WO2013005687A1 - Method for manufacturing optical sheet - Google Patents

Method for manufacturing optical sheet Download PDF

Info

Publication number
WO2013005687A1
WO2013005687A1 PCT/JP2012/066767 JP2012066767W WO2013005687A1 WO 2013005687 A1 WO2013005687 A1 WO 2013005687A1 JP 2012066767 W JP2012066767 W JP 2012066767W WO 2013005687 A1 WO2013005687 A1 WO 2013005687A1
Authority
WO
WIPO (PCT)
Prior art keywords
original plate
optical sheet
printing
dot pattern
light
Prior art date
Application number
PCT/JP2012/066767
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 熊澤
憲久 寺西
浩史 沢崎
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020147003045A priority Critical patent/KR20140049549A/en
Priority to CN201280033112.6A priority patent/CN103649622A/en
Publication of WO2013005687A1 publication Critical patent/WO2013005687A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/003Printing processes to produce particular kinds of printed work, e.g. patterns on optical devices, e.g. lens elements; for the production of optical devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/0047Digital printing on surfaces other than ordinary paper by ink-jet printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/0064Digital printing on surfaces other than ordinary paper on plastics, horn, rubber, or other organic polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects

Definitions

  • the present invention relates to an optical sheet, a method for manufacturing the optical sheet, a manufacturing apparatus, a surface light source device using the optical sheet, and a transmissive image display device.
  • the direct type surface light source device arranges light sources such as cold cathode tubes and LEDs on the back side of the light guide plate, and emits light incident from the back side of the light guide plate to the front side.
  • One edge light type surface light source device arranges light sources such as cold-cathode tubes and LEDs on the side surface of a light guide plate which is a transparent plate, and emits light incident from the side surface of the light guide plate to the front side.
  • a direct type surface light source device is often used from the viewpoint of increasing the luminance.
  • the use of thin and high-brightness LED light sources has increased, and the use ratio of edge light type surface light source devices has increased with the thinning of liquid crystal displays.
  • dot pattern printing using inkjet is known as a method other than screen printing (see, for example, Patent Document 2).
  • ink jet it is not necessary to prepare a large number of plates, so that the degree of freedom can be increased so as to cope with diversification of printing patterns.
  • a surface light source device using this type of light guide plate has been required to have high accuracy, for example, 150 dpi or more.
  • the light guide plate tends to be increased in size and thickness.
  • the light guide plate original plate has a plate shape without warping.
  • warpage or deflection occurs due to moisture absorption or uneven heating during storage.
  • the influence of such warpage becomes significant.
  • an object of the present invention is to provide an optical sheet that can improve the quality of a product using the optical sheet by suppressing the generation of streaks on the printed surface when dot pattern printing is performed on the back surface of the optical sheet.
  • the present invention is an optical sheet that emits light incident from a light incident surface from a light emitting surface that intersects the light incident surface, and dots are formed by ejecting ink from nozzles onto the back surface of the original plate of the optical sheet.
  • the distance between the nozzle and the original plate when printing the dot pattern can be adjusted to 2.8 mm or less.
  • An original plate used for an optical sheet such as a light guide plate is rarely completely flat and often slightly warps. If the distance between the inkjet nozzle and the original plate becomes too long due to the influence of the warpage, there is a concern about the generation of streaks on the printing surface.
  • the non-printed surface of the original plate is sucked and adsorbed to eliminate warpage, and the distance between the nozzle and the original plate is adjusted to 2.8 mm or less, thereby generating streaks on the printed surface. Can be more reliably suppressed. As a result, the quality of the product using the optical sheet can be further improved.
  • the thickness of the original plate may be 4.5 mm or less.
  • the thickness of the original plate is preferably adjusted to 4.5 mm or less. Further, it is more preferable that the thickness of the original plate is adjusted to 2.0 mm or less.
  • the original plate is placed on the table, and the distance between the nozzle and the table is 2.8 mm or less plus the thickness of the original plate. Can do.
  • the distance between the nozzle and the original plate can be managed by the distance between the table on which the original plate is placed and the nozzle.
  • An optical sheet manufactured by an optical sheet manufacturing method may be used, or a surface light source device including a light source disposed on the side of the light incident surface of the optical sheet.
  • a transmissive image display device is provided that includes the surface light source device, is disposed to face the light emitting surface of the optical sheet, and includes a transmissive image display unit that displays the image by being irradiated with the light emitted from the light source. You can also.
  • the present invention is an optical sheet that emits light incident from a light incident surface from a light emitting surface that intersects the light incident surface, and dots are formed by ejecting ink from nozzles onto the back surface of the original plate of the optical sheet.
  • An apparatus for manufacturing an optical sheet is provided that prints a dot pattern by adjusting the thickness to be equal to or less than the distance obtained by adding the thickness of the original plate to ink.
  • the quality of products using the optical sheet is improved by suppressing the generation of streaks on the printing surface. Can be achieved.
  • dot pattern printing is mainly characteristic in a method of manufacturing a light guide plate which is an optical sheet in a surface light source device used in a transmissive image display device such as a liquid crystal display device.
  • a liquid crystal display device including a light guide plate
  • dot pattern printing in the method of manufacturing the light guide plate will be described.
  • FIG. 1 is an exploded side sectional view schematically showing a liquid crystal display using the light guide plate according to the first embodiment of the present invention
  • FIG. 2 is a rear view thereof.
  • a liquid crystal display device 1 that is a transmissive image display device includes a transmissive image display unit 10 and a surface light source device 20.
  • the surface light source device 20 is disposed on the back side of the transmissive image display unit 10 and emits light from the back side of the transmissive image display unit 10.
  • the arrangement direction of the surface light source device 20 and the transmissive image display unit 10 is referred to as a Z direction (plate thickness direction), which is two directions orthogonal to the Z direction and orthogonal to each other.
  • the two directions are referred to as the X direction and the Y direction.
  • the transmissive image display unit 10 includes a liquid crystal cell 11 and a linearly polarizing plate 12, and the linearly polarizing plate 12 is disposed on both sides of the liquid crystal cell 11.
  • the liquid crystal cell 11 and the linear polarizing plate 12 those used in known liquid crystal display devices can be used.
  • the liquid crystal cell 11 include known liquid crystal cells such as a TFT type and an STN type.
  • the surface light source device 20 includes a light guide plate 30 that is an optical sheet and an LED light source 22.
  • the light guide plate 30 is formed of a translucent resin that transmits light and has a plate shape.
  • the translucent resin is a resin that transmits light.
  • the light guide plate 30 may be a sheet or a film.
  • the thickness T of the light-guide plate 30 is 1.0 mm or more and 4.5 mm or less.
  • the light guide plate 30 includes a plate-like member made of a translucent resin.
  • the refractive index of the translucent resin is, for example, in the range of 1.49 to 1.59.
  • methacrylic resin is mainly used.
  • resin used for the light guide plate 30 other resins may be used, or styrene resins may be used.
  • an acrylic resin, a styrene resin, a polycarbonate resin, a cyclic olefin resin, an MS resin (a copolymer of acrylic and styrene), or the like can be used.
  • additives such as a light diffusing agent, an ultraviolet absorber, a heat stabilizer, and a photopolymerization stabilizer can be added to the light guide plate 30.
  • the light guide plate 30 has a rectangular parallelepiped shape and includes a front surface 31 and a rear surface 32 which are a pair of main surfaces facing each other in the Z-axis direction (thickness direction) as shown in FIG.
  • the light guide plate 30 includes a pair of side surfaces 33 facing in the X-axis direction and a pair of side surfaces 34 facing in the Y-axis direction.
  • the front surface 31 and the back surface 32 are formed in a direction intersecting with the side surfaces 33 and 34, more specifically, in a direction orthogonal to the side surfaces 33 and 34.
  • the front surface 31, the rear surface 32, and the side surfaces 33 and 34 are all rectangular.
  • the surface 31 can be a flat surface or a surface provided with irregularities.
  • irregularities for example, a plurality of protrusions that protrude in the Z-axis direction and whose longitudinal direction extends along the X-axis direction can be arranged in parallel with each other while being separated in the Y-axis direction.
  • the shape of the ridge portion can be a shape in which the surface is a prism shape, and the cross-sectional shape when the ridge portion is cut in a direction orthogonal to the longitudinal direction is a semicircular shape or a semi-elliptical shape It can be.
  • the protrusions have the same cross-sectional shape when cut in a direction orthogonal to the longitudinal direction.
  • the direction in which the protrusions extend is preferably parallel to the incident direction when light emitted from the light source enters from the side surface of the light guide plate.
  • the surface 31 functions as a surface that can emit planar light.
  • the front surface 31 is disposed on the transmissive image display unit 10 side, and the back surface 32 is disposed on the opposite side of the transmissive image display unit 10.
  • Various films 41 are disposed between the light guide plate 30 and the transmissive image display unit 10 on the front side of the light guide plate 30.
  • a reflection sheet 42 that reflects the light in the light guide plate 30 toward the front surface 31 is disposed at a position facing the back surface 32.
  • the various films 41 include a diffusion film, a prism film, and a brightness enhancement film.
  • the LED light source 22 is disposed on the side of the light guide plate 30 and facing the side surface 33 of the light guide plate 30 extending in the Y-axis direction.
  • the side surface 33 of the light guide plate 30 serves as an incident surface on which light emitted from the LED light source 22 is incident.
  • the plurality of LED light sources 22 are discretely arranged along the longitudinal direction (Y-axis direction) of the side surface 33. Light incident from the side surface 33 of the light guide plate 30 exits from the surface 31.
  • the surface of the light guide plate 30 serves as an emission surface that emits light incident from the side surface 33.
  • the arrangement interval of the LED light sources 22 is normally 5 mm to 20 mm.
  • the LED light source 22 is disposed along the side surface 33 facing the Y axis.
  • the light guide plate 30 may be disposed along each of the four sides, or may be disposed along the side surfaces 34 facing each other with the X axis interposed therebetween. Or you may arrange
  • the light source is not limited to the LED light source, but may be other light sources.
  • positioned may be sufficient.
  • the LED light source 22 is composed of, for example, a white LED, and a plurality of LEDs are arranged in one place to constitute one light source unit. Further, as one light source unit, LEDs of three colors of red, green, and blue may be arranged close to each other. Here, when light source units having a plurality of LEDs are discretely arranged along the arrangement direction described above, it is preferable that the LEDs of different colors be arranged as close as possible.
  • the LED light source those having various light emission distributions can be used, but the luminous intensity in the normal direction (X-axis direction) of the LED light source is maximum, and the half-value width of the luminous intensity distribution is 40 degrees or more and 80 degrees or less. Those having a certain light emission distribution are preferred.
  • Specific examples of the LED light source type include a Lambertian type, a shell type, and a side emission type.
  • the size when the light guide plate 30 is viewed in plan is set so as to match the screen size of the target transmissive image display unit 10.
  • the length of two orthogonal sides is usually 250 mm ⁇ 440 mm or more (diagonal length L is 506 mm or more).
  • a large size of 500 mm ⁇ 800 mm or more may be used.
  • the planar view shape of the light-guide plate 30 is made into the rectangle, it can also be set as other shapes, such as a square.
  • the thickness T of the original plate (translucent resin sheet) of the light guide plate 30 may be 4.5 mm or less, for example, 2.0 mm or 1.0 mm.
  • the rectangle of 250 mm ⁇ 440 mm or more means a rectangle having one side of 250 mm or more and the other side of 440 mm or more.
  • the rectangle of 500 mm ⁇ 800 mm or more means a rectangle having one side of 500 mm or more and the other side of 800 mm or more.
  • the original plate 60 of the light guide plate 30 may satisfy the following formula (1).
  • L is the length (mm) of the diagonal of the original plate
  • T is the thickness (mm) of the original plate.
  • the length L of the diagonal line is 500 mm or more.
  • a plurality of printing dots 35 are formed on the back surface 32 of the light guide plate 30.
  • the printing dots 35 are formed by dot pattern printing using an ink jet.
  • the print dots 35 are formed such that the diameter closer to the LED light source 22 on the back surface 32 is smaller, and the diameter gradually increases as the distance from the LED light source 22 increases.
  • the printing dots 35 have a plurality of printing dots 35 having substantially the same size on the back side of the light guide plate 30. It can also be set as the aspect arrange
  • a square lattice, a triangular lattice, a cubic lattice, a hexagonal lattice, a grid lattice, or the like can be used.
  • a plurality of printing dots 35 having substantially the same size may be randomly arranged.
  • the size of the printing dots 35 can be appropriately changed in these modes.
  • Dot pattern printing is performed using inkjet.
