WO2013004164A1 - 通信方法和设备及系统 - Google Patents

通信方法和设备及系统 Download PDF

Info

Publication number
WO2013004164A1
WO2013004164A1 PCT/CN2012/078060 CN2012078060W WO2013004164A1 WO 2013004164 A1 WO2013004164 A1 WO 2013004164A1 CN 2012078060 W CN2012078060 W CN 2012078060W WO 2013004164 A1 WO2013004164 A1 WO 2013004164A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
terminal
micro
indication
channel
Prior art date
Application number
PCT/CN2012/078060
Other languages
English (en)
French (fr)
Inventor
耿婷婷
张伟
张舜卿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12808136.1A priority Critical patent/EP2713654A4/en
Publication of WO2013004164A1 publication Critical patent/WO2013004164A1/zh
Priority to US14/141,001 priority patent/US9603063B2/en
Priority to US15/438,366 priority patent/US20170171785A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a communication method, device, and system. Background technique
  • the base station includes a macro base station (Macro Base Station, which is called a Macro BS or a macro base station) and a capacity station with a small transmission power.
  • a macro base station Micro Base Station, which is called a Macro BS or a macro base station
  • Installing a capacity station indoors is a solution for expanding wireless coverage in mobile communication rooms.
  • the main function is to improve indoor coverage, provide higher service rates to users, and reduce the cost of using high-speed services. Users can use various
  • the mobile terminal device accesses the core network through the capacity station.
  • the terminal acquires required parameters such as cell selection/reselection and channel configuration through system messages broadcast by the base station.
  • required parameters such as cell selection/reselection and channel configuration
  • CUM Universal Mobile Telecommunications System
  • system messages are broadcast periodically, and in order to ensure coverage, the system will always transmit at maximum power.
  • the prior art provides a method for obtaining a system message: When a system message change tag included in a system message block sent by a base station indicates that a system message changes, the terminal acquires an updated system message.
  • the invention provides a communication method, device and system, which reduce power consumption of a capacity station and reduce energy waste.
  • An aspect of the present invention provides a communication method, including: monitoring whether a terminal in a macro network has a micro network service requirement; and the micro network is within a macro network coverage, and all common physical channels except the pilot channel in the micro network Or the part of the public physical channel is in a closed state; if the terminal has a micro network service requirement, sending, to the terminal, a network switching indication that includes the micro network configuration information, where the network switching indication is used to indicate that the terminal is from the The macro network switches to the micro network.
  • An aspect of the present invention provides a network side communication device, including: a first monitoring module, configured to monitor whether a terminal in a macro network has a micro network service requirement; and the micro network is in a coverage of the macro network, All the common physical channels or part of the common physical channels except the pilot channel in the micro network are in a closed state; the first handover indication module is configured to send, to the terminal, the device if the terminal has the micro network service requirement And a network switching indication of the micro network configuration information, where the network switching indication is used to instruct the terminal to switch from the macro network to the micro network.
  • An aspect of the present invention provides a terminal, including: a first service requesting module, configured to send a service request to a network side communication device in the macro network in a macro network; and the micro network has a micro network in a coverage area; All the common physical channels or part of the common physical channels except the pilot channel in the micro network are in a closed state; the first handover indication receiving module is configured to monitor, by the network side communication device, that the terminal has a micro network service requirement Receiving, by the network side communication device, a network handover indication that includes the micro network configuration information, where the network handover indication is used to instruct the terminal to switch from the macro network to the micro network.
  • An aspect of the present invention also provides a communication system including the network side communication device and the terminal.
  • Another aspect of the present invention provides a communication method, including: monitoring whether a terminal in a micro network has a micro network service requirement; the micro network is within a macro network coverage, and all but the pilot channel in the micro network The public physical channel or part of the common physical channel is in a closed state; if the terminal does not have a micro network service requirement, send a network switching indication to the terminal or send a state transition indication to the terminal, where the network switching indication is used to indicate the The terminal switches to the macro network, and the state transition is used to indicate that the terminal migrates to a state that does not occupy a dedicated channel.
  • a network side communication device including: a second monitoring module, configured to monitor whether a terminal in a micro network has a micro network service requirement; the micro network is in a macro network coverage area, and the micro network All the common physical channels or part of the common physical channels except the pilot channel are in a closed state; the second switching indication module is configured to send a network switching indication or a direction to the terminal if the terminal does not have a micro network service requirement
  • the terminal sends a state transition indication, where the network handover indication is used to indicate that the terminal switches to the macro network, and the state transition is used to indicate that the terminal migrates to a state that does not occupy a dedicated channel.
  • a terminal including: a second service requesting module, configured to send, by a micro network, a service request to a network side communication device in a macro network; the micro network is within a macro network coverage, All common physical channels or partial common physical channels except the pilot channel in the micro network are in a closed state; the second handover indication receiving module is configured to be used by the network side communication device to monitor that the terminal in the micro network is not Receiving, by the network side communication device, a network switching indication sent by the network side communication device, or receiving a state transition indication sent by the network side communication device; the network switching indication is used to instruct the terminal to switch to the macro network Resident, the state transition indication is used to indicate that the terminal migrates from a state occupying a dedicated channel to a state that does not occupy a dedicated channel.
  • Another aspect of the present invention provides a communication system comprising: a network side communication device and a terminal provided by another aspect of the present invention.
  • Another aspect of the present invention provides a communication method, including: the network side device sets at least one carrier of the multiple carriers to a channel clipping mode, and at least one carrier of the multiple carriers Set to a non-channel cropping mode; the network side device communicates on the carrier set to the channel cropping mode and on the carrier set to the non-channel cropping mode.
  • a base station including a processing unit, configured to set at least one carrier of multiple carriers to a channel clipping mode, and set at least one carrier of the multiple carriers to a non-channel cropping mode; And a unit, configured to perform communication on the carrier set to the channel cropping mode and on the carrier set to the non-channel cropping mode.
  • the communication method, device and system of the embodiment of the present invention are configured to reduce the transmission of the broadcast signaling of the micro network to reduce the power consumption of the capacity station, and close all common physical channels or partial common channels except the pilot channel in the micro network. Therefore, the capacity station cannot support the access of the terminal.
  • the terminal accesses from the macro network when the terminal is initially connected. When the terminal has the micro network service requirement, the terminal enters the micro network, and the micro network provides the terminal with the service. Since all the common physical channels or part of the common physical channels except the pilot channel in the micro network are closed, the capacity station provides the terminal with a high-speed service only when the terminal has a service requirement, thereby avoiding the capacity station having no service demand when the terminal has no service demand. It is also necessary to maintain the phenomenon of the terminal, avoiding the overhead generated by the capacity station continuously transmitting the broadcast signaling, reducing the power consumption of the capacity station, and reducing the transmission power of the capacity station.
  • FIG. 1 is a flowchart of a communication method according to an embodiment of the present invention
  • 3A is a flowchart of still another communication method according to an embodiment of the present invention.
  • FIG. 3B is a scenario diagram of a Pico network in a coverage area of a Marco network according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a network side communication device according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a first switching indication module in FIG. 4;
  • FIG. 6 is a schematic structural diagram of another network side communication device according to an embodiment of the present invention
  • FIG. 7A is a schematic structural diagram of a terminal according to an embodiment of the present invention
  • FIG. 7B is a schematic structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a first handover indication receiving module in FIG. 7A;
  • FIG. 9A is a schematic structural diagram of still another terminal according to an embodiment of the present disclosure.
  • FIG. 9B is a schematic structural diagram of still another terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a communication system according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart diagram of another communication method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another base station according to an embodiment of the present invention. detailed description
  • the transmit power of the macro base station is greater than the transmit power of the capacity station, and the coverage of the macro base station may also be larger than the coverage of the capacity station.
  • a capacity station can also be called a small base station, and can also be called a low power node (LPN).
  • LPN low power node
  • HNB Home NodeB
  • Micro BS Micro Base Station
  • Pico Base Station Pico Base Station
  • femto base station FemtoCdl, or Femto Base Station
  • HeNB Home evolved Node B
  • macro base stations and capacity stations can be included.
  • the network covered by the macro base station may be called For a macro network, the network covered by the capacity station is called a micro network.
  • the capacity station can be located within the coverage of the macro network, and the capacity station can be under the control of the macro base station.
  • the coverage of the micro network can be covered by the macro network.
  • the broadcast of system messages requires resources that occupy a large number of radio frames.
  • system messages are periodically broadcast, and to ensure coverage, system messages are always transmitted at maximum power.
  • FDD Frequency Division Duplexing
  • the terminal in the CELL_DCH state is allocated a dedicated channel, which enables high-speed data transmission, and the terminal in the CELL_DCH state does not need to read the system message.
  • the capacity station is characterized by a small amount of users and a relatively fixed number of networks, and a slow change in the network condition, and can provide a high rate rate service while solving the problem of insufficient coverage.
  • the macro network macro base station when there is a micro network controlled by the macro base station within the coverage of the macro network, since the macro network macro base station provides sufficient effective coverage, it can be based on resource utilization efficiency, user service quality (QoS), and green energy saving requirements.
  • the network features are flexibly set so that when the terminal has no service, it can reside in the macro network covered by the macro base station, and the capacity station only needs to maintain the high-speed data transmission of the CELL_DCH state terminal with large traffic volume, and only needs to Maintain the wireless resources of CELL_DCH.
  • the terminal in the embodiment of the present invention may be a single mode terminal or a multimode terminal.
  • the network side communication device may be a network side communication device that controls the macro base station in the macro network, and the network side communication device may also be integrated with the macro base station in one hardware device.
  • FIG. 1 is a flowchart of a communication method according to an embodiment of the present invention. As shown in Figure 1, this embodiment includes:
  • Step 11 The network side communication device in the macro network monitors whether the terminal in the macro network has a micro network service requirement; the micro network is within the macro network coverage, and all public physical channels or parts of the public network except the pilot channel are in the micro network.
  • the physical channel is off.
  • a terminal in a macro network means that the terminal accesses and resides in the macro network.
  • the capacity station can close all common physical channels or partial common physical channels except the pilot channel in the micro network, which can reduce the transmission overhead of the broadcast signaling on the capacity station and reduce the transmission power of the capacity station. Thereby, the neighborhood interference can be reduced, and the capacity gains of the uplink and the downlink can be obtained.
  • closing part of the channel or all channels may be referred to as channel clipping. When some or all channels in the network are in a closed state, the network may be said to be in a channel clipping mode.
  • the micro network can be said to be in the channel clipping mode.
  • the initial access of the terminal and the camping of the idle state terminal are not supported, and the cell reselection targeting the terminal without occupying the dedicated channel is not supported.
  • the micro network cannot support the initial access of the terminal, even if the signal quality of the micro network is good, the newly booted terminal cannot reside. Therefore, after the micro network is in the channel clipping mode, in the case that the macro base station cell and the micro network are in the same coverage, the terminal can only reside in the macro network, and initiate data services, such as paging service and transmission service, in the macro network.
  • the pilot channel in the micro network is in an open state, providing the terminal with a measurement service of the micro network signal quality.
  • the state of the terminal may include a CELL_DCH state and a non-CELL_DCH state, wherein the non-CELL_DCH state includes states such as idle, URA_PCH, CELL_PCH, and CELL_FACH.
  • the CELL_DCH state, the non-CELL_DCH state, and the states of idle, URA_PCH, CELL_PCH, and CELL_FACH can be referred to the description in the 3GPP specifications.
  • the terminal in the non-CELL_DCH state cannot be maintained.
  • the terminal in the CELL_DCH state is allocated with a dedicated physical channel and a dedicated transmission channel, and the terminal performs data transmission on the dedicated channel, does not need random access, and does not need to read system messages. Therefore, the micro network is not in the channel clipping mode.
  • the data service of the terminal in the CELL_DCH state has an impact.
  • the micro network can maintain terminals in the CELL_DCH state.
  • the state of a terminal in a second generation (2 generation, 2G) network or a fourth generation (4 generation, 4G) network includes a connected state and a non-connected state.
  • a 2G network or a 4G network after the micro network closes a part of the common physical channel into the channel clipping mode, the terminal does not support the terminal random access, does not send the system message, and cannot maintain the terminal in the non-connected state.
  • the micro network maintains the terminal in the connected state.
  • 2G, 3G, 4G or higher The division of the network in the network system can be confirmed by those skilled in the art with reference to the consensus and insurance of the communication industry.
  • Step 12 If the terminal has a micro network service requirement, the network side communication device sends a network handover indication including the micro network configuration information to the terminal, where the network handover indication is used to instruct the terminal to switch from the macro network to the micro network.
  • the terminal After the terminal is powered on, it resides in the macro network, and the macro network sends a service request to the macro base station.
  • the capacity station does not maintain the terminal.
  • the network side communication device monitors the terminal in the macro network to have the micro network service requirement, the terminal is triggered to cut into the micro network, and the capacity station provides the service for the terminal.
  • the base station controller BSC
  • the BSC can monitor whether the terminal has micro network service requirements.
  • the BSC sends a network handover indication including the micro network configuration information to the terminal.
  • the radio network controller can monitor whether the terminal has micro network service requirements, in the Long Term Evolution (LTE) network system, or LTE Advanced (LTE Advanced, LTE-A).
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • the terminal can be detected by an evolved NodeB (eNB).
  • eNB evolved NodeB
  • the network side communication device in the macro network sends a network handover indication including the micro network configuration information to the terminal. After the terminal switches to the micro network, high-speed data transmission can be performed through the dedicated channel provided by the capacity station.
  • the network side communication device in the macro network monitors whether the data traffic of the terminal reaches a traffic threshold.
  • the network handover indication including the micro network configuration information is sent to the terminal.
  • the traffic threshold may be determined according to actual communication conditions and communication requirements, and may also be determined according to experience of those skilled in the art. For example, in a 3G network, the RNC monitors whether the data traffic of the terminal reaches the traffic threshold. When the traffic of the terminal reaches the traffic threshold, the RNC determines that the terminal needs to have the micro network service. begging.
  • the traffic threshold may be a traffic threshold when the terminal migrates from the non-CELL_DCH state to the CELL_DCH state in the 3G network.
  • the network side communication device in the macro network monitors whether the traffic notification message of the terminal is received.
  • the traffic notification message informs the network side communication device in the macro network that the data traffic of the terminal reaches a traffic threshold.
  • the network side communication device Upon receiving the traffic notification message of the terminal, the network side communication device sends a network handover indication including the micro network configuration information to the terminal.
  • the traffic threshold may be determined according to actual communication conditions and communication requirements, and may also be determined according to experience of those skilled in the art. For example, in a 3G network, when the terminal sends a service request to the RNC, it carries a network handover request to request to cut into the micro network. When the RNC monitors that the service request of the terminal carries the network handover request, it determines that the terminal has the micro network service requirement.
  • the network side communication device in the macro network monitors whether there is a network handover request in the service request sent by the terminal, and the network handover request is used to request to cut into the micro network.
  • the network side communication device sends a network handover indication including the micro network configuration information to the terminal.
  • high-speed data transmission is performed on the dedicated channel. For example, in a 3G network, the terminal monitors its own traffic volume, and when the data traffic reaches the traffic threshold, the terminal sends a traffic volume notification message to the RNC.
  • the RNC After receiving the traffic notification message, the RNC determines that the terminal has a network service requirement.
  • the network side communication device in the macro network may also allow the terminal to switch from the macro network to the micro network in the case where the signal quality of the micro network is good.
  • the terminal residing in the macro network measures the signal quality of the micro network through the pilot channel of the micro network, and the signal quality of the micro network is measured at the terminal to reach the quality threshold, and the measurement report is reported to the network side communication device. Since the terminal is located in the same coverage area of the macro network and the micro network.
  • the micro-network has the best signal quality and will reach the preset quality threshold.
  • the network side communication device sends a network handover indication including the configuration information of the micro network to the terminal, and instructs the terminal to switch to the micro network.
  • the terminal After the terminal enters the micro network, high-speed data transmission is performed. For example, in a UMTS network, it resides in a macro network. After the terminal transits to the CELL_DCH state, the terminal measures the signal quality of the micro network through the pilot channel of the micro network, where the quality threshold may be determined according to actual communication conditions and communication requirements, or may be determined according to experience of those skilled in the art. . The signal quality of the micro network is measured at the terminal to reach the quality threshold, and the measurement report is reported to the RNC. Since the terminal is located in the same coverage area of the macro network and the micro network. The micro-network has the best signal quality and will reach the preset quality threshold.
  • the RNC determines that the signal quality of the micro network reaches the quality threshold, and sends a network handover indication including the configuration information of the micro network to the terminal, instructing the terminal to switch to the CELL_DCH of the micro network. status.
  • the terminal in the CELL_DCH state enters the micro network, high-speed data transmission is performed on the dedicated channel.
  • the capacity station when there is a micro network in the coverage of the macro network, in order to reduce the transmission of the broadcast signaling of the micro network to reduce the power consumption of the capacity station, all common physical channels except the pilot channel in the micro network or Some of the common channels are closed, so that the capacity station cannot support the access of the terminal.
