WO2013005914A1 - Biodegradable polymer for fixing bones in which chemically-treated nano-carbons are added - Google Patents

Biodegradable polymer for fixing bones in which chemically-treated nano-carbons are added Download PDF

Info

Publication number
WO2013005914A1
WO2013005914A1 PCT/KR2012/003202 KR2012003202W WO2013005914A1 WO 2013005914 A1 WO2013005914 A1 WO 2013005914A1 KR 2012003202 W KR2012003202 W KR 2012003202W WO 2013005914 A1 WO2013005914 A1 WO 2013005914A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
substituted
solution
acid
lactide
Prior art date
Application number
PCT/KR2012/003202
Other languages
French (fr)
Korean (ko)
Inventor
박종순
김오진
허수학
정혜경
Original Assignee
(주)글로텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)글로텍 filed Critical (주)글로텍
Publication of WO2013005914A1 publication Critical patent/WO2013005914A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/443Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with carbon fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a material for fixing bones with improved biocompatibility, and more specifically, to the end of the nano-substituted nano-carbon substituted with polylactic acid, which is one of the biocompatible bone fixing polymer materials widely used.
  • the present invention relates to a novel material which significantly improves physicochemical properties.
  • Polylactic acid is a biodegradable and biocompatible thermoplastic polyester that is one of the materials with great potential to replace petrochemical polymers. In particular, it exhibits excellent thermal processing properties compared to other biopolymers such as polyethylene glycol and polycaprolactone.
  • the FDA-approved material that can be used for direct contact with the physiological fluids of the human body is used for many purposes, but bioabsorbable plates and screws, which replace the metal plates and screws used for bone bonding, are also increasingly used. .
  • Bone fixation implants are used to fix bones or bones on the face, skull or other parts of the human body when they are fractured or fused.They consist of plates and screws.
  • Three types of materials are used: metal, ceramic and organic polymers. have.
  • metallic materials have excellent mechanical properties such as tensile strength and compressive strength, and are easily processed to desired shapes such as cutting, grinding, and forming, and are relatively stable to chemical reactions.
  • the metal material is firmly coupled to inhibit the growth of bone tissue, even in adults, there is a disadvantage that may be damaged by partial corrosion when mounted in the body for a long time.
  • Ceramic material is a material having a very high affinity for bone, but has a disadvantage of low impact strength, and it is difficult to cope with shape deformation and bone recovery since it is impossible to be deformed after manufacturing.
  • Polymer material has excellent impact strength and high structure.
  • Polylactide poly- [L-lactide] and poly- [L / DL-lactide]; PLA), polyglycolide (PGA), polycaprolacton (polycaprolacton) with advantages such as affinity and ease of processing PCL), polydioxanone, and the like have been developed and used in a single or mixed form.
  • US Pat. No. 4,781,183 uses hydroxyapatite as a biodegradable inorganic ceramic material as a polylactide and a reinforcing agent to add hydroxyapatite particles to the final stage of melt polymerization of polylactide.
  • a method of making a composite material is known, and another method is known by using a method of melt blending, mixing, and mixing a polymer and a biodegradable inorganic ceramic material.
  • the bioabsorbable polymers have a sudden decrease in molecular weight in the molten or solution state, so that the desired mechanical strength cannot be obtained.
  • the particle size should be good in dispersibility. While the specific gravity is different and the polymer is melted by heat, the inorganic particles are not melted even when heated, and simply stick to the surface of the polymer, so that simple mixing alone does not obtain uniform dispersibility.
  • US Patent No. 4,655, 777 discloses a method of laminating an organic ceramic material in a fibrous form, followed by lamination with an organic polymer, or solution coating.
  • this method is complicated, time-consuming, and it is difficult to decompose microbubbles with high viscosity due to the concern of contamination and decomposition due to exposure to air in a warm state, and thus it is difficult to expect effectiveness in improving strength.
  • the present invention has been made to solve the problems of the prior art as described above to improve the tensile and flexural strength by adding nanoparticles having excellent dispersibility to reduce the screw thread damage and screw head damage and biodegradable polymer in the body
  • the present invention relates to a method for manufacturing a bone fixation material which minimizes side effects such as corrosion and inflammation of bone caused by acid by lowering acidity which is increased when decomposed in the present invention.
  • a catalyst and a residual metal are generally used to disperse biodegradable organic polymer materials such as polylactide and to align the biocompatible nanocarbon particles at regular intervals between the polymer materials.
  • biodegradable organic polymer materials such as polylactide
  • nanocarbon particles whose ends are substituted with amines, amides, etc. are added in a weight ratio of 0.1 to 10%, mixed by a mixer, etc. at a predetermined temperature, and introduced into an extruder.
  • the product is pelletized by cold cutting through heating, kneading and extrusion.
  • the obtained pellets are introduced into an injection molding machine to produce a product having a predetermined shape.
  • the biodegradable organic polymer is polyglycolide, poly [D-lactide], poly [L-lactide], polycaprolactone, polyesteramide, poly, already known as a medical biocompatible material.
  • Oxalate copolymer copoly-oxalate
  • polycarbonate polyglutamic acid (poly [glutamic-co-leucine])
  • a copolymer prepared by blending two or more of the above polymers It is preferable that it is any one chosen from the aliphatic polyester group, and average molecular weight is 150,000-300,000.
  • the nanocarbon particles whose terminals are substituted with amines or amides are oxidized to a purified nanodiamond obtained by a commercial explosion method with a solution of sulfuric acid and nitric acid (volume ratio 3: 1), and dried to obtain tetrahydrofuran (THF). And the powder obtained by reduction with Lithium aluminum hydride was added and stirred in an ultrasonic water bath to give a solution obtained by tetrahydrofuran (THF) and phthalimide diethylazodicarboxylate (DEAD). Nanodiamond substituted with amine by treatment with trifluoracetic acid is obtained. In addition, in the case of using amidated nanodiamonds, nanodiamonds substituted with amines are treated with ethylenediamine solution to use amidated powders.
  • the present invention is a method for easily preparing a material used for bonding bone tissue by mixing and dispersing nano-carbon particles in a biodegradable organic polymer by extrusion molding, wherein the nano-carbon terminal is substituted with radicals such as amines and amides.
  • the dispersibility is excellent, so that the mechanical strength is significantly increased, and the damaged bone tissue can be combined, and the effect of reducing acid damage when decomposing in the body can be reduced. have.
  • polylactide poly [D-lactide]
  • polylactide poly [L-lactide]
  • nanodiamond powder (average particle size 4 nm) in 100 g of polylactic acid (poly [L-lactide]) with biodegradable organic polymer in solution of sulfuric acid and nitric acid (volume ratio 3: 1) in an ultrasonic water bath.
  • the powder obtained by drying the solution obtained by reducing the powder with tetrahydrofuran (THF) and lithium aluminum hydride was dried, and then stirred in an ultrasonic water bath. Obtained by reaction with a solution of tetrahydrofuran (THF) and phthalimide diethylazodicarboxylate (DEAD), the powder is treated with trifluoracetic acid and the terminal is substituted with an amine.
  • THF tetrahydrofuran
  • DEAD phthalimide diethylazodicarboxylate

