx (i) and Sy (i) are matching filters of a predefined matching touch pattern
  • l is a sampling number of the matching filter
  • the reason for applying the matching filter as described above is to improve the recognition rate of the touch area by allowing only a specific touch pattern among the measured touch area values to be recognized as a touch.
  • FIG. 4 is another diagram for describing a principle of recognizing a touch point when a specific touch transport module is faulty in the multi-touch input location recognizing apparatus according to the present invention.
  • FIG. 6 is a diagram illustrating a principle of removing a virtual image by a transmission angle of a touch measurement signal transmitter in the multi-touch recognition apparatus according to the first embodiment of the present invention.
  • FIG. 7 to 10 illustrate a process of removing a virtual image by a transmission angle of a transmission measurement signal transmission unit in a multi-touch recognition apparatus according to a first embodiment of the present invention.
  • a method of determining whether there is an object in the path at the transmission angle of the touch measurement signal transmitting unit as shown in FIG. 6 and measuring the third coordinate will remove the virtual image.
  • the virtual image removal method is processed in step S515 of FIG. 7.
  • the touch measurement signal receiver that receives the transmitted touch measurement signal measures X (k) by scanning at an oblique angle so as to be the k-th.
  • the touch measurement signal receiver that receives the infrared radiation is scanned at an oblique angle to be k + d-th, and measures X (k + d).
  • the distance from the touch measurement signal receiver of the area actually touched. It describes a method of removing a virtual image by determining whether the object is obstructed or not, and measuring the third coordinates described below.
  • the virtual image removal method is processed in step S715 of FIG. 7.
  • the receiver receiving the transmitted touch measurement signal scans at an oblique angle so as to be k-th, and measures.
  • the receiver when the touch measurement signal is transmitted from the k-th touch measurement signal transmitter, the receiver measures the touch position by scanning at an oblique angle so as to be the k + d-th.
  • distances from the touch measurement signal receiver of the area actually touched in FIG. 7 are y (n), y (n + 1) [ yT (n), y T + 1 (n) in FIG. 7, respectively). Is obtained by the following equations (11) and (12), respectively.
  • W T S / d
  • S is the resolution of the X axis
  • d is a factor that determines the angle of the comb angle when scanning with the comb.
  • the touch measurement signal is transmitted in the perpendicular direction to measure the coordinates of the touch area.
  • the Cartesian coordinates of A, B, C, and D are measured without distinguishing the virtual image B.
  • FIGS. 9 and 10 show actual oblique angles. Multi-point scanning with a signal shows that only the touch objects A, C, and D are measured, but the virtual image B is not measured.
  • the touch measurement signal is transmitted from the touch measurement signal transmitter so as to have an oblique angle to the left direction, that is, the touch measurement signal has an obtuse angle with respect to the lower surface of the receiver, and the touch measurement transmitted from the touch measurement signal transmitter
  • the coordinates of the touch area are measured by scanning the signal.
  • the slope coordinates corresponding to the coordinates including the virtual image measured through the rectangular coordinates are calculated by the following equations (13) and (14).
  • the rectangular coordinates are rectangular coordinates [x 0 (n) and y 0 (m)] measured when the touch object is actually scanned at right angles as shown in FIG. 8.
  • the tilt coordinates (X TC , Y TC ) corresponding to the coordinates including the virtual image are touch objects when the rectangular coordinates [x 0 (n) and y 0 (m)] are simulated as shown in FIGS. 9 and 10. Is converted to the slope coordinate (X TC , Y TC ) that is expected to exist through the equation. That is, the following equation is converted to the slope coordinate including the virtual image included in the rectangular coordinates.
  • x o (n) and y o (n) are coordinates including the virtual image obtained through orthogonal scanning
  • X c and Y c denote the number of touch measurement signal receivers used.
  • D xr (n) and D yr (n) are greater than a certain threshold, the coordinates are determined to correspond to the virtual image.
  • the specific limit value above is determined in advance according to the density of the infrared receiver sensor used.
  • the touch measurement signal is transmitted from the touch measurement signal transmitter so that the touch measurement signal has an acute angle with respect to the lower surface of the receiver, and the touch measurement signal receiver scans the received touch measurement signal.
  • the coordinates of the touch area can be measured.
  • the slope coordinates X TC and Y TC corresponding to the coordinates including the virtual image measured through the rectangular coordinates [x o (n), y o (m)] are calculated by Equations 17 and 18 below.
  • Equation 19 The distance between the calculated values (X TC , Y TC ) and the coordinates (X T, Y T ) obtained through scanning by the touch measurement signal transmitted at an oblique angle is measured by Equations 19 and 20 below.
  • D xl (n) and D yl (n) are greater than a certain threshold, the coordinates are determined to correspond to the virtual image.
  • the specific limit value above depends on the density of the infrared receiver sensor used.
  • x o (n) and y o (m) are coordinates including a virtual image obtained through orthogonal scanning
  • Xc and Yc mean the number of touch measurement signal receivers used.
  • the touch measurement signal transmitted from the touch measurement signal transmitter is transmitted at a right angle with respect to the surface connected to the touch measurement signal receiver and the receiver in one touch measurement signal transmitter. Care should be taken that the signal and the oblique (oblique or acute) touch signal are transmitted continuously.
  • the touch measurement signals of the right angle are continuously transmitted from all the touch measurement signal transmitters, and then the touch measurement signals of the oblique angle are continuously transmitted again from all the touch measurement signal transmitters.
  • the transmitter transmits the right angle touch measurement signal and the oblique angle touch measurement signal radially at the same time, and the coordinate or diameter of the touch is received by the touch measurement signal received at the receiver at a predetermined angle, that is, an obtuse angle, a right angle, and an acute angle with respect to the corresponding transmitter.
  • the difference is that it computes.
  • FIG. 11 is a block diagram of a multi-touch input position recognizing apparatus including a touch measurement signal receiver in a modular form according to a second embodiment of the present invention
  • FIG. 12 is a multi-touch structure including a touch measurement signal receiver in a modular form according to a second embodiment of the present invention.
  • the touch position measuring signal transmitted from the touch measuring signal transmitting unit 1160 is radially transmitted at a predetermined angle from the touch measuring signal transmitting unit 1160 and is previously.
  • the touch measurement signal transmitter 1160 also forms a transmitter group unit 1120 by tying a predetermined number of touch measurement signal transmitters 1160.
  • the receiver modules A, B, and C each use a touch measurement signal received by the touch measurement signal receiver 1140 included in each receiver module by one receiver module signal converter 1131, 1132, and 1133 as voltage signals. Convert.
  • the receiver modules A, B, and C are respectively connected to the A / D converters 1150 for converting voltage signals, which are analog signals, into digital signals, respectively, and output the received values of the touch position measurement signals converted to digital values to the controller. .
  • the transmission driving clock outputs the transmission driver driving clock 1180 such that the touch measurement signal transmission unit 1160 of the same index included in the transmission group group 1120 is simultaneously driven.
  • the driving clock 1180 of the transmission driving clock unit is supplied to the transmission driver 1170 to drive the touch measurement signal transmitter 1160 to radiate the touch measurement signal radially at a predetermined angle.
  • the entire touch measurement signal receiver is divided into a predetermined number and divided into receiver module A, B, and C.
  • the receiver module bundled with A, B, and C is further configured by one receiver module group N and N + 1. Also grouped by a predetermined number is composed of the transmitter group unit R N and R N +1 as described above.
  • the source driver transmits the source of the same index of each source group group R N and R N + 1 specified by the driving clock, that is, R N ( In n) and R N + 1 (n), a touch measurement signal including an acute angle touch measurement signal R2, a right angle touch measurement signal R1, and an obtuse angle touch measurement signal R3 is radiated simultaneously.
  • the touch measurement signal transmitted radially from the touch measurement signal transmitter of one transmitter group unit is received in the touch measurement signal receiver constituting the receiver modules A, B, and C, and the controller is radiated from one transmitter.
  • the coordinates or the diameter of the touch are calculated using the touch measurement signal received by the receiver located at a predetermined predetermined angle, that is, obtuse, right angle, and acute angle, among the touch measurement signals.
  • the transmitter R N the foot of the (n) touch measurement signal sent out from the bride R N (n) in the position of the touch measurement signal and a right angle that is received from the touch measurement signal receiving section of the A module in the position of the acute angle to the
  • the controller calculates the coordinates or the diameter of the touch with the touch measurement signal using only the touch measurement signal received by the touch measurement signal receiver of the B module and the touch measurement signal received by the touch measurement signal receiver of the C module at an obtuse position.
  • the touch measurement signal received by each receiver by the above-described method measures the touch position according to Equations 1 to 20 as described in the first embodiment.
  • a touch measurement signal is simultaneously transmitted in a touch measurement signal transmitter having the same index for each transmitter group group (R N , R N + 1 ) and the touch measurement signal receiver is also a receiver. Since at least one touch measurement signal is received for each module (A, B, C), not only can the touch position be measured more quickly than the first embodiment, but also the touch position can be measured more accurately, so that the touch position changes quickly. This can be measured quickly and accurately.
  • 13 is a view for explaining the principle that the receiver module is interlocked with each other in the adjacent transport module group of the second embodiment of the present invention.
  • an acute angle touch measurement signal of the touch measurement signals transmitted by the touch measurement signal transmitters of the adjacent transmitter group units 1330 and 1340 is adjacent to the receiver module group unit 1310. Since it may be received by the touch measurement signal receivers in the receiver modules 1311 to 1313 and 1321 to 1323 of 1320, it is irrelevant to which transmitter group units 1330 and 1340 the touch measurement signals are transmitted.
  • the receiver module of some of the receiver module group units 1310 and 1320 may be configured to receive at least a touch measurement signal.
  • one receiver module group unit includes N receiver modules. Can be.
  • two receiver module group units are illustrated, two or more receiver module group units may be configured according to the configuration.

Abstract

The present invention relates to a multitouch recognizing device for distinguishing an illusion from an actually touched position and an illusion position by using an inclination angle measuring method, minimizing time for measuring a touch position, and more accurately measuring the position.