  • the terminal accesses from the macro network during initial access.
  • the terminal When the terminal has the micro network service requirement, the terminal enters the micro network, and the micro network provides services for the terminal. Since all the common physical channels or part of the common physical channels except the pilot channel in the micro network are closed, the capacity station provides the terminal with a high-speed service only when the terminal has a service requirement, thereby avoiding the capacity station having no service demand when the terminal has no service demand. It is also necessary to maintain the phenomenon of the terminal, avoiding the overhead generated by the capacity station continuously transmitting the broadcast signaling, reducing the power consumption of the capacity station, and reducing the transmission power of the capacity station.
  • FIG. 2 is a flowchart of another communication method according to an embodiment of the present invention. As shown in Figure 2, this embodiment includes:
  • Step 21 The network side communication device in the macro network monitors whether the terminal in the micro network has a micro network service requirement, and the micro network is within the macro network coverage, except for the pilot channel in the micro network. All common physical channels or some common physical channels are in a closed state.
  • Step 22 If the terminal does not have a micro network service requirement, the network side communication device sends a network switching indication to the terminal or sends a state transition indication to the terminal, where the network switches The indication is used to indicate that the terminal switches to the macro network, and the state transition is used to indicate that the terminal migrates to a state that does not occupy a dedicated channel.
  • step 21 and step 22 of the embodiment shown in FIG. 2 may be further included after step 12.
  • a terminal in a micro-network refers to a terminal accessing and camping on a micro-network, and the terminal performs high-speed data transmission on a radio resource that can be provided by the micro-network through the capacity station.
  • the network side communication device in the macro network monitors that the terminal does not have the micro network service requirement in the micro network, and instructs the terminal to switch to the macro network. After the terminal enters the micro network, high-speed data transmission is performed on the dedicated channel.
  • the terminal Since the terminal needs to occupy the dedicated radio resources of the capacity station, and the radio resources maintained by the capacity station are limited, it is monitored whether the terminal in the micro network has a micro network service requirement, so that the terminal switches to the macro when the terminal does not have the micro network service demand.
  • the internet Alternatively, the network side communication device in the macro network may further send a state transition indication to the terminal, indicating that the terminal migrates from a state in which the dedicated channel is occupied to a state in which the channel is not occupied.
  • the terminal that does not occupy the dedicated channel resides in the micro network, when the maintenance of the capacity station is required, since the capacity station is in the channel clipping mode, the terminal considers that the poor quality of the micro network triggers cell reselection to enter the macro network camp.
  • the network side communication device in the macro network may have multiple methods to determine whether the terminal in the micro network has micro network service requirements.
  • the following examples illustrate:
  • the network side communication device in the macro network monitors whether the data traffic of the terminal is smaller than the traffic threshold.
  • the network side communication device determines that the terminal does not have the micro network service requirement.
  • the RNC monitors whether the terminal's data traffic is less than the traffic threshold.
  • the RNC determines that the terminal does not have the micro network service requirement.
  • the traffic threshold may be a traffic threshold when the terminal migrates from the CELL_DCH state to the non-CELL_DCH state in the 3G network.
  • the terminal when the terminal sends a service request to the network side communication device in the macro network, the terminal carries a network handover request to request to cut into the macro network.
  • the network side communication device detects that the service request of the terminal carries the network handover request, it determines that the terminal does not have the micro network service requirement.
  • the terminal On the 3G network, when the terminal sends a service request to the RNC, the terminal carries a network handover request to request to cut into the macro network.
  • the RNC detects that the service request of the terminal carries the network handover request, it determines that the terminal does not have the micro network service requirement.
  • the terminal monitors its own traffic volume, and when the traffic volume is less than the traffic volume threshold, sends a traffic volume notification message to the network side communication device in the macro network. After receiving the traffic notification message, the network side communication device determines that the terminal does not have a micro network service requirement. For example, in a 3G network, the terminal monitors its own traffic, and when the traffic is less than the traffic threshold, it sends a traffic notification message to the RNC. After receiving the traffic notification message, the RNC determines that the terminal does not have micro network service requirements.
  • the network side communication device instructs the terminal to switch to the macro network, so that the capacity station does not need to maintain data.
  • a terminal with less traffic saves the radio resources of the capacity station and reduces unnecessary power waste.
  • FIG. 3A is a flowchart of still another communication method according to an embodiment of the present invention.
  • FIG. 3B is a scenario diagram of a Pico network in a coverage area of a Marco network according to an embodiment of the present invention.
  • the Marco network is a network covered by a Macro base station
  • the Pico network is a network covered by a Pico base station
  • the Pico base station can be controlled by a Marco base station.
  • the Marco network and the Pico network overlap, but the coverage of the Marco base station is wider than that of the Pico base station, and there are many Pico base stations within the coverage of the macro base station.
  • This embodiment mainly describes how the RNC performs cell handover on the dual-mode terminal of the UMTS network in the scenario where the Pico network is in the coverage of the Marco network in the UMTS network.
  • the synchronization channel of the Pico network (Synchronization Channel) SCH ), Common Control Physical Channel (CCP), Paging Indicator Channel (PICH), Acquisition Indicator Channel (AICH) and uplink random access
  • the Packet Random Access Channel (PACK) is in the off state, and the Common Pilot Channel (CPICH) The channel is open.
  • the CCPCH includes a primary common control physical channel (P-CCPCH) and a secondary common control physical channel (S-CCPCH);
  • the CPICH includes: a primary paging indicator channel (Primary Paging Indicator Channel, called P-CPICH) and Secondary Paging Indicator Channel (S-CPICH).
  • P-CPICH Primary Paging Indicator Channel
  • S-CPICH Secondary Paging Indicator Channel
  • the following describes the impact of the Pico network on the terminal after the UMTS common physical channel is closed, that is, after entering the channel clipping mode.
  • the SCH channel mainly sends synchronization messages, which are used for cell search and synchronization of cells when the terminal initially accesses.
  • the P-CCPCH carries the upper broadcast channel (Broadcast Channel, called BCH), which is mainly system information.
  • BCH Broadcast Channel
  • the S-CCPCH mainly carries a Forward Access Channel (FACH) and a Paging Channel (PCH).
  • the PICH is a paging indicator channel, and a paging indicator (Paging Indicator) is transmitted.
  • the terminals of Idle, URA_PCH, and CELL_PCH wake up to monitor the PI at the specified paging time.
  • the AICH is used to carry a capture indicator of the network, and the indicator indicates that the prefix sent by the terminal through the PRACH has been detected by the system, and the PRACH message can be further sent.
  • the PRACH channel is an uplink random access physical channel.
  • a terminal that is not in the CELL_DCH state initiates a random access procedure, it needs to send a preamble to the UTRAN through the PRACH channel, and then go to the AICH channel to listen to the feedback information of the network.
  • the open channel P-CPICH is a pilot channel, which is used to transmit the primary scrambling code of the cell, and is a power reference and a phase reference of other physical channels. In the FDD mode, when the reselection or handover is performed, the target cell passes the CPICH. Measurement of signal strength and signal quality.
  • the state of the terminal in the UMTS network is divided into two states: the idle state, the URA_PCH, the CELL_PCH, the CELL_FACH, and the CELL_DCH.
  • the state of the terminal is divided into two categories according to the state of the UMTS network resources in each state, and the CELL_DCH state is divided into two categories.
  • the non-CELL_DCH state, the non-CELL_DCH state includes the idle, URA_PCH, CELL_PCH, and CELL_FACH states, that is, states other than the CELL_DCH state.
  • the SCH channel is closed, and the newly booted terminal cannot synchronize with the searched Pico network, so it cannot stay in the Pico network and continue the cell search.
  • the Marco network signal is detected to be of good quality, so the terminal resides from the Marco network.
  • the PICH channel is closed, and the non-CELL-DCH terminal resides in the UMTS, and needs to wake up periodically to listen to the PICH at the respective paging moments to see if there is a paging of the group (the paging group where the terminal is located); When the non-CELL_DCH terminal listens to the PICH at the paging moment, it will not find the PICH.
  • the Pico network which will trigger the cell reselection; the CCPCH channel is closed, and the P-CCPCH is the system information.
  • the terminal that is not CELL_DCH needs to read the system information. There are two main reading methods: one is when the system message changes, and the other is that when the system message stored by the terminal expires, the system message is automatically re-read; the CCPCH is closed. After that, the terminal cannot obtain the system message, and the cell is considered to be a barred cell, which will trigger cell reselection. Therefore, when the Pico network closes the SCH/CCPCH/PICH/AICH into the channel tailoring mode, there will be a corresponding impact on the initial access, cell camping, measurement, handover, and service initiation of the Pico network.
  • the terminal For terminals of CELL_DCH, the terminal is assigned a dedicated physical channel, a dedicated transport channel, and a dedicated logical channel.
  • the dedicated logical channel can use Dedicated Control Channel (DCCH) and Dedicated Traffic Channel (DTCH), and the terminal transmits data on the dedicated transport channel without random access or detection.
  • DCCH Dedicated Control Channel
  • DTCH Dedicated Traffic Channel
  • AI Acquisition Indicator Channel
  • the terminal does not need to read the system message.
  • the RNC sends various configurations or bearer signaling in sequence on the dedicated channel, and finally configures the terminal.
  • the DCCH The dedicated channel (Ddicated Channel, DCH) and the Dedicated Physical Control Channel (DPDCH) are sent to the terminal to send Paging Type 2 information (Paging Type 2 information is used to page the terminal of CELL_DCH) without detecting Listen to PICH and CCPCH. Therefore, after the Pico cell enters the channel tailoring mode, it does not have any impact on the service transmission and reception of the CELL_DCH state terminal. If CELL_DCH The terminal loses synchronization in the serving cell and changes to the CELL_FACH state. It can be seen from the above analysis that after the Pico network enters the channel tailoring mode, the terminal that is not in the CELL_DCH state cannot be maintained, so the terminal reselects to the Marco network.
  • the CPICH channel is normally turned on. When there is a need to measure the cell signal quality, only the P-CPICH channel support needs to be completed.
  • the terminal needs to perform signal quality measurement on the target cell of the handover before switching.
  • the UTRAN sends and receives a Measurement Control message to the CELL_DCH terminal on the DCCH.
  • the CPICH channel is normally turned on regardless of whether the target cell is in channel clipping mode.
  • the terminal in the CELL_DCH state needs to complete the soft/hard handover, and only needs to have the P-CPICH channel support to complete the relevant measurement of the target cell.
  • the network configuration information of the target cell is sent by the RNC to the terminal of the CELL_DCH that needs to be switched, and the terminal takes After the configuration information of the target cell, it can be directly switched, and the whole process does not need the support of other physical channels of the target cell. Therefore, regardless of whether the source cell or the target cell of the handover, the CPICH channel is reserved, and the measurement support of the terminal of the CELL_DCH can be provided, so that the handover behavior of the terminal is not affected.
  • this embodiment includes:
  • Step 1 The terminal is powered on on the Pico network.
  • Step 2 The terminal performs a cell search.
  • Step 3 The terminal accesses and resides on the Marco network.
  • the Pico base station When there is a Pico network in the coverage of the Marco network, the Macro network and the Pico network are mutually configured as neighbors, and the Pico base station turns off the SCH, CCPCH, PICH, AICH, and PRACH channels, and is in a low power mode.
  • the SCH, CCPCH, PICH, AICH, and PRACH channels of the Pico network are all turned off.
  • the SCH, CCPCH, PICH, AICH, and PRACH channels of the Pico network are all off. Therefore, the Pico network only maintains the terminal in the CELL_DCH state. Even if the terminal detects the signal quality of the Pico network cell Well, it can't be parked in, so the terminal can only reside on the same running Mac network as the overlay, and initiate business on the Macro network.
  • Step 4 When the data traffic of the terminal reaches the traffic threshold, the terminal sends a first traffic notification message to the RNC.
  • Step 5 The RNC determines if the terminal is in the CELL_DCH state.
  • the RNC determines that the terminal has the Pico network service requirement, and determines whether the terminal is in the CELL_DCH state.
  • the PNC only maintains the terminal in the CELL_DCH state. Therefore, when the terminal has the network service requirement and the terminal is in the CELL_DCH state, the RNC sends a network handover indication including the Pico network configuration information to the terminal.
  • Step 6 If the terminal is in the non-CELL_DCH state, the RNC sends a second state transition indication to the terminal, instructing the terminal to migrate to the CELL_DCH state of the Macro network.
  • Step 7 When the RNC determines that the terminal is in the CELL_DCH state, it sends a first measurement indication to the terminal, instructing the terminal to measure the signal quality of the Pico network.
  • Step 8 The terminal sends a first measurement report to the RNC, and notifies the RNC that the signal quality of the Pico network reaches the quality threshold.
  • the RNC may periodically send a measurement indication to the terminal to measure the signal quality of the Pico network, and send a measurement report to the RNC when the terminal measures the signal quality of the Pico network to reach the quality threshold.
  • the RNC decides whether to switch the terminal camped cell.
  • Step 9 The RNC sends a network handover indication including the Pico network configuration information to the terminal, and instructs the terminal to switch from the Macro network to the CELL_DCH state transmission service of the Pico network.
  • the RNC packages the configuration information of the Pico network (U-RNTI, RB information, Radio Access Bearer (Radio Access Bearer) information, transport layer information, and physical layer information). It is sent to the terminal through the Handover command.
  • the terminal initializes a signaling link, a radio bearer (Radio Bearer) information, a transport channel, and a physical channel according to the configuration of the Pico area in the handover command.
  • the terminal performs an open loop evaluation to determine the uplink transmit power according to the received information element "Maximum allowed UL TX power", and switches from the CELL_DCH state of the Macro network to the CELL_DCH state of the Pico network. .
  • Step 10 The terminal switches to the Pico network and performs high-speed data transmission on the Pico network.
  • Step 11 When the data traffic of the terminal is less than the traffic threshold, the terminal sends a second traffic notification message to the RNC to notify the RNC that the data traffic of the terminal is less than the traffic threshold.
  • the terminal After the terminal switches to the Pico network, it can periodically measure its own traffic. When the traffic is smaller than the second traffic threshold, the terminal sends a second traffic notification message to the RNC.
  • Step 12a The RNC sends a first state transition indication to the terminal, instructing the terminal to migrate from the CELL_DCH state to the non-CELL_DCH state.
  • the RNC After receiving the second traffic notification message, the RNC determines that the terminal does not have the Pico network service requirement. To save radio resources of the Pico network, the RNC sends a first state transition indication to the terminal.
  • Step 13a The terminal migrates from the CELL_DCH state to the non-CELL_DCH state.
  • the Pico network For terminals that move out of the CELL_DCH state, the Pico network no longer maintains them.
  • the terminal needs to maintain the state of the Pico network and needs the service of the Pico network, since the Pico network is in the channel cutting mode, the terminal has a problem with the Pico network quality, triggering the cell reselection to enter the Macro network. For example: When the terminal periodically reads the paging message, because the PICH is closed, the terminal cannot find the PICH channel when periodically reading the paging indication message, and the Pico network quality is considered to be worse, triggering cell reselection.
  • the RNC may also instruct the terminal to switch from the Pico network to the Macro network camp. Can be as follows:
  • Step 12b The RNC sends a network handover indication including the Macro network configuration information to the terminal, instructing the terminal to switch from the Pico network to the Macro network resident. Specifically, the RNC sends a handover command to the terminal to switch to the Macro network, instructing the terminal to switch from the Pico network to the Macro network camp.
  • Step 13b The terminal switches from the Pico network to the Macro network.
  • the Pico network when there is a Pico network controlled by the macro base station in the coverage of the Marco network, in order to reduce the transmission of the broadcast signaling of the Pico network to reduce the power consumption of the Pico, all the Pico networks except the pilot channel are used.
  • the public physical channel or part of the public signal is closed, so that Pico cannot support the access of the terminal in the non-CELL_DCH state, and the terminal in the non-CELL_DCH state is maintained by the Macro network, and the Pico network can only maintain the terminal in the CELL_DCH state.
  • the terminal accesses from the Macro network during initial access.
  • the RNC When the data traffic reaches the traffic threshold, the RNC cuts the terminal into the CELL_DCH state and enters the CELL_DCH state transmission service of the Pico network, and performs high-speed data transmission on the Pico network. Further, when the data traffic of the terminal residing in the Pico network is reduced, the RNC instructs the terminal to migrate to the non-CELL_DCH state, or instructs the terminal to cut into the Macro network, so that the Pico network does not need to maintain the terminal with less data traffic, saving the Pico. Wireless resources. Since all common physical channels except the pilot channel in the Pico network are closed, the overhead generated by the Pico network continuously transmitting broadcast signaling is avoided, the power consumption of the Pi C0 network is reduced, and the transmit power of the Pico network is reduced.
  • Neighbor interference can be reduced, and the capacity gains of the uplink and downlink can be obtained.
  • the Pico network can only maintain the terminal in the CELL_DCH state, the related signaling for maintaining the non-CELL_DCH state is avoided, and unnecessary power waste is reduced.
  • FIG. 4 is a schematic structural diagram of a network side communication device according to an embodiment of the present invention. As shown in FIG. 4, the embodiment includes: a first monitoring module 41 and a first switching indication module 42.
  • a first monitoring module 41 configured to monitor whether a terminal in the macro network has a micro network service requirement; the micro network is within a macro network coverage, and all common physical channels or partial public physics except the pilot channel in the micro network The channel is off.
  • the first switching indication module 42 is configured to: if the first monitoring module 41 detects that the terminal has a micro network service requirement, send, to the terminal, a network switching indication that includes the micro network configuration information, where the network switching indication is used to indicate The terminal switches from the macro network to the micro network.
  • the first monitoring module 41 can be used to monitor whether the data traffic of the terminal reaches the traffic threshold.
  • the first handover indication module 42 may send a network switching indication including the micro network configuration information to the terminal when the data traffic of the terminal reaches a traffic threshold.
  • the first monitoring module may be configured to monitor whether the data traffic of the terminal reaches a traffic threshold; the first handover indication module may be configured to: the data traffic of the terminal reaches a traffic threshold and the terminal When the state of occupying the dedicated channel is in a state, the network switching indication including the micro network configuration information is sent to the terminal.
  • the first monitoring module 41 may be configured to monitor whether a traffic notification message of the terminal is received; and the traffic notification message notifies that the data traffic of the terminal reaches a traffic threshold.
  • the first handover indication module 42 may be configured to send, when receiving the traffic notification message of the terminal, a network handover indication including the micro network configuration information to the terminal.
  • the first monitoring module 41 may be configured to monitor whether a traffic notification message of the terminal is received; and the traffic notification message notifies that the data traffic of the terminal reaches a traffic threshold.
  • the first handover indication module 42 may be configured to: when receiving the traffic notification message of the terminal, and the terminal is in a state of occupying a dedicated channel, send a network handover indication including the micro network configuration information to the terminal .