  • ink is ejected from an inkjet nozzle to the original plate for manufacturing the light guide plate 30 to print the dot pattern.
  • FIG. 3 is a perspective view showing the light guide plate manufacturing apparatus according to the embodiment.
  • a light guide plate manufacturing apparatus (optical sheet manufacturing apparatus) 200 as shown in FIG. 3 is used.
  • the light guide plate manufacturing apparatus 200 shown in FIG. 3 includes a transport means 70 for transporting a translucent resin sheet 60 (original plate of the light guide plate 30) and an inkjet head 50.
  • the manufacturing apparatus 200 includes a UV lamp and an inspection apparatus (not shown) on the downstream side of the inkjet head 50 in the moving direction A of the original plate 60.
  • the conveying means 70 includes a conveying belt 71 on which the translucent resin sheet 60 is placed and conveyed, a pair of conveying rollers 72 for moving the conveying belt 71 (only one is shown in FIG. 3), and conveying A suction box 73 for sucking the translucent resin sheet 60 placed on the belt 71 is provided.
  • the transport belt 71 is stretched across a pair of transport rollers 72 and extends in the horizontal direction (A direction in the figure).
  • the drive-side transport roller 72 is rotationally driven by a motor (not shown) to move the transport belt 71.
  • the printing surface 60a of the original plate 60 is directed upward, and a non-printing surface 60b (see FIG. 4) opposite to the printing surface 60a is disposed in contact with the transport belt (table) 71.
  • the suction box 73 has a box shape and is disposed between the conveyor belts 71 and 71 spaced apart in the vertical direction. A plurality of suction boxes 73 are arranged along the movement direction A.
  • the suction box 73 is connected to an evacuation unit such as a vacuum pump, for example, so that the inside of the box can be decompressed.
  • FIG. 4 is a side view schematically showing the relationship between an inkjet nozzle and a light guide plate when performing dot pattern printing.
  • the inkjet head 50 is provided with a plurality of inkjet nozzles 51.
  • FIG. 5 is a diagram illustrating a conveyance belt on which a light guide plate is placed when dot pattern printing is performed.
  • the suction box 73 has a top plate 73a on which the transport belt 71 is placed.
  • the outer surface of the top plate 73a forms a flat surface and forms a surface on which the conveyor belt 71 slides.
  • the translucent resin sheet 60 is placed on the transport belt 71. That is, the conveyance belt 71 functions as a table on which the original plate 60 is placed.
  • the top plate 73a and the conveyor belt 71 of the suction box 73 are provided with a plurality of openings 73b and 71a.
  • the distance between the openings 73b and 71a is, for example, about 5 cm.
  • the shapes of the openings 73b and 71a may be other than circular.
  • the opening 71a of the conveyor belt 71 and the opening 73b of the top plate 73a coincide.
  • the vacuum pump unit is operated to reduce the pressure in the suction box 73, the non-printing surface 60b of the conveyed original plate 60 is adsorbed on the conveyance belt 71, and warpage is eliminated.
  • the distance between the conveyance belt 71 (table) on which the original plate 60 is placed and the inkjet nozzle 51 is adjusted to be equal to or less than the distance obtained by adding the thickness T of the original plate 60 to 2.8 mm.
  • the original plate 60 can be conveyed continuously or intermittently.
  • the table on which the original plate 60 is placed is not limited to the transport belt 71, but may be other transport trays.
  • the light guide plate manufacturing apparatus 200 may be configured not to include a conveying unit. The original plate 60 may be placed on the table, and the non-printing surface 60b of the original plate 60 may be sucked and adsorbed to eliminate the warp of the original plate 60.
  • a liquid repellent treatment may be performed on the surface of the original plate 60 to be the back surface (32) of the original plate 60 (the translucent resin sheet included in the light guide plate 30).
  • the degree of the liquid repellent treatment is such that the contact angle when a water droplet is dropped on the surface of the liquid-repellent original plate 60 is 80 to 130 degrees, preferably 85 to 120 degrees, more preferably 90 to 110 degrees. is there.
  • the contact angle is 80 degrees or more, the reflection dots (printing dots) 35 and 35 can be prevented from being connected to each other, and the reflection dots 35 can be provided more densely.
  • the contact angle is set to 130 degrees or less, it is possible to keep the adhesion between the reflective dots 35 and the original plate 60 high.
  • liquid repellent treatment examples include treatment using a surface modifier as a liquid repellent treatment, treatment with various energy rays, treatment by chemical adsorption, treatment by graft polymerization on the material surface, and the like.
  • the treatment using the surface modifier is a treatment for forming a liquid repellent layer with a small amount of the surface modifier added on the surface of the original plate 60.
  • the surface modifier as the liquid repellent treatment agent are vinyl polymers having a perfluoroalkyl group (Rf group) in the side chain, Rf group-containing silicone, and the like.
  • the liquid repellent layer can be formed by a method in which a surface modifier is soaked into a paper cloth or the like and applied to the surface, or the surface modifier is sprayed on the surface by spraying or ink jet printing.
  • the treatment with various energy rays is a treatment for imparting liquid repellency to the surface with energy rays.
  • energy rays are plasma, electron beam, ion beam and the like.
  • liquid repellent treatment using plasma treatment are: surface roughening by plasma etching, then forming, for example, a liquid repellent monomolecular film on the roughened surface, surface by fluorine-based gas plasma These include fluorination, formation of a film composed of a liquid repellent compound on the surface by plasma CVD, formation of a liquid repellent thin film on the surface by plasma polymerization, and the like.
  • Examples of treatment by surface roughening include imparting irregularities to the surface of the original plate 60 by hot pressing, etching with chemicals, blasting, and the like.
  • the end of the adsorbed molecule In the treatment by chemical adsorption, it is preferable to modify the end of the adsorbed molecule with fluorine.
  • the CF3 group is preferred as the terminal substituent from the viewpoint of liquid repellency.
  • the fluorination of the surface by fluorine-based gas plasma is preferable because it can be easily and uniformly performed.
  • the conveyor belt 71 can be moved in the horizontal direction indicated by an arrow A by a motor (not shown).
  • the ink 54 ejected from the inkjet nozzle 51 is made of an ultraviolet curable resin, and after having landed on the original plate 60, gradually expands into a circular shape.
  • the light guide plate manufacturing apparatus 200 includes an ultraviolet irradiation device (not shown). A pigment may be added to the ink, or it may not be added.
  • the pigment is preferably at least one of calcium carbonate particles, barium sulfate particles and titanium dioxide particles.
  • the cumulative 50% particle diameter D50 of each of the calcium carbonate particles, barium sulfate particles and titanium dioxide particles is 50 to 3000 nm, more preferably 100 to 1500 nm, still more preferably 300 to 600 nm.
  • Calcium carbonate particles, barium sulfate particles, and titanium dioxide particles having an accumulated 50% particle diameter D50 in the range of 50 to 3000 nm can be obtained by appropriately selecting from commercially available products based on the particle size distribution.
  • the content ratio of the pigment in the ink is usually about 0.5 to 15.0% by mass based on the total mass of the ink.
  • An ink using a pigment which is at least one of calcium carbonate particles, barium sulfate particles and titanium dioxide particles is an ink using an inorganic substance.
  • the photopolymerizable component has a photopolymerizable functional group such as a vinyl group, and is preferably composed of a photopolymerizable monomer and / or a photopolymerizable oligomer having no hydroxyl group.
  • the content ratio of the photopolymerizable monomer having no hydroxyl group is preferably 65 to 75% by mass based on the total mass of the ink.
  • the content of the photopolymerizable oligomer having no hydroxyl group is preferably 10 to 20% by mass based on the total mass of the ink.
  • Examples of the photopolymerizable monomer having no hydroxyl group include 1,4-butanediol diacrylate (for example, SR213 manufactured by Sartomer Japan, Inc.), 1,6-hexanediol diacrylate (for example, Sartomer Japan ( SR238F), 1,3-butylene diacrylate (for example, Sartomer Japan, SR212), 1,9-nonanediol diacrylate (for example, Shin-Nakamura Chemical Co., Ltd., A- NOD-N) and propoxylated (2) neopentyl glycol diacrylate (for example, SR9003 manufactured by Sartomer Japan, Inc.).
  • 1,4-butanediol diacrylate for example, SR213 manufactured by Sartomer Japan, Inc.
  • 1,6-hexanediol diacrylate for example, Sartomer Japan ( SR238F)
  • 1,3-butylene diacrylate for example, Sartomer Japan,
  • the photopolymerizable oligomer having no hydroxyl group preferably contains an aliphatic urethane (meth) acrylate (for example, CN985B88, CN991 manufactured by Sartomer Japan, Inc.).
  • the aliphatic urethane (meth) acrylate is a photopolymerizable oligomer having a polyurethane oligomer chain formed from an aliphatic polyisocyanate and an aliphatic polyol, and an acrylate group or a methacrylate group bonded thereto.
  • the glass transition temperature of the aliphatic urethane (meth) acrylate is preferably 40 ° C. or higher.
  • the photopolymerization initiator can be appropriately selected from those usually used in the field of ultraviolet curable resins.
  • the content of the photopolymerization initiator in the ink is usually about 0.5 to 10.0% by mass.
  • the inkjet ink may contain components other than the pigment, the photopolymerizable component, and the photopolymerization initiator without departing from the spirit of the present invention.
  • the non-printing surface 60b of the original plate 60 is sucked and adsorbed to eliminate warpage, and a predetermined amount of ink 54 is ejected from the inkjet nozzle 51 to the original plate 60 to generate the dot pattern printing unit 55.
  • the table 52 is moved by the motor to convey the original plate 53 until the dot pattern printing unit 55 comes to the position where the ultraviolet irradiation device is provided.
  • the ink is cured and the printing dots 35 shown in FIG. 2 are generated.
  • the distance between the inkjet nozzle 51 and the original plate 53 is set to 2 by sucking and adsorbing the non-printing surface 60 b of the original plate 60 to eliminate warpage. .8mm is set.
  • the gap distance D (hereinafter referred to as “gap distance”) D between the inkjet nozzle 51 and the original plate 53 is large, streaks are hardly generated in the print pattern. In order to avoid contact with the original plate 53, the gap distance D was made large.
  • the distance between the inkjet nozzle 51 and the original plate 60 when performing dot pattern printing is adjusted to 2.8 mm.
  • the distance between the inkjet nozzle 51 and the original plate 60 is adjusted to 2.8 mm.
  • the gap distance D for suppressing the occurrence of streaks on the printing surface of the dot pattern printing applied to the light guide plate 30 is 2.8 mm or less. Furthermore, by setting the gap distance D to 1.8 mm or less, the generation of streaks can be more suitably suppressed.
  • the gap distance D is preferably small, but the lower limit of the gap distance D can be set to a size that can avoid contact between the inkjet nozzle 51 and the original plate 53 when performing dot pattern printing. .
  • the gap distance D can be set to 0.4 mm or more, or 0.5 mm or more. From these viewpoints, the gap distance needs to be 0.4 mm or more and 2.8 mm or less, preferably 0.5 mm or more and 1.8 mm or less, and 0.5 mm or more and 1.0 mm or less. Is more preferable.
  • Example 2 Hereinafter, an experiment was conducted on the occurrence of streaks on the printing surface of the optical sheet.
  • a plurality of optical sheets were manufactured by appropriately changing the gap distance D, and the occurrence of streaks was visually evaluated for these optical sheets.
  • the set gap distance D was 0.5 mm, 1.3 mm, 2.3 mm, 4.0 mm, and 9.0 mm.
  • a 40-inch panel was used as the original plate (optical sheet).
  • the ink used had an ink viscosity of 18.6 mPa ⁇ s and an ink liquid amount of 30 pL.
  • the dot diameter in the dot pattern was about 130 ⁇ m.
  • the scanning (conveyance) speed when conveying the original plate was 400 mm / s, and the resolution was 150 dpi.
  • ultraviolet irradiation was performed 1.5 seconds after the ink landed on the original plate.
  • the UV integrated light quantity at the time of ultraviolet irradiation was 0.25 J / cm2.
  • the gap distance D of the present invention is defined as 2.8 mm, and the more preferable gap distance D is defined as 1.8 mm.
  • optical sheet manufacturing method, optical sheet, and optical sheet manufacturing apparatus of the present invention can suppress the occurrence of streaks on the printed surface when dot pattern printing is performed on the back surface of the optical sheet.
  • ADVANTAGE OF THE INVENTION According to this invention, the quality improvement of the product (A surface light source device and a transmissive image display apparatus) using an optical sheet can be aimed at.
  • SYMBOLS 1 Liquid crystal display device, 10 ... Transmission type image display part, 11 ... Liquid crystal cell, 12 ... Linearly polarizing plate, 20 ... Surface light source device, 22 ... LED light source, 30 ... Light guide plate, 31 ... Front surface, 32 ... Back surface, 33 , 34 ... side face, 35 ... printed dots, 41 ... various films, 42 ... reflective sheet, 50 ... inkjet head, 51 ... inkjet nozzle, 52 ... table, 53 ... original plate, 54 ... ink, 55 ... dot pattern printing section, 60 ... Original plate (translucent resin sheet), 60a ... printing surface, 60b ... non-printing surface, 70 ...
  • conveying means 71 ... conveying belt, 71a ... opening, 72 ... conveying roller, 73 ... suction box, 73a ... top plate 73b: opening, 200: light guide plate manufacturing apparatus (optical seed manufacturing apparatus), D: gap distance, L: length of diagonal of original plate, T: length of diagonal of original plate, A: movement of original plate Direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Coating Apparatus (AREA)
  • Liquid Crystal (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Provided are a method for manufacturing an optical sheet and an optical sheet manufacturing device, which can achieve quality improvement in an optical sheet by minimizing the occurrence of streaks on a printing surface when printing a dot pattern on the rear surface of the optical sheet. Ink (54) is sprayed from a nozzle (51) onto an original plate (60) for a light guide plate. At this point, warpage is removed by applying suction to and adsorbing the non print surface of the original plate (60) and a gap distance (D) that is a distance between the nozzle (51) and the original plate (60) is adjusted to be 2.8 mm or less, then the dot pattern is printed by spraying the ink.