Description

멀티 터치 인식 장치Multi-touch recognition device
본 발명은 터치 측정 신호 일예로 적외선을 통해 터치면에서의 적외선의 경로 방해 유무를 판단하여 여러 물체의 위치를 측정하는 터치 스크린 장치에서 실제 터치되는 위치인 실상과 실제 터치되지 아니한 허상을 구분할 수 있을 뿐만 아니라 터치 측정 연산 속도를 개선하여 사용자가 터치 위치가 빠르게 변화되더라도 이를 정확하게 인식할 수 있도록 하는 멀티 터치 인식 장치에 관한 것이다.According to the present invention, the touch measurement signal can be distinguished from the actual touched position and the virtually touched virtual image in the touch screen device for measuring the position of various objects by determining the path of infrared rays on the touch surface through infrared rays. In addition, the present invention relates to a multi-touch recognition device that improves the touch measurement operation speed so that a user can accurately recognize a touch position even if the touch position changes rapidly.
적외선 터치는 배열된 적외선 송터치 측정 신호 수신부들에 의해 물체에 의하여 적외선의 가림에 의하여 적외선 수신 여부에 따라 물체의 위치를 측정한다.Infrared touch measures the position of the object according to whether or not it is received by the infrared radiation by the object by the array of infrared transmitter touch signal measuring unit arranged.
이러한 방식에 사용되는 적외선 신호는 수십에서 수백 KHz의 교류 신호로 방사한 후 물체의 유무에 따라 수집된 교류 신호를 평균하여 신호의 크기를 측정한다.The infrared signal used in this method radiates an AC signal of tens to hundreds of KHz, and then measures the magnitude of the signal by averaging the collected AC signals according to the presence or absence of an object.
이러한 방식은 수집된 교류 신호를 평균하기 위한 시간과 고주파 신호에 의한 적외선 터치 측정 신호 수신부들의 주파수 반응의 현저한 저하로 인해 감도 및 전체 반응 속도의 제약을 가져오며 발광부와 수광부에서 작동하는 다른 광원에 의해서 서로 간섭되어 수신부에서 정확한 신호의 수신을 기대할 수 없고 이로 인해 정확한 좌표를 산출해 낼 수 없을 뿐만 아니라 발광부와 수광부 사이에서 적외선 신호가 방사되는 경우 가려진 좌표에서 물체의 유무를 판단하지 못하는 부분 즉 허상 좌표가 생성되는 문제점이 있었다.This method introduces limitations in sensitivity and overall response speed due to the time for averaging the collected alternating signals and the remarkable degradation of the frequency response of the infrared touch measurement signal receivers by high frequency signals. Interfering with each other, the receiver cannot expect to receive the correct signal, and therefore, it is impossible to calculate the exact coordinates, and when the infrared signal is emitted between the light emitting unit and the light receiving unit, it is impossible to determine the presence or absence of an object in the hidden coordinates. There was a problem that virtual image coordinates are generated.
이러한 문제점을 해결하기 위해 제안된 것으로 등록특허 제10-1018397호는 허상을 제거하기 위한 장치 및 방법을 제안하고 있으며, 이에 따르면 허상제거를 위해 제1스캔 제어 모드를 수행한 후 멀티 터치가 감지는 되는 경우에는 제2스캔 제어모드를 별도로 수행하여야 한다.In order to solve this problem, Korean Patent No. 10-1018397 proposes an apparatus and a method for removing a virtual image, and accordingly, multi-touch is detected after performing a first scan control mode to remove the virtual image. If so, the second scan control mode must be performed separately.
도 14는 등록특허 제10-1018397호에 개시된 허상의 제거가 가능한 적외선 터치스크린 장치의 개략적인 구성도이다.14 is a schematic configuration diagram of an infrared touch screen device capable of removing a virtual image disclosed in Korean Patent No. 10-1018397.
그러나 상기 등록특허 제10-1018397호에 개시된 방식에 따르면 제1스캔 제어모드에서 실제 멀티 터치가 발생하였음에도 이를 제대로 인식하지 못하는 경우가 발생하게 된다.However, according to the method disclosed in Korean Patent No. 10-1018397, even though the actual multi-touch occurs in the first scan control mode, it may not be properly recognized.
구체적으로 등록특허 제10-1018397호에 개시된 방식에 따르면 새로운 터치가 발생하는 경우 제1스캔 제어모드 수행 후 멀티 터치로 인식되는 경우에는 별도의 제2스캔 제어모드를 구동하여 멀티 터치 중 허상으로 판단되는 물체를 제거하는데, 만일 멀티 터치의 이동이 빈번하거나 빠른 경우, 제2스캔 제어모드가 수행되는 동안 새로운 멀티 터치가 발생되어도 제2스캔 제어모드가 수행중이므로 제1스캔 제어모드로 전환되지 않아 새로운 멀티 터치를 측정하지 못하는 문제점이 있다.In detail, according to the method disclosed in Korean Patent No. 10-1018397, when a new touch occurs, if it is recognized as a multi-touch after performing the first scan control mode, the second scan control mode is driven to determine a virtual image of the multi-touch. If the multi-touch moves frequently or quickly, even if a new multi-touch occurs while the second scan control mode is performed, the second scan control mode is in progress and thus the new scan is not switched to the first scan control mode. There is a problem that can not measure the multi-touch.
본 발명은 상기와 같은 문제점을 해결하기 위해 제안된 것으로, 터치 스크린 장치에서 다중 터치가 발생하는 경우에 실제로 터치되는 위치와 허상의 위치를 구별할 수 있는 멀티 터치 인식 장치를 제공하고자 한다.The present invention has been proposed to solve the above problems, and to provide a multi-touch recognition device capable of distinguishing a position of a virtual image from a position actually touched when a multi-touch occurs in the touch screen device.
또한 본 발명은 상기와 같은 문제점을 해결하기 위해 제안된 것으로, 경사각 측정 방식을 이용하여 허상을 구별할 수 있는 멀티 터치 인식 장치를 제공하고자 한다.In addition, the present invention has been proposed to solve the above problems, to provide a multi-touch recognition device that can distinguish the virtual image by using the inclination angle measurement method.
또한 본 발명은 터치 위치 측정을 위한 시간을 최소화하는 멀티 터치 인식 장치를 제공하고자 한다.In addition, the present invention is to provide a multi-touch recognition device that minimizes the time for measuring the touch position.
상기와 같은 과제를 달성하기 위한 본 발명에 따른 멀티 터치 인식 장치는 수신모듈 그룹부를 향하여 방사상으로 연속된 터치 측정 신호를 발신하는 터치 측정 신호 발신부를 그룹화한 복수의 발신부 그룹부; 상기 발신부 그룹부에서 발신되는 측정신호를 직각, 예각 및 둔각의 위치에서 각각 수신모듈별로 직각, 예각 및 둔각으로 동시에 수신하도록 적어도 3개 이상인 다수의 수신 모듈을 구비한 복수의 수신모듈 그룹부; 상기 발신부 그룹부 각각에 포함된 동일한 인덱스의 터치 측정 신호 발신부가 동시에 구동되도록 구동 클럭을 제공하는 발신부 구동 클럭부; 상기 복수의 수신모듈 그룹부에서 수신된 터치 측정 신호로 터치 영역의 x, y 좌표 또는 지름의 크기를 연산하는 제어부; 및 사용자로부터 터치 입력을 입력받는 터치 패널을 포함하는 것을 특징으로 하는 멀티 터치 인식장치를 특징으로 한다.According to an aspect of the present invention, there is provided a multi-touch recognizing apparatus including: a plurality of transmitter group units grouping a touch measurement signal transmitter for transmitting radially continuous touch measurement signals toward a receiving module group unit; A plurality of receiving module group units having a plurality of receiving modules having at least three or more receiving modules to simultaneously receive the measurement signals transmitted from the transmitter group unit at right, acute, and obtuse angles at respective right, acute, and obtuse angles; A transmitter driving clock unit providing a driving clock to simultaneously drive touch measurement signal transmitters having the same index included in each of the transmitter group units; A control unit for calculating a size of an x, y coordinate or diameter of the touch area using the touch measurement signals received by the plurality of receiving module group units; And a touch panel configured to receive a touch input from the user.
상기와 같은 과제를 달성하기 위한 본 발명에 따른 또 다른 멀티 터치 인식 장치는 펄스를 포함하는 터치 측정 신호를 방사상으로 송출하는 발신소자를 하나 이상 포함하는 발신 모듈; 상기 발신 모듈에서 송출된 상기 터치 측정 신호를 수신하는 수신 소자를 하나 이상 포함하는 수신 모듈; 상기 수신 모듈에서 수신된 터치 측정 신호로부터 터치 영역의 좌표 또는 지름의 크기를 연산하는 제어부; 및 사용자로부터 터치 입력을 입력받는 터치 패널을 포함하며, 발신소자로부터 방사상으로 발신된 터치 측정 신호를 직각, 둔각 및 예각에 위치한 수신소자가 직각, 예각 또는 둔각의 터치 신호를 연속 수신하는 것을 특징으로 하는 멀티 터치 인식장치를 특징으로 한다.Another multi-touch recognition device according to the present invention for achieving the above object is a transmitting module including one or more transmitting elements for radially transmitting a touch measurement signal including a pulse; A receiving module including one or more receiving elements for receiving the touch measurement signal transmitted from the transmitting module; A controller configured to calculate a size of a coordinate or diameter of a touch area from the touch measurement signal received by the receiving module; And a touch panel configured to receive a touch input from a user, wherein the receiving device positioned at right, obtuse, and acute angles of the touch measurement signals radially transmitted from the transmitting device receives the touch signals at right, acute, or obtuse angles continuously. Characterized in that the multi-touch recognition device.
상기와 같은 구성을 가지는 본 발명에 따른 멀티 터치 인식 장치는 멀티 터치 스크린 장치에서 멀티 터치가 발생하는 경우에 실제로 멀티 터치되는 위치와 허상의 위치를 효율적으로 구별할 수 있으며, 경사각 측정 방식의 멀티 터치 위치 측정 방법과 기준 좌표 산출 방법을 이용하여 허상을 효율적으로 구별할 수 있게 되며, 멀티 터치 위치를 측정하는 시간을 최소화하여 멀티 터치가 빠르게 이동하거나 변하더라도 이를 효과적으로 측정할 수 있게 한다.The multi-touch recognizing apparatus according to the present invention having the above-described configuration can effectively distinguish between the position of the multi-touch and the position of the virtual image when the multi-touch occurs in the multi-touch screen device, and the multi-touch of the tilt angle measuring method. By using the position measuring method and the reference coordinate calculation method, it is possible to efficiently distinguish the virtual image, and by minimizing the time for measuring the multi-touch position, it is possible to effectively measure the multi-touch even if it moves or changes quickly.
도 1은 본 발명의 일 실시예에 따른 멀티 터치 인식 장치의 개략적인 구성도이다.1 is a schematic block diagram of a multi-touch recognition device according to an embodiment of the present invention.
도 2 내지 3은 본 발명에 따른 멀티 터치 인식 장치에서 터치 지점을 인식하는 원리를 설명하는 도면이다.2 to 3 are diagrams for explaining a principle of recognizing touch points in the multi-touch recognition apparatus according to the present invention.
도 4는 본 발명에 따른 멀티 터치 인식 장치에서 특정 터치 수송출 모듈이 고장인 경우 터치 지점을 인식하는 원리를 설명하기 위한 다른 도면이다.FIG. 4 is another diagram for describing a principle of recognizing a touch point when a specific touch transport module has failed in the multi-touch recognition device according to the present invention.
도 5는 본 발명에 따른 멀티 터치 인식 장치에서 실제로 터치되는 지점과 허상의 터치 지점을 구분하는 과정을 나타내는 흐름도이다.5 is a flowchart illustrating a process of distinguishing a point actually touched and a touch point of a virtual image in the multi-touch recognition apparatus according to the present invention.
도 6은 본 발명에 따른 멀티 터치 입력 위치 인식 장치에서 터치 측정 신호 발신부의 송출각에 의하여 허상을 제거하는 원리를 설명하기 위한 도면이다.6 is a view for explaining the principle of removing the virtual image by the transmission angle of the touch measurement signal transmission unit in the multi-touch input position recognition apparatus according to the present invention.
도 7 내지 10은 본 발명에 따른 멀티 터치 인식 장치에서 터치 측정 신호 발신부의 송출각에 의하여 허상을 제거하는 과정을 설명하기 위한 도면이다.7 to 10 are views for explaining a process of removing a virtual image by the transmission angle of the touch measurement signal transmission unit in the multi-touch recognition device according to the present invention.
도 11은 본 발명에 따른 멀티 터치 인식 장치의 다른 실시 예에 따른 모듈형으로 터치 측정 신호 수신부를 구성한 구성도이다.FIG. 11 is a block diagram illustrating a touch measurement signal receiver in a modular form according to another exemplary embodiment of the multi-touch recognition apparatus according to the present invention.
도 12는 본 발명의 모듈형으로 터치 측정 신호 수신부를 구성한 멀티 터치 인식 장치 동작을 설명하기 위한 도면이다.FIG. 12 is a diagram for describing an operation of a multi-touch recognition device including a touch measurement signal receiver in a modular form of the present invention.
도 13은 인접 수송출 모듈군에서 수신부 모듈이 서로 연동되는 원리를 설명하기 위한 도면이다.13 is a view for explaining the principle that the receiver module is interlocked with each other in the adjacent transport module group.