  • the first monitoring module 41 may be configured to monitor whether there is a network handover request in the service request of the terminal, where the network handover request is used to request to cut into the micro network.
  • the first handover indication module 42 may be configured to send, when the network request of the terminal includes a network handover request, a network handover indication including the micro network configuration information to the terminal.
  • the first monitoring module 41 may be configured to monitor whether there is a network handover request in the service request of the terminal, where the network handover request is used to request to cut into the micro network.
  • the first handover indication module may be configured to include a network handover request in the service request of the terminal, and the terminal is occupied When the state of the dedicated channel is in progress, a network handover indication including the micro network configuration information is sent to the terminal.
  • the network side communication device can be applied to the corresponding embodiment in FIG. 1 and FIG. 3A.
  • the network side communication device can refer to the network side communication device in the macro network in the embodiment shown in FIG. 1 and FIG. 3A, and details are not described herein again. .
  • the terminal when there is a micro network in the coverage of the macro network, in order to reduce the transmission of the broadcast signaling of the micro network to reduce the power consumption of the capacity station, all common physical channels or parts except the pilot channel in the micro network are public. The channel is closed, so that the capacity station cannot support the access of the terminal.
  • the terminal accesses the macro network when it is initially accessed. When the terminal has the micro network service requirement, the terminal enters the micro network, and the micro network provides the terminal with the service.
  • the capacity station Since all the common physical channels or part of the common physical channels except the pilot channel in the micro network are closed, the capacity station provides the terminal with a high-speed service only when the terminal has a service requirement, thereby avoiding the capacity station having no service demand when the terminal has no service demand. It is also necessary to maintain the phenomenon of the terminal, avoiding the overhead generated by the capacity station continuously transmitting the broadcast signaling, reducing the power consumption of the capacity station, and reducing the transmission power of the capacity station.
  • FIG. 5 is a schematic structural diagram of the first switching indication module in FIG. 4.
  • the first handover indication module 42 includes: a state decision unit 421, a state transition indication unit 422, a measurement indication unit 423 and a measurement report receiving unit 424, and a first handover indication unit 425.
  • the state determining unit 421 when the first monitoring module 41 detects that the terminal has a micro network service requirement, determines whether the terminal is in a state of occupying a dedicated channel. A status transition indication is sent to the terminal using the status of the channel. The state transition indication is used to indicate a state in which the terminal migrates to occupy a dedicated channel.
  • the measurement indication unit 423 is configured to send a measurement indication to the terminal when the terminal is in a state of occupying a dedicated channel, where the measurement indication is used to instruct the terminal to measure a signal quality of the micro network.
  • the measurement report receiving unit 424 is configured to: after the measurement indication unit 423 sends the measurement indication to the terminal, receive the measurement report sent by the terminal; the measurement report is used to notify the signal quality of the micro network to reach a quality threshold.
  • the first handover instructing unit 425 is configured to: when the measurement report receiving unit 424 receives the measurement report sent by the terminal, send a network handover indication including the micro network configuration information to the terminal.
  • the network side communication device when the terminal is in the occupied dedicated channel state and the terminal measures that the signal quality of the micro network cell reaches the quality threshold, the network side communication device sends a network handover indication to the terminal, instructing the terminal to switch from the macro network to the micro network, thereby occupying The terminal of the dedicated channel performs data processing services on the micro network.
  • FIG. 6 is a schematic structural diagram of another network side communication device according to an embodiment of the present invention. As shown in FIG. 6, the embodiment includes: a second monitoring module 43 and a second switching indication module 44.
  • a second monitoring module 43 configured to monitor whether a terminal in the micro network has a micro network service requirement; where the micro network is within a macro network coverage, all common physical channels or parts except the pilot channel in the micro network The common physical channel is off.
  • the second switching instruction module 44 is configured to: when the terminal does not have a micro network service requirement, send a network switching indication to the terminal or send a state transition indication to the terminal, where the network switching indication is used by the second monitoring module 43. Instructing the terminal to switch to the macro network, the state transition is used to indicate that the terminal migrates to a state that does not occupy a dedicated channel. Further, the second handover indication module 44 may further be configured to: when the terminal does not have a micro network service requirement, send a state transition indication to the terminal, indicating that the terminal migrates from a state occupying a dedicated channel to a state not occupying a dedicated channel. .
  • the second monitoring module 43 can be configured to monitor whether the data traffic of the terminal is less than a traffic threshold.
  • a second switching indication module 44 which can be used for data of the terminal When the traffic volume is less than the traffic threshold, the network handover indication is sent to the terminal or the state transition indication is sent to the terminal.
  • the second monitoring module 43 can be configured to monitor whether the traffic notification message of the terminal is received.
  • the traffic notification message notifies the terminal that the traffic volume is less than the traffic threshold.
  • the second handover indication module 44 may be configured to send a network handover indication to the terminal or send a state transition indication to the terminal when receiving the traffic notification message of the terminal.
  • the second monitoring module 43 is configured to monitor whether a service request of the terminal carries a network handover request, where the network handover request is used to request to switch to the macro network.
  • the second handover indication module 44 may be configured to send a network handover indication to the terminal or send a state transition indication to the terminal when the service request of the terminal carries a network handover request.
  • the network side communication device in this embodiment may be applied to the method in the embodiment shown in FIG. 2, and the network side communication device may refer to the network side communication device in the macro network in the corresponding embodiment of FIG. 2, and details are not described herein again. .
  • the network side communication device instructs the terminal to switch to the macro network, so that the capacity station does not need to maintain a small amount of data traffic.
  • the terminal saves the wireless resources of the capacity station and reduces unnecessary power waste.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present invention. As shown in FIG. 7A, the embodiment includes: a first service requesting module 71 and a first switching indication receiving module 72.
  • a first service requesting module 71 configured to send, in a macro network, a service request to a network side communication device in the macro network;
  • the macro network has a micro network in a coverage area, and the micro network includes a pilot channel All common physical channels or some common physical channels are in a closed state.
  • the service request may include a network handover request, and the network handover request is used to request to switch to the micro network.
  • the network side communication device in the macro network receives the service request including the network handover request, it determines that the terminal has the micro network service requirement.
  • the first handover indication receiving module 72 is configured to: after the first service request module 71 sends a service request to the network side communication device in the macro network, when the network side communication device detects that the terminal has a micro network service requirement, Receiving, by the network side communication device, a network handover indication that includes the micro network configuration information, where the network handover indication is used to instruct the terminal to switch from the macro network to the micro network.
  • the terminal may further include: a first traffic notification module 73.
  • the first traffic notification module 73 is configured to send a traffic notification message to the network side communication device when the data traffic reaches the traffic threshold when the macro network is camped on.
  • the network-side communication device After receiving the traffic notification message, the network-side communication device determines that the terminal has a micro-network service requirement, and sends a network handover indication including the macro network configuration information by using the second handover indication module.
  • the terminal in this embodiment can be applied to the method embodiment shown in FIG. 1 and FIG. 3A.
  • the terminal can refer to the terminal in the corresponding embodiment in FIG. 1 and FIG. 3A, and is not mentioned here.
  • the terminal accesses from the macro network, and initiates a service in the macro network.
  • the network side communication device in the macro network notifies the terminal to cut into the micro network from the macro network, and the micro network provides the service for the terminal. Since all common physical channels except the pilot channel in the micro network are closed, the overhead generated by the micro network continuously transmitting broadcast signaling is avoided, the power consumption of the capacity station is reduced, and the transmission power of the capacity station is reduced.
  • FIG. 8 is a schematic structural diagram of a first handover indication receiving module in FIG. 7A.
  • the first change indication receiving module 72 may include: a state transition indication receiving unit 721, a measurement indication receiving unit 722 and a measurement report transmitting unit 723, and a first switching indication receiving unit 724.
  • the state transition indication receiving unit 721 is configured to: when the terminal has a micro network service requirement, if the terminal is in a state of not occupying a dedicated channel, receiving a state transition indication sent by the network side communication device.
  • the state transition indication is used to indicate that the terminal migrates to a state occupying a dedicated channel.
  • the measurement indication receiving unit 722 is configured to: when the terminal is in the state of occupying the dedicated channel, receive the measurement indication sent by the network side communication device, where the measurement indication is used to instruct the terminal to measure the signal quality of the capacity station cell.
  • the measurement report sending unit 723 is configured to: after the measurement receiving unit 722 receives the measurement indication, send a measurement report to the network side communication device when the signal quality of the micro network reaches a quality threshold; The signal quality of the micro network is notified to reach a quality threshold.
  • the first handover indication receiving unit 724 is configured to receive, after the measurement report sending unit 723 sends the measurement report to the network side communication device, that the signal quality of the micro network reaches the quality threshold, and receive the A network switching indication of the micro network configuration information.
  • the terminal provided in this embodiment may be applied to the method embodiment shown in FIG. 3A, and the terminal may refer to the terminal described in the corresponding embodiment in FIG. 3A, and details are not described herein again.
  • the network switching instruction sent by the network side communication device in the macro network is received, thereby switching from the macro network to the micro network.
  • Data services are performed on the micro network.
  • FIG. 9A is a schematic structural diagram of still another terminal according to an embodiment of the present invention. As shown in FIG. 9A, the embodiment provides: a second service requesting module 74 and a second switching indication receiving module 75.
  • the second service requesting module 74 is configured to send, in the micro network, a service request to the network side communication device in the macro network, where the micro network is within the coverage of the macro network, and all public physics except the pilot channel in the micro network The channel or part of the common physical channel is off.
  • the service request may include a network switch request, and the network switch request is used to request to switch to the macro network.
  • the second handover indication receiving module 75 is configured to: after the second service request module 74 sends a service request to the network side, the network side communication device receives the micro network service requirement when the terminal in the micro network does not receive the micro network service requirement, a network switching indication sent by the network side communication device, or receiving a state transition indication sent by the network side communication device; the network switching indication is used to indicate that the terminal switches to the macro network camping, and the state transition indication is used to indicate The terminal migrates from a state occupying a dedicated channel to a state not occupying a dedicated channel.
  • the terminal may further include: a second traffic notification module 76 on the basis of FIG. 9A.
  • the second traffic notification module 76 is configured to: when the terminal resides in the micro network, when the data traffic is less than the traffic threshold, the traffic notification message is sent to the network side communication device.
  • the signaling device After receiving the traffic notification message, the signaling device sends a network handover indication including the macro network configuration information by using the second handover indication module.
  • the terminal provided in this embodiment may be applied to the method embodiment in the foregoing embodiment of the present invention.
  • the terminal may be referred to the terminal described in the corresponding embodiment in FIG. 2 and FIG. 3A, and details are not described herein again.
  • the terminal in order to save the radio resources of the micro network, when the terminal in the micro network does not have the micro network service requirement, the terminal receives the network handover indication or the state transition indication sent by the network side communication device, and switches to the macro base station network macro network. Therefore, the micro network does not need to maintain a terminal without micro network service requirements.
  • the "module,” and “unit” may be a logical entity or a physical entity, and may be implemented by a physical device, such as a processor, a chip, or the like.
  • the embodiment of the present invention may further provide a communication system, where the communication system may include the network side communication device as described in any of FIG. 4 and FIG. 5, and the terminal described in any of FIG. 7A, FIG. 7B, and FIG.
  • the system may include the network side communication device as described in FIG. 6 and the terminal described in FIG. 9A or 9B.
  • FIG. 10 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the system includes: a macro base station 100, a capacity station 101, a network side communication device 102, and a terminal 103.
  • the micro network is within the coverage of the macro network, and all public physical channels or partial common physical channels except the pilot channel in the micro network are in a closed state.
  • the micro network is the network covered by the capacity station 101, and the macro network is the network covered by the macro base station.
  • the network side communication device 102 is a network side device in the macro network that manages and controls the macro base station 100, and the network side communication device 102 can also be integrated with the macro base station 100 in one hardware device.
  • the terminal 103 is configured to send a service request to the network side communication device 102 in the macro network in the macro network.
  • the network side communication device 102 is configured to monitor whether the terminal 103 in the macro network has a micro network service requirement, and when the terminal 103 has a micro network service requirement, send the network including the micro network configuration information to the terminal 103. And a handover indication, where the network handover indication is used to instruct the terminal 103 to switch from the macro network to the micro network.
  • the terminal 103 is configured to switch from the macro network to the micro network according to a network handover indication that includes the micro network configuration information.
  • the terminal 103 may be configured to send a service request to the network side communication device 102 on the micro network;
  • the network side communication device 102 is configured to monitor whether the terminal 103 in the micro network has a micro network service requirement. When the terminal 103 does not have a micro network service requirement, the terminal 103 sends a network switching indication to the terminal 103 or to the terminal 103. And sending a state transition indication, where the network handover indication is used to indicate that the terminal switches to the macro network, where the state transition is used to indicate that the terminal migrates to a state that does not occupy a dedicated channel.
  • the terminal 103 is configured to switch from the micro network to the macro network according to a network handover indication that includes the macro network configuration information.
  • the present invention provides another communication method, including:
  • Step 111 The network side device sets at least one carrier of the multiple carriers to a channel cropping mode, and sets at least one of the multiple carriers to a non-channel cropping mode.
  • Step 112 The network side device performs communication on the carrier set to the channel cropping mode and on the carrier set to the non-channel cropping mode.
  • the method may further comprise:
  • the network side device receives a handover indication, and the handover indication instructs the terminal to switch to the carrier set to the channel cropping mode.
  • the network side device opens the closed part or all common physical channels for switching.
  • the network side device may set all common physical channels or partial common physical channels of the carrier to a closed state.
  • a multi-carrier network for example, in a multi-carrier network such as UMTS, LTE, or LTE-A, at least one of the multi-carriers is in a non-channel clipping mode, and non-trust
  • the channel clipping mode is that all channels are in a complete state, no channel is in the off state, and all common channels are in an open state.
  • At least one of the multiple carriers is in a channel clipping mode, that is, all common channels or partial common channels except the pilot channel are in a closed state.
  • the channel clipping mode of the carrier can refer to the description of the channel clipping mode in the above embodiment of the present invention.
  • all carriers in the multi-carrier network can maintain complete common channel transmission in an initial state, that is, all carriers are in a non-channel clipping mode.
  • at least one carrier may be set to a channel cropping mode according to system load, or number of active state users, or number of idle state users. For example, when the system load is lower than the preset threshold, or the number of active users is lower than the preset number, or the number of idle users is more than the preset number, some or all of the common channels may be closed.
  • all or part of the common channel on the carrier can be shut down based on system load, number of FACH state users, or number of PCH state users.
  • the part or all of the closed common channels may also be according to system load, or number of active state users, or number of idle state users. Open, you can open all closed common channels, or open a partially closed common channel. For example, when the system load increases, the number of users in the active state increases, or the number of users in the idle state decreases, the part or all of the closed common channels can be turned on.
  • the terminal when the terminal needs to switch to the carrier in the channel clipping mode, for example, when the base station receives the handover indication, and requires the terminal to switch to the carrier in the channel clipping mode, part or all of the terminal may be turned on.
  • the closed common channel ie the base station can transmit a complete common channel, or part of the common channel, on the carrier.
  • the base station may The carrier in the channel clipping mode transmits a complete common channel, or at least transmits a primary-common physical control channel (P-CPCCH) and a SCH.
  • P-CPCCH primary-common physical control channel
  • the carrier may be used after the terminal completes the handover. And then resetting to the channel cropping mode, for example, the partial or all common channels that are opened at the time of switching may be turned off, or the carrier may be set according to information according to system load, or number of active state users, or number of idle state users. Channel cropping mode. Alternatively, a timer may be set, which may be triggered when the common channel that was originally off is turned on, and when the timer expires, the open common channel is re-closed.
  • the present invention further provides a base station, where the base station may include:
  • the processing unit 120 is configured to set at least one carrier of the multiple carriers to a channel clipping mode, and set at least one carrier of the multiple carriers to a non-channel cropping mode;
  • the communication unit 140 is configured to perform communication on the carrier set to the channel cropping mode and on the carrier set to the non-channel cropping mode.
  • the base station may further include a receiving unit 160, configured to receive a handover indication, where the handover indication indicates that the terminal switches to the carrier set to the channel clipping mode.
  • the switching unit 180 is configured to open part or all of the common physical channels that are closed.
  • the processing unit 120 may be further configured to: after the handover is completed, or after the timer expires, the network side device may set all common physical channels or partial common physical channels of the carrier to a closed state.
  • the base station provided by the embodiment of the present invention can implement the communication method provided in FIG. 11 above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种通信方法和设备及系统。其中一种方法包括:监测宏网络中的终端是否有微网络业务需求;微网络在宏网络覆盖范围内,所述微网络内除导频信道之外的所有公共物理信道或部分公共物理信道处于关闭状态;若所述终端有微网络业务需求,向所述终端发送包括所述微网络配置信息的网络切换指示,所述网络切换指示用于指示所述终端从所述宏网络切换到所述微网络本发明实施例降低了容量站的功耗,减少了不必要的功率浪费。