Description

光学シートの製造方法Manufacturing method of optical sheet
 本発明は、光学シートとその製造方法および製造装置並びにこの光学シートを用いた面光源装置および透過型画像表示装置に関する。 The present invention relates to an optical sheet, a method for manufacturing the optical sheet, a manufacturing apparatus, a surface light source device using the optical sheet, and a transmissive image display device.
 液晶ディスプレイ(透過型画像表示装置)の面光源装置として用いられるバックライトには、いわゆる直下型のものやエッジライト型のものが知られている。このうち、直下型の面光源装置は、冷陰極管やLED等の光源を導光板の背面側に並べて、導光板の背面から入射した光を正面側に出射するものである。 As a backlight used as a surface light source device of a liquid crystal display (transmission type image display device), a so-called direct type or an edge light type is known. Among these, the direct type surface light source device arranges light sources such as cold cathode tubes and LEDs on the back side of the light guide plate, and emits light incident from the back side of the light guide plate to the front side.
 一方のエッジライト型の面光源装置は、冷陰極管やLED等の光源を透明な板である導光板の側面に並べて、導光板の側面から入射した光を正面側に出射するものである。従来のバックライトとしては、輝度を高くできるという観点から直下型の面光源装置が多く用いられていた。しかし、近年においては、薄くて高輝度なLED光源の使用が増加していることや、液晶ディスプレイの薄型化に伴ってエッジライト型の面光源装置の使用割合が増加している。 One edge light type surface light source device arranges light sources such as cold-cathode tubes and LEDs on the side surface of a light guide plate which is a transparent plate, and emits light incident from the side surface of the light guide plate to the front side. As a conventional backlight, a direct type surface light source device is often used from the viewpoint of increasing the luminance. However, in recent years, the use of thin and high-brightness LED light sources has increased, and the use ratio of edge light type surface light source devices has increased with the thinning of liquid crystal displays.
 このようなエッジライト型の面光源装置における導光板では、背面にドット印刷を施すことにより、側面から入射した光を背面で乱反射させて、正面から出射させるようにしている。導光板の背面にドット印刷を施す方法としては、スクリーン印刷による方法が知られている(たとえば、特許文献1参照)。しかしながら、スクリーン印刷によってドット印刷を施す際には、パターンごとに個別の版を用意する必要がある。このため、スクリーン印刷では、自由度が低いという問題があった。 In the light guide plate in such an edge light type surface light source device, by performing dot printing on the back surface, light incident from the side surface is diffusely reflected on the back surface and emitted from the front surface. As a method of performing dot printing on the back surface of the light guide plate, a method by screen printing is known (for example, see Patent Document 1). However, when performing dot printing by screen printing, it is necessary to prepare individual plates for each pattern. For this reason, the screen printing has a problem that the degree of freedom is low.
 他方、スクリーン印刷以外の方法としては、インクジェットを用いたドットパターン印刷が知られている(たとえば、特許文献2参照)。インクジェットを用いることにより、多数の版を用意する必要はなくなるため、印刷パターンが多様化したとしても対応できるように自由度を高めることができる。 On the other hand, dot pattern printing using inkjet is known as a method other than screen printing (see, for example, Patent Document 2). By using an ink jet, it is not necessary to prepare a large number of plates, so that the degree of freedom can be increased so as to cope with diversification of printing patterns.
特開平7-49421号公報JP 7-49421 A 特開2006-136867号公報JP 2006-136867 A
 ところで、近年、この種の導光板を用いた面光源装置には、高精度、たとえば150dpi以上のものが求められるようになってきた。 Incidentally, in recent years, a surface light source device using this type of light guide plate has been required to have high accuracy, for example, 150 dpi or more.
 また、近年、液晶表示ディスプレイがテレビなどに適用されて導光板の大型化及び薄型化が求められる傾向にある。導光板を製造するにあたり、導光板原板は反りがない板状であることが理想的であるが、実際には、保管中の吸湿や不均一の加熱などにより、反りやたわみが発生する。導光板の大型化及び薄型化に伴い、このような反りの影響が顕著となることが想定される。 In recent years, liquid crystal display devices have been applied to televisions and the like, and the light guide plate tends to be increased in size and thickness. In manufacturing the light guide plate, it is ideal that the light guide plate original plate has a plate shape without warping. However, in actuality, warpage or deflection occurs due to moisture absorption or uneven heating during storage. With the increase in size and thickness of the light guide plate, it is assumed that the influence of such warpage becomes significant.
 しかし、上記特許文献2に開示された導光板に対しては、高い精細度に対する要求、及び導光板原板の反り改善に対する要求は高くなかった。このため、上記特許文献2に開示されたドットパターン印刷を用いた導光板では、ドットパターン印刷を行った際に、ドット間距離の不均一さやドット形状の乱れが原因となって印刷面にスジが見えてしまうことがあった。このように印刷面にスジが見えてしまうと、光学シートを用いた液晶ディスプレイなどの品質の低下を招いてしまうという問題があった。 However, for the light guide plate disclosed in Patent Document 2, the demand for high definition and the demand for improving warpage of the light guide plate original plate were not high. For this reason, in the light guide plate using the dot pattern printing disclosed in Patent Document 2, when the dot pattern printing is performed, streaks appear on the printed surface due to the non-uniform distance between dots and the disorder of the dot shape. I could see. If streaks appear on the printing surface in this way, there is a problem that the quality of a liquid crystal display using an optical sheet is deteriorated.
 そこで、本発明の課題は、光学シートの背面にドットパターン印刷を施す際に、印刷面におけるスジの発生を抑制することにより、光学シートを用いた製品の品質向上を図ることができる光学シートの製造方法および製造装置を提供することにある。 Therefore, an object of the present invention is to provide an optical sheet that can improve the quality of a product using the optical sheet by suppressing the generation of streaks on the printed surface when dot pattern printing is performed on the back surface of the optical sheet. To provide a manufacturing method and a manufacturing apparatus.
 本発明は、光入射面から入射した光を、光入射面と交差する光出射面から出射する光学シートであり、当該光学シートの原板の背面に対して、ノズルからインクを噴射することによってドットパターンが印刷された光学シートを製造する方法であって、原板の非印刷面を吸引吸着して原板の反りを排除し、ノズルと原板との距離を、2.8mm以下に調整し、インクを噴射してドットパターンを印刷する。 The present invention is an optical sheet that emits light incident from a light incident surface from a light emitting surface that intersects the light incident surface, and dots are formed by ejecting ink from nozzles onto the back surface of the original plate of the optical sheet. A method of manufacturing an optical sheet on which a pattern is printed, wherein the non-printed surface of the original plate is sucked and absorbed to eliminate warpage of the original plate, the distance between the nozzle and the original plate is adjusted to 2.8 mm or less, and the ink is Spray to print a dot pattern.
 一般に、低精細のドットパターンを形成する場合には、ノズルと原板との距離が遠い場合でも印刷パターンにスジ(印刷ドットが直線状に形成される現象)が生じることはほとんどなかったため、ノズルと原板との接触を避けるために、ギャップ距離を大きくとっていた。しかし、高精細のドットパターンを形成する場合には、ギャップ距離が大きいと、印刷パターンにスジが発生することがあり、このスジによって製品の品質が低下する問題が生じた。この点、本発明に係る光学シートの製造方法においては、ドットパターン印刷を行う際に、原板の非印刷面を吸引吸着して反りを排除し、ノズルと原板との距離が、2.8mm以下に調整されている。原板の非印刷面を吸引吸着して反りを排除することで、ノズルと原板との距離が、2.8mm以下に調整されているので、光学シートにおけるドットパターン印刷の印刷面におけるスジの発生を抑制することができる。したがって、光学シートを用いた製品の品質向上を図ることができる。なお、ドットパターン印刷を行う際のノズルと原板とのより好ましい距離は1.8mm以下であり、さらに好ましい範囲は1.0mm以下である。 In general, when forming a low-definition dot pattern, even when the distance between the nozzle and the original plate is long, streaks (a phenomenon in which printed dots are formed in a straight line) hardly occur in the print pattern. In order to avoid contact with the original plate, a large gap distance was used. However, when a high-definition dot pattern is formed, if the gap distance is large, streaks may occur in the printed pattern, which causes a problem that the quality of the product is deteriorated. In this regard, in the method of manufacturing an optical sheet according to the present invention, when performing dot pattern printing, the non-printing surface of the original plate is sucked and adsorbed to eliminate warpage, and the distance between the nozzle and the original plate is 2.8 mm or less. Has been adjusted. Since the distance between the nozzle and the original plate is adjusted to 2.8 mm or less by removing the warp by sucking and adsorbing the non-printed surface of the original plate, streaks are generated on the printing surface of the dot pattern printing on the optical sheet. Can be suppressed. Therefore, the quality of products using the optical sheet can be improved. A more preferable distance between the nozzle and the original plate when performing dot pattern printing is 1.8 mm or less, and a more preferable range is 1.0 mm or less.
 ここで、ドットパターンを印刷する際のノズルと原板との距離が2.8mm以下に調整されている態様とすることができる。 Here, the distance between the nozzle and the original plate when printing the dot pattern can be adjusted to 2.8 mm or less.
 導光板などの光学シートに用いられる原板は、完全に平面状となることは少なく、若干の反りを生じることが多い。この反りの影響によってインクジェットノズルと原板との距離が長くなりすぎると、印刷面におけるスジの発生が懸念される。この点、ドットパターン印刷を行う際、原板の非印刷面を吸引吸着して反りを排除し、ノズルと原板との距離が2.8mm以下に調整されていることにより、印刷面におけるスジの発生をより確実に抑制することができる。その結果、さらに光学シートを用いた製品の品質向上を図ることができる。 An original plate used for an optical sheet such as a light guide plate is rarely completely flat and often slightly warps. If the distance between the inkjet nozzle and the original plate becomes too long due to the influence of the warpage, there is a concern about the generation of streaks on the printing surface. In this regard, when performing dot pattern printing, the non-printed surface of the original plate is sucked and adsorbed to eliminate warpage, and the distance between the nozzle and the original plate is adjusted to 2.8 mm or less, thereby generating streaks on the printed surface. Can be more reliably suppressed. As a result, the quality of the product using the optical sheet can be further improved.
 さらに、原板の厚さが4.5mm以下である態様とすることができる。 Furthermore, the thickness of the original plate may be 4.5 mm or less.
 このように、原板の厚さは4.5mm以下に調整されているのが好適である。また、原板の厚さは、2.0mm以下に調整されているのがさらに好適である。 Thus, the thickness of the original plate is preferably adjusted to 4.5 mm or less. Further, it is more preferable that the thickness of the original plate is adjusted to 2.0 mm or less.
 また、ドットパターンを印刷する際に、原板はテーブル上に載置されており、ノズルとテーブルとの距離が、2.8mmに原板の厚さを加算した距離以下とされている態様とすることができる。 Also, when printing the dot pattern, the original plate is placed on the table, and the distance between the nozzle and the table is 2.8 mm or less plus the thickness of the original plate. Can do.
 このように、原板の厚さを加味することにより、ノズルと原板との距離を、原板が載置されたテーブルとノズルとの間の距離で管理することができる。 Thus, by taking into account the thickness of the original plate, the distance between the nozzle and the original plate can be managed by the distance between the table on which the original plate is placed and the nozzle.
 光学シートの製造方法によって製造された光学シートとすることもできるし、この光学シートの光入射面の側方に配置された光源と、を備える面光源装置とすることもできる。さらに、この面光源装置を備え、光学シートの光出射面に対向して配置され、光源から出射された光に照射されて画像を表示する透過型画像表示部を備える透過型画像表示装置とすることもできる。 An optical sheet manufactured by an optical sheet manufacturing method may be used, or a surface light source device including a light source disposed on the side of the light incident surface of the optical sheet. Furthermore, a transmissive image display device is provided that includes the surface light source device, is disposed to face the light emitting surface of the optical sheet, and includes a transmissive image display unit that displays the image by being irradiated with the light emitted from the light source. You can also.
 本発明は、光入射面から入射した光を、光入射面と交差する光出射面から出射する光学シートであり、当該光学シートの原板の背面に対して、ノズルからインクを噴射することによってドットパターンが印刷された光学シートを製造する装置であって、原板の非印刷面を吸引吸着して原板の反りを排除し、ノズルと、原板が載置されるテーブルとの距離が、2.8mmに原板の厚さを加算した距離以下に調整し、インクを噴射してドットパターンを印刷する光学シートの製造装置を提供する。 The present invention is an optical sheet that emits light incident from a light incident surface from a light emitting surface that intersects the light incident surface, and dots are formed by ejecting ink from nozzles onto the back surface of the original plate of the optical sheet. An apparatus for producing an optical sheet on which a pattern is printed, wherein the non-printed surface of the original plate is sucked and adsorbed to eliminate warpage of the original plate, and the distance between the nozzle and the table on which the original plate is placed is 2.8 mm. An apparatus for manufacturing an optical sheet is provided that prints a dot pattern by adjusting the thickness to be equal to or less than the distance obtained by adding the thickness of the original plate to ink.
 本発明に係る光学シートの製造方法および製造装置によれば、光学シートの背面にドットパターン印刷を施す際に、印刷面におけるスジの発生を抑制することにより、光学シートを用いた製品の品質向上を図ることができる。 According to the method and apparatus for manufacturing an optical sheet according to the present invention, when dot pattern printing is performed on the back surface of the optical sheet, the quality of products using the optical sheet is improved by suppressing the generation of streaks on the printing surface. Can be achieved.