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Nanotechnology (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a material with enhanced biodegradability for fixing bones, and more specifically to a novel material in which physiochemical properties are remarkably improved by using polylactic acid, which is one of the existing biodegradable polymer materials widely used for fixing bones, as a main material, and adding nano-carbons in which the end is substituted.

Description

화학처리된 나노 탄소를 부가한 뼈 고정용 생분해성 고분자Biodegradable polymer for bone fixation with chemically treated nano carbon
본 발명은 생체적합성을 향상시킨 뼈 고정용 재료에 대한 것으로 보다 상세하게는 기존에 널리 사용되고 있는 생체적합성 뼈 고정용 고분자 재료 중 하나인 폴리락틱애시드를 주 재료로하여 말단이 치환된 나노 탄소를 부가하여 물리 화학적 특성을 현저히 향상시킨 신규의 재료에 관한 것이다.The present invention relates to a material for fixing bones with improved biocompatibility, and more specifically, to the end of the nano-substituted nano-carbon substituted with polylactic acid, which is one of the biocompatible bone fixing polymer materials widely used. The present invention relates to a novel material which significantly improves physicochemical properties.
폴리락틱애시드(PLA)는 생분해성 및 생체 적합성을 갖는 열가소성 폴리에스터로 석유화학계 고분자를 대체할 수 있는 잠재력이 매우 큰 소재 중 하나이다. 특히 폴리에틸렌글리콜, 폴리카프로락톤 등과 같은 타 바이오고분자에 비하여 우수한 열 가공 특성을 나타낸다. 특히 인체의 생리액에 직접 접촉하는 용도로 사용할 수 있는 FDA 승인을 받은 재료로 많은 용도로 사용되고 있지만 기존의 골 절합에 사용하는 금속재 플레이트와 스크류를 대체한 생체 흡수성 플레이트와 스크류 또한 사용이 증가 되고 있다.Polylactic acid (PLA) is a biodegradable and biocompatible thermoplastic polyester that is one of the materials with great potential to replace petrochemical polymers. In particular, it exhibits excellent thermal processing properties compared to other biopolymers such as polyethylene glycol and polycaprolactone. In particular, the FDA-approved material that can be used for direct contact with the physiological fluids of the human body is used for many purposes, but bioabsorbable plates and screws, which replace the metal plates and screws used for bone bonding, are also increasingly used. .
뼈 고정용 임플란트(implant) 소재는 안면, 두개골 또는 인체 여러 부위의 뼈조직에 골절이나 유합시 고정시키기 위한 것으로 플레이트와 스크류로 이루어져 있으며 크게 세종류 즉, 금속성 소재, 세라믹 소재 및 유기 고분자 소재가 사용되고 있다. 재료별 특징을 보면 금속성 소재는 인장강도, 압축강도 등 기계적 물성이 우수하고, 절삭, 연삭 및 포밍 등 원하는 형태로 가공이 매우 용이하고 화학적인 반응에 비교적 안정하다. 그러나 성장기의 어린이와 같은 경우 금속재가 강고하게 결합되어 골조직의 성장을 저해하며, 성인의 경우에도 체내에 장기간 장착될 경우 부분적인 부식에 의해 파손되는 경우가 발생할 수 있는 단점이 있다.Bone fixation implants (implants) are used to fix bones or bones on the face, skull or other parts of the human body when they are fractured or fused.They consist of plates and screws. Three types of materials are used: metal, ceramic and organic polymers. have. In terms of material characteristics, metallic materials have excellent mechanical properties such as tensile strength and compressive strength, and are easily processed to desired shapes such as cutting, grinding, and forming, and are relatively stable to chemical reactions. However, in the case of a child in the growth phase, the metal material is firmly coupled to inhibit the growth of bone tissue, even in adults, there is a disadvantage that may be damaged by partial corrosion when mounted in the body for a long time.
세라믹 소재는 뼈에 대한 친화성이 아주 높은 소재이지만 충격 강도가 낮고, 제조된 후의 변형이 불가능하여 형태 변형과 뼈 회복에 대한 대응이 곤란하다는 점이 단점이 있으며, 고분자 소재는 뛰어난 충격강도, 높은 조직 친화성 및 가공의 용이성 등의 장점을 갖는 폴리락티드(poly-[L-lactide]와 poly-[L/DL-lactide]; PLA),폴리글리콜리드(polyglycolide; PGA), 폴리카프로락톤(polycaprolacton;PCL), 폴리디옥사논(polydioxanone) 등이 개발되어 단독 또는 혼합한 형태로 사용되고 있다.Ceramic material is a material having a very high affinity for bone, but has a disadvantage of low impact strength, and it is difficult to cope with shape deformation and bone recovery since it is impossible to be deformed after manufacturing. Polymer material has excellent impact strength and high structure. Polylactide (poly- [L-lactide] and poly- [L / DL-lactide]; PLA), polyglycolide (PGA), polycaprolacton (polycaprolacton) with advantages such as affinity and ease of processing PCL), polydioxanone, and the like have been developed and used in a single or mixed form.