Description

通信方法和 i殳备及系统
本申请要求于 2011年 07月 01 日提交中国专利局、 申请号为 201110184339.8、 发明名称为"通信方法和设备及系统"的中国专利申请, 以 及于 2011年 11月 04日提交中国专利局、 申请号为 201110347747.0、发明名称 为"通信方法和设备及系统"的中国专利申请的优先权,其全部内容通过引用 结合在本申请中。 技术领域
本发明实施例涉及通信技术, 尤其涉及一种通信方法和设备及系统。 背景技术
基站包括发射功率较大的宏基站 (Macro Base Station, 筒称 Macro BS 或筒称 Macro基站)和发射功率较小的容量站。 在室内安装容量站, 是一种 扩展移动通信室内无线覆盖的解决方案, 主要作用是提高室内覆盖、 向用 户提供更高的业务速率并降低使用高速率服务所需要的费用, 用户可以利 用各种移动终端设备通过容量站接入核心网。
在现有的无线通信系统中, 终端通过基站广播的系统消息获取所需要 的参数, 例如小区选择 /重选以及信道配置等。 但在系统消息的广播需要占 用大量无线资源,例: ¾PUMTS( Universal Mobile Telecommunications System, 筒称通用移动通信系统) 中, 系统消息会周期性广播, 并且为了保证覆盖, 会一直以最大功率发射。 现有技术提供了一种获取系统消息的方法: 在基 站发送的系统消息块中包含的系统消息变化标签指示系统消息发生变化 时, 终端获取更新后的系统消息。
然而, 在获取系统消息的方法中, 当容量站的系统消息频繁发生改变 时, 上述方法仍需要大量的信令开销以频繁地发送 MIB ( Master Information Block )及更新的系统消息, 从而增大了容量站的功耗。 发明内容
本发明提供一种通信方法和设备及系统, 降低了容量站的功耗, 减少 了能源浪费。
本发明一方面提供一种通信方法, 包括: 监测宏网络中的终端是否有 微网络业务需求; 微网络在宏网络覆盖范围内, 所述微网络内除导频信道 之外的所有公共物理信道或部分公共物理信道处于关闭状态; 若所述终端 有微网络业务需求, 向所述终端发送包括所述微网络配置信息的网络切换 指示, 所述网络切换指示用于指示所述终端从所述宏网络切换到所述微网 络。
本发明一方面还提供一种网络侧通信设备, 包括: 第一监测模块, 用 于监测宏网络中的终端是否有微网络业务需求; 所述微网络在所述宏网络 覆盖范围内, 所述微网络内除导频信道之外的所有公共物理信道或部分公 共物理信道处于关闭状态; 第一切换指示模块, 用于若所述终端有所述微 网络业务需求, 向所述终端发送包括所述微网络配置信息的网络切换指示, 所述网络切换指示用于指示所述终端从所述宏网络切换到所述微网络。
本发明一方面还提供一种终端, 包括: 第一业务请求模块, 用于在宏 网络中向所述宏网络中的网络侧通信设备发送业务请求; 所述宏网络覆盖 范围内有微网络, 所述微网络内除导频信道之外的所有公共物理信道或部 分公共物理信道处于关闭状态; 第一切换指示接收模块, 用于所述网络侧 通信设备监测到所述终端有微网络业务需求时, 接收所述网络侧通信设备 发送的包括所述微网络配置信息的网络切换指示, 所述网络切换指示用于 指示所述终端从所述宏网络切换到所述微网络。
本发明一方面还提供一种通信系统, 包括上述所述网络侧通信设备和 终端。 本发明另一方面提供一种通信方法, 包括: 监测微网络中的终端是否 有微网络业务需求; 所述微网络在宏网络覆盖范围内, 所述微网络内除导 频信道之外的所有公共物理信道或部分公共物理信道处于关闭状态; 若所 述终端没有微网络业务需求, 向所述终端发送网络切换指示或向所述终端 发送状态迁移指示, 所述网络切换指示用于指示所述终端切换到所述宏网 络, 所述状态迁移指用于指示所述终端迁移到不占用专用信道的状态。
本发明另一方面还提供一种网络侧通信设备, 包括: 第二监测模块, 用于监测微网络中的终端是否有微网络业务需求; 所述微网络在宏网络覆 盖范围, 所述微网络内除导频信道之外的所有公共物理信道或部分公共物 理信道处于关闭状态; 第二切换指示模块, 用于若所述终端没有微网络业 务需求, 向所述终端发送网络切换指示或向所述终端发送状态迁移指示, 所述网络切换指示用于指示所述终端切换到所述宏网络, 所述状态迁移指 用于指示所述终端迁移到不占用专用信道的状态。
本发明另一方面还提供一种终端, 包括: 第二业务请求模块, 用于在 微网络向宏网络中的网络侧通信设备发送业务请求; 所述微网络在宏网络 覆盖范围内, 所述微网络内除导频信道之外的所有公共物理信道或部分公 共物理信道处于关闭状态; 第二切换指示接收模块, 用于所述网络侧通信 设备监测到所述微网络中的所述终端没有微网络业务需求时, 接收所述网 络侧通信设备发送的网络切换指示, 或者接收所述网络侧通信设备发送的 状态迁移指示; 所述网络切换指示用于指示所述终端切换到所述宏网络驻 留, 所述状态迁移指示用于指示所述终端从占用专用信道的状态迁移到不 占用专用信道的状态。
本发明另一方面提供一种通信系统, 包括: 包括本发明另一方面提供 的网络侧通信设备和终端。
本发明另一方面还提供了一种通信方法, 包括: 网络侧设备将多载波 中的至少一个载波设置为信道裁剪模式, 将所述多载波中的至少一个载波 设置为非信道裁剪模式; 所述网络侧设备在所述设置为信道裁剪模式的载 波和在所述设置为非信道裁剪模式的载波上进行通信。
本发明另一方面还提供了一种基站, 包括处理单元, 用于将多载波中 的至少一个载波设置为信道裁剪模式, 将所述多载波中的至少一个载波设 置为非信道裁剪模式; 通信单元, 用于在所述设置为信道裁剪模式的载波 和在所述设置为非信道裁剪模式的载波上进行通信。
本发明实施例的通信方法和设备及系统, 为减少微网络的广播信令的 传输以减少容量站的功耗, 将微网络中除导频信道之外的所有公共物理信 道或部分公共信道关闭, 从而容量站无法支持终端的接入。 终端在初始接 入时从宏网络接入, 当终端有微网络业务需求时, 使终端进入到微网络, 由微网络为终端提供业务。 由于关闭了微网络中除导频信道之外的所有公 共物理信道或部分公共物理信道, 容量站只在终端有业务需求时为终端提 供高速率的业务, 避免了容量站在终端没有业务需求时也要维护终端的现 象, 避免了容量站不断发射广播信令所产生的开销, 降低了容量站的功耗, 降低了容量站的发射功率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一筒单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种通信方法流程图;
图 2为本发明实施例提供的另一种通信方法流程图;
图 3A为本发明实施例提供的再一种通信方法流程图;
图 3B为本发明实施例提供的 Marco网络覆盖范围内有 Pico网络的场景 图; 图 4为本发明实施例提供的一种网络侧通信设备结构示意图;
图 5为图 4中第一切换指示模块的结构示意图;
图 6为本发明实施例提供的另一种网络侧通信设备结构示意图; 图 7A为本发明实施例提供的一种终端结构示意图;
图 7B为本发明实施例提供的另一种终端结构示意图;
图 8为图 7A中第一切换指示接收模块结构示意图;
图 9A为本发明实施例提供的又一种终端结构示意图;
图 9B为本发明实施例提供的再一种终端结构示意图;
图 10为本发明实施例提供的一种通信系统结构示意图;
图 11为本发明实施例提供的另一种通信方法的流程示意图;
图 12为本发明实施例提供的另一种基站的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
在本发明实施例中, 一般来说, 宏基站的发射功率大于容量站的发射 功率, 宏基站的覆盖范围也可以大于容量站的覆盖范围。 容量站也可称为 小基站, 也可称为低功率节点 ( Low Power Node, LPN ) 。 容量站可以有 多种类型,例如, 家庭基站(Home NodeB , 筒称 HNB )、微基站 (Micro Base Station, 筒称 Micro BS)、 微微基站( Pico Base Station, 筒称 Pico BS或筒称 Pico基站)、 毫微微基站(FemtoCdl, 或 Femto Base Station ) 、 家庭演进基 站( Home evolved Node B , HeNB )等。 在不同制式的网络系统中, 都可以 包括宏基站和容量站。 在本发明实施例中, 可以将将宏基站覆盖的网络称 为宏网络, 将容量站覆盖的网络称为微网络。 容量站可以位于宏网络的覆 盖范围内, 容量站可以处于宏基站的控制下。 微网络覆盖的范围内可以由 宏网络进行同覆盖。
在现有的无线通信系统中, 系统消息的广播需要占用大量无线帧的资 源, 例如 UMTS系统中, 系统消息会周期性广播, 并且为了保证覆盖, 系统 消息会一直以最大功率发射。而在频分双工( Frequency Division Duplexing , 筒称 FDD ) UMTS网络下, CELL_DCH状态下的终端分配了专用信道, 能够 进行高速率的数据传送, 并且 CELL_DCH状态的终端是不需要读取系统消 息。 而容量站的特点是用户量少且相对固定、 网络情况变化慢, 解决覆盖 不足的同时, 能够提供高速率的速率业务。 因此, 当宏网络覆盖范围内有 受宏基站控制的微网络时, 由于宏网络宏基站提供了足够的有效覆盖, 从 资源利用效率、 用户服务质量(QoS )和绿色节能的需求出发, 可以基于网 络特性, 进行灵活设置, 使得当终端没有业务的时候就可以驻留在宏基站 覆盖的宏网络, 而容量站仅需维护业务量大的 CELL_DCH状态的终端进行 高速率的数据传输, 也仅需要维护 CELL_DCH的无线资源。
本发明实施例中所述终端可为单模终端也可为多模终端。 本发明实施 例中网络侧通信设备可以是宏网络中, 对宏基站进行控制的网络侧通信设 备, 网络侧通信设备也可以和宏基站集成在一个硬件设备中。
图 1为本发明实施例提供的一种通信方法流程图。 如图 1所示, 本实施 例包括:
步骤 11: 宏网络中的网络侧通信设备监测宏网络中的终端是否有微网 络业务需求; 微网络在宏网络覆盖范围内, 微网络内除导频信道之外的所 有公共物理信道或部分公共物理信道处于关闭状态。
宏网络中的终端是指该终端接入并驻留在该宏网络中。 本发明实施例 容量站可以关闭微网络中除导频信道之外的所有公共物理信道或部分公共 物理信道, 可减少容量站上广播信令的传输开销, 降低容量站的发射功率, 从而可以降低邻区干扰, 而且可以获得上、 下行的容量增益。 在本发明实 施例中, 关闭部分信道或全部信道可称之为信道裁剪, 当网络中的部分信 道或全部信道处于关闭状态, 可称该网络处于信道裁剪模式。 例如, 微网 络关闭除导频信道之外的公共物理信道后, 可以称微网络处于信道裁剪模 式。 微网络处于信道裁剪模式后, 不支持终端的初始接入、 和空闲态终端 的驻留, 也不支持不占用专用信道的终端以容量站为目标的小区重选。 由 于, 微网络无法支持终端的初始接入, 即使微网络的信号质量好, 新开机 的终端也无法驻留。 从而, 微网络处于信道裁剪模式后, 在宏基站小区和 微网络同覆盖的情况下, 终端只能驻留在宏网络, 并在宏网络发起数据业 务, 例如寻呼业务和传输业务。 微网络内导频信道处于打开状态, 为终端 提供微网络信号质量的测量服务。
例如, 第三代(3 generation, 3G )通信网络, 如 UMTS网络中, 终端 的状态可以包括 CELL_DCH状态和非 CELL_DCH状态,其中,非 CELL_DCH 状态包括 idle、 URA_PCH、 CELL_PCH和 CELL_FACH等状态。 在本发明实 施例中, CELL_DCH状态, 非 CELL_DCH状态, 以及 idle, URA_PCH, CELL_PCH和 CELL_FACH等状态可以参考 3GPP规范中的描述。 3G网络中, 微网络处于信道裁剪模式后, 无法维护处于非 CELL_DCH状态的终端。 而 CELL_DCH状态的终端分配有专用物理信道和专用传输信道, 终端在专用 信道上进行数据传输, 不需要随机接入, 也不需要读取系统消息, 因此, 微网络处于信道裁剪模式后不会对 CELL_DCH状态的终端的数据业务产生 影响。 因而, 微网络可维护处于 CELL_DCH状态的终端。
例如, 第二代(2 generation, 2G ) 网络或第四代( 4 generation, 4G ) 网络中终端的状态包括连接态和非连接态。 2G网络或 4G网络中, 微网络针 对非连接优的终端关闭部分公共物理信道进入信道裁剪模式后, 不支持终 端随机接入, 也不发送系统消息, 无法维护处于非连接状态的终端。 微网 络可维护处于连接状态的终端。 本发明实施例中, 2G、 3G、 4G或更高级的 网络制式的网络的划分, 对于本领域技术人员而言, 可以参照通信业界的 共识和经险进行确认。
步骤 12: 若所述终端有微网络业务需求, 所述网络侧通信设备向终端 发送包括微网络配置信息的网络切换指示, 网络切换指示用于指示终端从 宏网络切换到微网络。
终端开机后驻留在宏网络, 在宏网络向宏基站发送业务请求。 在终端 没有业务需求时容量站不维护终端, 在网络侧通信设备监测宏网络中的终 端有微网络业务需求时, 触发终端切入微网络, 由容量站为终端提供业务。 例如, 在 2G网络中, 可由基站控制器(Base Station Controller, 筒称 BSC ) 监测到终端是否有微网络业务需求。在终端有微网络业务需求时, BSC向终 端发送包括微网络配置信息的网络切换指示。 3G网络中可由无线网络控制 器( Radio Network Controller, 筒称 RNC )监测到终端是否有微网络业务需 求, 在长期演进(Long Term Evolution, LTE )网络系统, 或 LTE高级(LTE Advanced, LTE-A ) 网络系统中, 可以由演进基站( evolved NodeB , eNB ) 对终端进行检测。 在终端有微网络业务需求时, 宏网络中的网络侧通信设 备向终端发送包括微网络配置信息的网络切换指示。 终端切换到微网络后, 可通过容量站提供的专用信道进行高速度的数据传输。
在本发明实施例中, 可有多种方法监测宏网络中的终端是否有微网络 业务需求, 以下举例说明:
一种方式是, 宏网络中的网络侧通信设备监测所述终端的数据业务量 是否达到业务量门限。 在所述终端的数据业务量达到业务量门限时, 向终 端发送包括所述微网络配置信息的网络切换指示。 其中, 业务量门限可以 根据实际通信状况和通信需求来确定, 也可以根据本领域技术人员的经验 来确定。 例如, 在 3G网络, RNC监测终端的数据业务量是否达到业务量门 限。 在终端的业务量达到业务量门限值时, RNC确定终端有微网络业务需 求。 其中, 业务量门限可以是 3G网络中终端从非 CELL_DCH状态迁移到 CELL_DCH状态时的业务量门限。
另一种实施方式, 宏网络中的网络侧通信设备监测是否接收到所述终 端的业务量通知消息。 业务量通知消息向所述宏网络中的网络侧通信设备 通知所述终端的数据业务量达到业务量门限。 在接收到所述终端的业务量 通知消息时, 所述网络侧通信设备向所述终端发送包括所述微网络配置信 息的网络切换指示。 其中, 业务量门限可以根据实际通信状况和通信需求 来确定, 也可以根据本领域技术人员的经验来确定。 例如, 在 3G网络, 终 端向 RNC发送业务请求时携带网络切换请求, 以请求切入微网络。 RNC监 测到终端的业务请求中携带有网络切换请求时, 确定终端有微网络业务需 求。
又一种实施方式, 宏网络中的网络侧通信设备监测所述终端发送的业 务请求中是否有网络切换请求, 网络切换请求用于请求切入所述微网络。 在所述终端的业务请求中包括网络切换请求时, 网络侧通信设备向所述终 端发送包括所述微网络配置信息的网络切换指示。 终端进入微网络后, 在 专用信道上进行高速率的数据传输。 例如, 在 3G网络, 终端监测自身的业 务量, 在数据业务量达到业务量门限时, 终端向 RNC发送业务量通知消息。
RNC接收到的业务量通知消息后, 确定终端有 £网络业务需求。
