WO2013004882A1 - Doped carbon material for the electrocatalytic conversion of co2 into hydrocarbons, uses of the material and conversion method using said material - Google Patents

Doped carbon material for the electrocatalytic conversion of co2 into hydrocarbons, uses of the material and conversion method using said material Download PDF

Info

Publication number
WO2013004882A1
WO2013004882A1 PCT/ES2012/070508 ES2012070508W WO2013004882A1 WO 2013004882 A1 WO2013004882 A1 WO 2013004882A1 ES 2012070508 W ES2012070508 W ES 2012070508W WO 2013004882 A1 WO2013004882 A1 WO 2013004882A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordination
entity
hydrocarbons
event
electro
Prior art date
Application number
PCT/ES2012/070508
Other languages
Spanish (es)
French (fr)
Other versions
WO2013004882A9 (en
Inventor
Agustín F. PÉREZ CADENAS
Carlos Moreno Castilla
Francisco CARRASCO MARÍN
Francisco MALDONADO HÓDAR
Sergio Morales Torres
Frederik Kapteijn
Cornelia Hester ROS
Original Assignee
Universidad De Granada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada filed Critical Universidad De Granada
Publication of WO2013004882A1 publication Critical patent/WO2013004882A1/en
Publication of WO2013004882A9 publication Critical patent/WO2013004882A9/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel

Definitions

  • the present invention falls within the technical field of atmospheric CO2 capture technologies, particularly in the sector of electro-catalytic reduction systems of CO2 to hydrocarbons in which electrodes are used.
  • the electrodes studied have been mainly metallic sheets, materials with a very small surface area which together with the low Faradic efficiency of the process, makes it necessary to develop new electro-catalysts that give a new impulse to this attractive way of decrease in atmospheric levels of CO2.
  • the present invention aims to overcome the drawbacks of the state of the art detailed above, by means of a doped carbon material for the electro-catalytic transformation of CO2 in hydrocarbons, uses of the material in the electro-catalytic transformation of CO2 in hydrocarbons, and electrocatalytic transformation process of CO2 into hydrocarbons using the material.
  • the material for the electro-catalytic transformation of CO2 into hydrocarbons comprising a carbonaceous support and a metallic catalyst supported on the carbonaceous support, is characterized in that the carbonaceous support is a carbon gel doped with the metal catalyst, which comprises a carbonaceous matrix to which the metal catalyst is anchored; and because the metal catalyst is a transition metal or mixture of several, preferably Ni, Cu, or Fe
  • the sheets of carbon gels can be ground to obtain a powder, with which gas diffusion layers can be manufactured, which would also function as catalysts for the electro-reduction of CO2 in three-phase catalytic systems: gas-solid-liquid. All these gels are characterized by the possibility of being manufactured with a high surface area and porosity, which facilitates a high dispersion of the metal cations through the gel, as well as the adsorption of reagents improving the electro-catalytic efficiency against the metallic sheets .
  • the materials according to the present invention which. they comprise carbon gels, such as aerogels and carbon xerogels, doped with transition metals can be used as electrocatalysts for the transformation of CO2 into hydrocarbons, at atmospheric pressure and by electro-catalytic pathway in two phases: solid (electrodes ) and liquid (electrolyte).
  • the carbon gels used can be obtained in a conventional manner by mixing, for example, the appropriate proportions of a compound containing the metal, resorcinol, formaldehyde and water. This homogeneous mixture is introduced into glass molds and undergoes a healing process. Subsequently, the solid obtained (organic gel doped with the metal) is thermally dried in an air atmosphere to obtain a xerogel, or with supercritical CO2 to obtain an airgel, and finally, it is treated in an inert atmosphere at high temperature in a carbonization process , thus obtaining a carbon gel doped with the metal.
  • organic gels doped with the metal are dried with supercritical CO2, instead of thermally, the process results in aerogels and favors the presence of a larger volume of mesopores and macropores in them.
  • organic gels doped with transition metals can be activated by chemical activation processes with alkaline hydroxides or phosphoric acid increasing the volume of pores and / or their surface area, or physical activation processes with CO2, water vapor, air or diluted oxygen, increasing the volume of pores and / or their surface area.
  • the porosity and surface values that can be achieved by coal gels, doped or undoped are the following:
  • metal contents expressed in percentage by weight with respect to the total weight of doped carbon gel, of up to 25% can be obtained.
  • the present invention makes use of carbon gels doped with transition metals as new electro-catalysts, and is focused on the elimination of carbon dioxide dissolved in water by its transformation into hydrocarbons, a process by which not only It helps reduce net CO2 emissions to the atmosphere, but also to obtain hydrocarbons that can serve as fuels.
  • the present invention makes it possible to transform C0 2 into hydrocarbons, at atmospheric pressure, by electrocatalytic use using doped carbon gels as electrodes and process catalysts.
  • electrocatalysts can be obtained where the dispersion of the metal is very high across the porous surface of the gel, significantly increasing the catalytically active surface of the electrode.
  • the synthesis technique of the proposed doped carbon gels makes possible a significant minimization of the leaching process of the doping metal, a process that is inherent and inevitable in these catalytic systems.
  • Figure 1 Graph showing an example using the carbon xerogel XNi5 of the molar production, PM, of different hydrocarbons detected in the reactor in the gas phase, expressed in ⁇ , as a function of time, T, expressed in minutes.
  • Figure 2. Graph showing an example using the XCul carbon xerogel of the molar production, PM, of different hydrocarbons detected in the reactor in the gas phase, expressed in pmol, as a function of time, T, expressed in minutes.
  • Figure 3. Graph showing an example using the XFel carbon xerogel of the molar production, PM, of different hydrocarbons detected in the reactor in the gas phase, expressed in ⁇ ⁇ , as a function of time, T, expressed in minutes.
  • the preparation of the gels is carried out using resorcinol (R), formaldehyde (F), water (W) and a water soluble compound containing the transition metal, hereinafter precursor compound.
  • R resorcinol
  • F formaldehyde
  • W water
  • precursor compound a water soluble compound containing the transition metal
  • the amount of precursor compound to be used is calculated based on the different percentages of metal, by weight, that it is desired to achieve with respect to the initial mixture.
  • the maximum theoretical metal content in these materials is limited, by the amount of water used in the synthesis, and the solubility in it of the selected precursor compound.
  • a nickel doped carbon xerogel was obtained, hereinafter referred to as" XNi5 ", which has an apparent surface area value of 300 m 2 / g obtained by applying the equation of BET to the nitrogen adsorption data at -196 ° C; a micropore volume of 0.155 cm 3 / g obtained by applying the Dubinin-Radushkevich equation to the CO2 adsorption data at 0 ° C; a volume of mesoporos of 0.160 cm 3 / g obtained by mercury porosimetry; a macropore volume of 0.050 cm 3 / g obtained by mercury porosimetry; and a total nickel content of 5.0% by weight.
  • Example 3 Example 3:
  • a glass electrochemical cell equipped with three electrodes is used, using as a electrolyte a 0.1 M solution of KHCO3 saturated with CO2 gas, for which, before the reaction, a stream of CO2 bubbles into the solution.
  • the cell is connected to a potentiostat / galvanostat.
  • This type of device, tightly closed, will work as a discontinuous, heterogeneous and non-agitated reactor, which has worked in a potentiostatic mode, with potentials between -1.40 and -2.15 V with respect to the reference electrode (Ag / AgCl) .
  • the nickel-doped carbon gel acts as a working electrode and as a cathode.
  • a platinum electrode is used as a counter electrode acting as an anode.
  • the gas phase of the reactor is analyzed as a function of time, using a gas chromatograph equipped with a Poraplot Q column, for the separation of the different products, and an ionic flame detector (FID) for its detection
  • FID ionic flame detector
  • the electrochemical experimental system described above has been used as a discontinuous reactor, working in potentiostatic mode at - 1.65V, and at 23 ° C temperature.
  • a sheet of the product XNi5 of Example 2 has been used as a cathode.
  • the dimensions of the sheet of XNi5 have been approximately 20 x 25 x 1 mm, which corresponds to an exact weight of 0.8643 g.
  • a commercial nickel foil from the Alfa Aesar® house, a nickel foam from the Metpore® house, a graphite sheet from Alfa Aesar® house, and a non-doped carbon gel sheet were also tested as cathodes, all of them similar in size to the carbon gel sheet doped with nickel.
  • Figure 1 shows the molar production in the reactor, as a function of time, of the following detected hydrocarbons of 1, 2, 3 and 4 carbon atoms: methane [CH4), ethane (C2H6), propene (C3H6), ethyne and ethene (C2H2 / C2H4), tip (C3H4), and butane (C4H10).
  • reaction products are detected again when CO2 is bubbled back into the electrolyte, almost immediately, and the necessary 18 hours of reaction / adsorption time necessary for any new sheet of doped carbon gel with nickel.
  • FIG. 1 shows the molar production in the reactor, as a function of time, of the following detected hydrocarbons of 1, 2 and 3 carbon atoms: methane (CH4), ethane (C2H6), propene (C3H6), ethene ( C2H4), and propane (C3H8).
  • FIG. 3 shows the molar production in the reactor, as a function of time, of the following detected hydrocarbons of 1, 2 and 3 carbon atoms: methane (CH4), ethane (C2H6), ethene (C2H4), and propane (C3H8].
  • Total molar hydrocarbon production in the reactor at 270 minutes of product detection time was 0.178 micromoles.
  • the amount of iron in the XFel cathode was 0.02 lg.
  • Table 1 Total molar production at 270 minutes of product detection time.
  • Table 1 also shows how, with a second use of the same XNi5 sheet, virtually the same catalytic result is repeated.
  • Table 2 shows the leaching results analyzed by atomic absorption spectroscopy. The amount of total nickel leached from XNi5 is quite acceptable if we compare it with that leached from commercial nickel materials. Table 2.- Ni concentration detected in the liquid phase of the reactor / electrolytic cell.
  • the present invention refers to a coordination method for software systems based on multiparadigma architectures, which makes use of events with dynamically alterable semantics, and which aims to simplify the coordination between entities of software system, facilitating the addition of new entities to coordinate in the system without the need for them to be designed so that they can exchange information in an instant of time or must be synchronized, that is, interrupt their execution flow until another entity has reached a specific point in its own flow.
  • the invention is applicable to entities that present a service-oriented, agent, multi-agent, event-driven architecture, operating system processes, or any combination of the foregoing.
  • existing coordination methods involve blocking in the execution flow of at least one of the entities of the system, since coordination, to date, is resolved through a synchronization operation.
  • the invention provides a new method for software systems based on multi-paradigm architectures, based on events with dynamically alterable semantics, comprising the following phases:
  • a) generate at a specific point of execution where a coordination with at least one source entity associated with a specific type of event is required, a requirement event indicative of the need to receive notifications every time At least one source entity generates the specific type of event to which it is associated.
  • the coordinating entity notifies each of the origin entities of the system the specific types of events that must be notified to said coordinating entity.
  • the coordinating entity receives the notifications of the specific events produced in the different source entities.
  • the coordinating entity transmits, to the destination entity, inferred events and notifications received from the source entities.
  • the method of the invention optionally comprises a phase in which, if the structure of an event is modified in phases d-f, it is passed to phase c).
  • the method of the invention comprises a phase in which when a new event is defined in phases df, it is also passed to phase c). Also, optionally, the method comprises a phase in which, if the destination entity changes needs in the df phases, it goes back to phase c).
  • the notification transmitted from the coordinating entity to the destination entity is constituted by a new notification event resulting from a composition of the information contained in the notification of each origin entity, so that the coordinating entity composes the information that each of the events contains to produce new events of other types than the notifications generated by the origin entities, resulting from the combination of the events it received.
  • a transmission of these events is made to these latter entities.
  • a destination entity may be waiting for a type of event that can only originate due to the composition of the information provided by one or more entities with which it is desired to coordinate. This prevents the execution flow of an entity from advancing until other entities of the system have reached a specific point in the execution flow of each of them. Consequently, coordination between entities of a system is possible.
  • the coordinating entity is responsible for the composition of event information and for receiving and transmitting the new events generated, each source and destination entity only needs to know about the existence of this single coordinating entity. Therefore, the origin and destination entities remain decoupled from each other, which favors obtaining quality properties of a software system, such as maintainability and reusability.
  • an event model in the coordination method allows entities to coordinate origin and destination to maintain the execution of part of their execution flow at all times, even if they are waiting for a particular event to perform an operation specifically, since entities are notified when an event is received asynchronously.
  • the method of the invention allows the coordination to be carried out asynchronously, although obviously it can also be carried out synchronously, and it is avoided that the entities must have an explicit knowledge of the existence of other entities, allowing the possibility of adding new entities to a system without redesigning or restarting the rest of the entities to be executed or already running in the system.
  • the method of coordination of the invention is unique to the software system and common to different types of entities, providing the uniformity and integration required in these systems to enable the various entities to cooperate with each other. This avoids the need to use ad-hoc methods that are conventionally used in entity coordination.
  • the configuration described allows the invention to be applicable in architectural-based software systems for distributed software systems in which entities can be conceptually distinct, allowing the invention to apply to entities with a service-oriented architecture , agent, multi-agent, event driven, operating system processes, or any combination of the above.
  • the method comprises mechanisms for storing the information exchanged between the entities, which contributes to improving the process of analysis, verification and maintenance of a software system. For this it makes use of a knowledge base where meta-information about the information exchanged between entities is stored.
  • synchronous and asynchronous communication and coordination methods can be combined that contribute to meet the coordination requirements in each instant and for each specific software system and that provide greater ease of development of distributed software systems.
  • the invention relates to a software system coordination system based on multi-paradigm architectures in accordance with the method described above.
  • Figure 1. Shows a schematic representation of a software system based on multi iparadigm architectures to which the method of coordination of the invention is applied.
  • Figure 2. Shows the software system of the previous figure in which the source entities are determined by a humidity sensor and a noise sensor, while the destination entity is determined by a temperature sensor.
  • n source entities 1 have been represented, each associated with a specific type of event T 1 -T n respectively, so that through a coordinating entity 2 that is associated with all type of events, that is, it is configured so that it can receive any type of event, the operation of the source entities 1 is coordinated with a destination entity 3, in accordance with the method of the invention.
  • the method of the invention comprises a phase a) in which the destination entity 3 generates, at a specific point of execution in which it is required to perform coordination with at least one of the origin entities 1, a requirement event indicative of the need to receive notifications every time one or more of the origin entities 1 generates the type of specific event to which it is associated.
  • phase b) in which the coordinating entity 2 receives the request event, following a phase c) in which it processes and infers events related to the information required in said requirement event received, by means of a set of pre-established rules that semantically associate the types of events with each other.
  • a phase d) follows, in which the coordinating entity 2 notifies each of the origin entities 1 the types of events that must be notified to the coordinating entity; following a phase e) in which the coordinating entity 2 receives the notifications of the specific events T 1 -T n produced in the different origin entities 1, so that the procedure ends according to a phase f) in which the coordinating entity 2 performs various compositions of the information contained in the T 1 -T n events received and inferred, composing new events ⁇ ⁇ - ⁇ ⁇ so that said coordinating entity 2 transmits the inferred events and the notifications received from the origin 1 entities according to the new T ⁇ -T events towards the source entity 3.
  • the coordinating entity 2 when a composition with which a T.-T. event is obtained is obtained, the new event will be notified to the destination entity 3. When it If you receive notification of this event, you can continue with the part of your execution flow that required the coordination method described, to enable the various entities to cooperate with each other.
  • Figure 2 shows a particularization of an embodiment of the previous figure in which the origin entities 1 are constituted by a humidity sensor and a noise sensor Ib, while the destination entity is constituted by a temperature sensor 3.
  • This example requires a coordination in which the temperature sensor 3 can only notify a measurement if measurements have been previously reported by the humidity sensor la and the noise sensor Ib.
  • phase a) of the indicated coordination method given that there is more than one origin unit 1, it must be expressed from the temperature sensor 3, by means of an event of requirement, that automatic reception of those events whose associated information is the result of the composition of the information extracted from the events notified by the noise and humidity sensors Ib is desired.
  • the coordinating entity 3 Upon receipt of the requirement event in the coordinating entity 3, and as described in phase c), the coordinating entity 3 processes and infers that the events required for the combination are those that are notified by the humidity sensor and the noise sensor Ib.
  • the humidity and noise sensors 1 will be notified so that the coordination method is applied by initiating the notification of events generated by said sensors.
  • the coordinating entity 2 After notification of events by the humidity and noise sensors Ib, the coordinating entity 2 composes the information associated with each event, resulting in the construction of a new event semantically associated with both "humidity” and “noise", the which will be notified accordingly, as described in phase d) of the method. Having previously expressed from the temperature sensor 3 the need to automatically receive the new event generated, this sensor will automatically receive the new event resulting from the composition. As a result of the receipt of the notification of one of those events, a notification of an event is made by the temperature sensor 3 including information about the quantified value thereof.
  • phase c) should be returned when in one of the d) af) phases the following circumstances occur: the internal structure of any of the events changes, new events are defined as a consequence, for example, of the incorporation of new entities to the system, and / or the needs of the origin entity 3 change, for example, if the coordination rule imposed is only valid for a limited time or after a predetermined number of events received.
  • the origin 1 and destination 3 entities can be designed as required: agents, services, multi-agent, events, operating system processes, etc.
  • the coordinating entity 2 can also be considered a service as an agent or an event issuer / consumer.
  • the coordinating entity 2 must have, at least, a public interface that allows communication with the rest of entities 1 and 3 to allow the association between an entity 1 and 3 and an event type, the notification of an event to an entity interested destination 3 and, finally, the sending of an event from any source entity 1 to the coordinating entity 2.
  • the coordinating entity 2 must be able to access a knowledge base 4 where you can check the type of each of the events received, so that the composition of information is efficient in time, it is also necessary to consult this knowledge base 4 and only perform the compositions that are collected in it.
  • the knowledge base 4 can be any type of software system that allows storing and retrieving information, properties about this information (meta-information) and the relationships between different kinds of information.
  • a knowledge base may be a relational database, an ontology and its instances, etc.
  • the coordination method can be integrated into a software system responsible for solving the various communication mechanisms between entities of a distributed software system.
  • the invention also relates to a system comprising the means necessary to carry out the described method, presenting the advantages that were indicated in the description section of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