그러나, 이들 소재는 뼈를 지탱하는데 필요한 강도와 견고성은 금속이나 세라믹에비하여 현저히 작아 스크류의 경우 드라이버 등의 도구를 이용하여 고정시 스크류의 나사의 산이 뭉그러지거나 머리 부분이 파손이 빈번히 발생하여 시술에 세심한 주의가 필요하며, 특히 이와 같은 생분해성 고분자는 체내 분해과정에서 산성 물질로 전환되는 과정을 거치므로 뼈의 손상과 염증을 수반한다는 점이 문제로 남아 있다.However, the strength and robustness required to support the bones are significantly smaller than those of metals and ceramics.In the case of screws, the screws of the screws are clumped or the heads are frequently broken during fixation using tools such as a screwdriver. Careful attention is required, and in particular, such biodegradable polymers undergo a process of being converted into an acidic substance in the body's decomposition process, which remains a problem that it involves bone damage and inflammation.
일반적으로 고분자 소재의 강도를 증가시키는 방법으로 자기강화법 (self-reinforcing)과 고상 압출법(solid-state extrusion) 등이 알려져 있으나, 이들 방법 만으로는 만족할 만한 강도를 갖는 제품이 현재까지 알려진 바 없다.Generally, self-reinforcing and solid-state extrusion are known as methods for increasing the strength of polymer materials, but products having satisfactory strength by these methods alone have not been known.
또 생체흡수성 고분자의 강도를 향상시키는 방법으로 미국 특허 제 4,781,183호에 폴리락티드와 강화제인 생분해성 무기 세라믹 물질로서 히드록시아파타이트를 사용하여 폴리락티드의 용융 중합 마지막 단계에 히드록시아파타이트 입자를 투입하는 방법이 개시되어 있으며, 다른 방법으로 고분자와 생분해성 무기 세라믹 물질을 용융 블렌딩, 혼합 및 용액 상태로 혼합하는 방법 등을 사용하여 복합 재료를 제조하는 방법이 알려져 있다. 그러나 상기 방법들은 생체흡수성 고분자들이 용융 또는 용액 상태에서 급격한 분자량의 감소가 일어나게 되어 원하는 수준의 기계적 강도를 얻을 수 없으며, 세라믹 등 무기 입자의 혼합에 의한 보강 효과를 얻기 위해서는 분산성이 좋아야 하지만, 입도와 비중이 현격히 다르고 고분자는 열에 의하여 용융이 이루어지는 반면 무기 입자들은 열을 받더라도 용융되지 않으며 단순히 고분자의 표면에 달라붙게 되므로 단순한 혼합만으로는 균일한 분산성을 얻지 못하게 된다.In addition, US Pat. No. 4,781,183 uses hydroxyapatite as a biodegradable inorganic ceramic material as a polylactide and a reinforcing agent to add hydroxyapatite particles to the final stage of melt polymerization of polylactide. A method of making a composite material is known, and another method is known by using a method of melt blending, mixing, and mixing a polymer and a biodegradable inorganic ceramic material. However, in the above methods, the bioabsorbable polymers have a sudden decrease in molecular weight in the molten or solution state, so that the desired mechanical strength cannot be obtained. In order to obtain the reinforcing effect by mixing inorganic particles such as ceramics, the particle size should be good in dispersibility. While the specific gravity is different and the polymer is melted by heat, the inorganic particles are not melted even when heated, and simply stick to the surface of the polymer, so that simple mixing alone does not obtain uniform dispersibility.
따라서 지금까지 안출된 세라믹 소재와 유기 고분자를 결합하는 연구는 대부분 세라믹 입자와 생분해성 고분자의 단순 혼합이나, 세라믹 섬유에 사이에 생분해성 고분자가 함침하는 수준으로 골 절합 소재로 사용하는 데에는 여전히 문제점이 남아 있다.Therefore, most of the researches combining the ceramic materials and organic polymers that have been made up to now have problems in simple mixing of ceramic particles and biodegradable polymers or using them as bone bonding materials at the level of impregnation of biodegradable polymers between ceramic fibers. Remains.