另外, 宏网络中的网络侧通信设备也可允许终端在微网络的信号质量 好的情况下从宏网络切换到微网络。 驻留在宏网络内的终端通过微网络的 导频信道测量微网络的信号质量, 在终端测量到微网络的信号质量达到质 量门限值, 向网络侧通信设备上报测量报告。 由于终端位于宏网络和微网 络的同覆盖区。 微网络的信号质量最好, 会达到预设的质量门限值。 网络 侧通信设备确定微网络的信号质量达到质量门限值时, 向终端发送包括微 网络的配置信息的网络切换指示, 指示终端切换到微网络。 终端进入微网 络后, 进行高速率的数据传输。 例如, 在 UMTS网络中, 驻留在宏网络内的 终端转入 CELL_DCH状态后, 终端通过微网络的导频信道测量微网络的信 号质量, 其中, 质量门限值可以根据实际通信状况和通信需求来确定, 也 可根据本领域技术人员的经验来确定。 在终端测量到微网络的信号质量达 到质量门限值, 向 RNC上报测量报告。 由于终端位于宏网络和微网络的同 覆盖区。 微网络的信号质量最好, 会达到预设的质量门限值。 驻留在宏网 络内的终端转入 CELL_DCH状态后, RNC确定微网络的信号质量达到质量 门限值时, 向终端发送包括微网络的配置信息的网络切换指示, 指示终端 切换到微网络的 CELL_DCH状态。 处于 CELL_DCH状态的终端进入微网络 后, 在专用信道上进行高速率的数据传输。
本发明实施例中, 宏网络覆盖范围内有微网络时, 为减少微网络的广 播信令的传输以减少容量站的功耗, 将微网络中除导频信道之外的所有公 共物理信道或部分公共信道关闭, 从而容量站无法支持终端的接入。 终端 在初始接入时从宏网络接入, 当终端有微网络业务需求时, 使终端进入到 微网络, 由微网络为终端提供业务。 由于关闭了微网络中除导频信道之外 的所有公共物理信道或部分公共物理信道, 容量站只在终端有业务需求时 为终端提供高速率的业务, 避免了容量站在终端没有业务需求时也要维护 终端的现象, 避免了容量站不断发射广播信令所产生的开销, 降低了容量 站的功耗, 降低了容量站的发射功率。
图 2为本发明实施例提供的另一种通信方法流程图。 如图 2所示, 本实 施例包括:
步骤 21: 宏网络中的网络侧通信设备监测微网络中的终端是否有微网 络业务需求, 所述微网络在在所述宏网络覆盖范围内, 所述微网络内除导 频信道之外的所有公共物理信道或部分公共物理信道处于关闭状态。
步骤 22: 若所述终端没有微网络业务需求, 所述网络侧通信设备向所 述终端发送网络切换指示或向所述终端发送状态迁移指示, 所述网络切换 指示用于指示所述终端切换到所述宏网络, 状态迁移指用于指示所述终端 迁移到不占用专用信道的状态。
在图 1所示的实施例的方法中, 为节省容量站的无线资源, 可以在步骤 12之后进一步包括图 2所示实施例的步骤 21和步骤 22。
微网络中的终端是指终端接入并驻留在微网络中, 终端在可以在微网 络通过容量站提供的无线资源进行高速率的数据传输。 为不占用容量站提 供的无线资源, 宏网络中的网络侧通信设备监测微网络中终端没有微网络 业务需求时, 指示终端切换到宏网络。 终端进入微网络后, 在专用信道上 进行高速率的数据传输。 由于终端需占用容量站的专用无线资源, 而容量 站维护的无线资源是有限的, 因此监测微网络中的终端是否有微网络业务 需求, 以在终端没有微网络业务需求时使终端切换到宏网络。 或者, 所述 宏网络中的网络侧通信设备还可向终端发送状态迁移指示, 指示终端从占 用专用信道的状态迁移到不占用信道的状态。 处于不占用专用信道的终端 驻留在微网络时, 当需要容量站的维护时, 由于容量站处于信道裁剪模式, 终端会认为微网络质量较差触发小区重选从而进入宏网络驻留。
宏网络中网络侧通信设备可有多种方法确定微网络中的终端是否有微 网络业务需求, 以下举例说明:
一种方式是, 宏网络中网络侧通信设备监测终端的数据业务量是否小 于业务量门限。 在终端的数据业务量小于业务量门限时, 网络侧通信设备 确定终端没有微网络业务需求。 例如, 在 3G网络, RNC监测终端的数据业 务量是否小于业务量门限。 在终端的数据业务量小于业务量门限时, RNC 确定终端没有微网络业务需求。 其中, 业务量门限可以是 3G网络中终端从 CELL_DCH状态迁移到非 CELL_DCH状态时的业务量门限。
另一种方式是, 终端向宏网络中网络侧通信设备发送业务请求时携带 网络切换请求, 以请求切入宏网络。 所述网络侧通信设备监测到终端的业 务请求中携带有网络切换请求时, 确定终端没有微网络业务需求。 例如, 在 3G网络, 终端向 RNC发送业务请求时携带网络切换请求, 以请求切入宏 网络。 RNC监测到终端的业务请求中携带有网络切换请求时, 确定终端没 有微网络业务需求。
又一种实施方式, 终端监测自身的业务量, 在业务量小于业务量门限 时, 向宏网络中网络侧通信设备发送业务量通知消息。 所述网络侧通信设 备接收到的业务量通知消息后, 确定终端没有微网络业务需求。 例如, 在 3G网络, 终端监测自身的业务量, 在业务量小于业务量门限时, 向 RNC发 送业务量通知消息。 RNC接收到的业务量通知消息后, 确定终端没有微网 络业务需求。
本发明实施例宏网络覆盖范围内有受宏基站控制的微网络时, 驻留在 微网络的终端没有微网络业务需求时, 网络侧通信设备指示终端切换到宏 网络, 从而容量站无需维护数据业务量较少的终端, 节省了容量站的无线 资源, 减少了不必要的功率浪费。
图 3A为本发明实施例提供的再一种通信方法流程图。 图 3B为本发明实 施例提供的 Marco网络覆盖范围内有 Pico网络的场景图, Marco网络为 Macro 基站覆盖的网络, Pico网络为 Pico基站覆盖的网络, Pico基站可以由 Marco 基站控制。 如图 3B所示, 在 Pico网络覆盖的范围内, Marco网络和 Pico网络 重叠覆盖, 但 Marco基站的覆盖范围广于 Pico基站的覆盖范围, 宏基站覆盖 范围内可以有众多 Pico基站。
本实施例主要说明在 UMTS网中, Marco网络覆盖范围内有 Pico网络的 场景下, RNC如何对 UMTS网的双模终端进行小区切换, 本实施例中 Pico网 络的同步信道(Synchronization Channel, 筒称 SCH ) 、 公共控制物理信道 ( Common Control Physical Channel, 筒称 CCPCH )、寻呼指示信道 ( Paging Indicator Channel,筒称 PICH )、捕获指示信道 ( Acquisition Indicator Channel, 筒称 AICH ) )和上行随机接入信道 ( Packet Random Access Channel, 筒称 PRACH )处于关闭状态,公共导频信道( Common Pilot Channel,筒称 CPICH ) 信道处于打开状态。 其中, CCPCH包括主公共控制物理信道 ( Primary Common Control Physical Channel, 筒称 P-CCPCH )和辅助公共控制物理信 道( Secondary Common Control Physical Channel, 筒称 S-CCPCH ); CPICH 包括: 主寻呼指示信道 ( Primary Paging Indicator Channel, 筒称 P-CPICH ) 和辅助寻呼指示信道 ( Secondary Paging Indicator Channel, 筒称 S-CPICH ) 。
以下先说明 Pico网络关闭上述 UMTS公共物理信道即进入信道剪裁模 式后, 对终端的影响。
首先, 对关闭的各 UMTS公共物理信道的主要作用进行如下说明: SCH 信道主要发送同步消息, 在终端初始接入时, 用于小区搜索和同步小区。 P-CCPCH承载上层广播信道(Broadcast Channel, 筒称 BCH ) , 主要是系 统消息。 S-CCPCH主要承载前向接入信道(Forward Access Channel, 筒称 FACH )和寻呼信道(Paging Channel, 筒称 PCH ) 。 PICH是寻呼指示信道, 传送寻呼指示( Paging Indicator, 筒称 PI ) 。 Idle、 URA_PCH、 CELL_PCH 的终端,在指定寻呼时机醒来监听 PI。 AICH用于携带网络的捕获指示符号, 该指示符号告知终端通过 PRACH发送的前缀已经被系统检测到, 可以进一 步发送 PRACH消息。 PRACH信道是上行随机接入物理信道, 非 CELL_DCH 状态的终端发起随机接入过程时, 需通过 PRACH信道发 preamble给 UTRAN, 然后去 AICH信道侦听网络的反馈信息。 而打开的信道 P-CPICH是 导频信道, 用于发送小区的主扰码, 是其它各物理信道的功率基准和相位 参考, FDD模式下, 重选或切换时基于该信道对目的小区通过 CPICH进行 信号强度和信号质量的测量。
UMTS网络中的终端状态, 分为 idle、 URA_PCH、 CELL_PCH、 CELL_FACH和 CELL_DCH等状态, 根据各状态终端对 UMTS网络资源的需 求不同, 本发明实施例中将终端的状态分为两大类, CELL_DCH状态和非 CELL_DCH状态, 非 CELL_DCH状态包括 idle、 URA_PCH、 CELL_PCH和 CELL_FACH状态, 即除了 CELL_DCH状态之外的其它各状态。 Pico网络关闭上述 UMTS公共物理信道后,对于非 CELL_DCH状态终端 的影响: SCH信道关闭, 对于新开机的终端, 无法和搜索到的 Pico网络进行 同步, 因此无法在 Pico网络驻留, 继续小区搜索, 检测到 Marco网络信号质 量良好, 因此终端从 Marco网络驻留进去。 PICH信道关闭, 非 CELL-DCH 的终端驻留在 UMTS中, 需要在各自的寻呼时刻周期性醒来侦听 PICH, 看 是否有本组(终端所在的寻呼组) 的寻呼; PICH信道关闭, 非 CELL_DCH 的终端在寻呼时刻去侦听 PICH时, 会找不到 PICH, 因此会认为 Pico网络出 现了问题, 将会触发小区重选; CCPCH信道关闭, P-CCPCH是对系统信息 的承载, 非 CELL_DCH的终端需要读取系统信息, 主要的读取方式有 2种: 一是当系统消息改变的时候, 二是当终端存储的系统消息过期之后, 会自 动重读系统消息; 关闭掉 CCPCH之后, 终端无法获得系统消息, 会认为小 区是故障小区 (barred cell ) , 将触发小区重选。 因此, 当 Pico网络关闭 SCH/CCPCH/PICH/AICH进入信道剪裁模式, 对于终端在 Pico网络的初始接 入、 小区驻留、 测量、 切换和业务的发起等行为会存在相应的影响。
对于 CELL_DCH的终端, 终端分配有专用物理信道、 专用传输信道和 专用逻辑信道。 专用逻辑信道可用专用控制信道 ( Dedicated Control Channel, 筒称 DCCH )和专用业务信道( Dedicated Traffic Channel, 筒称 DTCH ) , 终端在专用传输信道上进行数据传输, 不需要随机接入, 也不需 要侦听 AICH听取捕获指示(Acquisition Indicator Channel, 筒称 AI ) 。 终端 不需要读取系统消息, 驻留小区的配置信息发生变化时由 RNC通过在专用 信道依次下发各种配置或承载信令, 最后配置给终端, 若 UTRAN需要寻呼 CELL_DCH的终端, 在 DCCH、 专用信道( Dedicated Channel, 筒称 DCH ) 和专用物理数据信道(Dedicated Physical Control Channel, 筒称 DPDCH ) 上向终端发送 Paging Type2信息 ( Paging Type2信息用于寻呼 CELL_DCH的 终端), 而不需要侦听 PICH和 CCPCH。 因此 Pico小区进入信道剪裁模式后, 对于 CELL_DCH状态终端的业务收发并不会产生任何影响。 若 CELL_DCH 的终端在服务小区失去同步, 就会变为 CELL_FACH状态。 由上述分析可知 Pico网络进入信道剪裁模式后,无法维护非 CELL_DCH状态的终端, 因此终 端会重选到 Marco网络。
无论 Pico网络是否处于信道剪裁模式, CPICH信道都正常打开, 当有需 要对小区信号质量进行测量时,只需要有 P-CPICH信道支撑即可完成。对于 CELL_DCH的终端的移动性方面, 首先考虑 Pico网络之间的软 /硬切换。 进 行切换之前终端需要对切换的目标小区进行信号质量测量。 UTRAN在 DCCH上下发测量控制 ( Measurement Control ) 消息给 CELL_DCH的终端。 无论目标小区是否处于信道剪裁模式, CPICH信道都正常打开。 CELL_DCH 状态的终端要完成软 /硬切换, 只需要有 P-CPICH信道支撑完成对目标小区 的相关测量即可, 目标小区的网络配置信息由 RNC发送相关配置给需要切 换的 CELL_DCH的终端, 终端拿到目标小区的配置信息之后, 就可以直接 切换, 整个过程不需要目标小区其它物理信道的支撑。 因此, 无论切换的 源小区还是目标小区, 只要保留了 CPICH信道, 能对 CELL_DCH的终端提 供测量支持, 就不会影响终端的切换行为。
如图 3A所示, 本实施例包括:
步骤 1: 终端在 Pico网络开机。
步骤 2: 终端进行小区搜索。
步骤 3: 终端在 Marco网络接入并驻留。
在 Marco网络覆盖范围内有 Pico网络时, Macro网络和 Pico网络互相配置 为邻区, Pico基站关闭 SCH、 CCPCH、 PICH、 AICH、 PRACH信道, 处于 低功耗模式。 当该区域的终端醒来, 进行网络搜索的时候, 因为 Pico网络的 SCH、 CCPCH、 PICH、 AICH、 PRACH信道都处于关闭状态。 由于 Pico网 络的 SCH、 CCPCH、 PICH、 AICH、 PRACH信道都处于关闭状态。 因此 Pico 网络只维护 CELL_DCH状态的终端。 终端即使检测到 Pico网小区信号质量 好,也无法驻留进去,因此终端只能在同覆盖的正常运行的 Macro网络驻留, 并在 Macro网络发起业务。
步骤 4: 在终端的数据业务量达到业务量门限时, 终端向 RNC发送第一 业务量通知消息。
步骤 5: RNC判断终端是否处于 CELL_DCH状态。
RNC接收到终端的第一业务量通知消息时,确定终端有 Pico网络业务需 求, 并判断终端是否处于 CELL_DCH状态。
由于因此 Pico网络只维护 CELL_DCH状态的终端, 因此,终端有敖网络 业务需求且所述终端处于 CELL_DCH状态时, RNC才向所述终端发送包括 Pico网络配置信息的网络切换指示。
步骤 6: 若终端处于非 CELL_DCH状态, RNC向终端发送第二状态迁移 指示, 指示终端迁移到 Macro网的 CELL_DCH状态。
步骤 7: RNC确定终端处于 CELL_DCH状态时, 向终端发送第一测量指 示, 指示终端测量 Pico网络的信号质量。
步骤 8: 终端向 RNC发送第一测量报告, 向 RNC通知 Pico网络的信号质 量达到质量门限值。
由于 Pico网络的 P-CPICH信道正常发送, 所以不会影响终端对 Pico网络 的信号质量测量。
另外, 除步骤 7和步骤 8采用的方案外, RNC也可向终端周期性发送测 量 Pico网络信号质量的测量指示, 在终端测量到 Pico网络的信号质量达到质 量门限值时向 RNC发送测量报告, 由 RNC判决是否对终端驻留小区进行切 换。
步骤 9: RNC向终端发送包括 Pico网络配置信息的网络切换指示, 指示 终端从 Macro网络切换到 Pico网络的 CELL_DCH状态传输业务。
具体地, RNC将 Pico网络的配置信息 (U-RNTI、 RB信息、 无线接入? 载 ( Radio Access Bearer, 筒称 RAB )信息、 传输层信息和物理层信息)打包, 通过切换命令 ( Handover command ) 下发给终端。 终端根据切换命令内的 Pico区配置, 初始化信令链路、 无线承载(Radio Bearer, 筒称 RB )信息和 传输信道以及物理信道。 终端根据收到的信息元素"允许的最大上行传输功 率 (Maximum allowed UL TX power)" ,执行一个开放环路评估以确定上行链 路发射功率,从 Macro网络的 CELL_DCH状态切换到 Pico网的 CELL_DCH状 态。
步骤 10: 终端切换到 Pico网络, 在 Pico网络进行高速率的数据传输。 步骤 11: 在终端的数据业务量小于业务量门限时, 终端向 RNC发送第 二业务量通知消息, 以向 RNC通知终端的数据业务量小于业务量门限。
