WO2013002447A1 - Method and apparatus for purifying waste water - Google Patents

Method and apparatus for purifying waste water Download PDF

Info

Publication number
WO2013002447A1
WO2013002447A1 PCT/KR2011/005281 KR2011005281W WO2013002447A1 WO 2013002447 A1 WO2013002447 A1 WO 2013002447A1 KR 2011005281 W KR2011005281 W KR 2011005281W WO 2013002447 A1 WO2013002447 A1 WO 2013002447A1
Authority
WO
WIPO (PCT)
Prior art keywords
floc
sewage
hydrocyclone
density
low density
Prior art date
Application number
PCT/KR2011/005281
Other languages
French (fr)
Korean (ko)
Inventor
김현배
윤희철
남해욱
고주형
오재일
최영화
박재웅
임윤대
Original Assignee
블루그린링크(주)
주식회사 포스코건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 블루그린링크(주), 주식회사 포스코건설 filed Critical 블루그린링크(주)
Publication of WO2013002447A1 publication Critical patent/WO2013002447A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0039Settling tanks provided with contact surfaces, e.g. baffles, particles
    • B01D21/0045Plurality of essentially parallel plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/267Separation of sediment aided by centrifugal force or centripetal force by using a cyclone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds

Definitions

  • the present invention relates to the field of environmental technology, and more particularly, to a method and apparatus for purification of sewage.
  • Non-point source and confluent sewage sediment contaminants are mainly introduced into the purification device with rainwater in rainy weather, and the amount is so large that overload occurs frequently, and because of this, they are discharged to the river without being treated. Is required.
  • the conventional techniques have used a method of forming and flocculating only a high density floc or a method of forming and floating only a low density floc floating in water, all of which take a long time to remove the floc. , The water quality of the purified water was not good.
  • the present invention has been made to solve the above problems, and it is an object of the present invention to provide a sewage purification method and a purification device to obtain a purified water of excellent quality while taking a short time to remove the floc.
  • the present invention is a floc forming step of injecting the material for forming the flocculation into the sewage, by stirring by a stirring tank 100 to form a floc;
  • It provides a sewage purification method comprising; a sewage separation step of separating the sewage containing the low density floc by the flotation separation tank 300, the low density floe and the purified water.
  • the floc forming material preferably includes a metal salt flocculant and a polymer flocculent aid.
  • the said floc forming material further contains micro sand.
  • the micro sand recovery step is preferably performed by the in-line mixer 400.
  • the floc forming step it is preferable to stir the wastewater and the floc forming material at a high speed (240 to 360 RPM) in the stirring tank 100 so that bubbles are impregnated in the low density floc.
  • the present invention is a sewage purification apparatus for implementing the sewage purification method, the stirring tank (100) for the floc forming step; The hydrocyclone (200) for the cyclone separation step; Presents together with a sewage purification apparatus comprising ;; the flotation separation tank 300 for the flotation separation step.
  • the present invention is a sewage purification apparatus for implementing the sewage purification method, the stirring tank (100) for the floc forming step; The hydrocyclone (200) for the cyclone separation step; The floating separation tank 300 for the floating separation step; Presenting together the sewage treatment apparatus including; in-line mixer 400 for the micro sand recovery step.
  • 1 is a process chart of the purification method.
  • Figure 2 is a schematic diagram of the formation of the floc by the flocculant.
  • Figure 3 is a schematic diagram of the process of increasing the floc by the polymer.
  • Figure 4 is a schematic diagram of the process of increasing the density of the floc by the micro sand.
  • FIG. 10 is an exploded perspective view of a hydrocyclone in which the separation section is enlarged.
  • the sewage purification method according to the present invention is basically constituted by the following process.
  • the floc forming material is thrown into the sewage, and it is stirred by the stirring tank 100 to form a floc.
  • the sewage containing the floc is separated by the hydrocyclone 200 into sewage containing the high density floc and the low density floc, and the high density floc is screened out.
  • the sewage containing the low density floc is separated into the low density floc and the purified water by the flotation separation tank 300, the low density floc is screened out, and the purified water is discharged to the outside.
  • a conventional method of forming a floc by removing the floc forming material into the sewage and removing the floc as in the prior art is formed by dividing the floc into a high density floc and a low density floc, among which the high density floc is formed in the hydrocyclone 200. Separation, low density flocs are separated by a separate float separation tank (300).
  • the floc forming material introduced into the sewage for the formation of the floc preferably includes a metal salt flocculant and a polymer flocculent aid, and more preferably a micro sand.
  • a high density floc and a low density floc can be obtained more smoothly and stably by a ballasted flocculation reaction.
  • Typical colloidal particles found in sewage have a negative surface charge.
  • the colloidal particles Because of their size, the colloidal particles have a much smaller attraction force than the electrical repulsive force, causing them to float or have very low precipitation rates.
  • colloidal particles are difficult to remove by precipitation for a suitable time so that these particles can be removed by chemical methods using chemical flocculants and coagulants.
  • Aggregation is a process in which colloidal particles become unstable as the particle size increases due to the collision of particles.
  • Agglomeration reactions are often unstable, and many side reactions occur with other substances, depending on the sewage characteristics that change seasonally or daily.
  • Coagulants are chemicals added to destabilize colloidal particles in sewage to form flocs.
  • Weighted agglomeration is a method of increasing the settling rate by binding a dense particle to the floc using the crosslinking role of the polymer to produce a floe with a high density and size.
  • Coagulant adjuvant such as a polymer injected for the weighted coagulation reaction
  • Coagulant adjuvant is like a bundle of thread and has a large number of polar groups, which are combined with the suspended particles and also cause coagulation by adsorption between the flocks bound to the suspended particles.
  • This action also acts on the electrostatic bonds and hydrogen bonds in the process of the adsorption activator of the polymer that is present in the form of a loop in the aqueous solution to the surface of the particles (Fig. 3).
  • the flocs formed using only flocculants are very small in size and have low bonding strength.
  • the polymer When a coagulant aid polymer is added, the polymer binds to the floc and causes additional condensation with the other floc, which is called a double bond by a crosslinking role.
  • This polymer crosslinking not only reduces the settling time by forming larger flocs, but also makes it possible to bond with other particles, allowing them to bind with relatively dense and large particles such as micro sands ( 4).
  • Figure 5 shows the change in the size of the floc according to the actual drug injection, (a) is a colloidal state, (b) is the production state of the micro floc, (c) the micro sand injection state, (d) the weight of the flocculation floc It's about creation.
  • Micro sand used in the purification method according to the present invention has a particle size distribution of 75 ⁇ 150 ⁇ m, it is possible to produce a high density of floc good binding force.
  • the micro sand has a high density when it is 150 ⁇ m or more, but lacks the binding force during centrifugation due to the mass difference, and when the micro sand is less than 75 ⁇ m, the micro sand has a high binding force, but the density of the formed flocs is relatively small.
  • the characteristics of the floc are greatly influenced by the forming environment such as the stirring strength and the stirring method.
  • Stirring strength is expressed as the product of the rate gradient G and the stirring time t. If the G value is high, the number of collisions between particles increases, thereby increasing the reaction rate and the growth rate of the floc.
  • the second is large-scale fragmentation, which is caused by splitting of several flocks of similar size by the tensile force generated outside the floc, which occurs when the flocs grow to a size that is difficult to maintain binding during stirring (FIG. 7).
  • a flotation capable of high-speed separation in a hydrocyclone and a high-speed flotation in a floating separation tank by the stirring strength difference is made.
  • the stirring speed was increased to 240 to 360 RPM.
  • high pressure is maintained at a pressure of 3 to 5 bar for high-speed operation in the hydrocyclone, and the high-strength floc is first removed from the hydrocyclone, and then naturally decompressed in the flotation tank and impregnated with fine bubbles. Together, the low density flocks are floated and removed.
  • This compression may be made by a driving pump 10 or the like installed between the stirring vessel 100 and the hydrocyclone 200 (FIG. 1).
  • Hydrocyclone 200 is a sedimentation type separator with no mechanical drive at all by solid-liquid separation technology that separates particles by accelerating the settling speed of the particles by centrifugal force (FIG. 10).
  • Hydrocyclone is widely used in various industries because of its simple design, low cost, easy operation and low maintenance cost.
  • a floc with high size and density and excellent bonding strength can be produced, which enables separation using a hydrocyclone, and a hydrocyclone having a relatively long residence time in a separation section (corn section).
  • the advantage of this method is that it can be separated even with a relatively small density difference.
  • the general hydrocyclone is composed of a cylindrical section (conical section) and a combined form (conical section).
  • Suspended particles in the fluid flow tangentially through the inlet located at the top of the cylinder.
  • the tangential inflow initiates a strong rotational force from the inside, which causes strong vortex movements inside, resulting in centrifugal forces that accelerate the movement of the particles towards the outer wall, causing the particles to move downward spirally through the cylinder and cone. do.
  • Particles in the internal strong vortex motion are subject to gravity, centrifugal force, and drag force, which are less than the other two forces.
  • the fluid containing the fine fraction travels to the center of the hydrocyclone under the influence of drag and forms a strong upward flow from it, which is discharged through the outlet pipe in the upper middle, which is called the overflow pipe or vortex finder. .
  • the large fraction (coarse fraction) is governed by the centrifugal force acting in the circumferential direction, preventing the particles from flowing inward, which causes the particles moving into the inner wall to collide with the inner wall, losing the inertia force and flowing along the wall of the cone. Separated and discharged through the bottom outlet as a slurry or porridge state.
  • This part is called an underflow orifice or apex.
  • Flotation separation is one of the unit operations used to separate solid particles from a liquid.
  • a pressure flotation separation method in which fine air is introduced into a liquid to cause particles to float and separation occurs, and a liquid containing a liquid by vacuuming the container.
  • Flotation separation is better than sedimentation because it can completely remove small, light particles that settle slowly in a short time.
  • Pressurized flotation separation method using air bubble has dissolved air flotation separation method and air flotation separation, and removal efficiency can be improved by adding various chemical additives.
  • Dissolved air floating separation method is a method of generating air bubbles by removing the pressure after injecting air under the condition that the sewage has a pressure
  • air floating separation method is a process of giving up under atmospheric pressure to air into the sewage through a rotating impeller or diffuser. It is a method of floating airborne substances by forming air bubbles by injecting directly.
  • Floating separation tank in the present invention unlike conventional methods, there is no separate air injection or decompression of the container.
  • Fine bubbles formed in the high-speed weighted agglomeration reactor are impregnated in the floc and floated at high speed by natural decompression occurring during transfer from the hydrocyclone to the flotation separation tank.
  • the flocks flowing into the flotation separation tank from the stirring tank are mostly low density flocs in which the high density flocs are first separated and removed from the hydrocyclone in the previous stage, which is advantageous for flotation separation.
  • the flotation separation tank 200 In order to reduce the bubbles of the low-density floe generated in the flotation separation tank 200, it may be agitated at a low speed in the collecting container 20 (Fig. 1).
  • an additional in-line mixer 400 was used to cause vortex inside the pipe and increase the contact area to accelerate the fracture of the floc (FIG. 1).
  • In-line mixer consists of a series of mixing elements fixed in the pipeline, and the process of continuous flow splitting, redirection, and recombination is repeated when the fluid to be mixed is passed through the pipeline, and the continuous mixing of the fluids is mixed. Used for manipulation.
  • the floc and micro sand destroyed by the in-line mixer are separated by the difference in density in the hydrocyclone.
  • Low-density flocs are sent to the top and sent to the sludge treatment process, and micro sands are separated to the bottom and fed to a high-speed weighted agglomeration reactor for reuse.
  • the mixture of the floc and the micro sand crushed by the in-line mixer 400 may be separated again from the second hydro cyclone 30 to remove the floc and transfer the micro sand to the stirring tank for reuse (FIG. 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

The present invention allows obtainment of filtered water having a superior water quality while requiring a short time for removing a plug, by disclosing a method for purifying waste water comprising: a plug formation step of forming the plug by inserting a material for forming a plug in waste water and mixing same in a mixing tub (100); a cyclone separation step of separating the waste water comprising the plug into waste water including a high-density plug and waste water including a low-density plug by means of a hydro cyclone (200); and a rising separation step of separating the waste water comprising the low-density plug into the low-density plug and filtered water by means of a rising separation tub (300).

Description

오수 정화방법 및 정화장치Sewage Purification Method and Purification Device
본 발명은 환경 기술분야에 관한 것으로서, 상세하게는 오수의 정화방법 및 장치에 관한 것이다.The present invention relates to the field of environmental technology, and more particularly, to a method and apparatus for purification of sewage.
비점오염원 및 합류식 하수관거 퇴적 오염물은 주로 우천 시 우수와 함께 정화장치로 유입되는데, 그 양이 막대하여 과부하가 자주 발생하고, 이로 인하여 처리되지 못한 채 하천에 방류되는 실정이므로, 정화장치에서의 신속한 처리가 요구된다.Non-point source and confluent sewage sediment contaminants are mainly introduced into the purification device with rainwater in rainy weather, and the amount is so large that overload occurs frequently, and because of this, they are discharged to the river without being treated. Is required.
종래에는 정화방식 중의 하나로서, 오수에 응집제 등을 투입하여 플럭을 형성하고, 그 플럭만을 제거함으로써 오수를 정화하는 방식이 연구되어 왔다.Conventionally, as one of the purification methods, a method of purifying sewage by adding flocculant or the like to sewage to form a floc and removing only the floc has been studied.
그런데 종래의 기술은, 고밀도의 플럭만을 형성하여 침전시키는 방식 또는, 물에 부상하는 저밀도의 플럭만을 형성하여 부상(浮上)시키는 방식을 사용하여 왔는데, 이들은 모두 플럭의 제거에 오랜 시간이 소요된다는 점, 정화수의 수질이 좋지 못하다는 점 등의 문제를 안고 있었다.However, the conventional techniques have used a method of forming and flocculating only a high density floc or a method of forming and floating only a low density floc floating in water, all of which take a long time to remove the floc. , The water quality of the purified water was not good.
본 발명은 상기와 같은 문제점을 해결하기 위하여 도출된 것으로서, 플럭의 제거에 단시간이 소요되면서도, 우수한 수질의 정화수를 얻을 수 있도록 하는 오수 정화방법 및 정화장치를 제시하는 것을 그 목적으로 한다.The present invention has been made to solve the above problems, and it is an object of the present invention to provide a sewage purification method and a purification device to obtain a purified water of excellent quality while taking a short time to remove the floc.
상기 과제의 해결을 위하여, 본 발명은 오수에 플럭 형성용 재료를 투입하고, 교반조(100)에 의해 교반하여 플럭을 형성하는 플럭 형성단계; 상기 플럭을 포함하는 오수를 하이드로 사이클론(200)에 의해, 고밀도 플럭과 저밀도 플럭을 포함하는 오수로 분리하는 사이클론 분리단계; 상기 저밀도 플럭을 포함하는 오수를 부상 분리조(300)에 의해, 상기 저밀도 플럭과 정화수로 분리하는 부상 분리단계;를 포함하는 오수 정화방법을 제시한다.In order to solve the above problems, the present invention is a floc forming step of injecting the material for forming the flocculation into the sewage, by stirring by a stirring tank 100 to form a floc; A cyclone separation step of separating the sewage including the floc into a sewage including the high density floc and the low density floc by the hydrocyclone 200; It provides a sewage purification method comprising; a sewage separation step of separating the sewage containing the low density floc by the flotation separation tank 300, the low density floe and the purified water.
상기 플럭 형성용 재료는 금속염 응집제와 폴리머 응집보조제를 포함하는 것이 바람직하다.The floc forming material preferably includes a metal salt flocculant and a polymer flocculent aid.
상기 플럭 형성용 재료는 마이크로 샌드를 더 포함하는 것이 바람직하다.It is preferable that the said floc forming material further contains micro sand.
상기 사이클론 분리단계에서 발생한 고밀도 플럭 및 상기 부상 분리단계에서 발생한 저밀도 플럭을 취합하는 플럭 취합단계; 상기 플럭을 파쇄하여 상기 마이크로 샌드를 회수하는 마이크로 샌드 회수단계;를 더 포함하는 것이 바람직하다.A flocculation step of collecting the high density flocks generated in the cyclone separation step and the low density flocks generated in the flotation separation step; It is preferable to further include a; micro sand recovery step of recovering the micro sand by crushing the floc.
상기 마이크로 샌드 회수단계는 인라인 믹서(400)에 의해 수행되는 것이 바람직하다.The micro sand recovery step is preferably performed by the in-line mixer 400.
상기 플럭 형성단계는 상기 저밀도 플럭에 기포가 함침되도록, 상기 교반조(100)에서 높은 속도(240~360RPM)로 상기 오수 및 플럭 형성용 재료를 교반하는 것이 바람직하다.In the floc forming step, it is preferable to stir the wastewater and the floc forming material at a high speed (240 to 360 RPM) in the stirring tank 100 so that bubbles are impregnated in the low density floc.
본 발명은 상기 오수 정화방법을 구현하기 위한 오수 정화장치로서, 상기 플럭 형성단계를 위한 상기 교반조(100); 상기 사이클론 분리단계를 위한 상기 하이드로 사이클론(200); 상기 부상 분리단계를 위한 상기 부상 분리조(300);를 포함하는 오수 정화장치를 함께 제시한다.The present invention is a sewage purification apparatus for implementing the sewage purification method, the stirring tank (100) for the floc forming step; The hydrocyclone (200) for the cyclone separation step; Presents together with a sewage purification apparatus comprising ;; the flotation separation tank 300 for the flotation separation step.
본 발명은 상기 오수 정화방법을 구현하기 위한 오수 정화장치로서, 상기 플럭 형성단계를 위한 상기 교반조(100); 상기 사이클론 분리단계를 위한 상기 하이드로 사이클론(200); 상기 부상 분리단계를 위한 상기 부상 분리조(300); 상기 마이크로 샌드 회수단계를 위한 인라인 믹서(400);를 포함하는 오수 정화장치를 함께 제시한다.The present invention is a sewage purification apparatus for implementing the sewage purification method, the stirring tank (100) for the floc forming step; The hydrocyclone (200) for the cyclone separation step; The floating separation tank 300 for the floating separation step; Presenting together the sewage treatment apparatus including; in-line mixer 400 for the micro sand recovery step.
본 발명은 플럭의 제거에 단시간이 소요되면서도, 우수한 수질의 정화수를 얻을 수 있도록 하는 오수 정화방법 및 정화장치를 제시하는 것을 그 목적으로 한다.It is an object of the present invention to provide a sewage purification method and a purification device which can obtain purified water of excellent quality while taking a short time to remove the floc.
도 1 이하는 본 발명의 실시예를 도시한 것으로서,Figure 1 below shows an embodiment of the present invention,
도 1은 정화방법의 공정도.1 is a process chart of the purification method.
도 2는 응집제에 의한 플럭의 형성과정의 모식도.Figure 2 is a schematic diagram of the formation of the floc by the flocculant.
도 3은 폴리머에 의한 플럭의 증대과정의 모식도.Figure 3 is a schematic diagram of the process of increasing the floc by the polymer.
도 4는 마이크로 샌드에 의한 플럭의 밀도 증대과정의 모식도.Figure 4 is a schematic diagram of the process of increasing the density of the floc by the micro sand.
도 5는 가중응집반응의 단계별 사진.5 is a step-by-step photograph of the weighted aggregation reaction.
도 6,7은 플럭 파괴의 2가지 유형에 관한 모식도.6,7 are schematics of two types of floc destruction.
도 8,9는 공동 현상에 의한 기포 함침 플럭의 사진들.8,9 are photographs of the bubble impregnation floes by cavitation.
도 10은 분리구간이 확대된 하이드로 사이클론의 분해사시도.10 is an exploded perspective view of a hydrocyclone in which the separation section is enlarged.
이하, 첨부도면을 참조하여 본 발명의 실시예에 관하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1 이하에 도시된 바와 같이, 본 발명에 의한 오수 정화방법은 기본적으로, 다음과 같은 공정에 의해 구성된다.As shown in Figure 1 below, the sewage purification method according to the present invention is basically constituted by the following process.
오수에 플럭 형성용 재료를 투입하고, 교반조(100)에 의해 교반하여 플럭(floc)을 형성한다.The floc forming material is thrown into the sewage, and it is stirred by the stirring tank 100 to form a floc.
플럭을 포함하는 오수를 하이드로 사이클론(200)에 의해, 고밀도 플럭과 저밀도 플럭을 포함하는 오수로 분리하고, 고밀도 플럭을 가려낸다.The sewage containing the floc is separated by the hydrocyclone 200 into sewage containing the high density floc and the low density floc, and the high density floc is screened out.
저밀도 플럭을 포함하는 오수를 부상 분리조(300)에 의해, 저밀도 플럭과 정화수로 분리하여, 저밀도 플럭은 가려내고, 정화수는 외부로 배출한다.The sewage containing the low density floc is separated into the low density floc and the purified water by the flotation separation tank 300, the low density floc is screened out, and the purified water is discharged to the outside.
즉, 종래와 같이 오수에 플럭 형성용 재료를 투입하여 플럭을 형성하고 이를 제거하는 방식을 취하되, 플럭을 고밀도 플럭과 저밀도 플럭으로 구분하여 형성하고, 이들 중 고밀도 플럭은 하이드로 사이클론(200)에서 분리해내고, 저밀도 플럭은 별도의 부상 분리조(300)에 의해 분리해내는 방식을 취한 것이다.That is, a conventional method of forming a floc by removing the floc forming material into the sewage and removing the floc as in the prior art is formed by dividing the floc into a high density floc and a low density floc, among which the high density floc is formed in the hydrocyclone 200. Separation, low density flocs are separated by a separate float separation tank (300).
따라서 종래에 비해 정화처리 속도가 훨씬 빠르면서도, 우수한 수질의 정화수를 얻을 수 있다는 효과가 있다.Therefore, the purification process is much faster than the conventional, there is an effect that can be obtained purified water of excellent quality.
이하, 본 발명에 의한 정화방법의 구체적 원리 및 실시예에 관하여 설명한다.Hereinafter, specific principles and examples of the purification method according to the present invention will be described.
플럭의 형성을 위해 오수에 투입되는 플럭 형성용 재료는 금속염 응집제, 폴리머 응집보조제를 포함하는 것이 바람직하고, 추가로 마이크로 샌드를 포함하는 것이 더욱 바람직하다.The floc forming material introduced into the sewage for the formation of the floc preferably includes a metal salt flocculant and a polymer flocculent aid, and more preferably a micro sand.
이와 같은 플럭 형성용 재료를 사용하는 경우, 가중응집반응(ballasted flocculation reaction)에 의해, 고밀도 플럭 및 저밀도 플럭을 더욱 원활하고 안정적으로 얻을 수 있다.In the case of using such a flocculation material, a high density floc and a low density floc can be obtained more smoothly and stably by a ballasted flocculation reaction.
하수에서 발견되는 전형적인 콜로이드 입자들은 음의 표면 전하를 갖는다.Typical colloidal particles found in sewage have a negative surface charge.
콜로이드 입자는 그 크기 때문에 입자사이에 인력이 전기적 반발력에 비해 상당히 작게 되어 그 영향으로 부유하거나 대단히 낮은 침전속도를 가지게 된다. Because of their size, the colloidal particles have a much smaller attraction force than the electrical repulsive force, causing them to float or have very low precipitation rates.
이러한 상태에서 입자 사이를 둘러싸고 있는 상대적으로 작은 물 분자에 의한 콜로이드 입자의 일정한 열적 충돌에 의해 일어나는 브라운 운동은 입자의 침전을 방해한다. In this state, Brownian motion caused by the constant thermal collision of colloidal particles with relatively small water molecules surrounding between particles hinders the precipitation of the particles.
이러한 이유로 콜로이드 입자들은 적당한 시간 동안 침전에 의해서 제거되기 어려워 화학적 응집제와 응집보조제를 사용하는 화학적 방법으로 이러한 입자들을 제거할 수 있도록 한다.For this reason, colloidal particles are difficult to remove by precipitation for a suitable time so that these particles can be removed by chemical methods using chemical flocculants and coagulants.
응집은 입자의 충돌 결과에 의해서 입자 크기가 증가함에 따라 콜로이드 입자가 불안정화 되어가는 과정이다. Aggregation is a process in which colloidal particles become unstable as the particle size increases due to the collision of particles.
응집반응은 흔히 불안전하며, 계절별 혹은 일별로 변화하는 하수의 성상에 따라 다른 물질들과 많은 부수적인 반응이 일어나게 된다.Agglomeration reactions are often unstable, and many side reactions occur with other substances, depending on the sewage characteristics that change seasonally or daily.
응집제는 하수의 콜로이드 입자를 불안정화시켜서 플럭을 형성하도록 하기 위하여 첨가되는 화학제이다. Coagulants are chemicals added to destabilize colloidal particles in sewage to form flocs.
전기적으로 안정적인 하수의 콜로이드입자를 금속의 양이온을 형성하는 응집제를 주입하여 불안정한 상태를 만들어 입자 간의 반발력을 최소화시킬 경우 입자들은 서로 간에 뭉치게 되며 플럭을 형성하게 된다(도 2). When the colloidal particles of the electrically stable sewage are injected with a coagulant to form a cation of the metal to make an unstable state to minimize the repulsive force between the particles, the particles agglomerate with each other and form a floc (FIG. 2).
가중응집반응은 밀도가 높은 입자를 폴리머의 가교역할을 이용하여 플럭에 결합시켜 높은 밀도와 크기를 가지는 플럭을 만들어 냄으로써 침전 속도를 향상시키는 방법이다.Weighted agglomeration is a method of increasing the settling rate by binding a dense particle to the floc using the crosslinking role of the polymer to produce a floe with a high density and size.
가중응집반응을 위해 투입되는 폴리머와 같은 응집제보조제는 마치 실뭉치와 같은 거대한 코일상태로서 수많은 극성기를 가지고 있어, 현탁입자와 결합되고 또한 현탁입자와 결합된 플럭들 상호간의 흡착작용에 의해서도 응집을 일으킨다. Coagulant adjuvant, such as a polymer injected for the weighted coagulation reaction, is like a bundle of thread and has a large number of polar groups, which are combined with the suspended particles and also cause coagulation by adsorption between the flocks bound to the suspended particles. .
이러한 작용은 수용액에서 고리(loop)와 같은 상태로 존재하는 고분자의 흡착활성기가 입자의 표면에 흡착하게 되는 과정에서 정전기적 결합과 수소결합에도 작용하게 된다(도 3). This action also acts on the electrostatic bonds and hydrogen bonds in the process of the adsorption activator of the polymer that is present in the form of a loop in the aqueous solution to the surface of the particles (Fig. 3).
응집제만 사용하여 형성한 플럭은 크기가 매우 작고 결합강도가 약하다. The flocs formed using only flocculants are very small in size and have low bonding strength.
응집보조제인 폴리머를 투입하면 폴리머는 플럭에 결합하여 다른 플럭과 추가적인 응결을 일으키는데 이를 가교역할에 의한 이중결합이라고 한다. When a coagulant aid polymer is added, the polymer binds to the floc and causes additional condensation with the other floc, which is called a double bond by a crosslinking role.
이러한 폴리머의 가교 현상은 더 큰 플럭을 형성시켜 침전시간을 줄일 수 있을 뿐만 아니라, 다른 입자와의 결합도 가능하도록 하여 마이크로 샌드와 같은 비교적 밀도가 높고 크기가 큰 입자와도 결합할 수 있도록 한다(도 4). This polymer crosslinking not only reduces the settling time by forming larger flocs, but also makes it possible to bond with other particles, allowing them to bind with relatively dense and large particles such as micro sands ( 4).
도 5는 실제 약품 주입에 따른 플럭의 크기 변화를 나타낸 것으로서, (a)는 콜로이드 상태, (b)는 마이크로 플럭의 생성상태, (c)는 마이크로 샌드 투입상태, (d)는 가중응집 플럭의 생성상태에 관한 것이다.Figure 5 shows the change in the size of the floc according to the actual drug injection, (a) is a colloidal state, (b) is the production state of the micro floc, (c) the micro sand injection state, (d) the weight of the flocculation floc It's about creation.
본 발명에 의한 정화방법에 사용되는 마이크로 샌드는 75~150㎛의 입도 분포를 가지는 것으로서, 결합력이 좋아 높은 밀도의 플럭을 생성할 수 있도록 한다.Micro sand used in the purification method according to the present invention has a particle size distribution of 75 ~ 150㎛, it is possible to produce a high density of floc good binding force.
마이크로 샌드는 150㎛ 이상일 경우 높은 밀도를 나타내지만 질량차에 의해 원심분리시 결합력이 부족하고, 75㎛ 미만일 경우 결합력은 뛰어나지만 형성되는 플럭의 밀도가 상대적으로 작다는 흠이 있다.The micro sand has a high density when it is 150 μm or more, but lacks the binding force during centrifugation due to the mass difference, and when the micro sand is less than 75 μm, the micro sand has a high binding force, but the density of the formed flocs is relatively small.
플럭의 특성은 교반강도, 교반방법 등 형성 환경의 영향을 많이 받는다. The characteristics of the floc are greatly influenced by the forming environment such as the stirring strength and the stirring method.
교반강도는 속도경사 G와 교반시간 t의 곱으로 나타내며, G값이 높으면 입자간의 충돌 횟수가 증가하여 반응속도 및 플럭의 성장속도가 증가하게 된다. Stirring strength is expressed as the product of the rate gradient G and the stirring time t. If the G value is high, the number of collisions between particles increases, thereby increasing the reaction rate and the growth rate of the floc.
같은 교반강도라 하더라도 속도경사와 교반시간에 따라서 플럭의 특성이 다르게 나타나는데 그 이유는 플럭이 생성되는 원리에서 찾을 수 있다. Even with the same agitation strength, the characteristics of the flocs vary depending on the speed gradient and the agitation time. The reason for this can be found in the principle that flocs are generated.
플럭이 응집하는 공정에서 충돌 시 결합과 파괴가 반복해서 이루어진다. In the flocculation process, binding and breaking occur repeatedly during collisions.
플럭 파괴의 형태는 2가지 방법으로 설명된다. The form of floc destruction is explained in two ways.
한 가지는 표면침식(surface erosion)으로 플럭 외부에 전단력이 작용하여 플럭 표면에서 입자가 떨어져나가 크기가 줄어드는 것을 말하며, 교반 중 플럭과 내벽, 임펠러 등의 충돌에 의해 일어난다(도 6). One is surface erosion, which means that the shear force acts on the outside of the floc to reduce the size of particles falling off the floc surface, which is caused by the collision of the floc with the inner wall and the impeller during agitation (FIG. 6).
두 번째는 large-scale fragmentation으로 플럭 외부에서 발생한 인장력에 의해 비슷한 크기의 여러 플럭으로 쪼개어지는 현상으로, 교반 중에 플럭이 결합을 유지하기 힘든 크기로 성장하였을 때 나타난다(도 7).The second is large-scale fragmentation, which is caused by splitting of several flocks of similar size by the tensile force generated outside the floc, which occurs when the flocs grow to a size that is difficult to maintain binding during stirring (FIG. 7).
높은 교반강도에서는 플럭 충돌 횟수가 증가하여 성장속도가 빠르지만, 충돌강도와 외부에 가해지는 전단력이 증가하고 유속이 빨라 플럭에 작용하는 인장력도 증가하게 되어 성장할 수 있는 최대 한계 성장 크기가 감소하게 되지만 결합과 파괴가 빠르게 반복되며 조밀도가 높은 플럭이 형성된다. At high agitation strength, the number of floc collisions increases to increase the growth rate, but the impact strength and shear force exerted on the outside increase, and the flow velocity increases to increase the tensile force acting on the flocs, which reduces the maximum growth limit. The bonds and breaks are repeated quickly and a dense floc is formed.
교반강도가 낮은 경우는 충돌 횟수가 감소하여 성장속도는 느리게 나타나지만, 충돌강도와 전단력, 인장력이 감소하여 최대 한계 성장 크기가 증가하고 느슨한 결합의 밀도가 낮은 플럭이 형성되는 경향이 있다. When the agitation strength is low, the number of collisions decreases, so that the growth rate is slow. However, the impact strength, shear force, and tensile force decrease, which increases the maximum limit growth size and tends to form flocs with low density of loose bonds.
이와 같은 이유로 교반강도가 약하면 반응시간이 오래 걸리게 되며, 한계 성장 크기가 크며 밀도와 강도가 낮은 플럭이 생성된다. For this reason, a weak stirring strength takes a long reaction time and produces a floc with a large limit growth size and a low density and strength.
이러한 플럭은 밀도와 강도가 낮아 하이드로 사이클론의 회전 충격에 의해서 해리된다. These flocs are dissociated by hydrocyclone rotational impact due to their low density and strength.
반면, 교반강도가 강하게 되면 반응시간이 짧아지고 한계 성장 크기가 작지만 밀도와 강도가 높은 플럭이 생성된다. On the other hand, the stronger the stirring strength, the shorter the reaction time and the smaller the limit growth size, but the higher density and strength of the floc is produced.
본 발명에서는 이러한 교반 강도차이에 의한 하이드로 사이클론에서의 고속 분리와 부상 분리조에서의 고속 부상이 가능한 플럭을 생성하도록 하였다. According to the present invention, a flotation capable of high-speed separation in a hydrocyclone and a high-speed flotation in a floating separation tank by the stirring strength difference is made.
임펠러의 고속 회전으로 액체 속을 고속으로 움직이는 물체의 표면은 액압이 저하하는데, 그렇게 되면 압력이 액체의 포화증기압보다 낮아진 범위에 증기가 발생하거나 액체 속에 녹아 있던 기포가 생성되며, 이러한 현상을 공동현상이라고 한다.Due to the high speed rotation of the impeller, the surface of the object moving at high speed in the liquid drops the liquid pressure, which creates vapors or bubbles in the liquid where the pressure is lower than the saturated vapor pressure of the liquid. It is called.
본 발명은 이를 위하여 교반 속도를 240~360RPM 정도로 높게 하였다.In the present invention, the stirring speed was increased to 240 to 360 RPM.
고속가중응집반응조(교반조)에서 고속 회전에 의한 공동현상으로 생성된 기포는 도 8,9와 같이 생성된 고밀도 플럭 사이에 미세 기포로 함침된다. In the high-speed weighted agglomeration reactor (stirrer), bubbles generated by the cavitation by the high-speed rotation are impregnated with fine bubbles between the high density floes generated as shown in FIGS. 8 and 9.
위 처리 공정에서 하이드로 사이클론에서의 고속 구동을 위해서 3~5 bar의 압력을 유지하여 고압으로 압축되어, 고강도 플럭은 하이드로사이클론에서 1차 제거되고, 이후 부상 분리조에서 자연 감압되며 함침된 미세 기포와 함께 저밀도 플럭이 부상되어 제거된다. In the above process, high pressure is maintained at a pressure of 3 to 5 bar for high-speed operation in the hydrocyclone, and the high-strength floc is first removed from the hydrocyclone, and then naturally decompressed in the flotation tank and impregnated with fine bubbles. Together, the low density flocks are floated and removed.
이러한 압축은 교반조(100)와 하이드로 사이클론(200) 사이에 설치된 구동펌프(10) 등에 의해 이루어질 수 있다(도 1).This compression may be made by a driving pump 10 or the like installed between the stirring vessel 100 and the hydrocyclone 200 (FIG. 1).
하이드로 사이클론(200)은 원심력으로 입자의 침전속도를 가속시켜 입자를 분리시키는 고액분리기술로 기계적 구동이 전혀 없는 침전형 분별기이다(도 10). Hydrocyclone 200 is a sedimentation type separator with no mechanical drive at all by solid-liquid separation technology that separates particles by accelerating the settling speed of the particles by centrifugal force (FIG. 10).
하이드로 사이클론은 간단한 디자인, 적은비용, 쉬운 작동과 낮은 유지비로 다양한 산업분야에서 널리 사용되고 있다. Hydrocyclone is widely used in various industries because of its simple design, low cost, easy operation and low maintenance cost.
유체의 회전력에 의해 비중이 높은 물질은 하부 배출구를 통해 배출되고 비중이 낮은 물질은 상부배출구를 통해 분리되는 원리로서, 유체에 포함된 고체입자는 유체의 비중과 차이가 분명해야만 분리가 가능하고, 입자의 크기, 형태, 밀도, 농도 등에 의해 유체에 포함된 고체입자의 운동특성이 달라지기 때문에, 크기와 밀도가 작고 농도가 낮으며 형태가 불안정한 플럭의 분리에는 잘 사용되지 않는다.Due to the rotational force of the fluid, high specific gravity material is discharged through the lower outlet and low specific gravity material is separated through the upper outlet.Solid solid particles contained in the fluid can be separated only when the specific gravity is different from the specific gravity of the fluid. Since the kinetic properties of the solid particles contained in the fluid vary depending on the size, shape, density, and concentration of the particles, they are not well used for the separation of flocs with small size, low density, low concentration and unstable shape.
본 발명은 가중응집반응을 도입함으로써, 크기와 밀도가 높고 결합강도가 뛰어난 플럭을 생성하므로, 하이드로 사이클론을 이용한 분리가 가능해졌으며, 분리구간(corn 구간)에서의 체류시간이 상대적으로 긴 하이드로 사이클론을 이용하는 경우 비교적 적은 밀도차에서도 분리가 가능하다는 장점이 추가된다.In the present invention, by introducing a weighted agglomeration reaction, a floc with high size and density and excellent bonding strength can be produced, which enables separation using a hydrocyclone, and a hydrocyclone having a relatively long residence time in a separation section (corn section). The advantage of this method is that it can be separated even with a relatively small density difference.
일반적인 하이드로사이클론은 원통부(cylindrical section)와 원추부(conical section)가 결합된 형태로 구성된다. The general hydrocyclone is composed of a cylindrical section (conical section) and a combined form (conical section).
유체 속에 있는 부유입자는 실린더 상단에 위치한 유입구를 통하여 접선방향으로 유입된다. Suspended particles in the fluid flow tangentially through the inlet located at the top of the cylinder.
접선방향의 유입으로 내부에서 강한 회전력이 시작되고, 이로 인해 강력한 소용돌이 움직임이 내부에서 일어나며, 외측벽을 향한 입자의 이동을 가속시키는 원심력이 발생하여 입자들은 원통부와 원추부를 통해서 나선형태로 하향이동하게 된다. The tangential inflow initiates a strong rotational force from the inside, which causes strong vortex movements inside, resulting in centrifugal forces that accelerate the movement of the particles towards the outer wall, causing the particles to move downward spirally through the cylinder and cone. do.
내부의 강력한 와류운동(vortex motion) 내에 있는 입자는 중력(gravity), 원심력(centrifugal force), 항력(drag force)의 영향을 받는데, 중력의 영향은 다른 두 힘에 비해 작다. Particles in the internal strong vortex motion are subject to gravity, centrifugal force, and drag force, which are less than the other two forces.
미세한 입자(fine fraction)를 포함한 유체는 항력의 영향을 받아 하이드로사이클론 중심부로 이동하고, 여기서 발생하는 강한 상승흐름을 형성하여 중앙 상부의 배출관을 통해 배출되며, 이 부분을 overflow pipe 또는 vortex finder라 부른다.The fluid containing the fine fraction travels to the center of the hydrocyclone under the influence of drag and forms a strong upward flow from it, which is discharged through the outlet pipe in the upper middle, which is called the overflow pipe or vortex finder. .
큰 입자(coarse fraction)는 원주 방향으로 작용하는 원심력의 지배를 받아 입자가 안쪽으로 흐르는 것을 방해받고, 이로 인해 내벽으로 이동한 입자들은 내벽과 부딪치며 관성력(inertia force)을 잃고 원추부의 벽을 따라 흘러 슬러리 또는 죽 상태로서 하부 배출구를 통해 분리 배출된다. The large fraction (coarse fraction) is governed by the centrifugal force acting in the circumferential direction, preventing the particles from flowing inward, which causes the particles moving into the inner wall to collide with the inner wall, losing the inertia force and flowing along the wall of the cone. Separated and discharged through the bottom outlet as a slurry or porridge state.
이 부분을 underflow orifice 또는 apex라 부른다.This part is called an underflow orifice or apex.
원통부의 길이를 길게 하여 유속을 빠르게 하고 원심력을 높이는 경우, 높은 원심력을 받는 체류시간을 길게 하여 적은 밀도차에서도 높은 분리효율을 가질 수 있다는 장점이 추가된다(도 10). In the case of increasing the length of the cylinder to increase the flow velocity and increase the centrifugal force, the advantage of having a high separation efficiency even at a small density difference by increasing the residence time under high centrifugal force is added (FIG. 10).
구체적으로, 퍼지트랩 방식의 하이드로 사이클론(200)을 적용하는 경우, 상부로 유출되는 유량을 90% 이상으로 증대할 수 있으므로, 더욱 바람직하다(도 10).Specifically, in the case of applying the hydrocyclone 200 of the purge trap method, since the flow rate flowing out to the top can be increased to 90% or more, it is more preferable (Fig. 10).
부상분리는 액체로부터 고체 입자를 분리하는데 사용되는 단위 조작 중의 하나로서, 미세 공기를 액체 속에 넣어 줌으로서 입자가 부상되어 분리가 일어나게 하는 가압 부상분리법과, 액체가 들어 있는 용기를 진공으로 만들어 줌으로써 액체 속에 용존되어 있던 공기를 기포화하여 부상분리가 이루어지게 하는 감압부상분리법이 있다. Flotation separation is one of the unit operations used to separate solid particles from a liquid. A pressure flotation separation method in which fine air is introduced into a liquid to cause particles to float and separation occurs, and a liquid containing a liquid by vacuuming the container. There is a decompression flotation method that bubbles up air dissolved in the air and separates floating.
생성된 기체방울이 입자성 물질에 달라붙게 되면 다량의 기체방울에 의한 부력으로 입자를 물 위로 떠오를 수 있게 한다. When the resulting bubbles stick to the particulate material, they can float on the water due to the buoyancy caused by the large amount of bubbles.
부상분리가 침전분리보다 좋은 점은 천천히 침전하는 작고 가벼운 입자들을 단시간 내에 완전히 제거할 수 있다는 것이다.Flotation separation is better than sedimentation because it can completely remove small, light particles that settle slowly in a short time.
현재 많은 하수처리 및 정수처리 공정에서 사용되는 부상분리는 공법은 부상 촉진재로서 공기를 사용하는 것이 대부분이다. Currently, the flotation separation used in many sewage and water treatment processes is mostly using air as a flotation accelerator.
공기방울을 이용한 가압 부상분리 처리법은 용존공기 부상분리법과 공기부상분리가 있으며 여러 가지 화학적 첨가물을 가함으로서 제거효율을 높일 수 있다.Pressurized flotation separation method using air bubble has dissolved air flotation separation method and air flotation separation, and removal efficiency can be improved by adding various chemical additives.
용존공기 부상분리법은 하수가 압력을 가진 상태에서 공기를 주입한 후 압력을 제거하여 기포를 발생시키는 방법이고, 공기부상분리법은 대기압 하에서 포기시키는 공정으로 회전하는 임펠러나 산기관을 통하여 하수 속으로 공기를 직접 주입함으로서 공기방울을 형성하여 부유물질을 부상시키는 방법이다. Dissolved air floating separation method is a method of generating air bubbles by removing the pressure after injecting air under the condition that the sewage has a pressure, and air floating separation method is a process of giving up under atmospheric pressure to air into the sewage through a rotating impeller or diffuser. It is a method of floating airborne substances by forming air bubbles by injecting directly.
본 발명에서 부상 분리조는 기존 공법들과는 달리 별도의 공기 주입이나 용기의 감압이 없다. Floating separation tank in the present invention, unlike conventional methods, there is no separate air injection or decompression of the container.
고속가중응집반응조(교반조)에서 형성된 미세 기포가 플럭 내에 함침되고, 하이드로 사이클론에서 부상 분리조로 이송되는 동안에 발생하는 자연적인 감압에 의해 빠른 속도로 부상된다. Fine bubbles formed in the high-speed weighted agglomeration reactor (stirrer bath) are impregnated in the floc and floated at high speed by natural decompression occurring during transfer from the hydrocyclone to the flotation separation tank.
교반조에서 부상 분리조로 유입되는 플럭은 전단계의 하이드로 사이클론에서 고밀도 플럭이 1차적으로 분리 제거된 저밀도 플럭이 대부분으로, 부상 분리에 유리한 조건이다. The flocks flowing into the flotation separation tank from the stirring tank are mostly low density flocs in which the high density flocs are first separated and removed from the hydrocyclone in the previous stage, which is advantageous for flotation separation.
이러한 플럭들은 대부분 플럭 내부에 미세 기포 방울을 함침하고 있다. Most of these flocks impregnate microbubbles inside the flocs.
또한 플럭에 함침된 기포 뿐 아니라 처리수 내부에 용존 되어 있던 공기가 팽창하여 많은 양의 기포가 생성되어 플럭의 부상속도가 대단히 빠르도록 한다.In addition to the bubbles impregnated with the floc, air dissolved in the treated water expands to generate a large amount of bubbles, which causes the flotation to float very fast.
한편, 사이클론 분리단계에서 발생한 고밀도 플럭 및 부상 분리단계에서 발생한 저밀도 플럭을 별도의 취합용기(20)에 취합한 후, 이들 플럭을 파쇄하고 마이크로 샌드를 회수하여 재사용하는 것이 바람직하다(도 1).On the other hand, it is preferable to collect the high-density flocks generated in the cyclone separation step and the low-density flocks generated in the flotation separation step in a separate collecting container 20, and then crush these flocks and recover and reuse the micro sands (FIG. 1).
부상 분리조(200)에서 발생한 저밀도 플럭의 기포를 저감하기 위하여, 위 취합용기(20)에서 저속으로 교반하는 것도 좋다(도 1).In order to reduce the bubbles of the low-density floe generated in the flotation separation tank 200, it may be agitated at a low speed in the collecting container 20 (Fig. 1).
교반조에서 생성되는 고밀도 플럭의 경우, Actiflo 공법처럼 하이드로사이클론 단독으로는 파괴/분리가 어렵다. In the case of high density flocs produced in agitating tanks, hydrocyclones alone are difficult to break / separate, as in the Actiflo process.
고밀도 고강도 플럭으로부터 마이크로 샌드를 회수하여 재사용하기 위해, 추가적으로 인라인 믹서(400)를 이용하여 배관 내부의 와류를 일으키고 접촉면적을 높여 플럭의 파쇄가 가속화되도록 하였다(도 1). In order to recover and reuse the micro sand from the high-density high-strength floc, an additional in-line mixer 400 was used to cause vortex inside the pipe and increase the contact area to accelerate the fracture of the floc (FIG. 1).
인라인 믹서는 관로 내에 고정된 일련의 엘리먼트(mixing element)로 구성되며, 혼합될 유체가 관로를 통과할 때 연속적으로 유동분할, 방향전환, 재결합 등의 과정이 반복되며 혼합되는 장치로 유체의 연속 혼합 조작에 사용된다.In-line mixer consists of a series of mixing elements fixed in the pipeline, and the process of continuous flow splitting, redirection, and recombination is repeated when the fluid to be mixed is passed through the pipeline, and the continuous mixing of the fluids is mixed. Used for manipulation.
인라인 믹서에 의해 파괴된 플럭과 마이크로 샌드는 하이드로사이클론에서 밀도의 차에 의해 분리된다. 밀도가 낮은 플럭은 상부로 유출되어 슬러지 처리공정으로 보내지고 마이크로 샌드는 하부로 분리되어 고속 가중응집 반응조로 투입되어 재사용된다.The floc and micro sand destroyed by the in-line mixer are separated by the difference in density in the hydrocyclone. Low-density flocs are sent to the top and sent to the sludge treatment process, and micro sands are separated to the bottom and fed to a high-speed weighted agglomeration reactor for reuse.
인라인 믹서(400)에 의해 파쇄된 플럭과 마이크로 샌드의 혼합물은 다시 제2 하이드로 사이클론(30)에서 분리하여, 플럭은 제거하고 마이크로 샌드는 교반조로 이송하여 재사용할 수 있다(도 1).The mixture of the floc and the micro sand crushed by the in-line mixer 400 may be separated again from the second hydro cyclone 30 to remove the floc and transfer the micro sand to the stirring tank for reuse (FIG. 1).
이상은 본 발명에 의해 구현될 수 있는 바람직한 실시예의 일부에 관하여 설명한 것에 불과하므로, 주지된 바와 같이 본 발명의 범위는 위의 실시예에 한정되어 해석되어서는 안 될 것이며, 위에서 설명된 본 발명의 기술적 사상과 그 근본을 함께 하는 기술적 사상은 모두 본 발명의 범위에 포함된다고 할 것이다.Since the above has been described only with respect to some of the preferred embodiments that can be implemented by the present invention, the scope of the present invention, as is well known, should not be construed as limited to the above embodiments, the present invention described above It will be said that both the technical idea and the technical idea which together with the base are included in the scope of the present invention.

Claims (9)

  1. 오수에 플럭 형성용 재료를 투입하고, 교반조(100)에 의해 교반하여 플럭을 형성하는 플럭 형성단계;A floc forming step of inserting a floc forming material into sewage and stirring the agitation tank to form a floc;
    상기 플럭을 포함하는 오수를 하이드로 사이클론(200)에 의해, 고밀도 플럭과 저밀도 플럭을 포함하는 오수로 분리하는 사이클론 분리단계;A cyclone separation step of separating the sewage including the floc into a sewage including the high density floc and the low density floc by the hydrocyclone 200;
    상기 저밀도 플럭을 포함하는 오수를 부상 분리조(300)에 의해, 상기 저밀도 플럭과 정화수로 분리하는 부상 분리단계;를Floating separation step of separating the sewage containing the low density floc into the low density floc and purified water by the flotation separation tank 300;
    포함하는 오수 정화방법.Sewage purification method comprising.
  2. 제1항에 있어서,The method of claim 1,
    상기 플럭 형성용 재료는 금속염 응집제와 폴리머 응집보조제를 포함하는 것을 특징으로 하는 오수 정화방법.The floc forming material comprises a metal salt flocculant and a polymer flocculent aid.
  3. 제2항에 있어서,The method of claim 2,
    상기 플럭 형성용 재료는 마이크로 샌드를 더 포함하는 것을 특징으로 하는 오수 정화방법.The floc forming material further comprises a micro sand.
  4. 제3항에 있어서,The method of claim 3,
    상기 사이클론 분리단계에서 발생한 고밀도 플럭 및 상기 부상 분리단계에서 발생한 저밀도 플럭을 취합하는 플럭 취합단계;A flocculation step of collecting the high density flocks generated in the cyclone separation step and the low density flocks generated in the flotation separation step;
    상기 플럭을 파쇄하여 상기 마이크로 샌드를 회수하는 마이크로 샌드 회수단계;를A micro sand recovery step of recovering the micro sand by crushing the floc;
    더 포함하는 것을 특징으로 하는 오수 정화방법.Sewage purification method further comprising.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 마이크로 샌드 회수단계는The micro sand recovery step
    인라인 믹서(400)에 의해 수행되는 것을 특징으로 하는 오수 정화방법.Sewage purification method characterized in that performed by the in-line mixer (400).
  6. 제1항에 있어서,The method of claim 1,
    상기 플럭 형성단계는The floc forming step
    상기 저밀도 플럭에 기포가 함침되도록, 상기 교반조(100)에서 높은 속도(240~360RPM)로 상기 오수 및 플럭 형성용 재료를 교반하는 것을 특징으로 하는 오수 정화방법.Sewage purification method characterized in that for stirring the sewage and the floc forming material at a high speed (240 ~ 360 RPM) in the stirring tank (100) so that bubbles are impregnated in the low density floc.
  7. 제1항에 있어서,The method of claim 1,
    상기 하이드로 사이클론(200)은 퍼지트랩 방식인 것을 특징으로 하는 오수 정화방법.The hydrocyclone 200 is a waste water purification method characterized in that the fuzzy trap method.
  8. 제1항 내지 제4항 중 어느 한 항의 오수 정화방법을 구현하기 위한 오수 정화장치로서,A sewage purification apparatus for implementing the sewage purification method of any one of claims 1 to 4,
    상기 플럭 형성단계를 위한 상기 교반조(100);The stirring tank 100 for the floc forming step;
    상기 사이클론 분리단계를 위한 상기 하이드로 사이클론(200);The hydrocyclone (200) for the cyclone separation step;
    상기 부상 분리단계를 위한 상기 부상 분리조(300);를The flotation separation tank 300 for the flotation separation step;
    포함하는 오수 정화장치.Sewage purifier included.
  9. 제5항의 오수 정화방법을 구현하기 위한 오수 정화장치로서,A sewage purification apparatus for implementing the sewage purification method of claim 5,
    상기 플럭 형성단계를 위한 상기 교반조(100);The stirring tank 100 for the floc forming step;
    상기 사이클론 분리단계를 위한 상기 하이드로 사이클론(200);The hydrocyclone (200) for the cyclone separation step;
    상기 부상 분리단계를 위한 상기 부상 분리조(300);The floating separation tank 300 for the floating separation step;
    상기 마이크로 샌드 회수단계를 위한 인라인 믹서(400);를In-line mixer 400 for the micro sand recovery step;
    포함하는 오수 정화장치.Sewage purifier included.
PCT/KR2011/005281 2011-06-27 2011-07-19 Method and apparatus for purifying waste water WO2013002447A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0062166 2011-06-27
KR20110062166 2011-06-27

Publications (1)

Publication Number Publication Date
WO2013002447A1 true WO2013002447A1 (en) 2013-01-03

Family

ID=47424322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005281 WO2013002447A1 (en) 2011-06-27 2011-07-19 Method and apparatus for purifying waste water

Country Status (1)

Country Link
WO (1) WO2013002447A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768300A (en) * 1993-09-01 1995-03-14 Yasuharu Sekishita Method for treating sludge and apparatus therefor
JP2004148185A (en) * 2002-10-30 2004-05-27 Shin Caterpillar Mitsubishi Ltd Method and equipment for cleaning filthy and turbid water
KR20050028619A (en) * 2003-09-19 2005-03-23 한국건설기술연구원 Method and apparatus for treating of dredging sediment
KR100913068B1 (en) * 2008-11-19 2009-08-21 한경대학교 산학협력단 A treatment method of swine wastewater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768300A (en) * 1993-09-01 1995-03-14 Yasuharu Sekishita Method for treating sludge and apparatus therefor
JP2004148185A (en) * 2002-10-30 2004-05-27 Shin Caterpillar Mitsubishi Ltd Method and equipment for cleaning filthy and turbid water
KR20050028619A (en) * 2003-09-19 2005-03-23 한국건설기술연구원 Method and apparatus for treating of dredging sediment
KR100913068B1 (en) * 2008-11-19 2009-08-21 한경대학교 산학협력단 A treatment method of swine wastewater

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUIBELIN, E. ET AL., WAT.SCI.TECH., vol. 30, no. 1, 31 December 1994 (1994-12-31), pages 87 - 96 *

Similar Documents

Publication Publication Date Title
US7037432B2 (en) Buoyant media flotation
WO2013154234A1 (en) Wastewater-purifying apparatus and wastewater-purifying method
CA2266583C (en) Water and wastewater treatment system with internal recirculation
WO2015002397A1 (en) Dissolved air floatation device
EP2563729B1 (en) Ballasted sequencing batch reactor system and method for treating wastewater
KR20090024074A (en) Solid-liquid separator
WO2014051345A1 (en) Method and apparatus for high-speed coagulation using polymer beads containing magnetic substance
CN101648086A (en) Rapid precipitating method and rapid precipitating and separating device
WO2012123489A1 (en) Method and apparatus for separating solids from a liquid suspension thereof
WO1997035655A1 (en) Water treatment system
JP4416144B2 (en) Coagulation precipitation method and apparatus
EP1268027A1 (en) Solid buoyant media induced flotation
KR200220590Y1 (en) Sewage treatment centrifuge with separation of suspended solids
WO1999033541A1 (en) Coagulation precipitator
WO2013002447A1 (en) Method and apparatus for purifying waste water
JP4535419B2 (en) Coagulation sedimentation equipment
WO2018135895A1 (en) Oil water treatment apparatus using induced gas floatation and method therefor
KR19980043088A (en) Water treatment system and method linking sedimentation and flotation
WO1997035654A1 (en) Wastewater treatment system
EP0625074B1 (en) Vortex flocculation of solids suspended in liquid
CN101503236A (en) SAN wastewater consecutive processing technological process
JP2006095494A (en) Flocculation/separation apparatus
JP2017159213A (en) Flocculation treatment method and apparatus
CN111170546A (en) High-density clarification tank
US20150360989A1 (en) Dispersant Enhanced Ballast Recovery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868784

Country of ref document: EP

Kind code of ref document: A1