The invention relates to a material for the electrocatalytic conversion of CO2 into hydrocarbons, comprising a carbonaceous substrate and a metal catalyst anchored in the carbonaceous substrate, in which the carbonaceous substrate is a carbon gel doped with the metal catalyst, comprising a carbonaceous matrix to which the metal catalyst is anchored. The material is characterised in that the metal catalyst is a transition metal or a mixture of different transition metals. Said material is suitable for use as an electrode or catalyst in methods for the electrocatalytic conversion of CO2 into hydrocarbons.

Description

MATERIAL DE CARBÓN DOPADO PARA LA TRANSFORMACIÓN ELECTRO- CATALÍTICA DE C02 EN HIDROCARBUROS, USOS DEL MATERIAL Y PROCEDIMIENTO DE TRANSFORMACIÓN UTILIZANDO EL MATERIAL CAMPO TÉCNICO DE LA INVENCIÓN COATED MATERIAL FOR THE ELECTRO- CATALYTIC TRANSFORMATION OF C0 2 IN HYDROCARBONS, USES OF THE MATERIAL AND TRANSFORMATION PROCEDURE USING THE MATERIAL TECHNICAL FIELD OF THE INVENTION
La presente invención se encuadra en el campo técnico de las tecnologías de captación de CO2 atmosférico, particularmente, en el sector de los sistemas de reducción electro- catalítica del CO2 a hidrocarburos en los que se utilizan electrodos. ANTECEDENTES DE LA INVENCIÓN  The present invention falls within the technical field of atmospheric CO2 capture technologies, particularly in the sector of electro-catalytic reduction systems of CO2 to hydrocarbons in which electrodes are used. BACKGROUND OF THE INVENTION
El aumento de las emisiones atmosféricas de CO2 es uno de los problemas medioambientales más importantes a los que se está enfrentando el desarrollo sostenible de nuestro planeta, siendo este aumento uno de los principales responsables del cambio climático global. En particular, son aquellas emisiones provenientes del uso energético de los combustibles fósiles, las que generan un mayor impacto en dicho aumento, ya que, constituyen un incremento neto y continuo en el ciclo natural de carbono troposférico. Existen varias estrategias para tratar de abordar este problema, siendo la reducción electro-catalítica del CO2 a hidrocarburos, utilizando energías renovables, uno de los grandes desafíos para la investigación (A.T. Bell, B.C. Gates, D. Ray, Basic Research Needs: Catalysis for Energy, U.S. Department of Energy Pub, Washington, DC, 2007). En esta reacción, los electrodos estudiados han sido principalmente láminas metálicas, materiales con un área superficial muy pequeña lo que unido a la baja eficiencia Faradáica del proceso, hace necesario el desarrollo de nuevos electro-catalizadores que den un nuevo impulso a esta atractiva vía de disminución de los niveles atmosféricos de CO2.  The increase in atmospheric CO2 emissions is one of the most important environmental problems facing the sustainable development of our planet, this increase being one of the main responsible for global climate change. In particular, it is those emissions from the energy use of fossil fuels, which generate the greatest impact on this increase, since they constitute a net and continuous increase in the natural tropospheric carbon cycle. There are several strategies to try to address this problem, being the electro-catalytic reduction of CO2 to hydrocarbons, using renewable energy, one of the great challenges for research (AT Bell, BC Gates, D. Ray, Basic Research Needs: Catalysis for Energy, US Department of Energy Pub, Washington, DC, 2007). In this reaction, the electrodes studied have been mainly metallic sheets, materials with a very small surface area which together with the low Faradic efficiency of the process, makes it necessary to develop new electro-catalysts that give a new impulse to this attractive way of decrease in atmospheric levels of CO2.
La reducción electroquímica directa del CO2 en disolución acuosa ha sido estudiada principalmente sobre electrodos metálicos en forma de láminas, tanto a presión atmosférica como a presiones superiores. Hasta ahora, los electrodos de cobre han sido los más estudiados, mostrándose bastante exclusivos en la activación del CO2 aunque la eficiencia Faradáica es todavía pequeña: es decir, el resultado de la disociación de H2O a The direct electrochemical reduction of CO2 in aqueous solution has been studied mainly on sheet metal electrodes, both at atmospheric pressure and at higher pressures. So far, copper electrodes have been the most studied, showing quite exclusive in the activation of CO2 although the Faradic efficiency is still small: that is, the result of the dissociation of H2O to
H2. Se han llevado a cabo varios estudios con objeto de elucidar el mecanismo de electro-reducción de CO2 a hidrocarburos, los cuales, parecen apuntar hacia un mecanismo de Fischer-Tropsch de propagación de cadena (H. Shibata, J.A. Moulijn, G. Muí, Enabling electrocatalytic Fischer-Tropsch synthesis from carbón dioxide over copper-based electrodes, Catal. Lett. 123:186-192, 2008]. Los productos obtenidos en la reducción electroquímica directa del CO2 varían en general entre hidrocarburos de uno a seis átomos de carbono, habiéndose obtenido también productos oxigenados como alcoholes o ácidos carboxílicos, con longitudes de cadena del mismo orden anteriormente comentado. H2. Several studies have been carried out to elucidate the mechanism of electro-reduction of CO2 to hydrocarbons, which seem to point towards a Fischer-Tropsch chain propagation mechanism (H. Shibata, JA Moulijn, G. Muí, Enabling electrocatalytic Fischer-Tropsch synthesis from carbon dioxide over copper-based electrodes, Catal. Lett. 123: 186-192, 2008]. The products obtained in the direct electrochemical reduction of CO2 generally vary between hydrocarbons of one to six carbon atoms, and oxygenated products such as alcohols or carboxylic acids have also been obtained, with chain lengths of the same order mentioned above.
La presión a la cual se lleva a cabo el proceso es un factor muy importante, ya que, a mayor presión la concentración de CO2 disuelto en agua también es mayor, y la cantidad de productos obtenidos por unidad de tiempo aumenta. No obstante, los procesos llevados a cabo a presiones superiores a la atmosférica son más caros y técnicamente más complejos. The pressure at which the process is carried out is a very important factor, since, at higher pressure the concentration of CO2 dissolved in water is also higher, and the amount of products obtained per unit time increases. However, processes carried out at pressures above atmospheric are more expensive and technically more complex.
Algunos materiales de carbón se han aplicado con éxito en procesos electroquímicos de almacenamiento de energía, donde la textura porosa, superficie específica y química superficial de estos materiales juega un papel importante en tales procesos. Por extensión, la aplicación de los materiales carbón en procesos de reducción electro- catalítica de CO2 es una opción plausible, la cual ha sido ensayada con catalizadores de platino soportados sobre nanotubos de carbón o utilizando catalizadores de Pt soportados sobre telas de carbón o negros de carbón (G. Centi, S. Perathoner, G. Wine, M. Gangeri, Electrocatalytic conversión of CO2 to long carbon-chain hydrocarbons, Green Chemistry 9:671-678, 2007) obteniéndose una amplia distribución de productos de hasta nueve átomos de carbono. Sin embargo, en todos estos casos el platino, metal muy costoso, ha sido depositado sobre el soporte carbonoso mediante impregnación, no habiéndose descrito en qué extensión se produce la lixiviación del metal durante el proceso electro-catalítico. Some carbon materials have been successfully applied in electrochemical energy storage processes, where the porous texture, specific surface and surface chemistry of these materials plays an important role in such processes. By extension, the application of carbon materials in CO2 electrocatalytic reduction processes is a plausible option, which has been tested with platinum catalysts supported on carbon nanotubes or using Pt catalysts supported on carbon or black fabrics. coal (G. Centi, S. Perathoner, G. Wine, M. Gangeri, Electrocatalytic conversion of CO2 to long carbon-chain hydrocarbons, Green Chemistry 9: 671-678, 2007) obtaining a wide product distribution of up to nine atoms of carbon. However, in all these cases, platinum, a very expensive metal, has been deposited on the carbonaceous support by impregnation, and the extent to which metal leaching occurs during the electro-catalytic process has not been described.
A la vista de lo anterior, había una necesidad de idear un sistema electro-catalítico que permitiera evitar los inconvenientes de los sistemas anteriormente descritos para reducir las emisiones atmosféricas de CO2 mediante su transformación en hidrocarburos.  In view of the above, there was a need to devise an electro-catalytic system that would avoid the inconvenience of the systems described above to reduce atmospheric emissions of CO2 through its transformation into hydrocarbons.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención tiene por objeto superar los inconvenientes del estado de la técnica más arriba detallados, mediante un material de carbón dopado para la transformación electro-catalítica de CO2 en hidrocarburos, usos del material en la transformación electro-catalítica de CO2 en hidrocarburos, y procedimiento de transformación electro- catalítica de CO2 en hidrocarburos utilizando el material.  The present invention aims to overcome the drawbacks of the state of the art detailed above, by means of a doped carbon material for the electro-catalytic transformation of CO2 in hydrocarbons, uses of the material in the electro-catalytic transformation of CO2 in hydrocarbons, and electrocatalytic transformation process of CO2 into hydrocarbons using the material.
El material para la transformación electro-catalítica de CO2 en hidrocarburos que comprende un soporte carbonoso y un catalizador metálico soportado en el soporte carbonoso, se caracteriza porque el soporte carbonoso es un gel de carbón dopado con el catalizador metálico, que comprende una matriz carbonosa a la que está anclado el catalizador metálico; y porque el catalizador metálico es un metal de transición o mezcla de varios, preferentemente Ni, Cu, o Fe The material for the electro-catalytic transformation of CO2 into hydrocarbons comprising a carbonaceous support and a metallic catalyst supported on the carbonaceous support, is characterized in that the carbonaceous support is a carbon gel doped with the metal catalyst, which comprises a carbonaceous matrix to which the metal catalyst is anchored; and because the metal catalyst is a transition metal or mixture of several, preferably Ni, Cu, or Fe
Una de las grandes ventajas que presentan estos materiales respecto al resto de materiales de carbón es que, debido a su procedimiento de preparación, se pueden obtener directamente como láminas, es decir, la forma óptima y adecuada para su uso como electrodo en un sistema de dos fases.  One of the great advantages of these materials with respect to the rest of carbon materials is that, due to their preparation procedure, they can be obtained directly as sheets, that is, the optimum and suitable form for use as an electrode in a system of Two phases.
Las láminas de geles de carbón pueden molturarse para obtener un polvo, con el cual se pueden fabricar capas de difusión de gases, que funcionarían también como catalizadores para la electro-reducción del CO2 en sistemas catalíticos en tres fases: gas-sólido-líquido. Todos estos geles se caracterizan por la posibilidad de fabricarse con una elevada área superficial y porosidad, lo que facilita una alta dispersión de los cationes metálicos a través del gel, así como la adsorción de reactivos mejorando la eficiencia electro-catalítica frente a las láminas metálicas. Finalmente, y también debido al proceso de preparación de los geles, la mayor parte de los cationes de metálicos van a estar anclados a la estructura del gel, lo que minimiza la lixiviación de los mismos, y a este respecto, estos materiales son ventajosos frente que aquellos electro-catalizadors preparados mediante impregnación de la correspondiente fase metálica.  The sheets of carbon gels can be ground to obtain a powder, with which gas diffusion layers can be manufactured, which would also function as catalysts for the electro-reduction of CO2 in three-phase catalytic systems: gas-solid-liquid. All these gels are characterized by the possibility of being manufactured with a high surface area and porosity, which facilitates a high dispersion of the metal cations through the gel, as well as the adsorption of reagents improving the electro-catalytic efficiency against the metallic sheets . Finally, and also due to the gels preparation process, most of the metal cations will be anchored to the gel structure, which minimizes their leaching, and in this respect, these materials are advantageous compared to those electro-catalysts prepared by impregnating the corresponding metal phase.
Los materiales conforme a la presente invención que. comprenden geles de carbón, como por ejemplo aerogeles y xerogeles de carbón, dopados con metales de transición se pueden usar como electro-catalizadores para la transformación de CO2 en hidrocarburos, a presión atmosférica y por vía electro-catalítica en dos fases: sólida (electrodos) y líquida (electrolito). The materials according to the present invention which. they comprise carbon gels, such as aerogels and carbon xerogels, doped with transition metals can be used as electrocatalysts for the transformation of CO2 into hydrocarbons, at atmospheric pressure and by electro-catalytic pathway in two phases: solid (electrodes ) and liquid (electrolyte).
Los geles de carbón utilizados se pueden obtener de forma en sí convencional mezclando, por ejemplo, las proporciones adecuadas de un compuesto que contenga al metal, resorcinol, formaldehido y agua. Esta mezcla homogénea se introduce en moldes de vidrio y se somete a un proceso de curación. Posteriormente, el sólido obtenido (gel orgánico dopado con el metal) se seca térmicamente en atmósfera de aire para obtener un xerogel, o con CO2 supercrítico para obtener un aerogel, y finalmente, se trata en atmósfera inerte a alta temperatura en un proceso de carbonización, obteniéndose así un gel de carbón dopado con el metal. Cuando los geles orgánicos dopados con el metal se secan con CO2 supercrítico, en vez de térmicamente, el proceso resulta en aerogeles y favorece la presencia de un mayor volumen de mesoporos y macroporos en los mismos. Asimismo, los geles orgánicos dopados con metales de transición pueden ser activados mediante procesos de activación química con hidróxidos alcalinos o ácido fosfórico incrementándose el volumen de poros y/o el área superficial de los mismos, o a procesos de activación física con CO2, vapor de agua, aire u oxígeno diluido, incrementando el volumen de poros y/o el área superficial de los mismos. The carbon gels used can be obtained in a conventional manner by mixing, for example, the appropriate proportions of a compound containing the metal, resorcinol, formaldehyde and water. This homogeneous mixture is introduced into glass molds and undergoes a healing process. Subsequently, the solid obtained (organic gel doped with the metal) is thermally dried in an air atmosphere to obtain a xerogel, or with supercritical CO2 to obtain an airgel, and finally, it is treated in an inert atmosphere at high temperature in a carbonization process , thus obtaining a carbon gel doped with the metal. When the organic gels doped with the metal are dried with supercritical CO2, instead of thermally, the process results in aerogels and favors the presence of a larger volume of mesopores and macropores in them. Likewise, organic gels doped with transition metals can be activated by chemical activation processes with alkaline hydroxides or phosphoric acid increasing the volume of pores and / or their surface area, or physical activation processes with CO2, water vapor, air or diluted oxygen, increasing the volume of pores and / or their surface area.