终端切换到 Pico网络驻留后, 可周期性测量自身的业务量,在业务量小 于第二业务量门限值时长, 终端向 RNC发送第二业务量通知消息。
步骤 12a: RNC向终端发送第一状态迁移指示, 指示终端从 CELL_DCH 状态迁移到非 CELL_DCH状态。
RNC接收到第二业务量通知消息后, 确定终端已没有 Pico网络业务需 求。 为节省 Pico网络的无线资源, RNC向终端发送第一状态迁移指示。
步骤 13a: 终端从 CELL_DCH状态迁移到非 CELL_DCH状态。
对于迁出 CELL_DCH状态的终端, Pico网络不再对其维护。 当终端在 Pico网络要维持其状态而需要 Pico网络的服务时, 由于 Pico网络处于信道裁 剪模式, 因此终端视 Pico网络质量出现问题,触发小区重选进入 Macro网络。 例如: 当终端周期性读取寻呼消息时, 由于 PICH关闭, 终端周期性读取寻 呼指示消息时找不到 PICH信道, 会认为 Pico网络质量变差, 触发小区重选。
另夕卜, 在步骤 11之后, RNC也可指示终端从 Pico网络切换到 Macro网络 驻留。 可以如下:
步骤 12b: RNC向终端发送包括 Macro网络配置信息的网络切换指示, 指示终端从 Pico网络切换到 Macro网络驻留。 具体地, RNC向终端发送切换到 Macro网络的切换命令, 指示终端从 Pico网络切换到 Macro网络驻留。
步骤 13b: 终端从 Pico网络切换到 Macro网络驻留。
处于 CELL_DCH状态的终端从 Pico网络切换到 Macro网络驻留后, 如果 春数据业务量达到业务量门限值, 重新通过步骤 4至步骤 9切换到 Pico网络。
本发明实施例在 Marco网络覆盖范围内有受宏基站控制的 Pico网络时 上, 为减少 Pico网络的广播信令的传输以减少 Pico的功耗, 将 Pico网络中除 导频信道之外的所有公共物理信道或部分公共信关闭,从而 Pico无法支持非 CELL_DCH状态的终端的接入, 由 Macro网络维护非 CELL_DCH状态的终 端, Pico网络仅可维护 CELL_DCH状态的终端。 终端在初始接入时从 Macro 网络接入,当数据业务量达到业务量门限值时, RNC使终端切入 CELL_DCH 状态并进入 Pico网络的 CELL_DCH状态传输业务,在 Pico网络进行高速率的 数据传输。 进一步, 驻留在 Pico网络的终端的数据业务量减少时, RNC指示 终端迁移到入非 CELL_DCH状态, 或指示终端切入 Macro网络, 从而 Pico网 络无需维护数据业务量较少的终端, 节省了 Pico的无线资源。 由于关闭了 Pico网络中除导频信道之外的所有公共物理信道, 避免了 Pico网络不断发射 广播信令所产生的开销, 降低了 PiC0网络的功耗, 降低了 Pico网络的发射功 率, 从而可以降低邻区干扰, 而且可以获得上、 下行的容量增益。 另外, 由于 Pico网络仅可维护 CELL_DCH状态的终端, 避免了维护非 CELL_DCH 状态的相关信令, 减少了不必要的功率浪费。
图 4为本发明实施例提供的一种网络侧通信设备结构示意图。 如图 4所 示, 本实施例包括: 第一监测模块 41和第一切换指示模块 42。
第一监测模块 41 , 用于监测宏网络中的终端是否有微网络业务需求; 微网络在宏网络覆盖范围内, 所述微网络内除导频信道之外的所有公共物 理信道或部分公共物理信道处于关闭状态。 第一切换指示模块 42, 用于若第一监测模块 41监测到终端有微网络业 务需求, 向所述终端发送包括所述微网络配置信息的网络切换指示, 所述 网络切换指示用于指示所述终端从所述宏网络切换到所述微网络。
一种实施方式, 第一监测模块 41 , 可以用于监测终端的数据业务量是 否达到业务量门限。 第一切换指示模块 42, 可以用于所述终端的数据业务 量达到业务量门限时, 向所述终端发送包括所述微网络配置信息的网络切 换指示。 例如, 第一监测模块, 可以用于监测所述终端的数据业务量是否 达到业务量门限; 所述第一切换指示模块, 可以用于所述终端的数据业务 量达到业务量门限且所述终端处于占用专用信道的状态时, 向所述终端发 送包括所述微网络配置信息的网络切换指示。
另一种实施方式, 第一监测模块 41 , 可以用于监测是否接收到所述终 端的业务量通知消息; 所述业务量通知消息通知所述终端的数据业务量达 到业务量门限。 第一切换指示模块 42, 可以用于接收到所述终端的业务量 通知消息时, 向所述终端发送包括所述微网络配置信息的网络切换指示。 例如, 第一监测模块 41 , 可以用于监测是否接收到所述终端的业务量通知 消息; 所述业务量通知消息通知所述终端的数据业务量达到业务量门限。 所述第一切换指示模块 42, 可以用于接收到所述终端的业务量通知消息且 所述终端处于占用专用信道的状态时, 向所述终端发送包括所述微网络配 置信息的网络切换指示。
又一种实施方式, 第一监测模块 41 , 可以用于监测所述终端的业务请 求中是否有网络切换请求, 所述网络切换请求用于请求切入所述微网络。 第一切换指示模块 42, 可以用于在所述终端的业务请求中包括网络切换请 求时, 向所述终端发送包括所述微网络配置信息的网络切换指示。 例如, 第一监测模块 41 , 可以用于监测所述终端的业务请求中是否有网络切换请 求, 所述网络切换请求用于请求切入所述微网络。 所述第一切换指示模块, 可以用于在所述终端的业务请求中包括网络切换请求且所述终端处于占用 专用信道的状态时, 向所述终端发送包括所述微网络配置信息的网络切换 指示。
网络侧通信设备可以应用于图 1和图 3A对应实施例中,所述网络侧通信 设备可以参见图 1和图 3A所述实施例中的宏网络中的网络侧通信设备,在此 不再赘述。
本发明实施例宏网络覆盖范围内有微网络时, 为减少微网络的广播信 令的传输以减少容量站的功耗, 将微网络中除导频信道之外的所有公共物 理信道或部分公共信道关闭, 从而容量站无法支持终端的接入。 终端在初 始接入时从宏网络接入, 当终端有微网络业务需求时, 使终端进入到微网 络, 由微网络为终端提供业务。 由于关闭了微网络中除导频信道之外的所 有公共物理信道或部分公共物理信道, 容量站只在终端有业务需求时为终 端提供高速率的业务, 避免了容量站在终端没有业务需求时也要维护终端 的现象, 避免了容量站不断发射广播信令所产生的开销, 降低了容量站的 功耗, 降低了容量站的发射功率。
图 5为图 4中第一切换指示模块的结构示意图。 如图 5所示, 第一切换指 示模块 42包括: 状态判决单元 421、 状态迁移指示单元 422、 测量指示单元 423和测量报告接收单元 424以及第一切换指示单元 425。
状态判决单元 421 , 第一监测模块 41监测到确定所述终端有微网络业务 需求时, 判断所述终端处于是否处于占用专用信道的状态。 用信道的状态, 向所述终端发送状态迁移指示。 所述状态迁移指示用于指 示所述终端迁移到占用专用信道的状态。
测量指示单元 423 , 用于确定所述终端处于占用专用信道的状态时, 向 所述终端发送测量指示, 所述测量指示用于指示所述终端测量所述微网络 的信号质量。 测量报告接收单元 424, 用于测量指示单元 423向终端发送测量指示后, 接收所述终端发送的测量报告; 所述测量报告用于通知所述微网络的信号 质量达到质量门限值。
第一切换指示单元 425 , 用于测量报告接收单元 424接收到终端发送的 测量报告时, 向终端发送包括微网络配置信息的网络切换指示。
图 5所示实施例中的网络侧通信设备可以参见图 3A对应实施例中的宏 网络中的网络侧通信设备, 在此不再赘述。
本实施例终端处于占用专用信道状态且终端测量到微网小区的信号质 量达到质量门限值时, 网络侧通信设备才向终端发送网络切换指示, 指示 终端从宏网络切换到微网络, 从而占用专用信道的终端在微网络进行数据 处理业务。
图 6为本发明实施例提供的另一种网络侧通信设备结构示意图。 如图 6 所示, 本实施例包括: 第二监测模块 43和第二切换指示模块 44。
第二监测模块 43 , 用于监测微网络中的终端是否有微网络业务需求; 所述微网络在宏网络覆盖范围内, 所述微网络内除导频信道之外的所有公 共物理信道或部分公共物理信道处于关闭状态。
第二切换指示模块 44, 用于第二监测模块 43监测到若所述终端没有微 网络业务需求, 向所述终端发送网络切换指示或向所述终端发送状态迁移 指示, 所述网络切换指示用于指示所述终端切换到所述宏网络, 所述状态 迁移指用于指示终端迁移到不占用专用信道的状态。 进一步, 所述第二切 换指示模块 44, 还可以用于所述终端没有微网络业务需求时, 向所述终端 发送状态迁移指示, 指示终端从占用专用信道的状态迁移到不占用专用信 道的状态。
一种实施方式, 第二监测模块 43 , 可以用于监测所述终端的数据业务 量是否小于业务量门限。 第二切换指示模块 44, 可以用于所述终端的数据 业务量小于业务量门限时, 向所述终端发送网络切换指示或向所述终端发 送状态迁移指示。
另一种实施方式, 第二监测模块 43 , 可以用于监测是否接收到所述终 端的业务量通知消息; 所述业务量通知消息通知所述终端的业务量小于业 务量门限。 第二切换指示模块 44, 可以用于接收到所述终端的业务量通知 消息时, 向所述终端发送网络切换指示或向所述终端发送状态迁移指示。
又一种实施方式, 第二监测模块 43 , 可以用于监测所述终端的业务请 求中是否携带有网络切换请求, 所述网络切换请求用于请求切换到所述宏 网络。 第二切换指示模块 44, 可以用于在所述终端的业务请求中携带有网 络切换请求时, 向所述终端发送网络切换指示或向所述终端发送状态迁移 指示。
本实施例中的网络侧通信设备可以应用于图 2所示实施例的方法中, 该 网络侧通信设备可以参见图 2对应实施例中的宏网络中的网络侧通信设备, 在此不再赘述。
本发明实施例宏网络覆盖范围内有微网络时, 驻留在微网络的终端没 有微网络业务需求时, 网络侧通信设备指示终端切换到宏网络, 从而容量 站无需维护数据业务量较少的终端, 节省了容量站的无线资源, 减少了不 必要的功率浪费。
图 7A为本发明实施例提供的一种终端结构示意图。 如图 7A所示, 本实 施例包括: 第一业务请求模块 71和第一切换指示接收模块 72。
第一业务请求模块 71 , 用于在宏网络中向所述宏网络中的网络侧通信 设备发送业务请求; 所述宏网络覆盖范围内有微网络, 所述微网络内除导 频信道之外的所有公共物理信道或部分公共物理信道处于关闭状态。 其中, 业务请求中可包括有网络切换请求, 网络切换请求用于请求切换到微网络。 所述宏网络中的网络侧通信设备接收到包括有网络切换请求的业务请求 时, 确定该终端有微网络业务需求。 第一切换指示接收模块 72, 用于第一业务请求模块 71向所述宏网络中 的网络侧通信设备发送业务请求后, 所述网络侧通信设备监测到所述终端 有微网络业务需求时, 接收所述网络侧通信设备发送的包括所述微网络配 置信息的网络切换指示, 所述网络切换指示用于指示所述终端从所述宏网 络切换到所述微网络。
如图 7B所示, 在图 7A基础上, 终端还可包括: 第一业务量通知模块 73。 第一业务量通知模块 73 , 用于驻留在宏网络时, 监测到数据业务量达到业 务量门限时, 向网络侧通信设备发送业务量通知消息。 网络侧通信设备接 收到业务量通知消息后, 确定该终端有微网络业务需求, 通过第二切换指 示模块发送包括宏网络配置信息的网络切换指示。
本实施例的终端可以应用于图 1和图 3A所示的方法实施例中,该终端可 以参见图 1和图 3 A对应实施例中的终端, 在此不再赞述。
本发明实施例终端从宏网络接入, 在宏网络发起业务。 在终端有微网 络业务需求时, 宏网络中网络侧通信设备通知该终端从宏网络切入到微网 络, 由微网络为终端提供业务。 由于关闭了微网络中除导频信道之外的所 有公共物理信道, 避免了微网络不断发射广播信令所产生的开销, 降低了 容量站的功耗, 降低了容量站的发射功率。
图 8为图 7A中第一切换指示接收模块结构示意图。 如图 8所示, 第一切 换指示接收模块 72可包括: 状态迁移指示接收单元 721、 测量指示接收单元 722和测量报告发送单元 723以及第一切换指示接收单元 724。
状态迁移指示接收单元 721 , 用于终端有微网络业务需求时, 若所述终 端处于非占用专用信道的状态, 接收所述网络侧通信设备发送的状态迁移 指示。 所述状态迁移指示用于指示所述终端迁移到占用专用信道的状态。
测量指示接收单元 722, 用于终端处于占用专用信道的状态时, 接收所 述网络侧通信设备发送的测量指示, 所述测量指示用于指示所述终端测量 所述容量站小区的信号质量。 测量报告发送单元 723 , 用于测量指示接收单元 722接收到测量指示后, 在所述微网络的信号质量达到质量门限值时, 向所述网络侧通信设备发送 测量报告; 所述测量报告用于通知所述微网络的信号质量达到质量门限值。
第一切换指示接收单元 724, 用于测量报告发送单元 723向网络侧通信 设备发送测量报告后, 所述微网络的信号质量达到质量门限值时, 接收所 述网络侧通信设备发送的包括所述微网络配置信息的网络切换指示。
本实施例提供的终端可以应用于图 3A所示的方法实施例中, 该终端可 以参见图 3 A对应实施例中描述的终端, 在此不再赘述。
本实施例中终端处于占用专用信道状态且终端测量到微网络的信号质 量达到质量门限值时, 接收到宏网络中网络侧通信设备发送的网络切换指 示, 从而从宏网络切换到微网络, 在微网络进行数据业务。
图 9A为本发明实施例提供的又一种终端结构示意图。 如图 9A所示, 本 实施例提供的包括: 第二业务请求模块 74和第二切换指示接收模块 75。
第二业务请求模块 74, 用于在微网络向宏网络中网络侧通信设备发送 业务请求, 所述微网络在宏网络覆盖范围内, 所述微网络内除导频信道之 外的所有公共物理信道或部分公共物理信道处于关闭状态。 其中, 业务请 求中可包括有网络切换请求, 网络切换请求用于请求切换到宏网络。
第二切换指示接收模块 75, 用于第二业务请求模块 74向网络侧设发送 业务请求后, 所述网络侧通信设备监测到所述微网络中的终端没有微网络 业务需求时, 接收所述网络侧通信设备发送的网络切换指示, 或者接收所 述网络侧通信设备发送的状态迁移指示; 所述网络切换指示用于指示所述 终端切换到所述宏网络驻留, 状态迁移指示用于指示终端从占用专用信道 的状态迁移到不占用专用信道的状态。
如图 9B所示, 在图 9A基础上终端还可包括: 第二业务量通知模块 76。 第二业务量通知模块 76, 用于终端驻留在微网络时, 监测到数据业务量小 于业务量门限时, 向所述网络侧通信设备发送业务量通知消息。 网络侧通 信设备接收到业务量通知消息后, 通过第二切换指示模块发送包括宏网络 配置信息的网络切换指示。
本实施例提供的终端可以应用于图 2所述的方法实施例中, 该终端可以 参见图 2和图 3A对应实施例中描述的终端, 在此不再赘述。
本实施例中, 为节省微网络的无线资源, 在微网络中的终端没有微网 络业务需求时, 终端接收网络侧通信设备发送的网络切换指示或状态迁移 指示, 切换到宏基站网络宏网络, 从而微网络无需维护没有微网络业务需 求的终端。
在本发明的所有实施例中, 所述 "模块,, 和 "单元,, 可以为逻辑实体, 也可以为物理实体, 均可以通过物理设备进行实现, 例如处理器, 芯片等。
本发明实施例还可以提供一种通信系统, 该通信系统可以包括如图 4、 图 5任一所述的网络侧通信设备以及图 7A、 图 7B、 图 8任一所述的终端, 或 者该系统可以包括如图 6所述的网络侧通信设备以及图 9A或 9B所述的终端。
图 10为本发明实施例提供的一种通信系统结构示意图。 如图 10所示, 该系统包括: 宏基站 100、 容量站 101、 网络侧通信设备 102和终端 103。 其 中, 微网络在宏网络覆盖范围内, 微网络内除导频信道之外的所有公共物 理信道或部分公共物理信道处于关闭状态。 微网络为容量站 101覆盖的网 络, 宏网络为宏基站覆盖的网络。 网络侧通信设备 102为管理和控制宏基站 100的宏网络中的网络侧设备, 网络侧通信设备 102也可以和宏基站 100集成 在一个硬件设备中。
所述终端 103 , 用于在宏网络向宏网络中的网络侧通信设备 102发送业 务请求。
所述网络侧通信设备 102、 用于监测宏网络中的终端 103是否有微网络 业务需求, 所述终端 103有微网络业务需求时, 向所述终端 103发送包括所 述微网络配置信息的网络切换指示, 所述网络切换指示用于指示所述终端 103从所述宏网络切换到所述微网络。 所述终端 103, 用于根据包括所述微网络配置信息的网络切换指示, 从 所述宏网络切换到所述微网络。
上述各网元实现的功能可参见图 1和图 3 A对应实施例中描述。
或者, 所述终端 103 , 可以用于在微网络向所述网络侧通信设备 102发 送业务请求;
所述网络侧通信设备 102、 用于监测微网络中的终端 103是否有微网络 业务需求; 所述终端 103没有微网络业务需求时, 向所述终端 103发送网络 切换指示或向所述终端 103发送状态迁移指示, 所述网络切换指示用于指示 所述终端切换到所述宏网络, 所述状态迁移指用于指示所述终端迁移到不 占用专用信道的状态。
所述终端 103, 用于根据包括所述宏网络配置信息的网络切换指示, 从 所述微网络切换到所述宏网络。
上述各网元实现的功能可参见图 2和图 3 A对应实施例中描述。
如图 11所示, 本发明提供了另一种通信方法, 包括:
步骤 111 : 网络侧设备将多载波中的至少一个载波设置为信道裁剪模 式, 将所述多载波中的至少一个载波设置为非信道裁剪模式。
步骤 112: 所述网络侧设备在所述设置为信道裁剪模式的载波和在所述 设置为非信道裁剪模式的载波上进行通信。
该方法还可以进一步包括:
网络侧设备接收切换指示, 所述切换指示指示终端切换到所述设置为 信道裁剪模式的载波。 所述网络侧设备打开所述关闭的部分或所有公共物 理信道, 进行切换。
可选地, 在切换完成后, 或定时器超时后, 所述网络侧设备可以将所 述载波的所有公共物理信道或部分公共物理信道设置为关闭状态。
在本发明实施例提供的方法中, 在多载波网络中, 例如 UMTS、 LTE或 LTE-A等多载波网络中, 多载波中至少一个载波处于非信道裁剪模式,非信 道裁剪模式为该所有信道处于完整状态, 没有信道处于关闭状态, 所有公 共信道都处于打开状态。 所述多载波中至少一个载波处于信道裁剪模式, 即除导频信道之外的所有公共信道或部分公共信道处于关闭状态。 载波的 信道裁剪模式可以参考本发明上述实施例中关于信道裁剪模式的描述。
在本发明实施例中, 多载波网络中的所有载波在初始状态下可以保持 完整公共信道发射, 即所有载波都是非信道裁剪模式。 在系统运行过程中, 可以根据系统负载、 或激活状态用户数, 或空闲状态用户数等对至少一个 载波设置为信道裁剪模式。 例如, 当系统负载低于预设门限时, 或者激活 状态用户数低于预设数量, 或者空闲状态用户数多于预设数量等, 可以关 闭部分或全部公共信道。例如,在 UMTS多载波网络中,可以根据系统负载、 FACH状态用户数、 或 PCH状态用户数将载波上的所有或部分公共信道关 闭。 进一步, 在本实施例中, 当一个载波被设置为信道裁剪模式后, 还可 以根据系统负载、 或激活状态用户数, 或空闲状态用户数等信息, 将所述 部分或所有的关闭的公共信道打开, 可以将所有关闭的公共信道打开, 也 可以将部分关闭的公共信道打开。 例如, 当系统负载增大、 激活状态的用 户数增加、 或者空闲态的用户数减少时, 可以将所述部分或所有的关闭的 公共信道打开。
在本实施例中, 当终端需要切换到处于信道裁剪模式的载波上时, 例 如, 基站接收到切换指示, 要求将所述终端切换到所述处于信道裁剪模式 的载波时, 可以打开部分或所有被关闭的公共信道, 即基站可以在该载波 上发送完整的公共信道, 或者部分的公共信道。 例如, 相邻基站上的相邻 载波上的终端需要切换到所述处于信道裁剪模式的载波, 或者终端需要当 前基站内的相邻载波切换到所述处于信道裁剪模式的载波, 则基站可以在 所述处于信道裁剪模式的载波上发射完整的公共信道, 或者至少发射主公 共物理控制信道 ( primary-common physical control channel , P-CPCCH )和 SCH。 在本实施例中, 可选地, 当所述终端完成切换后, 可以将所述载波 再重新设置为信道裁剪模式, 例如可以关闭在切换时所述打开的部分或所 有公共信道, 或者可以根据根据系统负载、 或激活状态用户数, 或空闲状 态用户数等信息将所述载波设置为信道裁剪模式。 或者, 也可以设置定时 器, 该定时器可以在原处于关闭状态的公共信道被打开时触发, 当定时器 超时时, 则重新关闭所述打开的公共信道。
如图 12所示, 本发明还提供了一种基站, 该基站可以包括:
处理单元 120, 用于将多载波中的至少一个载波设置为信道裁剪模式, 将所述多载波中的至少一个载波设置为非信道裁剪模式;
通信单元 140, 用于在所述设置为信道裁剪模式的载波和在所述设置为 非信道裁剪模式的载波上进行通信。
进一步, 所述基站还可以包括接收单元 160, 用于接收切换指示, 所述 切换指示指示终端切换到所述设置为信道裁剪模式的载波。 切换单元 180, 用于打开所述关闭的部分或所有公共物理信道, 进行切换。 可选地, 所述 处理单元 120还可以用于在切换完成后, 或定时器超时后, 所述网络侧设备 可以将所述载波的所有公共物理信道或部分公共物理信道设置为关闭状 态。
本发明实施例提供的基站可以实现上述图 11提供的通信方法。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序 代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利要求
1、 一种通信方法, 其特征在于, 包括:
监测宏网络中的终端是否有微网络业务需求; 微网络在宏网络覆盖范 围内, 所述微网络内除导频信道之外的所有公共物理信道或部分公共物理 信道处于关闭状态;
若所述终端有微网络业务需求, 向所述终端发送包括所述微网络配置 信息的网络切换指示, 所述网络切换指示用于指示所述终端从所述宏网络 切换到所述微网络。
2、 根据权利要求 1所述的方法, 其特征在于, 所述监测宏网络中的终 端是否有微网络业务需求, 若终端有微网络业务需求, 向所述终端发送包 括所述微网络配置信息的网络切换指示, 包括:
监测所述终端的数据业务量是否达到业务量门限; 若所述终端的数据 业务量达到业务量门限, 向所述终端发送包括所述微网络配置信息的网络 切换指示; 或,
监测是否接收到所述终端的业务量通知消息; 所述业务量通知消息用 于通知所述终端的数据业务量达到业务量门限; 接收到所述终端的业务量 通知消息时, 向所述终端发送包括所述微网络配置信息的网络切换指示; 或,
监测所述终端发送的业务请求中是否有网络切换请求, 所述网络切换 请求用于请求切入所述微网络; 在所述终端的业务请求中包括网络切换请 求时, 向所述终端发送包括所述微网络配置信息的网络切换指示。
3、 根据权利要求 1或 2所述的方法, 其特征在于 , 所述方法还包括: 打开所述 网络中部分或全部关闭的公共物理信道。
4、 一种通信方法, 其特征在于, 包括: 监测微网络中的终端是否有微网络业务需求; 所述微网络在宏网络覆 盖范围内, 所述微网络内除导频信道之外的所有公共物理信道或部分公共 物理信道处于关闭状态;
若所述终端没有微网络业务需求, 向所述终端发送网络切换指示或向 所述终端发送状态迁移指示, 所述网络切换指示用于指示所述终端切换到 所述宏网络, 所述状态迁移指用于指示所述终端迁移到不占用专用信道的 状态。
5、 根据权利要求 4所述的方法, 其特征在于, 监测所述微网络中的终 端是否有微网络业务需求; 若所述终端没有微网络业务需求, 向所述终端 发送网络切换指示或向所述终端发送状态迁移指示, 包括:
监测所述终端的数据业务量是否小于业务量门限; 所述终端的数据业 务量小于业务量门限时, 向所述终端发送所述网络切换指示或向所述终端 发送所述状态迁移指示; 或,
监测是否接收到所述终端的业务量通知消息; 所述业务量通知消息用 于通知所述终端的业务量小于业务量门限; 接收到所述终端的业务量通知 消息时, 向所述终端发送所述网络切换指示或向所述终端发送所述状态迁 移指示; 或,
监测所述终端的业务请求中是否携带有网络切换请求, 所述网络切换 请求用于请求切换到所述宏网络; 在所述终端的业务请求中携带有所述网 络切换请求时, 向所述终端发送网络切换指示或向所述终端发送所述状态 迁移指示。
6、 一种网络侧通信设备, 其特征在于, 包括:
第一监测模块, 用于监测宏网络中的终端是否有微网络业务需求; 所 述微网络在所述宏网络覆盖范围内, 所述微网络内除导频信道之外的所有 公共物理信道或部分公共物理信道处于关闭状态; 第一切换指示模块, 用于若所述终端有所述微网络业务需求, 向所述 终端发送包括所述微网络配置信息的网络切换指示, 所述网络切换指示用 于指示所述终端从所述宏网络切换到所述微网络。
7、 根据权利要求 6所述的设备, 其特征在于:
所述第一监测模块, 进一步用于监测所述终端的数据业务量是否达到 业务量门限; 所述第一切换指示模块, 进一步用于所述终端的数据业务量 达到业务量门限时, 向所述终端发送包括所述微网络配置信息的网络切换 指示;
或, 所述第一监测模块, 进一步用于监测是否接收到所述终端的业务 量通知消息; 所述业务量通知消息用于通知所述终端的数据业务量达到业 务量门限; 所述第一切换指示模块, 进一步用于接收到所述终端的业务量 通知消息时, 向所述终端发送包括所述微网络配置信息的网络切换指示; 或, 所述第一监测模块, 进一步用于监测所述终端的业务请求中是否 有网络切换请求, 所述网络切换请求用于请求切入所述微网络; 所述第一 切换指示模块, 进一步用于在所述终端的业务请求中包括网络切换请求时, 向所述终端发送包括所述微网络配置信息的网络切换指示。
8、 一种网络侧通信设备, 其特征在于, 包括:
第二监测模块, 用于监测微网络中的终端是否有微网络业务需求; 所 述微网络在宏网络覆盖范围, 所述微网络内除导频信道之外的所有公共物 理信道或部分公共物理信道处于关闭状态;
第二切换指示模块, 用于若所述终端没有微网络业务需求, 向所述终 端发送网络切换指示或向所述终端发送状态迁移指示, 所述网络切换指示 用于指示所述终端切换到所述宏网络, 所述状态迁移指用于指示所述终端 迁移到不占用专用信道的状态。
9、 根据权利要求 8所述的设备, 其特征在于: 所述第二监测模块, 进一步用于监测所述终端的数据业务量是否小于 业务量门限; 所述第二切换指示模块, 进一步用于若所述终端的数据业务 量小于业务量门限, 向所述终端发送网络切换指示或向所述终端发送状态 迁移指示;
或, 所述第二监测模块, 进一步用于监测是否接收到所述终端的业务 量通知消息; 所述业务量通知消息通知所述终端的业务量小于业务量门限; 所述第二切换指示模块, 进一步用于接收到所述终端的业务量通知消息时, 向所述终端发送所述网络切换指示或向所述终端发送所述状态迁移指示; 或, 所述第二监测模块, 进一步用于监测所述终端的业务请求中是否 携带有网络切换请求, 所述网络切换请求用于请求切换到所述宏网络; 进 一步所述第二切换指示模块, 用于在所述终端的业务请求中携带有网络切 换请求时, 向所述终端发送所述网络切换指示或向所述终端发送所述状态 迁移指示。
10、 一种终端, 其特征在于, 包括:
第一业务请求模块, 用于在宏网络中向所述宏网络中的网络侧通信设 备发送业务请求; 所述宏网络覆盖范围内有微网络, 所述微网络内除导频 信道之外的所有公共物理信道或部分公共物理信道处于关闭状态;
第一切换指示接收模块, 用于所述网络侧通信设备监测到所述终端有 微网络业务需求时, 接收所述网络侧通信设备发送的包括所述微网络配置 信息的网络切换指示, 所述网络切换指示用于指示所述终端从所述宏网络 切换到所述微网络。
11、 根据权利要求 10所述终端, 其特征在于, 所述第一切换指示接收 模块包括:
状态迁移指示接收单元, 用于若所述终端有微网络业务需求, 若所述 终端处于不占用专用信道的状态, 接收所述网络侧通信设备发送的状态迁 移指示, 所述状态迁移指示用于指示所述终端迁移到占用专用信道的状态; 测量指示接收单元, 用于所述终端处于占用专用信道的状态时, 接收 所述网络侧通信设备发送的测量指示, 所述测量指示用于指示所述终端测 量所述容量站小区的信号质量;
测量报告发送单元, 用于在所述微网络的信号质量达到质量门限值时, 向所述网络侧通信设备发送测量报告; 所述测量报告用于向所述网络侧通 信设备通知所述微网络的信号质量达到质量门限值;
第一切换指示接收单元, 用于所述微网络的信号质量达到质量门限值 时, 接收所述网络侧通信设备发送的包括所述微网络配置信息的网络切换 指示。
12、 一种终端, 其特征在于, 包括:
第二业务请求模块, 用于在微网络向宏网络中的网络侧通信设备发送 业务请求; 所述微网络在宏网络覆盖范围内, 所述微网络内除导频信道之 外的所有公共物理信道或部分公共物理信道处于关闭状态;
第二切换指示接收模块, 用于所述网络侧通信设备监测到所述微网络 中的所述终端没有微网络业务需求时, 接收所述网络侧通信设备发送的网 络切换指示, 或者接收所述网络侧通信设备发送的状态迁移指示; 所述网 络切换指示用于指示所述终端切换到所述宏网络驻留, 所述状态迁移指示 用于指示所述终端从占用专用信道的状态迁移到不占用专用信道的状态。
13、 一种通信系统, 其特征在于, 包括: 如权利要求 6或 7所述的网络 侧通信设备, 以及如权利要求 10或 11所述的终端; 或包括:
如权利要求 8或 9所述的网络侧通信设备, 以及如权利要求 12所述的终 端。
14、 一种通信方法, 其特征在于, 包括:
网络侧设备将多载波中的至少一个载波设置为信道裁剪模式, 将所述 多载波中的至少一个载波设置为非信道裁剪模式; 所述网络侧设备在所述设置为信道裁剪模式的载波和在所述设置为非 信道裁剪模式的载波上进行通信。
15、 根据权利要求 14所述的方法, 其特征在于, 所述方法还包括: 所述网络侧设备接收切换指示, 所述切换指示指示终端切换到所述设 置为信道裁剪模式的载波;
所述网络侧设备打开所述关闭的部分或所有公共物理信道, 进行切换。
16、 根据权利要求 14所述的方法, 其特征在于, 所述方法还包括: 在切换完成后, 或定时器超时后, 所述网络侧设备可以将所述载波的 所有公共物理信道或部分公共物理信道设置为关闭状态。
17、 一种基站, 其特征在于, 包括:
处理单元, 用于将多载波中的至少一个载波设置为信道裁剪模式, 将 所述多载波中的至少一个载波设置为非信道裁剪模式;
通信单元, 用于在所述设置为信道裁剪模式的载波和在所述设置为非 信道裁剪模式的载波上进行通信。
18、 根据权利要求 17所述的基站, 其特征在于, 还包括:
接收单元, 用于接收切换指示, 所述切换指示指示终端切换到所述设 置为信道裁剪模式的载波;
切换单元, 用于打开所述关闭的部分或所有公共物理信道, 进行切换。
19、 根据权利要求 18所述的基站, 其特征在于, 所述处理单元还用于, 在切换完成后, 或定时器超时后, 所述网络侧设备可以将所述载波的所有 公共物理信道或部分公共物理信道设置为关闭状态。
PCT/CN2012/078060 2011-07-01 2012-07-02 通信方法和设备及系统 WO2013004164A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12808136.1A EP2713654A4 (en) 2011-07-01 2012-07-02 METHOD, DEVICE AND SYSTEM FOR COMMUNICATION
US14/141,001 US9603063B2 (en) 2011-07-01 2013-12-26 Communications method, device, and system
US15/438,366 US20170171785A1 (en) 2011-07-01 2017-02-21 Communications method, device, and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110184339 2011-07-01
CN201110184339.8 2011-07-01
CN201110347747.0A CN102857940B (zh) 2011-07-01 2011-11-04 通信方法和设备及系统
CN201110347747.0 2011-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/141,001 Continuation US9603063B2 (en) 2011-07-01 2013-12-26 Communications method, device, and system

Publications (1)

Publication Number Publication Date
WO2013004164A1 true WO2013004164A1 (zh) 2013-01-10

Family

ID=47404057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078060 WO2013004164A1 (zh) 2011-07-01 2012-07-02 通信方法和设备及系统

Country Status (4)

Country Link
US (2) US9603063B2 (zh)
EP (1) EP2713654A4 (zh)
CN (3) CN106211249A (zh)
WO (1) WO2013004164A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3068168A4 (en) * 2013-12-05 2016-11-30 Huawei Tech Co Ltd METHOD, DEVICE AND SYSTEM FOR REDIRECTION

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104080119B (zh) 2013-03-29 2018-05-11 华为技术有限公司 信号发送方法及设备
JP6244736B2 (ja) * 2013-08-16 2017-12-13 富士通株式会社 無線基地局装置および電力制御方法
WO2016015315A1 (zh) * 2014-07-31 2016-02-04 宇龙计算机通信科技(深圳)有限公司 时频同步维持的方法、时频同步维持的系统和终端
US9749902B2 (en) 2014-08-19 2017-08-29 Qualcomm Incorporated Admission control and load balancing
CN107306440B (zh) * 2016-04-20 2019-12-24 中兴通讯股份有限公司 一种物联网数据传输方法及物联网终端
WO2018120379A1 (zh) * 2016-12-30 2018-07-05 华为技术有限公司 一种寻呼用户设备的方法和装置
US11882526B2 (en) * 2020-05-18 2024-01-23 T-Mobile Usa, Inc. Adaptive mobile network operation
CN113596946B (zh) * 2021-07-19 2024-04-05 西安广和通无线软件有限公司 无线通信方法、无线通信终端及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101472317A (zh) * 2007-12-27 2009-07-01 华为技术有限公司 降低室内基站干扰的方法和设备
CN101848503A (zh) * 2009-03-27 2010-09-29 中兴通讯股份有限公司 支持私有小区接入和切换的方法、装置以及切换终端
WO2011005019A2 (ko) * 2009-07-06 2011-01-13 한국전자통신연구원 무선 통신 시스템에서 매크로 기지국에 의해 수행되는 주변 기지국 정보 전송 방법 및 장치

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081719A (en) * 1998-08-19 2000-06-27 Motorola, Inc. Layered wireless communication system and method
US8019335B2 (en) * 2001-01-29 2011-09-13 Nokia Corporation Identifying neighboring cells in telecommunication network
FR2832896B1 (fr) * 2001-11-28 2004-07-23 Wavecom Sa Reseau de telecommunication cellulaire mettant en oeuvre des cellules de tailles differentes, station de base, terminal et procede correspondant
US7586872B2 (en) * 2003-04-11 2009-09-08 Alcatel-Lucent Usa Inc. User assignment strategies for hierarchical and other overlay networks
US20050250504A1 (en) * 2004-05-05 2005-11-10 Nokia Corporation Channel setup in a wireless communication network
US7747275B2 (en) * 2004-05-06 2010-06-29 M-Stack Limited Cell selection in mobile communications
US8025213B2 (en) * 2005-10-31 2011-09-27 Sandra Hartfield Automatic settlement of user account with creditor from transaction kiosk
CN101123599B (zh) * 2006-08-11 2010-04-21 华为技术有限公司 数据传输方法及数据传输系统和装置
KR101226537B1 (ko) * 2006-10-30 2013-01-25 노키아 코포레이션 고속 임의 액세스 채널용의 전송 파라미터들을 제공
US20100024210A1 (en) * 2007-07-31 2010-02-04 Harris Corporation Product Optimization Process for Embedded Passives
US8451795B2 (en) * 2007-08-08 2013-05-28 Qualcomm Incorporated Handover in a wireless data packet communication system that avoid user data loss
EP2056628A1 (en) * 2007-10-30 2009-05-06 Nokia Siemens Networks Oy Communication network element and method of switching activity states
GB2456503A (en) * 2008-01-10 2009-07-22 Ip Access Ltd Using global cell identifier for handover in a combined femto-cell/macro-cell environment
WO2009142425A2 (en) 2008-05-19 2009-11-26 Samsung Electronics Co., Ltd. Apparatus and method for saving power of femto base station in wireless communication system
CN101274732B (zh) * 2008-05-19 2010-06-02 长沙楚天科技有限公司 大输液灌装加塞机
US8687588B2 (en) 2008-07-02 2014-04-01 Qualcomm Incorporated Low power modes for femto cells
US9119164B2 (en) * 2008-08-20 2015-08-25 Qualcomm Incorporated Generating access point beacons at different power levels
CN101686580A (zh) 2008-09-24 2010-03-31 华为技术有限公司 一种获取系统消息的方法、装置和系统
KR20100048846A (ko) * 2008-10-30 2010-05-11 엘지전자 주식회사 무선 통신 시스템에서 초기 접속 방법
CN101815247B (zh) 2009-02-24 2014-01-01 中兴通讯股份有限公司 广播信道周期的设置方法
KR101496897B1 (ko) 2009-03-10 2015-03-02 삼성전자주식회사 펨토 기지국을 갖는 통신 시스템 및 그의 간섭 제어 방법
US8805371B2 (en) * 2009-03-17 2014-08-12 Airvana Lp Identifying hand-over targets in lightly coordinated networks
US9072020B2 (en) * 2009-08-26 2015-06-30 Samsung Electronics Co., Ltd. Methods and apparatus to support coordinated interference mitigation in multi-tier networks
CN101827435A (zh) * 2010-03-17 2010-09-08 中兴通讯股份有限公司 通信系统设备的能源节省方法、接入实体及用户设备
US8976657B2 (en) * 2011-03-08 2015-03-10 Medium Access Systems Private Ltd. Method and system for data offloading in mobile communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101472317A (zh) * 2007-12-27 2009-07-01 华为技术有限公司 降低室内基站干扰的方法和设备
CN101848503A (zh) * 2009-03-27 2010-09-29 中兴通讯股份有限公司 支持私有小区接入和切换的方法、装置以及切换终端
WO2011005019A2 (ko) * 2009-07-06 2011-01-13 한국전자통신연구원 무선 통신 시스템에서 매크로 기지국에 의해 수행되는 주변 기지국 정보 전송 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2713654A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3068168A4 (en) * 2013-12-05 2016-11-30 Huawei Tech Co Ltd METHOD, DEVICE AND SYSTEM FOR REDIRECTION

Also Published As

Publication number Publication date
CN102857940B (zh) 2016-08-10
EP2713654A4 (en) 2014-06-11
CN106162826A (zh) 2016-11-23
EP2713654A1 (en) 2014-04-02
US20170171785A1 (en) 2017-06-15
US9603063B2 (en) 2017-03-21
CN106211249A (zh) 2016-12-07
US20140106759A1 (en) 2014-04-17
CN102857940A (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
JP7483973B2 (ja) 無線通信システム、省電力基地局、および通信端末
US20230224784A1 (en) Machine-to-machine (m2m) terminal, base station, method, and computer readable medium
CN107078890B (zh) 无线电信网络中的网络节点和方法
US9603063B2 (en) Communications method, device, and system
KR101487355B1 (ko) 이기종 네트워크에서의 유휴 모드 혼성 이동성 절차
JP5890319B2 (ja) 基地局およびリモートアクセスポイントでの電力消費の管理
EP2446672B1 (en) Power saving in a radio base station by determining number of active and idle users camping on cell
WO2014036710A1 (en) Method and apparatus of energy saving in radio access networks
US8509794B2 (en) Method and apparatus for controlling user equipments
US20180242261A1 (en) Communication system
WO2012126284A1 (zh) 多制式网络下的通信方法、网络设备及通信系统
WO2012155798A1 (zh) 异系统中小区节能控制方法和设备
EP2728929B1 (en) Method, device, and system for communications
CN105792298B (zh) 一种对测量事件的测量报告进行上报的方法
KR101374202B1 (ko) 이종망 간의 핸드오버 수행 방법 및 이를 위한 단말 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12808136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012808136

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE