WO2013005922A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2013005922A1
WO2013005922A1 PCT/KR2012/003842 KR2012003842W WO2013005922A1 WO 2013005922 A1 WO2013005922 A1 WO 2013005922A1 KR 2012003842 W KR2012003842 W KR 2012003842W WO 2013005922 A1 WO2013005922 A1 WO 2013005922A1
Authority
WO
WIPO (PCT)
Prior art keywords
cap
sealing
secondary battery
flange
battery
Prior art date
Application number
PCT/KR2012/003842
Other languages
French (fr)
Korean (ko)
Inventor
김영덕
정영호
최승호
Original Assignee
주식회사 루트제이드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루트제이드 filed Critical 주식회사 루트제이드
Publication of WO2013005922A1 publication Critical patent/WO2013005922A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery, and more particularly, to a secondary battery in which a can and a cap are joined using two kinds of joints having different bonding strengths in a structure or a method of sealing a can and a cap forming a case of the secondary battery. It relates to a battery.
  • batteries that can be repeatedly charged / discharged that is, secondary batteries are classified into nickel cadmium batteries, nickel hydrogen batteries, nickel zinc batteries, lithium secondary batteries, and the like.
  • lithium secondary batteries are generally used in consideration of their lifetime and capacity. It is becoming.
  • the lithium secondary battery is classified into a lithium metal battery using a liquid electrolyte, a lithium ion battery, and a lithium polymer battery using a polymer solid electrolyte according to the type of electrolyte.
  • Lithium polymer batteries are classified into fully solid lithium polymer batteries containing no organic electrolyte at all and lithium ion polymer batteries using a gel polymer electrolyte containing organic electrolyte according to the type of polymer solid electrolyte.
  • Lithium ion secondary batteries have improved energy density and repeated service life characteristics compared to conventional secondary battery products, and these advantages have steadily increased demand and usage range.
  • the lithium ion secondary battery maintains a more stable performance against the change and risk factors of the external environment due to the high energy density, and in the abnormal situation, the contents of the electrode leak out of the case (pack) to violate the safety. To prevent this from happening, it is necessary to introduce fundamental safety measures in the product design.
  • the existing metal exterior material is generally composed of a can (container) for accommodating the contents of the battery and a cap (cover) covering the material, and the material is iron, stainless steel, aluminum and other metals, or These alloys are used.
  • the welding method ensures stable sealing of the battery because the base material (can and cap) is directly melted and mixed at the joint and then solidified to form a permanent bond at the joint.
  • Welding of such a metal sheath has been used, for example, laser welding, arc welding, plasma welding, electrical resistance welding, and the like, and related prior art may refer to various patents filed by the applicant (Patent Application No. 2000-0021513; Patent Application No. 2000-0014318; Patent Application No. 2000-0044179; Patent Application No. 2003-0065237)
  • the metal sheath which is permanently bonded and / or sealed by welding, not only provides the reliability of long-term use of the battery, but also protects the contents of the battery from external environmental factors such as pressure and mechanical shock, temperature and humidity changes, and at the same time It effectively prevents harmful chemicals from leaking out.
  • the conventional sealing method of welding a can and a cap of a battery by a method such as welding by applying a metal exterior material has the following problems.
  • the present applicant has proposed a technique for bonding or sealing the can and the cap by using a fusion bonding member having a melting point lower than that of the can and the cap (see Patent Application No. 2009-0064395).
  • the can and the cap may be simultaneously sealed and the pressure release mechanism such as the vent may be provided, but the secondary battery may be formed at random or randomly because the pressure is released.
  • the pressure release mechanism such as the vent may be provided, but the secondary battery may be formed at random or randomly because the pressure is released.
  • the molten bonding member melts or tears, and a portion sealed by the molten bonding member opens, and when the gas formed inside the packaging material is discharged to the exterior of the packaging material through such a gap, Since a portion of the gas is randomly formed, there is a problem in that the peripheral electronic device or the component in which the secondary battery is used is degraded by the gas discharged or the performance is deteriorated by a chemical reaction.
  • the electrolyte when the battery is normally used, the electrolyte is caused to undergo electrical or chemical side reactions as the use time elapses, and gas is generated inside the exterior of the battery due to the side reaction.
  • gas When gas is generated, the packaging material expands and the degree of vacuum inside the packaging material decreases.
  • the inside of the battery is expanded in this way, the adhesion between the electrode plates is lowered, the electrolyte is depleted, and the performance of the battery is deteriorated.
  • the battery had to be discarded when the electrolyte was depleted and the battery performance decreased.
  • the present invention has been conceived to improve the problems of the prior art as described above, using a fusion bonding member that is melted at a temperature lower than the melting point of the packaging material (eg, 600 ° C. or less) to bond a portion of the packaging material to the remainder.
  • the part melt dissolves an exterior material and directly bonds together exterior materials, and provides the secondary battery which can easily form a vent part as well as sealing of an exterior material.
  • the present invention provides a secondary battery in which the vent action site can be selected according to design matters by selecting a site where a fusion bonding member is applied or provided.
  • the present invention provides a secondary battery capable of discharging the gas generated inside the packaging material due to an increase in temperature or pressure inside the packaging material to the outside of the packaging material through a portion in which the fusion bonding member is formed, and selecting a portion from which the gas is discharged.
  • the present invention provides a secondary battery capable of adjusting the sealing strength by adjusting the composition or the amount of coating of the melt bonding member.
  • the present invention provides a secondary battery in which a vent mechanism capable of releasing the battery at a specific temperature or pressure by appropriate composition or material selection of the melt bonding member is integrated with the sealing and / or junction of the battery. This object is focused on the ease of controlling the coating amount and the bonding area of the melt bonding member, it is possible to implement a secondary battery having a vent-integrated sealing design that can control the pressure durability.
  • the present invention provides a secondary battery that can prevent the battery from exploding while ensuring the sealing property of the battery by adjusting the area provided with the molten bonding member according to the design conditions, such as the capacity of the battery.
  • the present invention provides a secondary battery that can replenish and reuse the electrolyte when the electrolyte is depleted by using the battery. At this time, the electrolyte may be injected into the packaging material through the fusion bonding member.
  • a secondary battery including a metallic can including an accommodating part and an open part accommodating an electrode assembly and an electrolyte solution; A metallic cap positioned in the opening of the can to seal the can; A first sealing portion formed between a flange of the can and a flange of the cap to bond the can and the cap to each other; And a second sealing portion formed between the flange of the can and the flange of the cap to bond the can and the cap to each other, wherein bonding strengths of the first sealing portion and the second sealing portion are different from each other.
  • the sealing or bonding strength between the can and the cap may be adjusted by the area or melting point of the second sealing portion.
  • the second sealing part may be formed in at least one of portions except for one side adjacent to the electrode tab of the electrode assembly provided in the accommodating part.
  • the second sealing part may be formed in at least one of portions except for one side adjacent to the battery control system BMS provided outside of the accommodating part to protect the electrode assembly.
  • the first sealing part may be formed while the can and the cap are locally heated by locally heating the can and the cap, and the second sealing part may be formed without changing the state of the can and the cap.
  • the first sealing portion may directly bond the can and the cap, and the second sealing portion may indirectly bond the can and the cap by placing a fusion bonding member between the can and the cap.
  • the first sealing portion directly heats the can and the cap to the melting point of the can and the cap, and directly bonds the can and the cap, and the second sealing portion is an alloy of a nonferrous metal or a nonferrous metal having a lower melting point than the can and the cap.
  • the can and the cap may be joined by melting and solidifying the melt bonding member including a.
  • the second sealing part is melted when the temperature of the accommodating part rises to release the sealing state of the can and the cap, or the pressure greater than the joint fracture strength determined by the composition or the coating amount of the melted joint member is increased.
  • the inside of the can can be released from the can seal the cap.
  • the secondary battery according to the present invention for achieving the above object is a metallic can including an accommodating portion and an open portion accommodated together with the electrode assembly; A metallic cap positioned in the opening of the can to seal the can; A sealing portion formed between the flange of the can and the flange of the cap to seal the can and the cap by bonding to each other; And an explosion-proof portion formed between a flange of the can and a flange of the cap to bond the can and the cap to each other and to release a sealing state of the can and the cap. It can be formed by a molten bonding member comprising a non-ferrous metal or an alloy of non-ferrous metal having a melting point lower than the melting point of the cap.
  • the sealing part may be formed by directly joining the melted can and the cap by heating the can and the cap above the melting point of the can and the cap.
  • the explosion-proof part is melted when the temperature of the accommodating part rises to release the sealing state of the can and the cap, or a pressure greater than the bond breaking strength determined by the composition or the coating amount of the molten joint member is applied to the inside of the accommodating part. When it occurs in the can and the can seal the state of the cap can be released.
  • the explosion-proof part may be formed continuously with the sealing part to serve as a joint part for joining the can and the cap.
  • the explosion-proof part may be formed in at least one of portions except for one side adjacent to the electrode tab of the electrode assembly provided in the accommodation part.
  • the explosion-proof part may be formed in at least one of portions except for one side adjacent to the battery control system BMS provided outside of the accommodating part to protect the electrode assembly.
  • the molten bonding member has a melting point of 600 ° C. or less, preferably 400 ° C. or less, and may include any one selected from the group consisting of lead, tin, zinc, aluminum, silver, or an alloy thereof.
  • a secondary battery according to the present invention for achieving the above object is a metallic can including an electrode unit and an accommodating portion and an opening that is accommodated together with the electrolyte; A metallic cap positioned in the opening of the can to seal the can; A sealing portion formed between the flange of the can and the flange of the cap to seal the can and the cap by bonding to each other; And an electrolyte replenishment part formed between the flange of the can and the flange of the cap to bond and seal the can and the cap, and the electrolyte replenishment part formed to enable replenishment of the electrolyte solution, if necessary. And a molten bonding member including a nonferrous metal or an alloy of nonferrous metal having a melting point lower than the melting point of the can and the cap so as to serve as a joint for joining the can and the cap.
  • the electrolyte replenishment part is melted when the temperature of the accommodating part rises to release the sealing state of the can and the cap, or a pressure greater than the joint fracture strength determined by the composition or the coating amount of the molten joint member is increased. When it is generated inside, it is possible to release the sealed state of the can and the cap.
  • the molten bonding member may be melted and resolidified so as to replenish the electrolyte into the accommodating part to reseal the can and the cap.
  • the sealing part may be formed by directly joining the melted can and the cap by heating the can and the cap above the melting point of the can and the cap.
  • the molten bonding member has a melting point of 600 ° C. or less, preferably 400 ° C. or less, and may include any one selected from the group consisting of lead, tin, zinc, aluminum, silver, or an alloy thereof.
  • the electrolyte replenishment unit may be formed at at least one of portions except for one side adjacent to the electrode tab of the electrode assembly provided in the accommodation unit.
  • the electrolyte replenishment part may be formed in at least one of the portions except for one side adjacent to the battery control system BMS provided outside of the accommodating part to protect the electrode assembly.
  • At least one of the can or the cap may be formed with nickel or copper plating on the surface of the flange to improve bonding to the melt bonding member or wettability of the melt bonding member.
  • the flange of the can and the flange of the cap are formed in the same size, and the fusion bonding member may be provided between the flanges.
  • the flange end of the cap is bent toward the can, and the melt joint member may be provided between the flange of the can and the flange of the cap.
  • the secondary battery according to the present invention bonds the exterior materials to each other by using two types of bonding or sealing with different bonding strengths, the secondary battery can be easily formed while ensuring the sealing of the battery.
  • the secondary battery according to the present invention can easily set the temperature or pressure at which the vent operates by adjusting the application amount or composition of the melt bonding member.
  • the secondary battery according to the present invention can adjust the position or direction in which the gas generated by the temperature or the pressure rise is discharged by selecting the site where the molten bonding member is provided.
  • the secondary battery according to the present invention can adjust the position or direction in which the gas is discharged, it is possible to prevent damage to the components around the secondary battery.
  • the secondary battery according to the present invention seals a part of the packaging material by using a fusion bonding member having a lower melting point than the packaging material, it is possible to prevent deterioration of battery internal components to some extent.
  • the secondary battery according to the present invention can be changed to various positions according to design conditions instead of fixing the vent operation position to a specific position by selecting a portion provided with the molten bonding member.
  • the secondary battery according to the present invention can extend the service life of the battery because it can replenish the electrolyte that is depleted as a normal use of the battery. At this time, since the electrolyte can be injected through the portion provided with the fusion bonding member, the sealing of the battery can be maintained even after replenishing the electrolyte and the vent function can be secured in the same manner.
  • FIG. 1 is a perspective view illustrating a rechargeable battery according to an exemplary embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a modified example of the rechargeable battery of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along the cutting line "III-III" in FIG.
  • FIG. 4 is a cross-sectional view taken along the line “IV-IV” of FIG. 1.
  • FIG. 5 is a cross-sectional view illustrating an interior of a rechargeable battery according to an exemplary embodiment of the present invention.
  • FIG. 6 is a plan view illustrating an interior of a rechargeable battery of FIG. 5.
  • FIG. 7 is a cross-sectional view illustrating an interior of a rechargeable battery according to another exemplary embodiment of the present invention.
  • FIG. 8 is a plan view illustrating an interior of a rechargeable battery according to FIG. 7.
  • FIG. 9 is a cross-sectional view illustrating an example of an operating state of a rechargeable battery according to FIG. 7.
  • FIG. 10 is a cross-sectional view illustrating an interior of a rechargeable battery according to another exemplary embodiment of the present invention.
  • FIG. 11 is a plan view illustrating an interior of a rechargeable battery according to FIG. 10.
  • FIG. 12 is a cross-sectional view illustrating an example of an operating state of a rechargeable battery according to FIG. 10.
  • FIG. 13 to 15 are cross-sectional views showing the shape of a flange provided with a fusion bonding member of the flange shape of the secondary battery according to the present invention.
  • FIG. 1 is a perspective view of a rechargeable battery according to an exemplary embodiment of the present invention
  • FIG. 2 is a perspective view illustrating a modified example of the rechargeable battery according to FIG. 1
  • FIG. 3 is a cut line “III-III” of FIG. 1.
  • 4 is a cross-sectional view taken along the cutting line “IV-IV” of FIG. 1
  • FIG. 5 is a cross-sectional view showing the inside of a secondary battery according to an embodiment of the present invention
  • FIG. 6 is a inside of the secondary battery shown in FIG. 5.
  • 7 is a cross-sectional view illustrating an interior of a secondary battery according to another exemplary embodiment of the present invention
  • FIG. 8 is a plan view illustrating an interior of a secondary battery according to FIG. 7, and FIG.
  • FIG. 9 is a secondary battery according to FIG. 7.
  • 10 is a cross-sectional view showing an example of an operating state of the battery
  • FIG. 10 is a cross-sectional view showing the inside of a secondary battery according to another embodiment of the present invention
  • FIG. 11 is a plan view showing the inside of the secondary battery according to FIG. 12
  • 15 is a cross-sectional view showing the shape of a flange provided with a fusion bonding member of the flange shape of the secondary battery according to the present invention.
  • a rechargeable battery 100 may include an outer material including a metallic can 110 and a metallic cap 120, and an exterior of the can 110 and the cap 120.
  • the packaging materials may be bonded to each other by bonding or sealing formed between the flanges 113 and 123.
  • the can 110 has an accommodating portion 111 for accommodating the components of the battery including the electrode assembly 130 and the electrolyte 140, and has an opening 112 open at one end thereof.
  • the can 110 may itself function as an electrode terminal.
  • the can 110 is illustrated as a hexagonal battery having an open side on one side, but may be deformed to the required dimensions in the industry, such as a cylindrical battery or any other type of battery. Will be easily understood.
  • the electrolyte 140 fills the internal space between the can 110 and the cap 120, so that the inside of the battery can be maintained in a vacuum state.
  • the housing 111 of the can 110 is schematically illustrated in a rectangular shape as a space for accommodating / receiving the electrode assembly 130 and the electrolyte 140, the shape of the electrode assembly 130 is actually assembled. Or it may be changed to a shape corresponding to the shape.
  • the opening 112 of the can 110 is covered by the cap 120 and is not particularly limited in shape and size.
  • the can 110 has a flange 113 protruding by a predetermined length in an outward direction that is substantially orthogonal from a sidewall forming a predetermined thickness or height.
  • This flange 113 is to ensure a stable bonding area with respect to the thickness of the can (110).
  • the total area of the flange 113 may be formed to be 10% or less of the area of the accommodating part 111 of the can 110.
  • the width of the flange 113 may be formed to be 20mm or less, preferably 10mm or less. That is, the flange 113 has a sufficient area to ensure sufficient sealing or joining of the can 110 and the cap 120 and to prevent heat generated when joining by welding or the like to be transmitted to the electrode assembly or the like. It is preferably formed.
  • the cap 120 also includes a flange 123 and may have the same shape or size as the flange 113 of the can 110. However, as shown in FIG. 15, the flange 123 of the cap 120 may have a larger width or protrude outward than the flange 113 of the can 110.
  • the can 110 may include an electrode tab accommodating part 180 in which the electrode tab 132 of the electrode assembly 130 is located.
  • the electrode tab receiving part 180 may be formed to form a step with the receiving part 111 of the can 110, and an electrode terminal electrically connected to the electrode tab 132 on an outer surface of the electrode tab receiving part 180.
  • 190 may be provided.
  • the electrode terminal 190 may include a positive electrode terminal 191 connected to the electrode tab of the positive electrode plate and a negative electrode terminal 192 connected to the electrode tab of the negative electrode plate of the electrode assembly 130.
  • an electrolyte injection hole (not shown) for injecting an electrolyte may be formed in any one of the electrode terminals 190.
  • the electrode tab receiving portion 180 may be provided with a battery control system 134.
  • the Battery Management System (BMS) monitors the condition of the battery and automatically manages the battery system for optimal maintenance and use, predicts when the battery will be replaced, finds the battery in advance, etc. Can perform the function of.
  • the battery control system 134 may perform a function of a battery protection circuit, and when the battery control system 134 is provided, the electrode terminal 190 may be hidden by the battery control system 134 and may not be visible.
  • the battery control system 134 is preferably provided on the same side as the electrode tab 132 of the electrode assembly 130.
  • the can 110 and / or the cap 120 may prevent the contents such as the electrode assembly 130 and the electrolyte 140 contained in the receiving unit from leaking out or introducing outside air. And a material that ensures airtightness to the extent that the contents can operate normally against the pressure difference, physical, chemical, and climatic environmental impact between the inside and the outside.
  • can 110 and / or cap 120 has a thermal conductivity of about 10 kcal / mh ° C. (20 ° C.) or more, a tensile strength of about 5 kgf / mm 2 or more, and a thickness of about 30 ⁇ m or more.
  • the can 110 and / or the cap 120 may be formed of a single metal including iron, aluminum, copper, or an alloy including brass, bronze, and stainless steel.
  • the electrode assembly 130 has a structure in which a cathode plate / separator / cathode plate is sequentially disposed (eg, a lamination type in which a plurality of unit electrodes are stacked or a jelly-roll type in which unit electrodes are wound), and an overall appearance thereof is a hexahedron or coin type. It can be variously modified as follows.
  • the positive electrode plate has a structure in which a positive electrode active material containing lithium-based oxide as a main component is applied to at least one side of the positive electrode current collector of an aluminum thin plate, and the negative electrode plate has at least one side of the negative electrode current collector of a copper thin plate. It is a structure to which the negative electrode active material which has a carbon material as a main component was apply
  • the positive electrode plate and the negative electrode plate each have a positive electrode tab and a negative electrode tab.
  • the positive electrode tab and the negative electrode tab may be disposed at different positions according to polarity, and the positive electrode tab and the negative electrode tab portion protruding from the positive electrode plate and the negative electrode plate may be attached with an insulating tape to prevent a short circuit between the electrode plates.
  • the separator uses a porous polymer film for separating the positive electrode plate and the negative electrode plate.
  • the structure of the electrode assembly 130 composed of the positive plate / separator / cathode plate may be modified by any person skilled in the art.
  • the secondary battery 100 according to an embodiment of the present invention should seal or bond the flanges of the can 110 and the cap 120 to each other to maintain the interior of the battery in a vacuum state.
  • the secondary battery 100 according to the present invention is characterized in that the flanges are bonded to each other by using two types of bonding or sealing methods different in type or different in bonding strength when the flanges are bonded to each other.
  • the can and the cap are sealed to each other by using two types of bonding or sealing methods having different bonding strengths, thereby ensuring airtightness of the battery and pressure inside the battery.
  • a vent function may be secured to prevent the battery from exploding due to a temperature increase, and in some cases, the battery may be replenished with electrolyte that is depleted as the battery is used, thereby extending the service life of the battery.
  • a bonding structure of the can 110 and the cap 120 of the battery 100 according to the present invention will be described with reference to the drawings.
  • the secondary battery 100 includes an accommodating part 111 and an opening part 112 in which the electrode assembly 130 and the electrolyte 140 are stored together.
  • Metal can 110 including a metallic cap 120, the can 110 and the cap 120 is located in the opening 112 of the can 110 to seal the can 110
  • the first sealing portion 150 formed between the flange 113 of the can 110 and the flange 123 of the cap 120 and the can 110 and the cap 120 to each other.
  • the second sealing part 160 may be formed between the flange 113 of the can 110 and the flange 123 of the cap 120 to be bonded.
  • the first and second sealing parts 150 and 160 should be formed continuously so that the inside of the can 110 and the cap 120 may be completely blocked from the outside and sealed. That is, as shown in FIG. 6, when the flange 113 of the can 110 is viewed with the cap 120 removed, the region S1 and the second sealing portion 160 in which the first sealing portion 150 is formed are formed. The region S2 in which is formed is to be formed continuously without breaking. If the first sealing part 150 and the second sealing part 160 are not formed continuously, the vacuum state inside the battery may be destroyed or the electrolyte may leak out through the discontinuous portions.
  • the secondary battery 100 according to the exemplary embodiment of the present invention is formed such that the first and second sealing parts 150 and 160 for bonding and sealing the can 110 and the cap 120 have different sealing strengths or bonding strengths. do.
  • the bonding strength of the first sealing portion 150 is greater than the bonding strength of the second sealing portion 160.
  • the first sealing unit 150 may be formed by welding the flanges 113 and 123 of the can 110 and the cap 120 by melting the can 110 and the cap 120 directly.
  • the second sealing portion 160 does not directly join the can 110 and the cap 120, but provides a separate filler material or a welding additive for welding between the can 110 and the cap 120. It may be formed by welding indirectly joining the can 110 and the cap 120 by melting the filler material or the welding additive. That is, the first sealing part 150 may be formed by direct welding, and the second sealing part 160 may be formed by indirect welding.
  • the can 110 and the cap 120 are heated by melting the can 110 and the cap 120 above the melting point of the can 110 and the cap 120.
  • any welding may be included as long as it is a local heating method instead of heating the entire surface.
  • laser welding, electric resistance welding, ultrasonic welding, plasma welding and the like can be used.
  • the first sealing part 150 applies a predetermined pressure in a state change of the can 110 and the cap 120, that is, the state in which the can 110 and the cap 120 are melted, without additional filler material.
  • the can 110 and the cap 120 may be directly bonded.
  • the first sealing part 150 formed by the direct welding method is preferably not sealed by using a battery. That is, unlike the second sealing part 160, the sealing state of the first sealing part 150 is not released even when the temperature inside the can 110 and the cap 120 increases or the pressure increases. It may be formed to a degree of bonding strength that is not.
  • the second sealing part 160 having a smaller bonding strength than the first sealing part 150 firmly seals the can 110 and the cap 120 in the normal operation state of the battery, but the internal temperature of the battery is increased.
  • the battery may be prevented from exploding by providing a vent function to release the sealed state of the can 110 and the cap 120.
  • the second sealing part 160 is preferably formed by an indirect bonding method in order for the second sealing part 120 to be vented under operating conditions in which temperature or pressure increases. That is, the second sealing unit 160 is not directly connected between the can 110 and the cap 120, but between the can 110 and the cap 120 (more precisely, the flange 113 of the can and the flange of the cap). (123 between) and the melt bonding member 162 having a melting point lower than the melting point of the can 110 and the cap 120, the melt bonding member 162 is melted to the can 110 and the cap 120 It can be formed to indirectly bond.
  • the second sealing unit 160 does not use the state change of the can 110 and the cap 120 or melt the can 110 and the cap 120, but is disposed between the can 110 and the cap 120.
  • the can 110 and the cap 120 may be bonded by melting the melt bonding member 162 corresponding to the welding additive.
  • the can 110 and the cap 120 by joining the molten fusion joining member 162 and the flange 113 of the can 110, and joining the molten joining member 162 and the flange 123 of the cap 120. ) Can be sealed.
  • the fusion bonding member 162 forming the second sealing portion 160 is lower than the melting point of the can 110 and the cap 120, and has a melting point without fear of transferring heat to the inside of the battery. 110) and / or excellent bonding or wettability with the cap 120, it is possible to expect sufficient bonding strength, taking into account external factors such as cost, environmental friendliness, and reaching a certain temperature or pressure
  • the lower surface may be selected from various kinds of nonferrous metals or alloys or compounds of nonferrous metals in consideration of the property of melting and release of the battery.
  • the reason for using an alloy of nonferrous metal as the fusion bonding member 162 can lower the melting point than the single metal, improve the mechanical strength, lower the price and can be expected to bond affinity with the can / cap It can have a variety of liquidus-solidus temperature range.
  • composition and melting point of the melt bonding member 162 that can be used in the secondary battery 100 according to the embodiment of the present invention are as shown in Table 1 (Type 1 of the melt bonding member).
  • the fusion bonding member 162 that can be used in the secondary battery 100 according to an embodiment of the present invention includes silver (Ag), tin (Sn), or lead (Pb). It will be apparent to those skilled in the art that a lead or an alloy thereof may not be selected in consideration of environmentally friendly factors.
  • the melt bonding member 162 that may be used in the secondary battery 100 according to the exemplary embodiment of the present invention may have a melting point of about 600 ° C. or less, preferably 400 ° C. or less, more preferably 250 ° C. or less.
  • the fusion bonding member 162 has a low temperature that can be melted, preferably avoiding a high heat source being disposed in the process, and using general purpose equipment (eg, heaters). , Jig and the like).
  • the melt bonding member 162 is not released or weakened in the general operating range of the secondary battery 100 (eg, less than 80 ° C.), and the generalized heat resistance harsh test standard (UL standard for lithium ion batteries: 130 °C), a positive electrode material known to pose a fatal risk to the safety of the battery, unless the internal pressure is rapidly increased (in the range where the insulation of the separator is not broken so that internal short circuit does not occur).
  • the seal can be sufficiently released before reaching the internal thermal runaway onset temperature of (eg, about 200 ° C.). For this reason, in the general vent mechanism of the conventional secondary battery (bent means are provided in some narrow area of the exterior material), even if the vent mechanism is operated, the discharge through a sufficient area compared to the ejection pattern of the internal material is prevented. It is difficult, and moreover, the vent hole is clogged by the ejecting material.
  • the intended wide area can be utilized as a vent mechanism, and the temperature and the endurance pressure can be easily adjusted within such a range.
  • the melt bonding member 162 illustrated in Table 1 has a melting point of about 100 ° C. to about 450 ° C., but is largely different from a general operating temperature range (less than 80 ° C.) of the secondary battery 100. There is also some difference from the thermal runaway onset temperature (200 ° C.) of the positive electrode material. Accordingly, the present invention may use a melt bonding member 162 having a lower melting point and having a different composition in addition to the melt bonding member 162 of the composition shown in Table 1 above.
  • the melt bonding member 162 according to the present invention may be melted at 10 ° C to 120 ° C. If the melt bonding member 162 is melted at 10 ° C. to 120 ° C., the melt bonding member 162 may be formed even before the thermal runaway start temperature of the positive electrode material is reached or even slightly higher than the general operating temperature range of the secondary battery 100. 162 may be melted. However, even in the case of having such a melting point, it is preferable to exclude the melt bonding member 162 having a melting point lower than the general operating temperature range of the secondary battery 100.
  • the molten bonding member 162 having a low melting point is formed of gallium (Ga), indium (In), cadmium (Cd), or bismuth (Bi), as illustrated in Table 2 below (Type 2 of the melting bonding member). It may include at least one.
  • the melt bonding member 162 may be formed by using a reflow method used for surface mounting technology (SMT). Can dissolve.
  • SMT surface mounting technology
  • the sealing or bonding strength between the can 110 and the cap 120 may be adjusted by the area or melting point of the second sealing portion 160. That is, the bonding strength by the second sealing unit 160 may be adjusted by selecting an appropriate melting point according to the coating area or the composition of the fusion bonding member 162 forming the second sealing unit 160.
  • the second sealing unit 160 properly selects the bonding strength to seal the can 110 and the cap 120 in the normal state, but the sealing is performed in the abnormal state in which the temperature or the pressure inside the battery increases.
  • the gas generated inside the battery may be released to the outside of the battery. That is, when the temperature of the accommodating part 111 rises, the second sealing part 160 melts the fusion bonding member 162 to release the sealing state between the can 110 and the cap 120, or Between the can 110 and the cap 120 when a pressure greater than the strength that breaks the bonding or sealing determined by the composition or application amount of the molten bonding member 162 occurs inside the accommodating portion 111. Can be torn or released to release the battery's seal.
  • the solidified melt bonding member 162 and the can 110 are bonded or the solidified melt bonding member 162 and the cap 120 are bonded to each other. While broken, the sealed state of the can 110 and the cap 120 may be released.
  • the second sealing unit 160 is preferably formed by the fusion bonding member 162 having a suitable coating area or composition so as to have a bonding strength that can be released before the battery explodes.
  • the fusion bonding member 162 may select a composition that can be melted by local heating. Do.
  • a method of locally heating the molten bonding member 162 may include contact resistance, high frequency sealing, laser, light beam, pulse heat, or hot-ram. It should be noted that either method can be used and is not necessarily limited to this method.
  • the secondary battery 100 may freely select a position where the first sealing unit 150 and the second sealing unit 160 are formed. That is, the position of the electrode tab 132 of the electrode assembly 130 provided inside the secondary battery 100, the environment in which the battery 100 is used, or a kind of peripheral electronic component used in conjunction with the battery 100 may be used. Accordingly, the formation position or area of the first sealing unit 150 and the second sealing unit 160 may be adjusted. In particular, by adjusting the position where the second sealing unit 160 is formed or the area of the second sealing unit 160, the position or the size at which the sealing of the second sealing unit 160 is released by the temperature or the pressure rise of the battery is adjusted. I can regulate it.
  • the position or direction in which the high temperature or high pressure gas generated inside the battery is discharged may be adjusted. Since the position or direction of the gas discharge can be adjusted, the vacuum of the battery can be prevented, thereby preventing secondary damage to the surrounding structures or components in which the battery is used and reducing the risk of the battery exploding.
  • the second sealing part 160 is formed in at least one portion S2 except for one side S1 adjacent to the electrode tab 132 of the electrode assembly 130 provided in the accommodating part 111.
  • the second sealing part 160 may be formed at a portion S2 other than the portion facing the electrode tab 132. That is, the second sealing part 160 may be formed over the entire three surfaces S2 that are not adjacent to the electrode tab 132, or may be formed on any one portion or multiple portions of the three surfaces S2.
  • the first sealing part 150 in which the sealing is not released may be formed in the portion S1 adjacent to the electrode tab 132.
  • the second sealing part 160 is a part S2 except for one side S1 adjacent to the battery control system BMS 134 provided outside the accommodating part 111 to protect the electrode assembly 130. It may be formed in at least one place. Similarly, the second sealing unit 160 may be formed over the entire three surfaces S2 that are not adjacent to the battery control system 134, or may be formed on any one portion or multiple portions of the three surfaces S2. In this case, the first sealing part 150 in which the sealing is not released may be formed in the portion S1 adjacent to the battery control system 134.
  • the second sealing part 160 is formed to be positioned at a portion S2 that is not adjacent to the electrode tab 132 or the battery control system 134 so that the sealing of the second sealing part 160 is released to obtain a high temperature or
  • the electrode tab 132 may be prevented from being damaged or exploded by the gas, and the battery control system 134 may be prevented from being damaged.
  • the position of the second sealing unit 160 may be adjusted so that the gas is not discharged toward the component. That is, the site where the parts easily damaged or exploded can be sealed by using the first sealing part 150 to prevent the gas from being discharged in such a direction.
  • the secondary battery 100 may have different bonding strengths between the first sealing part 150 and the second sealing part 160, and may be applied to the first and second sealing parts 150 and 160.
  • By adjusting the sealed position, direction or area, etc. it is possible to easily prevent damage or explosion of the battery or components around the battery.
  • the vent function is effectively performed, and the battery is sealed using a single bond having a similar bond strength to the second sealing portion.
  • the secondary battery 100 according to an embodiment of the present invention has an advantage that can solve this disadvantage have.
  • the secondary battery 200 may include a metallic can including an accommodating part 211 and an opening part 112 (see FIG. 5) for accommodating the electrode assembly 230 and the electrolyte 240. 210, a metal cap 220 positioned at the opening 112 of the can 210 to seal the can 210, the can 210 to bond and seal the can 210 and the cap 220 with each other.
  • the sealing portion 250 formed between the flange 213 of the cap 220 and the flange 223 of the cap 220 and the flange 213 of the can 210 and the flange 223 of the cap 220 can
  • An explosion-proof portion 260 may be attached to each other and the cap 220 may be bonded to each other and the sealing state of the can 210 and the cap 220 may be released.
  • the explosion-proof unit 260 bonds the can 210 and the cap 220 to each other under normal operation of the battery, but seals the can 210 and the cap 220 in an abnormal state to release the sealed state of the battery 200. ) Can be prevented from exploding.
  • the explosion-proof part 260 preferably has a smaller bond strength than the sealing part 250.
  • the explosion-proof part 260 has a melting point lower than the melting point of the can 210 and the cap 220, or an alloy of nonferrous metal or nonferrous metal. It may be formed by the melt bonding member 262 including.
  • sealing unit 250 is the same as the first sealing unit 150 of the secondary battery 100 according to the exemplary embodiment, repeated description thereof will be omitted.
  • the explosion-proof part 260 is formed continuously with the sealing part 250 so that the sealing of the can 210 and the cap 220 should not be released under normal operation.
  • the area S3 (parts indicated by hatches) and the area where the explosion-proof parts 260 are formed (S4, areas indicated by dots) must be formed in succession to maintain the vacuum state inside the battery and to the outside of the electrolyte. Leakage can be prevented.
  • the explosion-proof part 260 of the secondary battery 200 may be said to have a greater function of preventing the explosion of the battery 200 by releasing the sealed state of the can 210 and the cap 220.
  • Explosion-proof portion 260 may prevent the explosion of the battery by using a melt bonding member 262 having a melting point lower than the melting point of the can 210 and the cap 220, the secondary according to another embodiment of the present invention
  • the explosion-proof portion 260 of the battery 200 may serve as a joint portion that performs a vent function to prevent the explosion of the battery and is continuously formed with the sealing portion 250 to bond the can 210 and the cap 220.
  • the junction part and the vent part are separately formed, whereas the secondary battery 200 according to another embodiment of the present invention has a difference in that the junction part and the vent part are integrally formed by the explosion-proof part 260. have.
  • the secondary battery 200 includes an explosion-proof part 260 which functions as a junction, a sealing, and a vent, thereby eliminating the inconvenience of having to provide a vent separately.
  • an explosion-proof part 260 which functions as a junction, a sealing, and a vent, thereby eliminating the inconvenience of having to provide a vent separately.
  • the molten bonding member 262 of the explosion-proof part 260 includes any one selected from the group consisting of lead (Pb), tin (Sn), zinc (Zn), aluminum (Al), silver (Ag), or alloys thereof. It may be formed by, and may have a composition as shown in Table 1 above.
  • the melt bonding member 262 that may be used in the secondary battery 200 according to another embodiment of the present invention has a melting point of about 600 ° C. or less, preferably 400 ° C. or less, more preferably 250 ° C. or less. Can be.
  • the melt bonding member 262 of the secondary battery 200 according to another embodiment of the present invention has the same physical or chemical properties as the melt bonding member 162 of the secondary battery 100 according to the above-described embodiment. It is desirable to have.
  • the fusion bonding member 262 forming the explosion-proof portion 260 is melted when the temperature of the accommodating portion 211 rises to release the sealing state of the can 210 and the cap 220 or the fusion bonding member 262.
  • a pressure greater than the bond breaking strength determined by the composition or the amount of coating is generated inside the accommodating portion 211, the sealed state of the can 210 and the cap 220 may be released.
  • the fusion bonding member 262 of the explosion-proof portion 260 is melted, and thus the bonding state between the can 210 and the cap 220 is changed.
  • the hot or high pressure gas generated in the inside of the battery 200 may be discharged to the outside through the gap between the can 210 and the cap 220 in which the sealing is released. As described above, by expelling the gas to the outside, it is possible to prevent the battery 200 from exploding in advance.
  • melt bonding member 262 and the can 210 or the cap 220 may be used. ), The seal may be released as the bond of the) is broken.
  • the melt bonding member 262 of the secondary battery 200 according to another embodiment of the present invention is more than the melt bonding member 162 of the secondary battery 100 according to the embodiment of the present invention described above for the explosion-proof function. Bond strength can be formed to be weak and have a lower melting point.
  • the explosion-proof part 262 may be formed in at least one of the portion (S4) except the one side (S3) adjacent to the electrode tab 232 of the electrode assembly 230 provided in the receiving portion 211.
  • the explosion-proof portion 260 may be formed at a portion S4 other than the portion facing the electrode tab 232. That is, the explosion-proof part 260 may be formed over the entire three surfaces S4 that are not adjacent to the electrode tab 232, or may be formed on any one portion or multiple portions of the three surfaces S4.
  • a sealing portion 250 having a high bonding strength may be formed in the portion S3 adjacent to the electrode tab 232 so that the sealing is not released.
  • the explosion-proof unit 260 is at least one of the portion S4 except for the one side (S3) adjacent to the battery control system 234 (BMS) provided outside the housing 211 to protect the electrode assembly 230. Where it can be formed.
  • the explosion-proof part 260 may be formed over the entirety of three surfaces S4 that are not adjacent to the battery control system 234, or may be formed on any one portion or multiple portions of the three surfaces S4.
  • a sealing portion 250 may be formed in the portion S3 adjacent to the battery control system 234 and has a greater bonding strength than the explosion-proof portion 260 and does not release the sealing.
  • the explosion-proof portion 260 is formed in a portion S4 not adjacent to the electrode tab 232 or the battery control system 234 to release the sealing of the explosion-proof portion 260 so that the gas of high temperature or high pressure is released.
  • the electrode tab 232 can be prevented from being damaged or exploded by the gas
  • the battery control system 234 can be prevented from being damaged
  • the explosion of the battery 200 itself can be prevented.
  • the position of the explosion-proof portion 260 may be adjusted so that the gas is not discharged toward the component. That is, the site where the parts easily damaged or exploded may be sealed by using the sealing unit 250 to prevent the gas from being discharged in such a direction.
  • the secondary battery 200 can easily select the bonding strength or the position of the explosion-proof portion 260, and through such selection, the secondary battery 200 is excessive in the battery due to abnormal operation of the battery. It is possible to prevent pressure or overheating, and to prevent damage to components around the battery due to high temperature or high pressure gas discharged to the outside of the battery.
  • the secondary battery 300 may include a metallic can including an accommodating part 311 and an opening part 112 (see FIG. 5) in which the electrode assembly 320 and the electrolyte 340 are stored together.
  • a metallic can including an accommodating part 311 and an opening part 112 (see FIG. 5) in which the electrode assembly 320 and the electrolyte 340 are stored together.
  • the metallic cap 320 located in the opening 112 of the can 310 to seal the can 310, the can 310 to bond and seal the can 310 and the cap 320 with each other.
  • the flange 313 of the can 310 and the seal 310 formed between the flange 313 of the cap 320 and the flange 323 of the cap 320 and the cap 310 and the cap 320 to be bonded and sealed.
  • the sealing unit 350 is formed in the same manner as the sealing unit 250 of the first sealing unit 150 of the secondary battery 100 or the secondary battery 200 according to another embodiment described above. Can be.
  • the secondary battery 300 can increase the service life of the battery because it is possible to replenish the electrolyte when necessary.
  • the electrolyte 340 filled in the battery may cause side reactions. Due to the side reaction of the electrolyte solution 340, gas is generated inside the battery, and the inside of the battery is expanded due to the gas. When the battery is expanded, the gap between the positive electrode plate and the negative electrode plate constituting the electrode assembly 330 is poor, the adhesion between the electrode plate is worsened, the degree of vacuum inside the battery is reduced. Degradation of the adhesion of the electrode plate or deterioration of the vacuum may adversely affect the performance of the battery, and when the electrolyte 340 reacts sideways, the electrolyte 340 gradually decreases.
  • the secondary battery 300 may replenish the depleted electrolyte solution 340 through the electrolyte replenishment unit 360. Can extend the lifespan.
  • the electrolyte replenisher 360 may be continuously formed with the sealing unit 350 to serve as a junction for joining the can 310 and the cap 320. That is, the electrolyte replenishing part 360 functions as a joint part for joining the can 310 and the cap 320 to each other in a normal state, but when it is necessary to replenish the electrolyte solution, the electrolyte replenishment part 360 is released and the electrolyte solution is filled through the part. Can be injected into the cell.
  • the electrolyte is injected through an electrolyte injection hole (not shown) formed in an electrode terminal or a can or a cap, and the electrolyte injection hole is sealed to make the inside of the battery into a vacuum state.
  • electrolyte injection hole not shown
  • electrolyte solution cannot be replenished through electrolyte injector.
  • Electrolyte replenishment portion 360 of the secondary battery 300 is a melt bonding member including a non-ferrous metal or an alloy of non-ferrous metal having a melting point lower than the melting point of the can 310 and the cap 320 It may be formed by 362.
  • the melt bonding member 362 of the electrolyte replenishing part 360 may have a melting point of 600 ° C. or lower, preferably 400 ° C. or lower, more preferably 250 ° C. or lower, and lead, tin, zinc, aluminum It may be formed by including any one selected from the group consisting of, silver or alloys thereof.
  • the melt bonding member 362 of the electrolyte replenishing part 360 is melted to release the sealing state of the can 310 and the cap 320.
  • the battery can be sealed by replenishing the electrolyte through the released portion and solidifying the melt bonding member 362 again.
  • a pressure greater than the bond breaking strength determined by the composition or the coating amount of the melt bonding member 362 is generated inside the accommodating portion 311, the melt bonding member 362 and the can 310 and / or the cap are formed.
  • the sealing state may be released as the bonding of the 320 is broken, and the battery may be sealed by solidifying the molten bonding member 362 again after replenishing the electrolyte through the portion where the sealing is released.
  • the electrolyte replenishing part 360 normally operates as a joint part for joining the can 310 and the cap 320, and needs to be replenished, or abnormally, the electrolyte replenishing part 360 is released and the electrolyte leaks. If so, it can be used to replenish the electrolyte.
  • the electrolyte may be replenished through the electrolyte replenisher 360 even when the sealing of the electrolyte replenisher 360 is not released due to an abnormal state of the battery.
  • the melt bonding member 362 of the electrolyte replenishing unit 360 is artificially melted and the can 310
  • the battery may be resealed by releasing the seal of the cap 320 and replenishing the electrolyte through the portion thereof, and then resolidifying the melt bonding member 362 in a state in which a vacuum is formed in the battery.
  • the sealing unit 350 and the electrolyte replenishing unit 360 may have different bonding strengths to replenish the electrolyte, and the sealing unit 350 Should have greater intensity.
  • the battery may explode.
  • the battery may be prevented by implementing a vent function through the electrolyte replenishing part 360.
  • the electrolyte replenishing part 360 may be formed in at least one of the portions S6 except for one side S5 adjacent to the electrode tab 334 of the electrode assembly 330 provided in the accommodating part 311. As illustrated in FIG. 11, the electrolyte replenishing part 360 may be formed at a portion S6 other than the portion facing the electrode tab 332. That is, the electrolyte replenishment part 360 may be formed over the entirety of three surfaces S6 that are not adjacent to the electrode tab 332, or may be formed on any one portion or multiple portions of the three surfaces S6. In this case, a sealing portion 350 having a high bonding strength may be formed in the portion S5 adjacent to the electrode tab 332 so that the sealing is not released.
  • the electrolyte refilling unit 360 may include at least one of the portions S6 except for one side S5 adjacent to the battery control system 334 (BMS) provided outside the housing 311 to protect the electrode assembly 330. It can be formed in one place.
  • the electrolyte replenisher 360 may be formed over the entirety of three surfaces S6 that are not adjacent to the battery control system 334, or may be formed on any one or multiple portions of the three surfaces S6.
  • a sealing portion 350 may be formed at a portion S5 adjacent to the battery control system 334 and having a greater bonding strength than that of the electrolyte replenishing portion 360 and the sealing of which is not released.
  • the electrolyte replenishment portion 360 is formed to be positioned at a portion S6 not adjacent to the electrode tab 332 or the battery control system 334 to release the sealing of the electrolyte replenishment portion 360 to obtain a high temperature or high pressure.
  • the electrode tab 332 can be prevented from being damaged or exploded by the gas, the battery control system 334 can be prevented from being damaged, and the explosion of the battery 300 itself can be prevented. have.
  • the position of the electrolyte replenishing part 360 may be adjusted so that the gas is not discharged toward the component. That is, the site where the parts easily damaged or exploded may be sealed by using the sealing unit 350 to prevent the gas from being discharged in such a direction.
  • the secondary battery 300 can easily select the bonding strength or the position of the electrolyte replenishing part 360, and through such selection, the battery inside due to abnormal operation of the battery. It is possible to prevent excessive pressure or overheating, and damage to components around the battery due to high temperature or high pressure gas discharged to the outside of the battery.
  • the sealing of the electrolyte replenishing part 360 is not released to prevent the explosion of the battery 300, and the electrolyte replenishing part 360 is melted to replenish the electrolyte, regardless of the explosion of the battery 300.
  • the electrolyte replenishing part 360 is formed at one side S5 facing or close to the electrode tab 332 or the battery control system 334, the sealing is released to replenish the electrolyte. It may be necessary to open the flange 313 of the can 310. In this case, when the force is applied to the can 310 to increase the space where the sealing is released, the battery control system 334 may be damaged or the electrode tab 332 may be broken.
  • the electrolyte replenishing part 360 is preferably formed at a portion S6 where the electrode tab 332 or the battery control system 334 is not located.
  • the rechargeable battery 300 uses an fusion bonding member 362 having a melting point lower than that of the can 310 and / or the cap 320.
  • the can 310 and the cap 320 may be bonded to each other, and at the same time, the seal may be released as needed, the electrolyte may be replenished through the released portion, and the can 310 and the cap 320 may be sealed again. have.
  • At least one of the cans 110, 210, 310, or caps 120, 220, and 320 of the secondary batteries 100, 200, and 300 according to the present invention may be formed on the surface of the flange to improve adhesion to the melt bonding members 162, 262, 362 or wettability of the melt bonding members 162, 262, 362.
  • Nickel or copper plating may be formed.
  • the flange 113 of the can 110 and the flange 123 of the cap 120 may be improved to improve bonding between the melt bonding member 162 and the can 110 and the cap 120.
  • Receiving grooves 114 and 124 for accommodating the molten bonding member 162 may be formed. By forming the receiving grooves 114 and 124, the contact area between the can 110 and the cap 120 and the melt bonding member 162 can be increased when the coating amount of the melt bonding member 162 is the same. It can increase.
  • the flange 113 of the can 110 and the flange 123 of the cap 120 may be formed in the same size, and the fusion bonding member 162 may be provided between the flanges 113 and 123.
  • the melt bonding member 162 is provided in the same size as the flanges 113 and 123 (Fig. 14 (a)), or provided in a smaller size than the flanges 113 and 123 (Fig. 14 (b)), It may be provided to protrude out of the flanges 113 and 123 (FIG. 14C).
  • the molten fusion bonding member 162 may also seal side surfaces of the flanges 113 and 123, and thus may have greater bonding strength.
  • an end 125 of the flange 123 of the cap 120 is bent toward the can 110, and the fusion bonding member 162 is the flange 113 and the cap 120 of the can 110. May be provided between the flanges 123.
  • one end of the flange 113 of the can 110 is formed to be in contact with the bent end 125 of the cap 120 flange 123 and between the flanges 113 and 123 with the same size as the melt bonding member ( 162 may be provided (FIG. 15A).
  • one end of the flange 113 of the can 110 may be formed so as not to contact the end 125 of the flange 120 of the cap 120.
  • the fusion bonding member 162 may obtain a desired bonding strength by varying the width or thickness. That is, the shape of the flanges 113 and 123 or the application shape of the melt bonding member 162 may be variously changed according to the desired bonding strength or the desired sealing release condition.
  • the present invention can be applied to secondary batteries or energy storage devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