実施形態に係る導光板を用いた透過型画像表示装置を模式的に示す分解側断面図である。It is a decomposition side sectional view showing typically the transmission type image display device using the light guide plate concerning an embodiment. 実施形態に係る導光板を用いた透過型画像表示装置を模式的に示す平面図である。It is a top view which shows typically the transmissive image display apparatus using the light-guide plate which concerns on embodiment. 実施形態に係る導光板製造装置を示す斜視図である。It is a perspective view which shows the light-guide plate manufacturing apparatus which concerns on embodiment. ドットパターン印刷を行う際のインクジェットノズルと導光板の原板との関係を模式的に示す側面図である。It is a side view which shows typically the relationship between the inkjet nozzle at the time of performing dot pattern printing, and the original plate of a light-guide plate. ドットパターン印刷が行われる際に導光板を載置する搬送ベルトを示す平面図である。It is a top view which shows the conveyance belt which mounts a light-guide plate when dot pattern printing is performed. (a)(b)とも、印刷ドットの他の配置パターンを示す図である。(A) (b) is a figure which shows the other arrangement pattern of a printing dot.
 以下、図面を参照して、本発明の好適な実施形態について説明する。なお、各実施形態において、同一の要素には同一の符号を付し、重複する説明は省略することがある。また、図示の便宜上、図面の寸法比率は説明のものと必ずしも一致しない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Note that, in each embodiment, the same elements are denoted by the same reference numerals, and redundant description may be omitted. For the convenience of illustration, the dimensional ratios in the drawings do not necessarily match those described.
 本発明においては、液晶表示装置などの透過型画像表示装置に用いられる面光源装置における光学シートである導光板の製造方法におけるドットパターン印刷が主に特徴的である。本実施形態では、まず、導光板を含む液晶表示装置の構造について説明し、続いて、導光板の製造方法におけるドットパターン印刷について説明する。 In the present invention, dot pattern printing is mainly characteristic in a method of manufacturing a light guide plate which is an optical sheet in a surface light source device used in a transmissive image display device such as a liquid crystal display device. In the present embodiment, first, the structure of a liquid crystal display device including a light guide plate will be described, and then dot pattern printing in the method of manufacturing the light guide plate will be described.
 図1は、本発明の第1の実施形態に係る導光板を用いた液晶表示を模式的に示す分解側断面図、図2は、その背面図である。図1に示すように、透過型画像表示装置である液晶表示装置1は、透過型画像表示部10および面光源装置20を備えている。面光源装置20は、透過型画像表示部10の背面側に配置されており、透過型画像表示部10の背面側から光を照射している。以下の説明では、図1に示すように、面光源装置20と透過型画像表示部10の配列方向をZ方向(板厚方向)と称し、Z方向に直交する2方向であって互いに直交する2方向をX方向およびY方向と称す。 FIG. 1 is an exploded side sectional view schematically showing a liquid crystal display using the light guide plate according to the first embodiment of the present invention, and FIG. 2 is a rear view thereof. As shown in FIG. 1, a liquid crystal display device 1 that is a transmissive image display device includes a transmissive image display unit 10 and a surface light source device 20. The surface light source device 20 is disposed on the back side of the transmissive image display unit 10 and emits light from the back side of the transmissive image display unit 10. In the following description, as shown in FIG. 1, the arrangement direction of the surface light source device 20 and the transmissive image display unit 10 is referred to as a Z direction (plate thickness direction), which is two directions orthogonal to the Z direction and orthogonal to each other. The two directions are referred to as the X direction and the Y direction.
 透過型画像表示部10は、液晶セル11および直線偏光板12を備えており、液晶セル11の両面側に直線偏光板12が配設されている。液晶セル11、直線偏光板12は、既知の液晶表示装置において用いられるものを用いることができる。液晶セル11としては、TFT型、STN型等の公知の液晶セルを例示することができる。 The transmissive image display unit 10 includes a liquid crystal cell 11 and a linearly polarizing plate 12, and the linearly polarizing plate 12 is disposed on both sides of the liquid crystal cell 11. As the liquid crystal cell 11 and the linear polarizing plate 12, those used in known liquid crystal display devices can be used. Examples of the liquid crystal cell 11 include known liquid crystal cells such as a TFT type and an STN type.
 面光源装置20は、光学シートである導光板30と、LED光源22とを備えている。導光板30は、光を透過させる透光性樹脂から形成され板状を成している。透光性樹脂は、光を透過させる樹脂である。なお、導光板30は、シート状でもよく、フィルム状でもよい。また、導光板30の厚みTは、1.0mm以上4.5mm以下であることが好ましい。 The surface light source device 20 includes a light guide plate 30 that is an optical sheet and an LED light source 22. The light guide plate 30 is formed of a translucent resin that transmits light and has a plate shape. The translucent resin is a resin that transmits light. The light guide plate 30 may be a sheet or a film. Moreover, it is preferable that the thickness T of the light-guide plate 30 is 1.0 mm or more and 4.5 mm or less.
 導光板30は、透光性樹脂からなる板状の部材を備えている。透光性樹脂の屈折率は、たとえば1.49~1.59の範囲内である。導光板30に使用される透光性樹脂としては、メタアクリル樹脂が主として用いられる。導光板30に使用される樹脂として、その他の樹脂を用いてもよく、スチレン系の樹脂を用いてもよい。透光性樹脂としては、アクリル樹脂、スチレン樹脂、ポリカーボネート樹脂、環状オレフィン樹脂、MS樹脂(アクリルとスチレンの共重合体)などを用いることができる。さらに、導光板30には、光拡散剤、紫外線吸収剤、熱安定剤、光重合安定剤などの添加剤を添加することもできる。 The light guide plate 30 includes a plate-like member made of a translucent resin. The refractive index of the translucent resin is, for example, in the range of 1.49 to 1.59. As the translucent resin used for the light guide plate 30, methacrylic resin is mainly used. As the resin used for the light guide plate 30, other resins may be used, or styrene resins may be used. As the translucent resin, an acrylic resin, a styrene resin, a polycarbonate resin, a cyclic olefin resin, an MS resin (a copolymer of acrylic and styrene), or the like can be used. Furthermore, additives such as a light diffusing agent, an ultraviolet absorber, a heat stabilizer, and a photopolymerization stabilizer can be added to the light guide plate 30.
 また、導光板30は、直方体をなしており、図2に示すように、Z軸方向(厚み方向)に対向する一対の主面である表面31および背面32を備えている。また、導光板30は、X軸方向に対向する一対の側面33およびY軸方向に対向する一対の側面34を備えている。表面31および背面32は、側面33,34と交差する方向、さらに言えば、側面33,34と直交する方向に形成されている。これらの表面31、背面32、側面33,34は、いずれも長方形状をなしている。 Further, the light guide plate 30 has a rectangular parallelepiped shape and includes a front surface 31 and a rear surface 32 which are a pair of main surfaces facing each other in the Z-axis direction (thickness direction) as shown in FIG. The light guide plate 30 includes a pair of side surfaces 33 facing in the X-axis direction and a pair of side surfaces 34 facing in the Y-axis direction. The front surface 31 and the back surface 32 are formed in a direction intersecting with the side surfaces 33 and 34, more specifically, in a direction orthogonal to the side surfaces 33 and 34. The front surface 31, the rear surface 32, and the side surfaces 33 and 34 are all rectangular.
 このうち、表面31は、平坦である面であったり、凹凸が付与された面であったりすることができる。表面31に凹凸を付与する場合には、たとえば、Z軸方向に突出し、その長手方向がX軸方向に沿う複数の突条部をY軸方向に離間させて互いに平行に並べて配置することができる。突条部の形状としては、表面がプリズム形状となる形状とすることができ、突条部を長手方向に直交する方向で切断した際の断面形状が、半円形状、半楕円形状となる形状とすることができる。また、突条部は、長手方向に直交する方向で切断した際の断面形状が同一形状となるようにすることが好ましい。なお、突条部が延在する方向は、光源から出射される光が導光板の側面から入射する際の入射方向と平行であることが望ましい。 Of these, the surface 31 can be a flat surface or a surface provided with irregularities. When the surface 31 is provided with irregularities, for example, a plurality of protrusions that protrude in the Z-axis direction and whose longitudinal direction extends along the X-axis direction can be arranged in parallel with each other while being separated in the Y-axis direction. . The shape of the ridge portion can be a shape in which the surface is a prism shape, and the cross-sectional shape when the ridge portion is cut in a direction orthogonal to the longitudinal direction is a semicircular shape or a semi-elliptical shape It can be. Moreover, it is preferable that the protrusions have the same cross-sectional shape when cut in a direction orthogonal to the longitudinal direction. Note that the direction in which the protrusions extend is preferably parallel to the incident direction when light emitted from the light source enters from the side surface of the light guide plate.
 また、表面31は、面状の光を出射可能な面として機能する。表面31は、透過型画像表示部10側に配置され、背面32は、透過型画像表示部10とは反対側に配置される。導光板30の正面側においては、導光板30と透過型画像表示部10との間に、各種フィルム41が配置されている。さらに、背面32と対面する位置には、導光板30内の光を表面31側へ反射させる反射シート42が配設されている。各種フィルム41としては、拡散フィルム、プリズムフィルム、輝度向上フィルムなどが挙げられる。 The surface 31 functions as a surface that can emit planar light. The front surface 31 is disposed on the transmissive image display unit 10 side, and the back surface 32 is disposed on the opposite side of the transmissive image display unit 10. Various films 41 are disposed between the light guide plate 30 and the transmissive image display unit 10 on the front side of the light guide plate 30. Furthermore, a reflection sheet 42 that reflects the light in the light guide plate 30 toward the front surface 31 is disposed at a position facing the back surface 32. Examples of the various films 41 include a diffusion film, a prism film, and a brightness enhancement film.
 LED光源22は、導光板30の側方であって、導光板30のY軸方向に延在する側面33と対向して配置されている。導光板30における側面33は、LED光源22から出射される光を入射する入射面となる。複数のLED光源22は、側面33の長手方向(Y軸方向)に沿って、離散的に配置されている。導光板30における側面33から入射した光は、表面31から出射する。導光板30の表面は、側面33から入射した光を出射する出射面となる。 The LED light source 22 is disposed on the side of the light guide plate 30 and facing the side surface 33 of the light guide plate 30 extending in the Y-axis direction. The side surface 33 of the light guide plate 30 serves as an incident surface on which light emitted from the LED light source 22 is incident. The plurality of LED light sources 22 are discretely arranged along the longitudinal direction (Y-axis direction) of the side surface 33. Light incident from the side surface 33 of the light guide plate 30 exits from the surface 31. The surface of the light guide plate 30 serves as an emission surface that emits light incident from the side surface 33.
 LED光源22の配置間隔は、通常5mm~20mmとされている。LED光源22は、Y軸を挟んで対向する側面33に沿って配置されている。この態様に代えて、導光板30の4辺のそれぞれに沿って配置されていてもよく、X軸を挟んで対向する側面34に沿って配置されてもよい。あるいは、側面33,34のうちのいずれか1辺に沿って配置されていてもよい。また、光源は、LED光源に限らずその他の光源でもよい。さらに、光源としては、冷陰極管などの線状光源が配置されている構成でもよい。 The arrangement interval of the LED light sources 22 is normally 5 mm to 20 mm. The LED light source 22 is disposed along the side surface 33 facing the Y axis. Instead of this aspect, the light guide plate 30 may be disposed along each of the four sides, or may be disposed along the side surfaces 34 facing each other with the X axis interposed therebetween. Or you may arrange | position along any one side of the side surfaces 33 and 34. FIG. Further, the light source is not limited to the LED light source, but may be other light sources. Furthermore, as a light source, the structure by which linear light sources, such as a cold cathode tube, are arrange | positioned may be sufficient.
 LED光源22は、たとえば白色LEDで構成されており、一つの箇所に複数のLEDを配置して一つの光源単位を構成している。また、一つの光源単位としては、赤色、緑色、青色の異なる三色のLEDが、近接され並べられて配置されていてもよい。ここで、複数のLEDを有する光源単位が、上述した配置方向に沿って離散的に配置される場合には、異なる色のLED同士は可能な限り近づけられて配置されていることが好ましい。 The LED light source 22 is composed of, for example, a white LED, and a plurality of LEDs are arranged in one place to constitute one light source unit. Further, as one light source unit, LEDs of three colors of red, green, and blue may be arranged close to each other. Here, when light source units having a plurality of LEDs are discretely arranged along the arrangement direction described above, it is preferable that the LEDs of different colors be arranged as close as possible.
 LED光源としては、様々な出光分布を有するものが使用可能であるが、LED光源の法線方向(X軸方向)の光度が最大であり、光度分布の半値幅が40度以上80度以下である出光分布を有するものが、好適である。また、LED光源のタイプとしては、具体的に、ランバーシアン型、砲弾型、サイドエミッション型などが挙げられる。 As the LED light source, those having various light emission distributions can be used, but the luminous intensity in the normal direction (X-axis direction) of the LED light source is maximum, and the half-value width of the luminous intensity distribution is 40 degrees or more and 80 degrees or less. Those having a certain light emission distribution are preferred. Specific examples of the LED light source type include a Lambertian type, a shell type, and a side emission type.
 導光板30を平面視した際のサイズは、目的とする透過型画像表示部10の画面サイズに適合するように設定される。具体的に、直交する2辺の長さが、通常250mm×440mm以上(対角線の長さLが506mm以上)であるものが用いられる。さらには、500mm×800mm以上(対角線の長さLが943mm以上)の大型サイズのものが用いられることもある。あるいは、導光板30の平面視形状は、長方形とされているが、正方形などの他の形状とすることもできる。また、導光板30の原板(透光性樹脂シート)の厚さTは、4.5mm以下とし、たとえば2.0mmや1.0mmとすることもできる。 The size when the light guide plate 30 is viewed in plan is set so as to match the screen size of the target transmissive image display unit 10. Specifically, the length of two orthogonal sides is usually 250 mm × 440 mm or more (diagonal length L is 506 mm or more). Furthermore, a large size of 500 mm × 800 mm or more (diagonal length L is 943 mm or more) may be used. Or although the planar view shape of the light-guide plate 30 is made into the rectangle, it can also be set as other shapes, such as a square. In addition, the thickness T of the original plate (translucent resin sheet) of the light guide plate 30 may be 4.5 mm or less, for example, 2.0 mm or 1.0 mm.