Dependiendo de las condiciones de preparación, y muy especialmente del método de secado, térmico o utilizando CO2 supercrítico, los valores de porosidad y superficie que pueden alcanzar los geles de carbón, dopados o sin dopar, son los siguientes: Depending on the preparation conditions, and especially the method of drying, thermal or using supercritical CO2, the porosity and surface values that can be achieved by coal gels, doped or undoped, are the following:
• Volumen de microporos de hasta 0,800 cm3/g determinado mediante la aplicación de la ecuación de Dubinin Radushkevich a los datos de adsorción de N2 a -196°C. • Micropore volume up to 0.800 cm 3 / g determined by applying the Dubinin Radushkevich equation to the adsorption data of N 2 at -196 ° C.
• Volumen de microporos de hasta 0,600 cm3/g determinado mediante la aplicación de la ecuación de Dubinin Radushkevich a los datos de adsorción de C02 a 0°C. • Micropore volume up to 0.600 cm 3 / g determined by applying the Dubinin Radushkevich equation to the adsorption data of C0 2 at 0 ° C.
• Volumen total de poros de hasta 2,000 cm3/g determinado mediante porosimetría de mercurio. • Total pore volume of up to 2,000 cm 3 / g determined by mercury porosimetry.
• Volumen de mesoporos de hasta 1,500 cm3/g determinado mediante porosimetría de mercurio. • Volume of mesopores up to 1,500 cm 3 / g determined by mercury porosimetry.
• Volumen de macroporos de hasta 1,900 cm3/g determinado mediante porosimetría de mercurio. • Volume of macropores up to 1,900 cm 3 / g determined by mercury porosimetry.
• Área superficial aparente de hasta 2000 m2/g determinada mediante la aplicación de la ecuación de BET a los datos de adsorción de N2 a -196°C.• Apparent surface area of up to 2000 m 2 / g determined by applying the BET equation to the adsorption data of N 2 at -196 ° C.
Dependiendo del precursor metálico utilizado, y del grado de activación final alcanzado del material, se pueden obtener contenidos de metal, expresados en porcentaje en peso respecto al peso total de gel de carbón dopado, de hasta el 25%. Depending on the metal precursor used, and the degree of final activation of the material, metal contents, expressed in percentage by weight with respect to the total weight of doped carbon gel, of up to 25% can be obtained.
Como se puede apreciar, la presente invención hace uso de geles de carbón dopados con metales de transición como nuevos electro-catalizadores, y está enfocada a la eliminación del dióxido de carbono disuelto en agua mediante su transformación en hidrocarburos, proceso mediante el cual no solo se contribuye a reducir las emisiones netas de CO2 a la atmósfera, sino también a la obtención de hidrocarburos que pueden servir como combustibles. As can be seen, the present invention makes use of carbon gels doped with transition metals as new electro-catalysts, and is focused on the elimination of carbon dioxide dissolved in water by its transformation into hydrocarbons, a process by which not only It helps reduce net CO2 emissions to the atmosphere, but also to obtain hydrocarbons that can serve as fuels.
De acuerdo con lo que se desprende de lo anterior, la presente invención hace posible la transformación de C02 en hidrocarburos, a presión atmosférica, por vía electro- catalítica utilizando geles de carbón dopados como electrodos y catalizadores del proceso. Además, aprovechando la elevada área superficial y porosidad de los geles de carbón se pueden obtener electro-catalizadores donde la dispersión del metal sea muy elevada a través de la superficie porosa del gel, aumentado significativamente la superficie catalíticamente activa del electrodo. La técnica de síntesis de los geles de carbón dopados que se proponen, hace posible una minimización significativa del proceso de lixiviación del metal dopante, proceso que es inherente e inevitable en estos sistemas catalíticos. In accordance with the foregoing, the present invention makes it possible to transform C0 2 into hydrocarbons, at atmospheric pressure, by electrocatalytic use using doped carbon gels as electrodes and process catalysts. In addition, taking advantage of the high surface area and porosity of the carbon gels, electrocatalysts can be obtained where the dispersion of the metal is very high across the porous surface of the gel, significantly increasing the catalytically active surface of the electrode. The synthesis technique of the proposed doped carbon gels makes possible a significant minimization of the leaching process of the doping metal, a process that is inherent and inevitable in these catalytic systems.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1.- Gráfico que muestra un ejemplo utilizando el xerogel de carbón XNi5 de la producción molar, PM, de diferentes hidrocarburos detectados en el reactor en la fase gaseosa, expresados en μπιοΐ, en función del tiempo, T, expresado en minutos. Figure 1.- Graph showing an example using the carbon xerogel XNi5 of the molar production, PM, of different hydrocarbons detected in the reactor in the gas phase, expressed in μπιοΐ, as a function of time, T, expressed in minutes.
Figura 2.- Gráfico que muestra un ejemplo utilizando el xerogel de carbón XCul de la producción molar, PM, de diferentes hidrocarburos detectados en el reactor en la fase gaseosa, expresados en pmol, en función del tiempo, T, expresado en minutos. Figure 2.- Graph showing an example using the XCul carbon xerogel of the molar production, PM, of different hydrocarbons detected in the reactor in the gas phase, expressed in pmol, as a function of time, T, expressed in minutes.
Figura 3.- Gráfico que muestra un ejemplo utilizando el xerogel de carbón XFel de la producción molar, PM, de diferentes hidrocarburos detectados en el reactor en la fase gaseosa, expresados en μη οΐ, en función del tiempo, T, expresado en minutos.  Figure 3.- Graph showing an example using the XFel carbon xerogel of the molar production, PM, of different hydrocarbons detected in the reactor in the gas phase, expressed in μη οΐ, as a function of time, T, expressed in minutes.
MODOS DE REALIZACIÓN DE LA INVENCIÓN EMBODIMENTS OF THE INVENTION
Ejemplo 1: Example 1:
La preparación de los geles se lleva a cabo utilizando resorcinol (R), formaldehido (F), agua (W) y un compuesto soluble en agua que contenga al metal de transición, en adelante compuesto precursor. La cantidad de compuesto precursor a utilizar se calcula en función de los diferentes porcentajes de metal, en peso, que se desea alcanzar respecto a la mezcla inicial. El contenido teórico máximo de metal en estos materiales viene limitado, por la cantidad de agua utilizada en la síntesis, y la solubilidad en ella del compuesto precursor seleccionado.  The preparation of the gels is carried out using resorcinol (R), formaldehyde (F), water (W) and a water soluble compound containing the transition metal, hereinafter precursor compound. The amount of precursor compound to be used is calculated based on the different percentages of metal, by weight, that it is desired to achieve with respect to the initial mixture. The maximum theoretical metal content in these materials is limited, by the amount of water used in the synthesis, and the solubility in it of the selected precursor compound.
El compuesto precursor y el resorcinol se disuelven en la cantidad adecuada de agua, bajo agitación y a temperatura ambiente. Sobre la disolución acuosa anterior, y manteniendo la agitación, se adiciona lentamente el formaldehido en forma de disolución acuosa al 37%. La mezcla polimérica se mantiene en agitación y a temperatura ambiente hasta homogenización completa, momento en el cual se vierte en los moldes de vidrio, sobre los que permanecerá 24 horas a temperatura ambiente seguido de 5 días a 80°C, tiempo durante el cual el gel orgánico dopado con el metal solidifica completamente. Durante este procedimiento de síntesis, el metal, que también actúa como catalizador de polimerización del R y F, queda ocluido y fuertemente adherido a la matriz polimérica. Finalmente, las láminas de geles orgánicos dopados son separadas de los moldes de vidrio y carbonizadas a 900°C en atmósfera de nitrógeno durante 5 horas. Ejemplo 2: The precursor compound and resorcinol are dissolved in the appropriate amount of water, under stirring and at room temperature. On the above aqueous solution, and maintaining the stirring, formaldehyde is slowly added in the form of a 37% aqueous solution. The polymer mixture is kept under stirring and at room temperature until complete homogenization, at which time it is poured into glass molds, on which it will remain 24 hours at room temperature followed by 5 days at 80 ° C, during which time the gel Organic doped with metal solidifies completely. During this synthesis procedure, the metal, which also acts as a polymerization catalyst for R and F, is occluded and strongly adhered to the polymer matrix. Finally, the sheets of doped organic gels are separated from the glass molds and carbonized at 900 ° C under a nitrogen atmosphere for 5 hours. Example 2:
Siguiendo el procedimiento de síntesis descrito en el ejemplo 1, y concretamente, cuando las cantidades de reactivos empleadas fueron 12,35 gramos de R, 18,16 gramos de F, 16,70 gramos de agua, y 2,11 gramos del compuesto precursor acetato de níquel tetrahidratado (Ni(AcO)2»4H20], se obtuvo un xerogel de carbón dopado con níquel, en adelante denominado "XNi5", que presenta un valor de área superficial aparente de 300 m2/g obtenida aplicando la ecuación de BET a los datos de adsorción de nitrógeno a -196°C; un volumen de microporos de 0,150 cm3/g obtenido mediante la aplicación de la ecuación de Dubinin-Radushkevich a los datos de adsorción de CO2 a 0°C; un volumen de mesoporos de 0,160 cm3/g obtenido mediante porosimetría de mercurio; un volumen de macroporos de 0,050 cm3/g obtenido mediante porosimetría de mercurio; y un contenido total de níquel del 5,0 % en peso. Ejemplo 3: Following the synthesis procedure described in example 1, and specifically, when the amounts of reagents used were 12.35 grams of R, 18.16 grams of F, 16.70 grams of water, and 2.11 grams of the precursor compound nickel acetate tetrahydrate (Ni (AcO) 2 »4H20], a nickel doped carbon xerogel was obtained, hereinafter referred to as" XNi5 ", which has an apparent surface area value of 300 m 2 / g obtained by applying the equation of BET to the nitrogen adsorption data at -196 ° C; a micropore volume of 0.155 cm 3 / g obtained by applying the Dubinin-Radushkevich equation to the CO2 adsorption data at 0 ° C; a volume of mesoporos of 0.160 cm 3 / g obtained by mercury porosimetry; a macropore volume of 0.050 cm 3 / g obtained by mercury porosimetry; and a total nickel content of 5.0% by weight. Example 3:
Siguiendo el procedimiento de síntesis descrito en el ejemplo 1, y concretamente, cuando las cantidades de reactivos empleadas fueron 12,35 gramos de R, 18,16 gramos de F, 33,4 gramos de agua, y 2,15 gramos del compuesto precursor acetato de cobre monohidratado (Cu(AcO)2»H203, se obtuvo un xerogel de carbón dopado con cobre considerado como no poroso, en adelante denominado "XCul", que presenta un valor de área superficial aparente de 4 m2/g obtenido aplicando la ecuación de BET a los datos de adsorción de nitrógeno a -196°C; y un contenido total de cobre del 7,1 % en peso. Ejemplo 4: Following the synthesis procedure described in example 1, and specifically, when the amounts of reagents used were 12.35 grams of R, 18.16 grams of F, 33.4 grams of water, and 2.15 grams of the precursor compound copper acetate monohydrate (Cu (AcO) 2 »H203, a carbon-doped xerogel with copper considered non-porous was obtained, hereinafter referred to as" XCul ", which has an apparent surface area value of 4 m 2 / g obtained by applying the BET equation to nitrogen adsorption data at -196 ° C; and a total copper content of 7.1% by weight Example 4:
Siguiendo el procedimiento de síntesis descrito en el ejemplo 1, y concretamente, cuando las cantidades de reactivos empleadas fueron 12,35 gramos de R, 18,16 gramos de F, 16,70 gramos de agua, y 2,30 gramos del compuesto precursor acetato de hierro (Fe(AcO)2), se obtuvo un xerogel de carbón dopado con hierro, en adelante denominado "XFel", que presenta un valor de área superficial aparente de 275 m2/g obtenida aplicando la ecuación de BET a los datos de adsorción de nitrógeno a -196°C; un volumen de microporos de 0,070 cm3/g obtenido mediante la aplicación de la ecuación de Dubinin-Radushkevich a los datos de adsorción de CO2 a 0°C; un volumen total de poros de 0,450 cm3/g obtenido mediante adsorción de nitrógeno a -196°C y 0.995 de presión relativa; y un contenido total de hierro del 6.5 % en peso. Ejemplo 5: Following the synthesis procedure described in example 1, and specifically, when the amounts of reagents used were 12.35 grams of R, 18.16 grams of F, 16.70 grams of water, and 2.30 grams of the precursor compound iron acetate (Fe (AcO) 2), an iron-doped carbon xerogel was obtained, hereinafter referred to as "XFel", which has an apparent surface area value of 275 m 2 / g obtained by applying the BET equation to nitrogen adsorption data at -196 ° C; a micropore volume of 0.070 cm 3 / g obtained by applying the Dubinin-Radushkevich equation to the CO2 adsorption data at 0 ° C; a total pore volume of 0.450 cm 3 / g obtained by adsorption of nitrogen at -196 ° C and 0.995 relative pressure; and a total iron content of 6.5% by weight. Example 5:
Como sistema experimental se utiliza una célula electroquímica de vidrio equipada con tres electrodos, empleando como electrolito una disolución 0,1 M de KHCO3 saturada de CO2 gas, para lo cual antes de la reacción una corriente de CO2 burbujea dentro de la disolución. La célula está conectada a un potenciostato/galvanostato. Este tipo de dispositivo, herméticamente cerrado, funcionara como un reactor discontinuo, heterogéneo y sin agitación, el cual ha trabajado en modo potenciostático, con potenciales entre -1,40 y -2,15 V respecto al electrodo de referencia (Ag/AgCl). El gel de carbón dopado con níquel actúa como electrodo de trabajo y como cátodo. Un electrodo de platino se empleada como electrodo contador actuando como ánodo. Para monitorizar la evolución de la reacción, la fase gaseosa del reactor se analizada en función del tiempo, utilizando un cromatógrafo de gases equipado con una columna Poraplot Q, para la separación de los diferentes productos, y un detector iónico de llama (FID) para su detección. El reactor/célula electroquímica puede modificarse para trabajar en modo semi-continuo o continuo.  As an experimental system, a glass electrochemical cell equipped with three electrodes is used, using as a electrolyte a 0.1 M solution of KHCO3 saturated with CO2 gas, for which, before the reaction, a stream of CO2 bubbles into the solution. The cell is connected to a potentiostat / galvanostat. This type of device, tightly closed, will work as a discontinuous, heterogeneous and non-agitated reactor, which has worked in a potentiostatic mode, with potentials between -1.40 and -2.15 V with respect to the reference electrode (Ag / AgCl) . The nickel-doped carbon gel acts as a working electrode and as a cathode. A platinum electrode is used as a counter electrode acting as an anode. To monitor the evolution of the reaction, the gas phase of the reactor is analyzed as a function of time, using a gas chromatograph equipped with a Poraplot Q column, for the separation of the different products, and an ionic flame detector (FID) for its detection The electrochemical reactor / cell can be modified to work in semi-continuous or continuous mode.