도 14는 종래기술에 따른 멀티 터치 스크린 장치의 개략적인 구성도이다.14 is a schematic configuration diagram of a multi-touch screen device according to the prior art.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부, "…모듈", "…소자" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise. In addition, "... part," ... described in the specification. module", "… The term “element” and the like refer to a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software.
도 1은 본 발명에 따른 멀티 터치 식 장치의 개략적인 구성도이다.1 is a schematic configuration diagram of a multi-touch device according to the present invention.
본 발명의 실시예에 따른 멀티 터치 인식 장치는 X축 터치 측정 신호 수신부(110), X축 터치 측정 신호 발신부(120), Y축 터치 측정 신호 수신부(130), Y축 터치 측정 신호 발신부(140), X축 수신부 드라이버(111), X축 발신부 드라이버(121), Y축 수신부 드라이버(131), Y축 발신부 드라이버(141) 및 제어부(230)를 포함한다.Multi-touch recognition device according to an embodiment of the present invention X-axis touch measurement signal receiver 110, X-axis touch measurement signal transmitter 120, Y-axis touch measurement signal receiver 130, Y-axis touch measurement signal transmitter 140, an X-axis receiver driver 111, an X-axis transmitter driver 121, a Y-axis receiver driver 131, a Y-axis transmitter driver 141, and a controller 230.
X축 터치 측정 신호 수신부(110)는 적어도 둘 이상이 연속적으로 배열되어 전체 수신부를 구성하여 발신부에서 송출되는 적외선을 수신한다. X축 터치 측정 신호 발신부(120)는 적어도 둘 이상이 연속적으로 배열되어 X축 터치 측정 신호 수신부(110)측에 터치 측정 신호를 터치 평면에 송출한다.At least two or more X-axis touch measurement signal receivers 110 are continuously arranged to form an entire receiver to receive infrared rays transmitted from the transmitter. At least two or more X-axis touch measurement signal transmitters 120 are continuously arranged to transmit the touch measurement signal to the touch plane at the X-axis touch measurement signal receiver 110.
Y축 터치 측정 신호 수신부(130)는 적어도 둘 이상이 연속적으로 배열되어 전체 수신부를 구성하여 발신부에서 송출되는 적외선을 수신한다. Y축 터치 측정 신호 발신부(140)는 적어도 둘 이상이 연속적으로 배열되어 Y축 터치 측정 신호 수신부(130)측에 터치 측정 신호를 터치 평면에 송출한다.At least two or more Y-axis touch measurement signal receivers 130 are continuously arranged to form an entire receiver to receive infrared rays transmitted from the transmitter. At least two or more Y-axis touch measurement signal transmitters 140 are continuously arranged to transmit a touch measurement signal to the touch plane at the Y-axis touch measurement signal receiver 130.
X,Y축 발신부 드라이버(121, 141)는 X,Y축 터치 측정 신호 발신부(120, 140)를 일정한 시간 간격으로 구동하여 터치 측정신호, 일 예로 적외선 신호를 멀티 터치 스크린의 터치 평면으로 방사하도록 하며, X,Y축 수신부 드라이버(121, 141)는 X,Y축 터치 측정 신호 수신부(110, 130)를 일정한 시간 간격으로 구동하여 터치 측정 신호 일 예로, 적외선 신호와 외부 잡음 신호인 일 예로, 태양광, 저주파 잡음 등을 수신하도록 한다.The X and Y axis transmitter drivers 121 and 141 drive the X and Y axis touch measurement signal transmitters 120 and 140 at regular time intervals to convert touch measurement signals, for example, infrared signals, into the touch plane of the multi-touch screen. The X, Y- axis receiver drivers 121 and 141 drive the X- and Y-axis touch measurement signal receivers 110 and 130 at regular time intervals, for example, an infrared signal and an external noise signal. For example, it may receive sunlight, low frequency noise, and the like.
상기에서 터치 측정 신호로 적외선 신호가 예시되어 있으나 RF 신호 및 엘이디 발광 신호 역시 터치 측정 신호로 사용될 수 있음에 유의하여야 한다.Although the infrared signal is exemplified as the touch measurement signal, it should be noted that the RF signal and the LED emission signal may also be used as the touch measurement signal.
도 1에서는 발신부와 수신부가 대향하여 배치되는 구조 즉, 일측에는 송출 모듈만 배열하고 다른 일측에는 수신 모듈만 배열하는 구조가 예시되어 있으나, 필요에 따라 송출 모듈과 수신 모듈을 교대로 양측에 배열하는 것도 가능함에 유의하여야 한다.1 illustrates a structure in which a transmitter and a receiver are disposed to face each other, that is, a structure in which only one transmitting module is arranged on one side and only a receiving module is arranged on the other side, but the transmitting and receiving modules are alternately arranged on both sides as necessary. Note that it is also possible.
제어부(150)는 X축 터치 측정 신호 수신부(110) 및 Y축 터치 측정 신호 수신부(130)에 의하여 수신된 터치 측정 신호를 처리하여 사용자에 의해 터치 패널 상의 터치되는 지점의 특성을 계산한다.The controller 150 processes the touch measurement signal received by the X-axis touch measurement signal receiver 110 and the Y-axis touch measurement signal receiver 130 to calculate characteristics of the touched point on the touch panel by the user.
상기에서 터치되는 지점에 대한 특성으로는 X축 과 Y축의 좌표뿐만 아니라 터치되는 지점의 크기 일 예로, 지름이 계산될 수 있다.As a characteristic of the touched point, the diameter may be calculated as an example of the size of the touched point as well as the coordinates of the X-axis and the Y-axis.
본 발명에 따른 전체 X축 터치 측정 신호 수신부(110)와 X축 터치 측정 신호 발신부(130)는 가로축에 N개의 송출소자와 수신부를 그리고 Y축 터치 측정 신호 수신부(120)와 Y축 터치 측정 신호 발신부(140)는 세로축에 M개의 송출소자와 수신부가 배열된다.The entire X-axis touch measurement signal receiver 110 and the X-axis touch measurement signal transmitter 130 according to the present invention include N transmitters and receivers on the horizontal axis, and Y-axis touch measurement signal receiver 120 and Y-axis touch measurement. The signal transmitter 140 has M transmitters and receivers arranged on the vertical axis.
다른 예로서 X축 터치 측정 신호 수신부(110)와 X축 터치 측정 신호 발신부(130)가 교대로 배치되는 경우에는 X축 터치 측정 신호 수신부(110)와 X축 터치 측정 신호 발신부(130)의 개수의 합은 총 2N개로서 N개는 가로축의 일측에 다른 N개는 가로축의 다른 일측에 배치되며, Y축 터치 측정 신호 수신부(120)와 Y축 터치 측정 신호 발신부(140)의 개수의 합은 총 2M개로서 M개는 세로축의 일측에 다른 M개는 세로축의 다른 일측에 배치된다.As another example, when the X-axis touch measurement signal receiver 110 and the X-axis touch measurement signal transmitter 130 are alternately arranged, the X-axis touch measurement signal receiver 110 and the X-axis touch measurement signal transmitter 130 The total number of N is 2N, N is arranged on one side of the horizontal axis, N is arranged on the other side of the horizontal axis, the number of Y-axis touch measurement signal receiver 120 and Y-axis touch measurement signal transmitter 140 The sum total is 2M and M pieces are arranged on one side of the vertical axis and M pieces are arranged on the other side of the vertical axis.
상기와 같은 구조를 가지는 본 발명에 따른 멀티 터치 인식 장치에서 터치 지점의 특성 즉, 좌표와 터치 영역의 크기를 계산하는 방법을 설명하도록 한다.In the multi-touch recognition apparatus according to the present invention having the above structure, a method of calculating the characteristics of the touch point, that is, the coordinates and the size of the touch area, will be described.
먼저, 서로 마주보는 수평축(X축) 터치 측정 신호 수신부에서 수신된 적외선 광의 크기를 X(0), 두 번째 터치 측정 신호 수신부에서 수신된 적외선 광의 크기를 X(1)로, 세 번째 터치 측정 신호 수신부에서 수신된 적외선 광의 크기를 X(2)으로, k번째 수신모듈의 수신부에서 수신된 적외선 광의 크기를 X(k-1)로, N번째 수신모듈의 수신부에서 수신된 적외선 광의 크기를 X(N-1)로 정의한다.First, the magnitude of the infrared light received by the horizontal axis (X-axis) touch measurement signal receiver facing each other is X (0), the magnitude of the infrared light received by the second touch measurement signal receiver is X (1), and the third touch measurement signal. The size of the infrared light received at the receiving unit is X (2), the size of the infrared light received at the receiving unit of the kth receiving module is X (k-1), and the size of the infrared light received at the receiving unit of the Nth receiving module is X ( N-1).
수직축(Y축) 수신모듈의 수신부에서 수신된 적외선 광의 크기를 Y(0), 두 번째 수신모듈의 수신부에서 수신된 적외선 광의 크기를 Y(1)로, 세 번째 수신모듈의 수신부에서 수신된 적외선 광의 크기를 Y(2)으로, k번째 수신모듈의 수신부에서 수신된 적외선 광의 크기를 Y(k-1)로, M번째 수신모듈의 수신부에서 수신된 적외선 광의 크기를 Y(M)로 정의한다.Vertical axis (Y-axis) The amount of infrared light received by the receiver of the receiving module is Y (0), the amount of infrared light received by the receiver of the second receiving module is Y (1), and the infrared light is received by the receiver of the third receiving module. The size of the light is defined as Y (2), the size of the infrared light received at the receiving unit of the kth receiving module is Y (k-1), and the size of the infrared light received at the receiving unit of the Mth receiving module is defined as Y (M). .
터치 입력을 인식하기 위해 발신부에서 송출된 터치 측정 신호가 물체에 의해 간섭되었는지 여부를 확인하기 위해 각 X축 터치 측정 신호 수신부는 0에서 N-1번째 값까지 그리고 Y(k)를 0에서 M-1번째 값까지를 순차적으로 측정하는 스캔을 수행한다.Each X-axis touch measurement signal receiver receives 0 to N-1th values and Y (k) from 0 to M to determine whether the touch measurement signal sent from the transmitter to recognize the touch input has been interfered by the object. Perform a scan that sequentially measures the -1 value.
k번째 스캔을 통해 터치 측정 신호 수신부에서 수신된 터치 측정 신호의 수신값을 X(k-1)와 Y(k-1)를 할 때, k를 1에서 X축에 대해서는 1 에서 N까지 Y축에 대해서는 1에서 M까지 변화시켜가면서 전체 터치 측정 신호 수신부에서 각 스캔에 따른 터치 측정 신호의 수신값을 얻고 이 값을 이용하여 터치 측정 신호 발신부 송출되는 터치 측정 신호의 이동을 방해하는 물체들의 다중좌표와 이 물체들의 지름을 구할 수 있다.When X (k-1) and Y (k-1) are received values of the touch measurement signal received from the touch measurement signal receiving unit through the kth scan, k is 1 to N for the X axis and 1 to N for the X axis. With respect to, from 1 to M, the entire touch measurement signal receiver receives the received value of the touch measurement signal according to each scan and uses this value to multiply the objects that obstruct the movement of the touch measurement signal transmitted by the touch measurement signal transmitter. Find the coordinates and diameters of these objects.
먼저 수학식 1 내지 2를 통하여 터치 측정 신호의 수신값을 정규화한다.First, the received value of the touch measurement signal is normalized through equations (1) through (2).
수학식 1
Figure PCTKR2012005172-appb-M000001
Equation 1
Figure PCTKR2012005172-appb-M000001
여기서 n은 1 또는 2 등의 자연수로, 신호의 노이즈 성분의 반응 정도를 선형으로 할지 비선형으로 할지를 결정하는 것으로, n=1인 경우는 기저(Background) 노이즈 성분이 적은 신호를 계산하는데 유리하고, n > 1인 경우는 기저 노이즈 신호가 많은 경우 유리한 측정방식이다.Here, n is a natural number such as 1 or 2, which determines whether the response of the noise component of the signal is linear or nonlinear. When n = 1, it is advantageous to calculate a signal having a low background noise component. The case of n> 1 is an advantageous measurement method when there are many base noise signals.
G는 스케일링 값으로 일반적으로 1 또는 100으로 설정하며 수학식 1에 구하여진 측정값은 X축에 대한 측정값의 정규화된 값이다. Y축 역시 X축과 동일한 방식으로 좌표를 구할 수 있다.G is a scaling value and is generally set to 1 or 100. The measured value obtained in Equation 1 is a normalized value of the measured value on the X axis. The Y-axis can also be obtained in the same way as the X-axis.
수학식 2
Figure PCTKR2012005172-appb-M000002
Equation 2
Figure PCTKR2012005172-appb-M000002
수학식 2에 구하여진 측정값은 Y축에 대한 측정값의 정규화된 값이다.The measured value obtained in Equation 2 is a normalized value of the measured value on the Y axis.
상기에서 Xmax와 Ymax는 각각 X축과 Y축에서 측정된 터치 신호 중 가장 큰 값으로 정의한다.In the above description, X max and Y max are defined as the largest values of the touch signals measured on the X and Y axes, respectively.
상기 정규화된 측정값을 이용하여 터치 영역의 좌표를 구하는 공식은 하기의 수학식 3과 4와 같다.Formulas for obtaining the coordinates of the touch area by using the normalized measured values are shown in Equations 3 and 4 below.
n번째에 해당하는 X 좌표는 하기의 수학식 3에 의해서 구해지고, Y좌표는 하기의 수학식 4에 의해 구해진다.The X coordinate corresponding to the nth is obtained by the following equation (3), and the Y coordinate is obtained by the following equation (4).
수학식 3
Figure PCTKR2012005172-appb-M000003
Equation 3
Figure PCTKR2012005172-appb-M000003
수학식 4
Figure PCTKR2012005172-appb-M000004
Equation 4
Figure PCTKR2012005172-appb-M000004
상기에서 i는 0에서 N까지의 자연수이며, j는 0에서 M까지의 자연수이며, w: X축 터치영역 수신부 개수, h: Y축 터치영역 수신부 개수이다.I is a natural number from 0 to N, j is a natural number from 0 to M, w is the number of X-axis touch area receivers, and h is the number of Y-axis touch area receivers.
한편 상기 정규화된 측정값을 이용하여 터치 영역의 지름을 구하는 공식은 하기의 수학식 5와 6과 같다.On the other hand, the formula for calculating the diameter of the touch area by using the normalized measurement value is as shown in Equations 5 and 6.
즉, n번째에 해당하는 X좌표의 지름은 하기의 수학식 5에 의해서 구해지고, Y좌표의 지름은 하기의 수학식 6에 의해 구해진다.That is, the diameter of the X coordinate corresponding to the nth is obtained by the following equation (5), and the diameter of the Y coordinate is obtained by the following equation (6).
수학식 5
Figure PCTKR2012005172-appb-M000005
Equation 5
Figure PCTKR2012005172-appb-M000005
수학식 6
Figure PCTKR2012005172-appb-M000006
Equation 6
Figure PCTKR2012005172-appb-M000006
상기에서 i는 0에서 N까지의 자연수이며, j는 0에서 M까지의 자연수이며, w: X축 터치영역 수신부 개수, h: Y축 터치영역 수신부 개수이다.I is a natural number from 0 to N, j is a natural number from 0 to M, w is the number of X-axis touch area receivers, and h is the number of Y-axis touch area receivers.
한편 본 발명의 멀티 터치 입력 위치 인식 장치에서는 터치 영역을 인식하기 위하여 터치 측정 신호 수신부에서 측정된 측정값을 정규화한 Nx(k)와 Ny(k)를 계산하여, 이 값이 제1기준값 Tlower보다 큰 경우를 측정하고, 이 값들 중 최소 1개 이상 값들이 제2기준값 Thigher > Nx(k), Ny(k)의 조건에 부합하는 연속적으로 얻어진 값으로부터 상기 수학식 3 내지 6을 통해 좌표와 지름을 구한다.Meanwhile, in the multi-touch input location recognizing apparatus of the present invention, in order to recognize a touch area, N x (k) and N y (k), which are normalized measured values measured by the touch measurement signal receiver, are calculated, and this value is the first reference value. Measure the case of greater than T lower , wherein at least one of these values is from the equations 3 to 3 from successive values that meet the conditions of the second reference value T higher > N x (k), N y (k) Find the coordinates and diameter through 6.
상기의 수학식에서 W=S/N이고 H=S/M으로, S는 화면의 최대 해상도 N과 M은 각각 X와 Y축의 터치 측정 신호 수발신부의 개수이다.In the above equation, W = S / N and H = S / M, where S is the maximum resolution of the screen, N and M are the number of touch measurement signal receivers on the X and Y axes, respectively.
다른 실시예로서, 터치된 영역에서의 확률밀도 값을 측정하여 터치 좌표의 유효성을 결정할 수 있다.In another embodiment, the validity of the touch coordinate may be determined by measuring a probability density value in the touched area.
구체적으로 터치 영역의 확률밀도 측정값을 수학식 7과 8과 같이 정의하도록 한다.In more detail, the probability density measurement values of the touch area are defined as shown in Equations 7 and 8.
수학식 7
Figure PCTKR2012005172-appb-M000007
Equation 7
Figure PCTKR2012005172-appb-M000007
수학식 8
Figure PCTKR2012005172-appb-M000008
Equation 8
Figure PCTKR2012005172-appb-M000008
상기 수학식 7과 8에 의하여 특정한 확률 밀도 함수에 의해 결정되는 값을 수학식 3 내지 6에 사용되는 제1기준값 Tlower 및 제2기준값 Thigher으로 설정할 수 있다.The values determined by the specific probability density function according to Equations 7 and 8 may be set to the first reference value T lower and the second reference value T higher used in Equations 3 to 6.
도 2 내지 3은 본 발명에 따른 멀티 터치 인식 장치에서 터치 지점을 인식하는 원리를 설명하는 도면이며, 도 5는 본 발명의 제1실시예에 따라 실제로 터치되는 지점과 허상의 터치 지점을 구분하는 과정을 나타내는 흐름도이다.2 to 3 are diagrams for explaining a principle of recognizing touch points in a multi-touch recognition apparatus according to the present invention, and FIG. 5 is a diagram illustrating a method of distinguishing a touch point from a virtual touch point according to a first embodiment of the present invention. A flow chart showing the process.
이하에서는 도 2 내지 3을 참조하여 본 발명에 따른 멀티 터치 인식 장치에서 실제로 터치되는 지점과 허상의 터치 지점을 구분하는 과정을 대해서 설명한다.Hereinafter, a process of distinguishing a point actually touched and a touch point of a virtual image in the multi-touch recognition apparatus according to the present invention will be described with reference to FIGS. 2 to 3.
먼저 터치 측정 신호 수신부는 터치 측정 신호 발신부에서 송출된 터치 측정 신호 중 최대값 즉, Xmax(k)와 Ymax(k)에 해당하는 값을 측정한다(S501 단계).First, the touch measurement signal receiver measures a maximum value of the touch measurement signals transmitted from the touch measurement signal transmitter, that is, values corresponding to X max (k) and Y max (k) (S501).
Xmax(k)와 Ymax(k) 대한 측정이 완료되었는지 판단하고, 완료되었으면(S502 단계), S503 단계로 이동한다. S502 단계에서 측정값은 적외선을 방해하는 물체가 터치면에 존재하지 않는 것으로 간주한다. It is determined whether the measurement of X max (k) and Y max (k) is completed, and when it is completed (step S502), the process moves to step S503. In operation S502, the measurement value is considered to be that an object that obstructs infrared rays does not exist on the touch surface.
S503 단계에서는 터치 측정 신호가 터치 측정 신호 수신부에서 수신되는 지를 측정한다. 즉, 각 터치 측정 신호 수신부에서 X(k)와 Y(k)를 측정한다.In operation S503, it is measured whether the touch measurement signal is received by the touch measurement signal receiver. In other words, each touch measurement signal receiver measures X (k) and Y (k).
S504단계에서 측정이 완료되었는지 판단하여 완료되었으면, S505 단계로 이동한다.If it is determined in step S504 whether the measurement is complete, and moves to step S505.
S505 단계에서는 터치 영역의 값 즉, 좌표와 지름 등을 측정하기 위해 사용되는 변수를 초기화한다. 즉, n=0, m=0, w=0, h=0, i=0, j=0으로 각 변수를 설정한다.In operation S505, a variable used to measure a value of the touch area, that is, a coordinate and a diameter, is initialized. That is, each variable is set to n = 0, m = 0, w = 0, h = 0, i = 0, j = 0.
상기에서 n은 X축에서 얻어지는 터치 점의 좌표 및 지름의 개수이고, m은 Y축에서 얻어지는 터치 점의 좌표 및 지름의 개수이며, i는 X축의 센서부 값 X(k)의 인덱스로 0부터 N까지이며, j는 Y축의 센서부 값 Y(k)의 인덱스로 0부터 M까지이며, W=S/N이고 H=S/M이며, 이때 S는 화면의 최대 해상도이다.In the above, n is the number of coordinates and diameters of the touch points obtained on the X axis, m is the number of coordinates and diameters of the touch points obtained on the Y axis, and i is an index of the sensor part value X (k) of the X axis from 0. Where N is the index of the sensor unit value Y (k) on the Y axis from 0 to M, where W = S / N and H = S / M, where S is the maximum resolution of the screen.
S506 단계에서는 상기 수학식 1과 수학식 2를 계산한다.In step S506, the equations (1) and (2) are calculated.
S507 단계에서는 정규화한 Nx(k)와 Ny(k)를 계산하여, 이값이 제1기준값 Tlower보다 큰 경우를 계산하는 부합하는 값에 대해서는 S511 단계로 이동한다. 제1기준값 Tlower보다 크지 않는 경우, S508 단계로 이동한다.In step S507, the normalized N x (k) and N y (k) are calculated, and the corresponding value for calculating the case where the value is larger than the first reference value T lower is moved to step S511. If it is not greater than the first reference value T lower , the flow proceeds to step S508.
S508 단계에서는 W와 H값이 영인지를 판단하여 영이 아닌 경우는 터치에 눌림이 존재한 것으로 판단하여 최종 좌표 계산을 위하여 S514 단계로 이동한다. 만일 영인 경우 S509단계로 이동한다.In step S508 it is determined whether the W and H values are zero, and if it is not zero, it is determined that there is a press on the touch and moves to step S514 for final coordinate calculation. If zero, go to step S509.
S509 단계에서는 W와 H를 초기화하고, 상기의 수학식 3과 수학식 4를 이용하여 x(n)과 y(m)을 계산한다.In step S509, W and H are initialized, and x (n) and y (m) are calculated using Equations 3 and 4 above.
S510 단계에서는 W와 H를 초기화하고, 수학식 5과 수학식 6를 이용하여 dx(n)과 dy(m)을 계산한다.In step S510, W and H are initialized, and dx (n) and dy (m) are calculated by using Equations 5 and 6.
S511 단계에서는 S507 단계에서 측정된 Nx(k)와 Ny(k)값 중 제1기준값 Tlower보다 큰 경우, 터치 측정 신호에 대한 방해가 있는 것으로 판단하여 w와 h의 값을 하나씩 증가한다.In step S511, when the first reference value T lower among the N x (k) and N y (k) values measured in step S507 is determined to be an interference to the touch measurement signal, the values of w and h are increased by one. .
S512 단계에서는 계산된 좌표 및 지름이 제한적인 조건, 예를 들어 특정지름의 하나 이상의 제한의 의해서 터치로 인정하지 않는 조건 등을 판단하여, 판단 결과 조건에 부합하면, 단계 S513으로 이동하고, 그렇지 않으면 좌표 정보를 삭제하고 S514 단계로 이동한다. 여기서 조건 측정은 상기의 수학식 7과 수학식 8과 같이 판단 조건일 수 있다.In step S512, if the calculated coordinates and diameters are limited, for example, a condition that is not recognized as a touch by one or more limitations of a specific diameter is determined, and if the determination result is satisfied, the process moves to step S513. Delete the coordinate information and go to step S514. The condition measurement may be a determination condition as in Equations 7 and 8 above.
S513 단계에서는: n과 m의 인덱스 값을 하나씩 증가시키고, S514 단계에서는 i와 j의 인덱스 값을 하나씩 증가한다.In step S513: the index values of n and m are increased by one, and in step S514, the index values of i and j are increased by one.
S515 단계에서는 n×m의 좌표에서 터치 측정 신호에 대한 측정이 완료되고 이 좌표 중에서 물체의 존재 유무를 측정할 수 없는 허상의 제거하여 실제 터치점의 좌표만을 구분한다.In operation S515, the measurement of the touch measurement signal is completed at the coordinate of n × m, and only the coordinates of the actual touch point are distinguished by removing the virtual image from which the presence or absence of an object cannot be measured.
S508 단계에서는 W와 H값이 영인지를 판단하여 영이 아닌 경우는 터치에 눌림이 존재한 것으로 판단하여 최종 좌표 계산을 위하여 S514 단계로 이동한다. 만일 영인 경우 S509단계로 이동한다.In step S508 it is determined whether the W and H values are zero, and if it is not zero, it is determined that there is a press on the touch and moves to step S514 for final coordinate calculation. If zero, go to step S509.
터치 다운 상태가 되면 좌표를 정보기기로 전송하고 새로운 좌표를 측정하기 위해 S503 단계로 이동한다.When the touch down state, the coordinates are transmitted to the information device and the process moves to step S503 to measure new coordinates.
S520 단계에서는 i=(N-1)가 j=(M-1)의 조건을 만족하는지 판단하여 만족하는 경우는 모든 터치 측정신호에 대한 측정값의 계산이 완료된 경우로 S515 단계로 이동하고, 그렇지 않으면 S506 단계로 이동하여 다음 번째 Nx(k)와 Ny(k)를 측정한다.In step S520, if i = (N-1) satisfies the condition of j = (M-1), and if it satisfies, it is determined that measurement values for all touch measurement signals are completed. If not, go to step S506 and measure the next N x (k) and N y (k).
터치 업이 일정시간 동안 계속되면, S501 단계로 이동하여, Xmax(k)와 Ymax(k)를 재측정하고, 그렇지 않으면 S503 단계로 이동한다.If the touch-up continues for a certain time, the process moves to step S501 to re-measure X max (k) and Y max (k), otherwise go to step S503.
도 5의 S507단계에서는 하기의 수학식 9와 10을 만족하는 터치 영역만을 대상으로 실행될 수 있다.In operation S507 of FIG. 5, only a touch area that satisfies Equations 9 and 10 below may be executed.
수학식 9
Figure PCTKR2012005172-appb-M000009
Equation 9
Figure PCTKR2012005172-appb-M000009
수학식 10
Figure PCTKR2012005172-appb-M000010
Equation 10
Figure PCTKR2012005172-appb-M000010
여기서 Sx(i)와 Sy(i)는 미리 정의된 매칭 터치 패턴의 매칭 필터이며, l은 매칭 필터의 샘플링 개수이다.Here, Sx (i) and Sy (i) are matching filters of a predefined matching touch pattern, and l is a sampling number of the matching filter.
상기와 같이 매칭 필터를 적용하는 이유는 측정된 터치 영역값 중 특정한 터치 패턴만을 터치로 인식하도록 함으로써 터치 영역의 인식율에 대한 향상을 기대할 수 있게 한다.The reason for applying the matching filter as described above is to improve the recognition rate of the touch area by allowing only a specific touch pattern among the measured touch area values to be recognized as a touch.
도 4는 본 발명에 따른 멀티 터치 입력 위치 인식 장치에서 특정 터치 수송출 모듈이 고장인 경우 터치 지점을 인식하는 원리를 설명하기 위한 다른 도면이다.FIG. 4 is another diagram for describing a principle of recognizing a touch point when a specific touch transport module is faulty in the multi-touch input location recognizing apparatus according to the present invention.
일반적으로 적외선 수터치 측정 신호 발신부가 불량이 발생하면 터치 유무를 판단할 수 없다. 그럼으로 이 같은 소자 고장에 의한 신호 측정이 불가능을 해결하기 위해서 도 5의 S506에서 도면 4에서와 같이 k번째 수터치 측정 신호 발신부가 고장인 경우, 즉 Xmax(k)=0와 Ymax(k)=0인 경우, Nx(k)=Nx(k-1)와 같이 Nx(k), Ny(k)를 각각 Nx(k-1), Ny(k-1)값으로 대체하여 좌표를 계산함으로써, 고장에 의한 터치 스크린의 오동작을 방지할 수 있다.In general, when the infrared touch signal transmission unit is defective, it is not possible to determine whether there is a touch. Therefore, in order to solve the impossibility of measuring the signal due to such a device failure, as shown in FIG. 4 in S506 of FIG. 5, when the k-th hand touch measurement signal transmitter is in failure, that is, X max (k) = 0 and Y max ( If k) = 0, then N x (k) and N y (k) are replaced by N x (k-1) and N y (k-1) as N x (k) = N x (k-1) By calculating the coordinates by substituting the values, malfunction of the touch screen due to a failure can be prevented.
도 6은 본 발명의 제1실시예에 따른 멀티 터치 인식 장치에서 터치 측정 신호 발신부의 송출각에 의하여 허상을 제거하는 원리를 설명하기 위한 도면이다.FIG. 6 is a diagram illustrating a principle of removing a virtual image by a transmission angle of a touch measurement signal transmitter in the multi-touch recognition apparatus according to the first embodiment of the present invention.
도 7 내지 10은 본 발명의 제1실시예에 멀티 터치 인식 장치에서 송출 측정 신호 발신부의 송출각에 의하여 허상을 제거하는 과정을 설명하기 위한 도면이다.7 to 10 illustrate a process of removing a virtual image by a transmission angle of a transmission measurement signal transmission unit in a multi-touch recognition apparatus according to a first embodiment of the present invention.
매트릭스 형식으로 배치된 터치 스크린에서 멀티 좌표의 허상들을 제거하기 위해 도 6과 같이 터치 측정 신호 발신부의 송출각에 경로에서 물체 유무를 판단하고 제3의 좌표를 측정하여 허상을 제거하는 방법을 기술한다. 허상 제거 방법은 도 7의 S515 단계에서 처리한다.In order to remove the virtual images of multi-coordinates in the touch screen arranged in a matrix form, a method of determining whether there is an object in the path at the transmission angle of the touch measurement signal transmitting unit as shown in FIG. 6 and measuring the third coordinate will remove the virtual image. . The virtual image removal method is processed in step S515 of FIG. 7.
도 7에서 k+d 번째 터치 측정 신호 발신부에서 터치 측정 신호가 송출되면, 송출된 터치 측정신호를 수신하는 터치 측정 신호 수신부는 k번째가 되도록 빗각으로 스캔하여 X(k)를 측정한다.In FIG. 7, when the touch measurement signal is transmitted from the k + d-th touch measurement signal transmitter, the touch measurement signal receiver that receives the transmitted touch measurement signal measures X (k) by scanning at an oblique angle so as to be the k-th.
마찬가지로 k번째 터치 측정 신호 발신부에서 터치 측정 신호가 송출되면, 이 방사 적외선이 수신되는 터치 측정 신호 수신부는 k+d 번째가 되도록 빗각으로 스캔하여 X(k+d)를 측정한다. Similarly, when the touch measurement signal is transmitted from the k-th touch measurement signal transmitter, the touch measurement signal receiver that receives the infrared radiation is scanned at an oblique angle to be k + d-th, and measures X (k + d).
이 경우, 도 7을 참고하여 실제로 터치되는 영역의 터치 측정 신호 수신부로부터의 거리를 각각 매트릭스 형식으로 배치된 터치면에서 허상들을 제거하기 위해 터치 측정 신호 발신부에서 송출된 터치 측정 신호의 이동 경로에서 물체에 의한 이동 유무의 방해 여부를 판단하고 하기에서 설명하는 제3의 좌표를 측정하여 허상을 제거하는 방법을 기술한다. 허상 제거 방법은 도 7의 S715 단계에서 처리한다.In this case, referring to FIG. 7, in the moving path of the touch measurement signal transmitted from the touch measurement signal transmitter to remove the virtual images from the touch surfaces arranged in a matrix form, the distance from the touch measurement signal receiver of the area actually touched. It describes a method of removing a virtual image by determining whether the object is obstructed or not, and measuring the third coordinates described below. The virtual image removal method is processed in step S715 of FIG. 7.
도 9에서 k+d 번째 터치 측정 신호 발신부에서 터치 측정 신호가 송출되면, 송출된 터치 측정신호를 수신하는 수신부는 k번째가 되도록 빗각으로 스캔하여 를 측정한다.In FIG. 9, when the touch measurement signal is transmitted from the k + d-th touch measurement signal transmitter, the receiver receiving the transmitted touch measurement signal scans at an oblique angle so as to be k-th, and measures.
도 8에서는 k번째 터치 측정 신호 발신부에서 터치 측정 신호가 송출되면, 수신부는 k+d 번째가 되도록 빗각으로 스캔하여 터치 위치를 측정한다.In FIG. 8, when the touch measurement signal is transmitted from the k-th touch measurement signal transmitter, the receiver measures the touch position by scanning at an oblique angle so as to be the k + d-th.
이 경우, 도 7에서 실제로 터치되는 영역의 터치 측정 신호 수신부로부터의 거리를 각각 y(n), y(n+1)[도 7에서 yT(n), yT+1(n)이라 도시되어 있다]이라 할 때 각각 하기의 수학식 11과 12에 의하여 구하여진다.In this case, distances from the touch measurement signal receiver of the area actually touched in FIG. 7 are y (n), y (n + 1) [ yT (n), y T + 1 (n) in FIG. 7, respectively). Is obtained by the following equations (11) and (12), respectively.
수학식 11
Figure PCTKR2012005172-appb-M000011
Equation 11
Figure PCTKR2012005172-appb-M000011
수학식 12
Figure PCTKR2012005172-appb-M000012
Equation 12
Figure PCTKR2012005172-appb-M000012
여기서 WT=S/d이고 S는 X축의 해상도이며, d는 빗갓으로 스캔할 때 빗각의 각도를 결정하는 인자로 빗갓으로 스캔하는 기울기의 정도를 결정한다.Where W T = S / d, S is the resolution of the X axis, and d is a factor that determines the angle of the comb angle when scanning with the comb.
허상(Ghost Image)를 제거하기 위해서는 다음과 같은 단계를 통해 실현된다.To remove the Ghost Image, the following steps are realized.
먼저, 도 8에서와 같이 직각 방향으로 터치 측정신호를 송출하여 터치 영역의 좌표를 측정한다. 이 경우 다점을 형성하는 물체 A, B, C가 터치 면에 놓여있다면, 허상 B를 구분하지 못하는 상태로 A, B, C와 D의 직교 좌표를 측정하게 된다.그러나 도 9, 10은 실제 빗각 신호로 다점 스캔하면 터치물체인 A, C, D만 측정되고 허상 B는 측정되지 않음을 보여주고 있다. First, as shown in FIG. 8, the touch measurement signal is transmitted in the perpendicular direction to measure the coordinates of the touch area. In this case, if the objects A, B, and C forming the multipoint are placed on the touch surface, the Cartesian coordinates of A, B, C, and D are measured without distinguishing the virtual image B. However, FIGS. 9 and 10 show actual oblique angles. Multi-point scanning with a signal shows that only the touch objects A, C, and D are measured, but the virtual image B is not measured.
다음으로, 도 9에서와 같이 왼쪽 방향으로 빗각을 가지도록 즉, 터치 측정 신호가 수신부에서 하부면에 대하여 둔각을 가지도록 터치 측정 신호 발신부에서 송출되도록 하고 터치 측정 신호 발신부에서 송출된 터치 측정 신호를 스캐닝하여 터치 영역의 좌표를 측정한다.Next, as shown in FIG. 9, the touch measurement signal is transmitted from the touch measurement signal transmitter so as to have an oblique angle to the left direction, that is, the touch measurement signal has an obtuse angle with respect to the lower surface of the receiver, and the touch measurement transmitted from the touch measurement signal transmitter The coordinates of the touch area are measured by scanning the signal.
직교 좌표를 통해 측정된 허상을 포함하는 좌표에 대응하는 기울기 좌표는 하기의 수학식 13 및 14에 의하여 계산된다.The slope coordinates corresponding to the coordinates including the virtual image measured through the rectangular coordinates are calculated by the following equations (13) and (14).
상기 직교좌표는 도 8과 같이 터치 물체를 수신소자가 직각으로 실제 스캔한 때 측정된 직교좌표[x0(n)과 y0(m)]이다. 상기 허상을 포함하는 좌표에 대응하는 기울기 좌표(XTC, YTC)란 직교좌표[x0(n)과 y0(m)]를 도 9, 도 10과 같이 기울기 스캔을 가상한 때 터치 물체가 존재할 것으로 예상되는 기울기 좌표(XTC, YTC)로 수학식을 통해 환산한 것이다. 즉 아래 수학식은 직교좌표에 포함된 허상을 포함하여 기울기 좌표로 환산한 것이다. The rectangular coordinates are rectangular coordinates [x 0 (n) and y 0 (m)] measured when the touch object is actually scanned at right angles as shown in FIG. 8. The tilt coordinates (X TC , Y TC ) corresponding to the coordinates including the virtual image are touch objects when the rectangular coordinates [x 0 (n) and y 0 (m)] are simulated as shown in FIGS. 9 and 10. Is converted to the slope coordinate (X TC , Y TC ) that is expected to exist through the equation. That is, the following equation is converted to the slope coordinate including the virtual image included in the rectangular coordinates.
수학식 13
Figure PCTKR2012005172-appb-M000013
Equation 13
Figure PCTKR2012005172-appb-M000013
수학식 14
Figure PCTKR2012005172-appb-M000014
Equation 14
Figure PCTKR2012005172-appb-M000014
상기에서 수학식 13 및 14에 의하여 계산된 환산된 기울기 좌표값(XTC, YTC)과 도 8과 같이 실제 빗각으로 송출된 터치 측정 신호에 의한 스캐닝을 통해 얻어진 좌표들(XT, YT)과의 거리를 하기의 수학식 15 및 16에 의하여 측정한다.The coordinates X T and Y T obtained through scanning by the converted tilt coordinate values X TC and Y TC calculated by Equations 13 and 14 and the touch measurement signal transmitted at an actual oblique angle as shown in FIG. 8. ) And the distance between the and ().
수학식 15
Figure PCTKR2012005172-appb-M000015
Equation 15
Figure PCTKR2012005172-appb-M000015
수학식 16
Figure PCTKR2012005172-appb-M000016
Equation 16
Figure PCTKR2012005172-appb-M000016
상기에서 xo(n), yo(n)은 직교 스캐닝을 통해 얻어진 허상을 포함화는 좌표이고, Xc와 Yc는 사용된 터치 측정 신호 수신부의 개수를 의미한다.In the above description , x o (n) and y o (n) are coordinates including the virtual image obtained through orthogonal scanning, and X c and Y c denote the number of touch measurement signal receivers used.
만일 Dxr(n), Dyr(n)이 특정한 한계값보다 크면, 좌표는 허상에 해당하는 것으로 판단한다. 상기에서 특정한 한계값은 사용한 적외선 수신부 센서의 밀도에 따라 미리 결정된다.If D xr (n) and D yr (n) are greater than a certain threshold, the coordinates are determined to correspond to the virtual image. The specific limit value above is determined in advance according to the density of the infrared receiver sensor used.
도 10에서와 같이 왼쪽 방향으로 빗갓을 가지도록 즉, 터치 측정 신호가 수신부에서 하부면에 대하여 예각을 가지도록 터치 측정 신호 발신부에서 송출되도록 하고 터치 측정 신호 수신부는 수신된 터치 측정 신호를 스캐닝하여 터치 영역의 좌표를 측정할 수 있다.As shown in FIG. 10, the touch measurement signal is transmitted from the touch measurement signal transmitter so that the touch measurement signal has an acute angle with respect to the lower surface of the receiver, and the touch measurement signal receiver scans the received touch measurement signal. The coordinates of the touch area can be measured.
여기서 직교 좌표[xo(n), yo(m)]를 통해 측정된 허상을 포함하는 좌표에 대응하는 기울기 좌표(XTC, YTC)는 하기의 수학식 17 및 18에 의하여 계산된다.Here, the slope coordinates X TC and Y TC corresponding to the coordinates including the virtual image measured through the rectangular coordinates [x o (n), y o (m)] are calculated by Equations 17 and 18 below.
수학식 17
Figure PCTKR2012005172-appb-M000017
Equation 17
Figure PCTKR2012005172-appb-M000017
수학식 18
Figure PCTKR2012005172-appb-M000018
Equation 18
Figure PCTKR2012005172-appb-M000018
계산된 값(XTC, YTC)과 빗각으로 송출된 터치 측정 신호에 의한 스캐닝을 통해 얻어진 좌표(XT, YT)들과의 거리를 하기의 수학식 19 및 20에 의하여 측정한다.The distance between the calculated values (X TC , Y TC ) and the coordinates (X T, Y T ) obtained through scanning by the touch measurement signal transmitted at an oblique angle is measured by Equations 19 and 20 below.
수학식 19
Figure PCTKR2012005172-appb-M000019
Equation 19
Figure PCTKR2012005172-appb-M000019
수학식 20
Figure PCTKR2012005172-appb-M000020
Equation 20
Figure PCTKR2012005172-appb-M000020
만일 Dxl(n), Dyl(n)이 특정한 한계값보다 크면, 좌표는 허상에 해당하는 것으로 판단한다. 상기에서 특정한 한계값은 사용한 적외선 수신부 센서의 밀도에 의존한다.If D xl (n) and D yl (n) are greater than a certain threshold, the coordinates are determined to correspond to the virtual image. The specific limit value above depends on the density of the infrared receiver sensor used.
상기에서 xo(n), yo(m)은 직교 스캐닝을 통해 얻어진 허상을 포함하는 좌표이고, Xc와 Yc는 사용된 터치 측정 신호 수신부의 개수를 의미한다.In the above description , x o (n) and y o (m) are coordinates including a virtual image obtained through orthogonal scanning, and Xc and Yc mean the number of touch measurement signal receivers used.
도 9, 도 10와 같이 빗각으로 스캔하는 경우에, 터치 측정 신호 발신부에서 송출되는 터치 측정 신호는 하나의 터치 측정 신호 발신부에서 터치 측정 신호 수신부와 수신부에 연결되어 있는 면에 대하여 직각의 송출 신호와 빗각(둔각 또는 예각)의 터치 측정 신호를 연속적으로 송출함에 주의하여야 한다.In the case of scanning at an oblique angle as shown in FIGS. 9 and 10, the touch measurement signal transmitted from the touch measurement signal transmitter is transmitted at a right angle with respect to the surface connected to the touch measurement signal receiver and the receiver in one touch measurement signal transmitter. Care should be taken that the signal and the oblique (oblique or acute) touch signal are transmitted continuously.
즉, 종래에는 모든 터치 측정 신호 발신부에서 직각의 터치 측정 신호를 연속적으로 송출한 다음 빗각의 터치 측정 신호를 다시 모든 터치 측정 신호 발신부에서 연속적으로 송출하도록 하였으나, 본 발명에서는 하나의 터치 측정 신호 발신부에서 직각의 터치 측정 신호와 빗각의 터치 측정 신호를 동시에 방사상으로 송출하고 해당 발신부에 대해 소정의 각도 즉, 둔각, 직각, 예각에 있는 수신부에서 수신되는 터치 측정 신호로 터치의 좌표 또는 지름을 연산한다는 것에 차이가 있다.That is, in the related art, the touch measurement signals of the right angle are continuously transmitted from all the touch measurement signal transmitters, and then the touch measurement signals of the oblique angle are continuously transmitted again from all the touch measurement signal transmitters. The transmitter transmits the right angle touch measurement signal and the oblique angle touch measurement signal radially at the same time, and the coordinate or diameter of the touch is received by the touch measurement signal received at the receiver at a predetermined angle, that is, an obtuse angle, a right angle, and an acute angle with respect to the corresponding transmitter. The difference is that it computes.
도 11은 본 발명의 제2실시예인 모듈형으로 터치 측정 신호 수신부를 구성한 멀티 터치 입력 위치 인식 장치 구성도이고, 도 12는 본 발명의 제2실시예인 모듈형으로 터치 측정 신호 수신부를 구성한 멀티 터치 입력 위치 인식 장치 동작을 설명하기 위한 도면이다.FIG. 11 is a block diagram of a multi-touch input position recognizing apparatus including a touch measurement signal receiver in a modular form according to a second embodiment of the present invention, and FIG. 12 is a multi-touch structure including a touch measurement signal receiver in a modular form according to a second embodiment of the present invention. A diagram for describing an operation of an input position recognizing apparatus.
본 발명의 제2실시예에 따른 멀티 터치 입력 위치 인식 장치는 터치 측정 신호 발신부(1160)에서 송출되는 터치 위치 측정 신호는 터치 측정 신호 발신부(1160)에서 소정의 각도로 방사상으로 송출되고 미리 정의된 예각, 직각, 둔각에 위치한 3개의 터치 측정 신호 수신부(1140)에서 상기 터치 위치 측정 신호를 동시에 측정하도록 하되 소정의 개수 단위로 터치 측정 신호 수신부(1140)를 모듈화한 후 상기 수신부 모듈(A, B, C)을 소정 개수 단위로 묶어 수신부 모듈 그룹부(1110)가 되도록 한다.In the multi-touch input position recognizing apparatus according to the second embodiment of the present invention, the touch position measuring signal transmitted from the touch measuring signal transmitting unit 1160 is radially transmitted at a predetermined angle from the touch measuring signal transmitting unit 1160 and is previously. Three touch measurement signal receivers 1140 located at defined acute angles, right angles, and obtuse angles simultaneously measure the touch position measurement signals, but after modularizing the touch measurement signal receiver 1140 by a predetermined number unit, the receiver module A , B, C) are bundled in a predetermined number unit to be the receiver module group unit 1110.
한편 터치 측정 신호 발신부(1160) 역시 소정 개수의 터치 측정 신호 발신부(1160)를 묶어 발신부 그룹부(1120)를 구성한다.Meanwhile, the touch measurement signal transmitter 1160 also forms a transmitter group unit 1120 by tying a predetermined number of touch measurement signal transmitters 1160.
수신부 모듈 A, B, C는 하나의 각각 하나의 수신부 모듈 신호 변환부(1131, 1132, 1133)에 의해 각 수신부 모듈에 포한된 터치 측정 신호 수신부(1140)에서 수신된 터치 측정 신호를 전압 신호로 변환한다.The receiver modules A, B, and C each use a touch measurement signal received by the touch measurement signal receiver 1140 included in each receiver module by one receiver module signal converter 1131, 1132, and 1133 as voltage signals. Convert.
상기 수신부 모듈 A, B, C에는 각각 아날로그 신호인 전압 신호를 디지털 신호로 변환하는 A/D변환부(1150)가 각각 연결되어 제어부에 디지털값으로 변환된 터치 위치 측정 신호의 수신값을 출력한다.The receiver modules A, B, and C are respectively connected to the A / D converters 1150 for converting voltage signals, which are analog signals, into digital signals, respectively, and output the received values of the touch position measurement signals converted to digital values to the controller. .
한편 도면에는 미도시되어 있으나 발신 구동 클럭부는 상기 발신부 그룹부(1120)에 포함된 동일한 인덱스의 터치 측정 신호 발신부(1160)가 동시에 구동되도록 발신부 구동 클럭(1180)을 출력한다.Although not shown in the drawing, the transmission driving clock outputs the transmission driver driving clock 1180 such that the touch measurement signal transmission unit 1160 of the same index included in the transmission group group 1120 is simultaneously driven.
상기 발신 구동 클럭부의 구동 클럭(1180)은 발신부 드라이버(1170)에 공급되어 터치 측정 신호 발신부(1160)를 구동하여 터치 측정 신호가 소정의 각도로 방사상으로 송출되도록 한다.The driving clock 1180 of the transmission driving clock unit is supplied to the transmission driver 1170 to drive the touch measurement signal transmitter 1160 to radiate the touch measurement signal radially at a predetermined angle.
상기와 같은 구성을 가지는 본 발명의 제2실시예에 따른 멀티 터치 인식장치의 동작을 도 12를 참고하여 설명한다.An operation of the multi-touch recognition device according to the second embodiment of the present invention having the above configuration will be described with reference to FIG. 12.
터치 측정 신호 수신부 전체를 소정 개수로 묶어 수신부 모듈 A, B, C로 나누고 상기 A, B, C 묶인 수신부 모듈을 다시 하나의 수신부 모듈 그룹부 N과 N+1로 구성되고, 터치 측정 신호 발신부 역시 소정 개수로 묶어 발신부 그룹부 RN과 RN+1로 구성됨은 상기에서 설명한 바와 같다.The entire touch measurement signal receiver is divided into a predetermined number and divided into receiver module A, B, and C. The receiver module bundled with A, B, and C is further configured by one receiver module group N and N + 1. Also grouped by a predetermined number is composed of the transmitter group unit R N and R N +1 as described above.
발신 구동 클럭부의 구동 클럭, CLK가 발신부 드라이버에 공급되면 발신부 드라이버는 구동 클럭에 의해 지정된 각각의 발신부 그룹부(RN과 RN+1)의 동일 인덱스의 발신부 즉, RN(n)과 RN+1(n)에서 예각의 터치 측정 신호(R2), 직각의 터치 측정 신호(R1) 및 둔각의 터치 측정 신호(R3)가 포함된 터치측정 신호가 방사상으로 동시에 송출된다.When the driving clock CLK of the source driving clock part is supplied to the source driver, the source driver transmits the source of the same index of each source group group R N and R N + 1 specified by the driving clock, that is, R N ( In n) and R N + 1 (n), a touch measurement signal including an acute angle touch measurement signal R2, a right angle touch measurement signal R1, and an obtuse angle touch measurement signal R3 is radiated simultaneously.
이때 하나의 발신부 그룹부의 터치 측정 신호 발신부에서 방사상으로 송출되는 터치 측정신호는 상기 수신부 모듈(A, B, C)을 구성하는 터치 측정 신호 수신부에 수신되는데 제어부는 하나의 발신부에서 방사되는 터치 측정 신호 중 미리 정해진 소정의 각도 즉, 둔각, 직각, 예각에 위치에 있는 수신부에서 수신되는 터치 측정 신호로 터치의 좌표 또는 지름을 연산한다.In this case, the touch measurement signal transmitted radially from the touch measurement signal transmitter of one transmitter group unit is received in the touch measurement signal receiver constituting the receiver modules A, B, and C, and the controller is radiated from one transmitter. The coordinates or the diameter of the touch are calculated using the touch measurement signal received by the receiver located at a predetermined predetermined angle, that is, obtuse, right angle, and acute angle, among the touch measurement signals.
즉, 발신부 RN(n)에서 송출되는 터치 측정 신호 중 상기 발신부 RN(n)에 대해 예각의 위치에 있는 A모듈의 터치 측정 신호 수신부에서 수신되는 터치 측정 신호와 직각의 위치에 있는 B모듈의 터치 측정 신호 수신부에서 수신되는 터치 측정 신호와 둔각의 위치에 있는 C모듈의 터치 측정 신호 수신부에서 수신되는 터치 측정 신호만을 가지고 제어부는 터치 측정 신호로 터치의 좌표 또는 지름을 연산한다.That is, the transmitter R N the foot of the (n) touch measurement signal sent out from the bride R N (n) in the position of the touch measurement signal and a right angle that is received from the touch measurement signal receiving section of the A module in the position of the acute angle to the The controller calculates the coordinates or the diameter of the touch with the touch measurement signal using only the touch measurement signal received by the touch measurement signal receiver of the B module and the touch measurement signal received by the touch measurement signal receiver of the C module at an obtuse position.
상기의 방식에 의해 각 수신부에 의해 수신된 터치 측정 신호는 상기 제1실시예에서 설명한 것과 같이 수학식 1 내지 수학식 20에 의하여 터치 위치를 측정한다.The touch measurement signal received by each receiver by the above-described method measures the touch position according to Equations 1 to 20 as described in the first embodiment.
상기와 같은 방식에 따라 본 발명의 제2실시예는 발신부 그룹부별(RN, RN+1) 동일 인덱스를 가지는 터치 측정 신호 발신부에서 터치 측정 신호가 동시에 송출되고 터치 측정 신호 수신부 역시 수신부 모듈(A, B, C)별로 적어도 하나의 터치 측정 신호가 수신되므로 제1실시예보다 더 빠르게 터치 위치를 측정할 수 있을 뿐만 아니라 터치 위치를 더 정확하게 측정할 수 있게 되어 터치 위치가 빠르게 변화되더라고 이를 빠르고 정확하게 측정할 수 있게 된다.According to the above-described method, according to the second embodiment of the present invention, a touch measurement signal is simultaneously transmitted in a touch measurement signal transmitter having the same index for each transmitter group group (R N , R N + 1 ) and the touch measurement signal receiver is also a receiver. Since at least one touch measurement signal is received for each module (A, B, C), not only can the touch position be measured more quickly than the first embodiment, but also the touch position can be measured more accurately, so that the touch position changes quickly. This can be measured quickly and accurately.
도 13은 본 발명의 제2실시예인 인접 수송출 모듈군에서 수신부 모듈이 서로 연동되는 원리를 설명하기 위한 도면이다.13 is a view for explaining the principle that the receiver module is interlocked with each other in the adjacent transport module group of the second embodiment of the present invention.
도 13에서 보는 바와 같이 본 발명의 제2실시예에서 인접한 발신부 그룹부(1330, 1340)의 터치 측정 신호 발신부에서 송출되는 터치 측정신호 중 예각의 터치 측정 신호는 인접한 수신부 모듈 그룹부(1310, 1320)의 수신부 모듈(1311~1313, 1321~1323) 내의 터치 측정 신호 수신부에서 수신될 수 있으므로 어떠한 발신부 그룹부(1330, 1340)의 터치 측정 신호 발신부에서 터치 측정 신호가 송출되는지에 무관하게 수신부 모듈 그룹부(1310, 1320)의 일부의 수신부 모듈은 적어도 터치 측정 신호를 수신할 수 있도록 구성될 수 있다.As shown in FIG. 13, in the second exemplary embodiment of the present invention, an acute angle touch measurement signal of the touch measurement signals transmitted by the touch measurement signal transmitters of the adjacent transmitter group units 1330 and 1340 is adjacent to the receiver module group unit 1310. Since it may be received by the touch measurement signal receivers in the receiver modules 1311 to 1313 and 1321 to 1323 of 1320, it is irrelevant to which transmitter group units 1330 and 1340 the touch measurement signals are transmitted. In some embodiments, the receiver module of some of the receiver module group units 1310 and 1320 may be configured to receive at least a touch measurement signal.
상기의 예에서 수신부를 그룹화한 예를 A, B, C의 세개의 예에 대해서 설명하였으나, 전체 수신부를 소정 개수로 단위로 그룹화하는 경우 하나의 수신부 모듈 그룹부 내에 N개의 수신부 모듈이 포함되도록 할 수 있다.In the above example, the example of grouping the receivers has been described with three examples A, B, and C. However, when all receivers are grouped by a predetermined number, one receiver module group unit includes N receiver modules. Can be.
또한 상기의 예에서 수신부 모듈 그룹부는 2개를 예시하였으나, 구성에 따라 2 이상의 수신부 모듈 그룹부가 되도록 할 수 있다.In addition, in the above example, although two receiver module group units are illustrated, two or more receiver module group units may be configured according to the configuration.
구체적으로 전체 수신부를 M개의 수신부 모듈 그룹부로 분할하고 하나의 수신부 모듈 그룹부를 N개의 수신부 모듈로 분할하며 하나의 수신부 모듈에는 C개의 수신부가 포함되도록 할 수 있다. 이에 따라 X축의 전체 수신부의 개수를 X라 하면 X = N × M × C가 성립한다.Specifically, the entire receiver may be divided into M receiver module group units, one receiver module group unit may be divided into N receiver modules, and one receiver module may include C receivers. Accordingly, if X is the total number of receivers on the X-axis, X = N × M × C is established.
디스플레이 산업분야에 이용가능함.Available in the display industry.

Claims (13)

  1. 수신모듈 그룹부를 향하여 방사상으로 연속된 터치 측정 신호를 발신하는 터치 측정 신호 발신부를 그룹화한 복수의 발신부 그룹부;A plurality of transmitter group units grouping the touch measurement signal transmitters for transmitting radially continuous touch measurement signals toward the receiver module group unit;
    상기 발신부 그룹부에서 발신되는 측정신호를 직각, 예각 및 둔각의 위치에서 각각 수신모듈별로 직각, 예각 및 둔각으로 동시에 수신하도록 적어도 3개 이상인 다수의 수신 모듈을 구비한 복수의 수신모듈 그룹부; A plurality of receiving module group units having a plurality of receiving modules having at least three or more receiving modules to simultaneously receive the measurement signals transmitted from the transmitter group unit at right, acute, and obtuse angles at respective right, acute, and obtuse angles;
    상기 발신부 그룹부 각각에 포함된 동일한 인덱스의 터치 측정 신호 발신부가 동시에 구동되도록 구동 클럭을 제공하는 발신부 구동 클럭부;A transmitter driving clock unit providing a driving clock to simultaneously drive touch measurement signal transmitters having the same index included in each of the transmitter group units;
    상기 복수의 수신모듈 그룹부에서 수신된 터치 측정 신호로 터치 영역의 x, y 좌표 또는 지름의 크기를 연산하는 제어부; 및A control unit for calculating a size of an x, y coordinate or diameter of the touch area using the touch measurement signals received by the plurality of receiving module group units; And
    사용자로부터 터치 입력을 입력받는 터치 패널을 포함하는 것을 특징으로 하는 멀티 터치 인식 장치.And a touch panel configured to receive a touch input from a user.
  2. 펄스를 포함하는 터치 측정 신호를 방사상으로 송출하는 발신소자를 하나 이상 포함하는 발신 모듈;A transmitting module including one or more transmitting elements for radially transmitting a touch measurement signal including a pulse;
    상기 발신 모듈에서 송출된 상기 터치 측정 신호를 수신하는 수신 소자를 하나 이상 포함하는 수신 모듈;A receiving module including one or more receiving elements for receiving the touch measurement signal transmitted from the transmitting module;
    상기 수신 모듈에서 수신된 터치 측정 신호로부터 터치 영역의 좌표 또는 지름의 크기를 연산하는 제어부; 및A controller configured to calculate a size of a coordinate or diameter of a touch area from the touch measurement signal received by the receiving module; And
    사용자로부터 터치 입력을 입력받는 터치 패널을 포함하며,It includes a touch panel for receiving a touch input from the user,
    발신소자로부터 방사상으로 발신된 터치 측정 신호를 직각, 둔각 및 예각에 위치한 수신소자가 직각, 예각 또는 둔각의 터치신호를 연속 수신하는 것을 특징으로 하는 멀티 터치 인식 장치.A multi-touch recognition device, characterized in that a receiving element located at right angles, obtuse angles and acute angles of a touch measurement signal transmitted radially from a transmitting element receives continuous touch signals at right angles, acute angles or obtuse angles.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 제어부는 터치 좌표 중 직각으로 수신된 터치 신호로부터 얻은 직교좌표를 하기의 수학식에 의하여 계산하는 것을 특징으로 하는 멀티 터치 인식 장치.And the controller calculates a rectangular coordinate obtained from a touch signal received at right angles among the touch coordinates by the following equation.
    Figure PCTKR2012005172-appb-I000001
    Figure PCTKR2012005172-appb-I000001
    Figure PCTKR2012005172-appb-I000002
    Figure PCTKR2012005172-appb-I000002
    (상기에서,(From the above,
    Nx(k): X축 터치 측정신호 측정값, Ny(k): Y축 터치 측정신호 측정값,N x (k): X-axis touch signal measurement value, N y (k): Y-axis touch signal measurement value,
    x(n): X축 터치 영역 좌표, y(n): Y축 터치 영역 좌표,x (n): X-axis touch area coordinates, y (n): Y-axis touch area coordinates,
    k: 수신 소자 인덱스로 X축은 0~N, Y축은 0~M의 자연수,k: Receive element index, where X is 0 to N, Y is 0 to M,
    i: X축 터치측정신호 수신부 인덱스, j: Y축 터치측정신호 수신부 인덱스,i: X-axis touch measurement signal receiver index, j: Y-axis touch measurement signal receiver index,
    w: X축 터치영역 수신부 개수, h: Y축 터치영역 수신부 개수,w: number of X-axis touch area receivers, h: number of Y-axis touch area receivers,
    W=S/N이고 H=S/M이며, 이때 S는 화면의 최대 해상도를 의미하고, N과 M은 각각 X와 Y축의 수터치 측정 신호 발신부의 개수이다.)W = S / N and H = S / M, where S means the maximum resolution of the screen, and N and M are the number of transmitters of the multi-touch measurement signals on the X and Y axes, respectively.)
  4. 제3항에 있어서,The method of claim 3,
    상기 직교 좌표를 그에 대응하는 예각 또는 둔각인 기울기 좌표로 환산한 것에 기초로 허상 여부를 판단하는 멀티 터치 인식 장치.And determining whether the virtual image is based on converting the Cartesian coordinates into corresponding inclinations of an acute angle or an obtuse angle.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 직교좌표를 하기의 수학식 13 및 수학식 14에 의하여 환산된 둔각 기울기 좌표에 기초하여 허상 여부를 판단하는 특징으로 하는 멀티 터치 인식 장치.And determining the virtual image on the basis of the rectangular coordinates based on the obtuse tilt coordinates converted by Equations 13 and 14 below.
    [수학식 13][Equation 13]
    Figure PCTKR2012005172-appb-I000003
    Figure PCTKR2012005172-appb-I000003
    [수학식 14][Equation 14]
    Figure PCTKR2012005172-appb-I000004
    Figure PCTKR2012005172-appb-I000004
    (상기에서 Xo(n), Yo(n)은 직교 스캐닝을 통해 얻어진 허상을 포함하는 좌표이고, XC와 YC는 각 센서부에 사용된 센서의 개수이며, d는 예각 또는 둔각으로 스캔할 때 예각 또는 둔각의 각도를 결정하는 인자이다. n은 X축상의 터치 물체의 수이고, m은 Y축상의 터치물체의 수이다.)(In the above, X o (n), Y o (n) is a coordinate including a virtual image obtained through orthogonal scanning, X C and Y C is the number of sensors used in each sensor unit, d is acute or obtuse angle) This factor determines the angle of the acute or obtuse angle when scanning, where n is the number of touch objects on the X axis and m is the number of touch objects on the Y axis.)
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 직교좌표를 하기의 수학식 17 및 수학식 18에 의하여 예각 기울기 좌표로 환산되어지는 것에 기초로 허상 여부를 판단하는 것을 특징으로 하는 멀티 터치 인식 장치.     And determining whether the virtual image is based on the rectangular coordinates converted into acute-angle gradient coordinates by Equation 17 and Equation 18 below.
    [수학식 17][Equation 17]
    Figure PCTKR2012005172-appb-I000005
    Figure PCTKR2012005172-appb-I000005
    [수학식 18]Equation 18
    Figure PCTKR2012005172-appb-I000006
    Figure PCTKR2012005172-appb-I000006
    (상기에서 xo(n), yo(m)은 직교 스캐닝을 통해 얻어진 허상을 포함하는 좌표이고, Xc와 Yc는 사용된 터치 측정 신호 수신소자의 개수를 의미한다. d는 예각 또는 둔각으로 스캔할 때 예각 또는 둔각의 각도를 결정하는 인자이다. n은 X축상의 터치 물체의 수이고, m은 Y축상의 터치물체의 수이다.)(Where x o (n) and y o (m) are coordinates including a virtual image obtained through orthogonal scanning, and X c and Y c represent the number of touch measurement signal receiving elements used. D is an acute angle or This factor determines the angle of the acute or obtuse angle when scanning at an obtuse angle, where n is the number of touch objects on the X axis and m is the number of touch objects on the Y axis.)
  7. 제5항 또는 제6항에 있어서,The method according to claim 5 or 6,
    하기의 수학식 15 및 수학식 16에 의하여 결정되는 Dxr(n), Dyr(n)이 소정의 한계값 이상이면 허상으로 판단하는 것을 특징으로 하는 멀티 터치 인식 장치.And D xr (n) and D yr (n) determined by Equations (15) and (16) below are determined to be virtual images.
    [수학식 15][Equation 15]
    Figure PCTKR2012005172-appb-I000007
    Figure PCTKR2012005172-appb-I000007
    [수학식 16][Equation 16]
    Figure PCTKR2012005172-appb-I000008
    Figure PCTKR2012005172-appb-I000008
    (상기에서 XT, YT는 빗각(예각) 스캔시에 실제 터치 물체의 측정 좌표이며, XTC, YTC는 직교좌표로부터 환산된 기울기 좌표이다.)(In the above, X T and Y T are the coordinates of the actual touch object at the oblique angle scan, and X TC and Y TC are the slope coordinates converted from the rectangular coordinates.)
  8. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    터치영역으로부터 측정된 좌표값은 정규화된 터치측정 값(Nx(k), Ny(k))으로 계산하여 사용하는 것을 특징으로 하는 멀티 터치 인식 장치.The coordinate value measured from the touch area is calculated and used as a normalized touch measurement value (N x (k), N y (k)).
  9. 제8항에 있어서, The method of claim 8,
    터치영역의 측정된 좌표 값은 하기 수학식 1 및 수학식 2에 의하여 정규화되고, The measured coordinate values of the touch area are normalized by Equations 1 and 2 below.
    터치 영역의 정규화된 측정값들(Nx(k), Ny(k))은 하기의 수학식 9 및 수학식 10에 의하여 보정되어지는 것을 특징으로 하는 멀티 터치 인식 장치.The normalized measured values N x (k) and N y (k) of the touch area are corrected by Equations 9 and 10 below.
    [수학식 1][Equation 1]
    Figure PCTKR2012005172-appb-I000009
    Figure PCTKR2012005172-appb-I000009
    [수학식 2][Equation 2]
    Figure PCTKR2012005172-appb-I000010
    Figure PCTKR2012005172-appb-I000010
    (상기에서, (From the above,
    Nx(k): X축 터치 측정신호 측정값의 정규화 값,N x (k): Normalized value of X-axis touch signal measurement value,
    Ny(k): Y축 터치 측정신호 측정값의 정규화 값,N y (k): Y-axis touch measurement signal normalized value,
    k: 수신 소자 인덱스로 X축은 0~N, Y축은 0~M의 자연수,k: Receive element index, where X is 0 to N, Y is 0 to M,
    G: 스케일링값, 1~100의 자연수,G: scaling value, natural number from 1 to 100,
    n: 1 또는 2 등의 자연수로, 신호의 노이즈 성분의 반응 정도를 선형으로 할지 비선형으로 할지를 결정하는 것,n is a natural number such as 1 or 2 that determines whether the response of the noise component of the signal is linear or nonlinear,
    Xmax, Ymax: 각각 X축과 Y축에서 측정된 터치 신호 중 가장 큰 값)X max, Y max: the largest of the touch signals measured on the X and Y axes, respectively)
    [수학식 9][Equation 9]
    Figure PCTKR2012005172-appb-I000011
    Figure PCTKR2012005172-appb-I000011
    [수학식 10][Equation 10]
    Figure PCTKR2012005172-appb-I000012
    Figure PCTKR2012005172-appb-I000012
    (상기에서,(From the above,
    Px(k): X축 보정 함수값, Px(k): Y축 보정 함수값,P x (k): X axis compensation function value, P x (k): Y axis compensation function value,
    Sx(i): X축 매칭 필터 함수, Sy(i): Y축 매칭 필터 함수,S x (i): X-axis matching filter function, Sy (i): Y-axis matching filter function,
    k: 수신 소자 인덱스, l: 매칭 필터의 샘플링 개수)k: receiving element index, l: sampling number of matching filter)
  10. 제9항에 있어서,The method of claim 9,
    상기 측정된 터치 신호의 정규화된 값(Nx,Ny) 중에서 소정의 제1기준값(Tlower)보다 크고, 소정의 제2기준값(Thigher)보다 작은 값을 사용하여 터치 영역의 좌표 또는 지름의 크기를 계산하는 것을 특징으로 하는 멀티 터치 인식 장치.Coordinate or diameter of the touch area using a value greater than a predetermined first reference value T lower and smaller than a predetermined second reference value T higher among the normalized values N x and N y of the measured touch signal. Multi-touch recognition device, characterized in that for calculating the size of.
  11. 제10항에 있어서,The method of claim 10,
    상기 제1기준값(Tlower) 및 제2기준값(Thigher)은 하기의 수학식 7 및 수학식 8로 계산되는 확률밀도 함수에 의해 결정되는 것을 특징으로 하는 멀티 터치 인식 장치.The first reference value T lower and the second reference value T higher are determined by a probability density function calculated by Equations 7 and 8 below.
    [수학식 7][Equation 7]
    Figure PCTKR2012005172-appb-I000013
    Figure PCTKR2012005172-appb-I000013
    [수학식 8][Equation 8]
    Figure PCTKR2012005172-appb-I000014
    Figure PCTKR2012005172-appb-I000014
    (상기에서,(From the above,
    Tx(k): X축 확률밀도 함수값, Ty(k): Y축 확률밀도 함수값,T x (k): X-axis probability density function, T y (k): Y-axis probability density function,
    i: X축 수신 소자 인덱스, j: Y축 수신 소자 인덱스,i: X-axis receiving element index, j: Y-axis receiving element index,
    w: X축 터치영역 수신소자 개수, h: Y축 터치영역 수신소자 개수,w: number of X-axis touch area receiving elements, h: number of Y-axis touch area receiving elements,
    Nx(i): X축 터치 측정신호 측정값, Ny(j): Y축 터치 측정신호 측정값,N x (i): X-axis touch signal measurement value, N y (j): Y-axis touch signal measurement value,
    i: X축 터치측정신호 수신부 인덱스, j: Y축 터치측정신호 수신부 인덱스,i: X-axis touch measurement signal receiver index, j: Y-axis touch measurement signal receiver index,
    w: X축 터치영역 수신부 개수, h: Y축 터치영역 수신부 개수,w: number of X-axis touch area receivers, h: number of Y-axis touch area receivers,
    W=S/N이고 H=S/M이며, 이때 S는 화면의 최대 해상도를 의미하고, N과 M은 각각 X와 Y축의 수터치 측정 신호 발신부의 개수이다.)W = S / N and H = S / M, where S means the maximum resolution of the screen, and N and M are the number of transmitters of the multi-touch measurement signals on the X and Y axes, respectively.)
  12. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 제어부는 터치 측정신호로부터 터치 영역의 지름[dx(n), dy(n)]을 계산하여 터치로 인정하는 조건에 부합하는지를 판단하는 것을 특징으로 하는 멀티 터치 스크린 장치.And the controller calculates diameters (dx (n), dy (n)) of the touch area from the touch measurement signal to determine whether the condition is recognized as a touch.
  13. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 발신 소자와 상기 수신 소자는 같은 선상에 서로 교대로 배치되는 것을 특징으로 하는 멀티 터치 인식 장치.And the transmitting element and the receiving element are alternately arranged on the same line.
PCT/KR2012/005172 2011-07-01 2012-06-29 Multitouch recognizing device WO2013005949A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/130,454 US9292132B2 (en) 2011-07-01 2012-06-29 Multitouch recognizing device
JP2014518810A JP5757004B2 (en) 2011-07-01 2012-06-29 Multi-touch recognition device
CN201280032015.5A CN103649877B (en) 2011-07-01 2012-06-29 Multiple point touching identifying device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0065415 2011-07-01
KR20110065415 2011-07-01
KR1020110088772A KR101260341B1 (en) 2011-07-01 2011-09-02 Apparatus for sensing multi-touch on touch screen apparatus
KR10-2011-0088772 2011-09-02

Publications (2)

Publication Number Publication Date
WO2013005949A2 true WO2013005949A2 (en) 2013-01-10
WO2013005949A3 WO2013005949A3 (en) 2013-03-14

Family

ID=47437534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005172 WO2013005949A2 (en) 2011-07-01 2012-06-29 Multitouch recognizing device

Country Status (1)

Country Link
WO (1) WO2013005949A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100038012A (en) * 2008-10-02 2010-04-12 한국과학기술연구원 Optical recognition user input device and method of recognizing input from user
KR20100058397A (en) * 2008-11-24 2010-06-03 김용철 Apparatus for inputting infrared ray touch screen
WO2011054278A1 (en) * 2009-11-05 2011-05-12 上海精研电子科技有限公司 Infrared touch screen device and multipoint locating method thereof
KR20110057146A (en) * 2008-08-07 2011-05-31 오웬 드럼 Method and apparatus for detecting a multitouch event in an optical touch-sensitive device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110057146A (en) * 2008-08-07 2011-05-31 오웬 드럼 Method and apparatus for detecting a multitouch event in an optical touch-sensitive device
KR20100038012A (en) * 2008-10-02 2010-04-12 한국과학기술연구원 Optical recognition user input device and method of recognizing input from user
KR20100058397A (en) * 2008-11-24 2010-06-03 김용철 Apparatus for inputting infrared ray touch screen
WO2011054278A1 (en) * 2009-11-05 2011-05-12 上海精研电子科技有限公司 Infrared touch screen device and multipoint locating method thereof

Also Published As

Publication number Publication date
WO2013005949A3 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
WO2013147464A1 (en) Multi-touch screen device
WO2010053305A2 (en) Infrared ray touch scanning module
WO2011062389A2 (en) Touch panel, touch panel drive method and display device comprising a touch panel
KR101260341B1 (en) Apparatus for sensing multi-touch on touch screen apparatus
WO2018230852A1 (en) Method for identifying moving object in three-dimensional space and robot for implementing same
AU2014297039B2 (en) Auto-cleaning system, cleaning robot and method of controlling the cleaning robot
WO2013055137A1 (en) Apparatus and method for recognizing motion by using event-based vision sensor
WO2010024516A2 (en) Apparatus and method of obtaining depth image
WO2018186583A1 (en) Method for identifying obstacle on driving ground and robot for implementing same
WO2012053792A2 (en) Input device and contact position detecting method thereof
WO2015170796A1 (en) Vehicle and control method thereof
WO2020251288A1 (en) Touch device and touch detection method therefor
WO2017078379A1 (en) Touch driving device
WO2010030077A2 (en) Touch screen apparatus and method for inputting user information on a screen through context awareness
WO2010085070A2 (en) Input apparatus
WO2013077623A1 (en) Structure displacement measurement system and method
WO2012134026A1 (en) Apparatus and method for detecting contact
WO2016013832A1 (en) Touch screen device and display device using three-dimensional position information
WO2018111011A1 (en) Moving object detection system and method
WO2013081286A1 (en) Display device equipped with motion detection sensor
WO2011084012A2 (en) Global position estimation and correction method of mobile robot using magnetic landmarks
WO2019199112A1 (en) Autonomous work system and method, and computer-readable recording medium
WO2019164312A1 (en) Camera module and super resolution image processing method thereof
WO2013005949A2 (en) Multitouch recognizing device
WO2018194227A1 (en) Three-dimensional touch recognition device using deep learning and three-dimensional touch recognition method using same

Legal Events

Date Code Title Description
ENP Entry into the national phase in:

Ref document number: 2014518810

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14130454

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807894

Country of ref document: EP

Kind code of ref document: A2