WO2013005497A1 - Power supply device for high frequency electrical power amplification circuit, and high frequency electrical power amplifying device - Google Patents

Power supply device for high frequency electrical power amplification circuit, and high frequency electrical power amplifying device Download PDF

Info

Publication number
WO2013005497A1
WO2013005497A1 PCT/JP2012/063436 JP2012063436W WO2013005497A1 WO 2013005497 A1 WO2013005497 A1 WO 2013005497A1 JP 2012063436 W JP2012063436 W JP 2012063436W WO 2013005497 A1 WO2013005497 A1 WO 2013005497A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
frequency power
power supply
transformer
high frequency
Prior art date
Application number
PCT/JP2012/063436
Other languages
French (fr)
Japanese (ja)
Inventor
辻仁司
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013005497A1 publication Critical patent/WO2013005497A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0244Stepped control
    • H03F1/025Stepped control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/504Indexing scheme relating to amplifiers the supply voltage or current being continuously controlled by a controlling signal, e.g. the controlling signal of a transistor implemented as variable resistor in a supply path for, an IC-block showed amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/507A switch being used for switching on or off a supply or supplying circuit in an IC-block amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/511Many discrete supply voltages or currents or voltage levels can be chosen by a control signal in an IC-block amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/516Some amplifier stages of an amplifier use supply voltages of different value

Definitions

  • the present invention relates to a power supply device for a high-frequency power amplification circuit, and more particularly to a power supply device capable of increasing the power efficiency of the high-frequency power amplification circuit and a high-frequency power amplification device including the same.
  • Patent Document 1 discloses a configuration in which the power supply voltage of a high-frequency amplifier circuit follows the amplitude change (envelope) of a high-frequency signal before amplification in order to increase the efficiency of the high-frequency amplifier circuit.
  • the frequency of the amplitude change of the high-frequency signal here is not the carrier wave frequency (for example, 1 to 2 GHz in a mobile phone) but the frequency of the carrier wave amplitude change (about 10 to 100 MHz).
  • a voice amplifier circuit includes a class D amplifier circuit (digital amplifier).
  • the frequency band to be handled is a high frequency band, and very high speed switching is required.
  • FIG. 1 is a block diagram of a high-frequency power amplifier circuit 50 disclosed in Patent Document 1.
  • the high frequency power amplifier circuit 50 shown in FIG. 1 includes an envelope detection circuit 54, a supply voltage selection circuit 56, a power supply voltage adjustment circuit 58 and a high frequency amplifier circuit 52.
  • the envelope detection circuit 54 detects the envelope of the high frequency signal (RFIN), and the supply voltage selection circuit 56 selects the voltage sources (V1 to V4) so as to follow the envelope of the high frequency signal (RFIN).
  • the power supply voltage adjustment circuit 58 adjusts the waveform of the selected voltage and supplies it to the high frequency amplifier circuit 52 as a power supply voltage. Thereby, the high frequency amplifier circuit 52 amplifies the high frequency signal (RFIN) and outputs the high frequency signal (RFOUT).
  • the present invention solves the above-described problems of circuit and control complexity, and has a relatively simple configuration, and allows a power supply voltage for a high-frequency amplifier circuit to follow the envelope of a high-frequency signal, and a power supply device for a high-frequency power amplifier circuit
  • An object is to provide a high-frequency power amplifier.
  • a power supply device for a high-frequency power amplifier circuit is a device that changes an output voltage supplied as a power supply voltage to a high-frequency power amplifier circuit that amplifies a high-frequency signal according to a change in amplitude of the high-frequency signal.
  • a plurality of bidirectional converters that are provided between an input part of the input voltage and an output part of the output voltage, each including a choke coil and capable of charge supply and regeneration;
  • An amplitude change monitoring circuit that detects an amplitude change of the high-frequency signal, and controls charge supply / regeneration of the bidirectional converter so that the output voltage follows the amplitude change of the high-frequency signal;
  • a transformer is constituted by the choke coil of the supply converter that performs the supply operation and the choke coil of the regeneration converter that performs the regeneration operation.
  • the high-frequency power amplifier of the present invention includes a high-frequency power amplifier circuit that amplifies a high-frequency signal, and a high-frequency power amplifier that changes an output voltage supplied as a power supply voltage to the high-frequency power amplifier circuit according to a change in amplitude of the high-frequency signal.
  • a circuit power supply A plurality of bidirectional converters that are provided between the input part of the input voltage and the output part of the output voltage and are capable of supplying and regenerating charges, An amplitude change monitoring circuit that detects an amplitude change (envelope) of the high-frequency signal and controls charge supply / regeneration of the bidirectional converter so that the output voltage follows the amplitude change of the high-frequency signal;
  • a transformer is constituted by a choke coil of a supply converter that performs a supply operation and a choke coil of a regeneration converter that performs a regeneration operation.
  • the bidirectional converter can supply and regenerate, the ON / OFF time of the internal switch element of the bidirectional converter is nonlinearly controlled (pulse width control, frequency control, combined control of sleep time and burst time) Etc.), the dynamic range can be increased and high-speed control can be achieved. Therefore, it is possible to adjust the amplitude and phase of the input signal and output voltage with high accuracy regardless of the range from low frequency to high frequency.
  • the supply / regenerative route can be multiplexed by forming a transformer with the choke coil of the supply converter that performs the supply operation and the choke coil of the regeneration converter that performs the regenerative operation. . Therefore, the number of converter phases can be reduced.
  • FIG. 1 is a block diagram of a high-frequency power amplifier circuit 50 disclosed in Patent Document 1.
  • FIG. 2 is a diagram showing a relationship among the power supply device 101 for the high frequency power amplifier circuit, the high frequency power amplifier 201 and the high frequency power amplifier circuit 100 according to the first embodiment.
  • FIG. 3 is a diagram showing the relationship between the power supply voltage Vout, the high frequency power signal RFout, and the envelope Ve for the high frequency power amplifier circuit 100.
  • FIG. 4 is a block diagram showing a configuration of the power supply device 101 for the high frequency power amplifier circuit according to the first embodiment.
  • FIG. 5 is a circuit diagram of basic bidirectional converters B-CONV1, B-CONV2... B-CONVn different from the bidirectional converters CONV1, CONV2...
  • FIG. 6 is a circuit diagram of bidirectional converters CONV1, CONV2... CONVn shown in FIG.
  • FIG. 7 is an example of a waveform diagram of currents flowing through the choke coils L1 to L4 shown in FIG.
  • FIG. 8 is a diagram illustrating a state in which the output voltage is made to follow the envelope of the input signal by supplying and regenerating four patterns of charge amounts.
  • FIG. 9 is a circuit diagram of the power supply device 102A for the high frequency power amplifier circuit according to the second embodiment.
  • FIG. 10 is a circuit diagram of another high-frequency power amplifier circuit power supply apparatus 102B of the second embodiment.
  • FIG. 11 is a circuit diagram of the power supply device 103 for the high frequency power amplifier circuit of the third embodiment.
  • FIG. 12 is an example of a waveform diagram of currents flowing through the choke coils L1A, L1B, L2, and L3.
  • FIG. 2 is a diagram showing the relationship among the power supply device 101 for the high frequency power amplifier circuit, the high frequency power amplifier 201 and the high frequency power amplifier circuit 100 according to the first embodiment.
  • the high frequency power amplifier circuit 100 receives the high frequency signal RFin, amplifies the power, and outputs the high frequency power signal RFout.
  • the power supply device 101 for the high frequency power amplifier circuit receives the input power supply voltage Vin, detects the amplitude change (envelope) of the high frequency signal RFin, and changes the output voltage Vout so as to follow it.
  • the high frequency power amplifier circuit 100 operates using the output voltage Vout of the power supply device 101 for the high frequency power amplifier circuit as a power supply voltage.
  • FIG. 3 is a diagram showing the relationship between the power supply voltage Vout, the high-frequency power signal RFout, and its envelope Ve for the high-frequency power amplifier circuit 100.
  • 3A shows a waveform when the power supply device 101 for the high frequency power amplifier circuit is operated
  • FIG. 3B shows a waveform when the power supply voltage for the high frequency power amplifier circuit 100 is constant.
  • the power supply voltage is also represented symmetrically. In general, it can be said that the difference between Vout and Ve is a loss. According to the present invention, this loss can be reduced.
  • FIG. 4 is a block diagram showing a configuration of the power supply device 101 for the high frequency power amplifier circuit according to the first embodiment.
  • a plurality of bidirectional converters CONV1, CONV2,... CONVn are provided between the input portion for the input voltage and the output portion for the output voltage.
  • Each of these bidirectional converters is a converter that can supply and regenerate electric charges.
  • the arrows on both the left and right sides of the input / output unit indicate the energy transfer direction.
  • the amplitude change monitoring circuit 10 detects the amplitude change (envelope) of the input signal, which is a high-frequency signal, and supplies the charge to the bidirectional converters CONV1, CONV2,... CONVn so that the output voltage follows the amplitude change of the high-frequency signal. Control regeneration.
  • An output side energy storage element ESC is provided at the output part of the bidirectional converter, and a regenerative energy storage element RESC for storing energy regenerated from the output side energy storage element ESC is provided at the input part of the bidirectional
  • the output side energy storage element ESC is, for example, a capacitor Co.
  • the regenerative energy storage element RESC is, for example, a capacitor Ci.
  • FIG. 5 is a circuit diagram of basic bidirectional converters B-CONV1, B-CONV2... B-CONVn different from the bidirectional converters CONV1, CONV2... CONVn shown in FIG.
  • Bidirectional converter B-CONV1 includes a rectifier element (high side element) Q11, a commutation element (low side element) Q12, and a choke coil L1.
  • Bidirectional converter B-CONV2 includes rectifying element Q21, commutation element Q22, and choke coil L2.
  • the bidirectional converter B-CONVn includes a rectifying element Qn1, a commutation element Qn2, and a choke coil Ln.
  • the commutation element Q12 of the bidirectional converter B-CONV1 when the commutation element Q12 of the bidirectional converter B-CONV1 is turned off and the rectification element Q11 is turned on, current flows from the input side to the output side to the choke coil L1, and excitation energy is accumulated in the choke coil L1. Energy is supplied to the output side. Thereafter, when the rectifying element Q11 is turned off and the commutation element Q12 is turned on, the current flowing through the choke coil L1 flows through the commutation element Q12, and the excitation energy of the choke coil L1 is supplied to the output side.
  • the output voltage can be changed to follow the envelope of the input signal.
  • FIG. 6 is a circuit diagram of the bidirectional converters CONV1, CONV2,... CONVn shown in FIG.
  • the bidirectional converter CONV1 includes a rectifying element Q11, a commutation element Q12, and a choke coil L1.
  • the bidirectional converter CONV2 is constituted by a rectifying element Q21, a commutation element Q22, and a choke coil L2.
  • the bidirectional converter CONV3 is constituted by a rectifying element Q31, a commutation element Q32, and a choke coil L3.
  • the bidirectional converter CONV4 includes a rectifying element Q41, a commutation element Q42, and a choke coil L4.
  • the transformer T13 is composed of two choke coils L1 and L3. That is, the choke coil L1 functions as a primary winding of the transformer T13, and the choke coil L3 functions as a secondary winding of the transformer T13.
  • a transformer T24 is constituted by two choke coils L2 and L4. The choke coil L2 functions as a primary winding of the transformer T24, and the choke coil L4 functions as a secondary winding of the transformer T24.
  • the polarity of the primary winding (choke coil L1) of the transformer T13 and the polarity of the secondary winding (choke coil L3) are connected between the rectifier element and the output unit so as to have an opposite relationship to each other. The same applies to the transformer T24.
  • FIG. 7 is an example of a waveform diagram of the current flowing through the choke coils L1 to L4.
  • the rectifier element Q11 of the converter CONV1 in the ON state and the commutation element Q12 are in the OFF state.
  • the rectifier element Q11 in the converter CONV1 is OFF, the commutation element Q12 is OFF, and the converter CONV3
  • the rectifying element Q31 is ON, and the commutation element Q32 is OFF.
  • rectifier element Q21 of converter CONV2 is in an ON state and commutation element Q22 is in an OFF state.
  • rectifier element Q21 in converter CONV2 is OFF, commutation element Q22 is OFF, and rectification of converter CONV4 is performed.
  • Element Q41 is ON and commutation element Q42 is OFF.
  • Excitation energy is accumulated in the transformer T13 in the period T1 and supplied to the output side, and the excitation energy of the transformer T13 is regenerated in the input side in the period T2.
  • the excitation energy is accumulated in the transformer T24 in the period T3 and supplied to the output side, and the excitation energy of the transformer T24 is regenerated in the input side in the period T4.
  • i1 (t) (V1 / L1) t (1)
  • the peak value of the current i1 is represented by i1peak
  • the peak value of the current i2 is represented by i2peak
  • the number of turns of the primary winding of the transformer T13 is represented by N1
  • the number of turns of the secondary winding is represented by N2.
  • i1peak x N1 i2peak x N2 (2)
  • i2 (t) i2peak-(V2 / L2) t
  • N1 is the number of turns of the primary winding (choke coil L2) of the transformer T24 and N2 is the number of turns of the secondary winding (choke coil L4), then N1> N2, so i3peak ⁇ i4peak. It is in.
  • FIG. 8 is a diagram showing a state in which the output voltage is made to follow the envelope of the input signal by supplying and regenerating the charge amount of the four patterns.
  • the horizontal axis is a timing chart of ON, OFF and SLEEP of these converters. As shown in FIG. 8, supply is performed during the ON period of the rectifier element (high side element) of the supply converter, and regeneration is performed during the ON period of the rectifier element (high side element) of the regenerative converter.
  • all of the commutation elements Q12, Q22, Q32, and Q42 of the four bidirectional converters are always OFF, but all of the four bidirectional converters CONV1, CONV2, CONV3, and CONV4 are rectifier elements. If the commutation element is turned on following the turn-off, the energy stored in the choke coil is “supplied” to the output side. If the commutation element is turned on first and the rectification element is turned on following the turn-off, the energy stored in the choke coil is “regenerated” to the input side.
  • the commutation elements Q12, Q22, Q32, and Q42 When the commutation elements Q12, Q22, Q32, and Q42 are all OFF and the difference between supply and regeneration can be controlled only by turning ON / OFF the rectifying elements Q11, Q21, Q31, and Q41, the commutation elements Q12, Q22, Q32, and Q42 may remain OFF.
  • FIG. 9 is a circuit diagram of the power supply device 102A for the high frequency power amplifier circuit according to the second embodiment.
  • the bidirectional converter CONV1 includes a rectifying element Q11, a commutation element Q12, and choke coils L1A and L1B.
  • the bidirectional converter CONV2 is composed of a rectifying element Q21, a commutation element Q22, and a choke coil L2.
  • the bidirectional converter CONV3 includes a rectifying element Q31, a commutation element Q32, and a choke coil L3.
  • the choke coils L1A and L1B are connected in series.
  • the choke coils L1A and L2 constitute a first transformer, and the choke coils L1B and L3 constitute a second transformer.
  • a plurality of choke coils of a certain converter and choke coils of a plurality of other converters may constitute a transformer.
  • FIG. 10 is a circuit diagram of another high-frequency power amplifier circuit power supply apparatus 102B of the second embodiment.
  • the bidirectional converter CONV1 includes a rectifying element Q11, a commutation element Q12, and a choke coil L1.
  • the bidirectional converter CONV2 is composed of a rectifying element Q21, a commutation element Q22, and a choke coil L2.
  • the bidirectional converter CONV3 includes a rectifying element Q31, a commutation element Q32, and choke coils L3A and L3B.
  • the choke coils L3A and L3B are connected in series.
  • the choke coils L1 and L3A constitute a first transformer
  • the choke coils L2 and L3B constitute a second transformer.
  • a plurality of choke coils of a plurality of converters and a plurality of choke coils of one converter may constitute a transformer.
  • FIG. 11 is a circuit diagram of the power supply device 103 for the high frequency power amplifier circuit of the third embodiment.
  • the bidirectional converter CONV1 includes a rectifying element Q11, a commutation element Q12, and choke coils L1A and L1B.
  • the bidirectional converter CONV2 includes a rectifying element Q21, a commutation element Q22, and a choke coil L2.
  • the bidirectional converter CONV3 includes a rectifying element Q31, a commutation element Q32, and a choke coil L3.
  • the choke coils L1A and L2A are connected in series.
  • the choke coils L1A and L2 constitute a first transformer T12
  • the choke coils L1B and L3 constitute a second transformer T13
  • the auxiliary switch element Qa is connected between the primary winding (choke coil L1A) of the first transformer T12 and the primary winding (choke coil L1B) of the second transformer T13.
  • the auxiliary switch element Qa is turned on after the excitation energy is accumulated in the choke coil L1B, whereby a commutation current as shown by a broken arrow in FIG. 11 flows.
  • the residual energy of the second transformer T13 can be released (supplied) to the output side.
  • FIG. 12 is an example of a waveform diagram of currents flowing through the choke coils L1A, L1B, L2, and L3.
  • the state of each switch element in each period is as follows.
  • the discharge direction of the residual energy of the choke coil can be freely changed, so that the variation of the current path for supply and regeneration can be increased. Therefore, the combination of the supply charge amount and the regenerative charge amount that can be taken by a small converter can be increased.
  • amplitude change monitoring circuit 100 ... high frequency power amplification circuit 101 ... high frequency power amplification circuit power supply device 102A, 102B ... high frequency power amplification circuit power supply device 103 ... high frequency power amplification circuit Power supply for 201 ... RF power amplifier

Abstract

In the present invention, bi-directional converters (CONV1-CONV4) are each configured from a rectifier element, a commutation element and choke coils (L1-L4). The choke coils (L1-L4) form a transformer configuration in which the choke coils of the plurality of bi-directional converters are magnetically coupled, and the supply/regeneration of the energy handled by the transformer is adjusted by the ON/OFF control of a switching element that is provided in the bi-directional converter and does not have a parasitic diode. With this configuration, a power supply device for a high frequency electrical power amplification circuit and a high frequency electrical power amplifying device are achieved in which an electrical power source voltage of a high frequency amplification circuit is tracked to a high frequency signal envelope and changed.