 ここで、250mm×440mm以上の長方形とは、一辺が250mm以上であり且つ他辺が440mm以上の長方形を意味する。また、500mm×800mm以上の長方形とは、一辺が500mm以上であり且つ他辺が800mm以上の長方形を意味する。 Here, the rectangle of 250 mm × 440 mm or more means a rectangle having one side of 250 mm or more and the other side of 440 mm or more. Moreover, the rectangle of 500 mm × 800 mm or more means a rectangle having one side of 500 mm or more and the other side of 800 mm or more.
 また、導光板30の原板60は、下記式(1)を満たしていてもよい。
Figure JPOXMLDOC01-appb-M000002
 ただし、Lは、原板の対角線の長さ(mm)、Tは、原板の厚み(mm)である。なお、対角線の長さLは、500mm以上である。
Further, the original plate 60 of the light guide plate 30 may satisfy the following formula (1).
Figure JPOXMLDOC01-appb-M000002
However, L is the length (mm) of the diagonal of the original plate, and T is the thickness (mm) of the original plate. The length L of the diagonal line is 500 mm or more.
 さらに、導光板30の背面32には、複数の印刷ドット35が形成されている。印刷ドット35は、インクジェットを用いたドットパターン印刷によって形成される。印刷ドット35は、背面32におけるLED光源22に近い方がその径が小さく、LED光源22から離れるにつれて徐々に径が大きくなるように形成されている。 Furthermore, a plurality of printing dots 35 are formed on the back surface 32 of the light guide plate 30. The printing dots 35 are formed by dot pattern printing using an ink jet. The print dots 35 are formed such that the diameter closer to the LED light source 22 on the back surface 32 is smaller, and the diameter gradually increases as the distance from the LED light source 22 increases.
 また、印刷ドット35については、図2に示す形態のほか、たとえば、図6(a)に示すように、略同一の大きさの複数の印刷ドット35が導光板30の背面側に略同一間隔で格子状に配置されている態様とすることもできる。印刷ドット35を格子状に配置する場合には、正方格子、三角格子、立方格子、六方格子、籠目格子などとすることができる。あるいは、図6(b)に示すように、略同一の大きさの複数の印刷ドット35をランダムに配置する態様とすることもできる。その他、これらの態様で印刷ドット35の大きさが適宜変わる態様とすることもできる。 In addition to the form shown in FIG. 2, for example, as shown in FIG. 6A, the printing dots 35 have a plurality of printing dots 35 having substantially the same size on the back side of the light guide plate 30. It can also be set as the aspect arrange | positioned by grid | lattice form. When the printing dots 35 are arranged in a lattice pattern, a square lattice, a triangular lattice, a cubic lattice, a hexagonal lattice, a grid lattice, or the like can be used. Alternatively, as shown in FIG. 6B, a plurality of printing dots 35 having substantially the same size may be randomly arranged. In addition, the size of the printing dots 35 can be appropriately changed in these modes.
 続いて、導光板30の製造方法におけるドットパターン印刷について説明する。ドットパターン印刷はインクジェットを用いて行われている。インクジェットを用いたドットパターン印刷を行う際には、導光板30を製造する際の原板に対して、インクジェットノズルからインクを噴射してドットパターンを印刷する。 Subsequently, the dot pattern printing in the method for manufacturing the light guide plate 30 will be described. Dot pattern printing is performed using inkjet. When performing dot pattern printing using an inkjet, ink is ejected from an inkjet nozzle to the original plate for manufacturing the light guide plate 30 to print the dot pattern.
 図3は、実施形態に係る導光板製造装置を示す斜視図である。ドットパターン印刷を行う際には、図3に示すような導光板製造装置(光学シートの製造装置)200が用いられる。図3に示す導光板の製造装置200は、透光性樹脂シート60(導光板30の原板)を搬送する搬送手段70と、インクジェットヘッド50とを備えている。また、製造装置200は、原板60の移動方向Aにおいて、インクジェットヘッド50の下流側に、図示しないUVランプ及び検査装置を備えている。 FIG. 3 is a perspective view showing the light guide plate manufacturing apparatus according to the embodiment. When performing dot pattern printing, a light guide plate manufacturing apparatus (optical sheet manufacturing apparatus) 200 as shown in FIG. 3 is used. The light guide plate manufacturing apparatus 200 shown in FIG. 3 includes a transport means 70 for transporting a translucent resin sheet 60 (original plate of the light guide plate 30) and an inkjet head 50. In addition, the manufacturing apparatus 200 includes a UV lamp and an inspection apparatus (not shown) on the downstream side of the inkjet head 50 in the moving direction A of the original plate 60.
 搬送手段70は、透光性樹脂シート60を載置して搬送する搬送ベルト71と、搬送ベルト71を移動させる一対の搬送ローラー72(図3では、一方のみを図示している)と、搬送ベルト71に載置された透光性樹脂シート60を吸引するための吸引ボックス73とを備えている。 The conveying means 70 includes a conveying belt 71 on which the translucent resin sheet 60 is placed and conveyed, a pair of conveying rollers 72 for moving the conveying belt 71 (only one is shown in FIG. 3), and conveying A suction box 73 for sucking the translucent resin sheet 60 placed on the belt 71 is provided.
 搬送ベルト71は、一対の搬送ローラー72に架け渡されて水平方向(図示A方向)に延在している。駆動側の搬送ローラー72は、図示しないモーターによって回転駆動され、搬送ベルト71を移動させる。原板60の印刷面60aが上側に向けられ、印刷面60aとは反対側の面である非印刷面60b(図4参照)が、搬送ベルト(テーブル)71に当接して配置される。 The transport belt 71 is stretched across a pair of transport rollers 72 and extends in the horizontal direction (A direction in the figure). The drive-side transport roller 72 is rotationally driven by a motor (not shown) to move the transport belt 71. The printing surface 60a of the original plate 60 is directed upward, and a non-printing surface 60b (see FIG. 4) opposite to the printing surface 60a is disposed in contact with the transport belt (table) 71.
 吸引ボックス73は、箱型を成し、上下方向に離間した搬送ベルト71,71間に配置されている。吸引ボックス73は、移動方向Aに沿って複数配置されている。吸引ボックス73は、例えば真空ポンプなどの排気手段に接続され、箱内が減圧可能な構成となっている。 The suction box 73 has a box shape and is disposed between the conveyor belts 71 and 71 spaced apart in the vertical direction. A plurality of suction boxes 73 are arranged along the movement direction A. The suction box 73 is connected to an evacuation unit such as a vacuum pump, for example, so that the inside of the box can be decompressed.
 図4は、ドットパターン印刷を行う際のインクジェットノズルと導光板の原板との関係を模式的に示す側面図である。インクジェットヘッド50には、複数のインクジェットノズル51が設けられている。図5は、ドットパターン印刷が行われる際に導光板を載置する搬送ベルトを示す図である。吸引ボックス73は、搬送ベルト71を載置する天板73aを有している。この天板73aの外表面は、平坦面を成し、搬送ベルト71を摺動させる面を構成する。そして、搬送ベルト71上に透光性樹脂シート60が載置される。すなわち、搬送ベルト71は、原板60が載置されるテーブルとして機能する。 FIG. 4 is a side view schematically showing the relationship between an inkjet nozzle and a light guide plate when performing dot pattern printing. The inkjet head 50 is provided with a plurality of inkjet nozzles 51. FIG. 5 is a diagram illustrating a conveyance belt on which a light guide plate is placed when dot pattern printing is performed. The suction box 73 has a top plate 73a on which the transport belt 71 is placed. The outer surface of the top plate 73a forms a flat surface and forms a surface on which the conveyor belt 71 slides. Then, the translucent resin sheet 60 is placed on the transport belt 71. That is, the conveyance belt 71 functions as a table on which the original plate 60 is placed.
 吸引ボックス73の天板73a及び搬送ベルト71には、複数の開口部73b,71aが設けられている。開口部73b,71aの間隔は、例えば5cm程度とされている。開口部73b,71aの形状は、円形以外の形状でもよい。搬送ベルト71が所定の位置に配置されると、搬送ベルト71の開口部71aと天板73aの開口部73bとが一致する。そして、真空ポンプ部を作動させて、吸引ボックス73内が減圧されると、搬送された原板60の非印刷面60bが搬送ベルト71上で吸着され、反りが排除される。そして、原板60が載置されている搬送ベルト71(テーブル)とインクジェットノズル51との距離が、2.8mmに原板60の厚さTを加算した距離以下に調整されている。 The top plate 73a and the conveyor belt 71 of the suction box 73 are provided with a plurality of openings 73b and 71a. The distance between the openings 73b and 71a is, for example, about 5 cm. The shapes of the openings 73b and 71a may be other than circular. When the conveyor belt 71 is disposed at a predetermined position, the opening 71a of the conveyor belt 71 and the opening 73b of the top plate 73a coincide. When the vacuum pump unit is operated to reduce the pressure in the suction box 73, the non-printing surface 60b of the conveyed original plate 60 is adsorbed on the conveyance belt 71, and warpage is eliminated. The distance between the conveyance belt 71 (table) on which the original plate 60 is placed and the inkjet nozzle 51 is adjusted to be equal to or less than the distance obtained by adding the thickness T of the original plate 60 to 2.8 mm.
 なお、導光板製造装置200では、原板60を連続的又は間欠的に搬送可能である。また、原板60が載置されるテーブルは、搬送ベルト71に限定されず、その他の搬送トレイなどでもよい。また、導光板製造装置200は、搬送手段を備えていない構成でもよい。テーブルに原板60を載置して、原板60の非印刷面60bを吸引吸着して、原板60の反りを排除すればよい。 In addition, in the light-guide plate manufacturing apparatus 200, the original plate 60 can be conveyed continuously or intermittently. Further, the table on which the original plate 60 is placed is not limited to the transport belt 71, but may be other transport trays. Further, the light guide plate manufacturing apparatus 200 may be configured not to include a conveying unit. The original plate 60 may be placed on the table, and the non-printing surface 60b of the original plate 60 may be sucked and adsorbed to eliminate the warp of the original plate 60.
 導光板30を製造する場合、まず、原板60(導光板30が有する透光性樹脂シート)の背面(32)となるべき原板60の表面に撥液処理を施してもよい。 When the light guide plate 30 is manufactured, first, a liquid repellent treatment may be performed on the surface of the original plate 60 to be the back surface (32) of the original plate 60 (the translucent resin sheet included in the light guide plate 30).
 撥液処理の程度としては、撥液処理された原板60の表面に水滴を滴下した際の接触角が80度~130度、好ましくは85度~120度、より好ましくは90度~110度である。接触角を80度以上とすることで、反射ドット(印刷ドット)35,35同士の連結を防止することができ、また、より密に反射ドット35を設けることができる。更に、接触角を130度以下とすることで、反射ドット35と、原板60の密着性を高く保つことが可能である。 The degree of the liquid repellent treatment is such that the contact angle when a water droplet is dropped on the surface of the liquid-repellent original plate 60 is 80 to 130 degrees, preferably 85 to 120 degrees, more preferably 90 to 110 degrees. is there. By setting the contact angle to 80 degrees or more, the reflection dots (printing dots) 35 and 35 can be prevented from being connected to each other, and the reflection dots 35 can be provided more densely. Furthermore, by setting the contact angle to 130 degrees or less, it is possible to keep the adhesion between the reflective dots 35 and the original plate 60 high.
 撥液処理の例は、撥液処理剤としての表面改質剤を用いる処理、各種エネルギー線による処理、化学吸着による処理、材料表面におけるグラフト重合による処理などである。 Examples of the liquid repellent treatment include treatment using a surface modifier as a liquid repellent treatment, treatment with various energy rays, treatment by chemical adsorption, treatment by graft polymerization on the material surface, and the like.
 表面改質剤を用いる処理は、原板60の表面上に少量の表面改質剤を添加した撥液層を形成する処理である。撥液処理剤としての表面改質剤の例は、パーフルオロアルキル基(Rf基)を側鎖に有するビニル系のポリマーやRf基含有シリコーンなどである。撥液層は、表面改質剤を紙ウエス等に染み込ませて表面に塗布したり、表面改質剤をスプレーやインクジェット印刷により表面に吹き付ける等の方法で形成することができる。 The treatment using the surface modifier is a treatment for forming a liquid repellent layer with a small amount of the surface modifier added on the surface of the original plate 60. Examples of the surface modifier as the liquid repellent treatment agent are vinyl polymers having a perfluoroalkyl group (Rf group) in the side chain, Rf group-containing silicone, and the like. The liquid repellent layer can be formed by a method in which a surface modifier is soaked into a paper cloth or the like and applied to the surface, or the surface modifier is sprayed on the surface by spraying or ink jet printing.
 各種エネルギー線による処理は、エネルギー線により表面に撥液性をもたせる処理である。エネルギー線の例は、プラズマ、電子線、イオンビームなどである。プラズマ処理を利用した場合の撥液処理の例は、プラズマ・エッチングによって表面を粗化した後に、粗化された表面に例えば撥液性の単分子膜を形成すること、フッ素系ガスプラズマによる表面のフッ素化、撥液化合物から構成される被膜をプラズマCVDによって表面に形成すること、プラズマ重合によって表面上に撥液性薄膜を形成すること等である。 The treatment with various energy rays is a treatment for imparting liquid repellency to the surface with energy rays. Examples of energy rays are plasma, electron beam, ion beam and the like. Examples of liquid repellent treatment using plasma treatment are: surface roughening by plasma etching, then forming, for example, a liquid repellent monomolecular film on the roughened surface, surface by fluorine-based gas plasma These include fluorination, formation of a film composed of a liquid repellent compound on the surface by plasma CVD, formation of a liquid repellent thin film on the surface by plasma polymerization, and the like.
 表面粗化による処理の例は、熱プレスによる原板60の表面への凹凸形状の付与、薬品によるエッチング、ブラスト処理などである。 Examples of treatment by surface roughening include imparting irregularities to the surface of the original plate 60 by hot pressing, etching with chemicals, blasting, and the like.
 化学吸着による処理では、吸着分子の末端をフッ素で修飾することが好ましい。特に、末端の置換基としてはCF3基が撥液性の観点から好ましい。 In the treatment by chemical adsorption, it is preferable to modify the end of the adsorbed molecule with fluorine. In particular, the CF3 group is preferred as the terminal substituent from the viewpoint of liquid repellency.
 このような処理の例のうち、フッ素系ガスプラズマによる表面のフッ素化が簡便で且つ均一に表面処理を行える点で好ましい。 Among the examples of such treatment, the fluorination of the surface by fluorine-based gas plasma is preferable because it can be easily and uniformly performed.
 搬送ベルト71は、図示しないモーターによって矢印Aで示す水平方向に移動可能とされている。インクジェットノズル51から噴射されたインク54は、紫外線硬化樹脂からなり、原板60に着弾した後、円形状に徐々に拡がっていく。さらに、導光板製造装置200は、図示しない紫外線照射装置を備えている。インクには顔料を添加してもよく、無添加でもよい。 The conveyor belt 71 can be moved in the horizontal direction indicated by an arrow A by a motor (not shown). The ink 54 ejected from the inkjet nozzle 51 is made of an ultraviolet curable resin, and after having landed on the original plate 60, gradually expands into a circular shape. Furthermore, the light guide plate manufacturing apparatus 200 includes an ultraviolet irradiation device (not shown). A pigment may be added to the ink, or it may not be added.
 顔料は、好ましくは炭酸カルシウム粒子、硫酸バリウム粒子及び二酸化チタン粒子の少なくとも何れか一つである。炭酸カルシウム粒子、硫酸バリウム粒子及び二酸化チタン粒子それぞれの累積50%粒子径D50は、50~3000nm、より好ましくは、100~1500nm、更に好ましくは300~600nmである。累積50%粒子径D50が50~3000nmの範囲内にある炭酸カルシウム粒子、硫酸バリウム粒子、二酸化チタン粒子は、市販品から粒度分布に基づいて適宜選択することにより入手が可能である。顔料のインクにおける含有割合は、通常、インクの全体質量を基準として0.5~15.0質量%程度である。炭酸カルシウム粒子、硫酸バリウム粒子及び二酸化チタン粒子の少なくとも一つである顔料を利用したインクは、無機物を利用したインクである。 The pigment is preferably at least one of calcium carbonate particles, barium sulfate particles and titanium dioxide particles. The cumulative 50% particle diameter D50 of each of the calcium carbonate particles, barium sulfate particles and titanium dioxide particles is 50 to 3000 nm, more preferably 100 to 1500 nm, still more preferably 300 to 600 nm. Calcium carbonate particles, barium sulfate particles, and titanium dioxide particles having an accumulated 50% particle diameter D50 in the range of 50 to 3000 nm can be obtained by appropriately selecting from commercially available products based on the particle size distribution. The content ratio of the pigment in the ink is usually about 0.5 to 15.0% by mass based on the total mass of the ink. An ink using a pigment which is at least one of calcium carbonate particles, barium sulfate particles and titanium dioxide particles is an ink using an inorganic substance.
 光重合性成分は、ビニル基等の光重合性官能基を有し、好ましくはヒドロキシル基を有しない光重合性モノマー及び/又は光重合性オリゴマーから構成される。ヒドロキシル基を有しない光重合性モノマーの含有割合は、好ましくは、インクの全体質量を基準として65~75質量%である。ヒドロキシル基を有しない光重合性オリゴマーの含有割合は、好ましくは、インクの全体質量を基準として10~20質量%である。 The photopolymerizable component has a photopolymerizable functional group such as a vinyl group, and is preferably composed of a photopolymerizable monomer and / or a photopolymerizable oligomer having no hydroxyl group. The content ratio of the photopolymerizable monomer having no hydroxyl group is preferably 65 to 75% by mass based on the total mass of the ink. The content of the photopolymerizable oligomer having no hydroxyl group is preferably 10 to 20% by mass based on the total mass of the ink.
 ヒドロキシル基を有しない光重合性モノマーは、例えば、1,4-ブタンジオールジアクリレート(例えば、サートマージャパン(株)製、SR213)、1,6-ヘキサンジオールジアクリレート(例えば、サートマージャパン(株)製、SR238F)、1,3-ブチレンジアクリレート(例えば、サートマージャパン(株)製、SR212)、1,9-ノナンジオールジアクリレート(例えば、新中村化学工業(株)製、A-NOD-N)、及び、プロポキシ化(2)ネオペンチルグリコールジアクリレート(例えば、サートマージャパン(株)製、SR9003)から選ばれる。 Examples of the photopolymerizable monomer having no hydroxyl group include 1,4-butanediol diacrylate (for example, SR213 manufactured by Sartomer Japan, Inc.), 1,6-hexanediol diacrylate (for example, Sartomer Japan ( SR238F), 1,3-butylene diacrylate (for example, Sartomer Japan, SR212), 1,9-nonanediol diacrylate (for example, Shin-Nakamura Chemical Co., Ltd., A- NOD-N) and propoxylated (2) neopentyl glycol diacrylate (for example, SR9003 manufactured by Sartomer Japan, Inc.).
 ヒドロキシル基を有しない光重合性オリゴマーは、好ましくは、脂肪族ウレタン(メタ)アクリレート(例えば、サートマージャパン(株)製、CN985B88、CN991)を含む。脂肪族ウレタン(メタ)アクリレートは、脂肪族ポリイソシアネートと脂肪族ポリオールとから形成されるポリウレタンオリゴマー鎖と、これに結合したアクリレート基又はメタクリレート基とを有する光重合性オリゴマーである。脂肪族ウレタン(メタ)アクリレートのガラス転移温度は、好ましくは40℃以上である。 The photopolymerizable oligomer having no hydroxyl group preferably contains an aliphatic urethane (meth) acrylate (for example, CN985B88, CN991 manufactured by Sartomer Japan, Inc.). The aliphatic urethane (meth) acrylate is a photopolymerizable oligomer having a polyurethane oligomer chain formed from an aliphatic polyisocyanate and an aliphatic polyol, and an acrylate group or a methacrylate group bonded thereto. The glass transition temperature of the aliphatic urethane (meth) acrylate is preferably 40 ° C. or higher.
 光重合開始剤は、紫外線硬化型樹脂の分野において通常用いられているものから適宜選択することができる。光重合開始剤のインクにおける含有割合は、通常、0.5~10.0質量%程度である。 The photopolymerization initiator can be appropriately selected from those usually used in the field of ultraviolet curable resins. The content of the photopolymerization initiator in the ink is usually about 0.5 to 10.0% by mass.
 インクジェットインクは、本発明の趣旨を逸脱しない範囲で、顔料、光重合性成分及び光重合開始剤以外の成分を含有していてもよい。 The inkjet ink may contain components other than the pigment, the photopolymerizable component, and the photopolymerization initiator without departing from the spirit of the present invention.
 ドットパターン印刷を行う際には、まず、原板60の非印刷面60bを吸引吸着して反りを排除し、インクジェットノズル51から原板60にインク54を所定量噴射してドットパターン印刷部55を生成する。その後、紫外線照射装置が設けられた位置にドットパターン印刷部55が来るまで、モーターによってテーブル52を移動させて原板53を搬送する。それから、紫外線照射装置によって原板53におけるドットパターン印刷部55に紫外線を照射することにより、インクを硬化させて図2に示す印刷ドット35を生成する。 When performing dot pattern printing, first, the non-printing surface 60b of the original plate 60 is sucked and adsorbed to eliminate warpage, and a predetermined amount of ink 54 is ejected from the inkjet nozzle 51 to the original plate 60 to generate the dot pattern printing unit 55. To do. Thereafter, the table 52 is moved by the motor to convey the original plate 53 until the dot pattern printing unit 55 comes to the position where the ultraviolet irradiation device is provided. Then, by irradiating the dot pattern printing unit 55 on the original plate 53 with ultraviolet rays by an ultraviolet irradiation device, the ink is cured and the printing dots 35 shown in FIG. 2 are generated.
 ここで、本実施形態においては、インクジェットノズル51からインク54を噴射する際、原板60の非印刷面60bを吸引吸着して反りを排除することで、インクジェットノズル51と原板53との距離を2.8mmに設定している。低精細のドットパターンを形成する場合には、インクジェットノズル51と原板53との距離(以下「ギャップ距離」という)Dが大きい場合でも印刷パターンにスジが生じることはほとんどなかったため、インクジェットノズル51と原板53との接触を避けるために、ギャップ距離Dを大きくとっていた。 Here, in this embodiment, when the ink 54 is ejected from the inkjet nozzle 51, the distance between the inkjet nozzle 51 and the original plate 53 is set to 2 by sucking and adsorbing the non-printing surface 60 b of the original plate 60 to eliminate warpage. .8mm is set. When forming a low-definition dot pattern, even when the distance D (hereinafter referred to as “gap distance”) D between the inkjet nozzle 51 and the original plate 53 is large, streaks are hardly generated in the print pattern. In order to avoid contact with the original plate 53, the gap distance D was made large.
 しかし、高精細のドットパターンを形成する場合には、ギャップ距離Dが大きいと、印刷パターンにスジが発生することがあり、このスジによって製品の品質が低下する。この点、ここでは、ドットパターン印刷を行う際のインクジェットノズル51と原板60との距離が、2.8mmに調整されている。インクジェットノズル51と原板60との距離が、2.8mmに調整されていることにより、導光板30に施されたドットパターン印刷の印刷面におけるスジの発生を抑制することができる。したがって、導光板30を用いた面光源装置20や液晶表示装置1の品質向上を図ることができる。 However, when a high-definition dot pattern is formed, if the gap distance D is large, streaks may occur in the printed pattern, and this streak degrades product quality. In this regard, here, the distance between the inkjet nozzle 51 and the original plate 60 when performing dot pattern printing is adjusted to 2.8 mm. By adjusting the distance between the inkjet nozzle 51 and the original plate 60 to 2.8 mm, it is possible to suppress the occurrence of streaks on the printing surface of the dot pattern printing applied to the light guide plate 30. Accordingly, the quality of the surface light source device 20 and the liquid crystal display device 1 using the light guide plate 30 can be improved.
 導光板30に施されたドットパターン印刷の印刷面におけるスジの発生を抑制するためのギャップ距離Dは2.8mm以下となる。さらには、ギャップ距離Dを1.8mm以下とすることにより、さらに好適にスジの発生を抑制することができる。また、ギャップ距離Dは小さい方が望ましいが、ギャップ距離Dの下限値については、ドットパターン印刷を施す際におけるインクジェットノズル51と原板53との接触を避けることができる程度の大きさとすることができる。具体的には、ギャップ距離Dを0.4mm以上、あるいは0.5mm以上とすることができる。これらの観点からは、ギャップ距離は、0.4mm以上2.8mm以下とすることが必要であり、0.5mm以上1.8mm以下とすることが好適であり、0.5mm以上1.0mm以下とすることがさらに好適である。 The gap distance D for suppressing the occurrence of streaks on the printing surface of the dot pattern printing applied to the light guide plate 30 is 2.8 mm or less. Furthermore, by setting the gap distance D to 1.8 mm or less, the generation of streaks can be more suitably suppressed. The gap distance D is preferably small, but the lower limit of the gap distance D can be set to a size that can avoid contact between the inkjet nozzle 51 and the original plate 53 when performing dot pattern printing. . Specifically, the gap distance D can be set to 0.4 mm or more, or 0.5 mm or more. From these viewpoints, the gap distance needs to be 0.4 mm or more and 2.8 mm or less, preferably 0.5 mm or more and 1.8 mm or less, and 0.5 mm or more and 1.0 mm or less. Is more preferable.
 (実施例)
 以下、光学シートの印刷面におけるスジの発生状況についての実験を行った。この実験では、ギャップ距離Dを適宜変更して複数の光学シートを製造し、これらの光学シートについて、それぞれスジの発生状況を目視によって評価した。設定したギャップ距離Dは、0.5mm、1.3mm、2.3mm、4.0mm、および9.0mmとした。
(Example)
Hereinafter, an experiment was conducted on the occurrence of streaks on the printing surface of the optical sheet. In this experiment, a plurality of optical sheets were manufactured by appropriately changing the gap distance D, and the occurrence of streaks was visually evaluated for these optical sheets. The set gap distance D was 0.5 mm, 1.3 mm, 2.3 mm, 4.0 mm, and 9.0 mm.
 また、共通の条件として、原板(光学シート)は40インチパネルのものを用いた。また、使用したインクのインク粘度は18.6mPa・s、インク液量は30pLとした。さらに、ドットパターンにおけるドット直径はおよそ130μm程度とした。さらに、原板を搬送する際の走査(搬送)速度は400mm/s、解像度は150dpiとした。また、インクが原板に着弾してから1.5秒後に紫外線照射を行った。紫外線照射の際のUV積算光量は0.25J/cm2とした。 Also, as a common condition, a 40-inch panel was used as the original plate (optical sheet). The ink used had an ink viscosity of 18.6 mPa · s and an ink liquid amount of 30 pL. Furthermore, the dot diameter in the dot pattern was about 130 μm. Further, the scanning (conveyance) speed when conveying the original plate was 400 mm / s, and the resolution was 150 dpi. In addition, ultraviolet irradiation was performed 1.5 seconds after the ink landed on the original plate. The UV integrated light quantity at the time of ultraviolet irradiation was 0.25 J / cm2.
 その結果、ギャップ距離Dが0.5mm、1.3mm、2.3mmの場合には、いずれもスジの発生がほとんど見られなかった。また、ギャップ距離Dが5.0mmの場合には、隣接するドットにおけるインク同士がくっつき、ライン状にスジが発生する結果となった。さらに、ギャップ距離Dが9.0mmの場合には、非印刷領域にまでインクが飛散し、スジが大きく発生する結果となった。 As a result, when the gap distance D was 0.5 mm, 1.3 mm, and 2.3 mm, almost no streak was observed. Further, when the gap distance D was 5.0 mm, the inks in the adjacent dots adhered to each other, resulting in the generation of lines in a line shape. Furthermore, when the gap distance D was 9.0 mm, the ink was scattered to the non-printing area, resulting in large streaks.
 導光板の印刷面を目視した場合、ギャップ距離Dが2.3mmでスジがほとんど見られず、4.0mmでスジがはっきり見られたが、ギャップ距離Dが2.8mm程度であれば、ほとんどスジが見られないものと考えられる。また、ギャップ距離Dが1.3mmであれば、スジはほぼ完全に見られなかった。この結果から、ギャップ距離Dであれば、スジはほぼ完全に見られなくなると考えられる。よって、本発明のギャップ距離Dを2.8mmに規定し、より好適なギャップ距離Dを1.8mmに規定した。 When the printed surface of the light guide plate was visually observed, almost no streaks were observed at a gap distance D of 2.3 mm, but streaks were clearly seen at 4.0 mm. However, when the gap distance D was about 2.8 mm, almost no streaks were observed. It is thought that streaks are not seen. In addition, when the gap distance D was 1.3 mm, streaks were hardly seen. From this result, it is considered that when the gap distance is D, streaks cannot be seen almost completely. Therefore, the gap distance D of the present invention is defined as 2.8 mm, and the more preferable gap distance D is defined as 1.8 mm.
 本発明の光学シートの製造方法、光学シート、光学シートの製造装置は、光学シートの背面にドットパターン印刷を施す際に、印刷面におけるスジの発生を抑制することができる。本発明によれば、光学シートを用いた製品(面光源装置及び透過型画像表示装置)の品質向上を図ることができる。 The optical sheet manufacturing method, optical sheet, and optical sheet manufacturing apparatus of the present invention can suppress the occurrence of streaks on the printed surface when dot pattern printing is performed on the back surface of the optical sheet. ADVANTAGE OF THE INVENTION According to this invention, the quality improvement of the product (A surface light source device and a transmissive image display apparatus) using an optical sheet can be aimed at.
 1…液晶表示装置、10…透過型画像表示部、11…液晶セル、12…直線偏光板、20…面光源装置、22…LED光源、30…導光板、31…表面、32…背面、33,34…側面、35…印刷ドット、41…各種フィルム、42…反射シート、50…インクジェットヘッド、51…インクジェットノズル、52…テーブル、53…原板、54…インク、55…ドットパターン印刷部、60…原板(透光性樹脂シート)、60a…印刷面、60b…非印刷面、70…搬送手段、71…搬送ベルト、71a…開口部、72…搬送ローラー、73…吸引ボックス、73a…天板、73b…開口部、200…導光板製造装置(光学シードの製造装置)、D…ギャップ距離、L…原板の対角線の長さ、T…原板の対角線の長さ、A…原板の移動方向。 DESCRIPTION OF SYMBOLS 1 ... Liquid crystal display device, 10 ... Transmission type image display part, 11 ... Liquid crystal cell, 12 ... Linearly polarizing plate, 20 ... Surface light source device, 22 ... LED light source, 30 ... Light guide plate, 31 ... Front surface, 32 ... Back surface, 33 , 34 ... side face, 35 ... printed dots, 41 ... various films, 42 ... reflective sheet, 50 ... inkjet head, 51 ... inkjet nozzle, 52 ... table, 53 ... original plate, 54 ... ink, 55 ... dot pattern printing section, 60 ... Original plate (translucent resin sheet), 60a ... printing surface, 60b ... non-printing surface, 70 ... conveying means, 71 ... conveying belt, 71a ... opening, 72 ... conveying roller, 73 ... suction box, 73a ... top plate 73b: opening, 200: light guide plate manufacturing apparatus (optical seed manufacturing apparatus), D: gap distance, L: length of diagonal of original plate, T: length of diagonal of original plate, A: movement of original plate Direction.