Para la reducción electro-catalítica de CO2 disuelto en agua a hidrocarburos, a presión atmosférica, y catalizada por un electrodo de gel de carbón dopado con níquel, se ha utilizado el sistema experimental electroquímico descrito anteriormente como reactor discontinuo, trabajando en modo potenciostático a -1,65V, y a 23°C de temperatura. Como cátodo se ha utilizado una lámina del producto XNi5 del ejemplo 2. Las dimensiones de la lámina de XNi5 han sido de 20 x 25 x 1 mm, aproximadamente, que corresponde a un peso exacto de 0,8643 g.  For the electro-catalytic reduction of CO2 dissolved in water to hydrocarbons, at atmospheric pressure, and catalyzed by a nickel-doped carbon gel electrode, the electrochemical experimental system described above has been used as a discontinuous reactor, working in potentiostatic mode at - 1.65V, and at 23 ° C temperature. As a cathode, a sheet of the product XNi5 of Example 2 has been used. The dimensions of the sheet of XNi5 have been approximately 20 x 25 x 1 mm, which corresponds to an exact weight of 0.8643 g.
A efectos comparativos también se probaron como cátodos una lámina de níquel comercial de la casa Alfa Aesar®, una espuma de níquel de la casa Metpore®, una lámina de grafito de casa Alfa Aesar®, y una lámina de gel de carbón no dopado, todas ellas de dimensiones similares a la lámina de gel de carbón dopado con níquel.  For comparison purposes, a commercial nickel foil from the Alfa Aesar® house, a nickel foam from the Metpore® house, a graphite sheet from Alfa Aesar® house, and a non-doped carbon gel sheet were also tested as cathodes, all of them similar in size to the carbon gel sheet doped with nickel.
Con XNi5 como cátodo no se detectaron productos de reacción hasta transcurridas 18 horas del proceso electro-catalítico, debido a la existencia simultánea de un proceso de adsorción de los productos sobre la estructura porosa del gel. With XNi5 as a cathode, no reaction products were detected until 18 hours after the electro-catalytic process, due to the simultaneous existence of an adsorption process of the products on the porous structure of the gel.
A partir de la detección del primer producto de reacción, considerado como tiempo cero en la Figura 1, se detecta un aumento de la actividad electro-catalítica directamente proporcional al tiempo de reacción. En la Figura 1 se muestra la producción molar en el reactor, en función del tiempo, de los hidrocarburos detectados de 1, 2, 3 y 4 átomos de carbono siguientes: metano [CH4), etano (C2H6), propeno (C3H6), etino y eteno (C2H2/C2H4), propino (C3H4), y butano (C4H10). From the detection of the first reaction product, considered as zero time in Figure 1, an increase in electro-catalytic activity directly proportional to the reaction time is detected. Figure 1 shows the molar production in the reactor, as a function of time, of the following detected hydrocarbons of 1, 2, 3 and 4 carbon atoms: methane [CH4), ethane (C2H6), propene (C3H6), ethyne and ethene (C2H2 / C2H4), tip (C3H4), and butane (C4H10).
Con el empleo de una lámina de grafito, o una lámina de gel de carbón no dopado como cátodos, no se detectan productos de reacción. With the use of a graphite sheet, or a non-doped carbon gel sheet as cathodes, no reaction products are detected.
Con el empleo de un electrolito libre de CO2 disuelto, y de XNi5 como cátodo, no se detectan productos de reacción.  With the use of a dissolved CO2-free electrolyte, and XNi5 as a cathode, no reaction products are detected.
Si se emplea XNi5 como cátodo, y durante el periodo en que se están detectando productos de reacción se procede a la eliminación in situ del CO2 disuelto del electrolito, también cesa la detección de productos de reacción; los productos de reacción se vuelven a detectar cuando se vuelve a burbujear CO2 en el electrolito, de forma casi inmediata, no teniendo que transcurrir en este caso las 18 horas de tiempo de reacción/adsorción necesarias para cualquier lámina nueva de gel de carbón dopado con níquel.  If XNi5 is used as a cathode, and during the period in which reaction products are being detected, the in situ removal of dissolved CO2 from the electrolyte is carried out, the detection of reaction products ceases; The reaction products are detected again when CO2 is bubbled back into the electrolyte, almost immediately, and the necessary 18 hours of reaction / adsorption time necessary for any new sheet of doped carbon gel with nickel.
Tanto con la lámina, como la espuma de níquel metálico comercial, utilizadas como cátodos se obtiene una distribución de productos de reacción similar a la obtenida con XNi5. La Tabla 1 muestra una comparativa del comportamiento electro-catalítico general de todos estos materiales, donde se observa claramente, que habiéndose obtenido una producción total molar del mismo orden, y siendo difícil una comparación exhaustiva cuantitativa de la actividad catalítica dado que son materiales muy diferentes, es evidente que con el gel de carbón dopado con níquel, XNi5, se empleó una cantidad de catalizador muy inferior. Ejemplo 6:  Both the sheet and the commercial metallic nickel foam used as cathodes give a distribution of reaction products similar to that obtained with XNi5. Table 1 shows a comparison of the general electro-catalytic behavior of all these materials, where it is clearly observed, that having obtained a total molar production of the same order, and a thorough quantitative comparison of the catalytic activity being difficult since they are very different materials , it is evident that with the nickel-doped carbon gel, XNi5, a much smaller amount of catalyst was used. Example 6:
Utilizando el mismo sistema experimental, y condiciones experimentales, descrito en el ejemplo 5, se empleó como cátodo una lámina del producto XCul del ejemplo 3 de dimensiones 20 x 19 x 0,8 mm, aproximadamente, que corresponde a un peso exacto de 0,6332 g.  Using the same experimental system, and experimental conditions, described in example 5, a sheet of the product XCul of example 3 of dimensions 20 x 19 x 0.8 mm, approximately, corresponding to an exact weight of 0, was used as cathode. 6332 g
Con XCul como cátodo se detectaron productos de reacción a los pocos minutos de comenzar el proceso electro-catalítico. A partir de la detección del primer producto de reacción, considerado como tiempo cero en la Figura 2, se detecta un aumento de la actividad electro-catalítica directamente proporcional al tiempo de reacción. En la Figura 2 se muestra la producción molar en el reactor, en función del tiempo, de los hidrocarburos detectados de 1, 2 y 3 átomos de carbono siguientes: metano (CH4), etano (C2H6), propeno (C3H6), eteno (C2H4), y propano (C3H8). With XCul as a cathode reaction products were detected a few minutes after starting the electro-catalytic process. From the detection of the first reaction product, considered as zero time in Figure 2, an increase in electro-catalytic activity directly proportional to the reaction time is detected. Figure 2 shows the molar production in the reactor, as a function of time, of the following detected hydrocarbons of 1, 2 and 3 carbon atoms: methane (CH4), ethane (C2H6), propene (C3H6), ethene ( C2H4), and propane (C3H8).
La producción de hidrocarburos molar total en el reactor a los 270 minutos de tiempo de detección de productos fue de 0,181 micromoles. La cantidad de cobre en el cátodo XCul fue de 0.036g. Ejemplo 7: Total molar hydrocarbon production in the reactor at 270 minutes of product detection time was 0.181 micromoles. The amount of copper in the XCul cathode was 0.036g. Example 7:
Utilizando el mismo sistema experimental, y condiciones experimentales, descrito en el ejemplo 5, se empleó como cátodo una lámina del producto XFel del ejemplo 4 de dimensiones 20 x 12 x 1 mm mm, aproximadamente, que corresponde a un peso exacto de 0,3965 g.  Using the same experimental system, and experimental conditions, described in example 5, a sheet of the product XFel of example 4 of dimensions 20 x 12 x 1 mm mm, approximately, corresponding to an exact weight of 0.3965 was used as cathode g.
Con XFel como cátodo se detectaron productos de reacción a los pocos minutos de comenzar el proceso electro-catalítico. A partir de la detección del primer producto de reacción, considerado como tiempo cero en la Figura 3, se detecta un aumento de la actividad electro-catalítica directamente proporcional al tiempo de reacción. En la Figura 3 se muestra la producción molar en el reactor, en función del tiempo, de los hidrocarburos detectados de 1, 2 y 3 átomos de carbono siguientes: metano (CH4), etano (C2H6), eteno (C2H4), y propano (C3H8].  With XFel as a cathode reaction products were detected a few minutes after starting the electro-catalytic process. From the detection of the first reaction product, considered as zero time in Figure 3, an increase in electro-catalytic activity directly proportional to the reaction time is detected. Figure 3 shows the molar production in the reactor, as a function of time, of the following detected hydrocarbons of 1, 2 and 3 carbon atoms: methane (CH4), ethane (C2H6), ethene (C2H4), and propane (C3H8].
La producción de hidrocarburos molar total en el reactor a los 270 minutos de tiempo de detección de productos fue de 0,178 micromoles. La cantidad de hierro en el cátodo XFel fue de 0.02 lg.  Total molar hydrocarbon production in the reactor at 270 minutes of product detection time was 0.178 micromoles. The amount of iron in the XFel cathode was 0.02 lg.
Tabla 1.- Producción molar total a los 270 minutos de tiempo de detección de productos. Table 1.- Total molar production at 270 minutes of product detection time.
Micromoles totales Cantidad de Ni Total micromoles Amount of Ni
Cátodo / Electro-catalizador Cathode / Electro-catalyst
de hidrocarburos detectados en el cátodo (g) of hydrocarbons detected in the cathode (g)
XNi5 0,512 0,043XNi5 0.512 0.043
XNi5 (2» ciclo) 0,503 XNi5 (2 »cycle) 0.503
Lámina de Ni Alfa Aesar® 0,735 1,450 Ni Aesar® 0.735 1.450 Ni foil
Espuma de Ni Metpore® 0,645 0,620 En la Tabla 1 también se observa cómo, con una segunda utilización de la misma lámina de XNi5, se repite prácticamente el mismo resultado catalítico. Ni Foam Metpore® 0.645 0.620 Table 1 also shows how, with a second use of the same XNi5 sheet, virtually the same catalytic result is repeated.
En la Tabla 2 se recogen los resultados de lixiviación analizados mediante espectroscopia de absorción atómica. La cantidad de níquel total lixiviada a partir de XNi5 es bastante aceptable si la comparamos con la lixiviada a partir de los materiales de níquel comerciales. Tabla 2.- Concentración de Ni detectada en la fase líquida del reactor / célula electrolítica. Table 2 shows the leaching results analyzed by atomic absorption spectroscopy. The amount of total nickel leached from XNi5 is quite acceptable if we compare it with that leached from commercial nickel materials. Table 2.- Ni concentration detected in the liquid phase of the reactor / electrolytic cell.
Tiempo de reacción Ni lixiviado Reaction time Ni leachate
Cátodo / Electro-catalizador Cathode / Electro-catalyst
(min) (mg/L) (min) (mg / L)
XNiS 1480 1,27 XNiS 1480 1.27
Lámina de Ni Alfa Aesar® 400 1,96  Ni Aesar® 400 1.96 Ni sheet
Espuma de Ni Metpore® 370 1,54 Metpore® Ni Foam 370 1.54
MÉTODO Y SISTEMA DE COORDINACIÓN DE SISTEMAS SOFTWARE BASADO EN ARQUITECTURAS MULTIPARADIGMA METHOD AND SYSTEM OF COORDINATION OF SOFTWARE SYSTEMS BASED ON MULTIPARADIGM ARCHITECTURES
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención, según se expresa en el enunciado de esta memoria descriptiva, se refiere a un método de coordinación para sistemas software basados en arquitecturas multiparadigma, que hace uso de eventos con semántica alterable dinámicamente, y que tiene por objeto simplificar la coordinación entre entidades de sistema software, facilitando la adición de nuevas entidades a coordinar en el sistema sin necesidad de que éstas sean diseñadas para que puedan intercambiar información en un instante de tiempo o deban sincronizarse, es decir, interrumpir su flujo de ejecución hasta que otra entidad haya alcanzado un punto concreto en su propio flujo. The present invention, as expressed in the statement of this specification, refers to a coordination method for software systems based on multiparadigma architectures, which makes use of events with dynamically alterable semantics, and which aims to simplify the coordination between entities of software system, facilitating the addition of new entities to coordinate in the system without the need for them to be designed so that they can exchange information in an instant of time or must be synchronized, that is, interrupt their execution flow until another entity has reached a specific point in its own flow.
Es otro objeto de la invención el asegurar un orden de ejecución correcto, cuando dos o más entidades se ejecutan de manera concurrente y, por tanto, proporcionar un estado final del sistema que cumpla con los objetivos con los que las entidades fueron diseñadas originalmente. También es objeto de la invención el mejorar la eficiencia de la coordinación entre entidades gracias a la eliminación de la necesidad de los sondeos de estado desde una entidad a otras mediante el uso de eventos con una semántica formal y alterable dinámicamente. Ello permite informar de los cambios de estados únicamente a aquellas entidades que expresen previamente la necesidad de recibir la información de estado automáticamente cada vez que sea modificada.  It is another object of the invention to ensure a correct execution order, when two or more entities are executed concurrently and, therefore, to provide a final state of the system that meets the objectives with which the entities were originally designed. It is also the object of the invention to improve the efficiency of coordination between entities by eliminating the need for state surveys from one entity to others by using events with a formal and dynamically alterable semantics. This allows the state changes to be informed only to those entities that previously express the need to receive the status information automatically each time it is modified.
La invención es aplicable a entidades que presentan una arquitectura orientada a servicios, agente, multiagente, dirigida por eventos, procesos de sistemas operativos, o cualquier combinación de las anteriores. ANTECEDENTES DE LA INVENCIÓN The invention is applicable to entities that present a service-oriented, agent, multi-agent, event-driven architecture, operating system processes, or any combination of the foregoing. BACKGROUND OF THE INVENTION
El desarrollo de sistemas software distribuidos complejos plantea una gran dificultad en cuanto a la correcta coordinación entre las diferentes entidades que los conforman y que cooperan entre si para alcanzar determinados objetivos, ya que los métodos de coordinación propuestos hasta el momento son rígidos en cuanto a la necesidad de concretar qué entidades van a ser coordinadas. Por tanto, cuando se desea incorporar una nueva entidad al sistema, es necesario volver a desarrollar/modificar gran parte del resto de las entidades para que se cumplan los requisitos de coordinación que se deseen en cada instante o caso particular.  The development of complex distributed software systems poses a great difficulty in terms of proper coordination between the different entities that make them up and cooperate with each other to achieve certain objectives, since the coordination methods proposed so far are rigid in terms of need to specify which entities will be coordinated. Therefore, when it is desired to incorporate a new entity into the system, it is necessary to redevelop / modify a large part of the rest of the entities so that the coordination requirements that are desired at each moment or particular case are met.
Además, los métodos de coordinación existentes implican el bloqueo en el flujo de ejecución de al menos una de las entidades del sistema, ya que la coordinación, hasta la fecha, se resuelve mediante una operación de sincronización.  In addition, existing coordination methods involve blocking in the execution flow of at least one of the entities of the system, since coordination, to date, is resolved through a synchronization operation.
Además la introducción de distintos tipos de entidades In addition the introduction of different types of entities
(servicios, agentes, emisores de eventos o receptores de eventos, procesos de sistemas operativos, etc.), en un sistema software distribuido agrega una mayor complejidad, ya que dificulta la aplicación de métodos de coordinación bajo un único método común que proporcione la uniformidad y la adecuada integración que se necesita en nuestros sistemas para posibilitar que las diversas entidades cooperen entre sí. La falta de propuestas en este sentido lleva a utilizar y a aplicar soluciones ad-hoc para la coordinación entre entidades, con el inconveniente que ello conlleva . (services, agents, event emitters or event receivers, operating system processes, etc.), in a distributed software system adds greater complexity, since it makes it difficult to apply coordination methods under a single common method that provides uniformity and the adequate integration that is needed in our systems to enable the various entities to cooperate with each other. The lack of proposals in this regard leads to the use and application of ad-hoc solutions for coordination between entities, with the inconvenience that this entails.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Para conseguir los objetivos y resolver los inconvenientes anteriormente indicados, la invención proporciona un nuevo método para sistemas software basados en arquitecturas multiparadigma, basado en eventos con semántica alterable dinámicamente, que comprende las siguientes fases: In order to achieve the objectives and solve the aforementioned drawbacks, the invention provides a new method for software systems based on multi-paradigm architectures, based on events with dynamically alterable semantics, comprising the following phases:
a) generar en una entidad destino, en un punto concreto de ejecución en el que se requiere realizar una coordinación con al menos una entidad origen asociada a un tipo concreto de evento, un evento de requerimiento indicativo de la necesidad de recibir notificaciones cada vez que al menos una entidad origen genera el tipo de evento concreto al que está asociada.  a) generate at a specific point of execution where a coordination with at least one source entity associated with a specific type of event is required, a requirement event indicative of the need to receive notifications every time At least one source entity generates the specific type of event to which it is associated.
b) Recibir el evento de requerimiento en una entidad coordinadora, asociada a todo tipo de eventos, para recibir cualquiera de los eventos que se pueden producir en el sistema .  b) Receive the requirement event in a coordinating entity, associated with all types of events, to receive any of the events that may occur in the system.
c) Procesar e inferir, en la entidad coordinadora, eventos relacionados con la información requerida en el evento de requerimiento recibido, a partir de reglas previamente establecidas que asocian semánticamente los tipos de eventos entre si.  c) Process and infer, in the coordinating entity, events related to the information required in the requirement event received, based on previously established rules that semantically associate the types of events with each other.
d) A continuación, la entidad coordinadora notifica a cada una de las entidades origen del sistema los tipos de evento concretos que deben de notificar a dicha entidad coordinadora .  d) Next, the coordinating entity notifies each of the origin entities of the system the specific types of events that must be notified to said coordinating entity.
e) Seguidamente, la entidad coordinadora recibe las notificaciones de los eventos concretos producidos en las diferentes entidades origen.  e) Next, the coordinating entity receives the notifications of the specific events produced in the different source entities.
f) Finalmente, la entidad coordinadora transmite, a la entidad destino, los eventos inferidos y las notificaciones recibidas de las entidades origen. El método de la invención, además, comprende opcionalmente una fase en la que, si se modifica la estructura de un evento en las fases d-f, se pasa a la fase c) .  f) Finally, the coordinating entity transmits, to the destination entity, inferred events and notifications received from the source entities. In addition, the method of the invention optionally comprises a phase in which, if the structure of an event is modified in phases d-f, it is passed to phase c).
Además, opcionalmente, el método de la invención comprende una fase en la que cuando se define un nuevo evento en las fases d-f, se pasa igualmente a la fase c) . También opcionalmente , el método comprende una fase en la que, si la entidad destino cambia de necesidades en las fases d-f , se pasa nuevamente a la fase c) . Furthermore, optionally, the method of the invention comprises a phase in which when a new event is defined in phases df, it is also passed to phase c). Also, optionally, the method comprises a phase in which, if the destination entity changes needs in the df phases, it goes back to phase c).
Cuando el evento de requerimiento indica la necesidad de recibir notificaciones coordinadas de más de una entidad origen, la notificación transmitida desde la entidad coordinadora a la entidad destino se constituye por un nuevo evento de notificación resultante de realizar una composición de la información contenida en la notificación de cada entidad origen, de forma que la entidad coordinadora compone la información que contiene cada uno de los eventos para producir nuevos eventos de otros tipos distintos a las notificaciones generadas por las entidades origen, resultantes de la combinación de los eventos que recibió. En el caso de que en esta tarea de composición se obtenga un evento de un tipo determinado al que alguna de las entidades del sistema (entidad destino) expresó su interés previo en recibirlo automáticamente, se realiza una transmisión de estos eventos hacia estas últimas entidades.  When the requirement event indicates the need to receive coordinated notifications from more than one source entity, the notification transmitted from the coordinating entity to the destination entity is constituted by a new notification event resulting from a composition of the information contained in the notification of each origin entity, so that the coordinating entity composes the information that each of the events contains to produce new events of other types than the notifications generated by the origin entities, resulting from the combination of the events it received. In the event that in this task of composition an event of a certain type is obtained to which any of the entities of the system (destination entity) expressed its prior interest in receiving it automatically, a transmission of these events is made to these latter entities.
En base a la descripción realizada, se deduce fácilmente que una entidad destino puede quedar a la espera de un tipo de evento que sólo puede originarse debido a la composición de la información provista por una o más entidades con las que se desea coordinarse. Gracias a ello se evita que el flujo de ejecución de una entidad avance hasta que otras entidades del sistema hayan llegado a un punto concreto en el flujo de ejecución de cada uno de ellos. En consecuencia, es posible la coordinación entre entidades de un sistema. Además, gracias a que la entidad coordinadora es la encargada de realizar la composición de información de eventos y de recibir y transmitir los nuevos eventos generados, cada entidad origen y destino solo requieren conocer la existencia de esta única entidad coordinadora. Por tanto, las entidades origen y destino permanecen desacopladas entre si, lo cual favorece la obtención de propiedades de calidad de un sistema software, tales como mantenibilidad y reusabilidad . Por último, el uso de un modelo de eventos en el método de coordinación permite que las entidades a coordinar origen y destino puedan mantener la ejecución de parte de su flujo de ejecución en todo momento, incluso si se encuentran a la espera de un evento determinado para realizar una operación concreta, ya que las entidades son notificadas cuando se recibe asincronamente un evento. Based on the description made, it is easily deduced that a destination entity may be waiting for a type of event that can only originate due to the composition of the information provided by one or more entities with which it is desired to coordinate. This prevents the execution flow of an entity from advancing until other entities of the system have reached a specific point in the execution flow of each of them. Consequently, coordination between entities of a system is possible. In addition, thanks to the fact that the coordinating entity is responsible for the composition of event information and for receiving and transmitting the new events generated, each source and destination entity only needs to know about the existence of this single coordinating entity. Therefore, the origin and destination entities remain decoupled from each other, which favors obtaining quality properties of a software system, such as maintainability and reusability. Finally, the Using an event model in the coordination method allows entities to coordinate origin and destination to maintain the execution of part of their execution flow at all times, even if they are waiting for a particular event to perform an operation specifically, since entities are notified when an event is received asynchronously.
En consecuencia, el método de la invención permite que la coordinación se lleve a cabo de manera asincrona, aunque obviamente también puede efectuarse de forma síncrona, y se evita que las entidades deban de tener un conocimiento explícito de la existencia de otras entidades, permitiéndose la posibilidad de agregar nuevas entidades a un sistema sin necesidad de rediseñar ni reiniciar el resto de entidades a ejecutar o ya en ejecución en el sistema.  Consequently, the method of the invention allows the coordination to be carried out asynchronously, although obviously it can also be carried out synchronously, and it is avoided that the entities must have an explicit knowledge of the existence of other entities, allowing the possibility of adding new entities to a system without redesigning or restarting the rest of the entities to be executed or already running in the system.
Por último, cabe señalar que el método de coordinación de la invención es único para el sistema software y común para los distintos tipos de entidades, proporcionando la uniformidad e integración requerida en estos sistemas para posibilitar que las diversas entidades cooperen entre sí. Ello evita la necesidad de utilización de métodos ad-hoc que convencionalmente se usan en la coordinación de entidades .  Finally, it should be noted that the method of coordination of the invention is unique to the software system and common to different types of entities, providing the uniformity and integration required in these systems to enable the various entities to cooperate with each other. This avoids the need to use ad-hoc methods that are conventionally used in entity coordination.
Por otro lado, cabe señalar que la configuración descrita permite que la invención sea aplicable en sistemas software basados en arquitecturas para sistemas software distribuidos en los que las entidades pueden ser conceptualmente distintas, permitiendo que la invención se aplique a entidades con una arquitectura orientada a servicios, agente, multiagente, dirigida por eventos, procesos de sistemas operativos, o una combinación cualquiera de las anteriores.  On the other hand, it should be noted that the configuration described allows the invention to be applicable in architectural-based software systems for distributed software systems in which entities can be conceptually distinct, allowing the invention to apply to entities with a service-oriented architecture , agent, multi-agent, event driven, operating system processes, or any combination of the above.
En una realización añadida de la invención se prevé que el método comprende mecanismos para almacenar la información intercambiada entre las entidades, lo que contribuye a mejorar el proceso de análisis, verificación y mantenimiento de un sistema software. Para ello hace uso de una base de conocimiento donde se almacena meta-información acerca de la información intercambiada entre las entidades. In an additional embodiment of the invention it is envisioned that the method comprises mechanisms for storing the information exchanged between the entities, which contributes to improving the process of analysis, verification and maintenance of a software system. For this it makes use of a knowledge base where meta-information about the information exchanged between entities is stored.
Adicionalmente , si el método de la invención es incorporado como parte de un sistema software que se encargue de resolver las tareas de comunicación entre entidades, se pueden combinar métodos de comunicación y coordinación síncronos y asincronos que contribuyan a cumplir con los requisitos de coordinación en cada instante y para cada sistema software concreto y que aporten una mayor facilidad de desarrollo de sistemas software distribuidos .  Additionally, if the method of the invention is incorporated as part of a software system that is responsible for solving communication tasks between entities, synchronous and asynchronous communication and coordination methods can be combined that contribute to meet the coordination requirements in each instant and for each specific software system and that provide greater ease of development of distributed software systems.
Finalmente, al realizarse la coordinación mediante una notificación de información de manera asincrona, es posible continuar con parte del flujo de ejecución de las entidades, no introduciendo, por tanto, tantos tiempos de parada en el flujo de ejecución como otros métodos ya existentes de coordinación, que suponen implicar la sincronización entre los flujos de ejecución.  Finally, when coordination is carried out by means of an asynchronous notification of information, it is possible to continue with part of the execution flow of the entities, thus not introducing as many downtimes in the execution flow as other existing coordination methods , which involve involving synchronization between execution flows.
Además la invención se refiere a un sistema de coordinación de sistemas software basado en arquitecturas multiparadigma de acuerdo con el método anteriormente descrito .  Furthermore, the invention relates to a software system coordination system based on multi-paradigm architectures in accordance with the method described above.
Son independientes del objeto de la invención la implementación concreta de las entidades origen y destino a coordinar, de la entidad coordinadora y del sistema software distribuido concreto sobre el que se aplica el método descrito, así como los detalles accesorios que puedan presentarse, siempre y cuando no afecta a sus características esenciales.  The specific implementation of the origin and destination entities to be coordinated, of the coordinating entity and of the concrete distributed software system on which the described method is applied, as well as the accessory details that may arise, are provided, independent of the object of the invention. It does not affect its essential characteristics.
A continuación, para facilitar una mejor comprensión de esta memoria descriptiva y formando parte integrante de la misma, se acompañan una serie de figuras en las que con carácter ilustrativo y no limitativo se ha representado el objeto de la invención. BREVE DESCRIPCIÓN DE LAS FIGURAS Next, in order to facilitate a better understanding of this specification and forming an integral part thereof, a series of figures are attached in which the object of the invention has been shown as an illustrative and non-limiting nature. BRIEF DESCRIPTION OF THE FIGURES
Figura 1.— Muestra una representación esquemática de un sistema software basado en arquitecturas mult iparadigma al que se aplica el método de coordinación de la invención.  Figure 1. - Shows a schematic representation of a software system based on multi iparadigm architectures to which the method of coordination of the invention is applied.
Figura 2.— Muestra el sistema software de la figura anterior en el que las entidades origen están determinadas por un sensor de humedad y un sensor de ruido, en tanto que la entidad destino está determinada por un sensor de temperatura .  Figure 2.— Shows the software system of the previous figure in which the source entities are determined by a humidity sensor and a noise sensor, while the destination entity is determined by a temperature sensor.
DESCRIPCIÓN DE LA FORMA DE REALIZACIÓN PREFERIDA DESCRIPTION OF THE PREFERRED EMBODIMENT
A continuación se realiza una descripción de la invención basada en las figuras anteriormente comentadas.  Below is a description of the invention based on the figures mentioned above.
En el ejemplo de realización de la figura 1 se han representado "n" entidades origen 1, cada una de ellas asociada a un tipo concreto de evento T1-Tn respectivamente, de forma que mediante una entidad coordinadora 2 que está asociada a todo tipo de eventos, es decir está configurada de forma que pueda recibir cualquier tipo de evento, se coordina el funcionamiento de las entidades origen 1 con una entidad destino 3, de acuerdo con el método de la invención . In the exemplary embodiment of Figure 1, "n" source entities 1 have been represented, each associated with a specific type of event T 1 -T n respectively, so that through a coordinating entity 2 that is associated with all type of events, that is, it is configured so that it can receive any type of event, the operation of the source entities 1 is coordinated with a destination entity 3, in accordance with the method of the invention.
Previamente es necesario definir los eventos T1-Tn con una semántica normal, con un conjunto de información asociada a cada tipo de evento y dotados de una estructura que relacione unos tipos con otros. Previously it is necessary to define the events T 1 -T n with a normal semantics, with a set of information associated with each type of event and equipped with a structure that relates some types to others.
Para conseguir la coordinación comentada, el método de la invención comprende una fase a) en la que la entidad destino 3 genera, en un punto concreto de ejecución en el que se requiere realizar una coordinación con al menos una de las entidades origen 1, un evento de requerimiento indicativo de la necesidad de recibir notificaciones cada vez uno o más de las entidades origen 1 genera el tipo de evento concreto al que está asociada.  In order to achieve the aforementioned coordination, the method of the invention comprises a phase a) in which the destination entity 3 generates, at a specific point of execution in which it is required to perform coordination with at least one of the origin entities 1, a requirement event indicative of the need to receive notifications every time one or more of the origin entities 1 generates the type of specific event to which it is associated.
A continuación sigue una fase b) en la que la entidad coordinadora 2 recibe el evento de requerimiento, siguiendo una fase c) en la que procesa e infiere eventos relacionados con la información requerida en dicho evento de requerimiento recibido, mediante un conjunto de reglas preestablecidas que asocian semánticamente los tipos de eventos entre si. A continuación sigue una fase d) en la que la que la entidad coordinadora 2 notifica a cada una de las entidades origen 1 los tipos de eventos que deben notificar a la entidad coordinadora; siguiendo una fase e) en la que la entidad coordinadora 2 recibe las notificaciones de los eventos T1-Tn concretos producidos en las diferentes entidades origen 1, de forma que el procedimiento finaliza según una fase f) en la que la entidad coordinadora 2 realiza diversas composiciones de la información contenida en los eventos T1-Tn recibidos e inferidos, componiendo nuevos eventos Τ±-Ί\ de forma que dicha entidad coordinadora 2 transmite los eventos inferidos y las notificaciones recibidas de las entidades origen 1 según los nuevos eventos T±-T hacia la entidad origen 3. De esta forma, la entidad coordinadora 2 cuando se encuentre una composición con la que se obtenga un evento T.-T., se notificará el nuevo evento a la entidad destino 3. Cuando ésta reciba la notificación de este evento, podrá continuar con la parte de su flujo de ejecución que requería del método de coordinación descrito, para posibilitar que las diversas entidades cooperen entre sí . Following is a phase b) in which the coordinating entity 2 receives the request event, following a phase c) in which it processes and infers events related to the information required in said requirement event received, by means of a set of pre-established rules that semantically associate the types of events with each other. A phase d) follows, in which the coordinating entity 2 notifies each of the origin entities 1 the types of events that must be notified to the coordinating entity; following a phase e) in which the coordinating entity 2 receives the notifications of the specific events T 1 -T n produced in the different origin entities 1, so that the procedure ends according to a phase f) in which the coordinating entity 2 performs various compositions of the information contained in the T 1 -T n events received and inferred, composing new events Τ ± -Ί \ so that said coordinating entity 2 transmits the inferred events and the notifications received from the origin 1 entities according to the new T ± -T events towards the source entity 3. In this way, the coordinating entity 2 when a composition with which a T.-T. event is obtained is obtained, the new event will be notified to the destination entity 3. When it If you receive notification of this event, you can continue with the part of your execution flow that required the coordination method described, to enable the various entities to cooperate with each other.
En la figura 2 se muestra una particularización de un ejemplo de realización de la figura anterior en el que las entidades origen 1 están constituidas por un sensor de humedad la y un sensor de ruido Ib, en tanto que la entidad de destino está constituida por un sensor de temperatura 3. En este ejemplo se requiere una coordinación en la que el sensor de temperatura 3 sólo podrá notificar una medición si previamente se han notificado mediciones por parte del sensor de humedad la y del sensor de ruido Ib.  Figure 2 shows a particularization of an embodiment of the previous figure in which the origin entities 1 are constituted by a humidity sensor and a noise sensor Ib, while the destination entity is constituted by a temperature sensor 3. This example requires a coordination in which the temperature sensor 3 can only notify a measurement if measurements have been previously reported by the humidity sensor la and the noise sensor Ib.
Según la fase a) del método de coordinación señalada, dado que hay más de una unidad origen 1, se deberá expresar desde el sensor de temperatura 3, mediante un evento de requerimiento, que se desea la recepción automática de aquellos eventos cuya información asociada sea el resultado de la composición de la información extraída de los eventos notificados por los sensores de ruido la y de humedad Ib. Tras recibirse el evento de requerimiento en la entidad coordinadora 3, y tal y como se describe en la fase c) , la entidad coordinadora 3 procesa e infiere que los eventos requeridos para la combinación son aquellos que son notificados por el sensor de humedad la y el sensor de ruido Ib. Asimismo, como se explícita en la fase d) se notificará a los sensores de humedad 1 y de ruido la para que se aplique el método de coordinación mediante el inicio de la notificación de eventos generados por dichos sensores . According to phase a) of the indicated coordination method, given that there is more than one origin unit 1, it must be expressed from the temperature sensor 3, by means of an event of requirement, that automatic reception of those events whose associated information is the result of the composition of the information extracted from the events notified by the noise and humidity sensors Ib is desired. Upon receipt of the requirement event in the coordinating entity 3, and as described in phase c), the coordinating entity 3 processes and infers that the events required for the combination are those that are notified by the humidity sensor and the noise sensor Ib. Likewise, as explained in phase d), the humidity and noise sensors 1 will be notified so that the coordination method is applied by initiating the notification of events generated by said sensors.
Tras la notificación de eventos realizada por los sensores de humedad la y ruido Ib, la entidad coordinadora 2 compone la información asociada a cada evento, resultando en la construcción de un nuevo evento asociado semánticamente tanto con "humedad" como con "ruido" , el cual será notificado en consecuencia, tal y como fue descrito en la fase d) del método. Al haber expresado previamente desde el sensor de temperatura 3 la necesidad de recibir automáticamente el nuevo evento generado, este sensor recibirá automáticamente el nuevo evento resultante de la composición. Como consecuencia de la recepción de la notificación de uno de esos eventos, se realiza una notificación de un evento por parte del sensor de temperatura 3 incluyendo información acerca del valor cuantificado de ésta. De esta forma, cada vez que se reciba un nuevo evento asociado semánticamente tanto con "humedad" como con "ruido" , el sensor de temperatura 3 realiza la notificación pertinente y, en consecuencia, se cumple con la coordinación requerida para el sistema: el sensor de temperatura 3 solo podrá notificar una medición si previamente se han notificado mediciones por parte del sensor de humedad la y del sensor de ruido Ib. Por último, cabe señalar que se deberá volver a la fase c) cuando en alguna de las fases d) a f) se dan las siguientes circunstancias: cambia la estructura interna de alguno de los eventos, se definen nuevos eventos como consecuencia, por ejemplo, de la incorporación de nuevas entidades al sistema, y/o cambian las necesidades de la entidad origen 3, por ejemplo, si la regla de coordinación impuesta solo tiene vigencia durante un tiempo limitado o tras un número predeterminado de eventos recibidos. After notification of events by the humidity and noise sensors Ib, the coordinating entity 2 composes the information associated with each event, resulting in the construction of a new event semantically associated with both "humidity" and "noise", the which will be notified accordingly, as described in phase d) of the method. Having previously expressed from the temperature sensor 3 the need to automatically receive the new event generated, this sensor will automatically receive the new event resulting from the composition. As a result of the receipt of the notification of one of those events, a notification of an event is made by the temperature sensor 3 including information about the quantified value thereof. In this way, each time a new event semantically associated with both "humidity" and "noise" is received, the temperature sensor 3 makes the relevant notification and, consequently, the required coordination for the system is met: Temperature sensor 3 can only notify a measurement if measurements have been previously notified by the humidity sensor la and the noise sensor Ib. Finally, it should be noted that phase c) should be returned when in one of the d) af) phases the following circumstances occur: the internal structure of any of the events changes, new events are defined as a consequence, for example, of the incorporation of new entities to the system, and / or the needs of the origin entity 3 change, for example, if the coordination rule imposed is only valid for a limited time or after a predetermined number of events received.
Las entidades origen 1 y destino 3 pueden ser diseñadas tal y como se requiera: agentes, servicios, multiagente, por eventos, procesos de sistemas operativos, etc. La entidad coordinadora 2 también puede ser considerada un servicio como un agente o un emisor/consumidor de eventos. La entidad coordinadora 2 de debe poseer, al menos, una interface pública que permita la comunicación con el resto de entidades 1 y 3 para permitir la asociación entre una entidad 1 y 3 y un tipo de evento, la notificación de un evento a una entidad destino 3 interesada y, por último, el envío de un evento desde una entidad origen 1 cualquiera hacia la entidad coordinadora 2.  The origin 1 and destination 3 entities can be designed as required: agents, services, multi-agent, events, operating system processes, etc. The coordinating entity 2 can also be considered a service as an agent or an event issuer / consumer. The coordinating entity 2 must have, at least, a public interface that allows communication with the rest of entities 1 and 3 to allow the association between an entity 1 and 3 and an event type, the notification of an event to an entity interested destination 3 and, finally, the sending of an event from any source entity 1 to the coordinating entity 2.
La entidad coordinadora 2 debe poder acceder a una base de conocimiento 4 donde pueda comprobar el tipo de cada uno de los eventos recibidos, para que la composición de información resulte eficiente en el tiempo, es necesario también consultar esta base de conocimiento 4 y solo realizar las composiciones que estén recogidas en ella.  The coordinating entity 2 must be able to access a knowledge base 4 where you can check the type of each of the events received, so that the composition of information is efficient in time, it is also necessary to consult this knowledge base 4 and only perform the compositions that are collected in it.
La base de conocimiento 4 puede ser cualquier tipo de sistema software que permita almacenar y recuperar información, propiedades acerca de esta información (meta- información) y las relaciones entre diferentes clases de información. Por ejemplo, una base de conocimiento podrá ser una base de datos relacional, una ontología y sus instancias, etc.  The knowledge base 4 can be any type of software system that allows storing and retrieving information, properties about this information (meta-information) and the relationships between different kinds of information. For example, a knowledge base may be a relational database, an ontology and its instances, etc.
El método de coordinación puede ser integrado en un sistema software encargado de resolver los distintos mecanismos de comunicación entre entidades de un sistema software distribuido. The coordination method can be integrated into a software system responsible for solving the various communication mechanisms between entities of a distributed software system.
Además la invención también se refiere a un sistema que comprende los medios necesarios para llevar a cabo el método descrito, presentando las ventajas que fueron indicadas en el apartado descripción de la invención.  In addition, the invention also relates to a system comprising the means necessary to carry out the described method, presenting the advantages that were indicated in the description section of the invention.

Claims

REIVINDICACIONES
1. Material para la transformación electro-catalítica de CO2 en hidrocarburos que comprende un soporte carbonoso y un catalizador metálico anclado en el soporte carbonoso, en la que el soporte carbonoso es un gel de carbón dopado con el catalizador metálico, que comprende una matriz carbonosa a la que está anclado el catalizador metálico, caracterizado porque el catalizador metálico es un metal de transición o mezcla de varios metales de transición y contiene entre un 5% y un 25% en peso de dicho metal respecto peso total del gel de carbón dopado. 1. Material for the electro-catalytic transformation of CO2 into hydrocarbons comprising a carbonaceous support and a metallic catalyst anchored in the carbonaceous support, in which the carbonaceous support is a carbon gel doped with the metallic catalyst, which comprises a carbonaceous matrix to which the metal catalyst is anchored, characterized in that the metal catalyst is a transition metal or mixture of several transition metals and contains between 5% and 25% by weight of said metal with respect to the total weight of the doped carbon gel.
2. Material según reivindicación 1, caracterizado porque el metal de transición utilizado como catalizador es níquel. 2. Material according to claim 1, characterized in that the transition metal used as a catalyst is nickel.
3. Material según reivindicación 1, caracterizado porque el metal de transición utilizado como catalizador es cobre. 3. Material according to claim 1, characterized in that the transition metal used as a catalyst is copper.
4. Material según reivindicación 1, caracterizado porque el metal de transición utilizado como catalizador es hierro. 4. Material according to claim 1, characterized in that the transition metal used as a catalyst is iron.
5. Material según cualquiera de las reivindicaciones 1 a 4, caracterizado porque el gel de carbón dopado es un gel de carbón activado por un proceso de activación física con oxigeno diluido. 5. Material according to any one of claims 1 to 4, characterized in that the doped carbon gel is a carbon gel activated by a physical activation process with diluted oxygen.
6. Material según cualquiera de las reivindicaciones 1 a 4, caracterizado porque el gel de carbón dopado es un gel de carbón activado por un proceso de activación química con un hidróxido alcalino. 6. Material according to any of claims 1 to 4, characterized in that the doped carbon gel is a carbon gel activated by a chemical activation process with an alkali hydroxide.
7. Material según cualquiera de las reivindicaciones 1 a 4, caracterizado porque el gel de carbón dopado es un gel de carbón activado por un proceso de activación química con ácido fosfórico. 7. Material according to any of claims 1 to 4, characterized in that the doped carbon gel is a carbon gel activated by a chemical activation process with phosphoric acid.
8. Material, según cualquiera de las reivindicaciones 1 a 7, caracterizado porque el gel de carbón dopado es un aerogel carbonizado. 8. Material according to any one of claims 1 to 7, characterized in that the doped carbon gel is a carbonized airgel.
9. Material, según cualquiera de las reivindicaciones 1 a 7, caracterizado porque el gel de carbón dopado es un xerogel carbonizado. 9. Material according to any of claims 1 to 7, characterized in that the doped carbon gel is a carbonized xerogel.
10. Material, según una cualquiera de las reivindicaciones precedentes, caracterizada porque es una lámina que comprende el gel de carbón dopado carbonizado. 10. Material according to any one of the preceding claims, characterized in that it is a sheet comprising the carbonized doped carbon gel.
11. Material, según la reivindicación 10 que comprende al menos una capa de difusión de gases preparada a partir de un polvo obtenido por molturacion de una lámina obtenida del gel de carbón dopado carbonizado. 11. Material according to claim 10 comprising at least one gas diffusion layer prepared from a powder obtained by grinding a sheet obtained from the carbonized doped carbon gel.
12. Electrodo para la transformación electro-catalítica de CO2 a hidrocarburos, caracterizado porque comprende el material definido en una cualquiera de las reivindicaciones 1 a 11. 12. Electrode for the electro-catalytic transformation of CO2 to hydrocarbons, characterized in that it comprises the material defined in any one of claims 1 to 11.
13. Electrodo, según la reivindicación 12, caracterizado porque es un cátodo al menos parcialmente formado por dicho material. 13. Electrode according to claim 12, characterized in that it is a cathode at least partially formed by said material.
14. Electrodo, según la reivindicación 12, caracterizado porque comprende un cátodo al menos parcialmente recubierto de dicho material. 14. Electrode according to claim 12, characterized in that it comprises a cathode at least partially coated with said material.
15. Catalizador para la transformación electro-catalítica de CO2 a hidrocarburos, caracterizado porque comprende el material definido en una cualquiera de las reivindicaciones 1 a 11. 15. Catalyst for the electro-catalytic transformation of CO2 to hydrocarbons, characterized in that it comprises the material defined in any one of claims 1 to 11.
16. Uso del material definido en una cualquiera de las reivindicaciones 1 a 11 en la transformación electro-catalítica de CO2 en hidrocarburos, caracterizado porque el material se usa como al menos parte de un electrodo para dicha transformación. 16. Use of the material defined in any one of claims 1 to 11 in the electro-catalytic transformation of CO2 in hydrocarbons, characterized in that the material is used as at least part of an electrode for said transformation.
17. Uso, según la reivindicación 16, caracterizado porque el material se usa como cátodo al menos parcialmente formado por dicho material. 17. Use according to claim 16, characterized in that the material is used as a cathode at least partially formed by said material.
18. Uso, según la reivindicación 16, caracterizado porque el material se usa para recubrir al menos parcialmente un cátodo de otro material. 18. Use according to claim 16, characterized in that the material is used to at least partially cover a cathode of another material.
19. Uso del material definido en una cualquiera de las reivindicaciones 1 a 11 en la transformación electro-catalítica de CO2 en hidrocarburos, caracterizado porque el material se usa como catalizador para dicha transformación. 19. Use of the material defined in any one of claims 1 to 11 in the electro-catalytic transformation of CO2 in hydrocarbons, characterized in that the material is used as a catalyst for said transformation.
20. Procedimiento para la transformación electro-catalítica de CO2 en hidrocarburos, caracterizado porque comprende poner en contacto el CO2 con un electrodo que comprende el material definido en una cualquiera de las reivindicaciones 1 a 11. 20. Method for the electro-catalytic transformation of CO2 into hydrocarbons, characterized in that it comprises contacting the CO2 with an electrode comprising the material defined in any one of claims 1 to 11.
21. Procedimiento, según la reivindicación 20, caracterizado porque el electrodo es un cátodo al menos parcialmente formado por dicho material. 21. Method according to claim 20, characterized in that the electrode is a cathode at least partially formed by said material.
22. Procedimiento, según la reivindicación 20, caracterizado porque la transformación electro-catalítica de CO2 en hidrocarburos se realiza en un sistema catalítico que comprende una fase sólida y una líquida. 22. Method according to claim 20, characterized in that the electro-catalytic transformation of CO2 into hydrocarbons is carried out in a catalytic system comprising a solid and a liquid phase.
23. Procedimiento para la transformación electro-catalítica de CO2 en hidrocarburos, caracterizado porque comprende poner en contacto el CO2 con un electro-catalizador que comprende el material definido en una cualquiera de las reivindicaciones 1 a 11. 23. Method for the electro-catalytic transformation of CO2 into hydrocarbons, characterized in that it comprises contacting the CO2 with an electro-catalyst comprising the material defined in any one of claims 1 to 11.
24. Procedimiento, según la reivindicación 21, caracterizado porque la transformación electro-catalítica de CO2 en hidrocarburos se realiza en un sistema catalítico gas-sólido- líquido. 24. Method according to claim 21, characterized in that the electro-catalytic transformation of CO2 into hydrocarbons is carried out in a gas-solid-liquid catalytic system.
REIVINDICACIONES
1. - MÉTODO Y SISTEMA DE COORDINACIÓN DE SISTEMAS SOFTWARE BASADO EN ARQUITECTURAS MULTIPARADIGMA que emplea eventos con semántica alterable dinámicamente en la coordinación entre entidades de un sistema software; caracterizado por que comprende las siguientes fases: 1. - METHOD AND SYSTEM OF COORDINATION OF SOFTWARE SYSTEMS BASED ON MULTIPARADIGM ARCHITECTURES that uses events with dynamically altered semantics in the coordination between entities of a software system; characterized in that it comprises the following phases:
a) Generar en una entidad destino (3), en un punto concreto de ejecución en el que se requiere realizar una coordinación con al menos una entidad origen (1) asociada a un tipo concreto de evento, un evento de requerimiento indicativo de la necesidad de recibir notificaciones cada vez que la al menos entidad origen (1) genera el tipo de evento concreto al que está asociada.  a) Generate in a specific entity of execution (3), at a specific point of execution where coordination with at least one source entity (1) associated with a specific type of event is required, a requirement event indicative of the need of receiving notifications every time the at least source entity (1) generates the specific type of event to which it is associated.
b) Recibir el evento de requerimiento en una entidad coordinadora (2), asociada a todo tipo de eventos.  b) Receive the requirement event in a coordinating entity (2), associated with all types of events.
c) Procesar e inferir, en la entidad coordinadora (2), eventos relacionados con la información requerida en el evento de requerimiento recibido, a partir de reglas previamente establecidas que asocian semánticamente los tipos de eventos entre si.  c) Process and infer, in the coordinating entity (2), events related to the information required in the requirement event received, based on previously established rules that semantically associate the types of events with each other.
d) Notificar la entidad coordinadora (2), a cada una de las entidades origen (1) del sistema los tipos de eventos concretos que deben de notificar a dicha entidad coordinadora (2) .  d) Notify the coordinating entity (2), to each of the origin entities (1) of the system, the types of specific events that must be notified to said coordinating entity (2).
e) Recibir en la entidad coordinadora (2) las notificaciones de los eventos concretos producidos en las diferentes entidades origen (1) .  e) Receive in the coordinating entity (2) the notifications of the specific events produced in the different origin entities (1).
f) Transmitir la entidad coordinadora (2) a la entidad destino (3), los eventos inferidos y las notificaciones recibidas de las entidades origen (1) .  f) Transmit the coordinating entity (2) to the destination entity (3), the inferred events and the notifications received from the source entities (1).
2. - MÉTODO Y SISTEMA DE COORDINACIÓN DE SISTEMAS SOFTWARE BASADO EN ARQUITECTURAS MULTIPARADIGMA, según reivindicación 1, caracterizado por que comprende una fase en la que cuando se modifica la estructura de un nuevo evento en las fases d-f, se pasa a la fase c. 2. - METHOD AND SYSTEM OF COORDINATION OF SOFTWARE SYSTEMS BASED ON MULTIPARADIGM ARCHITECTURES, according to claim 1, characterized in that it comprises a phase in which when the structure of a new event is modified in the df phases, it is passed to phase c.
3. - MÉTODO Y SISTEMA DE COORDINACIÓN DE SISTEMAS SOFTWARE BASADO EN ARQUITECTURAS MULTIPARADIGMA, según reivindicación 1, caracterizado por que comprende una fase en la que cuando se define un nuevo evento en las fases d- f, se pasa a la fase c. 3. - METHOD AND SYSTEM OF COORDINATION OF SOFTWARE SYSTEMS BASED ON MULTIPARADIGM ARCHITECTURES, according to claim 1, characterized in that it comprises a phase in which when a new event is defined in phases d-f, it is passed to phase c.
4. - MÉTODO Y SISTEMA DE COORDINACIÓN DE SISTEMAS SOFTWARE BASADO EN ARQUITECTURAS MULTIPARADIGMA, según reivindicación 1, caracterizado por que comprende una fase en la que cuando la entidad destino (3) cambia de necesidades en las fases d-f, se pasa a la fase c. 4. METHOD AND SYSTEM OF COORDINATION OF SOFTWARE SYSTEMS BASED ON MULTIPARADIGM ARCHITECTURES, according to claim 1, characterized in that it comprises a phase in which when the destination entity (3) changes needs in the df phases, it goes to phase c .
5. - MÉTODO Y SISTEMA DE COORDINACIÓN DE SISTEMAS SOFTWARE BASADO EN ARQUITECTURAS MULTIPARADIGMA, según reivindicación 1, caracterizado por que cuando el elemento de requerimiento indica la necesidad de recibir notificaciones coordenadas de más de una entidad origen (1), la notificación transmitida desde la entidad coordinadora (2) a la entidad destino (3) se constituye por un nuevo evento de notificación resultante de realizar una composición de la información contenida en la notificación de cada entidad origen. 5. - METHOD AND SYSTEM OF COORDINATION OF SOFTWARE SYSTEMS BASED ON MULTIPARADIGM ARCHITECTURES, according to claim 1, characterized in that when the requirement element indicates the need to receive coordinate notifications from more than one source entity (1), the notification transmitted from the coordinating entity (2) to the destination entity (3) is constituted by a new notification event resulting from a composition of the information contained in the notification of each source entity.
6. - MÉTODO Y SISTEMA DE COORDINACIÓN DE SISTEMAS SOFTWARE BASADO EN ARQUITECTURAS MULTIPARADIGMA, según reivindicación 1, caracterizado por que la generación de un evento de requerimiento de la entidad destino se realiza de una forma seleccionada entre síncrona y asincrona.  6. - METHOD AND SYSTEM OF COORDINATION OF SOFTWARE SYSTEMS BASED ON MULTIPARADIGM ARCHITECTURES, according to claim 1, characterized in that the generation of a requirement event of the destination entity is carried out in a manner selected between synchronous and asynchronous.
7. - MÉTODO Y SISTEMA DE COORDINACIÓN DE SISTEMAS SOFTWARE BASADO EN ARQUITECTURAS MULTIPARADIGMA, según reivindicación 1, caracterizado por que comprende almacenar la información intercambiada entre las diferentes entidades (1, 2 y 3) .  7. - METHOD AND SYSTEM OF COORDINATION OF SOFTWARE SYSTEMS BASED ON MULTIPARADIGM ARCHITECTURES, according to claim 1, characterized in that it comprises storing the information exchanged between the different entities (1, 2 and 3).
8. - MÉTODO Y SISTEMA DE COORDINACIÓN DE SISTEMAS SOFTWARE BASADO EN ARQUITECTURAS MULTIPARADIGMA, según reivindicación 1, caracterizado por que las diferentes entidades (1, 2 y 3) presentan una arquitectura seleccionada entre una arquitectura orientada a servicios, agente, multiagente, dirigida por eventos, procesos de sistemas operativos y una combinación de cualquiera de las anteriores . 8. - METHOD AND SYSTEM OF COORDINATION OF SOFTWARE SYSTEMS BASED ON MULTIPARADIGM ARCHITECTURES, according to claim 1, characterized in that the different entities (1, 2 and 3) have an architecture selected from a service-oriented, agent, multi-agent, event-driven architecture, operating system processes and a combination of any of the above.
9.- SISTEMA DE COORDINACIÓN DE SISTEMAS SOFTWARE BASADOS EN ARQUITECTURAS MULTIPARADIGMA, caracterizado por que comprende medios para implementar el método de las reivindicaciones 1 a 8. 9.- SOFTWARE SYSTEMS COORDINATION SYSTEM BASED ON MULTIPARADIGM ARCHITECTURES, characterized in that it comprises means for implementing the method of claims 1 to 8.
PCT/ES2012/070508 2011-07-07 2012-07-06 Doped carbon material for the electrocatalytic conversion of co2 into hydrocarbons, uses of the material and conversion method using said material WO2013004882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201100795A ES2369269B8 (en) 2011-07-07 2011-07-07 COATED MATERIAL FOR CARBON TRANSFORMATION OF CO2 IN HYDROCARBONS, USE OF THE MATERIAL AND PROCEDURE OF TRANSFORMATION USING THE MATERIAL.
ESP201100795 2011-07-07

Publications (2)

Publication Number Publication Date
WO2013004882A1 true WO2013004882A1 (en) 2013-01-10
WO2013004882A9 WO2013004882A9 (en) 2013-02-14

Family

ID=44925174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070508 WO2013004882A1 (en) 2011-07-07 2012-07-06 Doped carbon material for the electrocatalytic conversion of co2 into hydrocarbons, uses of the material and conversion method using said material

Country Status (2)

Country Link
ES (1) ES2369269B8 (en)
WO (1) WO2013004882A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111821949A (en) * 2020-07-21 2020-10-27 南京农业大学 Nitrogen-phosphorus co-doped peanut shell carbon and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040141908A1 (en) * 2002-12-20 2004-07-22 Hara Hiroaki S. Aerogel and metallic composites

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040141908A1 (en) * 2002-12-20 2004-07-22 Hara Hiroaki S. Aerogel and metallic composites

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MALDONADO-HODAR, F.J. ET AL.: "Surface morphology, metal dispersion, and pore texture of transitionmetal-doped monolithic carbon aerogels and steam-activatesderivatives", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 69, 2004, pages 119 - 125 *
MORENO-CASTILLA, C. ET AL.: "Carbon aerogels forcatalysis applications: An overview", CARBON2005, vol. 43, 2005, pages 455 - 465 *
NATHALIE JOB ET AL.: "Synthesis of transition metal-dopedcarbon xerogels by solubilization of metal saltsin resorcinol-formaldehyde aqueous solution", CARBON2004, vol. 42, 2004, pages 3217 - 3227 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111821949A (en) * 2020-07-21 2020-10-27 南京农业大学 Nitrogen-phosphorus co-doped peanut shell carbon and preparation method and application thereof

Also Published As

Publication number Publication date
ES2369269A1 (en) 2011-11-29
ES2369269B8 (en) 2012-12-28
ES2369269B2 (en) 2012-10-29
WO2013004882A9 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
Nagaoka et al. Influence of basic dopants on the activity of Ru/Pr6O11 for hydrogen production by ammonia decomposition
Wang et al. State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis
Liu et al. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon
Bai et al. Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution
Xiong et al. Fabrication of Spinel-Type Pd x Co3–x O4 Binary Active Sites on 3D Ordered Meso-macroporous Ce-Zr-O2 with Enhanced Activity for Catalytic Soot Oxidation
Zou et al. Core–shell NiO@ PdO nanoparticles supported on alumina as an advanced catalyst for methane oxidation
Pérez-Cadenas et al. Metal-doped carbon xerogels for the electro-catalytic conversion of CO2 to hydrocarbons
Feng et al. Hydrogen generation at ambient conditions: AgPd bimetal supported on metal–organic framework derived porous carbon as an efficient synergistic catalyst
Wei et al. Methanation of carbon dioxide: an overview
Su et al. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts
CA2555427C (en) Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
Werner et al. Ultra‐Low‐Temperature Water–Gas Shift Catalysis using Supported Ionic Liquid Phase (SILP) Materials
Liao et al. Development of a Ni–Ce0. 8Zr0. 2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming
Lee et al. Solar cell-powered electrochemical methane-to-methanol conversion with CuO/CeO2 catalysts
Ma et al. Ni and nitrogen-codoped ultrathin carbon nanosheets with strong bonding sites for efficient CO2 electrochemical reduction
Furusawa et al. Preparation of Ru/ZrO2 catalysts by NaBH4 reduction and their catalytic activity for NH3 decomposition to produce H2
Duan et al. ZIF-L-derived ZnO/N-doped carbon with multiple active sites for efficient catalytic CO2 cycloaddition
Furusawa et al. Development of a Cs-Ru/CeO2 spherical catalyst prepared by impregnation and washing processes for low-temperature decomposition of NH3: characterization and kinetic analysis results
Xie et al. Electrochemical carbon dioxide splitting
Ji et al. Nickel-carbonate nanowire array: An efficient and durable electrocatalyst for water oxidation under nearly neutral conditions
Geng et al. Induced CO2 electroreduction to formic acid on metal− organic frameworks via node doping
Zhou et al. Nanoarray Cu/SiO2 catalysts embedded in monolithic channels for the stable and efficient hydrogenation of CO2-derived ethylene carbonate
Xing et al. Surface engineering of carbon-coated cobalt-doped nickel phosphides bifunctional electrocatalyst for boosting 5-hydroxymethylfurfural oxidation coupled with hydrogen evolution
Shen et al. Mechanistic Insight into Catalytic Combustion of Ethyl Acetate on Modified CeO2 Nanobelts: Hydrolysis–Oxidation Process and Shielding Effect of Acetates/Alcoholates
Zhang et al. Reduction of N2O by CO via Mans–van Krevelen Mechanism over Phosphotungstic Acid Supported Single-Atom Catalysts: A Density Functional Theory Study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807333

Country of ref document: EP

Kind code of ref document: A1