Description

高周波電力増幅回路用電源装置および高周波電力増幅装置Power supply device for high frequency power amplifier circuit and high frequency power amplifier device
 本発明は高周波電力増幅回路用の電源装置に関し、特に高周波電力増幅回路の電力効率を高めることができる電源装置および、それを備えた高周波電力増幅装置に関するものである。 The present invention relates to a power supply device for a high-frequency power amplification circuit, and more particularly to a power supply device capable of increasing the power efficiency of the high-frequency power amplification circuit and a high-frequency power amplification device including the same.
 特許文献1には、高周波増幅回路の高効率化を図るために、高周波増幅回路の電源電圧を増幅前の高周波信号の振幅変化(エンベロープ)に追従させる構成が示されている。ここでの高周波信号の振幅変化の周波数は搬送波周波数(例えば携帯電話における1~2GHz)ではなく、搬送波の振幅変化の周波数(10~100MHz程度)である。音声用の増幅回路ではD級増幅回路(デジタルアンプ)があるが、高周波電力増幅回路用の電源装置においては、扱う周波数帯が高周波帯域であり、非常に高速なスイッチングが要求される。 Patent Document 1 discloses a configuration in which the power supply voltage of a high-frequency amplifier circuit follows the amplitude change (envelope) of a high-frequency signal before amplification in order to increase the efficiency of the high-frequency amplifier circuit. The frequency of the amplitude change of the high-frequency signal here is not the carrier wave frequency (for example, 1 to 2 GHz in a mobile phone) but the frequency of the carrier wave amplitude change (about 10 to 100 MHz). A voice amplifier circuit includes a class D amplifier circuit (digital amplifier). However, in a power supply device for a high frequency power amplifier circuit, the frequency band to be handled is a high frequency band, and very high speed switching is required.
 図1は特許文献1に示されている高周波電力増幅回路50のブロック図である。この図1に示されている高周波電力増幅回路50は、エンベロープ検出回路54、供給電圧選択回路56、電源電圧調整回路58および高周波増幅回路52を備えている。エンベロープ検出回路54は高周波信号(RFIN)のエンベロープを検出し、供給電圧選択回路56は高周波信号(RFIN)のエンベロープに追従するように電圧源(V1~V4)を選択する。電源電圧調整回路58は選択された電圧の波形調整を行って高周波増幅回路52に電源電圧として供給する。これにより、高周波増幅回路52は高周波信号(RFIN)を増幅して高周波信号(RFOUT)を出力する。 FIG. 1 is a block diagram of a high-frequency power amplifier circuit 50 disclosed in Patent Document 1. The high frequency power amplifier circuit 50 shown in FIG. 1 includes an envelope detection circuit 54, a supply voltage selection circuit 56, a power supply voltage adjustment circuit 58 and a high frequency amplifier circuit 52. The envelope detection circuit 54 detects the envelope of the high frequency signal (RFIN), and the supply voltage selection circuit 56 selects the voltage sources (V1 to V4) so as to follow the envelope of the high frequency signal (RFIN). The power supply voltage adjustment circuit 58 adjusts the waveform of the selected voltage and supplies it to the high frequency amplifier circuit 52 as a power supply voltage. Thereby, the high frequency amplifier circuit 52 amplifies the high frequency signal (RFIN) and outputs the high frequency signal (RFOUT).
特表2006-514472号公報JP 2006-514472 A
 ところが、特許文献1の高周波電力増幅装置においては、複数の電圧源を準備しておき、これを選択して高周波信号のエンベロープに追従させる方式であるため、複数の電圧源の切り替え時の電圧差(波形段差)を修復するための複雑な回路および非常に複雑な制御が必要になる。この波形段差の修復が不完全であると波形歪が大きくなり、通信システムにおける隣接チャンネル漏洩電力比(ACPR)が大きくなり、規定範囲外周波数に悪影響を及ぼすため、周波数帯域の割り当てが厳しい製品には適用できない、という問題が生じる。 However, in the high frequency power amplifying device of Patent Document 1, since a plurality of voltage sources are prepared and selected to follow the envelope of the high frequency signal, the voltage difference when switching between the plurality of voltage sources is selected. A complicated circuit and a very complicated control for repairing the (waveform step) are required. Incomplete restoration of this waveform step results in increased waveform distortion, increases the adjacent channel leakage power ratio (ACPR) in the communication system, and adversely affects frequencies outside the specified range. The problem arises that is not applicable.
 本発明は上記の回路および制御の複雑化の問題を解決して、比較的簡素な構成で、高周波増幅回路に対する電源電圧を高周波信号のエンベロープに追従できるようにした高周波電力増幅回路用電源装置および高周波電力増幅装置を提供することを目的とする。 The present invention solves the above-described problems of circuit and control complexity, and has a relatively simple configuration, and allows a power supply voltage for a high-frequency amplifier circuit to follow the envelope of a high-frequency signal, and a power supply device for a high-frequency power amplifier circuit An object is to provide a high-frequency power amplifier.
 本発明の高周波電力増幅回路用電源装置は、高周波信号を増幅する高周波電力増幅回路へ電源電圧として供給する出力電圧を前記高周波信号の振幅変化に応じて変化させる装置において、
 入力電圧の入力部と前記出力電圧の出力部との間に設けられ、それぞれチョークコイルを含む複数の、電荷供給・回生が可能な双方向コンバータと、
 前記高周波信号の振幅変化を検出し、前記出力電圧が前記高周波信号の振幅変化に追従するように、前記双方向コンバータの電荷供給・回生を制御する振幅変化監視回路と、を備え、
 前記複数の双方向コンバータのうち、供給動作する供給用コンバータの前記チョークコイルと回生動作する回生用コンバータの前記チョークコイルとでトランスが構成されたことを特徴とする。
A power supply device for a high-frequency power amplifier circuit according to the present invention is a device that changes an output voltage supplied as a power supply voltage to a high-frequency power amplifier circuit that amplifies a high-frequency signal according to a change in amplitude of the high-frequency signal.
A plurality of bidirectional converters that are provided between an input part of the input voltage and an output part of the output voltage, each including a choke coil and capable of charge supply and regeneration;
An amplitude change monitoring circuit that detects an amplitude change of the high-frequency signal, and controls charge supply / regeneration of the bidirectional converter so that the output voltage follows the amplitude change of the high-frequency signal;
Among the plurality of bidirectional converters, a transformer is constituted by the choke coil of the supply converter that performs the supply operation and the choke coil of the regeneration converter that performs the regeneration operation.
 また、本発明の高周波電力増幅装置は、高周波信号を増幅する高周波電力増幅回路と、この高周波電力増幅回路へ電源電圧として供給する出力電圧を前記高周波信号の振幅変化に応じて変化させる高周波電力増幅回路用電源装置とを備え、
 入力電圧の入力部と前記出力電圧の出力部との間に設けられた、電荷供給・回生が可能な複数の双方向コンバータと、
 前記高周波信号の振幅変化(エンベロープ)を検出し、前記出力電圧が前記高周波信号の振幅変化に追従するように、前記双方向コンバータの電荷供給・回生を制御する振幅変化監視回路と、を備え、
 前記複数の双方向コンバータのうち、供給動作する供給用コンバータのチョークコイルと回生動作する回生用コンバータのチョークコイルとでトランスが構成されたことを特徴とする
The high-frequency power amplifier of the present invention includes a high-frequency power amplifier circuit that amplifies a high-frequency signal, and a high-frequency power amplifier that changes an output voltage supplied as a power supply voltage to the high-frequency power amplifier circuit according to a change in amplitude of the high-frequency signal. A circuit power supply,
A plurality of bidirectional converters that are provided between the input part of the input voltage and the output part of the output voltage and are capable of supplying and regenerating charges,
An amplitude change monitoring circuit that detects an amplitude change (envelope) of the high-frequency signal and controls charge supply / regeneration of the bidirectional converter so that the output voltage follows the amplitude change of the high-frequency signal;
Among the plurality of bidirectional converters, a transformer is constituted by a choke coil of a supply converter that performs a supply operation and a choke coil of a regeneration converter that performs a regeneration operation.
 本発明によれば、双方向コンバータは供給・回生が可能であるため、双方向コンバータの内部スイッチ素子のON/OFF時間を非線形制御(パルス幅制御、周波数制御、スリープ時間およびバースト時間の組み合わせ制御など)を行うことにより、ダイナミックレンジが大きくとれ、高速制御が可能となる。このことから、低周波から高周波まで範囲を問わず、入力信号と出力電圧の振幅および位相を精度よく調整することが可能となる。 According to the present invention, since the bidirectional converter can supply and regenerate, the ON / OFF time of the internal switch element of the bidirectional converter is nonlinearly controlled (pulse width control, frequency control, combined control of sleep time and burst time) Etc.), the dynamic range can be increased and high-speed control can be achieved. Therefore, it is possible to adjust the amplitude and phase of the input signal and output voltage with high accuracy regardless of the range from low frequency to high frequency.
 しかも、複数の双方向コンバータのうち、供給動作する供給用コンバータのチョークコイルと回生動作する回生用コンバータのチョークコイルとでトランスが構成されたことにより、供給・回生ルートを多重化することができる。そのためコンバータの相数を低減できる。 Moreover, among the plurality of bidirectional converters, the supply / regenerative route can be multiplexed by forming a transformer with the choke coil of the supply converter that performs the supply operation and the choke coil of the regeneration converter that performs the regenerative operation. . Therefore, the number of converter phases can be reduced.
図1は特許文献1に示されている高周波電力増幅回路50のブロック図である。FIG. 1 is a block diagram of a high-frequency power amplifier circuit 50 disclosed in Patent Document 1. In FIG. 図2は第1の実施形態の高周波電力増幅回路用電源装置101、高周波電力増幅装置201および高周波電力増幅回路100の関係を示す図である。FIG. 2 is a diagram showing a relationship among the power supply device 101 for the high frequency power amplifier circuit, the high frequency power amplifier 201 and the high frequency power amplifier circuit 100 according to the first embodiment. 図3は高周波電力増幅回路100に対する電源電圧Vout、高周波電力信号RFoutおよびそのエンベロープVeとの関係を示す図である。FIG. 3 is a diagram showing the relationship between the power supply voltage Vout, the high frequency power signal RFout, and the envelope Ve for the high frequency power amplifier circuit 100. 図4は第1の実施形態の高周波電力増幅回路用電源装置101の構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of the power supply device 101 for the high frequency power amplifier circuit according to the first embodiment. 図5は、図4に示した双方向コンバータCONV1,CONV2・・・CONVnとは別の、基本的な双方向コンバータB-CONV1,B-CONV2・・・B-CONVnの回路図である。FIG. 5 is a circuit diagram of basic bidirectional converters B-CONV1, B-CONV2... B-CONVn different from the bidirectional converters CONV1, CONV2... CONVn shown in FIG. 図6は、図4に示した双方向コンバータCONV1,CONV2・・・CONVnの回路図である。FIG. 6 is a circuit diagram of bidirectional converters CONV1, CONV2... CONVn shown in FIG. 図7は図4に示したチョークコイルL1~L4に流れる電流の波形図の例である。FIG. 7 is an example of a waveform diagram of currents flowing through the choke coils L1 to L4 shown in FIG. 図8は、4パターンの電荷量の供給・回生によって出力電圧を入力信号のエンベロープに追従させた様子を示す図である。FIG. 8 is a diagram illustrating a state in which the output voltage is made to follow the envelope of the input signal by supplying and regenerating four patterns of charge amounts. 図9は第2の実施形態の高周波電力増幅回路用電源装置102Aの回路図である。FIG. 9 is a circuit diagram of the power supply device 102A for the high frequency power amplifier circuit according to the second embodiment. 図10は第2の実施形態の別の高周波電力増幅回路用電源装置102Bの回路図である。FIG. 10 is a circuit diagram of another high-frequency power amplifier circuit power supply apparatus 102B of the second embodiment. 図11は第3の実施形態の高周波電力増幅回路用電源装置103の回路図である。FIG. 11 is a circuit diagram of the power supply device 103 for the high frequency power amplifier circuit of the third embodiment. 図12はチョークコイルL1A,L1B,L2,L3に流れる電流の波形図の例である。FIG. 12 is an example of a waveform diagram of currents flowing through the choke coils L1A, L1B, L2, and L3.
《第1の実施形態》
 図2は第1の実施形態の高周波電力増幅回路用電源装置101、高周波電力増幅装置201および高周波電力増幅回路100の関係を示す図である。
<< First Embodiment >>
FIG. 2 is a diagram showing the relationship among the power supply device 101 for the high frequency power amplifier circuit, the high frequency power amplifier 201 and the high frequency power amplifier circuit 100 according to the first embodiment.
 高周波電力増幅回路100は高周波信号RFinを入力し、電力増幅して高周波電力信号RFoutを出力する。高周波電力増幅回路用電源装置101は入力電源電圧Vinを入力し、高周波信号RFinの振幅変化(エンベロープ)を検出し、それに追従するように出力電圧Voutを変化させる。高周波電力増幅回路100は高周波電力増幅回路用電源装置101の出力電圧Voutを電源電圧として動作する。 The high frequency power amplifier circuit 100 receives the high frequency signal RFin, amplifies the power, and outputs the high frequency power signal RFout. The power supply device 101 for the high frequency power amplifier circuit receives the input power supply voltage Vin, detects the amplitude change (envelope) of the high frequency signal RFin, and changes the output voltage Vout so as to follow it. The high frequency power amplifier circuit 100 operates using the output voltage Vout of the power supply device 101 for the high frequency power amplifier circuit as a power supply voltage.
 図3は前記高周波電力増幅回路100に対する電源電圧Vout、高周波電力信号RFoutおよびそのエンベロープVeとの関係を示す図である。図3(A)は高周波電力増幅回路用電源装置101を作用させた場合の波形、図3(B)は高周波電力増幅回路100に対する電源電圧を一定にした場合の波形である。ここでは高周波信号のエンベロープを表す都合上、電源電圧も正負対称に表している。概ね、VoutとVeとの差分が損失であるものと言える。本発明によれば、この損失が削減できる。 FIG. 3 is a diagram showing the relationship between the power supply voltage Vout, the high-frequency power signal RFout, and its envelope Ve for the high-frequency power amplifier circuit 100. 3A shows a waveform when the power supply device 101 for the high frequency power amplifier circuit is operated, and FIG. 3B shows a waveform when the power supply voltage for the high frequency power amplifier circuit 100 is constant. Here, for convenience of representing the envelope of the high-frequency signal, the power supply voltage is also represented symmetrically. In general, it can be said that the difference between Vout and Ve is a loss. According to the present invention, this loss can be reduced.
 図4は第1の実施形態の高周波電力増幅回路用電源装置101の構成を示すブロック図である。入力電圧の入力部と出力電圧の出力部との間に複数の双方向コンバータCONV1,CONV2・・・CONVnが設けられている。これらの双方向コンバータはそれぞれ電荷供給・回生が可能なコンバータである。入出力部の左右両方向の矢印はエネルギー移動方向を表している。振幅変化監視回路10は高周波信号である入力信号の振幅変化(エンベロープ)を検出し、出力電圧が高周波信号の振幅変化に追従するように、双方向コンバータCONV1,CONV2・・・CONVnの電荷供給・回生を制御する。そして、双方向コンバータの出力部に出力側エネルギー蓄積素子ESCを備え、双方向コンバータの入力部に、前記出力側エネルギー蓄積素子ESCから回生されるエネルギーを蓄える回生エネルギー蓄積素子RESCを備えている。 FIG. 4 is a block diagram showing a configuration of the power supply device 101 for the high frequency power amplifier circuit according to the first embodiment. A plurality of bidirectional converters CONV1, CONV2,... CONVn are provided between the input portion for the input voltage and the output portion for the output voltage. Each of these bidirectional converters is a converter that can supply and regenerate electric charges. The arrows on both the left and right sides of the input / output unit indicate the energy transfer direction. The amplitude change monitoring circuit 10 detects the amplitude change (envelope) of the input signal, which is a high-frequency signal, and supplies the charge to the bidirectional converters CONV1, CONV2,... CONVn so that the output voltage follows the amplitude change of the high-frequency signal. Control regeneration. An output side energy storage element ESC is provided at the output part of the bidirectional converter, and a regenerative energy storage element RESC for storing energy regenerated from the output side energy storage element ESC is provided at the input part of the bidirectional converter.
 出力側エネルギー蓄積素子ESCは例えばキャパシタCoである。また、回生エネルギー蓄積素子RESCは例えばキャパシタCiである。 The output side energy storage element ESC is, for example, a capacitor Co. The regenerative energy storage element RESC is, for example, a capacitor Ci.
 双方向コンバータCONV1,CONV2・・・CONVnの電荷供給時に負荷(高周波電力増幅回路)に電源電圧が供給されると、エネルギー蓄積素子ESCにエネルギーが蓄積される。双方向コンバータCONV1,CONV2・・・CONVnの出力側からエネルギーが回生されると、そのエネルギーは入力側に移動するので双方向コンバータCONV1,CONV2・・・CONVnの入力電圧が上昇する。そこで、図7に示したように、回生エネルギー蓄積素子RESCを備える。これにより、双方向コンバータCONV1,CONV2・・・CONVnの入力電圧の上昇が抑えられ、安定した入力電圧とすることができる。 When the power supply voltage is supplied to the load (high frequency power amplifier circuit) during the charge supply of the bidirectional converters CONV1, CONV2,... CONVn, energy is stored in the energy storage element ESC. When energy is regenerated from the output side of the bidirectional converters CONV1, CONV2,... CONVn, the energy moves to the input side, so that the input voltage of the bidirectional converters CONV1, CONV2,. Therefore, as shown in FIG. 7, a regenerative energy storage element RESC is provided. Thereby, a rise in the input voltage of the bidirectional converters CONV1, CONV2,... CONVn is suppressed, and a stable input voltage can be obtained.
 図5は、図4に示した双方向コンバータCONV1,CONV2・・・CONVnとは別の、基本的な双方向コンバータB-CONV1,B-CONV2・・・B-CONVnの回路図である。双方向コンバータB-CONV1は、整流素子(ハイサイド素子)Q11、転流素子(ローサイド素子)Q12およびチョークコイルL1を備えている。双方向コンバータB-CONV2は、整流素子Q21、転流素子Q22およびチョークコイルL2を備えている。同様に、双方向コンバータB-CONVnは、整流素子Qn1、転流素子Qn2およびチョークコイルLnを備えている。 FIG. 5 is a circuit diagram of basic bidirectional converters B-CONV1, B-CONV2... B-CONVn different from the bidirectional converters CONV1, CONV2... CONVn shown in FIG. Bidirectional converter B-CONV1 includes a rectifier element (high side element) Q11, a commutation element (low side element) Q12, and a choke coil L1. Bidirectional converter B-CONV2 includes rectifying element Q21, commutation element Q22, and choke coil L2. Similarly, the bidirectional converter B-CONVn includes a rectifying element Qn1, a commutation element Qn2, and a choke coil Ln.
 例えば双方向コンバータB-CONV1の転流素子Q12がOFF状態で整流素子Q11がONされると、入力側から出力側へチョークコイルL1に電流が流れてチョークコイルL1に励磁エネルギーが蓄積されるとともに出力側へエネルギーが供給される。その後、整流素子Q11がOFFされ、転流素子Q12がONされると、チョークコイルL1を流れる電流は転流素子Q12を流れて、チョークコイルL1の励磁エネルギーは出力側へ供給される。 For example, when the commutation element Q12 of the bidirectional converter B-CONV1 is turned off and the rectification element Q11 is turned on, current flows from the input side to the output side to the choke coil L1, and excitation energy is accumulated in the choke coil L1. Energy is supplied to the output side. Thereafter, when the rectifying element Q11 is turned off and the commutation element Q12 is turned on, the current flowing through the choke coil L1 flows through the commutation element Q12, and the excitation energy of the choke coil L1 is supplied to the output side.