According to the present invention, a secondary battery comprises: a metallic can comprising a storage portion for storing an electrode assembly together with an electrolyte, and an open portion; a metallic cap positioned on the open portion of the can in order to seal the can; a first sealing portion formed between a flange of the can and a flange of the cap so as to couple the can and the cap to each other; and a second sealing portion formed between the flange of the can and the flange of the cap so as to couple the can and the cap to each other, wherein the first sealing portion and the second sealing portion have different coupling strengths.

Description

이차 전지Secondary battery
본 발명은 이차 전지에 관한 것으로서, 보다 상세하게는 이차 전지의 케이스를 형성하는 캔 및 캡을 밀봉하는 구조 또는 방식에 있어서 접합 강도가 서로 다른 2종의 접합을 이용하여 캔과 캡을 접합하는 이차 전지에 관한 것이다.The present invention relates to a secondary battery, and more particularly, to a secondary battery in which a can and a cap are joined using two kinds of joints having different bonding strengths in a structure or a method of sealing a can and a cap forming a case of the secondary battery. It relates to a battery.
일반적으로, 디지털 카메라, 캠코더, 휴대용 전화기, 휴대용 PC 등과 같은 휴대용 전자 제품의 구조가 경량화 또는 고기능화됨으로써 전자 제품의 전원으로 사용되는 전지에 대해서 많은 연구가 진행되고 있다. 이러한 전지는 충/방전에 의해 연속적으로 사용할 수 있다. In general, many studies have been conducted on batteries used as a power source for electronic products by making the structure of portable electronic products such as digital cameras, camcorders, portable telephones, and portable PCs lighter or more functional. Such a battery can be used continuously by charging / discharging.
통상적으로, 반복 충/방전이 가능한 전지 즉, 이차 전지는 니켈 카드늄 전지, 니켈 수소전지, 니켈 아연전지, 리튬 2차 전지 등으로 분류되며, 이들 중에서 수명과 용량을 고려하면 리튬 2차 전지가 범용화 되고 있다. Typically, batteries that can be repeatedly charged / discharged, that is, secondary batteries are classified into nickel cadmium batteries, nickel hydrogen batteries, nickel zinc batteries, lithium secondary batteries, and the like. Among them, lithium secondary batteries are generally used in consideration of their lifetime and capacity. It is becoming.
상기 리튬 2차 전지는 전해질의 종류에 따라 액체 전해질을 사용하는 리튬 금속전지, 리튬 이온전지, 및 고분자 고체 전해질을 사용하는 리튬 폴리머 전지로 구분된다. 리튬 폴리머 전지는 고분자 고체 전해질의 종류에 따라 유기 전해액이 전혀 함유되어 있지 않은 완전 고체형 리튬 폴리머 전지, 유기 전해액을 함유하는 겔형 고분자 전해질을 사용하는 리튬 이온 폴리머 전지로 구분된다. The lithium secondary battery is classified into a lithium metal battery using a liquid electrolyte, a lithium ion battery, and a lithium polymer battery using a polymer solid electrolyte according to the type of electrolyte. Lithium polymer batteries are classified into fully solid lithium polymer batteries containing no organic electrolyte at all and lithium ion polymer batteries using a gel polymer electrolyte containing organic electrolyte according to the type of polymer solid electrolyte.
리튬 이온 이차 전지는 기존 이차 전지 제품보다 향상된 에너지 밀도와 반복 사용 수명 특성을 가지며, 이러한 장점들 때문에 수요와 사용 범위가 꾸준히 증가하고 있다. 그러나, 리튬 이온 이차 전지는 높은 에너지 밀도로 인해 외부 환경의 변화 및 위험 요인에 대해 보다 안정적으로 성능을 유지하고, 이상 상황에서 전극의 내용물이 케이스(팩)의 외부로 유출되어 안전성을 침해하는 일이 발생하지 않도록 제품 설계에 근본적인 안전장치의 도입이 필요하다. Lithium ion secondary batteries have improved energy density and repeated service life characteristics compared to conventional secondary battery products, and these advantages have steadily increased demand and usage range. However, the lithium ion secondary battery maintains a more stable performance against the change and risk factors of the external environment due to the high energy density, and in the abnormal situation, the contents of the electrode leak out of the case (pack) to violate the safety. To prevent this from happening, it is necessary to introduce fundamental safety measures in the product design.
전극 조립체를 감싸는 금속 재질의 외장재(예, 케이스 또는 팩)는 이러한 요구를 충족시킬 수 있는 하나의 방편으로써 오랜 기간 사용되어 왔으며, 그 형태와 크기도 다양하게 존재한다. 그러나, 그 형태에 관계없이 기존의 금속 외장재는 크게 전지의 내용물을 수용하는 캔(용기)과 이를 덮는 캡(덮개)으로 구성되는 것이 일반적이며, 그 재질로는 철, 스테인리스, 알루미늄 및 기타 금속 또는 이들의 합금이 사용된다. Metallic sheaths (eg, cases or packs) surrounding the electrode assembly have been used for a long time as one way to meet this need, and their shapes and sizes vary. Regardless of its form, however, the existing metal exterior material is generally composed of a can (container) for accommodating the contents of the battery and a cap (cover) covering the material, and the material is iron, stainless steel, aluminum and other metals, or These alloys are used.
통상적으로, 전지의 외장재로서 캔과 캡을 접합하거나 그들의 접촉부를 밀봉하기 위해서는 예를 들어, 압착 또는 크림핑 등과 같은 물리적인 고정, 용접 등과 같은 열 가공에 의한 고정 등의 방법이 사용되어 왔다. In general, in order to bond cans and caps or seal their contacts as battery cells, for example, physical fixing such as pressing or crimping, fixing by thermal processing such as welding, or the like has been used.
특히, 용접 방식은 모재(캔과 캡)가 접합부에서 직접 용융되어 혼합된 후 응고됨으로써 접합부의 영구적인 결합을 형성하기 때문에 전지의 안정적인 밀봉성을 보장해 준다. 이러한 금속 외장재의 용접은 예를 들어, 레이저 용접, 아크 용접, 플라즈마 용접, 전기저항 용접 등이 사용되어 왔으며, 이와 관련된 선행기술들은 본 출원인에 의해 출원된 여러 특허들을 참고할 수 있다(특허출원번호 제2000-0021513호; 특허출원번호 제2000-0014318호; 특허출원번호 제2000-0044179호; 특허출원번호 제2003-0065237호)In particular, the welding method ensures stable sealing of the battery because the base material (can and cap) is directly melted and mixed at the joint and then solidified to form a permanent bond at the joint. Welding of such a metal sheath has been used, for example, laser welding, arc welding, plasma welding, electrical resistance welding, and the like, and related prior art may refer to various patents filed by the applicant (Patent Application No. 2000-0021513; Patent Application No. 2000-0014318; Patent Application No. 2000-0044179; Patent Application No. 2003-0065237)
용접 방식에 의해 영구적으로 접합 및/또는 밀봉된 금속 외장재는 전지의 장기 사용의 신뢰성을 제공할 뿐만 아니라 압력 및 기계적 충격, 온도 및 습도 변화 등의 외부 환경 요인으로부터 전지의 내용물을 보호하고, 동시에 전지 내부의 유해한 화학 물질이 외부로 유출되는 것을 효과적으로 막아 준다.The metal sheath, which is permanently bonded and / or sealed by welding, not only provides the reliability of long-term use of the battery, but also protects the contents of the battery from external environmental factors such as pressure and mechanical shock, temperature and humidity changes, and at the same time It effectively prevents harmful chemicals from leaking out.
그런데, 금속 재질의 외장재를 적용하여 용접 등과 같은 방식에 의해 전지의 캔과 캡을 용접하는 종래의 밀봉 방식은 다음과 같은 문제점들이 있다.However, the conventional sealing method of welding a can and a cap of a battery by a method such as welding by applying a metal exterior material has the following problems.
첫째, 모재(외장재)가 직접 용융되어야 하므로 높은 열 발생이 필요하다(철 및 스테인리스의 용융 온도는 1500℃이고, 알루미늄의 용융 온도는 660℃ 이상임).First, high heat generation is required because the base material (exterior material) must be directly melted (melting temperature of iron and stainless steel is 1500 ℃, aluminum melting temperature is 660 ℃ or more).
둘째, 밀봉 과정에서 외장재에 직접 고열이 가해지므로, 열에 약한 전지의 구성요소들(예, 전극 및 세퍼레이터로 된 전극 조립체, 전해액 등)에 치명적 손상을 초래할 수 있다.Second, since high heat is applied directly to the packaging material during the sealing process, it may cause fatal damage to the components of the battery (eg, an electrode assembly of an electrode and a separator, an electrolyte, etc.) that are weak to heat.
셋째, 용접 조건의 최적화가 까다로우며 용접을 위한 시간과 비용의 소모가 크다.Third, the welding conditions are difficult to optimize, and the time and cost for welding are high.
넷째, 용접 공정 중 발생하는 모재의 변형 및/또는 변성에 의해 용접 부위에 예를 들어, 핀 홀(pin hole) 등과 같은 미세 결함이 발생할 우려가 있다.Fourth, there is a fear that fine defects such as, for example, pin holes may occur in the welded portion due to deformation and / or modification of the base material generated during the welding process.
다섯째, 접합(또는 용접) 면적의 제어가 어려워 용접 강도 조절에 한계가 있다. 특히, 고용량/고출력 특성을 가진 박형 광면적 전지의 경우, 접합 거리와 접합 면적이 커짐에 따라 용접에 많은 시간과 비용이 크게 증가된다.Fifth, it is difficult to control the joint (or welding) area, which limits the welding strength. In particular, in the case of a thin optical area battery having high capacity / high power characteristics, a large time and a cost for welding are greatly increased as the bonding distance and the bonding area become large.
한편, 이러한 전지의 안정적인 밀봉에 대한 요구와는 반대로, 전지의 오/남용 혹은 기타 원인에 의해 전지 내부의 압력과 온도가 상승할 경우, 전지의 밀봉 상태를 가급적 빨리 붕괴시켜서 전지 내부의 높은 온도와 압력을 상온 및 상압으로 안정화시킬 필요가 있다. 이 때문에 대부분의 이차 전지는 (특히, 금속 외장재를 사용하는 이차 전지의 경우) 예를 들어, 벤트(vent) 등과 같은 별도의 압력 해소 메커니즘을 갖추고 있으며, 이러한 압력 해소 메커니즘은 전지의 이상 상황에서 전지 내부와 외부를 물리적으로 연결시킴으로써 전지를 안정화시킬 수 있다.On the other hand, contrary to the demand for a stable sealing of the battery, if the pressure and temperature inside the battery increase due to battery misuse or abuse, or other causes, the sealing state of the battery collapses as soon as possible, so that It is necessary to stabilize the pressure at room temperature and normal pressure. Because of this, most secondary batteries (especially in the case of secondary batteries using metal cladding) have a separate pressure relief mechanism such as vent, for example, and this pressure relief mechanism is used in battery abnormalities. By physically connecting the inside and the outside, the battery can be stabilized.
그런데, 금속 재질의 외장재를 사용하는 종래의 전지들은 각각의 전지의 모델, 사이즈, 용량, 사용 형태 등에 따라 각각 다른 설계를 가진 압력 해소 메커니즘을 구비해야 하므로 전지 제조 비용 및 공정이 증가되고 제품의 단가가 높아지는 문제점이 있었다.However, conventional batteries using a metal exterior material have to have a pressure releasing mechanism having a different design according to each battery model, size, capacity, type of use, etc., thereby increasing battery manufacturing cost and process cost and cost of the product. There was a problem that increases.
이러한 문제점을 해결하기 위해 본 출원인은 캔과 캡의 용융점 보다 낮은 융점을 가지는 용융 접합부재를 이용하여 캔과 캡을 접합 내지 밀봉하는 기술을 제안한 바 있다(특허출원번호 제2009-0064395호 참조). 이와 같이, 용융 접합부재를 이용하여 캔과 캡을 밀봉하는 경우에는 외장재의 밀봉과 함께 벤트와 같은 압력 해소 메커니즘을 동시에 가질 수 있으나, 압력이 해소되는 부위가 임의로 또는 무작위적으로 형성되기 때문에 이차전지가 사용되는 주변 전자장치 또는 부품 등의 2차 손상을 초래하는 문제가 있었다.In order to solve this problem, the present applicant has proposed a technique for bonding or sealing the can and the cap by using a fusion bonding member having a melting point lower than that of the can and the cap (see Patent Application No. 2009-0064395). As such, when the can and the cap are sealed by using the fusion bonding member, the can and the cap may be simultaneously sealed and the pressure release mechanism such as the vent may be provided, but the secondary battery may be formed at random or randomly because the pressure is released. There has been a problem that causes secondary damage such as peripheral electronics or components used.
즉, 외장재 내부의 온도 또는 압력이 증가하게 되면 용융 접합부재가 녹거나 뜯어지면서 용융 접합부재에 의해 밀봉된 부위가 벌어지게 되고 이와 같이 벌어진 부분을 통해서 외장재 내부에 형성된 가스가 외장재 외부로 배출될 때, 가스가 배출되는 부분이 무작위로 형성되기 때문에 이차전지가 사용되는 주변 전자 장치 또는 부품 등이 배출되는 가스에 의해서 열화되거나 화학적인 반응에 의해서 성능이 저하되는 문제가 있었다.That is, when the temperature or pressure inside the packaging material increases, the molten bonding member melts or tears, and a portion sealed by the molten bonding member opens, and when the gas formed inside the packaging material is discharged to the exterior of the packaging material through such a gap, Since a portion of the gas is randomly formed, there is a problem in that the peripheral electronic device or the component in which the secondary battery is used is degraded by the gas discharged or the performance is deteriorated by a chemical reaction.
또한, 전지를 정상적으로 사용하게 되면 사용 시간이 경과함에 따라 전해액이 전기 또는 화학적인 부반응이 일어나게 되고 부반응으로 인해 전지의 외장재 내부에 가스가 발생하게 된다. 가스가 발생하게 되면 외장재가 팽창하게 되고 외장재 내부의 진공도가 저하된다. 뿐만 아니라, 이와 같이 전지의 내부가 팽창하게 되면 전극판끼리의 밀착도가 저하되고 전해액이 고갈되어 결국 전지의 성능이 떨어지는 문제가 발생한다. 하지만, 종래의 이차 전지의 경우에는 전해액이 고갈되어 전지 성능이 떨어지면 전지를 폐기해야 했다.In addition, when the battery is normally used, the electrolyte is caused to undergo electrical or chemical side reactions as the use time elapses, and gas is generated inside the exterior of the battery due to the side reaction. When gas is generated, the packaging material expands and the degree of vacuum inside the packaging material decreases. In addition, when the inside of the battery is expanded in this way, the adhesion between the electrode plates is lowered, the electrolyte is depleted, and the performance of the battery is deteriorated. However, in the case of the conventional secondary battery, the battery had to be discarded when the electrolyte was depleted and the battery performance decreased.
본 발명은 전술한 바와 같은 종래기술의 문제점들을 개선하기 위해 착상된 것으로서, 외장재의 융점보다 낮은 온도(예를 들어, 600℃ 이하)에서 용융되는 용융 접합부재를 이용하여 외장재의 일부분을 접합하고 나머지 부분은 외장재를 용융시켜서 외장재끼리 직접 접합함으로써, 외장재의 밀봉 뿐만 아니라 벤트 부위를 용이하게 형성할 수 있는 이차 전지를 제공한다.The present invention has been conceived to improve the problems of the prior art as described above, using a fusion bonding member that is melted at a temperature lower than the melting point of the packaging material (eg, 600 ° C. or less) to bond a portion of the packaging material to the remainder. The part melt | dissolves an exterior material and directly bonds together exterior materials, and provides the secondary battery which can easily form a vent part as well as sealing of an exterior material.
본 발명은 용융 접합부재가 도포되거나 제공되는 부위를 선택함으로써 벤트 작용 부위를 설계 사항에 따라 선택할 수 있는 이차 전지를 제공한다.The present invention provides a secondary battery in which the vent action site can be selected according to design matters by selecting a site where a fusion bonding member is applied or provided.
본 발명은 외장재 내부의 온도 또는 압력 상승으로 인해 외장재 내부에 발생한 가스를 용융 접합부재가 형성된 부분을 통해 외장재의 외부로 배출할 수 있고, 가스가 배출되는 부분을 선택할 수 있는 이차 전지를 제공한다.The present invention provides a secondary battery capable of discharging the gas generated inside the packaging material due to an increase in temperature or pressure inside the packaging material to the outside of the packaging material through a portion in which the fusion bonding member is formed, and selecting a portion from which the gas is discharged.
본 발명은 용융 접합부재의 조성 또는 도포량을 조절하여 밀봉 강도를 조절할 수 있는 이차 전지를 제공한다.The present invention provides a secondary battery capable of adjusting the sealing strength by adjusting the composition or the amount of coating of the melt bonding member.
본 발명은 적절한 용융 접합부재의 조성 내지 재질 선택에 의해 특정 온도 또는 압력에서 전지의 밀봉을 해제할 수 있는 벤트 메커니즘이 전지의 밀봉 및/또는 접합부와 일체화된 이차 전지를 제공한다. 이러한 목적은, 용융 접합부재의 도포량 및 접합 면적 제어가 용이한 점에 착안하여, 압력 내구성 제어가 가능한 벤트 일체형 밀봉 설계를 갖춘 이차 전지의 구현이 가능하다.The present invention provides a secondary battery in which a vent mechanism capable of releasing the battery at a specific temperature or pressure by appropriate composition or material selection of the melt bonding member is integrated with the sealing and / or junction of the battery. This object is focused on the ease of controlling the coating amount and the bonding area of the melt bonding member, it is possible to implement a secondary battery having a vent-integrated sealing design that can control the pressure durability.
본 발명은 전지의 용량 등 설계 조건에 따라 용융 접합부재가 제공되는 면적을 조절하여 전지의 밀봉성을 확보하면서도 전지가 폭발하는 것을 방지할 수 있는 이차 전지를 제공한다.The present invention provides a secondary battery that can prevent the battery from exploding while ensuring the sealing property of the battery by adjusting the area provided with the molten bonding member according to the design conditions, such as the capacity of the battery.
본 발명은 전지를 사용함에 따라 전해액이 고갈되는 경우 전해액을 보충하고 재사용할 수 있는 이차 전지를 제공한다. 이 때, 전해액은 용융 접합부재를 통해서 외장재 안으로 주입될 수 있다.The present invention provides a secondary battery that can replenish and reuse the electrolyte when the electrolyte is depleted by using the battery. At this time, the electrolyte may be injected into the packaging material through the fusion bonding member.
상기 과제를 달성하기 위한 본 발명에 따른 이차 전지는, 전극 조립체와 전해액이 함께 수납되는 수납부 및 개방부를 포함하는 금속성 캔; 상기 캔을 밀봉할 수 있도록 상기 캔의 상기 개방부에 위치되는 금속성 캡; 상기 캔과 상기 캡을 서로 접합하도록 상기 캔의 플랜지와 상기 캡의 플랜지 사이에 형성되는 제1 실링부; 및 상기 캔과 상기 캡을 서로 접합하도록 상기 캔의 플랜지와 상기 캡의 플랜지 사이에 형성되는 제2 실링부;를 포함하며, 상기 제1 실링부 및 상기 제2 실링부의 접합 강도가 상이하게 형성될 수 있다.According to an aspect of the present invention, there is provided a secondary battery including a metallic can including an accommodating part and an open part accommodating an electrode assembly and an electrolyte solution; A metallic cap positioned in the opening of the can to seal the can; A first sealing portion formed between a flange of the can and a flange of the cap to bond the can and the cap to each other; And a second sealing portion formed between the flange of the can and the flange of the cap to bond the can and the cap to each other, wherein bonding strengths of the first sealing portion and the second sealing portion are different from each other. Can be.
상기 제2 실링부의 면적 또는 융점에 의해서 상기 캔과 상기 캡 사이의 밀봉 또는 접합 강도를 조절할 수 있다.The sealing or bonding strength between the can and the cap may be adjusted by the area or melting point of the second sealing portion.
상기 제2 실링부는 상기 수납부 내에 제공되는 상기 전극 조립체의 전극탭과 인접한 일측을 제외한 부위 중 적어도 한 곳에 형성될 수 있다.The second sealing part may be formed in at least one of portions except for one side adjacent to the electrode tab of the electrode assembly provided in the accommodating part.
상기 제2 실링부는 상기 전극 조립체를 보호하기 위해서 상기 수납부의 외부에 제공되는 배터리 제어시스템(BMS)과 인접한 일측을 제외한 부위 중 적어도 한 곳에 형성될 수 있다.The second sealing part may be formed in at least one of portions except for one side adjacent to the battery control system BMS provided outside of the accommodating part to protect the electrode assembly.
상기 제1 실링부는 상기 캔 및 상기 캡을 국부적으로 가열하여 상기 캔 및 상기 캡이 용융된 상태에서 형성되며, 상기 제2 실링부는 상기 캔 및 상기 캡의 상태 변화 없이 형성될 수 있다.The first sealing part may be formed while the can and the cap are locally heated by locally heating the can and the cap, and the second sealing part may be formed without changing the state of the can and the cap.
상기 제1 실링부는 상기 캔과 상기 캡을 직접 접합하고, 상기 제2 실링부는 상기 캔과 상기 캡 사이에 용융 접합부재를 게재하여 상기 캔과 상기 캡을 간접적으로 접합할 수 있다.The first sealing portion may directly bond the can and the cap, and the second sealing portion may indirectly bond the can and the cap by placing a fusion bonding member between the can and the cap.
상기 제1 실링부는 상기 캔과 상기 캡의 용융점까지 상기 캔 및 상기 캡을 가열하여 상기 캔과 상기 캡을 직접 접합하고, 상기 제2 실링부는 상기 캔 및 상기 캡 보다 용융점이 낮은 비철금속 또는 비철금속의 합금을 포함하는 상기 용융 접합부재의 용융 및 응고에 의해서 상기 캔과 상기 캡을 접합할 수 있다.The first sealing portion directly heats the can and the cap to the melting point of the can and the cap, and directly bonds the can and the cap, and the second sealing portion is an alloy of a nonferrous metal or a nonferrous metal having a lower melting point than the can and the cap. The can and the cap may be joined by melting and solidifying the melt bonding member including a.
상기 제2 실링부는 상기 수납부의 온도가 상승하면 용융되어 상기 캔과 상기 캡의 밀봉 상태를 해제시키거나, 상기 용융 접합부재의 조성 또는 도포량에 의해 결정되는 접합 파괴강도 보다 큰 압력이 상기 수납부의 내부에 발생하는 경우에 상기 캔과 상기 캡의 밀봉 상태를 해제시킬 수 있다.The second sealing part is melted when the temperature of the accommodating part rises to release the sealing state of the can and the cap, or the pressure greater than the joint fracture strength determined by the composition or the coating amount of the melted joint member is increased. When the inside of the can can be released from the can seal the cap.
한편, 상기한 과제를 달성하기 위한 본 발명에 따른 이차 전지는, 전극 조립체와 전해액이 함께 수납되는 수납부 및 개방부를 포함하는 금속성 캔; 상기 캔을 밀봉할 수 있도록 상기 캔의 상기 개방부에 위치되는 금속성 캡; 상기 캔과 상기 캡을 서로 접합하여 밀봉하도록 상기 캔의 플랜지와 상기 캡의 플랜지 사이에 형성되는 실링부; 및 상기 캔의 플랜지와 상기 캡의 플랜지 사이에 형성되어 상기 캔과 상기 캡을 서로 접합하고 상기 캔과 상기 캡의 밀봉 상태를 해제할 수 있는 방폭부;를 포함하며, 상기 방폭부는 상기 캔 및 상기 캡의 용융점 보다 낮은 용융점을 가지는 비철금속 또는 비철금속의 합금을 포함하는 용융 접합부재에 의해 형성될 수 있다.On the other hand, the secondary battery according to the present invention for achieving the above object is a metallic can including an accommodating portion and an open portion accommodated together with the electrode assembly; A metallic cap positioned in the opening of the can to seal the can; A sealing portion formed between the flange of the can and the flange of the cap to seal the can and the cap by bonding to each other; And an explosion-proof portion formed between a flange of the can and a flange of the cap to bond the can and the cap to each other and to release a sealing state of the can and the cap. It can be formed by a molten bonding member comprising a non-ferrous metal or an alloy of non-ferrous metal having a melting point lower than the melting point of the cap.
상기 실링부는 상기 캔 및 상기 캡의 용융점 이상으로 상기 캔 및 상기 캡을 가열하여 용융된 상기 캔과 상기 캡을 직접 접합시켜서 형성될 수 있다.The sealing part may be formed by directly joining the melted can and the cap by heating the can and the cap above the melting point of the can and the cap.
상기 방폭부는 상기 수납부의 온도가 상승하면 용융되어 상기 캔과 상기 캡의 밀봉 상태를 해제시키거나, 상기 용융 접합부재의 조성 또는 도포량에 의해 결정되는 접합 파괴강도 보다 큰 압력이 상기 수납부의 내부에 발생하는 경우에 상기 캔과 상기 캡의 밀봉 상태를 해제시킬 수 있다.The explosion-proof part is melted when the temperature of the accommodating part rises to release the sealing state of the can and the cap, or a pressure greater than the bond breaking strength determined by the composition or the coating amount of the molten joint member is applied to the inside of the accommodating part. When it occurs in the can and the can seal the state of the cap can be released.
상기 방폭부는 상기 실링부와 연속적으로 형성되어 상기 캔과 상기 캡을 접합하는 접합부를 겸할 수 있다.The explosion-proof part may be formed continuously with the sealing part to serve as a joint part for joining the can and the cap.
상기 방폭부는 상기 수납부 내에 제공되는 상기 전극 조립체의 전극탭과 인접한 일측을 제외한 부위 중 적어도 한 곳에 형성될 수 있다.The explosion-proof part may be formed in at least one of portions except for one side adjacent to the electrode tab of the electrode assembly provided in the accommodation part.