또 미국특허 제 4,655,777호에 무기 세라믹 소재를 섬유상으로 제조하여 유기 고분자와의 라미네이트, 또는 용액 코팅에 이은 적층 방법이 개시되어 있다. 그러나 이 방법은 공정이 복잡하고 시간이 오래 걸리며 가온 상태에서 공기 중에 노출로 오염의 우려와 분해, 고 점도로 미세 기포가 탈포되기 어려우며 이로 인하여 강도 개선에 실효성을 기대하기 어렵다.In addition, US Patent No. 4,655, 777 discloses a method of laminating an organic ceramic material in a fibrous form, followed by lamination with an organic polymer, or solution coating. However, this method is complicated, time-consuming, and it is difficult to decompose microbubbles with high viscosity due to the concern of contamination and decomposition due to exposure to air in a warm state, and thus it is difficult to expect effectiveness in improving strength.
본 발명은 상술한 바와 같이 종래 기술의 문제점을 해결하기 위하여 안출된 것으로 분산성이 우수한 나노입자를 부가하여 인장 및 굴곡강도를 향상시켜 나사산의 뭉그러짐과 나사 머리의 손상을 줄이고 생분해성 고분자가 체내에서 분해될 때 증가되는 산성도를 낮추어 산에 의한 뼈의 부식이나 염증 발생과 같은 부작용을 최소화한 뼈 고정용 소재를 제조하는 방법에 관한 것이다.The present invention has been made to solve the problems of the prior art as described above to improve the tensile and flexural strength by adding nanoparticles having excellent dispersibility to reduce the screw thread damage and screw head damage and biodegradable polymer in the body The present invention relates to a method for manufacturing a bone fixation material which minimizes side effects such as corrosion and inflammation of bone caused by acid by lowering acidity which is increased when decomposed in the present invention.
상기 목적을 달성하기 위하여 폴리락티드와 같은 생분해성 유기 고분자 소재에 분산성이 우수하며, 생체 적합성을 갖는 나노탄소 입자를 고분자 재료 사이에 일정한 간격으로 배향되도록 하기 위하여 일반적으로 촉매 및 잔류 금속 등이 현저히 적게 들어 있는 의료용으로 시판되고 있는 플레이크상 또는 과립상의 폴리락티드에 말단이 아민, 아미드 등으로 치환된 나노탄소 입자를 중량비로 0.1~10% 부가하여 일정 온도에서 믹서 등으로 혼합하고 압출기에 투입하여 가열, 혼련, 압출의 과정을 거쳐 냉각 절단하여 펠렛 형태의 제품을 얻는다. 또 얻어진 펠렛을 사출기에 투입하여 일정 형상을 갖는 제품으로 제조하는 것을 특징으로 한다.In order to achieve the above object, a catalyst and a residual metal are generally used to disperse biodegradable organic polymer materials such as polylactide and to align the biocompatible nanocarbon particles at regular intervals between the polymer materials. To the flake or granular polylactide, which is contained in the medical grade, which is significantly less contained, nanocarbon particles whose ends are substituted with amines, amides, etc. are added in a weight ratio of 0.1 to 10%, mixed by a mixer, etc. at a predetermined temperature, and introduced into an extruder. The product is pelletized by cold cutting through heating, kneading and extrusion. In addition, the obtained pellets are introduced into an injection molding machine to produce a product having a predetermined shape.
상기 생분해성 유기 고분자는 이미 의료용 생체적합성 재료로 알려진 폴리글리콜리드, 폴리락티드(poly[D-lactide]), 폴리락티드(poly[L-lactide]), 폴리카프로락톤, 폴리에스테르아미드, 폴리옥살레이트 공중합체(copoly-oxalate), 폴리카보네이트, 폴리글루탐산과 폴리류신 공중합체(poly[glutamic-co-leucine]) 및 블랜드 또는 상기 고분자들의 둘 이상을 혼합하여 제조된 공중합체(copolymer)로 이루어진 지방족 폴리에스테르 그룹 중에서 선택된 어느 하나인 것으로 평균 분자량은 150,000~300,000인 것이 바람직하다.The biodegradable organic polymer is polyglycolide, poly [D-lactide], poly [L-lactide], polycaprolactone, polyesteramide, poly, already known as a medical biocompatible material. Oxalate copolymer (copoly-oxalate), polycarbonate, polyglutamic acid (poly [glutamic-co-leucine]) and a copolymer (copolymer) prepared by blending two or more of the above polymers It is preferable that it is any one chosen from the aliphatic polyester group, and average molecular weight is 150,000-300,000.