 双方向コンバータB-CONV1の整流素子Q11がOFF状態で転流素子Q12がONされると、出力側から入力側へチョークコイルL1に電流が流れてチョークコイルL1に励磁エネルギーが蓄積されるとともに入力側へエネルギーが回生される。その後、転流素子Q12がOFFされ、整流素子Q11がONされると、チョークコイルL1を流れる電流は整流素子Q11を流れて、チョークコイルL1の励磁エネルギーは入力側へ回生される。 When commutation element Q12 is turned on while rectifying element Q11 of bidirectional converter B-CONV1 is turned off, current flows from choke coil L1 from the output side to the input side, and excitation energy is accumulated in choke coil L1 and input. Energy is regenerated to the side. Thereafter, when the commutation element Q12 is turned off and the rectification element Q11 is turned on, the current flowing through the choke coil L1 flows through the rectification element Q11, and the excitation energy of the choke coil L1 is regenerated to the input side.
 このように動作する双方向コンバータを複数備え、各コンバータの供給・回生タイミングおよび供給・回生量を制御することにより、出力電圧を入力信号のエンベロープに追従させて変化させることができる。 Supplied with a plurality of bidirectional converters that operate in this manner, and by controlling the supply / regeneration timing and supply / regeneration amount of each converter, the output voltage can be changed to follow the envelope of the input signal.
 図6は、図4に示した双方向コンバータCONV1,CONV2・・・CONVnの回路図である。図6において、双方向コンバータCONV1は整流素子Q11、転流素子Q12およびチョークコイルL1によって構成されている。双方向コンバータCONV2は整流素子Q21、転流素子Q22およびチョークコイルL2によって構成されている。双方向コンバータCONV3は整流素子Q31、転流素子Q32およびチョークコイルL3によって構成されている。そして、双方向コンバータCONV4は整流素子Q41、転流素子Q42およびチョークコイルL4によって構成されている。 FIG. 6 is a circuit diagram of the bidirectional converters CONV1, CONV2,... CONVn shown in FIG. In FIG. 6, the bidirectional converter CONV1 includes a rectifying element Q11, a commutation element Q12, and a choke coil L1. The bidirectional converter CONV2 is constituted by a rectifying element Q21, a commutation element Q22, and a choke coil L2. The bidirectional converter CONV3 is constituted by a rectifying element Q31, a commutation element Q32, and a choke coil L3. The bidirectional converter CONV4 includes a rectifying element Q41, a commutation element Q42, and a choke coil L4.
 2つのチョークコイルL1とL3とでトランスT13が構成されている。すなわち、チョークコイルL1はトランスT13の一次巻線、チョークコイルL3はトランスT13の二次巻線としてそれぞれ作用する。同様に、2つのチョークコイルL2とL4とでトランスT24が構成されていて、チョークコイルL2はトランスT24の一次巻線、チョークコイルL4はトランスT24の二次巻線としてそれぞれ作用する。 The transformer T13 is composed of two choke coils L1 and L3. That is, the choke coil L1 functions as a primary winding of the transformer T13, and the choke coil L3 functions as a secondary winding of the transformer T13. Similarly, a transformer T24 is constituted by two choke coils L2 and L4. The choke coil L2 functions as a primary winding of the transformer T24, and the choke coil L4 functions as a secondary winding of the transformer T24.
 トランスT13の一次巻線(チョークコイルL1)の極性と二次巻線(チョークコイルL3)の極性とは互いに逆の関係になるように、整流素子と出力部との間に接続されている。トランスT24についても同様である。 The polarity of the primary winding (choke coil L1) of the transformer T13 and the polarity of the secondary winding (choke coil L3) are connected between the rectifier element and the output unit so as to have an opposite relationship to each other. The same applies to the transformer T24.
 図7はチョークコイルL1~L4に流れる電流の波形図の例である。この例では、期間T1で、コンバータCONV1の整流素子Q11がON状態、転流素子Q12がOFF状態であり、期間T2で、コンバータCONV1の整流素子Q11がOFF、転流素子Q12がOFF、コンバータCONV3の整流素子Q31がON、転流素子Q32がOFFしている。また、期間T3で、コンバータCONV2の整流素子Q21がON状態、転流素子Q22がOFF状態であり、期間T4で、コンバータCONV2の整流素子Q21がOFF、転流素子Q22がOFF、コンバータCONV4の整流素子Q41がON、転流素子Q42がOFFしている。 FIG. 7 is an example of a waveform diagram of the current flowing through the choke coils L1 to L4. In this example, in the period T1, the rectifier element Q11 of the converter CONV1 is in the ON state and the commutation element Q12 are in the OFF state. In the period T2, the rectifier element Q11 in the converter CONV1 is OFF, the commutation element Q12 is OFF, and the converter CONV3 The rectifying element Q31 is ON, and the commutation element Q32 is OFF. Further, in period T3, rectifier element Q21 of converter CONV2 is in an ON state and commutation element Q22 is in an OFF state. In period T4, rectifier element Q21 in converter CONV2 is OFF, commutation element Q22 is OFF, and rectification of converter CONV4 is performed. Element Q41 is ON and commutation element Q42 is OFF.
 期間T1でトランスT13に励磁エネルギーが蓄積されるとともに出力側へ供給され、期間T2でトランスT13の励磁エネルギーが入力側へ回生される。同様に、期間T3でトランスT24に励磁エネルギーが蓄積されるとともに出力側へ供給され、期間T4でトランスT24の励磁エネルギーが入力側へ回生される。 Excitation energy is accumulated in the transformer T13 in the period T1 and supplied to the output side, and the excitation energy of the transformer T13 is regenerated in the input side in the period T2. Similarly, the excitation energy is accumulated in the transformer T24 in the period T3 and supplied to the output side, and the excitation energy of the transformer T24 is regenerated in the input side in the period T4.
 ここで、トランスT13の一次巻線(チョークコイルL1)に流れる電流をi1(t)、入力電圧をVin、チョークコイルL1のインダクタンスをL1で表すと、
 i1(t)=(V1/L1)t   …(1)
で表すことができる。
Here, the current flowing through the primary winding (choke coil L1) of the transformer T13 is represented by i1 (t), the input voltage is represented by Vin, and the inductance of the choke coil L1 is represented by L1.
i1 (t) = (V1 / L1) t (1)
Can be expressed as
 また、電流i1のピーク値をi1peak、電流i2のピーク値をi2peak、トランスT13の一次巻線の巻回数をN1、二次巻線の巻回数をN2で表すと、
 i1peak×N1=i2peak×N2   …(2)
の関係がある。そして、チョークコイルL2のインダクタンスをL2で表すと、トランスT13の二次巻線(チョークコイルL2)に流れる電流i2(t)は次式で表される。
Further, the peak value of the current i1 is represented by i1peak, the peak value of the current i2 is represented by i2peak, the number of turns of the primary winding of the transformer T13 is represented by N1, and the number of turns of the secondary winding is represented by N2.
i1peak x N1 = i2peak x N2 (2)
There is a relationship. When the inductance of the choke coil L2 is represented by L2, the current i2 (t) flowing through the secondary winding (choke coil L2) of the transformer T13 is represented by the following equation.
 i2(t)=i2peak - (V2/L2)t
 上述の関係はトランスT24の一次巻線(チョークコイルL2)に流れる電流および二次巻線(チョークコイルL4)に流れる電流についても同様である。
i2 (t) = i2peak-(V2 / L2) t
The relationship described above is the same for the current flowing through the primary winding (choke coil L2) of the transformer T24 and the current flowing through the secondary winding (choke coil L4).
 この実施形態では、トランスT13の一次巻線(チョークコイルL1)の巻回数をN1、二次巻線(チョークコイルL3)の巻回数をN2とすれば、N1>N2であるので、i1peak<i2peakの関係にある。同様に、トランスT24の一次巻線(チョークコイルL2)の巻回数をN1、二次巻線(チョークコイルL4)の巻回数をN2とすれば、N1>N2であるので、i3peak<i4peakの関係にある。 In this embodiment, if the number of turns of the primary winding (choke coil L1) of the transformer T13 is N1, and the number of turns of the secondary winding (choke coil L3) is N2, then N1> N2, so i1peak <i2peak Are in a relationship. Similarly, if N1 is the number of turns of the primary winding (choke coil L2) of the transformer T24 and N2 is the number of turns of the secondary winding (choke coil L4), then N1> N2, so i3peak <i4peak. It is in.
 このようにして4つの双方向コンバータCONV1,CONV2,CONV3,CONV4によって4パターンの電荷量の供給・回生を行うことができる。 In this way, it is possible to supply and regenerate four patterns of charge amounts by the four bidirectional converters CONV1, CONV2, CONV3, and CONV4.
 図8は、前記4パターンの電荷量の供給・回生によって出力電圧を入力信号のエンベロープに追従させた様子を示す図である。供給用のコンバータCONV1,CONV2および回生用のコンバータCONV3,CONV4について横軸はこれらのコンバータのON,OFF,SLEEPのタイミングチャートである。図8に表したように、供給コンバータの整流素子(ハイサイド素子)のON期間に供給が行われ、回生コンバータの整流素子(ハイサイド素子)のON期間に回生が行われる。 FIG. 8 is a diagram showing a state in which the output voltage is made to follow the envelope of the input signal by supplying and regenerating the charge amount of the four patterns. Regarding the converters CONV1 and CONV2 for supply and converters CONV3 and CONV4 for regeneration, the horizontal axis is a timing chart of ON, OFF and SLEEP of these converters. As shown in FIG. 8, supply is performed during the ON period of the rectifier element (high side element) of the supply converter, and regeneration is performed during the ON period of the rectifier element (high side element) of the regenerative converter.
 この例では、四つの双方向コンバータの転流素子Q12,Q22,Q32,Q42のいずれも常にOFFであったが、4つの双方向コンバータCONV1,CONV2,CONV3,CONV4のいずれについても、整流素子のターンオフに続いて転流素子をターンオンすれば、チョークコイルの蓄積エネルギーは出力側へ「供給」される。また、先に転流素子をONし、そのターンオフに続いて整流素子をターンオンすれば、チョークコイルの蓄積エネルギーは入力側へ「回生」される。 In this example, all of the commutation elements Q12, Q22, Q32, and Q42 of the four bidirectional converters are always OFF, but all of the four bidirectional converters CONV1, CONV2, CONV3, and CONV4 are rectifier elements. If the commutation element is turned on following the turn-off, the energy stored in the choke coil is “supplied” to the output side. If the commutation element is turned on first and the rectification element is turned on following the turn-off, the energy stored in the choke coil is “regenerated” to the input side.