Claims (9)

  1.  光入射面から入射した光を、前記光入射面と交差する光出射面から出射する光学シートであり、当該光学シートの原板の背面に対して、インクジェットノズルからインクを噴射することによってドットパターンが印刷された前記光学シートを製造する方法であって、
     前記原板の非印刷面を吸引吸着して前記原板の反りを排除し、
     前記ノズルと前記原板との距離を、2.8mm以下に調整し、
     前記インクを噴射して前記ドットパターンを印刷する光学シートの製造方法。
    An optical sheet that emits light incident from a light incident surface from a light emitting surface that intersects the light incident surface, and a dot pattern is formed by ejecting ink from an inkjet nozzle to the back surface of the original plate of the optical sheet. A method for producing the printed optical sheet,
    The non-printing surface of the original plate is sucked and adsorbed to eliminate warpage of the original plate,
    The distance between the nozzle and the original plate is adjusted to 2.8 mm or less,
    An optical sheet manufacturing method for printing the dot pattern by ejecting the ink.
  2.  前記原板の厚さが4.5mm以下である請求項1に記載の光学シートの製造方法。 The method for producing an optical sheet according to claim 1, wherein the thickness of the original plate is 4.5 mm or less.
  3.  前記原板の対角線の長さLが500mm以上である請求項1又は2に記載の光学シートの製造方法。 The method for producing an optical sheet according to claim 1 or 2, wherein a length L of a diagonal line of the original plate is 500 mm or more.
  4.  前記原板の対角線の長さLと厚みTが下記式(1)を満たす請求項1~3の何れか一項に記載の光学シートの製造方法。
    Figure JPOXMLDOC01-appb-M000001
     ただし、Lは、原板の対角線の長さ(mm)、Tは、原板の厚み(mm)である。
    The method for producing an optical sheet according to any one of claims 1 to 3, wherein the diagonal length L and thickness T of the original plate satisfy the following formula (1).
    Figure JPOXMLDOC01-appb-M000001
    However, L is the length (mm) of the diagonal of the original plate, and T is the thickness (mm) of the original plate.
  5.  前記ドットパターンを印刷する際に、前記原板はテーブル上に載置されており、
     前記ノズルと前記テーブルとの距離が、2.8mmに前記原板の厚さを加算した距離以下である請求項1~4の何れか一項に記載の光学シートの製造方法。
    When printing the dot pattern, the original plate is placed on a table,
    The method for producing an optical sheet according to any one of claims 1 to 4, wherein a distance between the nozzle and the table is equal to or less than a distance obtained by adding a thickness of the original plate to 2.8 mm.
  6.  請求項1~5の何れか一項に記載の光学シートの製造方法によって製造された光学シート。 An optical sheet manufactured by the method for manufacturing an optical sheet according to any one of claims 1 to 5.
  7.  請求項6に記載の光学シートと、
     前記光学シートの光入射面に対向して配置された光源と、を備える面光源装置。
    The optical sheet according to claim 6,
    A surface light source device comprising: a light source disposed to face a light incident surface of the optical sheet.
  8.  請求項7に記載の面光源装置を備え、
     前記光学シートの光出射面に対向して配置され、前記光源から出射された光に照射されて画像を表示する透過型画像表示部を備える透過型画像表示装置。
    The surface light source device according to claim 7,
    A transmission-type image display device including a transmission-type image display unit that is disposed so as to face a light emission surface of the optical sheet and displays an image by being irradiated with light emitted from the light source.
  9.  光入射面から入射した光を、前記光入射面と交差する光出射面から出射する光学シートであり、当該光学シートの原板の背面に対して、ノズルからインクを噴射することによってドットパターンが印刷された前記光学シートを製造する装置であって、
     前記原板の非印刷面を吸引吸着して前記原板の反りを排除し、前記ノズルと、前記原板が載置されるテーブルとの距離が、2.8mmに前記原板の厚さを加算した距離以下に調整し、
     前記インクを噴射して前記ドットパターンを印刷する光学シートの製造装置。
    An optical sheet that emits light incident from a light incident surface from a light emitting surface that intersects the light incident surface, and a dot pattern is printed by ejecting ink from a nozzle onto the back surface of the original plate of the optical sheet. An apparatus for manufacturing the optical sheet,
    The non-printing surface of the original plate is sucked and sucked to eliminate warpage of the original plate, and the distance between the nozzle and the table on which the original plate is placed is equal to or less than the distance obtained by adding the thickness of the original plate to 2.8 mm Adjust to
    An optical sheet manufacturing apparatus for printing the dot pattern by ejecting the ink.
PCT/JP2012/066767 2011-07-05 2012-06-29 Method for manufacturing optical sheet WO2013005687A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147003045A KR20140049549A (en) 2011-07-05 2012-06-29 Method for manufacturing optical sheet
CN201280033112.6A CN103649622A (en) 2011-07-05 2012-06-29 Method for manufacturing optical sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011149442A JP2013016398A (en) 2011-07-05 2011-07-05 Manufacturing method of optical sheet
JP2011-149442 2011-07-05

Publications (1)

Publication Number Publication Date
WO2013005687A1 true WO2013005687A1 (en) 2013-01-10

Family

ID=47437039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066767 WO2013005687A1 (en) 2011-07-05 2012-06-29 Method for manufacturing optical sheet

Country Status (4)

Country Link
JP (1) JP2013016398A (en)
KR (1) KR20140049549A (en)
CN (1) CN103649622A (en)
WO (1) WO2013005687A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406246A (en) * 2013-07-11 2013-11-27 东莞科视自动化科技有限公司 Parallel light curing equipment with staggered area array light sources and curing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6177017B2 (en) * 2013-06-12 2017-08-09 住友化学株式会社 Defect inspection system
JP2015194628A (en) * 2014-03-31 2015-11-05 シャープ株式会社 Double-sided display apparatus, lighting device, and light guide plate
CN106031907A (en) * 2015-03-12 2016-10-19 大东扬机械股份有限公司 A suction type spray device and a process of forming a coating film on a light-transmitting plate by using the device
CN108292061B (en) 2015-11-19 2021-09-21 索尼公司 Illumination device and display device
JP6967394B2 (en) * 2017-08-09 2021-11-17 株式会社小糸製作所 Light guide and vehicle lighting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025150A (en) * 2005-07-14 2007-02-01 Seiko Epson Corp Optical sheet, backlight unit, electrooptical device, electronic equipment and manufacturing method of optical sheet
WO2008026454A1 (en) * 2006-08-31 2008-03-06 Konica Minolta Opto, Inc. Optical film, method for manufacturing the optical film, polarizing plate, and liquid crystal display device
JP2010234737A (en) * 2009-03-31 2010-10-21 Fujifilm Corp Method and apparatus for producing optical film and optical compensation film
JP2011100724A (en) * 2009-10-09 2011-05-19 Mitsubishi Rayon Co Ltd Image display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0318951D0 (en) * 2003-08-13 2003-09-17 Neal Stephen Light frames
CN100488777C (en) * 2004-03-17 2009-05-20 松下电器产业株式会社 Liquid drop placing device and liquid drop placing method
CN100492125C (en) * 2006-11-17 2009-05-27 群康科技(深圳)有限公司 LCD device
TWI657938B (en) * 2007-05-18 2019-05-01 日商武藏工業股份有限公司 Method and device for ejecting liquid material
CN101408640A (en) * 2007-10-09 2009-04-15 富士迈半导体精密工业(上海)有限公司 Light source module group

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025150A (en) * 2005-07-14 2007-02-01 Seiko Epson Corp Optical sheet, backlight unit, electrooptical device, electronic equipment and manufacturing method of optical sheet
WO2008026454A1 (en) * 2006-08-31 2008-03-06 Konica Minolta Opto, Inc. Optical film, method for manufacturing the optical film, polarizing plate, and liquid crystal display device
JP2010234737A (en) * 2009-03-31 2010-10-21 Fujifilm Corp Method and apparatus for producing optical film and optical compensation film
JP2011100724A (en) * 2009-10-09 2011-05-19 Mitsubishi Rayon Co Ltd Image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406246A (en) * 2013-07-11 2013-11-27 东莞科视自动化科技有限公司 Parallel light curing equipment with staggered area array light sources and curing method thereof

Also Published As

Publication number Publication date
JP2013016398A (en) 2013-01-24
KR20140049549A (en) 2014-04-25
CN103649622A (en) 2014-03-19

Similar Documents

Publication Publication Date Title
TWI530705B (en) Light guide plate, surface light source device, transmission-type image display device, method of manufacturing light guide plate, and ultraviolet curing type ink-jet ink for light guide plate
WO2013005687A1 (en) Method for manufacturing optical sheet
JP5465748B2 (en) Light guide plate, surface light source device, transmissive image display device, light distribution pattern design method for light guide plate, and light guide plate manufacturing method
KR100819411B1 (en) Method of manufacturing optical sheet, optical sheet, backlight unit, display device, and electronic apparatus
US8730432B2 (en) Optical film and method for manufacturing the same and liquid crystal display device using the same
TWI572911B (en) A light guide plate, a surface light source device, a penetrating type image display device, a design method for a light distribution pattern for a light guide plate, and a manufacturing method of a light guide plate
EP2481782A2 (en) Ultraviolet curing type ink-jet for light guide plate, and light guide plate using the same
JP5584716B2 (en) Method for manufacturing light guide plate
JP2010146772A (en) Light guide plate, and method of manufacturing the same
JP2014203671A (en) Backlight light guide plate, backlight light guide plate manufacturing method and ink-jet printer
JP5877752B2 (en) Method for manufacturing light guide plate
JP2013101783A (en) Manufacturing method of light guide plate, light guide plate, edge-light plane light source device and transmission type image display device
TWI468792B (en) Optical member and method for manufacturing the same and backlight using the optical member, and method for manufacturing the same
JP5729637B2 (en) Manufacturing method of contrast improving sheet
US20120314157A1 (en) Optical film and method for manufacturing the same and liquid crystal display device using the same
TW201520618A (en) Light guide plate, planar light source device, transmission type image display device, light distribution pattern design method for light guide plate, and manufacturing method of light guide plate
JP5722055B2 (en) Light guide plate manufacturing method and apparatus, light guide plate, surface light source device including the same, and transmissive image display device
WO2012105518A1 (en) Method for producing light guide plate, light guide plate, planar light-source device provided with same, and transmissive image-display device
JP2013186975A (en) Manufacturing method of optical sheet
JP2012145893A (en) Optical sheet and method for manufacturing the same
JP5754950B2 (en) Optical sheet and manufacturing method thereof
JPH06194525A (en) Lightconductor and its production
JP2013250419A (en) Method for manufacturing light guide plate
KR20230106379A (en) Light guide plate with improved external visibility with complex pattern and display device including same
JP2013239371A (en) Method for manufacturing light guide plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147003045

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12807175

Country of ref document: EP

Kind code of ref document: A1