말단을 아민 또는 아미드 등으로 치환된 나노탄소 입자는 시판되는 폭발법으로 얻어진 정제 나노다이아몬드를 황산과 질산(부피비 3:1)의 용액으로 산화시키고 건조하여 얻어진 분말을 테트라하이드로퓨란(Tetrahydrofuran:THF)과 리튬알루미늄하이드라이드(Lithium aluminum hydride)로 환원하여 얻어진 분말을 넣고 초음파 수욕조에서 교반 반응시켜 얻어진 용액을 테트라하이드로퓨란(Tetrahydrofuran:THF)과 프탈이미드(Phthalimide) 디에틸아조디카복실레이트(DEAD) 용액과 반응시켜 얻어진 분말을 트리플로로아세틱애시드(Trifluoracetic acid)로 처리하여 아민으로 치환된 나노다이아몬드가 바람직하다. 또 아미드화된 나노다이아몬드를 사용할 경우 아민으로 치환된 나노다이아몬드를 에틸렌디아민(Ethylenediamine) 용액으로 처리하여 아미드화한 분말을 사용한다.The nanocarbon particles whose terminals are substituted with amines or amides are oxidized to a purified nanodiamond obtained by a commercial explosion method with a solution of sulfuric acid and nitric acid (volume ratio 3: 1), and dried to obtain tetrahydrofuran (THF). And the powder obtained by reduction with Lithium aluminum hydride was added and stirred in an ultrasonic water bath to give a solution obtained by tetrahydrofuran (THF) and phthalimide diethylazodicarboxylate (DEAD). Nanodiamond substituted with amine by treatment with trifluoracetic acid is obtained. In addition, in the case of using amidated nanodiamonds, nanodiamonds substituted with amines are treated with ethylenediamine solution to use amidated powders.
상기의 고분자와 나노탄소 입자의 예 혼합시 먼저 각각의 무게를 칭량하여 볼밀 또는 착색기와 같은 믹서에 넣고 일정 시간 가동하여 고분자의 표면에 나노탄소 입자가 골고루 분포될 수 있도록 한 후, 압출기에 넣어 고분자의 용융온도 영역까지 가열 압출 성형한다. 이때 강도의 향상과 고분자의 배향성을 주기 위하여 펠렛 형태로 절단하기 전에 냉각과정에서 2~20배로 연신하는 것이 바람직하다. 이 후 사출을 하는 과정은 일반 열가소성 플라스틱의 사출과 동일하나 열에 의한 손상을 적게 받도록 하는 것이 바람직하다.When mixing the above polymer and nanocarbon particles, first weigh each of the weights, put them in a mixer such as a ball mill or a colorator, and run them for a certain time so that the nanocarbon particles can be evenly distributed on the surface of the polymer. The extrusion is carried out by heating to a melting temperature range of. At this time, in order to improve the strength and orientation of the polymer, it is preferable to draw 2 to 20 times in the cooling process before cutting into pellets. After the injection process is the same as the injection of the normal thermoplastic, but it is preferable to be less damaged by heat.
본 발명은 생분해성 유기 고분자에 나노탄소 입자를 혼합 분산시켜 압출 성형하여 골 조직 결합에 사용되는 재료를 용이하게 제조하는 방법으로서, 사용된 나노탄소로 말단이 아민, 아미드와 같은 라디칼로 치환된 나노다이아몬드를 사용함으로써 분산성이 우수하여 기계적 강도를 현저히 증가시키고, 손상된 뼈 조직의 결합이 이루어 질 수 있도록 한 후, 체내에서 분해시 산 생성을 억제함으로써 뼈의 손상이나 염증을 감소시킬 수 있는 효과가 있다.The present invention is a method for easily preparing a material used for bonding bone tissue by mixing and dispersing nano-carbon particles in a biodegradable organic polymer by extrusion molding, wherein the nano-carbon terminal is substituted with radicals such as amines and amides. By using diamond, the dispersibility is excellent, so that the mechanical strength is significantly increased, and the damaged bone tissue can be combined, and the effect of reducing acid damage when decomposing in the body can be reduced. have.
본 발명을 실시하기 위한 구체적인 내용을 실시예로 한정하는 것은 아니다. 특히 시판되고 있는 폴리락티드의 경우 폴리락티드(poly[D-lactide]), 폴리락티드(poly[L-lactide])가 혼합되거나 단독으로 존재하며, 또 폴리글리콜리드와 혼합된 제품도 판매되고 있어 본 실시예는 다른 원료를 사용하는 것도 가능하지만 용이하게 구입한 원료를 사용한 것임을 밝힌다.The specific contents for carrying out the present invention are not limited to the examples. In the case of commercially available polylactide, polylactide (poly [D-lactide]) and polylactide (poly [L-lactide]) are mixed or existed alone, and products mixed with polyglycolide are also sold. The present embodiment reveals that it is possible to use other raw materials, but the raw materials easily purchased are used.
<실시예 1><Example 1>
생분해성 유기 고분자로 분자량 180,000의 폴리락티드(poly[L-lactide]) 100g에 시판되는 정제 나노다이아몬드(평균 입경 4nm) 분말을 초음파 수욕조 상에서 황산과 질산(부피비 3:1)의 용액으로 산화시키고 건조하여 얻어진 후 이 분말을 테트라하이드로퓨란(Tetrahydrofuran:THF)과 리튬알루미늄하이드라이드(Lithium aluminum hydride)로 환원하여 얻어진 용액을 건조하여 얻어진 분말을 넣고 초음파 수욕조에서 교반 반응시켜 얻어진 용액을 테트라하이드로퓨란(Tetrahydrofuran:THF)과 프탈이미드(Phthalimide) 디에틸아조디카복실레이트(DEAD) 용액과 반응시켜 얻고, 이 분말을 트리플로로아세틱애시드(Trifluoracetic acid)로 처리하여 말단이 아민으로 치환된 나노다이아몬드 1g을 부가하여 혼합 교반 한 후, 시험용 압출기에 넣고 가열 혼련 압출하여 뼈 고정용 재료를 제조하였다.Oxidized commercially available nanodiamond powder (average particle size 4 nm) in 100 g of polylactic acid (poly [L-lactide]) with biodegradable organic polymer in solution of sulfuric acid and nitric acid (volume ratio 3: 1) in an ultrasonic water bath. The powder obtained by drying the solution obtained by reducing the powder with tetrahydrofuran (THF) and lithium aluminum hydride was dried, and then stirred in an ultrasonic water bath. Obtained by reaction with a solution of tetrahydrofuran (THF) and phthalimide diethylazodicarboxylate (DEAD), the powder is treated with trifluoracetic acid and the terminal is substituted with an amine. After adding and stirring 1 g of nanodiamond, the mixture was put in a test extruder and heated and kneaded to prepare a bone fixing material.
<실시예 2~5><Examples 2-5>
생분해성 유기 고분자인 폴리락티드 100g에 부가하는 나노탄소의 양을 0.1g, 0.5g, 5g, 10g으로 하여 혼합 교반 한 후 시험용 압출기에서 가열, 혼련, 압출하여 제조하였다.The amount of nanocarbon added to 100 g of biodegradable organic polymer, 0.1 g, 0.5 g, 5 g, and 10 g, was mixed and stirred, and prepared by heating, kneading and extruding in a test extruder.
표 1
생분해성 유기 고분자 나노탄소
실시예 2 100g 0.1g
실시예 3 100g 0.5g
실시예 4 100g 5g
실시예 5 100g 10g
Table 1
Biodegradable Organic Polymer Nanocarbon
Example 2 100 g 0.1g
Example 3 100 g 0.5g
Example 4 100 g 5 g
Example 5 100 g 10 g
제조된 뼈 고정용 재료의 물성치는 표2와 같았다.The physical properties of the prepared bone fixing material are shown in Table 2.
표 2
직경(mm) 연신비(배) 인장강도 굴곡강도
실시예 1 1.35 7.4 69 97.8
실시예 2 1.33 7.5 67 95.1
실시예 3 1.36 7.35 68.6 98
실시예 4 1.38 7.24 70.1 99.5
실시예 5 1.4 7.14 67.2 95.4
TABLE 2
Diameter (mm) Extension ratio (times) The tensile strength Flexural strength
Example 1 1.35 7.4 69 97.8
Example 2 1.33 7.5 67 95.1
Example 3 1.36 7.35 68.6 98
Example 4 1.38 7.24 70.1 99.5
Example 5 1.4 7.14 67.2 95.4
참고로 나노탄소 입자가 포함되지 않은 폴리락티드(비교예 1), 하이드록시아파타이트가 부가된 폴리락티드(비교예 2), 트리칼슘포스페이트가 부가된 폴리락티드(비교예 3)에 대한 물성 시험 결과를 표3에 나타내었다. For reference, physical properties of polylactide (Comparative Example 1) without nanocarbon particles, polylactide with hydroxyapatite (Comparative Example 2), and polylactide with tricalcium phosphate added (Comparative Example 3) The test results are shown in Table 3.
표 3
직경(mm) 연신비(배) 인장강도(MPa) 굴곡강도(MPa)
비교예 1 1.45 6.89 64.5 90.9
비교예 2 1.53 6.53 64.2 90.8
비교예 3 1.52 6.57 64.1 90.7
TABLE 3
Diameter (mm) Extension ratio (times) Tensile Strength (MPa) Flexural Strength (MPa)
Comparative Example 1 1.45 6.89 64.5 90.9
Comparative Example 2 1.53 6.53 64.2 90.8
Comparative Example 3 1.52 6.57 64.1 90.7
이상에서 보는 바와 같이 생분해성 유기 고분자의 단점을 보완하기 위한 방법으로 뼈와 유사한 재료인 하이드록시아파타이트나 칼슘포스페이트를 부가하는 등 여러 시도가 있었으나 기계적 강도 면에서는 오히려 저하를 가져오므로 실효성이 없었다. 이에 반하여 본 발명에서와 같이 분산성이 우수한 아민 또는 아미드기로 치환된 나노탄소를 부가할 경우 강도의 증가를 가져옴을 알 수 있었으며, 알려진바와 같이 아민 또는 아미드 라리칼은 약염기로서 락티드를 중화할 수 있는 역할을 하므로써 폴리락티드가 분해될 때 생성되는 산도를 낮출 수 있는 장점을 갖는다. 따라서 아민 또는 아미드로 치환된 나노탄소를 부가하여 제조된 폴리락티드는 기존의 재료와는 차별된 생분해성 갖는 뼈 고정용 재료이다.As described above, as a method for compensating for the disadvantages of the biodegradable organic polymer, there have been various attempts such as adding hydroxyapatite or calcium phosphate, which is a bone-like material, but it has a deterioration in terms of mechanical strength. On the contrary, it was found that addition of nanocarbon substituted with an amine or amide group having excellent dispersibility as in the present invention resulted in an increase in strength. As is known, amine or amide radicals can neutralize lactide as a weak base. It has the advantage of lowering the acidity generated when polylactide is decomposed. Thus, polylactide prepared by adding nanocarbons substituted with amines or amides is a bone fixation material having biodegradability different from conventional materials.

Claims (5)

  1. 생분해성 유기 고분자에 말단이 아민 또는 아미드로 치환된 나노탄소 입자를 일정온도에서 혼합 후 압출기에 넣어 가열 혼련, 압출과정을 거쳐 연신, 냉각 절단하여 펠렛상의 제품을 제조, 또 이를 사출 성형하여 원하는 모양의 뼈 고정용 재료를 성형하는 방법Nanocarbon particles whose ends are substituted with amines or amides in biodegradable organic polymers are mixed at a constant temperature, and then put in an extruder, followed by stretching and cooling through heat kneading and extrusion to manufacture pellet-shaped products, and injection molding them into desired shapes. To mold materials for fixation of bones
  2. 제 1항에 있어서 생분해성 유기 고분자는 이미 의료용 생체적합성 재료로 알려진 폴리글리콜리드, 폴리락티드(poly[D-lactide]), 폴리락티드(poly[L-lactide]), 폴리카프로락톤, 폴리에스테르아미드, 폴리옥살레이트 공중합체(copoly-oxalate), 폴리카보네이트, 폴리글루탐산과 폴리류신 공중합체(poly[glutamic-co-leucine]) 및 블랜드 또는 상기 고분자들의 둘 이상을 혼합하여 제조된 공중합체(copolymer)로 이루어진 지방족 폴리에스테르 그룹 중에서 선택된 어느 하나인 것으로 평균 분자량은 150,000~300,000인 것을 특징으로 하는 방법.The biodegradable organic polymer according to claim 1 is a polyglycolide, poly [l-lactide], poly [l-lactide], polycaprolactone, poly, already known as a medical biocompatible material. Esteramides, polyoxalate copolymers, polycarbonates, polyglutamic acid and polyleucine copolymers (poly [glutamic-co-leucine]) and blends or copolymers prepared by mixing two or more of the above polymers ( It is any one selected from aliphatic polyester group consisting of a copolymer) characterized in that the average molecular weight is 150,000 ~ 300,000.
  3. 제 1항에 있어서 말단을 아민 또는 아미드 등으로 치환된 나노탄소 입자는 시판되는 폭발법으로 얻어진 정제 나노다이아몬드를 황산과 질산(부피비 3:1)의 용액으로 산화시키고 건조하여 얻어진 분말을 테트라하이드로퓨란(Tetrahydrofuran:THF)과 리튬알루미늄하이드라이드(Lithium aluminum hydride)로 환원하여 얻어진 분말을 넣고 초음파 수욕조에서 교반 반응시켜 얻어진 용액을 테트라하이드로퓨란(Tetrahydrofuran:THF)과 프탈이미드(Phthalimide) 디에틸아조디카복실레이트(DEAD) 용액과 반응시켜 얻어진 분말을 트리플로로아세틱애시드(Trifluoracetic acid)로 처리하여 아민으로 치환된 나노다이아몬드 또는 이것을 에틸렌디아민(Ethylenediamine) 용액으로 처리하여 아미드화한 것을 사용하는 것을 특징으로 하는 방법.The powder obtained by oxidizing and drying the purified nanodiamond obtained by a commercially available explosive method with a solution of sulfuric acid and nitric acid (volume ratio 3: 1) and drying the tetrahydrofuran according to claim 1. Tetrahydrofuran (THF) and powder obtained by reduction with lithium aluminum hydride (Lithium aluminum hydride) were added to the solution obtained by stirring in an ultrasonic water bath. Treatment of powder obtained by reaction with dicarboxylate (DEAD) solution with trifluoracetic acid (trifluoracetic acid) substituted with amine-substituted nanodiamonds or those treated with ethylenediamine solution and amidated How to feature.
  4. 제 1항에 있어서 나노탄소 입자의 양은 생분해성 유기 고분자에 대해 0.1~10 중량 % 를 특징으로 하는 방법. The method of claim 1, wherein the amount of nanocarbon particles is 0.1 to 10% by weight relative to the biodegradable organic polymer.
  5. 제 1항에 있어서 압출 연신시 2~20배의 연신률을 갖도록하는 것을 특징으로 하는 방법.The method according to claim 1, characterized in that it has an elongation of 2 to 20 times during extrusion stretching.
PCT/KR2012/003202 2011-07-06 2012-04-26 Biodegradable polymer for fixing bones in which chemically-treated nano-carbons are added WO2013005914A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110066736A KR20130005389A (en) 2011-07-06 2011-07-06 Biodegradable polymer for bone fixation with nano carbon by chemical treatmented
KR10-2011-0066736 2011-07-06

Publications (1)

Publication Number Publication Date
WO2013005914A1 true WO2013005914A1 (en) 2013-01-10

Family

ID=47437237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003202 WO2013005914A1 (en) 2011-07-06 2012-04-26 Biodegradable polymer for fixing bones in which chemically-treated nano-carbons are added

Country Status (2)

Country Link
KR (1) KR20130005389A (en)
WO (1) WO2013005914A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010100249A (en) * 2000-03-29 2001-11-14 박호군 High Strength Biodegradable Polymer Materials for Fixing Bone and Process for Preparation Thereof
KR20020083888A (en) * 2001-06-29 2002-11-04 주식회사 씨엠리서치 Method for preparing bioabsorbable organic/inorganic composition for bone fixation devices and itself prepared thereby
KR100772966B1 (en) * 2006-06-02 2007-11-02 한국과학기술연구원 Biodegradable polymer material for fixing bone which has high flexibility and strength and method for the preparation thereof
KR20100134539A (en) * 2010-11-30 2010-12-23 나노다이아몬드 주식회사 Nanodiamond compounds synthesized by surface functionalization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010100249A (en) * 2000-03-29 2001-11-14 박호군 High Strength Biodegradable Polymer Materials for Fixing Bone and Process for Preparation Thereof
KR20020083888A (en) * 2001-06-29 2002-11-04 주식회사 씨엠리서치 Method for preparing bioabsorbable organic/inorganic composition for bone fixation devices and itself prepared thereby
KR100772966B1 (en) * 2006-06-02 2007-11-02 한국과학기술연구원 Biodegradable polymer material for fixing bone which has high flexibility and strength and method for the preparation thereof
KR20100134539A (en) * 2010-11-30 2010-12-23 나노다이아몬드 주식회사 Nanodiamond compounds synthesized by surface functionalization

Also Published As

Publication number Publication date
KR20130005389A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
Akindoyo et al. Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites
Ferri et al. Manufacturing and characterization of poly (lactic acid) composites with hydroxyapatite
KR100383433B1 (en) Method for preparing bioabsorbable organic/inorganic composition for bone fixation devices and itself prepared thereby
EP2300516B1 (en) Polymeric materials
Nouri-Felekori et al. Development of composite scaffolds in the system of gelatin− calcium phosphate whiskers/fibrous spherulites for bone tissue engineering
JP6961701B2 (en) Composite powder containing calcium carbonate and having fine structure particles
Öner et al. Fabrication of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites with reinforcement by hydroxyapatite using extrusion processing
Wilberforce et al. A comparative study of the thermal and dynamic mechanical behaviour of quenched and annealed bioresorbable poly-L-lactide/α-tricalcium phosphate nanocomposites
JP6968887B2 (en) Calcium salt-containing composite powder with fine structure particles
US20200009297A1 (en) Implant comprising a calcium salt-containing composite powder having microstructured particles
CN110624136B (en) Degradable medical composite material and preparation method and application thereof
Dos Santos et al. Manufacturing and characterization of plates for fracture fixation of bone with biocomposites of poly (lactic acid-co-glycolic acid)(PLGA) with calcium phosphates bioceramics
KR20090112760A (en) Method for preparing a composite material, resulting material and use thereof
AU2017323306A1 (en) Implant that contains inhibiting calcium carbonate
JP7098624B2 (en) Composite powder containing calcium carbonate and having microstructured particles with inhibitory calcium carbonate
WO2017059322A1 (en) Mechanochemical processing of thermoplastic nanocomposites for regenerative orthopedic surgery
WO2021175216A1 (en) High-strength absorbable composite active internal fixation device and preparation method therefor
CN102266593A (en) Absorbable internal fracture fixing piece
WO2013005914A1 (en) Biodegradable polymer for fixing bones in which chemically-treated nano-carbons are added
Peng et al. An in vivo evaluation of PLLA/PLLA-gHA nano-composite for internal fixation of mandibular bone fractures
KR101686343B1 (en) Bio-resorbable polymer composites comprising hyaluronic acid-chitosan composite, the manufacturing method thereof and medical implant material comprising the same
Zheng et al. In situ preparation and characterization of a novel gelatin/poly (d, l‐lactide)/hydroxyapatite nanocomposite
Ng et al. Hydroxyapatite for poly (α-hydroxy esters) biocomposites applications
US11124654B2 (en) Method for producing an implant comprising calcium carbonate-containing composite powder having microstructured particles having inhibiting calcium carbonate
CN109486141B (en) Modified polylactic acid and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12806994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12806994

Country of ref document: EP

Kind code of ref document: A1