상기 방폭부는 상기 전극 조립체를 보호하기 위해서 상기 수납부의 외부에 제공되는 배터리 제어시스템(BMS)과 인접한 일측을 제외한 부위 중 적어도 한 곳에 형성될 수 있다.The explosion-proof part may be formed in at least one of portions except for one side adjacent to the battery control system BMS provided outside of the accommodating part to protect the electrode assembly.
상기 용융 접합부재는 600℃ 이하, 바람직하게는 400℃ 이하의 융점을 가지며, 납, 주석, 아연, 알루미늄, 은 또는 이들의 합금으로 구성된 그룹으로부터 선택된 어느 하나를 포함할 수 있다.The molten bonding member has a melting point of 600 ° C. or less, preferably 400 ° C. or less, and may include any one selected from the group consisting of lead, tin, zinc, aluminum, silver, or an alloy thereof.
뿐만 아니라, 상기한 과제를 달성하기 위한 본 발명에 따른 이차 전지는, 전극 조립체와 전해액이 함께 수납되는 수납부 및 개방부를 포함하는 금속성 캔; 상기 캔을 밀봉할 수 있도록 상기 캔의 상기 개방부에 위치되는 금속성 캡; 상기 캔과 상기 캡을 서로 접합하여 밀봉하도록 상기 캔의 플랜지와 상기 캡의 플랜지 사이에 형성되는 실링부; 및 상기 캔과 상기 캡을 접합하여 밀봉하도록 상기 캔의 플랜지와 상기 캡의 플랜지 사이에 형성되며, 필요시 상기 전해액의 보충이 가능하도록 형성된 전해액 보충부;를 포함하며, 상기 전해액 보충부는 상기 실링부와 연속적으로 형성되어 상기 캔과 상기 캡을 접합하는 접합부를 겸하도록 상기 캔 및 상기 캡의 용융점 보다 낮은 용융점을 가지는 비철금속 또는 비철금속의 합금을 포함하는 용융 접합부재에 의해 형성될 수 있다.In addition, a secondary battery according to the present invention for achieving the above object is a metallic can including an electrode unit and an accommodating portion and an opening that is accommodated together with the electrolyte; A metallic cap positioned in the opening of the can to seal the can; A sealing portion formed between the flange of the can and the flange of the cap to seal the can and the cap by bonding to each other; And an electrolyte replenishment part formed between the flange of the can and the flange of the cap to bond and seal the can and the cap, and the electrolyte replenishment part formed to enable replenishment of the electrolyte solution, if necessary. And a molten bonding member including a nonferrous metal or an alloy of nonferrous metal having a melting point lower than the melting point of the can and the cap so as to serve as a joint for joining the can and the cap.
상기 전해액 보충부는 상기 수납부의 온도가 상승하면 용융되어 상기 캔과 상기 캡의 밀봉 상태를 해제시키거나, 상기 용융 접합부재의 조성 또는 도포량에 의해 결정되는 접합 파괴강도 보다 큰 압력이 상기 수납부의 내부에 발생하는 경우에 상기 캔과 상기 캡의 밀봉 상태를 해제시킬 수 있다.The electrolyte replenishment part is melted when the temperature of the accommodating part rises to release the sealing state of the can and the cap, or a pressure greater than the joint fracture strength determined by the composition or the coating amount of the molten joint member is increased. When it is generated inside, it is possible to release the sealed state of the can and the cap.
상기 수납부 안으로 상기 전해액을 보충할 수 있도록 상기 용융 접합부재는 용융 및 재응고되어 상기 캔과 상기 캡을 재밀봉할 수 있다.The molten bonding member may be melted and resolidified so as to replenish the electrolyte into the accommodating part to reseal the can and the cap.
상기 실링부는 상기 캔 및 상기 캡의 용융점 이상으로 상기 캔 및 상기 캡을 가열하여 용융된 상기 캔과 상기 캡을 직접 접합시켜서 형성될 수 있다. The sealing part may be formed by directly joining the melted can and the cap by heating the can and the cap above the melting point of the can and the cap.
상기 용융 접합부재는 600℃ 이하, 바람직하게는 400℃ 이하의 융점을 가지며, 납, 주석, 아연, 알루미늄, 은 또는 이들의 합금으로 구성된 그룹으로부터 선택된 어느 하나를 포함할 수 있다.The molten bonding member has a melting point of 600 ° C. or less, preferably 400 ° C. or less, and may include any one selected from the group consisting of lead, tin, zinc, aluminum, silver, or an alloy thereof.
상기 전해액 보충부는 상기 수납부 내에 제공되는 상기 전극 조립체의 전극탭과 인접한 일측을 제외한 부위 중 적어도 한 곳에 형성될 수 있다.The electrolyte replenishment unit may be formed at at least one of portions except for one side adjacent to the electrode tab of the electrode assembly provided in the accommodation unit.
상기 전해액 보충부는 상기 전극 조립체를 보호하기 위해서 상기 수납부의 외부에 제공되는 배터리 제어시스템(BMS)과 인접한 일측을 제외한 부위 중 적어도 한 곳에 형성될 수 있다.The electrolyte replenishment part may be formed in at least one of the portions except for one side adjacent to the battery control system BMS provided outside of the accommodating part to protect the electrode assembly.
상기 캔 또는 상기 캡 중 적어도 하나에는 상기 용융 접합부재와의 접합성 또는 상기 용융 접합부재의 젖음성을 향상시키기 위해 상기 플랜지의 표면에 니켈 또는 구리 도금이 형성될 수 있다.At least one of the can or the cap may be formed with nickel or copper plating on the surface of the flange to improve bonding to the melt bonding member or wettability of the melt bonding member.
상기 캔의 플랜지와 상기 캡의 플랜지는 동일한 크기로 형성되며, 상기 용융 접합부재는 상기 플랜지들 사이에 제공될 수 있다.The flange of the can and the flange of the cap are formed in the same size, and the fusion bonding member may be provided between the flanges.
상기 캡의 플랜지 단부는 상기 캔 쪽으로 절곡 형성되며, 상기 용융 접합부재는 상기 캔의 플랜지와 상기 캡의 플랜지 사이에 제공될 수 있다.The flange end of the cap is bent toward the can, and the melt joint member may be provided between the flange of the can and the flange of the cap.
본 발명에 따른 이차 전지는 접합강도 서로 다른 2종류의 접합 또는 밀봉을 이용하여 외장재를 서로 결합하기 때문에 전지의 밀봉을 확보함과 동시에 용이하게 벤트부를 형성할 수 있다.Since the secondary battery according to the present invention bonds the exterior materials to each other by using two types of bonding or sealing with different bonding strengths, the secondary battery can be easily formed while ensuring the sealing of the battery.
본 발명에 따른 이차 전지는 용융 접합부재의 도포량 또는 조성을 조절함으로써 벤트가 작동하는 온도 또는 압력을 용이하게 설정할 수 있다.The secondary battery according to the present invention can easily set the temperature or pressure at which the vent operates by adjusting the application amount or composition of the melt bonding member.
본 발명에 따른 이차 전지는 용융 접합부재가 제공되는 부위를 선택함으로써 온도 또는 압력 상승으로 발생한 가스가 배출되는 위치 또는 방향을 조절할 수 있다.The secondary battery according to the present invention can adjust the position or direction in which the gas generated by the temperature or the pressure rise is discharged by selecting the site where the molten bonding member is provided.
본 발명에 따른 이차 전지는 가스가 배출되는 위치 또는 방향을 조절할 수 있기 때문에 이차 전지의 주변에 있는 부품들의 손상을 방지할 수 있다.Since the secondary battery according to the present invention can adjust the position or direction in which the gas is discharged, it is possible to prevent damage to the components around the secondary battery.
본 발명에 따른 이차 전지는 외장재 보다 용융점이 낮은 용융 접합부재를 이용하여 외장재의 일부를 밀봉하기 때문에 전지 내부 구성품의 열화를 어느 정도 방지할 수 있다.Since the secondary battery according to the present invention seals a part of the packaging material by using a fusion bonding member having a lower melting point than the packaging material, it is possible to prevent deterioration of battery internal components to some extent.
본 발명에 따른 이차 전지는 용융 접합부재가 제공되는 부위를 선택함으로써 벤트 작동 위치를 특정 위치에 고정하는 대신 설계 조건에 따라 다양한 위치로 변경할 수 있다.The secondary battery according to the present invention can be changed to various positions according to design conditions instead of fixing the vent operation position to a specific position by selecting a portion provided with the molten bonding member.
본 발명에 따른 이차 전지는 전지를 정상적으로 사용함에 따라 고갈되는 전해액을 보충할 수도 있기 때문에 전지의 사용 수명을 늘일 수 있다. 이 때, 용융 접합부재가 제공된 부분을 통해 전해액을 주입할 수 있기 때문에 전해액을 보충한 후에도 전지의 밀봉을 유지할 수 있고 벤트 기능도 동일하게 확보할 수 있다.The secondary battery according to the present invention can extend the service life of the battery because it can replenish the electrolyte that is depleted as a normal use of the battery. At this time, since the electrolyte can be injected through the portion provided with the fusion bonding member, the sealing of the battery can be maintained even after replenishing the electrolyte and the vent function can be secured in the same manner.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.The following drawings attached to this specification are illustrative of preferred embodiments of the present invention, and together with the detailed description of the invention to serve to further understand the technical spirit of the present invention, the present invention is a matter described in such drawings It should not be construed as limited to.
도 1은 본 발명의 일 실시예에 따른 이차 전지를 도시한 사시도이다.1 is a perspective view illustrating a rechargeable battery according to an exemplary embodiment of the present invention.
도 2는 도 1에 따른 이차 전지의 변형예를 도시한 사시도이다.2 is a perspective view illustrating a modified example of the rechargeable battery of FIG. 1.
도 3은 도 1의 절단선 "Ⅲ-Ⅲ"에 따른 단면도이다.3 is a cross-sectional view taken along the cutting line "III-III" in FIG.
도 4는 도 1의 절단선 "Ⅳ-Ⅳ"에 따른 단면도이다.4 is a cross-sectional view taken along the line “IV-IV” of FIG. 1.
도 5는 본 발명의 일 실시예에 따른 이차 전지의 내부를 도시한 단면도이다.5 is a cross-sectional view illustrating an interior of a rechargeable battery according to an exemplary embodiment of the present invention.
도 6은 도 5에 따른 이차 전지의 내부를 도시한 평면도이다.FIG. 6 is a plan view illustrating an interior of a rechargeable battery of FIG. 5.
도 7은 본 발명의 다른 일 실시예에 따른 이차 전지의 내부를 도시한 단면도이다.7 is a cross-sectional view illustrating an interior of a rechargeable battery according to another exemplary embodiment of the present invention.
도 8은 도 7에 따른 이차 전지의 내부를 도시한 평면도이다.FIG. 8 is a plan view illustrating an interior of a rechargeable battery according to FIG. 7.
도 9는 도 7에 따른 이차 전지의 작동 상태의 일례를 도시한 단면도이다.9 is a cross-sectional view illustrating an example of an operating state of a rechargeable battery according to FIG. 7.
도 10은 본 발명의 또 다른 일 실시예에 따른 이차 전지의 내부를 도시한 단면도이다.10 is a cross-sectional view illustrating an interior of a rechargeable battery according to another exemplary embodiment of the present invention.
도 11은 도 10에 따른 이차 전지의 내부를 도시한 평면도이다.FIG. 11 is a plan view illustrating an interior of a rechargeable battery according to FIG. 10.
도 12는 도 10에 따른 이차 전지의 작동 상태의 일례를 도시한 단면도이다.12 is a cross-sectional view illustrating an example of an operating state of a rechargeable battery according to FIG. 10.
도 13 내지 도 15는 본 발명에 따른 이차 전지의 플랜지 형상 중 용융 접합부재가 제공되는 플랜지의 형상을 도시한 단면도이다.13 to 15 are cross-sectional views showing the shape of a flange provided with a fusion bonding member of the flange shape of the secondary battery according to the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예에 따른 이차 전지를 설명한다. 도면에서, 동일한 구성요소들은 동일한 참조부호가 부여되었다. Hereinafter, a secondary battery according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings. In the figures, like elements have been given the same reference numerals.
도 1은 본 발명의 일 실시예에 따른 이차 전지를 도시한 사시도, 도 2는 도 1에 따른 이차 전지의 변형예를 도시한 사시도, 도 3은 도 1의 절단선 "Ⅲ-Ⅲ"에 따른 단면도, 도 4는 도 1의 절단선 "Ⅳ-Ⅳ"에 따른 단면도, 도 5는 본 발명의 일 실시예에 따른 이차 전지의 내부를 도시한 단면도, 도 6은 도 5에 따른 이차 전지의 내부를 도시한 평면도, 도 7은 본 발명의 다른 일 실시예에 따른 이차 전지의 내부를 도시한 단면도, 도 8은 도 7에 따른 이차 전지의 내부를 도시한 평면도, 도 9는 도 7에 따른 이차 전지의 작동 상태의 일례를 도시한 단면도, 도 10은 본 발명의 또 다른 일 실시예에 따른 이차 전지의 내부를 도시한 단면도, 도 11은 도 10에 따른 이차 전지의 내부를 도시한 평면도, 도 12는 도 10에 따른 이차 전지의 작동 상태의 일례를 도시한 단면도, 도 13 내지 도 15는 본 발명에 따른 이차 전지의 플랜지 형상 중 용융 접합부재가 제공되는 플랜지의 형상을 도시한 단면도이다.1 is a perspective view of a rechargeable battery according to an exemplary embodiment of the present invention, FIG. 2 is a perspective view illustrating a modified example of the rechargeable battery according to FIG. 1, and FIG. 3 is a cut line “III-III” of FIG. 1. 4 is a cross-sectional view taken along the cutting line “IV-IV” of FIG. 1, FIG. 5 is a cross-sectional view showing the inside of a secondary battery according to an embodiment of the present invention, and FIG. 6 is a inside of the secondary battery shown in FIG. 5. 7 is a cross-sectional view illustrating an interior of a secondary battery according to another exemplary embodiment of the present invention, FIG. 8 is a plan view illustrating an interior of a secondary battery according to FIG. 7, and FIG. 9 is a secondary battery according to FIG. 7. 10 is a cross-sectional view showing an example of an operating state of the battery, FIG. 10 is a cross-sectional view showing the inside of a secondary battery according to another embodiment of the present invention, FIG. 11 is a plan view showing the inside of the secondary battery according to FIG. 12 is a cross-sectional view showing an example of an operating state of a secondary battery according to FIG. 10, FIGS. 13 to 13. 15 is a cross-sectional view showing the shape of a flange provided with a fusion bonding member of the flange shape of the secondary battery according to the present invention.
도 1 내지 도 4를 참조하면, 본 발명의 일 실시예에 따른 이차 전지(100)는 금속성의 캔(110) 및 금속성 캡(120)을 포함하는 외장재 그리고 캔(110)과 캡(120)의 플랜지(113,123) 사이에 형성되는 접합 내지 밀봉에 의해서 외장재가 서로 결합될 수 있다.1 to 4, a rechargeable battery 100 according to an exemplary embodiment of the present invention may include an outer material including a metallic can 110 and a metallic cap 120, and an exterior of the can 110 and the cap 120. The packaging materials may be bonded to each other by bonding or sealing formed between the flanges 113 and 123.
상기 캔(110)은 전극 조립체(130)와 전해액(140)을 포함하는 전지의 구성요소들을 수납하는 수납부(111)를 가지며 일단이 개방된 개방부(112)를 가진다. 캔(110)은 그 자체가 전극 단자의 기능을 할 수도 있다. 본 발명에 따른 이차 전지에서 캔(110)은 일면이 개방된 육면체 형태의 각형 전지로 도시되었지만 원통형 전지 또는 그 어떤 다른 형태의 전지 등과 같이 업계에서 요구되는 치수들로 얼마든지 변형될 수 있음은 당업자가 용이하게 이해할 것이다. 여기서, 전해액(140)은 캔(110)과 캡(120)의 사이의 내부 공간을 채우면서 전지의 내부가 진공 상태로 유지될 수 있게 한다.The can 110 has an accommodating portion 111 for accommodating the components of the battery including the electrode assembly 130 and the electrolyte 140, and has an opening 112 open at one end thereof. The can 110 may itself function as an electrode terminal. In the secondary battery according to the present invention, the can 110 is illustrated as a hexagonal battery having an open side on one side, but may be deformed to the required dimensions in the industry, such as a cylindrical battery or any other type of battery. Will be easily understood. Here, the electrolyte 140 fills the internal space between the can 110 and the cap 120, so that the inside of the battery can be maintained in a vacuum state.
캔(110)의 수납부(111)는 전극 조립체(130)와 전해액(140)을 수납/수용하여 그것을 밀폐시키는 공간으로서 개략적으로 직사각 형태로 도시되었지만, 실제적으로 조립되는 전극 조립체(130)의 형상 또는 모양에 상응하는 형태로 변경될 수 있다. 캔(110)의 개방부(112)는 캡(120)에 의해 덮혀지는 것으로서 특별히 그 형상 및 사이즈에 제한이 있는 것은 아니다.Although the housing 111 of the can 110 is schematically illustrated in a rectangular shape as a space for accommodating / receiving the electrode assembly 130 and the electrolyte 140, the shape of the electrode assembly 130 is actually assembled. Or it may be changed to a shape corresponding to the shape. The opening 112 of the can 110 is covered by the cap 120 and is not particularly limited in shape and size.
캔(110)은 소정의 두께 또는 높이를 형성하는 측벽으로부터 실질적으로 직교되는 외측 방향으로 미리 결정된 길이만큼 돌출된 플랜지(113)를 구비한다. 이러한 플랜지(113)는 캔(110)의 두께에 대하여 안정된 접합 면적을 확보하기 위한 것이다. 여기서, 플랜지(113)의 전체 면적은 캔(110)의 수납부(111) 면적의 10% 이하가 되도록 형성될 수 있다. 또한, 플랜지(113)의 폭은 20mm 이하, 바람직하게는 10mm 이하가 되도록 형성될 수 있다. 즉, 플랜지(113)는 캔(110)과 캡(120)의 밀봉 또는 접합을 충분히 확보하고 용접 등에 의해 접합하는 경우에 발생하는 열이 전극 조립체 등으로 전파되는 것을 막을 수 있도록 충분한 면적을 가지도록 형성되는 것이 바람직하다.The can 110 has a flange 113 protruding by a predetermined length in an outward direction that is substantially orthogonal from a sidewall forming a predetermined thickness or height. This flange 113 is to ensure a stable bonding area with respect to the thickness of the can (110). Here, the total area of the flange 113 may be formed to be 10% or less of the area of the accommodating part 111 of the can 110. In addition, the width of the flange 113 may be formed to be 20mm or less, preferably 10mm or less. That is, the flange 113 has a sufficient area to ensure sufficient sealing or joining of the can 110 and the cap 120 and to prevent heat generated when joining by welding or the like to be transmitted to the electrode assembly or the like. It is preferably formed.
한편, 캡(120)도 플랜지(123)를 구비하며 캔(110)의 플랜지(113)와 동일한 형상 또는 크기를 가질 수 있다. 다만, 도 15에 도시된 바와 같이, 캡(120)의 플랜지(123)가 캔(110)의 플랜지(113) 보다 더 큰 폭을 가지거나 더 외측으로 돌출되도록 형성될 수도 있다.Meanwhile, the cap 120 also includes a flange 123 and may have the same shape or size as the flange 113 of the can 110. However, as shown in FIG. 15, the flange 123 of the cap 120 may have a larger width or protrude outward than the flange 113 of the can 110.
캔(110)에는 전극 조립체(130)의 전극탭(132)이 위치하는 전극탭 수용부(180)가 형성될 수 있다. 전극탭 수용부(180)는 캔(110)의 수납부(111)와 단차를 이루며 형성되는 것이 바람직하며, 전극탭 수용부(180)의 외면에는 전극탭(132)과 전기적으로 연결되는 전극단자(190)가 마련될 수 있다. 전극단자(190)는 전극 조립체(130) 중 양극판의 전극탭과 연결되는 양극단자(191) 및 음극판의 전극탭과 연결되는 음극단자(192)를 포함할 수 있다. 여기서, 전극단자(190) 중 어느 하나에는 전해액을 주입하는 전해액 주액구(미도시)가 형성될 수도 있다. The can 110 may include an electrode tab accommodating part 180 in which the electrode tab 132 of the electrode assembly 130 is located. The electrode tab receiving part 180 may be formed to form a step with the receiving part 111 of the can 110, and an electrode terminal electrically connected to the electrode tab 132 on an outer surface of the electrode tab receiving part 180. 190 may be provided. The electrode terminal 190 may include a positive electrode terminal 191 connected to the electrode tab of the positive electrode plate and a negative electrode terminal 192 connected to the electrode tab of the negative electrode plate of the electrode assembly 130. Here, an electrolyte injection hole (not shown) for injecting an electrolyte may be formed in any one of the electrode terminals 190.
한편, 도 2에 도시된 바와 같이, 전극탭 수용부(180)에는 배터리 제어시스템(134)이 구비될 수도 있다. 배터리 제어시스템(BMS: Battery Management System)은 전지의 상태를 모니터링하여 최적의 조건에서 유지/사용할 수 있도록 전지 시스템을 자동으로 관리하고 전지의 교체 시기 등을 예측하고 문제의 전지를 사전에 발견하는 등의 기능을 수행할 수 있다. 배터리 제어시스템(134)은 전지 보호회로의 기능을 수행할 수도 있으며, 배터리 제어시스템(134)이 제공될 경우 전극단자(190)는 배터리 제어시스템(134)에 의해 가려져서 보이지 않을 수 있다. 여기서, 배터리 제어시스템(134)은 전극 조립체(130)의 전극탭(132)와 동일한 일측에 제공되는 것이 바람직하다.On the other hand, as shown in Figure 2, the electrode tab receiving portion 180 may be provided with a battery control system 134. The Battery Management System (BMS) monitors the condition of the battery and automatically manages the battery system for optimal maintenance and use, predicts when the battery will be replaced, finds the battery in advance, etc. Can perform the function of. The battery control system 134 may perform a function of a battery protection circuit, and when the battery control system 134 is provided, the electrode terminal 190 may be hidden by the battery control system 134 and may not be visible. Here, the battery control system 134 is preferably provided on the same side as the electrode tab 132 of the electrode assembly 130.
본 발명의 바람직한 일 실시예에 따르면, 캔(110) 및/또는 캡(120)은 수납부에 수납된 전극 조립체(130)와 전해액(140)과 같은 내용물이 외부로 유출되거나 외기가 유입되지 않도록 하고, 내부와 외부 사이의 기압차, 물리, 화학, 기후 환경적 충격에 대해 내용물이 정상적으로 작동할 수 있는 범위 내에서 기밀성을 보장하는 재료를 포함한다. 예를 들어, 캔(110) 및/또는 캡(120)은 약 10 kcal/mh℃(20℃) 이상의 열전도율, 약 5kgf/mm2 이상의 인장강도를 가지며, 약 30㎛이상의 두께를 가질 수 있다. 여기서, 캔(110) 및/또는 캡(120)은 철, 알루미늄, 구리를 포함하는 단일 금속 또는 황동, 청동, 스테인레스를 포함하는 합금으로 형성될 수 있다.According to an exemplary embodiment of the present invention, the can 110 and / or the cap 120 may prevent the contents such as the electrode assembly 130 and the electrolyte 140 contained in the receiving unit from leaking out or introducing outside air. And a material that ensures airtightness to the extent that the contents can operate normally against the pressure difference, physical, chemical, and climatic environmental impact between the inside and the outside. For example, can 110 and / or cap 120 has a thermal conductivity of about 10 kcal / mh ° C. (20 ° C.) or more, a tensile strength of about 5 kgf / mm 2 or more, and a thickness of about 30 μm or more. The can 110 and / or the cap 120 may be formed of a single metal including iron, aluminum, copper, or an alloy including brass, bronze, and stainless steel.
전극 조립체(130)는 양극판/세퍼레이터/음극판이 순차적으로 배치(예, 복수의 단위 전극들이 적층되는 라미네이션 타입 또는 단위 전극들이 권취된 젤리-롤 타입)된 구조이며, 전체적인 외형이 육면체 또는 코인형 등과 같이 다양하게 변형될 수 있다. The electrode assembly 130 has a structure in which a cathode plate / separator / cathode plate is sequentially disposed (eg, a lamination type in which a plurality of unit electrodes are stacked or a jelly-roll type in which unit electrodes are wound), and an overall appearance thereof is a hexahedron or coin type. It can be variously modified as follows.
통상적으로, 이차 전지에 있어서, 양극판은 알루미늄 박판의 양극 집전체의 적어도 하나의 면에 리튬계 산화물을 주성분으로 하는 양극 활물질이 도포된 구조이고, 음극판은 구리 박판의 음극 집전체의 적어도 하나의 면에 탄소재를 주성분으로 하는 음극 활물질이 도포된 구조이다. 양극판과 음극판은 각각 양극탭과 음극탭을 구비한다. 이러한 양극탭과 음극탭은 극성에 따라 서로 다른 위치에 배치될 수도 있고, 양극판과 음극판으로부터 돌출되는 양극탭과 음극탭 부분은 극판들 사이의 단락을 방지하기 위해 절연 테이프가 부착될 수 있다. 또한, 세퍼레이터는 양극판과 음극판을 분리시키기 위한 다공성 고분자 필름을 사용한다. 양극판/세퍼레이터/음극판으로 구성되는 전극 조립체(130의 구조는 당업자에 의해 얼마든지 변형될 수 있다.Typically, in the secondary battery, the positive electrode plate has a structure in which a positive electrode active material containing lithium-based oxide as a main component is applied to at least one side of the positive electrode current collector of an aluminum thin plate, and the negative electrode plate has at least one side of the negative electrode current collector of a copper thin plate. It is a structure to which the negative electrode active material which has a carbon material as a main component was apply | coated to the. The positive electrode plate and the negative electrode plate each have a positive electrode tab and a negative electrode tab. The positive electrode tab and the negative electrode tab may be disposed at different positions according to polarity, and the positive electrode tab and the negative electrode tab portion protruding from the positive electrode plate and the negative electrode plate may be attached with an insulating tape to prevent a short circuit between the electrode plates. In addition, the separator uses a porous polymer film for separating the positive electrode plate and the negative electrode plate. The structure of the electrode assembly 130 composed of the positive plate / separator / cathode plate may be modified by any person skilled in the art.
본 발명의 일 실시예에 따른 이차 전지(100)는 캔(110)과 캡(120)의 플랜지를 서로 밀봉 내지 접합하여 전지의 내부를 진공상태로 유지해야 한다. 이를 위해서, 본 발명에 따른 이차 전지(100)는 플랜지끼리 서로 접합함에 있어서 종류가 다르거나 접합 강도가 서로 다른 2종류의 접합 내지 밀봉방식을 이용하여 플랜지를 서로 결합 밀봉함에 특징이 있다.The secondary battery 100 according to an embodiment of the present invention should seal or bond the flanges of the can 110 and the cap 120 to each other to maintain the interior of the battery in a vacuum state. To this end, the secondary battery 100 according to the present invention is characterized in that the flanges are bonded to each other by using two types of bonding or sealing methods different in type or different in bonding strength when the flanges are bonded to each other.
본 발명의 일 실시예에 따른 이차 전지(100)는 접합 강도가 서로 다른 2종류의 접합 내지 밀봉 방식을 이용하여 캔과 캡을 서로 결합 밀봉함으로써, 전지의 기밀성을 확보함과 더불어 전지 내부의 압력 또는 온도 상승으로 인해 전지가 폭발하는 것을 방지하는 벤트(vent) 기능도 확보할 수 있으며, 경우에 따라서는 전지를 사용함에 따라 고갈되는 전해액을 다시 보충하여 전지의 사용 수명을 연장할 수도 있다. 이하에서는 도면을 참조하여 본 발명에 따른 전지(100)의 캔(110)과 캡(120)의 접합 구조 등에 대해서 설명한다. In the secondary battery 100 according to the embodiment of the present invention, the can and the cap are sealed to each other by using two types of bonding or sealing methods having different bonding strengths, thereby ensuring airtightness of the battery and pressure inside the battery. Alternatively, a vent function may be secured to prevent the battery from exploding due to a temperature increase, and in some cases, the battery may be replenished with electrolyte that is depleted as the battery is used, thereby extending the service life of the battery. Hereinafter, a bonding structure of the can 110 and the cap 120 of the battery 100 according to the present invention will be described with reference to the drawings.
우선 도 5 및 도 6을 참조하면, 본 발명의 일 실시예에 따른 이차 전지(100)는 전극 조립체(130)와 전해액(140)이 함께 수납되는 수납부(111) 및 개방부(112)를 포함하는 금속성 캔(110), 상기 캔(110)을 밀봉할 수 있도록 상기 캔(110)의 상기 개방부(112)에 위치되는 금속성 캡(120), 상기 캔(110)과 상기 캡(120)을 서로 접합하도록 상기 캔(110)의 플랜지(113)와 상기 캡(120)의 플랜지(123) 사이에 형성되는 제1 실링부(150) 및 상기 캔(110)과 상기 캡(120)을 서로 접합하도록 상기 캔(110)의 플랜지(113)와 상기 캡(120)의 플랜지(123) 사이에 형성되는 제2 실링부(160)를 포함할 수 있다.First, referring to FIGS. 5 and 6, the secondary battery 100 according to an embodiment of the present invention includes an accommodating part 111 and an opening part 112 in which the electrode assembly 130 and the electrolyte 140 are stored together. Metal can 110, including a metallic cap 120, the can 110 and the cap 120 is located in the opening 112 of the can 110 to seal the can 110 The first sealing portion 150 formed between the flange 113 of the can 110 and the flange 123 of the cap 120 and the can 110 and the cap 120 to each other. The second sealing part 160 may be formed between the flange 113 of the can 110 and the flange 123 of the cap 120 to be bonded.
여기서, 제1 및 제2 실링부(150,160)는 캔(110)과 캡(120)의 내부가 외부와 완전히 차단되어 밀봉될 수 있도록 연속적으로 형성되어야 한다. 즉, 도 6에 도시된 바와 같이 캡(120)을 제거한 상태에서 캔(110)의 플랜지(113)를 보았을 때, 제1 실링부(150)가 형성된 영역(S1)과 제2 실링부(160)가 형성된 영역(S2)이 끊어짐 없이 연속적으로 형성되어야 한다. 만약, 제1 실링부(150)와 제2 실링부(160)가 연속적으로 형성되지 않으면, 불연속인 부분을 통해 전지 내부의 진공상태가 파괴되거나 전해액이 외부로 누출될 수 있다.Here, the first and second sealing parts 150 and 160 should be formed continuously so that the inside of the can 110 and the cap 120 may be completely blocked from the outside and sealed. That is, as shown in FIG. 6, when the flange 113 of the can 110 is viewed with the cap 120 removed, the region S1 and the second sealing portion 160 in which the first sealing portion 150 is formed are formed. The region S2 in which is formed is to be formed continuously without breaking. If the first sealing part 150 and the second sealing part 160 are not formed continuously, the vacuum state inside the battery may be destroyed or the electrolyte may leak out through the discontinuous portions.
본 발명의 일 실시예에 따른 이차 전지(100)는 캔(110)과 캡(120)을 접합하여 밀봉하는 제1 및 제2 실링부(150,160)가 서로 다른 밀봉 강도 내지 접합 강도를 가지도록 형성된다. 여기서, 제1 실링부(150)의 접합 강도가 제2 실링부(160)의 접합 강도 보다 크게 형성되는 것이 바람직하다.The secondary battery 100 according to the exemplary embodiment of the present invention is formed such that the first and second sealing parts 150 and 160 for bonding and sealing the can 110 and the cap 120 have different sealing strengths or bonding strengths. do. Here, it is preferable that the bonding strength of the first sealing portion 150 is greater than the bonding strength of the second sealing portion 160.
제1 실링부(150)는 캔(110)과 캡(120)의 플랜지(113,123)을 녹여서 캔(110)과 캡(120)끼리 직접적으로 접합하는 용접에 의해서 형성될 수 있다. 반면에 제2 실링부(160)는 캔(110)과 캡(120)을 직접 접합하는 것이 아니라 캔(110)과 캡(120) 사이에 용접을 위한 별도의 용가재 또는 용접 첨가재를 제공하고, 이러한 용가재 또는 용접 첨가재를 녹여서 캔(110)과 캡(120)을 간접적으로 접합하는 용접에 의해서 형성될 수 있다. 즉, 제1 실링부(150)는 직접 용접에 의해서 형성되고 제2 실링부(160)는 간접 용접에 의해서 형성된다고 할 수 있다.The first sealing unit 150 may be formed by welding the flanges 113 and 123 of the can 110 and the cap 120 by melting the can 110 and the cap 120 directly. On the other hand, the second sealing portion 160 does not directly join the can 110 and the cap 120, but provides a separate filler material or a welding additive for welding between the can 110 and the cap 120. It may be formed by welding indirectly joining the can 110 and the cap 120 by melting the filler material or the welding additive. That is, the first sealing part 150 may be formed by direct welding, and the second sealing part 160 may be formed by indirect welding.
제1 실링부(150)를 형성하는 직접 용접에는 캔(110)과 캡(120)의 용융점 이상으로 캔(110)과 캡(120)을 가열하여 캔(110)과 캡(120)을 녹이되, 전면적으로 가열하는 것이 아니라 국부적으로 가열하는 용접 방식이라면 어떠한 용접이라도 포함될 수 있다. 예를 들면, 레이저 용접, 전기 저항 용접, 초음파 용접, 플라즈마 용접 등이 사용될 수 있다. 이러한 용접 방식을 사용함으로써, 제1 실링부(150)는 캔(110)과 캡(120)의 상태 변화 즉, 캔(110)과 캡(120)을 녹인 상태에서 소정의 압력을 가하여 추가적인 용가재 없이 캔(110)과 캡(120)을 직접 접합시킬 수 있다. 이와 같이 직접 용접 방식에 의해서 형성된 제1 실링부(150)는 전지를 사용함에 따라 밀봉이 해제되지 않은 것이 바람직하다. 즉, 제1 실링부(150)는 제2 실링부(160)와 달리 캔(110)과 캡(120) 내부의 온도가 상승하거나 압력이 상승하는 경우에도 밀봉(sealing, 실링) 상태가 해제되지 않을 정도의 접합 강도로 형성될 수 있다.In the direct welding forming the first sealing part 150, the can 110 and the cap 120 are heated by melting the can 110 and the cap 120 above the melting point of the can 110 and the cap 120. However, any welding may be included as long as it is a local heating method instead of heating the entire surface. For example, laser welding, electric resistance welding, ultrasonic welding, plasma welding and the like can be used. By using such a welding method, the first sealing part 150 applies a predetermined pressure in a state change of the can 110 and the cap 120, that is, the state in which the can 110 and the cap 120 are melted, without additional filler material. The can 110 and the cap 120 may be directly bonded. As described above, the first sealing part 150 formed by the direct welding method is preferably not sealed by using a battery. That is, unlike the second sealing part 160, the sealing state of the first sealing part 150 is not released even when the temperature inside the can 110 and the cap 120 increases or the pressure increases. It may be formed to a degree of bonding strength that is not.
이에 반하여, 제1 실링부(150) 보다는 작은 접합 강도를 가지는 제2 실링부(160)는 전지의 정상 작동 상태에서는 캔(110)과 캡(120)을 견고하게 밀봉하지만, 전지의 내부 온도가 상승하거나 압력이 증가하는 경우에는 캔(110)과 캡(120)의 밀봉 상태를 해제하는 벤트(VENT) 기능을 함으로써 전지가 폭발하는 것을 방지할 수 있다.On the contrary, the second sealing part 160 having a smaller bonding strength than the first sealing part 150 firmly seals the can 110 and the cap 120 in the normal operation state of the battery, but the internal temperature of the battery is increased. When the pressure rises or the pressure increases, the battery may be prevented from exploding by providing a vent function to release the sealed state of the can 110 and the cap 120.
온도 또는 압력이 상승하는 작동 조건하에서 제2 실링부(120)가 벤트 기능을 하기 위해서 제2 실링부(160)는 간접 접합 방식에 의해서 형성되는 것이 바람직하다. 즉, 제2 실링부(160)는 캔(110)과 캡(120)끼리 직접 접합하는 방식이 아니라 캔(110)과 캡(120) 사이(보다 엄밀히 말하면 캔의 플랜지(113)와 캡의 플랜지(123) 사이)에 캔(110)과 캡(120)의 용융점 보다 낮은 용융점을 가지는 용융 접합부재(162)를 구비하고, 이 용융 접합부재(162)를 녹여서 캔(110)과 캡(120)을 간접적으로 접합하도록 형성될 수 있다.The second sealing part 160 is preferably formed by an indirect bonding method in order for the second sealing part 120 to be vented under operating conditions in which temperature or pressure increases. That is, the second sealing unit 160 is not directly connected between the can 110 and the cap 120, but between the can 110 and the cap 120 (more precisely, the flange 113 of the can and the flange of the cap). (123 between) and the melt bonding member 162 having a melting point lower than the melting point of the can 110 and the cap 120, the melt bonding member 162 is melted to the can 110 and the cap 120 It can be formed to indirectly bond.
제2 실링부(160)는 캔(110)과 캡(120)의 상태 변화를 이용하거나 캔(110)과 캡(120)을 녹이는 것이 아니라 캔(110)과 캡(120) 사이에 게재되는 용가재 내지 용접 첨가재에 해당하는 용융 접합부재(162)를 녹여서 캔(110)과 캡(120)을 접합시킬 수 있다. 용융된 용융 접합부재(162)와 캔(110)의 플랜지(113)를 접합시키고, 용융된 접합부재(162)와 캡(120)의 플랜지(123)를 접합시킴으로써 캔(110)과 캡(120)을 밀봉할 수 있다. The second sealing unit 160 does not use the state change of the can 110 and the cap 120 or melt the can 110 and the cap 120, but is disposed between the can 110 and the cap 120. The can 110 and the cap 120 may be bonded by melting the melt bonding member 162 corresponding to the welding additive. The can 110 and the cap 120 by joining the molten fusion joining member 162 and the flange 113 of the can 110, and joining the molten joining member 162 and the flange 123 of the cap 120. ) Can be sealed.
여기서, 제2 실링부(160)를 형성하는 용융 접합부재(162)는 캔(110) 및 캡(120)의 융점보다 낮으며, 전지의 내부로 열을 전달할 우려가 없는 용융점을 가지면서 캔(110) 및/또는 캡(120)과의 접합성 또는 젖음성이 우수하여 충분한 접합 강도를 기대할 수 있으며, 전지의 성능 외적인 요인(예, 비용, 환경 친화성)까지 고려하고, 특정 온도 또는 특정 압력에 도달하면 용융되어 전지의 밀봉이 해제되는 성질을 고려하여 다양한 종류의 비철금속 또는 비철금속의 합금이나 화합물 중에서 선택될 수 있다. 한편, 용융 접합부재(162)로서 비철금속의 합금을 사용하는 이유는, 단일 금속보다 융점을 낮출 수 있고 기계적 강도를 개선할 수 있으며 가격을 낮출 수 있고 캔/캡과의 접합 친화성을 기대할 수 있으며 다양한 액상선-고상선 온도 범위를 가질 수 있다는 것이다.Here, the fusion bonding member 162 forming the second sealing portion 160 is lower than the melting point of the can 110 and the cap 120, and has a melting point without fear of transferring heat to the inside of the battery. 110) and / or excellent bonding or wettability with the cap 120, it is possible to expect sufficient bonding strength, taking into account external factors such as cost, environmental friendliness, and reaching a certain temperature or pressure The lower surface may be selected from various kinds of nonferrous metals or alloys or compounds of nonferrous metals in consideration of the property of melting and release of the battery. On the other hand, the reason for using an alloy of nonferrous metal as the fusion bonding member 162, can lower the melting point than the single metal, improve the mechanical strength, lower the price and can be expected to bond affinity with the can / cap It can have a variety of liquidus-solidus temperature range.
본 발명의 일 실시예에 따른 이차 전지(100)에서 사용될 수 있는 용융 접합부재(162)의 조성 및 융점은 아래 [표 1](용융 접합부재의 종류1)과 같다.The composition and melting point of the melt bonding member 162 that can be used in the secondary battery 100 according to the embodiment of the present invention are as shown in Table 1 (Type 1 of the melt bonding member).
표 1
계열 종류 융점
Sn-Pb 계 Sn-37Pb 183℃
Sn-40Pb 190℃
Sn-45Pb 203℃
Sn-50Pb 215℃
Sn-55Pb 227℃
Sn-Cu 계 Sn-9.5Cu 227~422℃
Sn-3Cu 227~312℃
Sn-0.7Cu 227℃
Sn-0.7Cu-0.3Ag 221~227℃
Sn-0.5Cu-0.06Ni 220~233℃
Sn-Zn 계 Sn-9Zn 197~198℃
Sn-8Zn-3Bi 190~197℃
Sn-Ag 계 Sn-3.5Ag 221℃
Sn-3.0Ag-0.2Cu 217~220℃
Sn-1Ag-4Cu 217~225℃
Sn-4Ag-0.1Ni 221~231℃
기타 Sn-49In 117℃
Sn-8In-3.5Ag-0.5Bi 170~206℃
Sn-57Bi-1Ag 138~140℃
Zn-5Al 382℃
Table 1
line Kinds Melting point
Sn-Pb system Sn-37Pb 183 ℃
Sn-40Pb 190 ℃
Sn-45Pb 203 ℃
Sn-50Pb 215 ℃
Sn-55Pb 227 ℃
Sn-Cu system Sn-9.5Cu 227 ~ 422 ℃
Sn-3Cu 227 ~ 312 ℃
Sn-0.7Cu 227 ℃
Sn-0.7Cu-0.3Ag 221 ~ 227 ℃
Sn-0.5Cu-0.06Ni 220 ~ 233 ℃
Sn-Zn system Sn-9Zn 197 ~ 198 ℃
Sn-8Zn-3Bi 190 ~ 197 ℃
Sn-Ag system Sn-3.5Ag 221 ℃
Sn-3.0Ag-0.2Cu 217 ~ 220 ℃
Sn-1Ag-4Cu 217 ~ 225 ℃
Sn-4Ag-0.1Ni 221 ~ 231 ℃
Other Sn-49In 117 ℃
Sn-8In-3.5Ag-0.5Bi 170 ~ 206 ℃
Sn-57Bi-1Ag 138 ~ 140 ℃
Zn-5Al 382 ℃
상기 [표 1]에서 볼 수 있듯이, 본 발명의 일 실시예에 따른 이차 전지(100)에 사용될 수 있는 용융 접합부재(162)는 은(Ag), 주석(Sn) 또는 납(Pb)을 포함할 수 있으며, 친환경적 요인들을 감안하여 납 또는 그 합금을 선택하지 않을 수도 있음은 당업자에게 자명하다.As can be seen in Table 1, the fusion bonding member 162 that can be used in the secondary battery 100 according to an embodiment of the present invention includes silver (Ag), tin (Sn), or lead (Pb). It will be apparent to those skilled in the art that a lead or an alloy thereof may not be selected in consideration of environmentally friendly factors.
본 발명의 일 실시예에 따른 이차 전지(100)에 사용될 수 있는 용융 접합부재(162)는 약 600℃ 이하, 바람직하게는 400℃ 이하, 더 바람직하게는 250℃ 이하의 융점을 가질 수 있다. The melt bonding member 162 that may be used in the secondary battery 100 according to the exemplary embodiment of the present invention may have a melting point of about 600 ° C. or less, preferably 400 ° C. or less, more preferably 250 ° C. or less.
이차 전지(100)의 구성요소들의 손상 우려를 고려하면, 용융 접합부재(162)는 용융 가능한 낮은 온도를 가지며, 가급적이면 높은 열원이 공정 중에 배치되는 것을 회피하고, 범용 장비(예를 들면, 히터, 지그 등)를 사용하는 것이 바람직하다. 또한, 용융 접합부재(162)는 이차 전지(100)의 일반적인 작동 범위(예, 80℃미만)에서는 그 밀봉이 해제되거나 약해지지 않으며, 일반화된 내열 가혹 테스트 규격(리튬 이온 전지에 대한 UL 규격: 130℃)에서는 내부 압력이 급격히 증가하지 않는 한(분리막의 절연성이 파괴되지 않아서 내부 단락이 발생하지 않는 범위) 누액을 일으키지 않도록 밀봉을 유지하지만, 전지의 안전성에 치명적인 위험을 가져오는 것으로 알려진 양극물질의 내부 열폭주 개시 온도(예, 약 200℃)에 도달하기 전에는 밀봉이 충분히 해제될 수 있는 것이 바람직하다. 이러한 이유에 대해 부연 설명하면, 종래의 이차 전지의 일반적인 벤트 메커니즘(외장재의 일부 좁은 면적에 벤트 수단이 구비됨)에서는, 벤트 메커니즘이 작동하여도 내부 물질의 분출 양상에 비해 충분한 면적을 통한 배출이 어렵고, 더욱이 분출물질에 의해 벤트 구멍이 막히는 일도 발생한다. 그러나, 본 발명의 일 실시예의 용융 접합부재(162)에 따르면, 의도하는 넓은 면적을 벤트 메커니즘으로 활용 가능하고, 그러한 범위 내에서 온도와 내구 압력이 용이하게 조절될 수 있다는 점이다.In consideration of the risk of damage to the components of the secondary battery 100, the fusion bonding member 162 has a low temperature that can be melted, preferably avoiding a high heat source being disposed in the process, and using general purpose equipment (eg, heaters). , Jig and the like). In addition, the melt bonding member 162 is not released or weakened in the general operating range of the secondary battery 100 (eg, less than 80 ° C.), and the generalized heat resistance harsh test standard (UL standard for lithium ion batteries: 130 ℃), a positive electrode material known to pose a fatal risk to the safety of the battery, unless the internal pressure is rapidly increased (in the range where the insulation of the separator is not broken so that internal short circuit does not occur). It is desirable that the seal can be sufficiently released before reaching the internal thermal runaway onset temperature of (eg, about 200 ° C.). For this reason, in the general vent mechanism of the conventional secondary battery (bent means are provided in some narrow area of the exterior material), even if the vent mechanism is operated, the discharge through a sufficient area compared to the ejection pattern of the internal material is prevented. It is difficult, and moreover, the vent hole is clogged by the ejecting material. However, according to the melt bonding member 162 of the embodiment of the present invention, the intended wide area can be utilized as a vent mechanism, and the temperature and the endurance pressure can be easily adjusted within such a range.
한편, 상기 [표 1]에 예시된 용융 접합부재(162)는 용융점이 대략 약 100℃ 내지 약 450℃ 사이에 있으나, 이차 전지(100)의 일반적인 작동 온도 범위(80℃ 미만)와 차이가 크며 양극 물질의 열폭주 개시 온도(200℃)와도 어느 정도 차이가 있다. 따라서, 본 발명은 상기 [표 1]에 기재된 조성의 용융 접합부재(162) 외에 다른 조성을 가지며 더 낮은 융점을 가지는 용융 접합부재(162)를 사용할 수도 있다.Meanwhile, the melt bonding member 162 illustrated in Table 1 has a melting point of about 100 ° C. to about 450 ° C., but is largely different from a general operating temperature range (less than 80 ° C.) of the secondary battery 100. There is also some difference from the thermal runaway onset temperature (200 ° C.) of the positive electrode material. Accordingly, the present invention may use a melt bonding member 162 having a lower melting point and having a different composition in addition to the melt bonding member 162 of the composition shown in Table 1 above.
예를 들면, 본 발명에 따른 용융 접합부재(162)는 10℃ 내지 120℃에서 용융될 수 있다. 용융 접합부재(162)가 10℃ 내지 120℃에서 용융된다면, 양극 물질의 열폭주 개시온도에 도달하기 훨씬 전 또는 이차 전지(100)의 일반적인 작동 온도 범위 보다 조금만 온도가 높아지는 경우에도 용융 접합부재(162)가 용융될 수 있다. 다만, 이러한 용융점을 가지는 경우에도 이차 전지(100)의 일반적인 작동 온도 범위 보다 낮은 용융점을 가지는 용융 접합부재(162)는 배제하는 것이 바람직하다.For example, the melt bonding member 162 according to the present invention may be melted at 10 ° C to 120 ° C. If the melt bonding member 162 is melted at 10 ° C. to 120 ° C., the melt bonding member 162 may be formed even before the thermal runaway start temperature of the positive electrode material is reached or even slightly higher than the general operating temperature range of the secondary battery 100. 162 may be melted. However, even in the case of having such a melting point, it is preferable to exclude the melt bonding member 162 having a melting point lower than the general operating temperature range of the secondary battery 100.
낮은 용융점을 가지는 용융 접합부재(162)는 아래 [표 2](용융 접합부재의 종류2)에 예시된 바와 같이, 갈륨(Ga), 인듐(In), 카드뮴(Cd) 또는 비스무트(Bi) 중 적어도 하나를 포함할 수 있다.The molten bonding member 162 having a low melting point is formed of gallium (Ga), indium (In), cadmium (Cd), or bismuth (Bi), as illustrated in Table 2 below (Type 2 of the melting bonding member). It may include at least one.
표 2
종류 융점
61Ga-25In-13Sn-Zn 7℃
66.5Ga-20.5In-13Sn 11℃
42.9Bi-21.7Pb-18.3In-8Sn-5.1Cd 38℃
44.7Bi-22.6Pb-16.1In-11.3Sn-5.3Cd 47℃
49Bi-21In-18Pb-12Sn 58℃
61.7In-30.8Bi-7.5Cd 62℃
50Bi-26.7Pb-13.3Sn-10Cd 70℃
48.5Bi-41.5In-10Cd 78℃
54Bi-29.7In-16.3Sn 81℃
51.1Bi-39.8Pb-8.1Cd-1In 87℃
51.6Bi-40.2Pb-8.2Cd 92℃
50Bi-28Pb-22Sn 100℃
53.7Bi-43.1Pb-3.2Sn 108℃
55Bi-44Pb-1In 120℃
TABLE 2
Kinds Melting point
61Ga-25In-13Sn-Zn 7 ℃
66.5Ga-20.5In-13Sn 11 ℃
42.9Bi-21.7Pb-18.3In-8Sn-5.1Cd 38 ℃
44.7Bi-22.6Pb-16.1In-11.3Sn-5.3Cd 47 ℃
49Bi-21In-18Pb-12Sn 58 ℃
61.7In-30.8Bi-7.5Cd 62 ℃
50Bi-26.7Pb-13.3Sn-10Cd 70 ℃
48.5Bi-41.5In-10Cd 78 ℃
54Bi-29.7In-16.3Sn 81 ℃
51.1Bi-39.8Pb-8.1Cd-1In 87 ℃
51.6Bi-40.2Pb-8.2Cd 92 ℃
50Bi-28Pb-22Sn 100 ℃
53.7Bi-43.1Pb-3.2Sn 108 ℃
55Bi-44Pb-1In 120 ℃
이와 같이, 상대적으로 낮은 온도의 용융점을 가지는 용융 접합부재(162)를 사용하는 경우에는 표면실장기술(SMT: Surface Mounting Technology)에 사용되는 리플로우(Reflow) 방식을 사용하여 용융 접합부재(162)를 녹일 수 있다.As such, in the case of using the melt bonding member 162 having a melting point of a relatively low temperature, the melt bonding member 162 may be formed by using a reflow method used for surface mounting technology (SMT). Can dissolve.
여기서, 상기 제2 실링부(160)의 면적 또는 융점에 의해서 상기 캔(110)과 상기 캡(120) 사이의 밀봉 또는 접합 강도를 조절할 수 있다. 즉, 제2 실링부(160)를 형성하는 용융 접합부재(162)의 도포 면적 또는 조성에 따른 적절한 융점을 선택하여 제2 실링부(160)에 의한 접합 강도를 조절할 수 있다. Here, the sealing or bonding strength between the can 110 and the cap 120 may be adjusted by the area or melting point of the second sealing portion 160. That is, the bonding strength by the second sealing unit 160 may be adjusted by selecting an appropriate melting point according to the coating area or the composition of the fusion bonding member 162 forming the second sealing unit 160.
앞서 설명한 바와 같이, 제2 실링부(160)는 접합 강도를 적절하게 선택하여 정상 상태에서는 캔(110) 및 캡(120)을 밀봉하지만, 전지 내부의 온도 또는 압력이 상승하는 비정상 상태에서는 밀봉을 해제하여 전지의 내부에 생성된 가스를 전지의 외부로 배출할 수 있다. 즉, 제2 실링부(160)는 상기 수납부(111)의 온도가 상승하면 용융 접합부재(162)가 용융되어 상기 캔(110)과 상기 캡(120)의 밀봉 상태를 해제시키거나, 상기 용융 접합부재(162)의 조성 또는 도포량에 의해 결정되는 접합 또는 밀봉을 파괴하는 강도 보다 큰 압력이 상기 수납부(111)의 내부에 발생하는 경우에 상기 캔(110)과 상기 캡(120) 사이가 뜯어지거나 해제되어 전지의 밀봉 상태를 해제시킬 수 있다. 여기서, 전지의 내부에 접합 파괴 강도 보다 큰 압력이 걸리는 경우에는 응고된 용융 접합부재(162)와 캔(110)의 접합상태 또는 응고된 용융 접합부재(162)와 캡(120)의 접합상태가 파괴되면서 캔(110)과 캡(120)의 밀봉 상태가 해제될 수 있다.As described above, the second sealing unit 160 properly selects the bonding strength to seal the can 110 and the cap 120 in the normal state, but the sealing is performed in the abnormal state in which the temperature or the pressure inside the battery increases. The gas generated inside the battery may be released to the outside of the battery. That is, when the temperature of the accommodating part 111 rises, the second sealing part 160 melts the fusion bonding member 162 to release the sealing state between the can 110 and the cap 120, or Between the can 110 and the cap 120 when a pressure greater than the strength that breaks the bonding or sealing determined by the composition or application amount of the molten bonding member 162 occurs inside the accommodating portion 111. Can be torn or released to release the battery's seal. Here, when a pressure greater than the bond breaking strength is applied to the inside of the battery, the solidified melt bonding member 162 and the can 110 are bonded or the solidified melt bonding member 162 and the cap 120 are bonded to each other. While broken, the sealed state of the can 110 and the cap 120 may be released.
이와 같이, 용융 접합부재(162)를 이용하는 제2 실링부(160)의 밀봉 상태가 해제되면, 이 해제된 부분을 통해서 전지의 내부에 형성된 고온 또는 고압의 가스가 배출되기 때문에 전지가 폭발하는 것을 방지할 수 있다. 제2 실링부(160)는 전지가 폭발하기 전에 밀봉 상태를 해제할 수 있는 정도의 접합 강도를 가지도록 적당한 도포 면적 또는 조성을 가지는 용융 접합부재(162)에 의해서 형성되는 것이 바람직하다.As such, when the sealing state of the second sealing unit 160 using the fusion bonding member 162 is released, the high temperature or high pressure gas formed inside the battery is discharged through the released portion, thereby preventing the battery from exploding. You can prevent it. The second sealing unit 160 is preferably formed by the fusion bonding member 162 having a suitable coating area or composition so as to have a bonding strength that can be released before the battery explodes.