 なお、転流素子Q12,Q22,Q32,Q42のいずれもOFFで、整流素子Q11,Q21,Q31,Q41のON/OFFだけで供給・回生の差を制御できる場合には、転流素子Q12,Q22,Q32,Q42はOFFのままでもよい。 When the commutation elements Q12, Q22, Q32, and Q42 are all OFF and the difference between supply and regeneration can be controlled only by turning ON / OFF the rectifying elements Q11, Q21, Q31, and Q41, the commutation elements Q12, Q22, Q32, and Q42 may remain OFF.
《第2の実施形態》
 図9は第2の実施形態の高周波電力増幅回路用電源装置102Aの回路図である。図9において、双方向コンバータCONV1は整流素子Q11、転流素子Q12およびチョークコイルL1A,L1Bによって構成されている。また、双方向コンバータCONV2は整流素子Q21、転流素子Q22およびチョークコイルL2によって構成されている。さらに、双方向コンバータCONV3は整流素子Q31、転流素子Q32およびチョークコイルL3によって構成されている。チョークコイルL1A,L1Bは直列接続されていている。そして、チョークコイルL1AとL2とによって第1のトランスが構成され、チョークコイルL1BとL3とによって第2のトランスが構成されている。このように、或る一つのコンバータの複数のチョークコイルと複数の別のコンバータのチョークコイルとでそれぞれトランスを構成してもよい。
<< Second Embodiment >>
FIG. 9 is a circuit diagram of the power supply device 102A for the high frequency power amplifier circuit according to the second embodiment. In FIG. 9, the bidirectional converter CONV1 includes a rectifying element Q11, a commutation element Q12, and choke coils L1A and L1B. The bidirectional converter CONV2 is composed of a rectifying element Q21, a commutation element Q22, and a choke coil L2. Further, the bidirectional converter CONV3 includes a rectifying element Q31, a commutation element Q32, and a choke coil L3. The choke coils L1A and L1B are connected in series. The choke coils L1A and L2 constitute a first transformer, and the choke coils L1B and L3 constitute a second transformer. As described above, a plurality of choke coils of a certain converter and choke coils of a plurality of other converters may constitute a transformer.
 図10は第2の実施形態の別の高周波電力増幅回路用電源装置102Bの回路図である。図10において、双方向コンバータCONV1は整流素子Q11、転流素子Q12およびチョークコイルL1によって構成されている。また、双方向コンバータCONV2は整流素子Q21、転流素子Q22およびチョークコイルL2によって構成されている。さらに、双方向コンバータCONV3は整流素子Q31、転流素子Q32およびチョークコイルL3A,L3Bによって構成されている。チョークコイルL3A,L3Bは直列接続されていている。そして、チョークコイルL1とL3Aとによって第1のトランスが構成され、チョークコイルL2とL3Bとによって第2のトランスが構成されている。このように、複数のコンバータの複数のチョークコイルと一つのコンバータの複数のチョークコイルとでそれぞれトランスを構成してもよい。 FIG. 10 is a circuit diagram of another high-frequency power amplifier circuit power supply apparatus 102B of the second embodiment. In FIG. 10, the bidirectional converter CONV1 includes a rectifying element Q11, a commutation element Q12, and a choke coil L1. The bidirectional converter CONV2 is composed of a rectifying element Q21, a commutation element Q22, and a choke coil L2. Furthermore, the bidirectional converter CONV3 includes a rectifying element Q31, a commutation element Q32, and choke coils L3A and L3B. The choke coils L3A and L3B are connected in series. The choke coils L1 and L3A constitute a first transformer, and the choke coils L2 and L3B constitute a second transformer. As described above, a plurality of choke coils of a plurality of converters and a plurality of choke coils of one converter may constitute a transformer.
 以上に示した第2の実施形態では供給・回生の電流経路のバリエーションを高めることができる。そのため、少ないコンバータで採り得る供給電荷量および回生電荷量の組み合わせを増すことができる。 In the second embodiment described above, variations in the current path for supply and regeneration can be increased. Therefore, the combination of the supply charge amount and the regenerative charge amount that can be taken by a small converter can be increased.
《第3の実施形態》
 図11は第3の実施形態の高周波電力増幅回路用電源装置103の回路図である。図11において、双方向コンバータCONV1は整流素子Q11、転流素子Q12およびチョークコイルL1A,L1Bによって構成されている。また、双方向コンバータCONV2は整流素子Q21、転流素子Q22およびチョークコイルL2によって構成されている。さらに、双方向コンバータCONV3は整流素子Q31、転流素子Q32およびチョークコイルL3によって構成されている。チョークコイルL1A,L2Aは直列接続されている。そして、チョークコイルL1AとL2とによって第1のトランスT12が構成され、チョークコイルL1BとL3とによって第2のトランスT13が構成されている。そして、第1のトランスT12の一次巻線(チョークコイルL1A)と第2のトランスT13の一次巻線(チョークコイルL1B)との間に補助スイッチ素子Qaが接続されている。後に示すように、この補助スイッチ素子QaはチョークコイルL1Bに励磁エネルギーが蓄積された後にONすることによって図11中に破線の矢印で示すような転流電流が流れる。このことにより第2のトランスT13の残留エネルギーを出力側へ放出(供給)できる。
<< Third Embodiment >>
FIG. 11 is a circuit diagram of the power supply device 103 for the high frequency power amplifier circuit of the third embodiment. In FIG. 11, the bidirectional converter CONV1 includes a rectifying element Q11, a commutation element Q12, and choke coils L1A and L1B. The bidirectional converter CONV2 includes a rectifying element Q21, a commutation element Q22, and a choke coil L2. Furthermore, the bidirectional converter CONV3 includes a rectifying element Q31, a commutation element Q32, and a choke coil L3. The choke coils L1A and L2A are connected in series. The choke coils L1A and L2 constitute a first transformer T12, and the choke coils L1B and L3 constitute a second transformer T13. The auxiliary switch element Qa is connected between the primary winding (choke coil L1A) of the first transformer T12 and the primary winding (choke coil L1B) of the second transformer T13. As will be described later, the auxiliary switch element Qa is turned on after the excitation energy is accumulated in the choke coil L1B, whereby a commutation current as shown by a broken arrow in FIG. 11 flows. As a result, the residual energy of the second transformer T13 can be released (supplied) to the output side.
 図12はチョークコイルL1A,L1B,L2,L3に流れる電流の波形図の例である。この例で、各期間の各スイッチ素子の状態は次のとおりである。 FIG. 12 is an example of a waveform diagram of currents flowing through the choke coils L1A, L1B, L2, and L3. In this example, the state of each switch element in each period is as follows.
 [期間T1]
 Q11:ON
 Q12:OFF
 Q21:OFF
 Q22:OFF
 Qa :OFF
 Q31:OFF
 Q32:OFF
 [期間T2]
 Q11:OFF
 Q12:OFF
 Q21:ON
 Q22:OFF
 Qa :ON
 Q31:OFF
 Q32:OFF
 [期間T3]
 Q11:OFF
 Q12:OFF
 Q21:OFF
 Q22:OFF
 Qa :ON
 Q31:OFF
 Q32:OFF
 この例では、期間T1でトランスT12,T13を介して出力側へエネルギーが供給され、期間T2でトランスT12を介して入力側へエネルギーが回生され、且つ、T13を介して出力側へエネルギーが供給され、期間T3でトランスT13を介して出力側へエネルギーが供給される。
[Period T1]
Q11: ON
Q12: OFF
Q21: OFF
Q22: OFF
Qa: OFF
Q31: OFF
Q32: OFF
[Period T2]
Q11: OFF
Q12: OFF
Q21: ON
Q22: OFF
Qa: ON
Q31: OFF
Q32: OFF
[Period T3]
Q11: OFF
Q12: OFF
Q21: OFF
Q22: OFF
Qa: ON
Q31: OFF
Q32: OFF
In this example, energy is supplied to the output side via the transformers T12 and T13 in the period T1, energy is regenerated to the input side via the transformer T12 in the period T2, and energy is supplied to the output side via the T13. In the period T3, energy is supplied to the output side via the transformer T13.
 このように、転流用の補助スイッチ素子を設けることによってチョークコイルの残留エネルギーの放出方向を自由に変更できるので、供給・回生の電流経路のバリエーションを高めることができる。そのため、少ないコンバータで採り得る供給電荷量および回生電荷量の組み合わせを増すことができる。 Thus, by providing the auxiliary switch element for commutation, the discharge direction of the residual energy of the choke coil can be freely changed, so that the variation of the current path for supply and regeneration can be increased. Therefore, the combination of the supply charge amount and the regenerative charge amount that can be taken by a small converter can be increased.
 なお、以上に示した各実施形態において、コンバータの転流素子に、寄生ダイオードを備えるSiタイプのFETを使用すると、寄生ダイオードにより電流の方向を確定できない場合には、寄生ダイオードがない例えば、窒化ガリウム系のトランジスタを使用することが好ましい。 In each of the embodiments described above, if a Si type FET having a parasitic diode is used as the commutation element of the converter, if the direction of current cannot be determined by the parasitic diode, there is no parasitic diode. It is preferable to use a gallium-based transistor.
CONV1,CONV2,CONV3,CONV4…双方向コンバータ
ESC…出力側エネルギー蓄積素子
L1,L2,L3,L4…チョークコイル
L1A,L1B…チョークコイル
L2A,L2B…チョークコイル
L3A,L3B…チョークコイル
Ln…チョークコイル
Q11,Q21,Q31,Q41…整流素子
Q12,Q22,Q32,Q42…転流素子
Qa…補助スイッチ素子
Qn1…整流素子
Qn2…転流素子
RESC…回生エネルギー蓄積素子
RFin…高周波信号
RFout…高周波電力信号
T12…第1のトランス
T13…第2のトランス
10…振幅変化監視回路
100…高周波電力増幅回路
101…高周波電力増幅回路用電源装置
102A,102B…高周波電力増幅回路用電源装置
103…高周波電力増幅回路用電源装置
201…高周波電力増幅装置
CONV1, CONV2, CONV3, CONV4 ... bidirectional converter ESC ... output side energy storage elements L1, L2, L3, L4 ... choke coils L1A, L1B ... choke coils L2A, L2B ... choke coils L3A, L3B ... choke coils Ln ... choke coils Q11, Q21, Q31, Q41 ... Rectifier elements Q12, Q22, Q32, Q42 ... Commutation element Qa ... Auxiliary switch element Qn1 ... Rectifier element Qn2 ... Commutation element RESC ... Regenerative energy storage element RFin ... High-frequency signal RFout ... High-frequency power signal T12 ... first transformer T13 ... second transformer 10 ... amplitude change monitoring circuit 100 ... high frequency power amplification circuit 101 ... high frequency power amplification circuit power supply device 102A, 102B ... high frequency power amplification circuit power supply device 103 ... high frequency power amplification circuit Power supply for 201 ... RF power amplifier