제2 실링부(160)를 형성할 때 전지를 구성하는 전극 조립체(130) 등이 열에 의해서 손상되는 것을 방지하기 위해 용융 접합부재(162)는 국부 가열에 의해서 용융될 수 있는 조성을 선택하는 것이 바람직하다. 여기서, 용융 접합부재(162)를 국부적으로 가열하는 방법으로는 접촉 저항(contact resistance), 고주파 실링(sealing), 레이저(laser), 광빔, 펄스 가열(pulse heat) 또는 핫램(hot-ram) 중 어느 하나의 방식을 사용할 수 있으며, 반드시 이러한 방식에 한정되는 것은 아님을 밝혀 둔다.In order to prevent the electrode assembly 130 or the like constituting the battery from being damaged by heat when forming the second sealing unit 160, the fusion bonding member 162 may select a composition that can be melted by local heating. Do. Here, a method of locally heating the molten bonding member 162 may include contact resistance, high frequency sealing, laser, light beam, pulse heat, or hot-ram. It should be noted that either method can be used and is not necessarily limited to this method.
본 발명의 일 실시예에 따른 이차 전지(100)는 제1 실링부(150) 및 제2 실링부(160)가 형성되는 위치를 자유롭게 선택할 수 있다. 즉, 이차 전지(100)의 내부에 제공되는 전극 조립체(130)의 전극탭(132)의 위치, 전지(100)가 사용되는 환경 또는 전지(100)와 함께 사용되는 주변 전자 부품 등의 종류에 따라 제1 실링부(150) 및 제2 실링부(160)의 형성 위치 또는 면적을 조절할 수 있다. 특히, 제2 실링부(160)가 형성되는 위치 또는 제2 실링부(160)의 면적을 조절함으로써 전지의 온도 또는 압력 상승에 의해 제2 실링부(160)의 밀봉이 해제되는 위치 또는 크기를 조절할 수 있다. 이와 같이, 제2 실링부(160)의 밀봉이 해제되는 위치, 크기 또는 방향을 조절함으로써 전지의 내부에 생긴 고온 또는 고압의 가스가 배출되는 위치 또는 방향을 조절할 수 있다. 가스가 배출되는 위치 또는 방향을 조절할 수 있기 때문에 전지의 진공 상태 해제로 인해 전지가 사용되는 주변 구조물이나 부품 등의 이차 손상을 방지하고 전지가 폭발하는 위험을 줄일 수 있다.The secondary battery 100 according to an embodiment of the present invention may freely select a position where the first sealing unit 150 and the second sealing unit 160 are formed. That is, the position of the electrode tab 132 of the electrode assembly 130 provided inside the secondary battery 100, the environment in which the battery 100 is used, or a kind of peripheral electronic component used in conjunction with the battery 100 may be used. Accordingly, the formation position or area of the first sealing unit 150 and the second sealing unit 160 may be adjusted. In particular, by adjusting the position where the second sealing unit 160 is formed or the area of the second sealing unit 160, the position or the size at which the sealing of the second sealing unit 160 is released by the temperature or the pressure rise of the battery is adjusted. I can regulate it. As such, by adjusting the position, size, or direction in which the sealing of the second sealing unit 160 is released, the position or direction in which the high temperature or high pressure gas generated inside the battery is discharged may be adjusted. Since the position or direction of the gas discharge can be adjusted, the vacuum of the battery can be prevented, thereby preventing secondary damage to the surrounding structures or components in which the battery is used and reducing the risk of the battery exploding.
예를 들면, 제2 실링부(160)는 상기 수납부(111) 내에 제공되는 상기 전극 조립체(130)의 전극탭(132)과 인접한 일측(S1)을 제외한 부위(S2) 중 적어도 한 곳에 형성될 수 있다. 도 6에 도시된 바와 같이, 제2 실링부(160)는 전극탭(132)과 인접하여 마주 보는 부분이 아닌 다른 부분(S2)에 형성될 수 있다. 즉, 제2 실링부(160)는 전극탭(132)과 인접하지 않는 3면(S2) 전체에 걸쳐 형성될 수도 있고, 3면(S2) 중 어느 한 부위 또는 다수 부위에 형성될 수도 있다. 이 때, 전극탭(132)과 인접한 부분(S1)에는 밀봉이 해제되지 않는 제1 실링부(150)가 형성될 수 있다. For example, the second sealing part 160 is formed in at least one portion S2 except for one side S1 adjacent to the electrode tab 132 of the electrode assembly 130 provided in the accommodating part 111. Can be. As illustrated in FIG. 6, the second sealing part 160 may be formed at a portion S2 other than the portion facing the electrode tab 132. That is, the second sealing part 160 may be formed over the entire three surfaces S2 that are not adjacent to the electrode tab 132, or may be formed on any one portion or multiple portions of the three surfaces S2. In this case, the first sealing part 150 in which the sealing is not released may be formed in the portion S1 adjacent to the electrode tab 132.
또한, 제2 실링부(160)는 전극 조립체(130)를 보호하기 위해서 수납부(111)의 외부에 제공되는 배터리 제어시스템(BMS, 134)과 인접한 일측(S1)을 제외한 부위(S2) 중 적어도 한 곳에 형성될 수 있다. 마찬가지로 제2 실링부(160)는 배터리 제어 시스템(134)과 인접하지 않는 3면(S2) 전체에 걸쳐 형성될 수도 있고, 3면(S2) 중 어느 한 부위 또는 다수 부위에 형성될 수도 있다. 이 때, 배터리 제어시스템(134)과 인접한 부분(S1)에는 밀봉이 해제되지 않는 제1 실링부(150)가 형성될 수 있다.In addition, the second sealing part 160 is a part S2 except for one side S1 adjacent to the battery control system BMS 134 provided outside the accommodating part 111 to protect the electrode assembly 130. It may be formed in at least one place. Similarly, the second sealing unit 160 may be formed over the entire three surfaces S2 that are not adjacent to the battery control system 134, or may be formed on any one portion or multiple portions of the three surfaces S2. In this case, the first sealing part 150 in which the sealing is not released may be formed in the portion S1 adjacent to the battery control system 134.
이와 같이, 전극탭(132) 또는 배터리 제어시스템(134)과 인접하지 않은 부분(S2)에 제2 실링부(160)가 위치하도록 형성함으로써 제2 실링부(160)의 밀봉이 해제되어 고온 또는 고압의 가스가 배출될 때 전극탭(132)이 가스에 의해서 손상되거나 폭발하는 것을 방지할 수 있고, 배터리 제어시스템(134)이 손상되는 것을 방지할 수 있다. As such, the second sealing part 160 is formed to be positioned at a portion S2 that is not adjacent to the electrode tab 132 or the battery control system 134 so that the sealing of the second sealing part 160 is released to obtain a high temperature or When the high pressure gas is discharged, the electrode tab 132 may be prevented from being damaged or exploded by the gas, and the battery control system 134 may be prevented from being damaged.
뿐만 아니라, 가스에 의해서 손상되기 쉽거나 폭발할 염려가 있는 전자 부품 등이 전지의 주위에 있는 경우에는 그러한 부품 쪽으로 가스가 배출되지 않도록 제2 실링부(160)의 위치를 조절할 수 있다. 즉, 손상이나 폭발이 쉬운 부품이 위치하는 부위는 제1 실링부(150)를 이용하여 전지를 밀봉하여 그러한 방향으로 가스가 배출되는 것을 원천적으로 방지할 수 있다.In addition, when an electronic component or the like that is easily damaged or exploded by the gas is around the battery, the position of the second sealing unit 160 may be adjusted so that the gas is not discharged toward the component. That is, the site where the parts easily damaged or exploded can be sealed by using the first sealing part 150 to prevent the gas from being discharged in such a direction.
이와 같이, 본 발명의 일 실시예에 따른 이차 전지(100)는 제1 실링부(150) 및 제2 실링부(160)의 접합 강도를 다르게 하고, 제1 및 제2 실링부(150,160)에 의해서 밀봉되는 위치, 방향 또는 면적 등을 조절함으로써 전지 또는 전지 주변 구성품 등의 손상 또는 폭발을 손쉽게 방지할 수 있다. 제1 실링부와 유사한 접합 강도를 가지는 단일의 접합을 이용하여 전지를 밀봉하는 경우에는 벤트 기능을 효과적으로 수행하는 단점이 있었고 제2 실링부와 유사한 접합 강도를 가지는 단일의 접합을 이용하여 전지를 밀봉하는 경우에는 가스가 분출되는 방향 또는 위치를 조절할 수 없기 때문에 주변 구성품이나 전지의 손상이 초래하는 단점이 있었는데, 본 발명의 일 실시예에 따른 이차 전지(100)는 이러한 단점을 해결할 수 있는 장점이 있다.As described above, the secondary battery 100 according to the exemplary embodiment of the present invention may have different bonding strengths between the first sealing part 150 and the second sealing part 160, and may be applied to the first and second sealing parts 150 and 160. By adjusting the sealed position, direction or area, etc., it is possible to easily prevent damage or explosion of the battery or components around the battery. In the case of sealing a battery using a single bond having a similar bond strength to that of the first sealing portion, there is a disadvantage in that the vent function is effectively performed, and the battery is sealed using a single bond having a similar bond strength to the second sealing portion. In this case, there is a disadvantage in that damage to a peripheral component or a battery is caused because it cannot adjust the direction or position of the gas is ejected, the secondary battery 100 according to an embodiment of the present invention has an advantage that can solve this disadvantage have.
이하에서 본 발명의 다른 일 실시예에 따른 이차 전지(200) 및 본 발명의 또 다른 실 실시예에 따른 이차 전지(300)와 앞서 설명한 본 발명의 일 실시예에 따른 이차 전지(100)에 있어서 서로 동일한 구성에 대한 반복적인 설명은 생략한다.In the following, the secondary battery 200 according to another embodiment of the present invention and the secondary battery 300 according to another embodiment of the present invention and the secondary battery 100 according to the embodiment of the present invention described above Repeated descriptions of the same configuration as each other will be omitted.
한편, 도 7 내지 도 9에는 본 발명의 다른 실시예에 따른 이차 전지(200)가 도시되어 있다. 본 발명의 다른 일 실시예에 따른 이차 전지(200)는, 전극 조립체(230)와 전해액(240)이 함께 수납되는 수납부(211) 및 개방부(112, 도 5 참조)를 포함하는 금속성 캔(210), 캔(210)을 밀봉할 수 있도록 캔(210)의 개방부(112)에 위치되는 금속성 캡(220), 캔(210)과 캡(220)을 서로 접합하여 밀봉하도록 캔(210)의 플랜지(213)와 캡(220)의 플랜지(223) 사이에 형성되는 실링부(250) 및 캔(210)의 플랜지(213)와 캡(220)의 플랜지(223) 사이에 형성되어 캔(210)과 캡(220)을 서로 접합하고 캔(210)과 캡(220)의 밀봉 상태를 해제할 수 있는 방폭부(260)를 포함할 수 있다.7 to 9 illustrate a secondary battery 200 according to another embodiment of the present invention. The secondary battery 200 according to another exemplary embodiment of the present invention may include a metallic can including an accommodating part 211 and an opening part 112 (see FIG. 5) for accommodating the electrode assembly 230 and the electrolyte 240. 210, a metal cap 220 positioned at the opening 112 of the can 210 to seal the can 210, the can 210 to bond and seal the can 210 and the cap 220 with each other. The sealing portion 250 formed between the flange 213 of the cap 220 and the flange 223 of the cap 220 and the flange 213 of the can 210 and the flange 223 of the cap 220 can An explosion-proof portion 260 may be attached to each other and the cap 220 may be bonded to each other and the sealing state of the can 210 and the cap 220 may be released.
여기서, 방폭부(260)는 전지의 정상 작동 하에서는 캔(210)과 캡(220)을 서로 접합하여 밀봉하지만, 비정상 상태에서는 캔(210)과 캡(220)의 밀봉 상태를 해제하여 전지(200)가 폭발하는 것을 방지할 수 있다. 방폭부(260)는 실링부(250) 보다 작은 접합 강도를 가지는 것이 바람직하며, 이를 위해 방폭부(260)는 캔(210) 및 캡(220)의 용융점 보다 낮은 용융점을 가지는 비철금속 또는 비철금속의 합금을 포함하는 용융 접합부재(262)에 의해 형성될 수 있다.Here, the explosion-proof unit 260 bonds the can 210 and the cap 220 to each other under normal operation of the battery, but seals the can 210 and the cap 220 in an abnormal state to release the sealed state of the battery 200. ) Can be prevented from exploding. The explosion-proof part 260 preferably has a smaller bond strength than the sealing part 250. For this purpose, the explosion-proof part 260 has a melting point lower than the melting point of the can 210 and the cap 220, or an alloy of nonferrous metal or nonferrous metal. It may be formed by the melt bonding member 262 including.
실링부(250)는 본 발명의 일 실시예에 따른 이차 전지(100)의 제1 실링부(150)와 동일하기 때문에 반복적인 설명은 생략하기로 한다.Since the sealing unit 250 is the same as the first sealing unit 150 of the secondary battery 100 according to the exemplary embodiment, repeated description thereof will be omitted.
도 8에 도시된 바와 같이, 방폭부(260)는 실링부(250)와 연속적으로 형성되어 정상 작동 하에서는 캔(210)과 캡(220)의 밀봉이 해제되지 않아야 한다. 실링부(250)가 형성된 영역(S3, 빗금으로 표시된 부분)과 방폭부(260)가 형성된 영역(S4, 점으로 표시된 부분)은 연속으로 형성되어야 전지 내부의 진공 상태를 유지하고 전해액에 외부로 누설되는 것을 방지할 수 있다.As shown in FIG. 8, the explosion-proof part 260 is formed continuously with the sealing part 250 so that the sealing of the can 210 and the cap 220 should not be released under normal operation. The area S3 (parts indicated by hatches) and the area where the explosion-proof parts 260 are formed (S4, areas indicated by dots) must be formed in succession to maintain the vacuum state inside the battery and to the outside of the electrolyte. Leakage can be prevented.
본 발명의 일 실시예에 따른 이차 전지(100)의 제2 실링부(160)는 캔(110)과 캡(120)의 접합이 주된 기능이고 벤트는 부수적인 기능임에 반하여, 본 발명의 다른 실시예에 따른 이차 전지(200)의 방폭부(260)는 캔(210)과 캡(220)의 밀봉 상태를 해제시켜서 전지(200)의 폭발을 방지하는 것이 보다 큰 기능이라고 할 수 있다.While the second sealing part 160 of the secondary battery 100 according to the exemplary embodiment of the present invention has a main function of bonding the can 110 and the cap 120, and the vent is a secondary function, other aspects of the present invention are provided. The explosion-proof part 260 of the secondary battery 200 according to the embodiment may be said to have a greater function of preventing the explosion of the battery 200 by releasing the sealed state of the can 210 and the cap 220.
방폭부(260)는 캔(210) 및 캡(220)의 융점 보다 낮은 융점을 가지는 용융 접합부재(262)를 이용하여 전지의 폭발을 방지할 수 있는데, 본 발명의 다른 일 실시예에 따른 이차 전지(200)의 방폭부(260)는 전지의 폭발을 방지하는 벤트 기능을 수행함과 아울러 실링부(250)와 연속적으로 형성되어 캔(210)과 캡(220)을 접합하는 접합부를 겸할 수 있다. 종래의 이차 전지는 접합부와 벤트부가 별도로 형성되어 있음에 반하여, 본 발명의 다른 일 실시예에 따른 이차 전지(200)는 접합부와 벤트부가 방폭부(260)에 의해서 일체로 형성된다는 점에서 차이가 있다. 이와 같이, 본 발명의 다른 일 실시예에 따른 이차 전지(200)는 접합 내지 밀봉과 벤트의 기능을 겸하는 방폭부(260)를 구비함으로써, 별도로 벤트를 구비해야 하는 불편을 제거할 수 있고, 방폭부(260) 자체의 접합 강도를 조절함으로써 밀봉 성능과 함께 방폭 성능을 동시에 확보할 수 있다.Explosion-proof portion 260 may prevent the explosion of the battery by using a melt bonding member 262 having a melting point lower than the melting point of the can 210 and the cap 220, the secondary according to another embodiment of the present invention The explosion-proof portion 260 of the battery 200 may serve as a joint portion that performs a vent function to prevent the explosion of the battery and is continuously formed with the sealing portion 250 to bond the can 210 and the cap 220. . In the conventional secondary battery, the junction part and the vent part are separately formed, whereas the secondary battery 200 according to another embodiment of the present invention has a difference in that the junction part and the vent part are integrally formed by the explosion-proof part 260. have. As described above, the secondary battery 200 according to another embodiment of the present invention includes an explosion-proof part 260 which functions as a junction, a sealing, and a vent, thereby eliminating the inconvenience of having to provide a vent separately. By controlling the bonding strength of the unit 260 itself, it is possible to secure the sealing performance and the explosion-proof performance simultaneously.
방폭부(260)의 용융 접합부재(262)는 납(Pb), 주석(Sn), 아연(Zn), 알루미늄(Al), 은(Ag) 또는 이들의 합금으로 구성된 그룹으로부터 선택된 어느 하나를 포함하여 형성될 수 있으며, 상기 [표 1]과 같은 조성을 가질 수도 있다. 또한, 본 발명의 다른 일 실시예에 따른 이차 전지(200)에 사용될 수 있는 용융 접합부재(262)는 약 600℃ 이하, 바람직하게는 400℃ 이하, 더 바람직하게는 250℃ 이하의 융점을 가질 수 있다. 여기서, 본 발명의 다른 일 실시예에 따른 이차 전지(200)의 용융 접합부재(262)는 상기한 일 실시예에 따른 이차 전지(100)의 용융 접합부재(162)와 동일한 물리적 또는 화학적 특성을 가지는 것이 바람직하다.The molten bonding member 262 of the explosion-proof part 260 includes any one selected from the group consisting of lead (Pb), tin (Sn), zinc (Zn), aluminum (Al), silver (Ag), or alloys thereof. It may be formed by, and may have a composition as shown in Table 1 above. In addition, the melt bonding member 262 that may be used in the secondary battery 200 according to another embodiment of the present invention has a melting point of about 600 ° C. or less, preferably 400 ° C. or less, more preferably 250 ° C. or less. Can be. Here, the melt bonding member 262 of the secondary battery 200 according to another embodiment of the present invention has the same physical or chemical properties as the melt bonding member 162 of the secondary battery 100 according to the above-described embodiment. It is desirable to have.
방폭부(260)를 형성하는 용융 접합부재(262)는 수납부(211)의 온도가 상승하면 용융되어 캔(210)과 캡(220)의 밀봉 상태를 해제시키거나, 용융 접합부재(262)의 조성 또는 도포량에 의해 결정되는 접합 파괴강도 보다 큰 압력이 수납부(211)의 내부에 발생하는 경우에 캔(210)과 캡(220)의 밀봉 상태를 해제시킬 수 있다.The fusion bonding member 262 forming the explosion-proof portion 260 is melted when the temperature of the accommodating portion 211 rises to release the sealing state of the can 210 and the cap 220 or the fusion bonding member 262. When a pressure greater than the bond breaking strength determined by the composition or the amount of coating is generated inside the accommodating portion 211, the sealed state of the can 210 and the cap 220 may be released.
도 9에 도시된 바와 같이, 전지(200) 내부의 온도가 상승하게 되면 방폭부(260)의 용융 접합부재(262)는 녹게 되고, 이로 인해 캔(210)과 캡(220)의 접합 상태가 해제되며, 밀봉이 해제된 캔(210)과 캡(220)의 벌어진 틈새를 통해서 전지(200)의 내부에 생긴 고온 또는 고압의 가스가 외부로 배출될 수 있다. 이와 같이, 가스를 외부로 배출함으로써 전지(200)가 폭발하는 것을 미연에 방지할 수 있다.As shown in FIG. 9, when the temperature inside the battery 200 rises, the fusion bonding member 262 of the explosion-proof portion 260 is melted, and thus the bonding state between the can 210 and the cap 220 is changed. When released, the hot or high pressure gas generated in the inside of the battery 200 may be discharged to the outside through the gap between the can 210 and the cap 220 in which the sealing is released. As described above, by expelling the gas to the outside, it is possible to prevent the battery 200 from exploding in advance.
또한, 용융 접합부재(262)의 조성 또는 도포량에 의해 결정되는 접합 파괴강도 보다 큰 압력이 수납부(211)의 내부에 발생하는 경우에 용융 접합부재(262)와 캔(210) 또는 캡(220)의 접합이 뜯어지면서 밀봉 상태가 해제될 수 있다.In addition, when a pressure greater than the bond breaking strength determined by the composition or the coating amount of the melt bonding member 262 is generated inside the accommodating portion 211, the melt bonding member 262 and the can 210 or the cap 220 may be used. ), The seal may be released as the bond of the) is broken.
본 발명의 다른 일 실시예에 따른 이차 전지(200)의 용융 접합부재(262)는 방폭 기능을 위해서 상기에서 설명한 본 발명의 일 실시예에 따른 이차 전지(100)의 용융 접합부재(162) 보다 접합 강도는 약하고 보다 낮은 융점을 가지도록 형성될 수 있다.The melt bonding member 262 of the secondary battery 200 according to another embodiment of the present invention is more than the melt bonding member 162 of the secondary battery 100 according to the embodiment of the present invention described above for the explosion-proof function. Bond strength can be formed to be weak and have a lower melting point.
한편, 방폭부(262)는 수납부(211) 내에 제공되는 전극 조립체(230)의 전극탭(232)과 인접한 일측(S3)을 제외한 부위(S4) 중 적어도 한 곳에 형성될 수 있다. 도 8에 도시된 바와 같이, 방폭부(260)는 전극탭(232)과 인접하여 마주 보는 부분이 아닌 다른 부분(S4)에 형성될 수 있다. 즉, 방폭부(260)는 전극탭(232)과 인접하지 않는 3면(S4) 전체에 걸쳐 형성될 수도 있고, 3면(S4) 중 어느 한 부위 또는 다수 부위에 형성될 수도 있다. 이 때, 전극탭(232)과 인접한 부분(S3)에는 밀봉이 해제되지 않도록 높은 접합 강도를 가지는 실링부(250)가 형성될 수 있다.On the other hand, the explosion-proof part 262 may be formed in at least one of the portion (S4) except the one side (S3) adjacent to the electrode tab 232 of the electrode assembly 230 provided in the receiving portion 211. As illustrated in FIG. 8, the explosion-proof portion 260 may be formed at a portion S4 other than the portion facing the electrode tab 232. That is, the explosion-proof part 260 may be formed over the entire three surfaces S4 that are not adjacent to the electrode tab 232, or may be formed on any one portion or multiple portions of the three surfaces S4. In this case, a sealing portion 250 having a high bonding strength may be formed in the portion S3 adjacent to the electrode tab 232 so that the sealing is not released.
또한, 방폭부(260)는 전극 조립체(230)를 보호하기 위해서 수납부(211)의 외부에 제공되는 배터리 제어시스템(234, BMS)과 인접한 일측(S3)을 제외한 부위(S4) 중 적어도 한 곳에 형성될 수 있다. 방폭부(260)는 배터리 제어 시스템(234)과 인접하지 않는 3면(S4) 전체에 걸쳐 형성될 수도 있고, 3면(S4) 중 어느 한 부위 또는 다수 부위에 형성될 수도 있다. 이 때, 배터리 제어시스템(234)과 인접한 부분(S3)에는 방폭부(260) 보다 접합 강도가 크고 밀봉이 해제되지 않는 실링부(250)가 형성될 수 있다.In addition, the explosion-proof unit 260 is at least one of the portion S4 except for the one side (S3) adjacent to the battery control system 234 (BMS) provided outside the housing 211 to protect the electrode assembly 230. Where it can be formed. The explosion-proof part 260 may be formed over the entirety of three surfaces S4 that are not adjacent to the battery control system 234, or may be formed on any one portion or multiple portions of the three surfaces S4. In this case, a sealing portion 250 may be formed in the portion S3 adjacent to the battery control system 234 and has a greater bonding strength than the explosion-proof portion 260 and does not release the sealing.
이와 같이, 전극탭(232) 또는 배터리 제어시스템(234)과 인접하지 않은 부분(S4)에 방폭부(260)가 위치하도록 형성함으로써 방폭부(260)의 밀봉이 해제되어 고온 또는 고압의 가스가 배출될 때 전극탭(232)이 가스에 의해서 손상되거나 폭발하는 것을 방지할 수 있고, 배터리 제어시스템(234)이 손상되는 것을 방지할 수 있고, 전지(200) 자체의 폭발도 방지할 수 있다. As such, the explosion-proof portion 260 is formed in a portion S4 not adjacent to the electrode tab 232 or the battery control system 234 to release the sealing of the explosion-proof portion 260 so that the gas of high temperature or high pressure is released. When discharged, the electrode tab 232 can be prevented from being damaged or exploded by the gas, the battery control system 234 can be prevented from being damaged, and the explosion of the battery 200 itself can be prevented.
뿐만 아니라, 가스에 의해서 손상되기 쉽거나 폭발할 염려가 있는 전자 부품 등이 전지의 주위에 있는 경우에는 그러한 부품 쪽으로 가스가 배출되지 않도록 방폭부(260)의 위치를 조절할 수 있다. 즉, 손상이나 폭발이 쉬운 부품이 위치하는 부위는 실링부(250)를 이용하여 전지를 밀봉하여 그러한 방향으로 가스가 배출되는 것을 원천적으로 방지할 수 있다.In addition, when an electronic component or the like that is easily damaged or exploded by the gas is around the battery, the position of the explosion-proof portion 260 may be adjusted so that the gas is not discharged toward the component. That is, the site where the parts easily damaged or exploded may be sealed by using the sealing unit 250 to prevent the gas from being discharged in such a direction.
상기한 바와 같이, 본 발명의 다른 일 실시예에 따른 이차 전지(200)는 방폭부(260)의 접합 강도 또는 위치를 쉽게 선택할 수 있고, 이러한 선택을 통해서 전지의 비정상 작동으로 인해 전지 내부에 과도한 압력이 걸리거나 과열이 발생하는 것을 방지하고, 전지의 외부로 배출되는 고온 또는 고압의 가스로 인해 전지 주변 구성품 등이 파손되는 것도 방지할 수 있다.As described above, the secondary battery 200 according to another embodiment of the present invention can easily select the bonding strength or the position of the explosion-proof portion 260, and through such selection, the secondary battery 200 is excessive in the battery due to abnormal operation of the battery. It is possible to prevent pressure or overheating, and to prevent damage to components around the battery due to high temperature or high pressure gas discharged to the outside of the battery.
한편, 도 10 내지 도 12에는 본 발명의 또 다른 실시예에 따른 이차 전지(300)가 도시되어 있다. 본 발명의 또 다른 실시예에 따른 이차 전지(300)는, 전극 조립체(320)와 전해액(340)이 함께 수납되는 수납부(311) 및 개방부(112, 도 5 참조)를 포함하는 금속성 캔(310), 캔(310)을 밀봉할 수 있도록 캔(310)의 개방부(112)에 위치되는 금속성 캡(320), 캔(310)과 캡(320)을 서로 접합하여 밀봉하도록 캔(310)의 플랜지(313)와 캡(320)의 플랜지(323) 사이에 형성되는 실링부(350) 및 캔(310)과 캡(320)을 접합하여 밀봉하도록 캔(310)의 플랜지(313)와 캡(320)의 플랜지(323) 사이에 형성되며, 필요시 전해액(340)의 보충이 가능하도록 형성된 전해액 보충부(360)를 포함할 수 있다. 여기서, 실링부(350)는 앞서 설명한 일 실시예에 따른 이차 전지(100)의 제1 실링부(150) 또는 다른 일 실시예에 따른 이차 전지(200)의 실링부(250)와 동일하게 형성될 수 있다.10 to 12 illustrate a secondary battery 300 according to still another embodiment of the present invention. The secondary battery 300 according to another exemplary embodiment of the present invention may include a metallic can including an accommodating part 311 and an opening part 112 (see FIG. 5) in which the electrode assembly 320 and the electrolyte 340 are stored together. 310, the metallic cap 320 located in the opening 112 of the can 310 to seal the can 310, the can 310 to bond and seal the can 310 and the cap 320 with each other. The flange 313 of the can 310 and the seal 310 formed between the flange 313 of the cap 320 and the flange 323 of the cap 320 and the cap 310 and the cap 320 to be bonded and sealed. It is formed between the flange 323 of the cap 320, and may include an electrolyte replenishment portion 360 formed to enable the replenishment of the electrolyte 340, if necessary. Here, the sealing unit 350 is formed in the same manner as the sealing unit 250 of the first sealing unit 150 of the secondary battery 100 or the secondary battery 200 according to another embodiment described above. Can be.
상기와 같이 구성함으로써, 본 발명의 또 다른 실시예에 따른 이차 전지(300)는 필요시 전해액을 보충하는 것이 가능하기 때문에 전지의 사용 수명을 늘일 수 있다.By configuring as described above, the secondary battery 300 according to another embodiment of the present invention can increase the service life of the battery because it is possible to replenish the electrolyte when necessary.
이차 전지(300)는 정상적으로 사용됨에 따라 전지 내부에 충진된 전해액(340)이 부반응을 일으킬 수 있다. 전해액(340)의 부반응으로 인해 전지의 내부에는 가스가 생기고 이러한 가스로 인해 전지 내부는 팽창하게 된다. 전지가 팽창하게 되면 전극 조립체(330)를 구성하는 양극판과 음극판 사이가 벌어지면서 전극판 사이의 밀착도가 나빠지고, 전지 내부의 진공도가 떨어지게 된다. 전극판의 밀착도 저하 또는 진공도 저하는 전지의 성능에 악영향을 줄 수 있고, 전해액(340)이 부반응을 하게 되면 전해액(340)도 점진적으로 줄어들게 된다. As the secondary battery 300 is normally used, the electrolyte 340 filled in the battery may cause side reactions. Due to the side reaction of the electrolyte solution 340, gas is generated inside the battery, and the inside of the battery is expanded due to the gas. When the battery is expanded, the gap between the positive electrode plate and the negative electrode plate constituting the electrode assembly 330 is poor, the adhesion between the electrode plate is worsened, the degree of vacuum inside the battery is reduced. Degradation of the adhesion of the electrode plate or deterioration of the vacuum may adversely affect the performance of the battery, and when the electrolyte 340 reacts sideways, the electrolyte 340 gradually decreases.
본 발명의 또 다른 실시예에 따른 이차 전지(300)는 전해액 보충부(360)가 있기 때문에 필요시에는 전해액 보충부(360)를 통해서 고갈된 전해액(340)을 보충할 수 있고, 이로 인해 전지의 수명을 늘일 수 있다.Since the secondary battery 300 according to another embodiment of the present invention has an electrolyte replenishment unit 360, if necessary, the secondary battery 300 may replenish the depleted electrolyte solution 340 through the electrolyte replenishment unit 360. Can extend the lifespan.
전해액 보충부(360)는 실링부(350)와 연속적으로 형성되어 캔(310)과 캡(320)을 접합하는 접합부를 겸하도록 형성될 수 있다. 즉, 전해액 보충부(360)는 정상 상태에서는 캔(310)과 캡(320)을 서로 접합하는 접합부로서 기능하지만, 전해액을 보충해야 할 필요가 있는 경우에는 밀봉을 해제하고 그 부분을 통해서 전해액을 전지의 내부로 주입할 수 있다.The electrolyte replenisher 360 may be continuously formed with the sealing unit 350 to serve as a junction for joining the can 310 and the cap 320. That is, the electrolyte replenishing part 360 functions as a joint part for joining the can 310 and the cap 320 to each other in a normal state, but when it is necessary to replenish the electrolyte solution, the electrolyte replenishment part 360 is released and the electrolyte solution is filled through the part. Can be injected into the cell.
여기서, 전지(300)를 초기에 제조할 때 전해액은 전극 단자 또는 캔이나 캡에 형성된 전해액 주입구(미도시)를 통해서 주입한 후 전해액 주입구를 밀봉하여 전지의 내부를 진공 상태로 만들게 된다. 그러나, 전해액이 고갈된 경우에는 전해액 주액구를 통해서 전해액을 보충할 수는 없다.Here, when the battery 300 is initially manufactured, the electrolyte is injected through an electrolyte injection hole (not shown) formed in an electrode terminal or a can or a cap, and the electrolyte injection hole is sealed to make the inside of the battery into a vacuum state. However, when electrolyte is depleted, electrolyte solution cannot be replenished through electrolyte injector.
본 발명의 또 다른 일 실시예에 따른 이차 전지(300)의 전해액 보충부(360)는 캔(310) 및 캡(320)의 용융점 보다 낮은 용융점을 가지는 비철금속 또는 비철금속의 합금을 포함하는 용융 접합부재(362)에 의해 형성될 수 있다. 여기서, 용융 접합부재의 물리적 또는 화학적 특성은 상기한 본 발명의 일 실시예에 따른 이차 전지(100)의 제2 실링부(160)에 사용되는 용융 접합부재(162)와 동일하므로 반복적인 설명은 생략한다. 예를 들면, 전해액 보충부(360)의 용융 접합부재(362)는 600℃ 이하, 바람직하게는 400℃ 이하, 더 바람직하게는 250℃ 이하 의 융점을 가질 수 있고, 납, 주석, 아연, 알루미늄, 은 또는 이들의 합금으로 구성된 그룹으로부터 선택된 어느 하나를 포함하여 형성될 수 있다. Electrolyte replenishment portion 360 of the secondary battery 300 according to another embodiment of the present invention is a melt bonding member including a non-ferrous metal or an alloy of non-ferrous metal having a melting point lower than the melting point of the can 310 and the cap 320 It may be formed by 362. Here, since the physical or chemical properties of the melt bonding member is the same as the melt bonding member 162 used in the second sealing portion 160 of the secondary battery 100 according to an embodiment of the present invention, the repeated description is Omit. For example, the melt bonding member 362 of the electrolyte replenishing part 360 may have a melting point of 600 ° C. or lower, preferably 400 ° C. or lower, more preferably 250 ° C. or lower, and lead, tin, zinc, aluminum It may be formed by including any one selected from the group consisting of, silver or alloys thereof.
전해액 보충부(360)의 용융 접합부재(362)는 도 12에 도시된 바와 같이 수납부(311)의 온도가 상승하면 용융되어 캔(310)과 캡(320)의 밀봉 상태를 해제시키게 되는데, 이 해제된 부분을 통해 전해액으르 보충하고 용융 접합부재(362)를 다시 응고시켜서 전지를 밀봉할 수 있다. 또한, 용융 접합부재(362)의 조성 또는 도포량에 의해 결정되는 접합 파괴강도 보다 큰 압력이 수납부(311)의 내부에 발생하는 경우에 용융 접합부재(362)와 캔(310) 및/또는 캡(320)의 접합이 뜯어지면서 밀봉 상태를 해제시킬 수 있고, 밀봉이 해제된 부분을 통해 전해액을 보충한 후 용융 접합부재(362)를 다시 응고시켜서 전지를 밀봉할 수도 있다.As shown in FIG. 12, when the temperature of the accommodating part 311 rises, the melt bonding member 362 of the electrolyte replenishing part 360 is melted to release the sealing state of the can 310 and the cap 320. The battery can be sealed by replenishing the electrolyte through the released portion and solidifying the melt bonding member 362 again. In addition, when a pressure greater than the bond breaking strength determined by the composition or the coating amount of the melt bonding member 362 is generated inside the accommodating portion 311, the melt bonding member 362 and the can 310 and / or the cap are formed. The sealing state may be released as the bonding of the 320 is broken, and the battery may be sealed by solidifying the molten bonding member 362 again after replenishing the electrolyte through the portion where the sealing is released.
여기서, 전해액 보충부(360)는 평상시에는 캔(310)과 캡(320)을 접합시키는 접합부로서 작동하다가, 전해액의 보충이 필요하거나 비정상적으로 전해액 보충부(360)의 밀봉이 해제되어 전해액이 누설된 경우에 전해액을 다시 보충하는데 사용될 수 있다.Here, the electrolyte replenishing part 360 normally operates as a joint part for joining the can 310 and the cap 320, and needs to be replenished, or abnormally, the electrolyte replenishing part 360 is released and the electrolyte leaks. If so, it can be used to replenish the electrolyte.
또한, 경우에 따라서는 전지의 비정상 상태로 인해 전해액 보충부(360)의 밀봉이 해제되지 않은 상태에서도 전해액 보충부(360)를 통해서 전해액을 보충할 수도 있다. 예를 들면, 배터리 제어시스템(343)을 통해서 전지 내부에 전해액의 부반응으로 인해 압력이 증가했다고 감지되는 경우에 인위적으로 전해액 보충부(360)의 용융 접합부재(362)를 녹여서 캔(310)과 캡(320)의 밀봉을 해제하고 그 부분을 통해 전해액을 보충한 후 전지 내부의 진공을 만든 상태에서 용융 접합부재(362)를 재응고시켜서 전지를 재밀봉시킬 수도 있다.In some cases, the electrolyte may be replenished through the electrolyte replenisher 360 even when the sealing of the electrolyte replenisher 360 is not released due to an abnormal state of the battery. For example, when it is detected through the battery control system 343 that the pressure is increased due to the side reaction of the electrolyte in the battery, the melt bonding member 362 of the electrolyte replenishing unit 360 is artificially melted and the can 310 The battery may be resealed by releasing the seal of the cap 320 and replenishing the electrolyte through the portion thereof, and then resolidifying the melt bonding member 362 in a state in which a vacuum is formed in the battery.
본 발명의 또 다른 일 실시예에 따른 이차 전지(300)는 전해액을 보충할 수 있도록 실링부(350)와 전해액 보충부(360)는 서로 다른 접합 강도를 가지는 것이 바람직하며, 실링부(350)가 더 큰 강도를 가져야 한다.In the secondary battery 300 according to another embodiment of the present invention, the sealing unit 350 and the electrolyte replenishing unit 360 may have different bonding strengths to replenish the electrolyte, and the sealing unit 350 Should have greater intensity.
한편, 전지의 내부에 큰 압력이 걸리거나 온도가 오르게 되면 전지가 폭발할 수도 있는데, 전해액 보충부(360)를 통해서 벤트 기능을 구현하여 전지가 폭발하는 것을 방지할 수도 있다.On the other hand, when a large pressure or temperature rises inside the battery, the battery may explode. The battery may be prevented by implementing a vent function through the electrolyte replenishing part 360.
여기서, 전해액 보충부(360)는 수납부(311) 내에 제공되는 전극 조립체(330)의 전극탭(334)과 인접한 일측(S5)을 제외한 부위(S6) 중 적어도 한 곳에 형성될 수 있다. 도 11에 도시된 바와 같이, 전해액 보충부(360)는 전극탭(332)과 인접하여 마주 보는 부분이 아닌 다른 부분(S6)에 형성될 수 있다. 즉, 전해액 보충부(360)는 전극탭(332)과 인접하지 않는 3면(S6) 전체에 걸쳐 형성될 수도 있고, 3면(S6) 중 어느 한 부위 또는 다수 부위에 형성될 수도 있다. 이 때, 전극탭(332)과 인접한 부분(S5)에는 밀봉이 해제되지 않도록 높은 접합 강도를 가지는 실링부(350)가 형성될 수 있다.Here, the electrolyte replenishing part 360 may be formed in at least one of the portions S6 except for one side S5 adjacent to the electrode tab 334 of the electrode assembly 330 provided in the accommodating part 311. As illustrated in FIG. 11, the electrolyte replenishing part 360 may be formed at a portion S6 other than the portion facing the electrode tab 332. That is, the electrolyte replenishment part 360 may be formed over the entirety of three surfaces S6 that are not adjacent to the electrode tab 332, or may be formed on any one portion or multiple portions of the three surfaces S6. In this case, a sealing portion 350 having a high bonding strength may be formed in the portion S5 adjacent to the electrode tab 332 so that the sealing is not released.
또한, 전해액 보충부(360)는 전극 조립체(330)를 보호하기 위해서 수납부(311)의 외부에 제공되는 배터리 제어시스템(334, BMS)과 인접한 일측(S5)을 제외한 부위(S6) 중 적어도 한 곳에 형성될 수 있다. 전해액 보충부(360)는 배터리 제어 시스템(334)과 인접하지 않는 3면(S6) 전체에 걸쳐 형성될 수도 있고, 3면(S6) 중 어느 한 부위 또는 다수 부위에 형성될 수도 있다. 이 때, 배터리 제어시스템(334)과 인접한 부분(S5)에는 전해액 보충부(360) 보다 접합 강도가 크고 밀봉이 해제되지 않는 실링부(350)가 형성될 수 있다.In addition, the electrolyte refilling unit 360 may include at least one of the portions S6 except for one side S5 adjacent to the battery control system 334 (BMS) provided outside the housing 311 to protect the electrode assembly 330. It can be formed in one place. The electrolyte replenisher 360 may be formed over the entirety of three surfaces S6 that are not adjacent to the battery control system 334, or may be formed on any one or multiple portions of the three surfaces S6. In this case, a sealing portion 350 may be formed at a portion S5 adjacent to the battery control system 334 and having a greater bonding strength than that of the electrolyte replenishing portion 360 and the sealing of which is not released.
이와 같이, 전극탭(332) 또는 배터리 제어시스템(334)과 인접하지 않은 부분(S6)에 전해액 보충부(360)가 위치하도록 형성함으로써 전해액 보충부(360)의 밀봉이 해제되어 고온 또는 고압의 가스가 배출될 때 전극탭(332)이 가스에 의해서 손상되거나 폭발하는 것을 방지할 수 있고, 배터리 제어시스템(334)이 손상되는 것을 방지할 수 있고, 전지(300) 자체의 폭발도 방지할 수 있다. In this way, the electrolyte replenishment portion 360 is formed to be positioned at a portion S6 not adjacent to the electrode tab 332 or the battery control system 334 to release the sealing of the electrolyte replenishment portion 360 to obtain a high temperature or high pressure. When the gas is discharged, the electrode tab 332 can be prevented from being damaged or exploded by the gas, the battery control system 334 can be prevented from being damaged, and the explosion of the battery 300 itself can be prevented. have.
뿐만 아니라, 가스에 의해서 손상되기 쉽거나 폭발할 염려가 있는 전자 부품 등이 전지의 주위에 있는 경우에는 그러한 부품 쪽으로 가스가 배출되지 않도록 전해액 보충부(360)의 위치를 조절할 수 있다. 즉, 손상이나 폭발이 쉬운 부품이 위치하는 부위는 실링부(350)를 이용하여 전지를 밀봉하여 그러한 방향으로 가스가 배출되는 것을 원천적으로 방지할 수 있다.In addition, when an electronic component or the like that is easily damaged or exploded by the gas is around the battery, the position of the electrolyte replenishing part 360 may be adjusted so that the gas is not discharged toward the component. That is, the site where the parts easily damaged or exploded may be sealed by using the sealing unit 350 to prevent the gas from being discharged in such a direction.
상기한 바와 같이, 본 발명의 또 다른 일 실시예에 따른 이차 전지(300)는 전해액 보충부(360)의 접합 강도 또는 위치를 쉽게 선택할 수 있고, 이러한 선택을 통해서 전지의 비정상 작동으로 인해 전지 내부에 과도한 압력이 걸리거나 과열이 발생하는 것을 방지하고, 전지의 외부로 배출되는 고온 또는 고압의 가스로 인해 전지 주변 구성품 등이 파손되는 것도 방지할 수 있다.As described above, the secondary battery 300 according to another embodiment of the present invention can easily select the bonding strength or the position of the electrolyte replenishing part 360, and through such selection, the battery inside due to abnormal operation of the battery. It is possible to prevent excessive pressure or overheating, and damage to components around the battery due to high temperature or high pressure gas discharged to the outside of the battery.
전지(300)의 폭발 방지를 위해 전해액 보충부(360)의 밀봉이 해제된 경우가 아니고, 전지(300)의 폭발과 무관하게 전해액이 고갈되어 이를 보충하고자 전해액 보충부(360)를 녹이고 이 부분을 통해서 전해액을 보충하는 경우에, 전해액 보충부(360)가 전극탭(332) 또는 배터리 제어시스템(334)과 마주 보거나 가까운 일측(S5)에 형성되어 있다면, 전해액을 보충하기 위해서 밀봉이 해제된 캔(310)의 플랜지(313)를 벌려야 할 필요가 생길 수 있다. 이 때, 캔(310)에 힘을 가해 밀봉이 해제된 공간을 더 크게 할 경우 배터리 제어시스템(334)이 파손되거나 전극탭(332)이 파손될 수도 있다. 이러한 문제점을 해결하기 위해서 전해액 보충부(360)는 전극탭(332) 또는 배터리 제어시스템(334)이 위치하지 않는 부분(S6)에 형성되는 것이 바람직하다.This is not the case when the sealing of the electrolyte replenishing part 360 is not released to prevent the explosion of the battery 300, and the electrolyte replenishing part 360 is melted to replenish the electrolyte, regardless of the explosion of the battery 300. In the case of replenishing the electrolyte through the electrolyte, if the electrolyte replenishing part 360 is formed at one side S5 facing or close to the electrode tab 332 or the battery control system 334, the sealing is released to replenish the electrolyte. It may be necessary to open the flange 313 of the can 310. In this case, when the force is applied to the can 310 to increase the space where the sealing is released, the battery control system 334 may be damaged or the electrode tab 332 may be broken. In order to solve this problem, the electrolyte replenishing part 360 is preferably formed at a portion S6 where the electrode tab 332 or the battery control system 334 is not located.
상기한 바와 같이 본 발명의 또 다른 일 실시예에 따른 이차 전지(300)는 캔(310) 및/또는 캡(320)의 융점 보다 낮은 융점을 가지는 용융 접합부재(362)를 이용하여 전해액 보충부(360)를 형성함으로써 캔(310)과 캡(320)을 접합함과 동시에 필요에 따라 밀봉을 해제하고 해제된 부분을 통해서 전해액을 보충하고 다시 캔(310)과 캡(320)을 밀봉할 수 있다.As described above, the rechargeable battery 300 according to another exemplary embodiment of the present invention uses an fusion bonding member 362 having a melting point lower than that of the can 310 and / or the cap 320. By forming the 360, the can 310 and the cap 320 may be bonded to each other, and at the same time, the seal may be released as needed, the electrolyte may be replenished through the released portion, and the can 310 and the cap 320 may be sealed again. have.
한편, 본 발명에 따른 이차 전지(100,200,300)의 캔(110,210,310) 또는 캡(120,220,320) 중 적어도 하나에는 용융 접합부재(162,262,362)와의 접합성 또는 용융 접합부재(162,262,362)의 젖음성을 향상시키기 위해 플랜지의 표면에 니켈 또는 구리 도금이 형성될 수 있다. Meanwhile, at least one of the cans 110, 210, 310, or caps 120, 220, and 320 of the secondary batteries 100, 200, and 300 according to the present invention may be formed on the surface of the flange to improve adhesion to the melt bonding members 162, 262, 362 or wettability of the melt bonding members 162, 262, 362. Nickel or copper plating may be formed.
도 13에 도시된 바와 같이, 용융 접합부재(162)와 캔(110) 및 캡(120)의 접합성을 향상시키기 위해 캔(110)의 플랜지(113)와 캡(120)의 플랜지(123)에 용융 접합부재(162)를 수용하기 위한 수용홈(114,124)을 형성할 수도 있다. 이러한 수용홈(114,124)을 형성함으로써 용융 접합부재(162)의 도포량이 같은 경우에 캔(110) 및 캡(120)과 용융 접합부재(162)의 접촉면적을 크게 할 수 있고, 결과적으로 접합성을 높일 수 있다.As shown in FIG. 13, the flange 113 of the can 110 and the flange 123 of the cap 120 may be improved to improve bonding between the melt bonding member 162 and the can 110 and the cap 120. Receiving grooves 114 and 124 for accommodating the molten bonding member 162 may be formed. By forming the receiving grooves 114 and 124, the contact area between the can 110 and the cap 120 and the melt bonding member 162 can be increased when the coating amount of the melt bonding member 162 is the same. It can increase.
도 14를 참조하면, 캔(110)의 플랜지(113)와 캡(120)의 플랜지(123)는 동일한 크기로 형성되며, 용융 접합부재(162)는 플랜지들(113,123) 사이에 제공될 수 있다. 이 때, 용융 접합부재(162)는 플랜지들(113,123)과 동일한 크기로 제공되거나(도 14의 (a)), 플랜지들(113,123) 보다 작은 크기로 제공되거나(도 14의 (b)), 플랜지들(113,123)의 외부로 돌출되도록 제공될 수도 있다(도 14의 (c)). 용융 접합부재(162)가 플랜지들(113,123)의 외부로 돌출된 경우에는 용융된 용융 접합부재(162)가 플랜지들(113,123)의 측면도 밀봉할 수 있기 때문에 보다 큰 접합 강도를 가질 수 있다.Referring to FIG. 14, the flange 113 of the can 110 and the flange 123 of the cap 120 may be formed in the same size, and the fusion bonding member 162 may be provided between the flanges 113 and 123. . At this time, the melt bonding member 162 is provided in the same size as the flanges 113 and 123 (Fig. 14 (a)), or provided in a smaller size than the flanges 113 and 123 (Fig. 14 (b)), It may be provided to protrude out of the flanges 113 and 123 (FIG. 14C). When the fusion bonding member 162 protrudes out of the flanges 113 and 123, the molten fusion bonding member 162 may also seal side surfaces of the flanges 113 and 123, and thus may have greater bonding strength.
도 15를 참조하면, 캡(120)의 플랜지(123) 단부(125)는 캔(110) 쪽으로 절곡 형성되며, 용융 접합부재(162)는 캔(110)의 플랜지(113)와 캡(120)의 플랜지(123) 사이에 제공될 수 있다. 이 때, 캔(110)의 플랜지(113)의 일단이 캡(120) 플랜지(123)의 절곡된 단부(125)에 접촉하도록 형성되고 플랜지들(113,123) 사이에 이와 동일한 크기로 용융 접합부재(162)가 제공될 수 있다(도 15의 (a)). Referring to FIG. 15, an end 125 of the flange 123 of the cap 120 is bent toward the can 110, and the fusion bonding member 162 is the flange 113 and the cap 120 of the can 110. May be provided between the flanges 123. At this time, one end of the flange 113 of the can 110 is formed to be in contact with the bent end 125 of the cap 120 flange 123 and between the flanges 113 and 123 with the same size as the melt bonding member ( 162 may be provided (FIG. 15A).
또한, 도 15의 (b) 내지 (d)에 도시된 바와 같이, 캔(110)의 플랜지(113)의 일단이 캡(120) 플랜지(123)의 단부(125)에 닿지 않도록 형성될 수도 있다. 이 때, 용융 접합부재(162)는 폭 또는 두께를 달리하여 원하는 접합 강도를 얻을 수 있다. 즉, 플랜지들(113,123)의 형상 또는 용융 접합부재(162)의 도포 형상은 원하는 접합 강도 또는 원하는 밀봉 해제 조건에 따라서 다양하게 변경될 수 있다.In addition, as shown in FIGS. 15B to 15D, one end of the flange 113 of the can 110 may be formed so as not to contact the end 125 of the flange 120 of the cap 120. . At this time, the fusion bonding member 162 may obtain a desired bonding strength by varying the width or thickness. That is, the shape of the flanges 113 and 123 or the application shape of the melt bonding member 162 may be variously changed according to the desired bonding strength or the desired sealing release condition.
도 13 내지 도 15에는 본 발명의 일 실시예에 따른 이차 전지(100)를 예시적으로 도시했으나, 다른 실시예에 따른 이차 전지(200,300)에도 동일하게 적용될 수 있음은 당연하다.13 to 15 exemplarily illustrate the secondary battery 100 according to an embodiment of the present invention, it is obvious that the same may be applied to the secondary batteries 200 and 300 according to other embodiments.
본 발명의 다양한 실시예들이 위에서 설명되었다. 그러나, 당업자들은 바람직한 실시예들의 전술한 설명들은 예시적인 것에 불과하며, 본 발명은 전술한 장치들 및 방법들에 대한 수정 및 변경이 가능함을 이해할 것이다. 당업자들은 본 명세서에 개시된 본발명의 특정의 실시예들에 대한 많은 균등물을 일상적인 실험을 통해 알거나 확인할 수 있을 것이다. 그러한 수정, 변형 및 균등물들은 아래의 청구범위에 열거된 본 발명의 정신 및 범위에 포함되는 것을 의도한다.Various embodiments of the invention have been described above. However, those skilled in the art will appreciate that the foregoing descriptions of the preferred embodiments are merely exemplary, and that the present invention is capable of modifications and variations to the above described devices and methods. Those skilled in the art will recognize or ascertain many equivalents to the specific embodiments disclosed herein by routine experimentation. Such modifications, variations and equivalents are intended to be included within the spirit and scope of the invention as set forth in the claims below.
본 발명은 이차전지 또는 에너지 저장장치 등에 적용될 수 있다.The present invention can be applied to secondary batteries or energy storage devices.

Claims (25)

  1. 전극 조립체와 전해액이 함께 수납되는 수납부 및 개방부를 포함하는 금속성 캔; A metallic can including an accommodating part and an open part accommodating the electrode assembly and the electrolyte;
    상기 캔을 밀봉할 수 있도록 상기 캔의 상기 개방부에 위치되는 금속성 캡;A metallic cap positioned in the opening of the can to seal the can;
    상기 캔과 상기 캡을 서로 접합하도록 상기 캔의 플랜지와 상기 캡의 플랜지 사이에 형성되는 제1 실링부; 및A first sealing portion formed between a flange of the can and a flange of the cap to bond the can and the cap to each other; And
    상기 캔과 상기 캡을 서로 접합하도록 상기 캔의 플랜지와 상기 캡의 플랜지 사이에 형성되는 제2 실링부;를 포함하며, And a second sealing portion formed between the flange of the can and the flange of the cap to bond the can and the cap to each other.
    상기 제1 실링부 및 상기 제2 실링부의 접합 강도가 상이한 것을 특징으로 하는 이차 전지.The secondary battery is characterized in that the bonding strength of the first sealing portion and the second sealing portion is different.
  2. 제1항에 있어서, The method of claim 1,
    상기 제2 실링부의 면적 또는 융점에 의해서 상기 캔과 상기 캡 사이의 밀봉 또는 접합 강도의 조절이 가능한 것을 특징으로 하는 이차 전지.The secondary battery, characterized in that the sealing or bonding strength between the can and the cap can be adjusted by the area or melting point of the second sealing portion.
  3. 제1항에 있어서, The method of claim 1,
    상기 제2 실링부는 상기 수납부 내에 제공되는 상기 전극 조립체의 전극탭과 인접한 일측을 제외한 부위 중 적어도 한 곳에 형성되는 것을 특징으로 하는 이차 전지.And the second sealing part is formed in at least one of portions except for one side adjacent to an electrode tab of the electrode assembly provided in the accommodating part.
  4. 제1항에 있어서, The method of claim 1,
    상기 제2 실링부는 상기 전극 조립체를 보호하기 위해서 상기 수납부의 외부에 제공되는 배터리 제어시스템(BMS)과 인접한 일측을 제외한 부위 중 적어도 한 곳에 형성되는 것을 특징으로 하는 이차 전지.The second sealing unit is a secondary battery, characterized in that formed in at least one of a portion except one side adjacent to the battery control system (BMS) provided to the outside of the housing in order to protect the electrode assembly.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1 실링부는 상기 캔 및 상기 캡을 국부적으로 가열하여 상기 캔 및 상기 캡이 용융된 상태에서 형성되며, The first sealing part is formed in a state in which the can and the cap are melted by locally heating the can and the cap,
    상기 제2 실링부는 상기 캔 및 상기 캡의 상태 변화 없이 형성되는 것을 특징으로 하는 이차 전지.And the second sealing part is formed without changing the state of the can and the cap.
  6. 제5항에 있어서,The method of claim 5,
    상기 제1 실링부는 상기 캔과 상기 캡을 직접 접합하고, 상기 제2 실링부는 상기 캔과 상기 캡 사이에 용융 접합부재를 게재하여 상기 캔과 상기 캡을 간접적으로 접합하는 것을 특징으로 하는 이차 전지.And the first sealing portion directly bonds the can and the cap, and the second sealing portion indirectly bonds the can and the cap by placing a fusion bonding member between the can and the cap.
  7. 제5항에 있어서, The method of claim 5,
    상기 제1 실링부는 상기 캔과 상기 캡의 용융점까지 상기 캔 및 상기 캡을 가열하여 상기 캔과 상기 캡을 직접 접합하고, The first sealing part directly heats the can and the cap to a melting point of the can and the cap, and directly bonds the can and the cap.
    상기 제2 실링부는 상기 캔 및 상기 캡 보다 용융점이 낮은 비철금속 또는 비철금속의 합금을 포함하는 상기 용융 접합부재의 용융 및 응고에 의해서 상기 캔과 상기 캡을 접합하는 것을 특징으로 하는 이차 전지.And the second sealing part joins the can and the cap by melting and solidifying the molten bonding member including a nonferrous metal or an alloy of a nonferrous metal having a lower melting point than the can and the cap.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 제2 실링부는 상기 수납부의 온도가 상승하면 용융되어 상기 캔과 상기 캡의 밀봉 상태를 해제시키거나, 상기 용융 접합부재의 조성 또는 도포량에 의해 결정되는 접합 파괴강도 보다 큰 압력이 상기 수납부의 내부에 발생하는 경우에 상기 캔과 상기 캡의 밀봉 상태를 해제시키는 것을 특징으로 하는 이차 전지.The second sealing part is melted when the temperature of the accommodating part rises to release the sealing state of the can and the cap, or the pressure greater than the joint fracture strength determined by the composition or the coating amount of the melted joint member is increased. The secondary battery, characterized in that to release the sealed state of the can and the cap when occurring inside.
  9. 전극 조립체와 전해액이 함께 수납되는 수납부 및 개방부를 포함하는 금속성 캔; A metallic can including an accommodating part and an open part accommodating the electrode assembly and the electrolyte;
    상기 캔을 밀봉할 수 있도록 상기 캔의 상기 개방부에 위치되는 금속성 캡;A metallic cap positioned in the opening of the can to seal the can;
    상기 캔과 상기 캡을 서로 접합하여 밀봉하도록 상기 캔의 플랜지와 상기 캡의 플랜지 사이에 형성되는 실링부; 및A sealing portion formed between the flange of the can and the flange of the cap to seal the can and the cap by bonding to each other; And
    상기 캔의 플랜지와 상기 캡의 플랜지 사이에 형성되어 상기 캔과 상기 캡을 서로 접합하고 상기 캔과 상기 캡의 밀봉 상태를 해제할 수 있는 방폭부;를 포함하며,And an explosion-proof part formed between the flange of the can and the flange of the cap to bond the can and the cap to each other and to release a sealing state of the can and the cap.
    상기 방폭부는 상기 캔 및 상기 캡의 용융점 보다 낮은 용융점을 가지는 비철금속 또는 비철금속의 합금을 포함하는 용융 접합부재에 의해 형성되는 것을 특징으로 하는 이차 전지.The explosion-proof part is a secondary battery, characterized in that formed by a fusion bonding member comprising a non-ferrous metal or an alloy of non-ferrous metal having a melting point lower than the melting point of the can and the cap.
  10. 제9항에 있어서,The method of claim 9,
    상기 실링부는 상기 캔 및 상기 캡의 용융점 이상으로 상기 캔 및 상기 캡을 가열하여 용융된 상기 캔과 상기 캡을 직접 접합시켜서 형성되는 것을 특징으로 하는 이차전지.The sealing unit is a secondary battery, characterized in that formed by directly bonding the can and the cap melted by heating the can and the cap above the melting point of the can and the cap.
  11. 제10항에 있어서, The method of claim 10,
    상기 방폭부는 상기 수납부의 온도가 상승하면 용융되어 상기 캔과 상기 캡의 밀봉 상태를 해제시키거나, 상기 용융 접합부재의 조성 또는 도포량에 의해 결정되는 접합 파괴강도 보다 큰 압력이 상기 수납부의 내부에 발생하는 경우에 상기 캔과 상기 캡의 밀봉 상태를 해제시키는 것을 특징으로 하는 이차 전지.The explosion-proof part is melted when the temperature of the accommodating part rises to release the sealing state of the can and the cap, or a pressure greater than the bond breaking strength determined by the composition or the coating amount of the molten joint member is applied to the inside of the accommodating part. The secondary battery, characterized in that to release the sealed state of the can and the cap when it occurs.
  12. 제11항에 있어서, The method of claim 11,
    상기 방폭부는 상기 실링부와 연속적으로 형성되어 상기 캔과 상기 캡을 접합하는 접합부를 겸하는 것을 특징으로 하는 이차 전지.The explosion-proof part is a secondary battery, characterized in that it is formed continuously with the sealing portion to serve as a junction for bonding the can and the cap.
  13. 제12항에 있어서, The method of claim 12,
    상기 방폭부는 상기 수납부 내에 제공되는 상기 전극 조립체의 전극탭과 인접한 일측을 제외한 부위 중 적어도 한 곳에 형성되는 것을 특징으로 하는 이차 전지.The explosion-proof part is a secondary battery, characterized in that formed in at least one of the portion except the one side adjacent to the electrode tab of the electrode assembly provided in the housing.
  14. 제12항에 있어서, The method of claim 12,
    상기 방폭부는 상기 전극 조립체를 보호하기 위해서 상기 수납부의 외부에 제공되는 배터리 제어시스템(BMS)과 인접한 일측을 제외한 부위 중 적어도 한 곳에 형성되는 것을 특징으로 하는 이차 전지.The explosion-proof part is a secondary battery, characterized in that formed in at least one of the portions except one side adjacent to the battery control system (BMS) provided to the outside of the housing to protect the electrode assembly.
  15. 제14항에 있어서,The method of claim 14,
    상기 용융 접합부재는 600℃ 이하, 바람직하게는 400℃ 이하의 융점을 가지며, 납, 주석, 아연, 알루미늄, 은 또는 이들의 합금으로 구성된 그룹으로부터 선택된 어느 하나를 포함하는 것을 특징으로 하는 이차 전지.The molten junction member has a melting point of 600 ° C. or less, preferably 400 ° C. or less, and includes a secondary battery selected from the group consisting of lead, tin, zinc, aluminum, silver, or an alloy thereof.
  16. 전극 조립체와 전해액이 함께 수납되는 수납부 및 개방부를 포함하는 금속성 캔; A metallic can including an accommodating part and an open part accommodating the electrode assembly and the electrolyte;
    상기 캔을 밀봉할 수 있도록 상기 캔의 상기 개방부에 위치되는 금속성 캡;A metallic cap positioned in the opening of the can to seal the can;
    상기 캔과 상기 캡을 서로 접합하여 밀봉하도록 상기 캔의 플랜지와 상기 캡의 플랜지 사이에 형성되는 실링부; 및A sealing portion formed between the flange of the can and the flange of the cap to seal the can and the cap by bonding to each other; And
    상기 캔과 상기 캡을 접합하여 밀봉하도록 상기 캔의 플랜지와 상기 캡의 플랜지 사이에 형성되며, 필요시 상기 전해액의 보충이 가능하도록 형성된 전해액 보충부;를 포함하며,And an electrolyte replenishment part formed between the flange of the can and the flange of the cap to bond and seal the can and the cap, and configured to replenish the electrolyte when necessary.
    상기 전해액 보충부는 상기 실링부와 연속적으로 형성되어 상기 캔과 상기 캡을 접합하는 접합부를 겸하도록 상기 캔 및 상기 캡의 용융점 보다 낮은 용융점을 가지는 비철금속 또는 비철금속의 합금을 포함하는 용융 접합부재에 의해 형성되는 것을 특징으로 하는 이차 전지.The electrolyte replenishment portion is formed by a molten bonding member including a nonferrous metal or an alloy of nonferrous metal having a melting point lower than the melting point of the can and the cap so as to continuously form the sealing portion to join the can and the cap. Secondary battery characterized by the above-mentioned.
  17. 제16항에 있어서, The method of claim 16,
    상기 전해액 보충부는 상기 수납부의 온도가 상승하면 용융되어 상기 캔과 상기 캡의 밀봉 상태를 해제시키거나, 상기 용융 접합부재의 조성 또는 도포량에 의해 결정되는 접합 파괴강도 보다 큰 압력이 상기 수납부의 내부에 발생하는 경우에 상기 캔과 상기 캡의 밀봉 상태를 해제시키는 것을 특징으로 하는 이차 전지.The electrolyte replenishment part is melted when the temperature of the accommodating part rises to release the sealing state of the can and the cap, or a pressure greater than the joint fracture strength determined by the composition or the coating amount of the molten joint member is increased. The secondary battery, characterized in that to release the sealed state of the can and the cap when generated inside.
  18. 제17항에 있어서,The method of claim 17,
    상기 수납부 안으로 상기 전해액을 보충할 수 있도록 상기 용융 접합부재는 용융 및 재응고되어 상기 캔과 상기 캡을 재밀봉할 수 있는 것을 특징으로 하는 이차 전지.And the molten bonding member may be melted and resolidified to reseal the can and the cap so that the electrolyte may be replenished into the accommodating part.
  19. 제16항에 있어서,The method of claim 16,
    상기 실링부는 상기 캔 및 상기 캡의 용융점 이상으로 상기 캔 및 상기 캡을 가열하여 용융된 상기 캔과 상기 캡을 직접 접합시켜서 형성되는 것을 특징으로 하는 이차전지.The sealing unit is a secondary battery, characterized in that formed by directly bonding the can and the cap melted by heating the can and the cap above the melting point of the can and the cap.
  20. 제19항에 있어서,The method of claim 19,
    상기 용융 접합부재는 600℃ 이하, 바람직하게는 400℃ 이하의 융점을 가지며, 납, 주석, 아연, 알루미늄, 은 또는 이들의 합금으로 구성된 그룹으로부터 선택된 어느 하나를 포함하는 것을 특징으로 하는 이차 전지.The molten junction member has a melting point of 600 ° C. or less, preferably 400 ° C. or less, and includes a secondary battery selected from the group consisting of lead, tin, zinc, aluminum, silver, or an alloy thereof.
  21. 제19항에 있어서, The method of claim 19,
    상기 전해액 보충부는 상기 수납부 내에 제공되는 상기 전극 조립체의 전극탭과 인접한 일측을 제외한 부위 중 적어도 한 곳에 형성되는 것을 특징으로 하는 이차 전지.The electrolyte replenishment unit is a secondary battery, characterized in that formed in at least one of the portions except for one side adjacent to the electrode tab of the electrode assembly provided in the housing.
  22. 제19항에 있어서, The method of claim 19,
    상기 전해액 보충부는 상기 전극 조립체를 보호하기 위해서 상기 수납부의 외부에 제공되는 배터리 제어시스템(BMS)과 인접한 일측을 제외한 부위 중 적어도 한 곳에 형성되는 것을 특징으로 하는 이차 전지.The electrolyte replenishment part is a secondary battery, characterized in that formed in at least one of the portions except one side adjacent to the battery control system (BMS) provided to the outside of the housing to protect the electrode assembly.
  23. 제9항에 있어서,The method of claim 9,
    상기 캔 또는 상기 캡 중 적어도 하나에는 상기 용융 접합부재와의 접합성 또는 상기 용융 접합부재의 젖음성을 향상시키기 위해 상기 플랜지의 표면에 니켈 또는 구리 도금이 형성된 것을 특징으로 하는 이차 전지.At least one of the can or the cap is a secondary battery, characterized in that nickel or copper plating is formed on the surface of the flange to improve the adhesion to the melt bonding member or the wettability of the melt bonding member.
  24. 제9항에 있어서,The method of claim 9,
    상기 캔의 플랜지와 상기 캡의 플랜지는 동일한 크기로 형성되며, 상기 용융 접합부재는 상기 플랜지들 사이에 제공되는 것을 특징으로 하는 이차 전지.And the flange of the can and the flange of the cap are formed in the same size, and the molten bonding member is provided between the flanges.
  25. 제9항에 있어서,The method of claim 9,
    상기 캡의 플랜지 단부는 상기 캔 쪽으로 절곡 형성되며, 상기 용융 접합부재는 상기 캔의 플랜지와 상기 캡의 플랜지 사이에 제공되는 것을 특징으로 하는 이차 전지.And a flange end of the cap is bent toward the can, and the molten bonding member is provided between the flange of the can and the flange of the cap.
PCT/KR2012/003842 2011-07-04 2012-05-16 Secondary battery WO2013005922A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0065952 2011-07-04
KR1020110065952A KR20130004724A (en) 2011-07-04 2011-07-04 Secondary battery

Publications (1)

Publication Number Publication Date
WO2013005922A1 true WO2013005922A1 (en) 2013-01-10

Family

ID=47437242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003842 WO2013005922A1 (en) 2011-07-04 2012-05-16 Secondary battery

Country Status (2)

Country Link
KR (1) KR20130004724A (en)
WO (1) WO2013005922A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467260A (en) * 2019-09-09 2021-03-09 苹果公司 Metal shell battery
CN113363616A (en) * 2021-06-17 2021-09-07 中国第一汽车股份有限公司 Pressure-adjustable liquid cooling plate, power battery assembly and vehicle
US11165126B2 (en) * 2014-08-08 2021-11-02 Techtronic Cordless Gp Battery pouch, battery cell and method of making a pouch or battery cell
EP3800686A4 (en) * 2018-12-29 2021-11-24 Contemporary Amperex Technology Co., Limited Secondary battery and battery module
US11186422B2 (en) 2014-02-07 2021-11-30 Yeti Coolers, Llc Insulating device and method for forming insulating device
US11201366B2 (en) 2018-02-27 2021-12-14 Tti (Macao Commercial Offshore) Limited Pouch battery with safety protection function
WO2023138586A1 (en) * 2022-01-21 2023-07-27 宁德新能源科技有限公司 Battery housing, battery, and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007266A (en) * 2001-06-25 2003-01-10 Toyota Motor Corp Sealing structure for electrode body
KR20030053092A (en) * 2001-12-22 2003-06-28 한국 파워셀 주식회사 Method for forming cathode terminal of Lithium ion secondary battery
KR20060087185A (en) * 2005-01-28 2006-08-02 삼성에스디아이 주식회사 Pouch type lithium secondary battery and the method of fabricating the same
KR20080064916A (en) * 2007-01-06 2008-07-10 주식회사 엘지화학 Lithium secondary battery having improved stability against fire and explosion
KR20110006826A (en) * 2009-07-15 2011-01-21 주식회사 루트제이드 Secondary battery & energy storing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007266A (en) * 2001-06-25 2003-01-10 Toyota Motor Corp Sealing structure for electrode body
KR20030053092A (en) * 2001-12-22 2003-06-28 한국 파워셀 주식회사 Method for forming cathode terminal of Lithium ion secondary battery
KR20060087185A (en) * 2005-01-28 2006-08-02 삼성에스디아이 주식회사 Pouch type lithium secondary battery and the method of fabricating the same
KR20080064916A (en) * 2007-01-06 2008-07-10 주식회사 엘지화학 Lithium secondary battery having improved stability against fire and explosion
KR20110006826A (en) * 2009-07-15 2011-01-21 주식회사 루트제이드 Secondary battery & energy storing apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11186422B2 (en) 2014-02-07 2021-11-30 Yeti Coolers, Llc Insulating device and method for forming insulating device
US11165126B2 (en) * 2014-08-08 2021-11-02 Techtronic Cordless Gp Battery pouch, battery cell and method of making a pouch or battery cell
US11201366B2 (en) 2018-02-27 2021-12-14 Tti (Macao Commercial Offshore) Limited Pouch battery with safety protection function
EP3800686A4 (en) * 2018-12-29 2021-11-24 Contemporary Amperex Technology Co., Limited Secondary battery and battery module
CN112467260A (en) * 2019-09-09 2021-03-09 苹果公司 Metal shell battery
EP3790105A1 (en) * 2019-09-09 2021-03-10 Apple Inc. Metal can battery
CN113363616A (en) * 2021-06-17 2021-09-07 中国第一汽车股份有限公司 Pressure-adjustable liquid cooling plate, power battery assembly and vehicle
WO2022262254A1 (en) * 2021-06-17 2022-12-22 中国第一汽车股份有限公司 Pressure-adjustable liquid cooling plate, traction battery assembly, and vehicle
WO2023138586A1 (en) * 2022-01-21 2023-07-27 宁德新能源科技有限公司 Battery housing, battery, and electronic device

Also Published As

Publication number Publication date
KR20130004724A (en) 2013-01-14

Similar Documents

Publication Publication Date Title
WO2013005922A1 (en) Secondary battery
WO2011007969A2 (en) Secondary battery and energy storage device
WO2017052296A1 (en) Battery module
WO2012173435A2 (en) Part for secondary battery, method for manufacturing same, and secondary battery and multi-battery system manufactured using the part
CN102272981B (en) Battery module and battery pack using same
WO2019156390A1 (en) Busbar provided with current breaking part, and battery module comprising same
WO2013039298A1 (en) Secondary battery component, manufacturing method thereof, secondary battery manufactured using component, and assembled secondary battery device
WO2014109481A1 (en) Secondary battery comprising integrated anode lead and cathode lead, and manufacturing method therefor
WO2013009148A2 (en) Cylindrical rechargeable battery
WO2019066441A1 (en) Pouch-type rechargeable battery pack having protection circuit module
KR102268402B1 (en) The Pouch Type Secondary Battery
JP2011077023A (en) Current breaking element, and secondary battery equipped with the same
CN102055038A (en) Secondary battery and battery pack using the same
WO2018221818A1 (en) Battery module
WO2022108204A1 (en) Current collector for electrode
WO2020004741A1 (en) Secondary battery pack having holder
WO2021060742A1 (en) Cathode current collector
WO2018030679A1 (en) Cap assembly for preventing electrical shorting and secondary battery including the same
WO2018221836A1 (en) Battery pack and manufacturing method therefor
WO2012165767A2 (en) Secondary battery and method for fabricating same
WO2018199511A1 (en) Pouch-type secondary battery comprising electrode lead using conductive polymer
KR100490547B1 (en) Lithium secondary battery having a protective mean
WO2019004545A1 (en) Battery cell having overcharge prevention member
WO2023113409A1 (en) Battery module with improved safety
KR100490544B1 (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807670

Country of ref document: EP

Kind code of ref document: A1