Claims (6)

  1.  高周波信号を増幅する高周波電力増幅回路へ電源電圧として供給する出力電圧を前記高周波信号の振幅変化に応じて変化させる高周波電力増幅回路用電源装置において、
     入力電圧の入力部と前記出力電圧の出力部との間に設けられ、それぞれチョークコイルを含む複数の、電荷供給・回生が可能な双方向コンバータと、
     前記高周波信号の振幅変化を検出し、前記出力電圧が前記高周波信号の振幅変化に追従するように、前記双方向コンバータの電荷供給・回生を制御する振幅変化監視回路と、を備え、
     前記複数の双方向コンバータのうち、供給動作する供給用コンバータの前記チョークコイルと回生動作する回生用コンバータの前記チョークコイルとでトランスが構成されたことを特徴とする高周波電力増幅回路用電源装置。
    In a power supply device for a high-frequency power amplifier circuit that changes an output voltage supplied as a power supply voltage to a high-frequency power amplifier circuit that amplifies a high-frequency signal in accordance with an amplitude change of the high-frequency signal,
    A plurality of bidirectional converters that are provided between an input part of the input voltage and an output part of the output voltage, each including a choke coil and capable of charge supply and regeneration;
    An amplitude change monitoring circuit that detects an amplitude change of the high-frequency signal, and controls charge supply / regeneration of the bidirectional converter so that the output voltage follows the amplitude change of the high-frequency signal;
    A power supply device for a high-frequency power amplifier circuit, wherein a transformer is constituted by the choke coil of the supply converter that performs a supply operation and the choke coil of the regeneration converter that performs a regenerative operation among the plurality of bidirectional converters.
  2.  前記双方向コンバータはスイッチング素子およびこのスイッチング素子のオン/オフ制御を行うスイッチング制御回路を備え、
     前記スイッチング素子は寄生ダイオードのないトランジスタである、請求項1に記載の高周波電力増幅回路用電源装置。
    The bidirectional converter includes a switching element and a switching control circuit that performs on / off control of the switching element,
    The power supply device for a high frequency power amplifier circuit according to claim 1, wherein the switching element is a transistor without a parasitic diode.
  3.  前記複数の双方向コンバータのうち、前記供給用コンバータのチョークコイルで複数のトランスの1次巻線が構成され、前記複数の双方向コンバータのうち、複数の前記回生用コンバータのチョークコイルで前記複数のトランスの2次巻線がそれぞれ構成された、請求項1または2に記載の高周波電力増幅回路用電源装置。 Of the plurality of bidirectional converters, a choke coil of the supply converter forms a primary winding of a plurality of transformers, and among the plurality of bidirectional converters, a plurality of the choke coils of the regenerative converters The power supply device for a high-frequency power amplifier circuit according to claim 1 or 2, wherein secondary windings of said transformer are respectively configured.
  4.  前記複数の双方向コンバータのうち、複数の前記供給用コンバータのチョークコイルでトランスの1次巻線がそれぞれ構成され、前記複数の双方向コンバータのうち、前記回生用コンバータのチョークコイルで前記複数のトランスの2次巻線の直列回路が構成された、請求項1または2に記載の高周波電力増幅回路用電源装置。 Among the plurality of bidirectional converters, a plurality of choke coils of the supply converter each constitute a primary winding of a transformer. Of the plurality of bidirectional converters, the choke coils of the regeneration converter include the plurality of The power supply device for a high frequency power amplifier circuit according to claim 1, wherein a series circuit of a secondary winding of the transformer is configured.
  5.  前記複数の双方向コンバータのうち、前記供給用コンバータのチョークコイルで複数のトランスの1次巻線が構成され、前記複数の双方向コンバータのうち、複数の前記回生用コンバータのチョークコイルで前記複数のトランスの2次巻線がそれぞれ構成され、前記複数のトランスのうち少なくとも2つのトランスの1次巻線の間に転流素子を備えた、請求項3に記載の高周波電力増幅回路用電源装置。 Of the plurality of bidirectional converters, a choke coil of the supply converter forms a primary winding of a plurality of transformers, and among the plurality of bidirectional converters, a plurality of the choke coils of the regenerative converters 4. The power supply device for a high frequency power amplifier circuit according to claim 3, wherein secondary windings of the transformer are configured, and a commutation element is provided between primary windings of at least two of the plurality of transformers. .
  6.  高周波信号を増幅する高周波電力増幅回路と、この高周波電力増幅回路へ電源電圧として供給する出力電圧を前記高周波信号の振幅変化に応じて変化させる高周波電力増幅回路用電源装置とを備えた高周波電力増幅装置において、
     入力電圧の入力部と前記出力電圧の出力部との間に設けられた、電荷供給・回生が可能な複数の双方向コンバータと、
     前記高周波信号の振幅変化を検出し、前記出力電圧が前記高周波信号の振幅変化に追従するように、前記双方向コンバータの電荷供給・回生を制御する振幅変化監視回路と、を備え、
     前記複数の双方向コンバータのうち、供給動作する供給用コンバータのチョークコイルと回生動作する回生用コンバータのチョークコイルとでトランスが構成されたことを特徴とする高周波電力増幅装置。
    A high-frequency power amplification circuit comprising a high-frequency power amplification circuit for amplifying a high-frequency signal and a power supply device for a high-frequency power amplification circuit that changes an output voltage supplied as a power supply voltage to the high-frequency power amplification circuit according to a change in amplitude of the high-frequency signal In the device
    A plurality of bidirectional converters that are provided between the input part of the input voltage and the output part of the output voltage and are capable of supplying and regenerating charges,
    An amplitude change monitoring circuit that detects an amplitude change of the high-frequency signal, and controls charge supply / regeneration of the bidirectional converter so that the output voltage follows the amplitude change of the high-frequency signal;
    A high frequency power amplifying apparatus, wherein a transformer is constituted by a choke coil of a supply converter that performs a supply operation and a choke coil of a regeneration converter that performs a regenerative operation among the plurality of bidirectional converters.
PCT/JP2012/063436 2011-07-04 2012-05-25 Power supply device for high frequency electrical power amplification circuit, and high frequency electrical power amplifying device WO2013005497A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011148190 2011-07-04
JP2011-148190 2011-07-04

Publications (1)

Publication Number Publication Date
WO2013005497A1 true WO2013005497A1 (en) 2013-01-10

Family

ID=47436855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063436 WO2013005497A1 (en) 2011-07-04 2012-05-25 Power supply device for high frequency electrical power amplification circuit, and high frequency electrical power amplifying device

Country Status (1)

Country Link
WO (1) WO2013005497A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001806A1 (en) * 2008-06-30 2010-01-07 日本電気株式会社 Power amplification device and power amplification method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001806A1 (en) * 2008-06-30 2010-01-07 日本電気株式会社 Power amplification device and power amplification method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WENSONG YU ET AL.: "Design of High-Efficiency Bidirectional DC-DC Converter and High-Precision Efficiency Measurement", IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 25, no. 3, March 2010 (2010-03-01), pages 650 - 658 *

Similar Documents

Publication Publication Date Title
US10879793B2 (en) Systems and methods for reducing electromagnetic interference using switching frequency jittering
US10770975B2 (en) Resonant power converters with switchable resonant modes
KR102243869B1 (en) Improved voltage boost for et modulator
JP2021035328A5 (en)
US8669745B2 (en) Transformer based voltage combiner with inductive shunt
JP5930560B1 (en) High frequency insulated gate driver circuit and gate circuit driving method
US6434029B1 (en) Boost topology having an auxiliary winding on the snubber inductor
KR100718480B1 (en) Switching power supply circuit
JP5713145B2 (en) Power supply device for high frequency power amplifier circuit and high frequency power amplifier device
WO2012176578A1 (en) Power supply device for high-frequency power amplification circuit, and high-frequency power amplification circuit
US20110090715A1 (en) Isolated switching power supply apparatus
US11095227B2 (en) Interleaved LLC resonant converter
JP2005124339A (en) Noise reducer and power converter
JP2006253618A (en) Power supply and transformer
JP5822685B2 (en) Switching power supply circuit
CN103762842A (en) Adaptive compensation ramp generator
JP2001190072A (en) Switching power source
WO2013005497A1 (en) Power supply device for high frequency electrical power amplification circuit, and high frequency electrical power amplifying device
JP7329972B2 (en) Converter and converter control method
US4371918A (en) High efficiency push-pull saturation converter
TW202230939A (en) Power converter device and driving method
JP2003259644A (en) Switching converter circuit
US9973158B1 (en) Power supply for class D amplifier in energy efficient applications
KR101813778B1 (en) Hybride type LED Power Supply
CN203562953U (en) Adaptive compensation ramp generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP