WO2013002381A1 - Method for evaluating fatty liver disease, device for evaluating fatty liver disease, method for evaluating fatty liver disease, program for evaluating fatty liver disease, system for evaluating fatty liver disease, information-communication terminal device, and method for searching for substance used to prevent or improve fatty-liver-disease - Google Patents

Method for evaluating fatty liver disease, device for evaluating fatty liver disease, method for evaluating fatty liver disease, program for evaluating fatty liver disease, system for evaluating fatty liver disease, information-communication terminal device, and method for searching for substance used to prevent or improve fatty-liver-disease Download PDF

Info

Publication number
WO2013002381A1
WO2013002381A1 PCT/JP2012/066739 JP2012066739W WO2013002381A1 WO 2013002381 A1 WO2013002381 A1 WO 2013002381A1 JP 2012066739 W JP2012066739 W JP 2012066739W WO 2013002381 A1 WO2013002381 A1 WO 2013002381A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty liver
liver disease
discriminant
amino acid
evaluation
Prior art date
Application number
PCT/JP2012/066739
Other languages
French (fr)
Japanese (ja)
Inventor
三雄 高橋
山本 浩史
文彦 高月
敏彦 安東
實 山門
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2013522983A priority Critical patent/JP6260275B2/en
Publication of WO2013002381A1 publication Critical patent/WO2013002381A1/en
Priority to US14/140,152 priority patent/US9971866B2/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/08Hepato-biliairy disorders other than hepatitis
    • G01N2800/085Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin

Definitions

  • the present invention relates to a method for evaluating fatty liver disease, a fatty liver disease evaluation apparatus, a fatty liver disease evaluation method, a fatty liver disease evaluation program, using an amino acid concentration in blood (including plasma, serum, etc.), Fatty liver disease evaluation system, information communication terminal device, and a method for searching for a substance for preventing or improving fatty liver disease that searches for a substance that prevents fatty liver disease or improves the state of fatty liver disease is there.
  • NASH non-alcoholic steatohepatitis: non-alcoholic fatty liver disease
  • NAFLD non-alcoholic fatty liver disease: non-alcoholic fatty liver disease
  • liver tissue with liver history similar to alcoholic liver injury, despite no history of alcohol consumption and non-infection with hepatitis virus Yes (Non-Patent Document 1).
  • Liver damage mainly characterized by large droplets of liver fat is called NAFLD.
  • NAFLD also has a simple fatty liver with a good prognosis and progressive and eventually cirrhosis. It is classified as NASH (Non-Patent Document 1).
  • NASH neurodegenerative disease
  • 60-70% are NAFLD type 1
  • 20-25% are NAFLD type 3 or 4 (ie NASH)
  • 2-3% are cirrhosis (ie NASH Stage 4)
  • the frequency of dyslipidemia, hypertension, and hyperglycemia in NASH is 60%, 60%, and 30%, respectively, and the frequency of metabolic syndrome is as high as about 50%.
  • Fatty liver which is the basis of NASH and NAFLD, is seen in 20-30% of all examinees, and has been on the rise in recent years, just like metabolic syndrome.
  • NAFLD is seen in 8% of the screening examinees, and the frequency of NASH is estimated to be 0.5-1% of adults.
  • the prognosis of NASH is poor.
  • fibrosis has progressed to 25% in 5 years and 15% has progressed to cirrhosis.
  • the survival rate of NASH is 67% in 5 years and 59% in 10 years.
  • liver biopsy A definitive diagnosis of NAFLD and NASH requires liver histology by liver biopsy.
  • liver biopsy has a high degree of invasiveness and is burdensome to the patient because it involves the patient's pain and further risks such as bleeding. Therefore, it is practically impossible to perform liver biopsy on 20-30% of all examinees who have fatty liver.
  • ALT> AST transaminase
  • ⁇ GTP increased AST / ALT ratio
  • fibrosis markers such as hyaluronic acid
  • platelet count decreased platelet count
  • insulin resistance HOMA index insulin resistance HOMA index
  • oxidative stress marker adipocyte pokine such as adiponectin
  • highly sensitive CRP have been reported (Non-patent Document 1 and Non-patent Document 2).
  • Fischer's ratio “(Leu + Val + Ile) / (Phe + Tyr)” proposed by Fischer, or the Fischer ratio used for clinical diagnosis for the same purpose as the Fischer ratio, is simply used as an index to use blood amino acid concentration for liver disease diagnosis.
  • BTR index “(Leu + Val + Ile) / Tyr” (Non-patent Document 3).
  • Patent Literature 1, Patent Literature 2, and Patent Literature 3 relating to a method for associating an amino acid concentration with a biological state are disclosed as prior patents.
  • Patent Document 1 discloses a method for diagnosing hepatitis using amino acids in blood and an index for the purpose of discriminating non-hepatitis from hepatitis C and hepatitis.
  • Patent Document 4 relating to an apparatus for evaluating the progression of a disease state of liver disease using an index formula consisting of a fractional expression with the amino acid concentration as a variable is disclosed.
  • Patent Document 5 relating to a method for evaluating metabolic syndrome using amino acid concentration
  • Patent Document 6 relating to a method for evaluating visceral fat accumulation using amino acid concentration, and glucose tolerance abnormality using amino acid concentration.
  • Patent Document 7 relating to a method for evaluating the state
  • Patent Document 8 relating to a method for evaluating the state of apparent obesity, hidden obesity, and obesity using amino acid concentrations are disclosed.
  • Non-Patent Literature 1 and Non-Patent Literature 2 do not have sufficient diagnostic performance, so it is difficult to apply the discrimination methods as established diagnostic methods.
  • the Fischer ratio and BTR index reported in Non-Patent Document 3 are used for diagnosis of hepatic encephalopathy in cirrhosis, sufficient accuracy can be obtained even if the Fischer ratio and BTR index are used for the diagnosis of NAFLD or NASH. Can't get.
  • the index formula groups disclosed in Patent Documents 1 to 8 are used for diagnosis of NAFLD or NASH, the diagnosis target is different, so that sufficient accuracy cannot be obtained.
  • the present invention has been made in view of the above problems, and uses an amino acid concentration in blood to accurately evaluate the state of fatty liver disease.
  • Liver disease evaluation device, fatty liver disease evaluation method, fatty liver disease evaluation program, fatty liver disease evaluation system, information communication terminal device, and fatty liver disease evaluation method It is an object of the present invention to provide a method for searching for a substance for preventing / ameliorating fatty liver disease, which can accurately search for a substance that can prevent or improve the state of fatty liver disease.
  • Amino acids are mainly metabolized in the liver, and the progression from fatty liver to NAFLD and NASH is considered to be strongly correlated with glucose metabolism, lipid metabolism, inflammatory response, and oxidative stress response. Therefore, if a blood amino acid that varies in response to changes in the histology of the liver in the state of NAFLD or NASH is identified, and if an index expression is found with the concentration of the identified blood amino acid as a variable, fatty liver, NAFLD , And NASH can be widely applied as a simple and effective discrimination method.
  • the present inventors have identified amino acid variables useful for discriminating fatty liver, NAFLD, and NASH positive groups based on the amino acid concentration in blood.
  • the present inventors have completed the present invention by finding a multivariate discriminant (function formula, index formula) for optimizing the discriminating ability between the two groups using the amino acid concentration as a variable.
  • the method for evaluating fatty liver disease obtains amino acid concentration data relating to the concentration value of amino acids in blood collected from an evaluation object. And the fatty acid containing at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis) based on the amino acid concentration data obtained in the obtaining step. And a concentration value reference evaluation step for evaluating the state of the liver disease.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Gln, Glu included in the amino acid concentration data acquired in the acquisition step. , Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser. Based on the concentration value, the NASH state is evaluated for the evaluation object. It is characterized by evaluating.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Gln, Glu included in the amino acid concentration data acquired in the acquisition step. , Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser, whether or not the NASH or non-NASH based on the concentration value
  • the method further includes a density value reference discrimination step for discriminating.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Gln, Glu included in the amino acid concentration data acquired in the acquisition step. , Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn. And evaluating the state of the NAFLD.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Gln, Glu included in the amino acid concentration data acquired in the acquisition step. , Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn.
  • the method further includes a density value reference determining step of determining whether the NAFLD or non-NAFLD.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Thr, Ser included in the amino acid concentration data acquired in the acquisition step. , Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn. It is characterized by evaluating the state of.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Thr, Ser included in the amino acid concentration data acquired in the acquisition step. , Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn.
  • the method further includes a concentration value reference determining step for determining whether or not the patient is non-fatty liver.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Gln, Glu included in the amino acid concentration data acquired in the acquisition step. , Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA, the state of the NASH and the NAFLD is evaluated for the evaluation object based on the concentration value It is characterized by doing.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Gln, Glu included in the amino acid concentration data acquired in the acquisition step. , Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA, based on the concentration value, the NASH or the non-NASH and the NAFLD It further includes a density value reference determining step for determining whether or not
  • the fatty liver disease evaluation method is the fatty liver disease evaluation method, wherein the concentration value reference evaluation step includes the amino acid concentration data acquired in the acquisition step, and the amino acid concentration.
  • the concentration value reference evaluation step includes the amino acid concentration data acquired in the acquisition step, and the amino acid concentration.
  • a discriminant value calculating step for calculating a discriminant value that is a value of the multivariate discriminant, and based on the discriminant value calculated in the discriminant value calculating step.
  • the evaluation object further includes: a discriminant value criterion evaluation step for evaluating the state of the fatty liver disease.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the multivariate discriminant is a logistic regression equation, a fractional equation, a linear discriminant, a multiple regression equation, a support vector, It is one of an expression created by a machine, an expression created by the Mahalanobis distance method, an expression created by a canonical discriminant analysis, and an expression created by a decision tree.
  • the multivariate discriminant is a logistic regression equation, a fractional equation, a linear discriminant, a multiple regression equation, a support vector, It is one of an expression created by a machine, an expression created by the Mahalanobis distance method, an expression created by a canonical discriminant analysis, and an expression created by a decision tree.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the discriminant value calculating step includes Gln, Glu, and Gln included in the amino acid concentration data acquired in the acquiring step.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the discriminant value criterion evaluating step is based on the discriminant value calculated in the discriminant value calculating step.
  • the method further includes a discriminant value criterion discriminating step for discriminating whether the evaluation target is the NASH or the non-NASH.
  • the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the multivariate discriminant includes Glu, Gln, Gly, Ala, Val, Tyr as the variable. It is a logistic regression equation.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the discriminant value calculating step includes Gln, Glu, and Gln included in the amino acid concentration data acquired in the acquiring step.
  • the discriminant value calculating step includes Gln, Glu, and Gln included in the amino acid concentration data acquired in the acquiring step.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the discriminant value criterion evaluating step is based on the discriminant value calculated in the discriminant value calculating step.
  • the method further includes a discriminant value criterion discriminating step for discriminating whether the evaluation object is the NAFLD or the non-NAFLD.
  • the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the multivariate discriminant includes Ser, Glu, Gly, Val, Tyr, and His as the variables. It is a logistic regression equation.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the discriminant value calculating step includes Thr, Ser, and the like included in the amino acid concentration data acquired in the acquiring step. At least one concentration value of Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn, and Thr, Ser, Glu, Pro, Gly, Ala , Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn based on the multivariate discriminant including at least one of the variables, the discriminant value is calculated, and the discrimination is performed. In the value criterion evaluation step, the evaluation target is evaluated based on the discriminant value calculated in the discriminant value calculation step. , Evaluating the state of the fatty liver, characterized by.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the discriminant value criterion evaluating step is based on the discriminant value calculated in the discriminant value calculating step.
  • the method further includes a discriminant value criterion discriminating step for discriminating whether the evaluation target is the fatty liver or non-fatty liver.
  • the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the multivariate discriminant includes Ser, Glu, Gly, Ala, Val, Tyr as the variable. It is a logistic regression equation.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the discriminant value calculating step includes Gln, Glu, and Gln included in the amino acid concentration data acquired in the acquiring step.
  • the discriminant value is calculated based on the multivariate discriminant including at least one of the variables as the variable
  • the discriminant value criterion evaluation step includes: Based on the calculated discriminant value, the state of the NASH and the NAFLD is evaluated for the evaluation object. Rukoto, characterized by.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the discriminant value criterion evaluating step is based on the discriminant value calculated in the discriminant value calculating step.
  • the method further includes a discriminant value criterion discriminating step for discriminating whether the evaluation target is the NASH or non-NASH and the NAFLD.
  • the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the multivariate discriminant includes Asn, Gln, Gly, Ala, Cit, and Met as the variables. It is a logistic regression equation.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the discriminant value criterion evaluating step is based on the discriminant value calculated in the discriminant value calculating step.
  • the method further includes a discriminant value criterion discriminating step for discriminating whether the evaluation object is non-NAFLD, NASH, or non-NASH and NAFLD.
  • the method for evaluating fatty liver disease is the method for evaluating fatty liver disease, wherein the multivariate discriminant includes Ser, Glu, Gly, Val, Tyr, and His as the variables.
  • a logistic regression equation and the logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as the variables.
  • the fatty liver disease evaluation apparatus includes a control unit and a storage unit, and includes, among evaluation targets, fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis).
  • a fatty liver disease evaluation apparatus that evaluates a state of fatty liver disease including at least one, wherein the control means includes the previously obtained amino acid concentration data of the evaluation object relating to the amino acid concentration value, and the concentration of the amino acid.
  • the discriminant value calculating unit that calculates the discriminant value that is the value of the multivariate discriminant, and the discriminant value calculated by the discriminant value calculating unit Based on the evaluation subject, the status of the fatty liver disease Further comprising a worthy discriminant value criterion-evaluating unit, characterized by.
  • the fatty liver disease evaluation apparatus is the fatty liver disease evaluation apparatus, wherein the control means is the fatty liver disease state relating to the amino acid concentration data and an index representing the state of the fatty liver disease.
  • a multivariate discriminant creating unit that creates the multivariate discriminant stored in the storage unit based on fatty liver disease state information stored in the storage unit including index data; and the multivariate discriminant
  • the creating means includes a candidate multivariate discriminant creating means for creating a candidate multivariate discriminant that is a candidate for the multivariate discriminant based on a predetermined formula creating method from the fatty liver disease state information; Based on the candidate multivariate discriminant verification means for verifying the candidate multivariate discriminant created by the variable discriminant creation means based on a predetermined verification method, and the verification results of the candidate multivariate discriminant verification means By selecting the variable of the candidate multivariate discriminant based on the variable selection method of the above (however, the variable of the candidate multivariate discriminant is selected based on the predetermined variable selection
  • the multivariate discriminant is selected from the plurality of candidate multivariate discriminants.
  • the multivariate discriminant may be created by selecting the candidate multivariate discriminant to be adopted.
  • the method for evaluating fatty liver disease according to the present invention includes a fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH, which are executed in an information processing apparatus including a control unit and a storage unit.
  • a fatty liver disease evaluation method for evaluating a state of fatty liver disease comprising at least one of (non-alcoholic steatohepatitis), the evaluation obtained in advance concerning the concentration value of amino acid, executed in the control means Based on the target amino acid concentration data and the multivariate discriminant stored in the storage means including the amino acid concentration as a variable, a discriminant value calculating step for calculating a discriminant value that is a value of the multivariate discriminant; and
  • the discriminant value calculated in the discriminant value calculating step Based on, per the evaluation object, comprise a discriminant value criterion evaluating step of evaluating the state of the fatty liver disease, characterized by.
  • the fatty liver disease evaluation program is performed on an information processing apparatus including a control unit and a storage unit.
  • the evaluation target includes fatty liver, NAFLD (non-alcoholic fatty liver disease), and A fatty liver disease evaluation program for evaluating a state of fatty liver disease including at least one of NASH (non-alcoholic steatohepatitis), which is obtained in advance with respect to an amino acid concentration value to be executed by the control means
  • a discriminant value calculating step for calculating a discriminant value which is a value of the multivariate discriminant based on the amino acid concentration data to be evaluated and the multivariate discriminant stored in the storage means including the amino acid concentration as a variable;
  • the discriminant value calculation step Based on the discriminant value calculated at flop, per the evaluation object, comprise a discriminant value criterion evaluating step of evaluating the state of the fatty liver disease, characterized by.
  • a recording medium according to the present invention is a computer-readable recording medium, and is characterized by recording the above-mentioned fatty liver disease evaluation program.
  • the fatty liver disease evaluation system comprises a control means and a storage means.
  • the evaluation target includes fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis).
  • a fatty liver disease evaluation apparatus that evaluates the state of fatty liver disease including at least one, and an information communication terminal device that includes a control means and provides the amino acid concentration data of the evaluation object related to the amino acid concentration value
  • the fatty liver disease evaluation system configured to be communicably connected via the information communication terminal device, wherein the control means of the information communication terminal device sends the amino acid concentration data to be evaluated to the fatty liver disease evaluation device
  • the control means of the fatty liver disease evaluation apparatus comprises: Amino acid concentration data receiving means for receiving the amino acid concentration data transmitted from the information communication terminal device, the amino acid concentration data received by the amino acid concentration data receiving means, and the storage means including the amino acid concentration as variables Based on the determined multivariate discriminant, a discriminant value calculating unit that calculates a discriminant value that is a value of the multivariate discriminant
  • the information communication terminal device is a state of fatty liver disease including at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis) per evaluation object.
  • An information communication terminal device that provides control means connected to a fatty liver disease evaluation device for assessing a network via a network, and provides the amino acid concentration data of the evaluation object related to the amino acid concentration value, The control means relates to amino acid concentration data transmitting means for transmitting the amino acid concentration data to be evaluated to the fatty liver disease evaluating apparatus, and state evaluation of the fatty liver disease transmitted from the fatty liver disease evaluating apparatus.
  • the evaluation result indicates that the fatty liver disease evaluation device receives the amino acid concentration data transmitted from the information communication terminal device, and the received amino acid concentration data, and the amino acid Based on the multivariate discriminant stored in the apparatus for assessing fatty liver disease including the concentration of the liver as a variable, a discriminant value that is the value of the multivariate discriminant is calculated, and the evaluation is performed based on the calculated discriminant value. It is a result of evaluating the state of the fatty liver disease per subject.
  • the fatty liver disease evaluation apparatus includes a control unit and a storage unit that are communicably connected to an information communication terminal device that provides amino acid concentration data to be evaluated regarding amino acid concentration values via a network.
  • the evaluation subject is a fatty liver disease evaluation for evaluating the status of fatty liver disease including at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis)
  • An amino acid concentration data receiving means for receiving the amino acid concentration data transmitted from the information communication terminal device, the amino acid concentration data received by the amino acid concentration data receiving means, and the amino acid Concentration of Based on the multivariate discriminant stored in the storage unit included as a variable, based on the discriminant value calculated by the discriminant value calculated by the discriminant value calculator and the discriminant value calculated by the discriminant value calculator
  • a discriminant value criterion-evaluating unit that evaluates the state of fatty liver disease for the evaluation object, and an evaluation result transmission that transmits the evaluation result of the evaluation object in the discriminant
  • the method for searching for a substance for preventing / ameliorating fatty liver disease is an amino acid related to the concentration value of amino acids in blood collected from an evaluation subject to which a desired substance group consisting of one or more substances is administered.
  • a desired substance group consisting of one or more substances is administered.
  • the desired substance group has the fatty liver disease Prevent or treat the condition of fatty liver disease Characterized in that it comprises a a judgment step of judging whether one which good, the.
  • amino acid concentration data relating to the concentration value of amino acids in blood collected from an evaluation object is obtained, and based on the obtained amino acid concentration data, fatty acid liver, NAFLD (non-alcoholic fatity river) is obtained for the evaluation object. disease), and the status of fatty liver disease including at least one of NASH (non-alcoholic steatohepatitis).
  • At least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data is evaluated for each evaluation target. This produces an effect that the NASH state can be accurately evaluated using the amino acid concentration related to the NASH state among the amino acid concentrations in the blood.
  • Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr which are included in the amino acid concentration data.
  • the state of NAFLD is evaluated for each evaluation target. Accordingly, the NAFLD state can be accurately evaluated using the amino acid concentration related to the NAFLD state among the amino acid concentrations in the blood.
  • Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr which are included in the amino acid concentration data.
  • the evaluation target is NAFLD or non-NAFLD.
  • the amino acid concentration useful for the 2-group discrimination between NAFLD and non-NAFLD among the amino acid concentrations in the blood is utilized, and this has the effect that the 2-group discrimination can be accurately performed.
  • At least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data Based on one concentration value, it is discriminated whether the subject of evaluation is fatty liver or non-fatty liver.
  • the amino acid concentration useful for the 2-group discrimination between fatty liver and non-fatty liver among the amino acid concentrations in the blood can be used, and this 2-group discrimination can be accurately performed.
  • the present invention based on at least one concentration value among Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA contained in amino acid concentration data. Then, the state of NASH and NAFLD is evaluated for each evaluation object. This produces an effect that the state of NASH and NAFLD can be accurately evaluated using the concentration of amino acids related to the state of NASH and NAFLD among the concentrations of amino acids in blood.
  • the present invention based on at least one concentration value among Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA contained in amino acid concentration data.
  • the evaluation target is NASH or non-NASH and NAFLD.
  • the amino acid concentration useful for the 2-group discrimination between NASH and simple fatty liver among the amino acid concentrations in the blood can be used, and this 2-group discrimination can be accurately performed.
  • a discriminant value that is the value of the multivariate discriminant is calculated, and the calculated discriminant value Based on the above, the status of fatty liver disease is evaluated for each evaluation subject.
  • the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable can be used to produce an effect that the state of fatty liver disease can be accurately evaluated.
  • the multivariate discriminant is a logistic regression equation, a fractional equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, an equation created by the Mahalanobis distance method, a canonical discriminant.
  • a multivariate discriminant including at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser as a variable.
  • the discriminant value is calculated, and the state of NASH is evaluated for each evaluation object based on the calculated discriminant value.
  • the NASH state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NASH state.
  • the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between NASH and non-NASH is used, and this has the effect that the two-group discrimination can be performed with high accuracy.
  • the multivariate discriminant is a logistic regression equation including Glu, Gln, Gly, Ala, Val, and Tyr as variables. Accordingly, the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH is used, and this has the effect that the two-group discrimination can be performed with higher accuracy.
  • Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr which are included in the amino acid concentration data.
  • a discriminant value is calculated based on a multivariate discriminant including one as a variable, and the state of NAFLD is evaluated for each evaluation object based on the calculated discriminant value. Thereby, the NAFLD state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NAFLD state.
  • the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between NAFLD and non-NAFLD can be used to achieve the effect that the two-group discrimination can be performed with high accuracy.
  • the multivariate discriminant is a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables.
  • the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NAFLD and non-NAFLD is used, and this has the effect that the two-group discrimination can be performed more accurately.
  • a discriminant value is calculated based on the discriminant, and the state of fatty liver is evaluated for each evaluation object based on the calculated discriminant value. This produces an effect that the state of fatty liver can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of fatty liver.
  • the evaluation target is fatty liver or non-fatty liver based on the discriminant value.
  • the discriminant value obtained by the multivariate discriminant useful for discriminating between the two groups of fatty liver and non-fatty liver is used, and the effect that the two-group discrimination can be performed with high accuracy is achieved.
  • the multivariate discriminant is a logistic regression equation including Ser, Glu, Gly, Ala, Val, and Tyr as variables. Accordingly, the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver is used, and this has the effect that the two-group discrimination can be performed with higher accuracy.
  • the NASH and NAFLD states can be accurately evaluated using the discriminant values obtained by the multivariate discriminant having a significant correlation with the NASH and NAFLD states.
  • the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between NASH and simple fatty liver can be used to achieve the effect that the two-group discrimination can be performed with high accuracy.
  • the multivariate discriminant is a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables.
  • the two-group discrimination can be performed more accurately by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver.
  • the three-group discrimination can be performed with high accuracy by using the discriminant value obtained by the multivariate discriminant useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver.
  • the multivariate discriminant includes logistic regression equations including Ser, Glu, Gly, Val, Tyr, and His as variables, and logistics including Asn, Gln, Gly, Ala, Cit, and Met as variables. It is a regression equation.
  • the three-group discrimination can be performed more accurately by using the discriminant value obtained by the multivariate discriminant particularly useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver. .
  • the storage means is based on the fatty liver disease state information stored in the storage means including the amino acid concentration data and the fatty liver disease state index data relating to the index representing the state of fatty liver disease.
  • a multivariate discriminant to be stored may be created. Specifically, (1) a candidate multivariate discriminant is created from fatty liver disease state information based on a predetermined formula creation method, and (2) the created candidate multivariate discriminant is based on a predetermined verification method.
  • variable of a candidate multivariate discriminant By selecting a variable of a candidate multivariate discriminant from the verification result based on a predetermined variable selection method (however, the candidate is based on the predetermined variable selection method without considering the verification result) A variable of the multivariate discriminant may be selected.), A combination of amino acid concentration data included in the fatty liver disease state information used when creating the candidate multivariate discriminant is selected, and (4) (1) By selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from a plurality of candidate multivariate discriminants based on the verification results accumulated by repeatedly executing (2) and (3), A variable discriminant may be created. Thereby, there exists an effect that the multivariate discriminant optimal for the state evaluation of fatty liver disease can be created.
  • the computer since the fatty liver disease evaluation program recorded on the recording medium is read and executed by the computer, the computer executes the fatty liver disease evaluation program. There is an effect that can be obtained.
  • amino acid concentration data relating to amino acid concentration values collected from an evaluation subject to which a desired substance group consisting of one or a plurality of substances is administered is obtained, and the obtained amino acid concentration data is obtained.
  • the evaluation target was evaluated for the status of fatty liver disease including at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis).
  • the concentration of amino acids in blood is used to determine Using a method for assessing fatty liver disease that can accurately assess the condition, Substances which improve the condition or fatty liver disease is prevented ⁇ liver disease is an effect that it is possible to search accurately.
  • the state of fatty liver disease is partially It is possible to select an existing animal model that reflects and an effective drug at an early stage in clinical practice.
  • lipids in addition to the concentration of amino acids, other biological information (for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, ⁇ Blood pressure value, gender, age, liver disease index, eating habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
  • biological information for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, ⁇ Blood pressure value, gender, age, liver disease index, eating habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
  • the present invention when assessing the state of fatty liver disease, as a variable in the multivariate discriminant, in addition to the amino acid concentration, other biological information (for example, sugars, lipids, proteins, peptides, minerals, hormones, etc.) Biological metabolites and biological indices such as blood glucose level, blood pressure level, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
  • FIG. 1 is a principle configuration diagram showing the basic principle of the present invention.
  • FIG. 2 is a flowchart showing an example of the method for evaluating fatty liver disease according to the first embodiment.
  • FIG. 3 is a principle configuration diagram showing the basic principle of the present invention.
  • FIG. 4 is a diagram illustrating an example of the overall configuration of the present system.
  • FIG. 5 is a diagram showing another example of the overall configuration of the present system.
  • FIG. 6 is a block diagram showing an example of the configuration of the fatty liver disease evaluation apparatus 100 of the present system.
  • FIG. 7 is a diagram illustrating an example of information stored in the user information file 106a.
  • FIG. 8 is a diagram showing an example of information stored in the amino acid concentration data file 106b.
  • FIG. 9 is a diagram illustrating an example of information stored in the fatty liver disease state information file 106c.
  • FIG. 10 is a diagram illustrating an example of information stored in the designated fatty liver disease state information file 106d.
  • FIG. 11 is a diagram illustrating an example of information stored in the candidate multivariate discriminant file 106e1.
  • FIG. 12 is a diagram illustrating an example of information stored in the verification result file 106e2.
  • FIG. 13 is a diagram illustrating an example of information stored in the selected fatty liver disease state information file 106e3.
  • FIG. 14 is a diagram illustrating an example of information stored in the multivariate discriminant file 106e4.
  • FIG. 15 is a diagram illustrating an example of information stored in the discrimination value file 106f.
  • FIG. 16 is a diagram illustrating an example of information stored in the evaluation result file 106g.
  • FIG. 17 is a block diagram showing a configuration of the multivariate discriminant-preparing part 102h.
  • FIG. 18 is a block diagram illustrating a configuration of the discriminant value criterion-evaluating unit 102j.
  • FIG. 19 is a block diagram illustrating an example of the configuration of the client apparatus 200 of the present system.
  • FIG. 20 is a block diagram showing an example of the configuration of the database apparatus 400 of this system.
  • FIG. 21 is a flowchart showing an example of fatty liver disease evaluation service processing performed in the present system.
  • FIG. 22 is a flowchart showing an example of multivariate discriminant creation processing performed by the fatty liver disease evaluation apparatus 100 of the present system.
  • FIG. 23 is a principle configuration diagram showing the basic principle of the present invention.
  • FIG. 24 is a flowchart illustrating an example of a method for searching for a substance for preventing / ameliorating fatty liver disease according to the third embodiment.
  • FIG. 25 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between fatty liver positive and fatty liver negative.
  • FIG. 26 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between fatty liver positive and fatty liver negative.
  • FIG. 27 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between fatty liver positive and fatty liver negative.
  • FIG. 28 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between fatty liver positive and fatty liver negative.
  • FIG. 29 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between NAFLD positive and NAFLD negative.
  • FIG. 30 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between NAFLD positive and NAFLD negative.
  • FIG. 31 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between NAFLD positive and NAFLD negative.
  • FIG. 32 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between NAFLD positive and NAFLD negative.
  • FIG. 33 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between NASH positive and NASH negative.
  • FIG. 34 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between NASH positive and NASH negative.
  • FIG. 35 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between NASH positive and NASH negative.
  • FIG. 36 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between NASH positive and NASH negative.
  • FIG. 37 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between NASH positive and simple fatty liver.
  • FIG. 38 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between NASH positive and simple fatty liver.
  • FIG. 39 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between NASH positive and simple fatty liver.
  • FIG. 40 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between NASH positive and simple fatty liver.
  • FIG. 41 is a diagram showing discrimination results for discrimination between NAFLD negative, simple fatty liver, and NASH positive.
  • FIG. 42 is a diagram showing details of a discrimination result for discrimination between NAFLD negative, simple fatty liver, and NASH positive.
  • an embodiment (first embodiment) of an evaluation method for fatty liver disease according to the present invention an apparatus for evaluating fatty liver disease, an evaluation method for fatty liver disease, an evaluation program for fatty liver disease, Embodiment of Recording Medium, Fatty Liver Disease Evaluation System, and Information Communication Terminal Device (Second Embodiment), and Embodiment of Method for Searching for Substance for Preventing / Improving Fatty Liver Disease According to the Present Invention (Third Embodiment) Embodiment) will be described in detail with reference to the drawings. In addition, this invention is not limited by this Embodiment.
  • FIG. 1 is a principle configuration diagram showing the basic principle of the present invention.
  • amino acid concentration data relating to the concentration value of amino acids in blood (eg, including plasma, serum, etc.) collected from an evaluation target is acquired (step S11).
  • amino acid concentration data measured by a company or the like that performs amino acid concentration measurement may be acquired.
  • the following (A) or (B) may be obtained from blood collected from an evaluation target.
  • Amino acid concentration data may be obtained by measuring amino acid concentration data by a measurement method.
  • the unit of amino acid concentration may be obtained by, for example, molar concentration, weight concentration, or by adding / subtracting / subtracting an arbitrary constant to / from these concentrations.
  • LC-MS liquid chromatography mass spectrometry The amino acid concentration was analyzed by a total (LC-MS) (see International Publication No. 2003/069328 and International Publication No. 2005/116629).
  • amino acid concentration When measuring the amino acid concentration, sulfosalicylic acid was added to remove the protein, and then the amino acid concentration was analyzed by an amino acid analyzer based on the post-column derivatization method using a ninhydrin reagent.
  • the fatty liver containing at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis) is evaluated based on the amino acid concentration data obtained in step S11.
  • the state of the disease is evaluated (Step S12).
  • amino acid concentration data relating to the concentration value of amino acids in blood collected from an evaluation object is obtained, and based on the obtained amino acid concentration data of the evaluation object, fatty liver, NAFLD, and Assess the status of fatty liver disease comprising at least one of NASH.
  • the state of fatty liver disease can be accurately evaluated using the concentration of amino acids in blood.
  • step S12 data such as missing values and outliers may be removed from the amino acid concentration data acquired in step S11. Thereby, the state of fatty liver disease can be more accurately evaluated.
  • step S12 among the Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data acquired in step S11.
  • the state of NASH may be evaluated for the evaluation target based on at least one concentration value.
  • the state of NASH can be accurately evaluated using the concentration of amino acids related to the state of NASH among the concentrations of amino acids in blood.
  • the amino acid concentration useful for the two-group discrimination of NASH and non-NASH among the amino acid concentrations in the blood can be used to accurately perform the two-group discrimination.
  • step S12 Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser included in the amino acid concentration data acquired in step S11. , Thr, Asn, the state of NAFLD may be evaluated for each evaluation object based on at least one concentration value. Thereby, the state of NAFLD can be accurately evaluated using the concentration of amino acids related to the state of NAFLD among the concentrations of amino acids in blood. Specifically, among Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn included in the amino acid concentration data.
  • the evaluation target is NAFLD or non-NAFLD.
  • the amino acid concentration useful for the 2-group discrimination between NAFLD and non-NAFLD among the amino acid concentrations in the blood can be used to accurately perform the 2-group discrimination.
  • step S12 Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data acquired in step S11.
  • the state of fatty liver may be evaluated for each evaluation object based on at least one concentration value. Thereby, the state of fatty liver can be accurately evaluated using the concentration of amino acids related to the state of fatty liver among the concentrations of amino acids in blood. Specifically, at least one concentration of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data.
  • the amino acid concentration useful for the 2-group discrimination between fatty liver and non-fatty liver among the amino acid concentrations in the blood can be used to accurately perform the 2-group discrimination.
  • step S12 at least one concentration of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data acquired in step S11.
  • the state of NASH and NAFLD may be evaluated for each evaluation target.
  • the state of NASH and NAFLD can be accurately evaluated using the concentration of amino acids related to the state of NASH and NAFLD among the concentrations of amino acids in blood.
  • the concentration value of at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data Whether the subject is NASH or non-NASH and NAFLD may be determined. This makes it possible to accurately perform this 2-group discrimination by using the amino acid concentrations useful for 2-group discrimination between NASH and simple fatty liver among the amino acid concentrations in the blood.
  • step S12 based on the amino acid concentration data acquired in step S11 and a preset multivariate discriminant including the amino acid concentration as a variable, a discriminant value that is the value of the multivariate discriminant is calculated and calculated. Based on the discriminated value, the state of fatty liver disease may be evaluated for each evaluation target. Thereby, the state of fatty liver disease can be accurately evaluated using the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable.
  • Multivariate discriminants are logistic regression formula, fractional formula, linear discriminant formula, multiple regression formula, formula created by support vector machine, formula created by Mahalanobis distance method, formula created by canonical discriminant analysis. Any one of the expressions created by the decision tree may be used. Thereby, the state of fatty liver disease can be more accurately evaluated using the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable.
  • step S12 among the Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data acquired in step S11.
  • Multivariate discrimination including at least one concentration value and at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser
  • a discriminant value may be calculated based on the formula, and the state of NASH may be evaluated for each evaluation object based on the calculated discriminant value. Thereby, the NASH state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NASH state.
  • the evaluation target is NASH or non-NASH based on the determination value.
  • the multivariate discriminant may be a logistic regression equation including Glu, Gln, Gly, Ala, Val, Tyr as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH.
  • step S12 Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser included in the amino acid concentration data acquired in step S11. , Thr, Asn, and Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn
  • the discriminant value may be calculated based on a multivariate discriminant including at least one of them as a variable, and the state of NAFLD may be evaluated for each evaluation object based on the calculated discriminant value.
  • the NAFLD state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NAFLD state.
  • it may be determined whether the evaluation target is NAFLD or non-NAFLD based on the determination value.
  • the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NAFLD and non-NAFLD.
  • step S12 Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data acquired in step S11. And at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn
  • a discriminant value may be calculated based on the multivariate discriminant included, and the state of fatty liver may be evaluated for each evaluation object based on the calculated discriminant value. Thereby, the state of fatty liver can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of fatty liver.
  • the discriminant value it may be discriminated whether the evaluation target is fatty liver or non-fatty liver. This makes it possible to accurately perform the two-group discrimination using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between fatty liver and non-fatty liver.
  • the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Ala, Val, and Tyr as variables.
  • the two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver.
  • step S12 at least one concentration of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data acquired in step S11.
  • the discriminant value is based on a multivariate discriminant including at least one of a value and Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA as a variable.
  • the state of NASH and NAFLD may be evaluated for each evaluation object based on the calculated discriminant value.
  • the state of NASH and NAFLD can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of NASH and NAFLD.
  • the evaluation target is NASH or “non-NASH and NAFLD” (simple fatty liver) based on the determination value.
  • NASH non-NASH and NAFLD
  • the multivariate discriminant may be a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver.
  • the evaluation target is non-NAFLD, NASH, or “non-NASH and NAFLD” based on the determination value. This makes it possible to accurately perform this three-group discrimination by using the discriminant value obtained by the multivariate discriminant useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver.
  • the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables, and a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables.
  • each multivariate discriminant described above is described in the method described in International Publication No. 2004/052191 which is an international application by the present applicant or International Publication No. 2006/098192 which is an international application by the present applicant. You may produce by the method (The multivariate discriminant creation process as described in 2nd Embodiment mentioned later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is preferably used for the evaluation of the state of fatty liver disease regardless of the unit of amino acid concentration in the amino acid concentration data as input data. be able to.
  • the multivariate discriminant generally means the format of formulas used in multivariate analysis. For example, fractional formulas, multiple regression formulas, multiple logistic regression formulas, linear discriminant functions, Mahalanobis distances, canonical discriminant functions, support vectors Includes machines, decision trees, etc. Also included are expressions as indicated by the sum of different forms of multivariate discriminants.
  • a coefficient and a constant term are added to each variable. In this case, the coefficient and the constant term are preferably real numbers, more preferably data.
  • each coefficient and its confidence interval may be obtained by multiplying it by a real number
  • the value of the constant term and its confidence interval may be obtained by adding / subtracting / multiplying / dividing an arbitrary real constant thereto.
  • the fractional expression means that the numerator of the fractional expression is represented by the sum of amino acids A, B, C,... And / or the denominator of the fractional expression is the sum of amino acids a, b, c,. It is represented by
  • the fractional expression includes a sum of fractional expressions ⁇ , ⁇ , ⁇ ,.
  • the fractional expression also includes a divided fractional expression.
  • An appropriate coefficient may be added to each amino acid used in the numerator and denominator.
  • amino acids used in the numerator and denominator may overlap.
  • an appropriate coefficient may be attached to each fractional expression.
  • the value of the coefficient of each variable and the value of the constant term may be real numbers.
  • the combination of the numerator variable and the denominator variable is generally reversed in the sign of the correlation with the target variable, but since the correlation is maintained, it can be considered equivalent in discriminability. Combinations of swapping numerator and denominator variables are also included.
  • this invention evaluates the state of fatty liver disease, in addition to the concentration of amino acids, other biological information (for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, ⁇ Blood pressure value, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
  • biological information for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, ⁇ Blood pressure value, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc.
  • the present invention when assessing the state of fatty liver disease, as a variable in the multivariate discriminant, in addition to the amino acid concentration, other biological information (for example, sugars, lipids, proteins, peptides, minerals, hormones, etc.) Biological metabolites and biological indices such as blood glucose level, blood pressure level, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
  • FIG. 2 is a flowchart showing an example of the method for evaluating fatty liver disease according to the first embodiment.
  • amino acid concentration data relating to the concentration value of amino acids in blood collected from individuals such as animals and humans is acquired (step SA11).
  • step SA11 amino acid concentration data measured by a company or the like that performs amino acid concentration measurement may be acquired, and measurement such as (A) or (B) described above is performed from blood collected from an evaluation target.
  • Amino acid concentration data may be obtained by measuring amino acid concentration data by a method.
  • step SA12 data such as missing values and outliers are removed from the amino acid concentration data of the individual obtained in step SA11 (step SA12).
  • step SA12 based on the amino acid concentration data of individuals from which data such as missing values and outliers have been removed in step SA12, the following is shown for each individual: ⁇ 15. Any one of these determinations is executed (step SA13).
  • Discrimination between NASH, simple fatty liver and non-NAFLD Concentration of at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro and ABA contained in amino acid concentration data
  • the discriminant value is based on a multivariate discriminant including at least one of a value and Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA as a variable.
  • the multivariate discriminant used in step SA13 is a logistic regression equation, a fractional equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, an equation created by the Mahalanobis distance method, and a canonical discriminant. Any one of an expression created by analysis and an expression created by a decision tree may be used.
  • the multivariate discriminant used in the discriminant may be a logistic regression equation including Glu, Gln, Gly, Ala, Val, Tyr as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH.
  • the multivariate discriminant used in discriminating the above may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables.
  • the multivariate discriminant used in this discrimination may be a logistic regression equation including Ser, Glu, Gly, Ala, Val, and Tyr as variables.
  • the two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver.
  • the multivariate discriminant used in the discriminant may be a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver. Further, the above-mentioned 15.
  • the multivariate discriminant used for discriminating is a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables, and a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Good. Thereby, this three-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver.
  • Each multivariate discriminant described above is a method described in International Publication No. 2004/052191 which is an international application by the present applicant or a method described in International Publication No. 2006/098192 which is an international application by the present applicant. It may be created by (multivariate discriminant creation processing described in the second embodiment to be described later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is preferably used for the evaluation of the state of fatty liver disease regardless of the unit of amino acid concentration in the amino acid concentration data as input data. be able to.
  • FIG. 3 is a principle configuration diagram showing the basic principle of the present invention.
  • control unit obtains the amino acid concentration data of the evaluation target (for example, an individual such as an animal or a human) previously obtained with respect to the amino acid concentration value, and the multivariate discriminant stored in the storage unit for varying the amino acid concentration. Based on, a discriminant value that is the value of the multivariate discriminant is calculated (step S21).
  • the evaluation target for example, an individual such as an animal or a human
  • At least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis) is evaluated with respect to the evaluation target based on the discriminant value calculated in step S21 by the control unit.
  • the state of fatty liver disease including one is evaluated (step S22).
  • the discriminant value that is the value of the multivariate discriminant is calculated, and the calculated discriminant value Based on the above, the status of fatty liver disease including at least one of fatty liver, NAFLD, and NASH is evaluated for each evaluation subject. Thereby, the state of fatty liver disease can be accurately evaluated using the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable.
  • Multivariate discriminants are logistic regression formula, fractional formula, linear discriminant formula, multiple regression formula, formula created by support vector machine, formula created by Mahalanobis distance method, formula created by canonical discriminant analysis. Any one of the expressions created by the decision tree may be used. Thereby, the state of fatty liver disease can be more accurately evaluated using the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable.
  • step S21 at least one concentration value among Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data.
  • a multivariate discriminant including at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser as a variable,
  • a discriminant value may be calculated, and in step S22, the state of NASH may be evaluated for the evaluation target based on the discriminant value calculated in step S21.
  • the NASH state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NASH state. Specifically, it may be determined whether the evaluation target is NASH or non-NASH based on the determination value. This makes it possible to accurately perform the two-group discrimination using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between NASH and non-NASH.
  • the multivariate discriminant may be a logistic regression equation including Glu, Gln, Gly, Ala, Val, Tyr as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH.
  • step S21 Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn included in the amino acid concentration data. At least one of the concentration values and at least one of Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn included in the amino acid concentration data. At least one of the concentration values and at least one of Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn
  • the discriminant value may be calculated based on a multivariate discriminant including the variable, and in step S22, the NAFLD state may be evaluated for the evaluation target based on the discriminant value calculated in step S21.
  • the NAFLD state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NAFLD state.
  • it may be determined whether the evaluation target is NAFLD or non-NAFLD based on the determination value.
  • the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NAFLD and non-NAFLD.
  • step S21 at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data.
  • Multivariate discriminant including a concentration value and at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn as a variable
  • the discriminant value may be calculated based on the above, and in step S22, the state of fatty liver may be evaluated for the evaluation target based on the discriminant value calculated in step S21.
  • the state of fatty liver can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of fatty liver.
  • it may be discriminated whether the evaluation target is fatty liver or non-fatty liver.
  • the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Ala, Val, and Tyr as variables.
  • the two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver.
  • step S21 at least one concentration value of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data, and Gln,
  • a discriminant value is calculated based on a multivariate discriminant including at least one of Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro and ABA as a variable, and step S22 Then, based on the discriminant value calculated in step S21, the state of NASH and NAFLD may be evaluated for each evaluation target.
  • the state of NASH and NAFLD can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of NASH and NAFLD.
  • the evaluation target is NASH or “non-NASH and NAFLD” (simple fatty liver) based on the determination value.
  • NASH non-NASH and NAFLD
  • the multivariate discriminant may be a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver.
  • the evaluation target is non-NAFLD, NASH, or “non-NASH and NAFLD” based on the determination value. This makes it possible to accurately perform this three-group discrimination by using the discriminant value obtained by the multivariate discriminant useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver.
  • the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables, and a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables.
  • each multivariate discriminant described above is described in the method described in International Publication No. 2004/052191 which is an international application by the present applicant or International Publication No. 2006/098192 which is an international application by the present applicant. It may be created by a method (multivariate discriminant creation process described later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is preferably used for the evaluation of the state of fatty liver disease regardless of the unit of amino acid concentration in the amino acid concentration data as input data. be able to.
  • the multivariate discriminant generally means the format of formulas used in multivariate analysis. For example, fractional formulas, multiple regression formulas, multiple logistic regression formulas, linear discriminant functions, Mahalanobis distances, canonical discriminant functions, support vectors Includes machines, decision trees, etc. Also included are expressions as indicated by the sum of different forms of multivariate discriminants.
  • a coefficient and a constant term are added to each variable. In this case, the coefficient and the constant term are preferably real numbers, more preferably data.
  • each coefficient and its confidence interval may be obtained by multiplying it by a real number
  • the value of the constant term and its confidence interval may be obtained by adding / subtracting / multiplying / dividing an arbitrary real constant thereto.
  • the fractional expression means that the numerator of the fractional expression is represented by the sum of amino acids A, B, C,... And / or the denominator of the fractional expression is the sum of amino acids a, b, c,. It is represented by
  • the fractional expression includes a sum of fractional expressions ⁇ , ⁇ , ⁇ ,.
  • the fractional expression also includes a divided fractional expression.
  • An appropriate coefficient may be added to each amino acid used in the numerator and denominator.
  • amino acids used in the numerator and denominator may overlap.
  • an appropriate coefficient may be attached to each fractional expression.
  • the value of the coefficient of each variable and the value of the constant term may be real numbers.
  • the combination of the numerator variable and the denominator variable is generally reversed in the sign of the correlation with the target variable, but since the correlation is maintained, it can be considered equivalent in discriminability. Combinations of swapping numerator and denominator variables are also included.
  • this invention evaluates the state of fatty liver disease, in addition to the concentration of amino acids, other biological information (for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, ⁇ Blood pressure value, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
  • biological information for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, ⁇ Blood pressure value, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc.
  • the present invention when assessing the state of fatty liver disease, as a variable in the multivariate discriminant, in addition to the amino acid concentration, other biological information (for example, sugars, lipids, proteins, peptides, minerals, hormones, etc.) Biological metabolites and biological indices such as blood glucose level, blood pressure level, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
  • step 1 to step 4 the outline of the multivariate discriminant creation process (step 1 to step 4) will be described in detail. Note that the processing described here is merely an example, and the method of creating the multivariate discriminant is not limited to this.
  • the control unit creates a predetermined formula from the fatty liver disease state information stored in the storage unit including the amino acid concentration data and the fatty liver disease state index data relating to the index representing the state of fatty liver disease.
  • data having missing values or outliers may be removed from the fatty liver disease state information in advance.
  • Step 1 a plurality of different formula creation methods (principal component analysis, discriminant analysis, support vector machine, multiple regression analysis, logistic regression analysis, k-means method, cluster analysis, decision tree, from fatty liver disease state information
  • a plurality of candidate multivariate discriminants may be created in combination.
  • fatty liver disease state which is multivariate data composed of amino acid concentration data and fatty liver disease state index data obtained by analyzing blood obtained from many normal groups and fatty liver disease groups
  • a plurality of groups of candidate multivariate discriminants may be created in parallel for information using a plurality of different algorithms. For example, two different candidate multivariate discriminants may be created by performing discriminant analysis and logistic regression analysis simultaneously using different algorithms.
  • Candidate multivariate discrimination is performed by converting fatty liver disease state information using candidate multivariate discriminants created by principal component analysis and performing discriminant analysis on the converted fatty liver disease state information An expression may be created. Thereby, finally, an appropriate multivariate discriminant suitable for the diagnostic condition can be created.
  • the candidate multivariate discriminant created using principal component analysis is a linear expression composed of amino acid variables that maximizes the variance of all amino acid concentration data.
  • the candidate multivariate discriminant created using discriminant analysis is a higher-order formula (index or Including logarithm).
  • the candidate multivariate discriminant created using the support vector machine is a higher-order formula (including a kernel function) made up of amino acid variables that maximizes the boundary between groups.
  • the candidate multivariate discriminant created using multiple regression analysis is a higher-order expression composed of amino acid variables that minimizes the sum of distances from all amino acid concentration data.
  • a candidate multivariate discriminant created using logistic regression analysis is a fractional expression having a natural logarithm as a term, which is a linear expression composed of amino acid variables that maximize the likelihood.
  • the k-means method searches k neighborhoods of each amino acid concentration data, defines the largest group among the groups to which the neighboring points belong as the group to which the data belongs, This is a method of selecting an amino acid variable that best matches the group to which the group belongs.
  • Cluster analysis is a method of clustering (grouping) points that are closest to each other in all amino acid concentration data.
  • the decision tree is a technique for predicting a group of amino acid concentration data based on patterns that can be taken by amino acid variables having higher ranks by adding ranks to amino acid variables.
  • the present invention verifies (mutually verifies) the candidate multivariate discriminant created in step 1 based on a predetermined verification method in the control unit (step 2).
  • the candidate multivariate discriminant is verified for each candidate multivariate discriminant created in step 1.
  • step 2 the discrimination rate, sensitivity, specificity, information criterion of the candidate multivariate discriminant based on at least one of the bootstrap method, holdout method, N-fold method, leave one out method, etc.
  • the verification may be performed on at least one of ROC_AUC (area under the curve of the receiver characteristic curve) and the like.
  • the discrimination rate is the correct ratio of the fatty liver disease state evaluated by the present invention in all input data.
  • Sensitivity is the correct proportion of the fatty liver disease state evaluated in the present invention among the fatty liver disease states described in the input data.
  • the specificity is the correct proportion of the fatty liver disease state evaluated in the present invention among the normal fatty liver disease described in the input data.
  • the information criterion is the number of amino acid variables of the candidate multivariate discriminant prepared in Step 1, the state of fatty liver disease evaluated in the present invention, and the state of fatty liver disease described in the input data. It is the sum of the differences.
  • ROC_AUC area under the curve of the receiver characteristic curve
  • ROC receiver characteristic curve
  • the value of ROC_AUC is 1 in complete discrimination, and the closer this value is to 1, the higher the discriminability.
  • the predictability is an average of the discrimination rate, sensitivity, and specificity obtained by repeating the verification of the candidate multivariate discriminant.
  • Robustness is the variance of discrimination rate, sensitivity, and specificity obtained by repeating verification of candidate multivariate discriminants.
  • the present invention allows the control unit to select a candidate multivariate discriminant variable from the verification result in step 2 based on a predetermined variable selection method (however, the process The variable of the candidate multivariate discriminant may be selected based on a predetermined variable selection method without considering the verification result in 2.), fatty liver disease state used when creating the candidate multivariate discriminant A combination of amino acid concentration data included in the information is selected (step 3). Amino acid variables are selected for each candidate multivariate discriminant created in step 1. Thereby, the amino acid variable of a candidate multivariate discriminant can be selected appropriately. Then, Step 1 is executed again using the fatty liver disease state information including the amino acid concentration data selected in Step 3.
  • step 3 the amino acid variable of the candidate multivariate discriminant may be selected from the verification result in step 2 based on at least one of stepwise method, best path method, neighborhood search method, and genetic algorithm. .
  • the best path method is a method of selecting amino acid variables by sequentially reducing amino acid variables included in the candidate multivariate discriminant one by one and optimizing the evaluation index given by the candidate multivariate discriminant. is there.
  • the present invention repeatedly executes the above-described step 1, step 2 and step 3 in the control unit, and a plurality of candidate multivariate discriminants based on the verification results accumulated thereby.
  • a multivariate discriminant is created by selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from the equations (step 4).
  • candidate multivariate discriminants for example, selecting the optimal one from among candidate multivariate discriminants created by the same formula creation method, and selecting the optimum from all candidate multivariate discriminants Sometimes there is a choice.
  • the multivariate discriminant creation process based on fatty liver disease state information, candidate multivariate discriminant creation, candidate multivariate discriminant verification, and candidate multivariate discriminant variable selection
  • systematization systematization
  • the amino acid concentration is used for multivariate statistical analysis, and the variable selection method and cross-validation are combined to select the optimal and robust variable set. Extract the variable discriminant.
  • logistic regression, linear discrimination, support vector machine, Mahalanobis distance method, multiple regression analysis, cluster analysis, and the like can be used.
  • FIG. 4 is a diagram showing an example of the overall configuration of the present system.
  • FIG. 5 is a diagram showing another example of the overall configuration of the present system.
  • the present system includes a fatty liver disease evaluation apparatus 100 that evaluates the state of fatty liver disease for each evaluation object, and a client apparatus 200 that provides amino acid concentration data of the evaluation object relating to the amino acid concentration value. (Corresponding to the information communication terminal device of the present invention) is connected to be communicable via the network 300.
  • this system uses fatty liver disease used when creating a multivariate discriminant in the fatty liver disease evaluation apparatus 100, as shown in FIG.
  • the database apparatus 400 that stores state information, a multivariate discriminant used for evaluating the state of fatty liver disease, and the like may be configured to be communicably connected via the network 300. Accordingly, the fatty liver disease state is transferred from the fatty liver disease evaluation device 100 to the client device 200 or the database device 400 or from the client device 200 or the database device 400 to the fatty liver disease evaluation device 100 via the network 300.
  • the information relating to the state of fatty liver disease is information relating to values measured for specific items relating to the state of fatty liver disease in organisms including humans.
  • Information regarding the state of fatty liver disease is generated by the fatty liver disease evaluation device 100, the client device 200, and other devices (for example, various measuring devices), and is mainly stored in the database device 400.
  • FIG. 6 is a block diagram showing an example of the configuration of the fatty liver disease evaluation apparatus 100 of the present system, and conceptually shows only the portion related to the present invention in the configuration.
  • the fatty liver disease evaluation apparatus 100 includes a control unit 102 such as a CPU that comprehensively controls the fatty liver disease evaluation apparatus, a communication device such as a router, and a wired or wireless communication line such as a dedicated line.
  • a communication interface unit 104 that connects the fatty liver disease evaluation device to the network 300 so as to be communicable, a storage unit 106 that stores various databases, tables, files, and the like, and an input / output interface that connects to the input device 112 and the output device 114 And these units are communicably connected via an arbitrary communication path.
  • the fatty liver disease evaluation apparatus 100 may be configured in the same housing as various analysis apparatuses (for example, an amino acid analyzer or the like).
  • dispersion / integration of the fatty liver disease evaluation apparatus 100 is not limited to that shown in the figure, and all or a part thereof may be determined in arbitrary units according to various additions or according to functional load. It can be configured functionally or physically distributed and integrated.
  • the embodiments of this specification may be implemented in any combination, and the embodiments may be selectively implemented.
  • a part of the processing may be realized using CGI (Common Gateway Interface).
  • the storage unit 106 is a storage means, and for example, a memory device such as a RAM / ROM, a fixed disk device such as a hard disk, a flexible disk, an optical disk, or the like can be used.
  • the storage unit 106 stores a computer program for giving instructions to the CPU and performing various processes in cooperation with an OS (Operating System).
  • the storage unit 106 includes a user information file 106a, an amino acid concentration data file 106b, a fatty liver disease state information file 106c, a designated fatty liver disease state information file 106d, and multivariate discriminant-related information.
  • a database 106e, a discriminant value file 106f, and an evaluation result file 106g are stored.
  • the user information file 106a stores user information related to users.
  • FIG. 7 is a diagram illustrating an example of information stored in the user information file 106a.
  • the information stored in the user information file 106a includes a user ID for uniquely identifying a user and authentication for whether or not the user is a valid person.
  • the amino acid concentration data file 106b stores amino acid concentration data relating to amino acid concentration values.
  • FIG. 8 is a diagram showing an example of information stored in the amino acid concentration data file 106b.
  • the information stored in the amino acid concentration data file 106b is configured by associating an individual number for uniquely identifying an individual (sample) to be evaluated with amino acid concentration data. Yes.
  • the amino acid concentration data is treated as a numerical value, that is, a continuous scale, but the amino acid concentration data may be a nominal scale or an order scale. In the case of a nominal scale or an order scale, analysis may be performed by giving an arbitrary numerical value to each state.
  • amino acid concentration data includes other biological information (for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, etc. You may combine biomarkers such as habits, exercise habits, obesity levels, and disease histories.
  • the fatty liver disease state information file 106c stores fatty liver disease state information used when creating a multivariate discriminant.
  • FIG. 9 is a diagram illustrating an example of information stored in the fatty liver disease state information file 106c.
  • information stored in the fatty liver disease state information file 106c includes an individual number and an index (index T 1 , index T 2 , index T 3 ... )
  • Related fatty acid disease state index data (T) and amino acid concentration data are associated with each other.
  • fatty liver disease state index data and amino acid concentration data are treated as numerical values (that is, a continuous scale), but fatty liver disease state index data and amino acid concentration data may be nominal scales or order scales. .
  • fatty liver disease state index data is a known single state index serving as a marker for the state of fatty liver disease, and numerical data may be used.
  • the designated fatty liver disease state information file 106d stores the fatty liver disease state information designated by the fatty liver disease state information designation unit 102g described later.
  • FIG. 10 is a diagram illustrating an example of information stored in the designated fatty liver disease state information file 106d. As shown in FIG. 10, the information stored in the designated fatty liver disease state information file 106d is obtained by associating an individual number, designated fatty liver disease state index data, and designated amino acid concentration data with each other. It is configured.
  • the multivariate discriminant-related information database 106e includes a candidate multivariate discriminant file 106e1 for storing the candidate multivariate discriminant created by the candidate multivariate discriminant-preparing part 102h1 described below, and a candidate multivariate discriminant file 106e1 described later.
  • Selected fatty liver disease state information for storing fatty liver disease state information including a combination of a verification result file 106e2 for storing the verification result in the discriminant verification unit 102h2 and amino acid concentration data selected by the variable selection unit 102h3 to be described later
  • a file 106e3 and a multivariate discriminant file 106e4 that stores the multivariate discriminant created by the multivariate discriminant-preparing part 102h described later.
  • the candidate multivariate discriminant file 106e1 stores the candidate multivariate discriminant created by the candidate multivariate discriminant creation unit 102h1 described later.
  • FIG. 11 is a diagram illustrating an example of information stored in the candidate multivariate discriminant file 106e1.
  • information stored in the candidate multivariate discriminant file 106e1 includes a rank, a candidate multivariate discriminant (in FIG. 11, F 1 (Gly, Leu, Phe,%)) And F 2. (Gly, Leu, Phe,%), F 3 (Gly, Leu, Phe,...)) Are associated with each other.
  • FIG. 12 is a diagram illustrating an example of information stored in the verification result file 106e2.
  • the information stored in the verification result file 106e2 includes rank, candidate multivariate discriminant (in FIG. 12, F k (Gly, Leu, Phe,%) And F m (Gly, Le, Phe,%), Fl (Gly, Leu, Phe, etc) And the verification results of each candidate multivariate discriminant (for example, the evaluation value of each candidate multivariate discriminant). They are related to each other.
  • the selected fatty liver disease state information file 106e3 stores fatty liver disease state information including a combination of amino acid concentration data corresponding to variables selected by the variable selection unit 102h3 described later.
  • FIG. 13 is a diagram illustrating an example of information stored in the selected fatty liver disease state information file 106e3. As shown in FIG. 13, the information stored in the selected fatty liver disease state information file 106e3 includes an individual number, fatty liver disease state index data designated by the fatty liver disease state information designation unit 102g described later, Amino acid concentration data selected by a variable selection unit 102h3 described later is associated with each other.
  • the multivariate discriminant file 106e4 stores the multivariate discriminant created by the multivariate discriminant-preparing part 102h described later.
  • FIG. 14 is a diagram illustrating an example of information stored in the multivariate discriminant file 106e4.
  • the information stored in the multivariate discriminant file 106e4 includes the rank, the multivariate discriminant (in FIG. 14, F p (Phe,%) And F p (Gly, Leu, Phe). ), F k (Gly, Leu, Phe,...)), A threshold corresponding to each formula creation method, a verification result of each multivariate discriminant (for example, an evaluation value of each multivariate discriminant), Are related to each other.
  • the discriminant value file 106f stores the discriminant value calculated by the discriminant value calculator 102i described later.
  • FIG. 15 is a diagram illustrating an example of information stored in the discrimination value file 106f. As shown in FIG. 15, information stored in the discriminant value file 106f includes an individual number for uniquely identifying an individual (sample) to be evaluated and a rank (for uniquely identifying a multivariate discriminant). Number) and the discriminant value are associated with each other.
  • the evaluation result file 106g stores an evaluation result in a discriminant value criterion-evaluating unit 102j described later (specifically, a discrimination result in a discriminant value criterion-discriminating unit 102j1 described later).
  • FIG. 16 is a diagram illustrating an example of information stored in the evaluation result file 106g.
  • Information stored in the evaluation result file 106g includes an individual number for uniquely identifying an individual (sample) to be evaluated, amino acid concentration data of the evaluation target acquired in advance, and a discriminant value calculated by a multivariate discriminant. And the evaluation result regarding the evaluation of the state of fatty liver disease are associated with each other.
  • the storage unit 106 stores various types of Web data for providing the Web site to the client device 200, CGI programs, and the like as other information in addition to the information described above.
  • the Web data includes data for displaying various Web pages to be described later, and these data are formed as text files described in HTML or XML, for example.
  • a part file, a work file, and other temporary files for creating Web data are also stored in the storage unit 106.
  • the storage unit 106 stores audio for transmission to the client device 200 as an audio file such as WAVE format or AIFF format, and stores still images or moving images as image files such as JPEG format or MPEG2 format as necessary. Can be stored.
  • the communication interface unit 104 mediates communication between the fatty liver disease evaluation device 100 and the network 300 (or a communication device such as a router). That is, the communication interface unit 104 has a function of communicating data with other terminals via a communication line.
  • the input / output interface unit 108 is connected to the input device 112 and the output device 114.
  • a monitor including a home television
  • a speaker or a printer can be used as the output device 114 (hereinafter, the output device 114 may be described as the monitor 114).
  • the input device 112 a monitor that realizes a pointing device function in cooperation with a mouse can be used in addition to a keyboard, a mouse, and a microphone.
  • the control unit 102 has an internal memory for storing a control program such as an OS (Operating System), a program defining various processing procedures, and necessary data, and performs various information processing based on these programs. Execute. As shown in the figure, the control unit 102 is roughly divided into a request interpretation unit 102a, a browsing processing unit 102b, an authentication processing unit 102c, an e-mail generation unit 102d, a Web page generation unit 102e, a reception unit 102f, and fatty liver disease state information designation. Unit 102g, multivariate discriminant creation unit 102h, discriminant value calculator 102i, discriminant value criterion-evaluator 102j, result output unit 102k, and transmitter 102m.
  • OS Operating System
  • the control unit 102 removes data with missing values, removes data with many outliers, and lacks data with respect to fatty liver disease state information transmitted from the database device 400 and amino acid concentration data transmitted from the client device 200. Data processing such as removal of variables with a lot of valued data is also performed.
  • the request interpretation unit 102a interprets the request content from the client device 200 or the database device 400, and passes the processing to each unit of the control unit 102 according to the interpretation result.
  • the browsing processing unit 102b Upon receiving browsing requests for various screens from the client device 200, the browsing processing unit 102b generates and transmits Web data for these screens.
  • the authentication processing unit 102c makes an authentication determination.
  • the e-mail generation unit 102d generates an e-mail including various types of information.
  • the web page generation unit 102e generates a web page that the user browses on the client device 200.
  • the receiving unit 102f receives information (specifically, amino acid concentration data, fatty liver disease state information, multivariate discriminant, etc.) transmitted from the client device 200 or the database device 400 via the network 300.
  • the fatty liver disease state information designating unit 102g designates target fatty liver disease state index data and amino acid concentration data when creating a multivariate discriminant.
  • the multivariate discriminant creating unit 102h creates a multivariate discriminant based on the fatty liver disease state information received by the receiving unit 102f and the fatty liver disease state information specified by the fatty liver disease state information specifying unit 102g. . Specifically, the multivariate discriminant-preparing part 102h repeatedly executes the candidate multivariate discriminant-preparing part 102h1, the candidate multivariate discriminant-verifying part 102h2, and the variable selecting part 102h3 from the fatty liver disease state information. A multivariate discriminant is created by selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from a plurality of candidate multivariate discriminants based on the accumulated verification results.
  • the multivariate discriminant-preparing unit 102h selects a desired multivariate discriminant from the storage unit 106, A multivariate discriminant may be created.
  • the multivariate discriminant creation unit 102h creates a multivariate discriminant by selecting and downloading a desired multivariate discriminant from another computer device (for example, the database device 400) that stores the multivariate discriminant in advance. May be.
  • FIG. 17 is a block diagram showing the configuration of the multivariate discriminant-preparing part 102h, and conceptually shows only the part related to the present invention.
  • the multivariate discriminant creation unit 102h further includes a candidate multivariate discriminant creation unit 102h1, a candidate multivariate discriminant verification unit 102h2, and a variable selection unit 102h3.
  • the candidate multivariate discriminant-preparing part 102h1 creates a candidate multivariate discriminant that is a candidate for the multivariate discriminant from the fatty liver disease state information based on a predetermined formula creation method.
  • the candidate multivariate discriminant-preparing part 102h1 may create a plurality of candidate multivariate discriminants from a fatty liver disease state information by using a plurality of different formula creation methods.
  • the candidate multivariate discriminant verification unit 102h2 verifies the candidate multivariate discriminant created by the candidate multivariate discriminant creation unit 102h1 based on a predetermined verification method. Note that the candidate multivariate discriminant verification unit 102h2 determines the discriminant rate, sensitivity, and specificity of the candidate multivariate discriminant based on at least one of the bootstrap method, holdout method, N-fold method, and leave one out method. , Information criterion, ROC_AUC (area under the receiver characteristic curve) may be verified.
  • variable selection unit 102h3 creates a candidate multivariate discriminant by selecting a variable of the candidate multivariate discriminant based on a predetermined variable selection method from the verification result in the candidate multivariate discriminant verification unit 102h2.
  • a combination of amino acid concentration data included in the fatty liver disease state information to be used is selected.
  • the variable selection unit 102h3 may select a variable of the candidate multivariate discriminant from the verification result based on at least one of the stepwise method, the best path method, the neighborhood search method, and the genetic algorithm.
  • the discriminant value calculation unit 102 i determines the multivariate discriminant based on the multivariate discriminant created by the multivariate discriminant creation unit 102 h and the evaluation target amino acid concentration data received by the receiver 102 f.
  • the discriminant value which is a value is calculated.
  • Multivariate discriminants are logistic regression formula, fractional formula, linear discriminant formula, multiple regression formula, formula created by support vector machine, formula created by Mahalanobis distance method, formula created by canonical discriminant analysis. Any one of the expressions created by the decision tree may be used.
  • the value calculation unit 102i includes at least one concentration value among Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data.
  • a multivariate discriminant including at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser as a variable
  • the discrimination value may be calculated.
  • the multivariate discriminant may be a logistic regression equation including Glu, Gln, Gly, Ala, Val, Tyr as variables.
  • the discriminant value calculation unit 102i is at least 1 of Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn included in the amino acid concentration data.
  • the discriminant value may be calculated on the basis of the multivariate discriminant included.
  • the discriminant value criterion discriminating unit 102j1 determines whether or not NAFLD or non-NAFLD
  • the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables.
  • the value calculation unit 102i includes at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, and Orn included in the amino acid concentration data.
  • Multivariate discriminant including a concentration value and at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn as a variable
  • the discriminant value may be calculated based on the above.
  • the discriminant value criterion discriminating unit 102j1 discriminates whether it is fatty liver or non-fatty liver
  • the multivariate discriminant is a logistic regression equation including Ser, Glu, Gly, Ala, Val, Tyr as variables. Good.
  • the discriminant value criterion evaluation unit 102j evaluates the state of NASH and NAFLD (specifically, the discriminant value criterion discriminator 102j1 described later is NASH or “non-NASH and NAFLD” (simple fatty liver).
  • the discriminant value calculation unit 102i includes Gln, Glu, and Gly included in the amino acid concentration data.
  • Multivariate discriminant including at least one of ABA as a variable Based on may calculate the discrimination value.
  • the discriminant value criterion discriminating unit 102j1 discriminates whether it is NASH or “non-NASH and NAFLD” (simple fatty liver)
  • the multivariate discriminant is Asn, Gln, Gly, Ala, Cit, Met. May be a logistic regression equation including as a variable.
  • the discriminant value criterion discriminating unit 102j1 discriminates whether or not it is non-NAFLD, NASH, or “non-NASH and NAFLD”
  • the multivariate discriminant uses Ser, Glu, Gly, Val, Tyr, and His as variables.
  • a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables.
  • the discriminant value criterion-evaluating unit 102j is evaluated for fatty liver disease (specifically, at least one of NASH, NAFLD, and fatty liver). Assess the condition.
  • the discrimination value criterion evaluation unit 102j further includes a discrimination value criterion discrimination unit 102j1.
  • FIG. 18 is a block diagram showing the configuration of the discriminant value criterion-evaluating unit 102j, and conceptually shows only the portion related to the present invention.
  • the discriminant value criterion discriminating unit 102j1 discriminates whether the evaluation target is NASH or non-NASH, discriminates whether it is NAFLD or non-NAFLD, fatty liver or non-fatty liver Whether it is NASH or “non-NASH and NAFLD” (simple fatty liver), or whether it is non-NAFLD, NASH, or “non-NASH and NAFLD” To do. Specifically, the discriminant value criterion discriminating unit 102j1 executes any one of these discriminators for each evaluation target by comparing the discriminant value with a preset threshold value (cut-off value). .
  • the result output unit 102k displays the processing results in the respective processing units of the control unit 102 (evaluation results in the discrimination value criterion evaluation unit 102j (specifically, discrimination results in the discrimination value criterion discrimination unit 102j1)). Output) to the output device 114.
  • the transmission unit 102m transmits the evaluation result to the client apparatus 200 that is the transmission source of the amino acid concentration data to be evaluated, or the multivariate discriminant created by the fatty liver disease evaluation apparatus 100 to the database apparatus 400 Send evaluation results.
  • FIG. 19 is a block diagram showing an example of the configuration of the client apparatus 200 of the present system, and conceptually shows only the portion related to the present invention in the configuration.
  • the client device 200 includes a control unit 210, a ROM 220, an HD 230, a RAM 240, an input device 250, an output device 260, an input / output IF 270, and a communication IF 280. These units are communicably connected via an arbitrary communication path. Has been.
  • the control unit 210 includes a web browser 211, an electronic mailer 212, a reception unit 213, and a transmission unit 214.
  • the web browser 211 performs browse processing for interpreting the web data and displaying the interpreted web data on a monitor 261 described later.
  • the Web browser 211 may be plugged in with various software such as a stream player having a function of receiving, displaying, and feeding back a stream video.
  • the electronic mailer 212 transmits and receives electronic mail according to a predetermined communication protocol (for example, SMTP (Simple Mail Transfer Protocol), POP3 (Post Office Protocol version 3), etc.).
  • the receiving unit 213 receives various information such as the evaluation result transmitted from the fatty liver disease evaluation apparatus 100 via the communication IF 280.
  • the transmission unit 214 transmits various types of information such as evaluation target amino acid concentration data to the fatty liver disease evaluation apparatus 100 via the communication IF 280.
  • the input device 250 is a keyboard, a mouse, a microphone, or the like.
  • a monitor 261 which will be described later, also realizes a pointing device function in cooperation with the mouse.
  • the output device 260 is an output unit that outputs information received via the communication IF 280, and includes a monitor (including a home television) 261 and a printer 262. In addition, the output device 260 may be provided with a speaker or the like.
  • the input / output IF 270 is connected to the input device 250 and the output device 260.
  • the communication IF 280 connects the client device 200 and the network 300 (or a communication device such as a router) so that they can communicate with each other.
  • the client device 200 is connected to the network 300 via a communication device such as a modem, TA, or router and a telephone line, or via a dedicated line.
  • the client apparatus 200 can access the fatty liver disease evaluation apparatus 100 according to a predetermined communication protocol.
  • an information processing device for example, a known personal computer, workstation, home game device, Internet TV, PHS terminal, portable terminal, mobile object
  • peripheral devices such as a printer, a monitor, and an image scanner as necessary.
  • the client device 200 may be realized by installing software (including programs, data, and the like) that realizes a Web data browsing function and an e-mail function in a communication terminal / information processing terminal such as a PDA).
  • control unit 210 of the client device 200 may be realized by a CPU and a program that is interpreted and executed by the CPU and all or any part of the processing performed by the control unit 210.
  • the ROM 220 or the HD 230 stores computer programs for giving instructions to the CPU and performing various processes in cooperation with an OS (Operating System).
  • the computer program is executed by being loaded into the RAM 240, and constitutes the control unit 210 in cooperation with the CPU.
  • the computer program may be recorded in an application program server connected to the client apparatus 200 via an arbitrary network, and the client apparatus 200 may download all or a part thereof as necessary. .
  • all or any part of the processing performed by the control unit 210 may be realized by hardware such as wired logic.
  • the network 300 has a function of connecting the fatty liver disease evaluation apparatus 100, the client apparatus 200, and the database apparatus 400 so that they can communicate with each other.
  • the network 300 is connected to the Internet, an intranet, a LAN (including both wired / wireless), and the like. is there.
  • the network 300 includes a VAN, a personal computer communication network, a public telephone network (including both analog / digital), a dedicated line network (including both analog / digital), a CATV network, and a mobile line switching network.
  • mobile packet switching network including IMT2000 system, GSM (registered trademark) system or PDC / PDC-P system
  • wireless paging network including local wireless network such as Bluetooth (registered trademark)
  • PHS network including CS, BS or ISDB
  • satellite A communication network including CS, BS or ISDB
  • FIG. 20 is a block diagram showing an example of the configuration of the database apparatus 400 of this system, and conceptually shows only the portion related to the present invention in the configuration.
  • the database device 400 is a fatty liver disease state information used when creating a multivariate discriminant in the fatty liver disease evaluation device 100 or the database device, a multivariate discriminant created in the fatty liver disease evaluation device 100, It has a function of storing evaluation results and the like in the fatty liver disease evaluation apparatus 100.
  • the database device 400 includes a control unit 402 such as a CPU that comprehensively controls the database device, a communication device such as a router, and a wired or wireless communication circuit such as a dedicated line.
  • a communication interface unit 404 that connects the apparatus to the network 300 to be communicable, a storage unit 406 that stores various databases, tables, and files (for example, files for Web pages), and an input unit that connects to the input unit 412 and the output unit 414. And an output interface unit 408. These units are communicably connected via an arbitrary communication path.
  • the storage unit 406 is a storage means, and for example, a memory device such as a RAM / ROM, a fixed disk device such as a hard disk, a flexible disk, an optical disk, or the like can be used.
  • the storage unit 406 stores various programs used for various processes.
  • the communication interface unit 404 mediates communication between the database device 400 and the network 300 (or a communication device such as a router). That is, the communication interface unit 404 has a function of communicating data with other terminals via a communication line.
  • the input / output interface unit 408 is connected to the input device 412 and the output device 414.
  • the output device 414 in addition to a monitor (including a home TV), a speaker or a printer can be used as the output device 414 (hereinafter, the output device 414 may be described as the monitor 414).
  • the input device 412 can be a monitor that realizes a pointing device function in cooperation with the mouse.
  • the control unit 402 has an internal memory for storing a control program such as an OS (Operating System), a program that defines various processing procedures, and necessary data, and performs various information processing based on these programs. Execute. As shown in the figure, the control unit 402 is roughly divided into a request interpreting unit 402a, a browsing processing unit 402b, an authentication processing unit 402c, an e-mail generating unit 402d, a Web page generating unit 402e, and a transmitting unit 402f.
  • a control program such as an OS (Operating System)
  • OS Operating System
  • the request interpretation unit 402a interprets the request content from the fatty liver disease evaluation apparatus 100, and passes the processing to each unit of the control unit 402 according to the interpretation result.
  • the browsing processing unit 402b Upon receiving browsing requests for various screens from the fatty liver disease evaluation apparatus 100, the browsing processing unit 402b generates and transmits Web data for these screens.
  • the authentication processing unit 402c receives an authentication request from the fatty liver disease evaluation apparatus 100 and makes an authentication determination.
  • the e-mail generation unit 402d generates an e-mail including various types of information.
  • the web page generation unit 402e generates a web page that the user browses on the client device 200.
  • the transmission unit 402f transmits various types of information such as fatty liver disease state information and multivariate discriminants to the fatty liver disease evaluation apparatus 100.
  • FIG. 21 is a flowchart illustrating an example of fatty liver disease evaluation service processing.
  • the amino acid concentration data used in the present processing is analyzed by a specialist in the blood (including plasma, serum, etc.) collected in advance from an individual by a measuring method such as the following (A) or (B) or independently. It is related with the concentration value of the amino acid obtained as described above.
  • the unit of amino acid concentration may be obtained by, for example, molar concentration, weight concentration, or by adding / subtracting / subtracting an arbitrary constant to / from these concentrations.
  • Plasma was separated from blood by centrifuging the collected blood sample. All plasma samples were stored frozen at ⁇ 80 ° C. until the measurement of amino acid concentration.
  • acetonitrile was added to remove protein, followed by precolumn derivatization using a labeling reagent (3-aminopyridyl-N-hydroxysuccinimidyl carbamate), and liquid chromatography mass spectrometry The amino acid concentration was analyzed by a total (LC-MS) (see International Publication No. 2003/069328 and International Publication No. 2005/116629).
  • LC-MS liquid chromatography mass spectrometry
  • amino acid concentration When measuring the amino acid concentration, sulfosalicylic acid was added to remove the protein, and then the amino acid concentration was analyzed by an amino acid analyzer based on the post-column derivatization method using a ninhydrin reagent.
  • the client apparatus 200 when the user designates an address (such as a URL) of a Web site provided by the fatty liver disease evaluation apparatus 100 via the input device 250 on the screen displaying the Web browser 211, the client apparatus 200 causes the fatty liver disease to be displayed. Access the evaluation device 100. Specifically, when the user instructs to update the screen of the Web browser 211 of the client device 200, the Web browser 211 uses the predetermined communication protocol to specify the address of the Web site provided by the fatty liver disease evaluation device 100. By transmitting to the disease evaluation apparatus 100, a transmission request for a Web page corresponding to the amino acid concentration data transmission screen is made to the fatty liver disease evaluation apparatus 100 by routing based on the address.
  • an address such as a URL
  • the fatty liver disease evaluation apparatus 100 receives the transmission from the client apparatus 200 at the request interpretation unit 102a, analyzes the contents of the transmission, and moves the processing to each unit of the control unit 102 according to the analysis result.
  • the fatty liver disease evaluation apparatus 100 is a predetermined memory stored in the storage unit 106 mainly in the browsing processing unit 102b. Web data for displaying the Web page stored in the area is acquired, and the acquired Web data is transmitted to the client device 200.
  • the fatty liver disease evaluation apparatus 100 when there is a transmission request for a Web page corresponding to the amino acid concentration data transmission screen from the user, the fatty liver disease evaluation apparatus 100 first uses the user ID and the user password in the control unit 102. Is requested from the user. When the user ID and password are input, the fatty liver disease evaluation apparatus 100 causes the authentication processing unit 102c to input the input user ID and password and the user ID stored in the user information file 106a. And authentication with user password. And the fatty liver disease evaluation apparatus 100 transmits the web data for displaying the web page corresponding to an amino acid concentration data transmission screen to the client apparatus 200 by the browsing process part 102b only when authentication is possible.
  • the client device 200 is identified by the IP address transmitted from the client device 200 together with the transmission request.
  • the client apparatus 200 receives the Web data transmitted from the fatty liver disease evaluation apparatus 100 (for displaying a Web page corresponding to the amino acid concentration data transmission screen) by the receiving unit 213, and receives the received Web The data is interpreted by the Web browser 211, and an amino acid concentration data transmission screen is displayed on the monitor 261.
  • step SA21 when the user inputs / selects individual amino acid concentration data or the like via the input device 250 on the amino acid concentration data transmission screen displayed on the monitor 261, the client device 200 uses the transmission unit 214 to input information and By transmitting an identifier for specifying a selection item to fatty liver disease evaluation apparatus 100, amino acid concentration data of the individual to be evaluated is transmitted to fatty liver disease evaluation apparatus 100 (step SA21).
  • the transmission of amino acid concentration data in step SA21 may be realized by an existing file transfer technique such as FTP.
  • the fatty liver disease evaluation apparatus 100 interprets the request contents of the client device 200 by interpreting the identifier transmitted from the client device 200 by the request interpretation unit 102a, and evaluates the state of fatty liver disease.
  • Multivariate discriminant specifically, 2-group discrimination of NASH and non-NASH, 2-group discrimination of NAFLD and non-NAFLD, 2-group discrimination of fatty liver and non-fatty liver, 2-group discrimination of NASH and simple fatty liver,
  • a transmission request for a multivariate discriminant for discriminating three groups of NASH, simple fatty liver, and non-NAFLD is made to the database apparatus 400.
  • the database apparatus 400 interprets the transmission request from the fatty liver disease evaluation apparatus 100 by the request interpretation unit 402a and stores the multivariate discriminant (for example, updated latest data) stored in a predetermined storage area of the storage unit 406. Are transmitted to fatty liver disease evaluation apparatus 100 (step SA22).
  • the multivariate discriminant for example, updated latest data
  • step SA22 when it is determined whether or not NASH or non-NASH in step SA26, in step SA22, Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, A multivariate discriminant including at least one of Thr, Asn, and Ser as a variable is transmitted to the fatty liver disease evaluation apparatus 100.
  • step SA22 when it is determined whether or not it is NAFLD or non-NAFLD in step SA26, in step SA22, Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, A multivariate discriminant including at least one of Trp, Lys, Orn, Ser, Thr, Asn as a variable is transmitted to fatty liver disease evaluation apparatus 100.
  • step SA26 When it is determined in step SA26 whether the liver is fatty liver or non-fatty liver, in step SA22, Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, A multivariate discriminant including at least one of Met, His, Trp, Asn, and Orn as a variable is transmitted to the fatty liver disease evaluation apparatus 100.
  • step SA26 when determining whether or not it is NASH or simple fatty liver in step SA26, or when determining whether or not it is non-NAFLD, NASH, or simple fatty liver, in step SA22, Gln, Glu, A multivariate discriminant including at least one of Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA as a variable is transmitted to the fatty liver disease evaluation apparatus 100.
  • the fatty liver disease evaluation apparatus 100 receives the individual amino acid concentration data transmitted from the client apparatus 200 and the multivariate discriminant transmitted from the database apparatus 400 by the receiving unit 102f, and receives the received amino acid concentration data.
  • the received multivariate discriminant is stored in a predetermined storage area of the multivariate discriminant file 106e4 (step SA23).
  • the controller 102 removes data such as missing values and outliers from the individual amino acid concentration data received in step SA23 (step SA24).
  • the fatty liver disease evaluation apparatus 100 uses the discriminant value calculation unit 102i to determine the amino acid concentration data of the individual from which data such as missing values and outliers have been removed in step SA24, and the multivariate discriminant received in step SA23. Based on the above, a discrimination value is calculated (step SA25).
  • fatty liver disease evaluating apparatus 100 uses Gln, Glu, Pro included in the amino acid concentration data in discriminant value calculation unit 102i. , Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser, at least one concentration value, and Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val , Tyr, Phe, Met, His, Trp, Thr, Asn, Ser.
  • the discriminant value is calculated based on a multivariate discriminant including at least one as a variable.
  • the fatty liver disease evaluation apparatus 100 uses the discriminant value calculation unit 102i to determine whether the Gln, Glu, Pro, Gly, At least one concentration value among Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn, and Gln, Glu, Pro, Gly, Ala, Cit,
  • a discriminant value is calculated based on a multivariate discriminant including at least one of Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn as a variable.
  • the fatty liver disease evaluation apparatus 100 uses the discriminant value calculation unit 102i to determine Thr, Ser, Glu, At least one concentration value among Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn, and Thr, Ser, Glu, Pro, Gly, Ala, Cit,
  • a discriminant value is calculated based on a multivariate discriminant including at least one of Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, and Orn as a variable.
  • the discriminant value calculation unit 102i uses at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data. Based on a multivariate discriminant including one concentration value and at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA as a variable, A discrimination value is calculated.
  • the fatty liver disease evaluation apparatus 100 compares the discriminant value calculated in step SA25 with a preset threshold value (cut-off value) in the discriminant value criterion discriminating unit 102j1, so that NASH or Whether it is non-NASH, whether it is NAFLD or non-NAFLD, whether it is fatty liver or non-fatty liver, NASH or simple fatty liver (non-NASH and NAFLD) Or whether it is non-NAFLD, NASH, or simple fatty liver (non-NASH and NAFLD), and the determination result is stored in a predetermined storage area of the evaluation result file 106g. (Step SA26).
  • a preset threshold value cut-off value
  • fatty liver disease evaluation apparatus 100 transmits the determination result obtained in step SA26 to client apparatus 200 and database apparatus 400 that are the transmission source of amino acid concentration data, in transmission unit 102m (step SA27). Specifically, first, fatty liver disease evaluation apparatus 100 creates a web page for displaying a discrimination result in web page generation unit 102e, and stores web data corresponding to the created web page in storage unit 106. Store in a predetermined storage area. Next, after the user inputs a predetermined URL to the Web browser 211 of the client device 200 via the input device 250 and performs the above-described authentication, the client device 200 sends a request for browsing the Web page to the fatty liver disease evaluation device. To 100.
  • the browsing processing unit 102b interprets the browsing request transmitted from the client device 200, and stores Web data corresponding to the Web page for displaying the determination result in the storage unit 106. Read from the storage area.
  • the fatty liver disease evaluation apparatus 100 transmits the read Web data to the client apparatus 200 and transmits the Web data or the determination result to the database apparatus 400 by the transmission unit 102m.
  • the fatty liver disease evaluation apparatus 100 may notify the user client apparatus 200 of the determination result by e-mail at the control unit 102. Specifically, first, the fatty liver disease evaluation apparatus 100 refers to the user information stored in the user information file 106a based on the user ID or the like according to the transmission timing in the e-mail generation unit 102d. Get the user's email address. Subsequently, the fatty liver disease evaluation apparatus 100 uses the e-mail generation unit 102d to generate data related to the e-mail including the name and determination result of the user with the acquired e-mail address as the destination. Subsequently, fatty liver disease evaluation apparatus 100 transmits the generated data to user's client apparatus 200 by transmission unit 102m.
  • fatty liver disease evaluation apparatus 100 may transmit the discrimination result to user's client apparatus 200 using an existing file transfer technique such as FTP.
  • control unit 402 receives the discrimination result or Web data transmitted from the fatty liver disease evaluation device 100, and stores the received discrimination result or Web data in the storage unit 406. Is stored (accumulated) in the storage area (step SA28).
  • the client device 200 receives the Web data transmitted from the fatty liver disease evaluation device 100 by the receiving unit 213, interprets the received Web data by the Web browser 211, and stores the individual determination result.
  • the page screen is displayed on the monitor 261 (step SA29).
  • the client apparatus 200 uses the known function of the electronic mailer 212 to send the e-mail transmitted from the fatty liver disease evaluation apparatus 100. Is received at an arbitrary timing, and the received electronic mail is displayed on the monitor 261.
  • the user browses the Web page displayed on the monitor 261, thereby “determining whether or not NASH or non-NASH”, “determining whether or not NAFLD or non-NAFLD”, “ “Determining whether it is fatty liver or non-fatty liver”, “Determining whether it is NASH or simple fatty liver”, or “Determining whether it is non-NAFLD, NASH, or simple fatty liver” Can be confirmed.
  • the user may print the display content of the Web page displayed on the monitor 261 with the printer 262.
  • the user browses the e-mail displayed on the monitor 261 to indicate whether “NASH or non-NASH”. “Determination of whether it is NAFLD or non-NAFLD”, “determination of whether it is fatty liver or non-fatty liver”, “determination of whether it is NASH or simple fatty liver” Or, it is possible to confirm the discrimination result of the individual regarding “discrimination of whether or not non-NAFLD, NASH, or simple fatty liver”.
  • the user may print the content of the e-mail displayed on the monitor 261 with the printer 262.
  • the client device 200 transmits the individual amino acid concentration data to the fatty liver disease evaluation device 100, and the database device 400 includes the fatty liver disease evaluation device.
  • a multivariate discriminant for discrimination between NASH and non-NASH In response to a request from 100, a multivariate discriminant for discrimination between NASH and non-NASH, a multivariate discriminant for discrimination between NAFLD and non-NAFLD, a multivariate discriminant for discrimination between fatty liver and non-fatty liver, NASH And a multivariate discriminant for discriminating simple fatty liver, or a multivariate discriminant for discriminating non-NAFLD, NASH, and simple fatty liver are transmitted to fatty liver disease evaluation apparatus 100.
  • the fatty liver disease evaluation apparatus 100 (1) receives the amino acid concentration data from the client device 200 and receives the multivariate discriminant from the database device 400, and (2) the received amino acid concentration data and the multivariate discriminant. (3) By comparing the calculated discriminant value with a preset threshold value, “discriminating whether NASH or non-NASH” or “NAFLD or non-NAFLD” "Determining whether or not there is”, “Determining whether or not fatty liver or non-fatty liver”, “Determining whether or not NASH or simple fatty liver”, or “Non-NAFLD, NASH, or simplicity” “Determining whether or not it is fatty liver” is executed, and (4) the determination result is transmitted to the client device 200 and the database device 400.
  • the client apparatus 200 receives and displays the discrimination result transmitted from the fatty liver disease evaluation apparatus 100, and the database apparatus 400 receives and stores the discrimination result transmitted from the fatty liver disease evaluation apparatus 100.
  • NASH and non-NASH 2-group discrimination, NAFLD and non-NAFLD 2-group discrimination, fatty liver and non-fatty liver 2-group discrimination, NASH and simple fatty liver 2-group discrimination, or non-NAFLD and NASH and simple Using the discriminant value obtained by the multivariate discriminant useful for the three-group discrimination of fatty fatty liver, the two-group discrimination or the three-group discrimination can be accurately performed.
  • the multivariate discriminant used in step SA25 is a logistic regression equation, a fractional equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, a Mahalanobis distance Any one of an expression created by the method, an expression created by canonical discriminant analysis, and an expression created by a decision tree may be used.
  • the multivariate discriminant used in step SA25 is a logistic including Glu, Gln, Gly, Ala, Val, and Tyr as variables. A regression equation may be used. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH. Further, when determining whether NAFLD or non-NAFLD in step SA26, the multivariate discriminant used in step SA25 is a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables. Good.
  • the multivariate discriminant used in step SA25 is logistic regression including Ser, Glu, Gly, Ala, Val, and Tyr as variables. It may be an expression.
  • the two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver.
  • the multivariate discriminant used in step SA25 is logistic regression including Asn, Gln, Gly, Ala, Cit, and Met as variables. It may be an expression. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver.
  • the multivariate discriminant used in step SA25 is a variable of Ser, Glu, Gly, Val, Tyr, and His.
  • Each multivariate discriminant described above is a method described in International Publication No. 2004/052191 which is an international application by the present applicant or a method described in International Publication No. 2006/098192 which is an international application by the present applicant. It may be created by (multivariate discriminant creation processing described later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is preferably used for the evaluation of the state of fatty liver disease regardless of the unit of amino acid concentration in the amino acid concentration data as input data. be able to.
  • the fatty liver disease evaluation apparatus, fatty liver disease evaluation method, fatty liver disease evaluation program, recording medium, fatty liver disease evaluation system, and information communication terminal device are the second embodiment described above.
  • the invention may be implemented in various different embodiments within the scope of the technical idea described in the claims.
  • all or part of the processes described as being automatically performed can be manually performed, or the processes described as being performed manually All or a part of the above can be automatically performed by a known method.
  • the processing procedures, control procedures, specific names, information including parameters such as various registration data and search conditions, screen examples, and database configurations shown in the above documents and drawings, unless otherwise specified. It can be changed arbitrarily.
  • each illustrated component is functionally conceptual and does not necessarily need to be physically configured as illustrated.
  • a CPU Central Processing Unit
  • a program interpreted and executed by the CPU
  • all or any part thereof may be realized, or it may be realized as hardware by wired logic.
  • the fatty liver disease evaluation apparatus 100 may be configured as an information processing apparatus such as a known personal computer or workstation, or may be configured by connecting any peripheral device to the information processing apparatus. .
  • the fatty liver disease evaluation apparatus 100 may be realized by installing software (including a program, data, and the like) that causes the information processing apparatus to realize the method of the present invention.
  • program is a data processing method described in an arbitrary language or description method, and may be in any form such as source code or binary code.
  • the “program” is not necessarily limited to a single configuration, but is distributed in the form of a plurality of modules and libraries, or in cooperation with a separate program typified by an OS (Operating System). Includes those that achieve that function.
  • the program is recorded on a recording medium and is mechanically read by the fatty liver disease evaluation apparatus 100 as necessary. That is, in the storage unit 106 such as a ROM or an HDD (Hard Disk Drive), a computer program for giving instructions to the CPU in cooperation with an OS (Operating System) and performing various processes is recorded.
  • This computer program is executed by being loaded into the RAM, and constitutes a control unit in cooperation with the CPU.
  • this computer program may be stored in an application program server connected to the fatty liver disease evaluation apparatus 100 via a dedicated network 300, and may be downloaded in whole or in part as necessary. It is also possible to do.
  • a reading procedure, an installation procedure after reading, and the like a well-known configuration and procedure can be used.
  • “recording medium” includes any “portable physical medium”.
  • the “portable physical medium” is a memory card, USB memory, SD card, flexible disk, magneto-optical disk, ROM, EPROM, EEPROM, CD-ROM, MO, DVD, Blu-ray Disc, or the like.
  • the program according to the present invention may be stored in a computer-readable recording medium, or may be configured as a program product.
  • FIG. 22 is a flowchart illustrating an example of multivariate discriminant creation processing.
  • the multivariate discriminant creation process may be performed by the database device 400 that manages fatty liver disease state information.
  • the fatty liver disease evaluation device 100 stores the fatty liver disease state information acquired in advance from the database device 400 in a predetermined storage area of the fatty liver disease state information file 106c. And also, the fatty liver disease evaluation apparatus 100 converts the fatty liver disease state information including the fatty liver disease state index data and the amino acid concentration data designated in advance by the fatty liver disease state information designation unit 102g into the designated fatty liver disease information. It is assumed that it is stored in a predetermined storage area of the disease state information file 106d.
  • the multivariate discriminant-preparing part 102 h is a candidate multivariate discriminant-preparing part 102 h 1 that uses a predetermined formula from the fatty liver disease state information stored in a predetermined storage area of the designated fatty liver disease state information file 106 d.
  • a candidate multivariate discriminant is created based on the creation method, and the created candidate multivariate discriminant is stored in a predetermined storage area of the candidate multivariate discriminant file 106e1 (step SB21).
  • the multivariate discriminant-preparing part 102h is a candidate multivariate discriminant-preparing part 102h1, and a plurality of different formula creation methods (principal component analysis, discriminant analysis, support vector machine, multiple regression analysis, logistic regression) Analysis, k-means method, cluster analysis, decision tree, etc. related to multivariate analysis.) Select a desired one from among them, and create candidate multivariate discrimination based on the selected formula creation method Determine the form of the expression (form of the expression).
  • the multivariate discriminant-preparing part 102h is a candidate multivariate discriminant-preparing part 102h1, which calculates various (for example, average and variance) corresponding to the formula selection method selected based on the fatty liver disease state information. Execute.
  • the multivariate discriminant-preparing part 102h determines the calculation result and parameters of the determined candidate multivariate discriminant-expression in the candidate multivariate discriminant-preparing part 102h1. Thereby, a candidate multivariate discriminant is created based on the selected formula creation method. In addition, when a candidate multivariate discriminant is created in parallel and in parallel by using a plurality of different formula creation methods, the above-described processing may be executed in parallel for each selected formula creation method.
  • a candidate multivariate discriminant when a candidate multivariate discriminant is created in series using a plurality of different formula creation methods, for example, a fatty liver disease state using a candidate multivariate discriminant created by performing principal component analysis
  • a candidate multivariate discriminant may be created by converting information and performing discriminant analysis on the converted fatty liver disease state information.
  • the multivariate discriminant-preparing part 102h verifies (mutually verifies) the candidate multivariate discriminant created in step SB21 with the candidate multivariate discriminant-verifying part 102h2, and verifies the verification result.
  • the result is stored in a predetermined storage area of the verification result file 106e2 (step SB22).
  • the multivariate discriminant-preparing part 102h uses the candidate multivariate discriminant-verifying part 102h2 to store the fatty liver disease state information stored in a predetermined storage area of the designated fatty liver disease state information file 106d. Based on this, the verification data used when verifying the candidate multivariate discriminant is created, and the candidate multivariate discriminant is verified based on the created verification data.
  • the multivariate discriminant creation unit 102h creates each formula in the candidate multivariate discriminant verification unit 102h2.
  • Each candidate multivariate discriminant corresponding to the method is verified based on a predetermined verification method.
  • the discrimination rate, sensitivity, specificity, information criterion of the candidate multivariate discriminant based on at least one of the bootstrap method, holdout method, N-fold method, leave one out method, etc. , ROC_AUC (area under the curve of the receiver characteristic curve) or the like.
  • the multivariate discriminant-preparing part 102h selects the variable of the candidate multivariate discriminant based on a predetermined variable selection method from the verification result in step SB22 by the variable selection part 102h3 (however, the step The variable of the candidate multivariate discriminant may be selected based on a predetermined variable selection method without considering the verification result in SB22.), Fatty liver disease used when creating the candidate multivariate discriminant A combination of amino acid concentration data included in the state information is selected, and fatty liver disease state information including the selected combination of amino acid concentration data is stored in a predetermined storage area of the selected fatty liver disease state information file 106e3 (step SB23). ).
  • step SB21 a plurality of candidate multivariate discriminants are created in combination with a plurality of different formula creation methods, and in step SB22, each candidate multivariate discriminant corresponding to each formula creation method is verified based on a predetermined verification method
  • the multivariate discriminant-preparing part 102h is predetermined for each candidate multivariate discriminant (for example, the candidate multivariate discriminant corresponding to the verification result in step SB22) by the variable selector 102h3.
  • the variable of the candidate multivariate discriminant may be selected based on the variable selection method.
  • the variable of the candidate multivariate discriminant may be selected based on at least one of the stepwise method, the best path method, the neighborhood search method, and the genetic algorithm from the verification result.
  • the best path method is a method of selecting variables by sequentially reducing the variables included in the candidate multivariate discriminant one by one and optimizing the evaluation index given by the candidate multivariate discriminant.
  • the multivariate discriminant-preparing part 102h uses the variable selection part 102h3 to select amino acids based on fatty liver disease state information stored in a predetermined storage area of the designated fatty liver disease state information file 106d. A combination of density data may be selected.
  • the multivariate discriminant-preparing part 102h completes all combinations of amino acid concentration data included in the fatty liver disease state information stored in the predetermined storage area of the designated fatty liver disease state information file 106d. If the determination result is “end” (step SB24: Yes), the process proceeds to the next step (step SB25). If the determination result is not “end” (step SB24: No) ) Returns to Step SB21.
  • the multivariate discriminant-preparing part 102h determines whether or not the preset number of times has ended, and if the determination result is “end” (step SB24: Yes), the next step (step SB25). If the determination result is not “end” (step SB24: No), the process may return to step SB21.
  • the multivariate discriminant-preparing part 102h includes the combination of the amino acid concentration data selected in step SB23 in the fatty liver disease state information stored in the predetermined storage area of the designated fatty liver disease state information file 106d. Is determined to be the same as the combination of the amino acid concentration data or the combination of the amino acid concentration data selected in the previous step SB23, and if the determination result is “same” (step SB24: Yes) The process proceeds to step (step SB25), and if the determination result is not “same” (step SB24: No), the process may return to step SB21.
  • the multivariate discriminant creation unit 102h compares the evaluation value with a predetermined threshold corresponding to each formula creation method. Based on the result, it may be determined whether to proceed to step SB25 or to return to step SB21.
  • the multivariate discriminant-preparing part 102h selects a multivariate discriminant by selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from a plurality of candidate multivariate discriminants based on the verification result.
  • the determined multivariate discriminant (selected candidate multivariate discriminant) is stored in a predetermined storage area of the multivariate discriminant file 106e4 (step SB25).
  • step SB25 for example, when the optimum one is selected from candidate multivariate discriminants created by the same formula creation method, and when the optimum one is selected from all candidate multivariate discriminants There is.
  • FIG. 23 is a principle configuration diagram showing the basic principle of the present invention.
  • a desired substance group composed of one or a plurality of substances is administered to an evaluation target (for example, an individual such as an animal or a human) (step S31).
  • an appropriate combination of existing drugs, amino acids, foods, and supplements that can be administered to humans for example, various symptoms of fatty liver disease (specifically, at least one of fatty liver, NAFLD, and NASH)
  • Drugs that are known to be effective for improvement for example, insulin resistance improvers, biguanite drugs, ursodeoxycholic acid, antihyperlipidemic drugs, or antioxidants
  • a predetermined administration method for example, oral administration
  • a predetermined frequency and timing for example, 3 times a day, after meal
  • a predetermined period for example, a range of 1 day to 12 months.
  • the administration method, dose, and dosage form may be appropriately combined depending on the disease state.
  • the dosage form may be determined based on a known technique.
  • the dose is not particularly defined, but may be given, for example, in a form containing 1 ug to 100 g as an active ingredient.
  • step S32 blood is collected from the evaluation target to which the substance group has been administered in step S31 (step S32).
  • amino acid concentration data relating to the concentration value of amino acids in blood collected in step S32 is acquired (step S33).
  • step S11 amino acid concentration data measured by a company or the like that performs amino acid concentration measurement may be acquired.
  • the following Amino acid concentration data may be obtained by measuring amino acid concentration data by a measurement method such as (A) or (B).
  • the unit of amino acid concentration may be obtained by, for example, molar concentration, weight concentration, or by adding / subtracting / subtracting an arbitrary constant to / from these concentrations.
  • Plasma was separated from blood by centrifuging the collected blood sample. All plasma samples were stored frozen at ⁇ 80 ° C.
  • amino acid concentration When measuring the amino acid concentration, sulfosalicylic acid was added to remove the protein, and then the amino acid concentration was analyzed by an amino acid analyzer based on the post-column derivatization method using a ninhydrin reagent.
  • the evaluation target includes at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis)
  • NAFLD non-alcoholic fatty liver disease
  • NASH non-alcoholic steatohepatitis
  • step S34 based on the evaluation result in step S34, it is determined whether the substance group administered in step S31 is for preventing fatty liver disease or improving the state of fatty liver disease (step). S35).
  • step S35 determines whether the determination result in step S35 is “prevent or improve”. If the determination result in step S35 is “prevent or improve”, the substance group administered in step S31 prevents fatty liver disease or improves the state of fatty liver disease To be explored.
  • a desired substance group is administered to an evaluation object, blood is collected from the evaluation object to which the substance group is administered, and amino acid concentration data relating to the concentration value of amino acids in the collected blood is obtained. Based on the obtained amino acid concentration data, the state of fatty liver disease is evaluated for the evaluation target, and based on the evaluation result, the desired substance group prevents fatty liver disease or It is determined whether or not the condition is improved.
  • fatty liver disease can be prevented or fatty liver disease can be prevented using a method for evaluating fatty liver disease, which can accurately evaluate the state of fatty liver disease using the concentration of amino acids in blood. It is possible to accurately search for a substance that improves the state of.
  • step S34 data such as missing values and outliers may be removed from the amino acid concentration data. Thereby, the state of fatty liver disease can be more accurately evaluated.
  • step S34 among the Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data acquired in step S33.
  • the state of NASH may be evaluated for the evaluation target based on at least one concentration value. Thereby, the state of NASH can be accurately evaluated using the concentration of amino acids related to the state of NASH among the concentrations of amino acids in blood.
  • the amino acid concentration useful for the two-group discrimination of NASH and non-NASH among the amino acid concentrations in the blood can be used to accurately perform the two-group discrimination.
  • step S34 Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser included in the amino acid concentration data acquired in step S33.
  • Thr, Asn the state of NAFLD may be evaluated for each evaluation object based on at least one concentration value. Thereby, the state of NAFLD can be accurately evaluated using the concentration of amino acids related to the state of NAFLD among the concentrations of amino acids in blood. Specifically, among Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn included in the amino acid concentration data.
  • the evaluation target is NAFLD or non-NAFLD.
  • the amino acid concentration useful for the 2-group discrimination between NAFLD and non-NAFLD among the amino acid concentrations in the blood can be used to accurately perform the 2-group discrimination.
  • step S34 Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data acquired in step S33.
  • the state of fatty liver may be evaluated for each evaluation target based on at least one concentration value. Thereby, the state of fatty liver can be accurately evaluated using the concentration of amino acids related to the state of fatty liver among the concentrations of amino acids in blood. Specifically, at least one concentration of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data.
  • the amino acid concentration useful for the 2-group discrimination between fatty liver and non-fatty liver among the amino acid concentrations in the blood can be used to accurately perform the 2-group discrimination.
  • step S34 at least one concentration of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data acquired in step S33.
  • the state of NASH and NAFLD may be evaluated for each evaluation object. Thereby, the state of NASH and NAFLD can be accurately evaluated using the concentration of amino acids related to the state of NASH and NAFLD among the concentrations of amino acids in blood.
  • the concentration value of at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data Whether the subject is NASH or non-NASH and NAFLD may be determined. This makes it possible to accurately perform this 2-group discrimination by using the amino acid concentrations useful for 2-group discrimination between NASH and simple fatty liver among the amino acid concentrations in the blood.
  • step S34 based on the amino acid concentration data acquired in step S33 and the preset multivariate discriminant including the amino acid concentration as a variable, a discriminant value that is the value of the multivariate discriminant is calculated and calculated.
  • the state of fatty liver disease may be evaluated for the evaluation target based on the discriminant value. Thereby, the state of fatty liver disease can be accurately evaluated using the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable.
  • Multivariate discriminants are logistic regression formula, fractional formula, linear discriminant formula, multiple regression formula, formula created by support vector machine, formula created by Mahalanobis distance method, formula created by canonical discriminant analysis. Any one of the expressions created by the decision tree may be used. Thereby, the state of fatty liver disease can be more accurately evaluated using the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable.
  • step S34 among the Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data acquired in step S33.
  • Multivariate discrimination including at least one concentration value and at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser
  • the discriminant value may be calculated based on the equation, and the state of NASH may be evaluated for each evaluation object based on the calculated discriminant value. Thereby, the NASH state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NASH state.
  • the evaluation target is NASH or non-NASH based on the determination value.
  • the multivariate discriminant may be a logistic regression equation including Glu, Gln, Gly, Ala, Val, Tyr as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH.
  • step S34 Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser included in the amino acid concentration data acquired in step S33. , Thr, Asn, and Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn
  • a discriminant value may be calculated based on a multivariate discriminant including at least one of them as a variable, and the NAFLD state may be evaluated for each evaluation object based on the calculated discriminant value.
  • the NAFLD state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NAFLD state.
  • it may be determined whether the evaluation target is NAFLD or non-NAFLD based on the determination value.
  • the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NAFLD and non-NAFLD.
  • step S34 Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data acquired in step S33. And at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn
  • a discriminant value may be calculated based on the multivariate discriminant included, and the state of fatty liver may be evaluated for each evaluation object based on the calculated discriminant value. Thereby, the state of fatty liver can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of fatty liver.
  • the discriminant value it may be discriminated whether the evaluation target is fatty liver or non-fatty liver. This makes it possible to accurately perform the two-group discrimination using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between fatty liver and non-fatty liver.
  • the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Ala, Val, and Tyr as variables.
  • the two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver.
  • step S34 at least one concentration of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data acquired in step S33.
  • the discriminant value is based on a multivariate discriminant including at least one of a value and Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA as a variable.
  • the state of NASH and NAFLD may be evaluated for each evaluation object based on the calculated discriminant value.
  • the state of NASH and NAFLD can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of NASH and NAFLD.
  • the evaluation target is NASH or “non-NASH and NAFLD” (simple fatty liver) based on the determination value.
  • NASH non-NASH and NAFLD
  • the multivariate discriminant may be a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables.
  • this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver.
  • the evaluation target is non-NAFLD, NASH, or “non-NASH and NAFLD” based on the determination value. This makes it possible to accurately perform this three-group discrimination by using the discriminant value obtained by the multivariate discriminant useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver.
  • the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables, and a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables.
  • each multivariate discriminant described above is described in the method described in International Publication No. 2004/052191 which is an international application by the present applicant or International Publication No. 2006/098192 which is an international application by the present applicant. It may be created by a method (multivariate discriminant creation process described in the second embodiment described above). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is suitable for the evaluation of the state of fatty liver disease regardless of the unit of amino acid concentration in the amino acid concentration data as input data. Can be used.
  • the multivariate discriminant generally means the format of formulas used in multivariate analysis. For example, fractional formulas, multiple regression formulas, multiple logistic regression formulas, linear discriminant functions, Mahalanobis distances, canonical discriminant functions, support vectors Includes machines, decision trees, etc. Also included are expressions as indicated by the sum of different forms of multivariate discriminants.
  • a coefficient and a constant term are added to each variable. In this case, the coefficient and the constant term are preferably real numbers, more preferably data.
  • each coefficient and its confidence interval may be obtained by multiplying it by a real number
  • the value of the constant term and its confidence interval may be obtained by adding / subtracting / multiplying / dividing an arbitrary real constant thereto.
  • the fractional expression means that the numerator of the fractional expression is represented by the sum of amino acids A, B, C,... And / or the denominator of the fractional expression is the sum of amino acids a, b, c,. It is represented by
  • the fractional expression includes a sum of fractional expressions ⁇ , ⁇ , ⁇ ,.
  • the fractional expression also includes a divided fractional expression.
  • An appropriate coefficient may be added to each amino acid used in the numerator and denominator.
  • amino acids used in the numerator and denominator may overlap.
  • an appropriate coefficient may be attached to each fractional expression.
  • the value of the coefficient of each variable and the value of the constant term may be real numbers.
  • the combination of the numerator variable and the denominator variable is generally reversed in the sign of the correlation with the target variable, but since the correlation is maintained, it can be considered equivalent in discriminability. Combinations of swapping numerator and denominator variables are also included.
  • this invention evaluates the state of fatty liver disease, in addition to the concentration of amino acids, other biological information (for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, ⁇ Blood pressure value, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
  • biological information for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, ⁇ Blood pressure value, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc.
  • the present invention when assessing the state of fatty liver disease, as a variable in the multivariate discriminant, in addition to the amino acid concentration, other biological information (for example, sugars, lipids, proteins, peptides, minerals, hormones, etc.) Biological metabolites and biological indices such as blood glucose level, blood pressure level, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
  • FIG. 24 is a flowchart showing an example of a method for searching for a substance for preventing / ameliorating fatty liver disease according to the third embodiment.
  • a desired substance group composed of one or a plurality of substances is administered to an individual such as an animal or a human having a fatty liver disease (step SA31).
  • step SA32 blood is collected from the individual to which the substance group has been administered in step S31 (step SA32).
  • step SA33 amino acid concentration data relating to the concentration value of amino acids in blood collected in step S32 is acquired (step SA33).
  • step SA33 for example, amino acid concentration data measured by a company or the like that measures amino acid concentration may be acquired, and measurement such as (A) or (B) described above is performed from blood collected from an evaluation target. Amino acid concentration data may be obtained by measuring amino acid concentration data by a method.
  • step SA34 data such as missing values and outliers are removed from the amino acid concentration data of the individual obtained in step S33 (step SA34).
  • step SA35 One of the determinations is executed (step SA35).
  • Discrimination between NASH, simple fatty liver and non-NAFLD Concentration of at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro and ABA contained in amino acid concentration data
  • the discriminant value is based on a multivariate discriminant including at least one of a value and Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA as a variable.
  • step SA35 it is determined whether the substance group administered in step SA31 is for preventing fatty liver disease or improving the state of fatty liver disease (step).
  • step SA36 it is determined whether the substance group administered in step SA31 is for preventing fatty liver disease or improving the state of fatty liver disease (step).
  • step SA36 the substance group administered in step SA31 is searched for preventing fatty liver disease or improving the state of fatty liver disease. Is done.
  • a substance searched by this search method for example, at least 1 of “Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser”
  • a desired substance group is administered to an individual;
  • Blood is collected from the administered individual,
  • amino acid concentration data in the collected blood is obtained,
  • data such as missing values and outliers are removed from the obtained amino acid concentration data of the individual,
  • v Based on the amino acid concentration data of individuals from which data such as missing values and outliers have been removed, the above-mentioned 31. 35.
  • the multivariate discriminant used in step SA35 is a logistic regression equation, a fractional equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, an equation created by the Mahalanobis distance method, and a canonical discriminant. Any one of an expression created by analysis and an expression created by a decision tree may be used.
  • the multivariate discriminant used in the discriminant may be a logistic regression equation including Glu, Gln, Gly, Ala, Val, Tyr as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH.
  • the multivariate discriminant used in discriminating the above may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NAFLD and non-NAFLD.
  • the multivariate discriminant used in this discrimination may be a logistic regression equation including Ser, Glu, Gly, Ala, Val, and Tyr as variables.
  • the two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver.
  • the multivariate discriminant used in the discriminant may be a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver.
  • the multivariate discriminant used for discriminating is a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables, and a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Good.
  • this three-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver.
  • Each multivariate discriminant described above is a method described in International Publication No. 2004/052191 which is an international application by the present applicant or a method described in International Publication No. 2006/098192 which is an international application by the present applicant. It may be created by (multivariate discriminant creation processing described in the second embodiment described above). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is suitable for the evaluation of the state of fatty liver disease regardless of the unit of amino acid concentration in the amino acid concentration data as input data. Can be used.
  • the method for searching for a substance for preventing or improving fatty liver disease according to the third embodiment is described in “Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr.
  • Asn, Ser a group of amino acids containing at least one of “Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, An amino acid group containing at least one of Thr and Asn ”,“ Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn Amino acid group containing at least one ", or” Gln, Glu, Gly, Ala, Cit, Asn, Tr " , Leu, Orn, Phe, Met, Ile, Pro, and ABA, a substance that normalizes the concentration value of each of the multivariate discriminants described above, It can be selected by using the form of the fatty liver disease evaluation method or the fatty liver disease evaluation apparatus of the second embodiment.
  • searching for a substance for preventing / ameliorating means finding a new substance effective for the prevention / amelioration of fatty liver disease.
  • finding new uses of known substances for preventing and improving fatty liver disease, and combining new drugs and supplements that can be expected to be effective in preventing and improving fatty liver disease Finding and finding the appropriate usage / dose / combination as described above, making it a kit, presenting a prevention / treatment menu including food / exercise, etc., and monitoring the effectiveness of the prevention / treatment menu And presenting menu changes for each individual as needed.
  • the patients who had undergone ultrasound diagnosis regarding the presence or absence of fatty liver were classified into two groups: fatty liver negative and fatty liver positive. There were 561 people.
  • the amino acid concentration in plasma collected from the examinee was measured, and the ability to discriminate fatty liver positive for each amino acid concentration was evaluated by ROC_AUC (area under the curve of the receiver characteristic curve).
  • the amino acid concentration was measured by the measurement method (A) described in the above embodiment.
  • ROC_AUC 0.5
  • Glu, Pro, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, and Trp showed a significant increase in the fatty liver positive group, while Thr, Ser, Gly, and Cit. Showed a significant decrease in the fatty liver positive group.
  • Diagnosis condition 1 A diagnosis result that there was fatty liver was obtained by ultrasonic diagnosis. Diagnosis condition 2) The ALT value is high (38 (IU / L) or more). Diagnosis condition 3) There is no large intake of alcohol (daily intake). (Exclusion rules) Diagnosis condition 4) Not positive for hepatitis virus HBV and HCV. (Exclusion rules)
  • the subjects were classified into two groups, NAFLD-negative and NAFLD-positive, based on these four diagnostic conditions.
  • the NAFLD-negative and NAFLD-positive groups were 1415 and 167, respectively.
  • the amino acid concentration in plasma collected from the examinee was measured, and the NAFLD positive discrimination ability for each amino acid concentration was evaluated by ROC_AUC.
  • the amino acid concentration was measured by the measurement method (A) described in the above embodiment.
  • ROC_AUC 0.5
  • Glu, Pro, Gly, Ala, Cit Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys a significant increase in the NAFLD positive group
  • Gln, Gly, and Cit The NAFLD positive group showed a significant decrease.
  • NASH non-alcoholic steatohepatitis
  • patients who meet the five diagnostic conditions obtained by adding the following diagnostic conditions 5) to the NAFLD diagnostic conditions 1) to 4) shown in Example 2 are NASH high risk groups Therefore, the examinee was classified into a NASH positive group.
  • Diagnosis condition 5) Satisfy the diagnosis condition of metabolic syndrome (refer to the document “Metabolic Syndrome Diagnosis Criteria Review Committee, Journal of Japan Society for Internal Medicine, 94, 794, 2005”).
  • the examinees were classified into two groups, NASH negative and NASH positive, based on these five diagnostic conditions, and the NASH negative group and NASH positive group were 1518 and 64, respectively.
  • the amino acid concentration in plasma collected from the examinee was measured, and the NASH positive discrimination ability for each amino acid concentration was evaluated by ROC_AUC.
  • the amino acid concentration was measured by the measurement method (A) described in the above embodiment.
  • ROC_AUC 0.5
  • Glu, Pro, Gly, Ala, Leu Ile, Val, Tyr, Phe, Met, His, Trp 0.5
  • Glu, Pro, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, and Trp show a significant increase in the NASH positive group, while Gln and Gly have the NASH positive group. Showed a significant decrease.
  • Example 2 Using the same amino acid concentration data as measured in Example 1, it is effective for the diagnosis of fatty liver described in Example 1, and multivariate discrimination for discriminating positive fatty liver having amino acid concentration in plasma as a variable.
  • the formula (multivariate function) was obtained.
  • the logistic regression equation is used as a multivariate discriminant, the combination of variables included in the logistic regression equation is searched, and the Leave-One-Out method is adopted as a cross-validation.
  • the search of the logistic regression equation was carried out earnestly.
  • FIG. 25 and FIG. 25 show combinations of variables included in the logistic regression equation, ROC_AUC values with cross validation, and ROC_AUC values without cross validation. Enumerated in descending order of the appearance frequency of variables in the expressions included in FIGS. 25 and 26 are Glu, Ala, Tyr, Ser, Gly, Val, Leu, Ile, Cit, and His.
  • fractional expressions as multivariate discriminants, searching for combinations of variables to be included in fractional expressions, and adopting the bootstrap method as cross-validation, search for fractional expressions with good discrimination ability of fatty liver positive. Conducted earnestly.
  • FIG. 27 and FIG. 28 show a list of fractional expressions with equally good discrimination ability evaluated by ROC_AUC.
  • FIG. 27 and FIG. 28 show fractional expressions, average values of ROC_AUC values with cross validation, and ROC_AUC values without cross validation. Enumerated in descending order of the appearance frequency of variables in the expressions included in FIGS. 27 and 28 are Glu, Gly, Ser, Tyr, Cit, Ala, Asn, Orn, Ile, and Met.
  • Example 2 Using the same amino acid concentration data as measured in Example 2, a multivariate discriminant for determining NAFLD positivity having the amino acid concentration in plasma as a variable, which is effective for the diagnosis of NAFLD described in Example 2 ( Multivariate function).
  • FIGS. 29 and 30 show a list of logistic regression equations with equally good discrimination ability evaluated by ROC_AUC.
  • FIGS. 29 and 30 show combinations of variables included in the logistic regression equation, ROC_AUC values with cross-validation, and ROC_AUC values without cross-validation.
  • Enumerating the appearance frequency of variables in the formulas included in FIG. 29 and FIG. 30 up to the 10th order is Glu, Tyr, His, Val, Orn, Ile, Ser, Thr, Trp, Phe.
  • fractional expressions as multivariate discriminants
  • searching for combinations of variables to be included in fractional expressions and employing the bootstrap method as cross-validation, we are eager to search for fractional expressions with good NAFLD positive discriminating ability. Carried out.
  • FIG. 31 and FIG. 32 show fractional expressions, average values of ROC_AUC values with cross validation, and ROC_AUC values without cross validation.
  • the appearance frequency of the variables in the formulas included in FIGS. 31 and 32 is listed in descending order, they are Glu, Tyr, Gly, Cit, Orn, Ser, Asn, His, Met, and Ile.
  • FIGS. 33 and 34 show a list of multivariate logistic regression equations with equally good discrimination ability evaluated by ROC_AUC.
  • FIGS. 33 and 34 show combinations of variables included in the logistic regression equation, ROC_AUC values with cross validation, and ROC_AUC values without cross validation.
  • the appearance frequency of the variables in the formulas included in FIGS. 33 and 34 is listed up to 10th in descending order, they are Glu, Tyr, Ala, Val, Gln, His, Phe, Thr, Asn, Ser.
  • fractional expressions as multivariate discriminants, searching for combinations of variables to be included in fractional expressions, and using the bootstrap method as cross-validation, eager to search for fractional expressions with good NASH positive discriminating ability Carried out.
  • FIG. 35 and FIG. 36 show a list of fractional expressions with equally good discriminating ability evaluated by ROC_AUC.
  • FIG. 35 and FIG. 36 show fractional expressions, average values of ROC_AUC values with cross validation, and ROC_AUC values without cross validation.
  • variable frequencies in the expressions included in FIGS. 35 and 36 are listed in descending order of the frequency of occurrence, they are Glu, Gly, Gln, Ala, Tyr, Val, His, Ser, Met, Thr.
  • NAFLD-positive patients were classified into two groups, simple fatty liver (simple steatosis) and NASH-positive.
  • the fatty liver group and NASH positive group were 103 and 64, respectively.
  • the amino acid concentration in plasma collected from NAFLD-positive examinees was measured, and the NASH-positive discrimination ability for each amino acid concentration was evaluated by ROC_AUC.
  • the amino acid concentration was measured by the measurement method (A) described in the above embodiment.
  • Glu and Ala showed a significant increase in the NASH positive group, while Gln and Gly showed a significant decrease in the NASH positive group.
  • FIG. 37 and FIG. 38 show a list of logistic regression equations with equally good discrimination ability evaluated by ROC_AUC.
  • FIGS. 37 and 38 show combinations of variables included in the logistic regression equation, ROC_AUC values with cross validation, and ROC_AUC values without cross validation.
  • the appearance frequency of the variables in the formulas included in FIGS. 37 and 38 is listed in descending order, they are Ala, Cit, Gln, Asn, Trp, Leu, Orn, Phe, Met, and Ile.
  • fractional expressions as multivariate discriminants, searching for combinations of variables to be included in fractional expressions, and using the bootstrap method as cross-validation, eager to search for fractional expressions with good NASH positive discriminating ability Carried out.
  • FIGS. 39 and 40 show a list of fractional expressions with equally good discriminating ability evaluated by ROC_AUC.
  • FIG. 39 and FIG. 40 show fractional expressions, average values of ROC_AUC values with cross validation, and ROC_AUC values without cross validation. 39.
  • the appearance frequency of the variables in the formulas included in FIGS. 39 and 40 is listed up to 10th in descending order, they are Cit, Gln, Ala, Asn, Leu, Pro, Trp, Met, Glu, and ABA.
  • NAFLD negative normal
  • simple fatty liver simple steatosis
  • NASH positive normal, simple fatty liver, and NASH positive were 1415, 103, and 64, respectively.
  • concentration of amino acids in plasma collected from the examinee is measured, and a multivariate function expression including each amino acid as a variable is first used to determine whether all examinees are normal or NAFLD positive, and then NAFLD
  • simple fatty liver and NASH positivity two groups of normal, simple fatty liver and NASH positive were discriminated as a whole.
  • the amino acid concentration was measured by the measurement method (A) described in the above embodiment.
  • the multivariate function expression “( ⁇ 9.035) + ( ⁇ 0.0121) Ser + (0.0325) Glu + ( ⁇ 0.00565) Gly + (0 .0113) Val + (0.0299) Tyr + (0.0271) His ”and the discrimination between simple fatty liver and NASH positive for the group determined to be NAFLD positive next, the multivariate function described in Example 7 Using the formula “(1.989) + ( ⁇ 0.0708) Asn + ( ⁇ 0.0104) Gln + ( ⁇ 0.00473) Gly + (0.00649) Ala + (0.0776) Cit + (0.0768) Met” It was.
  • FIG. 41 shows the results of discrimination between three groups of normal, simple fatty liver and NASH positive in two stages (in the figure, normal is represented as Normal and simple fatty liver is represented as Steatosis).
  • the four sets of numbers in the figure represent the total number of each discrimination prediction result (number of normal, simple fatty liver, NASH positive 3 groups).
  • Prevalence Prevalence
  • sensitivity Sen
  • PPV positive predictive value
  • PPV / Prev predictive enrichment rate
  • the method for evaluating fatty liver disease according to the present invention can be widely implemented in many industrial fields, particularly pharmaceuticals, foods, and medical fields. It is extremely useful in the field of bioinformatics that performs state progression prediction, disease risk prediction, proteome and metabolomic analysis.

Abstract

The present invention addresses the problem of providing a method or the like for evaluating fatty liver disease, capable of evaluating with high precision the state of fatty liver disease including at least one of fatty liver, NAFLD, or NASH, using the concentration of amino acid in the blood. According to this method for evaluating fatty liver disease, amino-acid concentration data related to an amino-acid concentration value in blood collected from an evaluation subject is acquired, and the state of fatty liver disease including at least one of fatty liver, NAFLD, and NASH is evaluated for an evaluation subject on the basis of the acquired amino-acid concentration data.

Description

脂肪性肝疾患の評価方法、脂肪性肝疾患評価装置、脂肪性肝疾患評価方法、脂肪性肝疾患評価プログラム、脂肪性肝疾患評価システム、情報通信端末装置、および脂肪性肝疾患の予防・改善物質の探索方法Fatty liver disease evaluation method, fatty liver disease evaluation device, fatty liver disease evaluation method, fatty liver disease evaluation program, fatty liver disease evaluation system, information communication terminal device, and prevention and improvement of fatty liver disease Substance search method
 本発明は、血液(例えば血漿、血清などを含む)中のアミノ酸濃度を利用した脂肪性肝疾患の評価方法、脂肪性肝疾患評価装置、脂肪性肝疾患評価方法、脂肪性肝疾患評価プログラム、脂肪性肝疾患評価システム、および情報通信端末装置、ならびに脂肪性肝疾患を予防させる又は脂肪性肝疾患の状態を改善させる物質を探索する脂肪性肝疾患の予防・改善物質の探索方法に関するものである。 The present invention relates to a method for evaluating fatty liver disease, a fatty liver disease evaluation apparatus, a fatty liver disease evaluation method, a fatty liver disease evaluation program, using an amino acid concentration in blood (including plasma, serum, etc.), Fatty liver disease evaluation system, information communication terminal device, and a method for searching for a substance for preventing or improving fatty liver disease that searches for a substance that prevents fatty liver disease or improves the state of fatty liver disease is there.
 NASH(non-alcoholic steatohepatitis:非アルコール性脂肪肝炎)およびNAFLD(non-alcoholic fatty liver disease:非アルコール性脂肪性肝疾患)は、一般的に超音波診断により診断される脂肪肝(肝臓細胞中に脂肪滴が蓄積したもの)を基礎とし、アルコールの多飲歴が無く且つ肝炎ウイルスにも非感染であるにも拘わらず肝組織所見がアルコール性肝障害に類似した肝組織像を呈する肝症状である(非特許文献1)。主に大滴性の肝脂肪沈着を特徴とする肝障害はNAFLDと呼ばれ、NAFLDは、更に、予後が良好な単純性脂肪肝(simple steatosis)と、進行性で最終的には肝硬変に至るNASHとに分類される(非特許文献1)。 NASH (non-alcoholic steatohepatitis: non-alcoholic fatty liver disease) and NAFLD (non-alcoholic fatty liver disease: non-alcoholic fatty liver disease) are generally diagnosed by ultrasonography in fatty liver (liver cells). Based on the accumulation of fat droplets), liver tissue with liver history similar to alcoholic liver injury, despite no history of alcohol consumption and non-infection with hepatitis virus Yes (Non-Patent Document 1). Liver damage mainly characterized by large droplets of liver fat is called NAFLD. NAFLD also has a simple fatty liver with a good prognosis and progressive and eventually cirrhosis. It is classified as NASH (Non-Patent Document 1).
 歴史的には、1980年にLudwigが、多飲歴は無いがアルコール性肝障害を持ち肝硬変に至る症例をNASHとして報告しており、また1986年にSchaffnerがNAFLDの疾患群を報告している。NAFLDの肝組織像に関しては、Matteoniの4型の分類(1型:単純性脂肪肝、2型:脂肪性肝炎、3型:風船様変性を伴う脂肪性肝壊死、4型:マロリー体ないしは線維化を伴う肝細胞壊死)があり、肝硬変への進展または肝関連死の頻度が高い3型および4型はNASHとされる。また、NASHに関しては、線維化の程度によるBruntの4分類(Stage1:小葉中心部、Stage2:小葉中心部から門脈域、Stage3:架橋形成、Stage4:肝硬変)がある。 Historically, Ludwig reported in 1980 as NASH a patient who had no alcohol history but had alcoholic liver damage and led to cirrhosis, and in 1986 Schaffner reported a group of NAFLD diseases. . Regarding the liver histology of NAFLD, Matteoni type 4 classification (type 1: simple fatty liver, type 2: steatohepatitis, type 3: fatty liver necrosis with balloon-like degeneration, type 4: Mallory body or fiber Type 3 and type 4 with a high frequency of progression to cirrhosis or liver-related death are considered NASH. As for NASH, there are four types of Bruns depending on the degree of fibrosis (Stage 1: Central part of leaflet, Stage 2: Central part of leaflet to portal vein region, Stage 3: Cross-linking formation, Stage 4: Cirrhosis).
 NASHおよびNAFLDと肥満またはメタボリック・シンドロームとの相関性は強い。肥満群では、その60~70%がNAFLDの1型、その20~25%がNAFLDの3型または4型(つまりNASH)、そして、その2~3%が肝硬変(つまりNASHのStage4)である。また、NASHにおける、脂質代謝異常、高血圧、および高血糖の合併頻度は、各々60%、60%、および30%であり、メタボリック・シンドロームの合併頻度は約50%と高い。 The correlation between NASH and NAFLD and obesity or metabolic syndrome is strong. In the obese group, 60-70% are NAFLD type 1, 20-25% are NAFLD type 3 or 4 (ie NASH), and 2-3% are cirrhosis (ie NASH Stage 4) . In addition, the frequency of dyslipidemia, hypertension, and hyperglycemia in NASH is 60%, 60%, and 30%, respectively, and the frequency of metabolic syndrome is as high as about 50%.
 NASHおよびNAFLDの基礎にある脂肪肝は、全検診受診者の20~30%に見られ、メタボリック・シンドローム同様、近年増加の傾向にある。脂肪肝からNAFLD、そしてNASHへという肝症状の進展に対応して、検診受診者の8%にNAFLDが見られ、NASHの頻度も成人の0.5~1%と推定される。NASHの予後は悪く、NASHでは5年間に線維化進展が25%、また肝硬変への進展が15%認められ、NASHの生存率は5年で67%、10年で59%である。 Fatty liver, which is the basis of NASH and NAFLD, is seen in 20-30% of all examinees, and has been on the rise in recent years, just like metabolic syndrome. Corresponding to the progress of liver symptoms from fatty liver to NAFLD and NASH, NAFLD is seen in 8% of the screening examinees, and the frequency of NASH is estimated to be 0.5-1% of adults. The prognosis of NASH is poor. In NASH, fibrosis has progressed to 25% in 5 years and 15% has progressed to cirrhosis. The survival rate of NASH is 67% in 5 years and 59% in 10 years.
 NAFLDおよびNASHの発症メカニズムに関しては、先ず肝細胞への脂肪蓄積が起こり、次に酸化ストレスのような肝細胞障害要因が加わることで、発症に至るという「two-hit theory」が支持されている。NAFLDおよびNASHの治療に関しては、肥満改善のための運動・食事療法、およびインスリン抵抗性改善薬・ビグアナイト薬・ウルソデオキシコール酸・抗高脂血症薬・抗酸化薬などを用いた薬物療法が検討されているが、コントロールを用いた療法の検討は少ない。 Regarding the onset mechanism of NAFLD and NASH, “two-hit theory” is supported in which fat accumulation in hepatocytes occurs first, and then hepatocellular injury factors such as oxidative stress are added, leading to onset. . For treatment of NAFLD and NASH, exercise / dietary therapy for obesity improvement, and pharmacotherapy using insulin resistance improving drug, biguanite drug, ursodeoxycholic acid, antihyperlipidemic drug, antioxidant drug, etc. Although being studied, there are few studies on therapies using controls.
 NAFLDおよびNASHの確定診断には、肝生検による肝組織像が必要である。しかし、肝生検は、侵襲度が高く、患者の苦痛、さらには出血などのリスクを伴うなど、患者に対する負担が大きい。そのため、全検診受診者のうち脂肪肝が認められる20~30%の者を対象に肝生検を施行するのは、現実的にほぼ不可能である。 A definitive diagnosis of NAFLD and NASH requires liver histology by liver biopsy. However, liver biopsy has a high degree of invasiveness and is burdensome to the patient because it involves the patient's pain and further risks such as bleeding. Therefore, it is practically impossible to perform liver biopsy on 20-30% of all examinees who have fatty liver.
 このような現状から、先ず、肝生検に代わる侵襲の少ない簡便な方法でNASHまたはNAFLDの可能性が高い症例を判別し、当該判別された症例を肝生検によるNASH診断の施行対象および治療対象とすることが、患者の身体的負担および医療経済学の面から望まれる。 From such a current situation, first, a case with high possibility of NASH or NAFLD is determined by a simple method with less invasion instead of liver biopsy, and the determined case is subjected to NASH diagnosis by liver biopsy and treatment It is desirable from the viewpoint of physical burden on patients and medical economics.
 これまで、低侵襲のNAFLDおよびNASHの判別法として、トランスアミナーゼ(ALT>AST)、γGTPの上昇、AST/ALT比の増加、ヒアルロン酸などの線維化マーカー、血小板数の減少、インスリン抵抗性を表すHOMA指数、酸化ストレスマーカー、アデイポネクチンのようなアデイポサイトポカイン、および、高感度CRPなどが報告されている(非特許文献1および非特許文献2)。 To date, minimally invasive NAFLD and NASH discriminating methods include transaminase (ALT> AST), increased γGTP, increased AST / ALT ratio, fibrosis markers such as hyaluronic acid, decreased platelet count, and insulin resistance HOMA index, oxidative stress marker, adipocyte pokine such as adiponectin, and highly sensitive CRP have been reported (Non-patent Document 1 and Non-patent Document 2).
 また、肝疾患の診断に血中アミノ酸濃度を用いる指標として、Fischerが提案したFischer比「(Leu+Val+Ile)/(Phe+Tyr)」、あるいはFischer比と同じ目的で臨床診断に用いられているFischer比を簡単にしたBTR指標「(Leu+Val+Ile)/Tyr」がある(非特許文献3)。 In addition, Fischer's ratio “(Leu + Val + Ile) / (Phe + Tyr)” proposed by Fischer, or the Fischer ratio used for clinical diagnosis for the same purpose as the Fischer ratio, is simply used as an index to use blood amino acid concentration for liver disease diagnosis. There is a BTR index “(Leu + Val + Ile) / Tyr” (Non-patent Document 3).
 また、先行特許として、アミノ酸濃度と生体状態とを関連付ける方法に関する特許文献1、特許文献2、および特許文献3が公開されている。また、特許文献1には、血中アミノ酸を用いて肝炎を診断する方法、およびC型肝炎の非肝炎と肝炎の判別を目的とする指標が開示されている。また、アミノ酸の濃度を変数とする分数式からなる指標式を用いて肝疾患の病態の進行を評価する装置に関する特許文献4が公開されている。また、アミノ酸濃度を用いてメタボリック・シンドロームの状態を評価する方法に関する特許文献5や、アミノ酸濃度を用いて内臓脂肪蓄積の状態を評価する方法に関する特許文献6、アミノ酸濃度を用いて耐糖能異常の状態を評価する方法に関する特許文献7、およびアミノ酸濃度を用いて見掛け肥満、隠れ肥満、および肥満の状態を評価する方法に関する特許文献8が公開されている。 Also, Patent Literature 1, Patent Literature 2, and Patent Literature 3 relating to a method for associating an amino acid concentration with a biological state are disclosed as prior patents. Patent Document 1 discloses a method for diagnosing hepatitis using amino acids in blood and an index for the purpose of discriminating non-hepatitis from hepatitis C and hepatitis. Further, Patent Document 4 relating to an apparatus for evaluating the progression of a disease state of liver disease using an index formula consisting of a fractional expression with the amino acid concentration as a variable is disclosed. In addition, Patent Document 5 relating to a method for evaluating metabolic syndrome using amino acid concentration, Patent Document 6 relating to a method for evaluating visceral fat accumulation using amino acid concentration, and glucose tolerance abnormality using amino acid concentration. Patent Document 7 relating to a method for evaluating the state and Patent Document 8 relating to a method for evaluating the state of apparent obesity, hidden obesity, and obesity using amino acid concentrations are disclosed.
国際公開第2004/052191号International Publication No. 2004/052191 国際公開第2006/098192号International Publication No. 2006/098192 国際公開第2009/054351号International Publication No. 2009/054351 国際公開第2006/129513号International Publication No. 2006/129513 国際公開第2008/015929号International Publication No. 2008/015929 国際公開第2009/001862号International Publication No. 2009/001862 国際公開第2009/054350号International Publication No. 2009/0535050 国際公開第2010/095682号International Publication No. 2010/095682
 しかしながら、これまで、脂肪肝、NAFLD、およびNASHと血中アミノ酸濃度との相関性に関する報告および脂肪肝、NAFLD、およびNASHの判別法への血中アミノ酸濃度の応用に関する報告はない。なお、非特許文献1および非特許文献2で報告されている判別法は診断性能が十分ではないので、当該判別法を確立した診断法として応用するのは難しい。また、非特許文献3で報告されているFischer比およびBTR指標は肝硬変における肝性脳症の診断に用いられるものであるので、Fischer比およびBTR指標をNAFLDまたはNASHの診断に用いても十分な精度を得ることはできない。また、特許文献1~8に開示されている指標式群をNAFLDまたはNASHの診断に用いても、診断対象が異なるので、十分な精度を得ることはできない。 However, there have been no reports on the correlation between fatty liver, NAFLD, and NASH and blood amino acid concentration, and on the application of blood amino acid concentration to the method for discriminating fatty liver, NAFLD, and NASH. Note that the discrimination methods reported in Non-Patent Literature 1 and Non-Patent Literature 2 do not have sufficient diagnostic performance, so it is difficult to apply the discrimination methods as established diagnostic methods. In addition, since the Fischer ratio and BTR index reported in Non-Patent Document 3 are used for diagnosis of hepatic encephalopathy in cirrhosis, sufficient accuracy can be obtained even if the Fischer ratio and BTR index are used for the diagnosis of NAFLD or NASH. Can't get. Further, even when the index formula groups disclosed in Patent Documents 1 to 8 are used for diagnosis of NAFLD or NASH, the diagnosis target is different, so that sufficient accuracy cannot be obtained.
 つまり、これまで、複数のアミノ酸を変数として、脂肪肝、NAFLD、およびNASHなどの脂肪性肝疾患の状態を評価する方法の開発は行われておらず、実用化されていないという問題点があった。 In other words, a method for evaluating the state of fatty liver diseases such as fatty liver, NAFLD, and NASH using a plurality of amino acids as variables has not been developed so far, and there has been a problem that it has not been put into practical use. It was.
 本発明は、上記問題点に鑑みてなされたもので、血液中のアミノ酸の濃度を利用して、脂肪性肝疾患の状態を精度よく評価することができる脂肪性肝疾患の評価方法、脂肪性肝疾患評価装置、脂肪性肝疾患評価方法、脂肪性肝疾患評価プログラム、脂肪性肝疾患評価システム、および情報通信端末装置、ならびに、当該脂肪性肝疾患の評価方法を用いて、脂肪性肝疾患を予防させる又は脂肪性肝疾患の状態を改善させる物質を精度よく探索することができる脂肪性肝疾患の予防・改善物質の探索方法を提供することを目的とする。 The present invention has been made in view of the above problems, and uses an amino acid concentration in blood to accurately evaluate the state of fatty liver disease. Liver disease evaluation device, fatty liver disease evaluation method, fatty liver disease evaluation program, fatty liver disease evaluation system, information communication terminal device, and fatty liver disease evaluation method It is an object of the present invention to provide a method for searching for a substance for preventing / ameliorating fatty liver disease, which can accurately search for a substance that can prevent or improve the state of fatty liver disease.
 アミノ酸は主に肝臓で代謝され、脂肪肝からNAFLDそしてNASHへの進行過程は糖代謝、脂質代謝、炎症反応、および酸化ストレス応答反応と強く相関していると考えられる。そのため、NAFLDまたはNASHの状態の肝臓の組織像変化に対応して変動する血中アミノ酸が同定され、さらに同定された血中アミノ酸の濃度を変数とした指標式が見出されれば、脂肪肝、NAFLD、およびNASHの簡便かつ効果的な判別法として広く適用可能である。そこで、本発明者らは、上述した課題を解決するために鋭意検討した結果、血液中のアミノ酸濃度による脂肪肝、NAFLD、およびNASHの陽性群の判別に有用なアミノ酸変数を同定すると共に、同定したアミノ酸の濃度を変数に用いた、2群間の判別能を最適化するための多変量判別式(関数式、指標式)を見出し、本発明を完成するに至った。 Amino acids are mainly metabolized in the liver, and the progression from fatty liver to NAFLD and NASH is considered to be strongly correlated with glucose metabolism, lipid metabolism, inflammatory response, and oxidative stress response. Therefore, if a blood amino acid that varies in response to changes in the histology of the liver in the state of NAFLD or NASH is identified, and if an index expression is found with the concentration of the identified blood amino acid as a variable, fatty liver, NAFLD , And NASH can be widely applied as a simple and effective discrimination method. As a result of intensive studies to solve the above-mentioned problems, the present inventors have identified amino acid variables useful for discriminating fatty liver, NAFLD, and NASH positive groups based on the amino acid concentration in blood. The present inventors have completed the present invention by finding a multivariate discriminant (function formula, index formula) for optimizing the discriminating ability between the two groups using the amino acid concentration as a variable.
 すなわち、上述した課題を解決し、目的を達成するために、本発明にかかる脂肪性肝疾患の評価方法は、評価対象から採取した血液中のアミノ酸の濃度値に関するアミノ酸濃度データを取得する取得ステップと、前記取得ステップで取得した前記アミノ酸濃度データに基づいて、前記評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する濃度値基準評価ステップとを含むことを特徴とする。 That is, in order to solve the above-described problems and achieve the object, the method for evaluating fatty liver disease according to the present invention obtains amino acid concentration data relating to the concentration value of amino acids in blood collected from an evaluation object. And the fatty acid containing at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis) based on the amino acid concentration data obtained in the obtaining step. And a concentration value reference evaluation step for evaluating the state of the liver disease.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記NASHの状態を評価すること、を特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Gln, Glu included in the amino acid concentration data acquired in the acquisition step. , Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser. Based on the concentration value, the NASH state is evaluated for the evaluation object. It is characterized by evaluating.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの前記濃度値に基づいて、前記NASHまたは非NASHであるか否かを判別する濃度値基準判別ステップをさらに含むことを特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Gln, Glu included in the amino acid concentration data acquired in the acquisition step. , Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser, whether or not the NASH or non-NASH based on the concentration value The method further includes a density value reference discrimination step for discriminating.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記NAFLDの状態を評価すること、を特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Gln, Glu included in the amino acid concentration data acquired in the acquisition step. , Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn. And evaluating the state of the NAFLD.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記NAFLDまたは非NAFLDであるか否かを判別する濃度値基準判別ステップをさらに含むことを特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Gln, Glu included in the amino acid concentration data acquired in the acquisition step. , Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn. The method further includes a density value reference determining step of determining whether the NAFLD or non-NAFLD.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記脂肪肝の状態を評価すること、を特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Thr, Ser included in the amino acid concentration data acquired in the acquisition step. , Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn. It is characterized by evaluating the state of.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記脂肪肝または非脂肪肝であるか否かを判別する濃度値基準判別ステップをさらに含むことを特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Thr, Ser included in the amino acid concentration data acquired in the acquisition step. , Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn. Alternatively, the method further includes a concentration value reference determining step for determining whether or not the patient is non-fatty liver.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記NASHおよび前記NAFLDの状態を評価すること、を特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Gln, Glu included in the amino acid concentration data acquired in the acquisition step. , Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA, the state of the NASH and the NAFLD is evaluated for the evaluation object based on the concentration value It is characterized by doing.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記NASH、または非NASH且つ前記NAFLDであるか否かを判別する濃度値基準判別ステップをさらに含むことを特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the concentration value reference evaluation step includes Gln, Glu included in the amino acid concentration data acquired in the acquisition step. , Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA, based on the concentration value, the NASH or the non-NASH and the NAFLD It further includes a density value reference determining step for determining whether or not
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む予め設定した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価する判別値基準評価ステップとをさらに含むこと、を特徴とする。 The fatty liver disease evaluation method according to the present invention is the fatty liver disease evaluation method, wherein the concentration value reference evaluation step includes the amino acid concentration data acquired in the acquisition step, and the amino acid concentration. Based on a preset multivariate discriminant including a variable, a discriminant value calculating step for calculating a discriminant value that is a value of the multivariate discriminant, and based on the discriminant value calculated in the discriminant value calculating step, The evaluation object further includes: a discriminant value criterion evaluation step for evaluating the state of the fatty liver disease.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記多変量判別式は、ロジスティック回帰式、分数式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであること、を特徴とする。 The method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the multivariate discriminant is a logistic regression equation, a fractional equation, a linear discriminant, a multiple regression equation, a support vector, It is one of an expression created by a machine, an expression created by the Mahalanobis distance method, an expression created by a canonical discriminant analysis, and an expression created by a decision tree.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記判別値算出ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの前記濃度値、およびGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つを前記変数として含む前記多変量判別式に基づいて、前記判別値を算出し、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記NASHの状態を評価すること、を特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the discriminant value calculating step includes Gln, Glu, and Gln included in the amino acid concentration data acquired in the acquiring step. The concentration value of at least one of Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser, and Gln, Glu, Pro, Gly, Ala, Leu, Ile , Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser, based on the multivariate discriminant including at least one of the variables, calculating the discriminant value, and the discriminant value criterion evaluation step Is based on the discriminant value calculated in the discriminant value calculating step, for each of the evaluation objects, the NASH Evaluating the state, characterized by.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記NASHまたは非NASHであるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the discriminant value criterion evaluating step is based on the discriminant value calculated in the discriminant value calculating step. The method further includes a discriminant value criterion discriminating step for discriminating whether the evaluation target is the NASH or the non-NASH.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記多変量判別式は、Glu,Gln,Gly,Ala,Val,Tyrを前記変数として含む前記ロジスティック回帰式であること、を特徴とする。 The method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the multivariate discriminant includes Glu, Gln, Gly, Ala, Val, Tyr as the variable. It is a logistic regression equation.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記判別値算出ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの前記濃度値、およびGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つを前記変数として含む前記多変量判別式に基づいて、前記判別値を算出し、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記NAFLDの状態を評価すること、を特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the discriminant value calculating step includes Gln, Glu, and Gln included in the amino acid concentration data acquired in the acquiring step. Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn, the concentration value, and Gln, Glu, Pro, Gly , Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn based on the multivariate discriminant including at least one as the variable, A discriminant value is calculated, and the discriminant value reference evaluation step includes the discriminant value calculated in the discriminant value calculation step. Based on the value, per the evaluation object, evaluating the state of the NAFLD, characterized.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記NAFLDまたは非NAFLDであるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the discriminant value criterion evaluating step is based on the discriminant value calculated in the discriminant value calculating step. The method further includes a discriminant value criterion discriminating step for discriminating whether the evaluation object is the NAFLD or the non-NAFLD.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを前記変数として含む前記ロジスティック回帰式であること、を特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the multivariate discriminant includes Ser, Glu, Gly, Val, Tyr, and His as the variables. It is a logistic regression equation.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記判別値算出ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの前記濃度値、およびThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つを前記変数として含む前記多変量判別式に基づいて、前記判別値を算出し、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記脂肪肝の状態を評価すること、を特徴とする。 The method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the discriminant value calculating step includes Thr, Ser, and the like included in the amino acid concentration data acquired in the acquiring step. At least one concentration value of Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn, and Thr, Ser, Glu, Pro, Gly, Ala , Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn based on the multivariate discriminant including at least one of the variables, the discriminant value is calculated, and the discrimination is performed. In the value criterion evaluation step, the evaluation target is evaluated based on the discriminant value calculated in the discriminant value calculation step. , Evaluating the state of the fatty liver, characterized by.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記脂肪肝または非脂肪肝であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the discriminant value criterion evaluating step is based on the discriminant value calculated in the discriminant value calculating step. The method further includes a discriminant value criterion discriminating step for discriminating whether the evaluation target is the fatty liver or non-fatty liver.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記多変量判別式は、Ser,Glu,Gly,Ala,Val,Tyrを前記変数として含む前記ロジスティック回帰式であること、を特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the multivariate discriminant includes Ser, Glu, Gly, Ala, Val, Tyr as the variable. It is a logistic regression equation.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記判別値算出ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの前記濃度値、およびGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを前記変数として含む前記多変量判別式に基づいて、前記判別値を算出し、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記NASHおよび前記NAFLDの状態を評価すること、を特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the discriminant value calculating step includes Gln, Glu, and Gln included in the amino acid concentration data acquired in the acquiring step. Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA, at least one of the concentration values, and Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn , Phe, Met, Ile, Pro, ABA, the discriminant value is calculated based on the multivariate discriminant including at least one of the variables as the variable, and the discriminant value criterion evaluation step includes: Based on the calculated discriminant value, the state of the NASH and the NAFLD is evaluated for the evaluation object. Rukoto, characterized by.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記NASH、または非NASH且つ前記NAFLDであるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the discriminant value criterion evaluating step is based on the discriminant value calculated in the discriminant value calculating step. The method further includes a discriminant value criterion discriminating step for discriminating whether the evaluation target is the NASH or non-NASH and the NAFLD.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記多変量判別式は、Asn,Gln,Gly,Ala,Cit,Metを前記変数として含む前記ロジスティック回帰式であること、を特徴とする。 The method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the multivariate discriminant includes Asn, Gln, Gly, Ala, Cit, and Met as the variables. It is a logistic regression equation.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、非NAFLD、前記NASH、または非NASH且つ前記NAFLDであるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the discriminant value criterion evaluating step is based on the discriminant value calculated in the discriminant value calculating step. The method further includes a discriminant value criterion discriminating step for discriminating whether the evaluation object is non-NAFLD, NASH, or non-NASH and NAFLD.
 また、本発明にかかる脂肪性肝疾患の評価方法は、前記の脂肪性肝疾患の評価方法において、前記多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを前記変数として含む前記ロジスティック回帰式、およびAsn,Gln,Gly,Ala,Cit,Metを前記変数として含む前記ロジスティック回帰式であること、を特徴とする。 Further, the method for evaluating fatty liver disease according to the present invention is the method for evaluating fatty liver disease, wherein the multivariate discriminant includes Ser, Glu, Gly, Val, Tyr, and His as the variables. A logistic regression equation and the logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as the variables.
 また、本発明にかかる脂肪性肝疾患評価装置は、制御手段と記憶手段とを備え、評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する脂肪性肝疾患評価装置であって、前記制御手段は、アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出手段と、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価する判別値基準評価手段とを備えたこと、を特徴とする。 The fatty liver disease evaluation apparatus according to the present invention includes a control unit and a storage unit, and includes, among evaluation targets, fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis). A fatty liver disease evaluation apparatus that evaluates a state of fatty liver disease including at least one, wherein the control means includes the previously obtained amino acid concentration data of the evaluation object relating to the amino acid concentration value, and the concentration of the amino acid. Based on the multivariate discriminant stored in the storage means including the variable, the discriminant value calculating unit that calculates the discriminant value that is the value of the multivariate discriminant, and the discriminant value calculated by the discriminant value calculating unit Based on the evaluation subject, the status of the fatty liver disease Further comprising a worthy discriminant value criterion-evaluating unit, characterized by.
 なお、本発明にかかる脂肪性肝疾患評価装置は、前記の脂肪性肝疾患評価装置において、前記制御手段は、前記アミノ酸濃度データと前記脂肪性肝疾患の状態を表す指標に関する脂肪性肝疾患状態指標データとを含む前記記憶手段で記憶した脂肪性肝疾患状態情報に基づいて、前記記憶手段で記憶する前記多変量判別式を作成する多変量判別式作成手段をさらに備え、前記多変量判別式作成手段は、前記脂肪性肝疾患状態情報から所定の式作成手法に基づいて、前記多変量判別式の候補である候補多変量判別式を作成する候補多変量判別式作成手段と、前記候補多変量判別式作成手段で作成した前記候補多変量判別式を、所定の検証手法に基づいて検証する候補多変量判別式検証手段と、前記候補多変量判別式検証手段での検証結果から所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択することで(ただし、前記検証結果を考慮せず、前記所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択してもよい。)、前記候補多変量判別式を作成する際に用いる前記脂肪性肝疾患状態情報に含まれる前記アミノ酸濃度データの組み合わせを選択する変数選択手段と、をさらに備え、前記候補多変量判別式作成手段、前記候補多変量判別式検証手段および前記変数選択手段を繰り返し実行して蓄積した前記検証結果に基づいて、複数の前記候補多変量判別式の中から前記多変量判別式として採用する前記候補多変量判別式を選出することで、前記多変量判別式を作成することを特徴としてもよい。 The fatty liver disease evaluation apparatus according to the present invention is the fatty liver disease evaluation apparatus, wherein the control means is the fatty liver disease state relating to the amino acid concentration data and an index representing the state of the fatty liver disease. A multivariate discriminant creating unit that creates the multivariate discriminant stored in the storage unit based on fatty liver disease state information stored in the storage unit including index data; and the multivariate discriminant The creating means includes a candidate multivariate discriminant creating means for creating a candidate multivariate discriminant that is a candidate for the multivariate discriminant based on a predetermined formula creating method from the fatty liver disease state information; Based on the candidate multivariate discriminant verification means for verifying the candidate multivariate discriminant created by the variable discriminant creation means based on a predetermined verification method, and the verification results of the candidate multivariate discriminant verification means By selecting the variable of the candidate multivariate discriminant based on the variable selection method of the above (however, the variable of the candidate multivariate discriminant is selected based on the predetermined variable selection method without considering the verification result) And variable selection means for selecting a combination of the amino acid concentration data included in the fatty liver disease state information used when creating the candidate multivariate discriminant. Based on the verification results accumulated by repeatedly executing the variable discriminant creation means, the candidate multivariate discriminant verification means, and the variable selection means, the multivariate discriminant is selected from the plurality of candidate multivariate discriminants. The multivariate discriminant may be created by selecting the candidate multivariate discriminant to be adopted.
 また、本発明にかかる脂肪性肝疾患評価方法は、制御手段と記憶手段とを備えた情報処理装置において実行される、評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する脂肪性肝疾患評価方法であって、前記制御手段において実行される、アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価する判別値基準評価ステップとを含むこと、を特徴とする。 In addition, the method for evaluating fatty liver disease according to the present invention includes a fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH, which are executed in an information processing apparatus including a control unit and a storage unit. A fatty liver disease evaluation method for evaluating a state of fatty liver disease comprising at least one of (non-alcoholic steatohepatitis), the evaluation obtained in advance concerning the concentration value of amino acid, executed in the control means Based on the target amino acid concentration data and the multivariate discriminant stored in the storage means including the amino acid concentration as a variable, a discriminant value calculating step for calculating a discriminant value that is a value of the multivariate discriminant; and The discriminant value calculated in the discriminant value calculating step Based on, per the evaluation object, comprise a discriminant value criterion evaluating step of evaluating the state of the fatty liver disease, characterized by.
 また、本発明にかかる脂肪性肝疾患評価プログラムは、制御手段と記憶手段とを備えた情報処理装置において実行させるための、評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する脂肪性肝疾患評価プログラムであって、前記制御手段において実行させるための、アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価する判別値基準評価ステップとを含むこと、を特徴とする。 Moreover, the fatty liver disease evaluation program according to the present invention is performed on an information processing apparatus including a control unit and a storage unit. The evaluation target includes fatty liver, NAFLD (non-alcoholic fatty liver disease), and A fatty liver disease evaluation program for evaluating a state of fatty liver disease including at least one of NASH (non-alcoholic steatohepatitis), which is obtained in advance with respect to an amino acid concentration value to be executed by the control means A discriminant value calculating step for calculating a discriminant value which is a value of the multivariate discriminant based on the amino acid concentration data to be evaluated and the multivariate discriminant stored in the storage means including the amino acid concentration as a variable; , The discriminant value calculation step Based on the discriminant value calculated at flop, per the evaluation object, comprise a discriminant value criterion evaluating step of evaluating the state of the fatty liver disease, characterized by.
 また、本発明にかかる記録媒体は、コンピュータ読み取り可能な記録媒体であって、前記の脂肪性肝疾患評価プログラムを記録したことを特徴とする。 Further, a recording medium according to the present invention is a computer-readable recording medium, and is characterized by recording the above-mentioned fatty liver disease evaluation program.
 また、本発明にかかる脂肪性肝疾患評価システムは、制御手段と記憶手段とを備え、評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する脂肪性肝疾患評価装置と、制御手段を備え、アミノ酸の濃度値に関する前記評価対象のアミノ酸濃度データを提供する情報通信端末装置とを、ネットワークを介して通信可能に接続して構成された脂肪性肝疾患評価システムであって、前記情報通信端末装置の前記制御手段は、前記評価対象の前記アミノ酸濃度データを前記脂肪性肝疾患評価装置へ送信するアミノ酸濃度データ送信手段と、前記脂肪性肝疾患評価装置から送信された前記脂肪性肝疾患の状態評価に関する前記評価対象の評価結果を受信する評価結果受信手段とを備え、前記脂肪性肝疾患評価装置の前記制御手段は、前記情報通信端末装置から送信された前記アミノ酸濃度データを受信するアミノ酸濃度データ受信手段と、前記アミノ酸濃度データ受信手段で受信した前記アミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出手段と、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価する判別値基準評価手段と、前記判別値基準評価手段での前記評価対象の前記評価結果を前記情報通信端末装置へ送信する評価結果送信手段と、を備えたこと、を特徴とする。 Moreover, the fatty liver disease evaluation system according to the present invention comprises a control means and a storage means. The evaluation target includes fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis). A fatty liver disease evaluation apparatus that evaluates the state of fatty liver disease including at least one, and an information communication terminal device that includes a control means and provides the amino acid concentration data of the evaluation object related to the amino acid concentration value, The fatty liver disease evaluation system configured to be communicably connected via the information communication terminal device, wherein the control means of the information communication terminal device sends the amino acid concentration data to be evaluated to the fatty liver disease evaluation device Amino acid concentration data transmission means to be transmitted and the previous Evaluation result receiving means for receiving the evaluation result of the evaluation object related to the state evaluation of the fatty liver disease transmitted from the fatty liver disease evaluation apparatus, and the control means of the fatty liver disease evaluation apparatus comprises: Amino acid concentration data receiving means for receiving the amino acid concentration data transmitted from the information communication terminal device, the amino acid concentration data received by the amino acid concentration data receiving means, and the storage means including the amino acid concentration as variables Based on the determined multivariate discriminant, a discriminant value calculating unit that calculates a discriminant value that is a value of the multivariate discriminant, and based on the discriminant value calculated by the discriminant value calculating unit, Discriminant value reference evaluation means for evaluating the state of fatty liver disease, and the evaluation result of the evaluation object in the discriminant value reference evaluation means as the information communication Further comprising an evaluation result transmitting means for transmitting to the end device, and characterized.
 また、本発明にかかる情報通信端末装置は、評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する脂肪性肝疾患評価装置とネットワークを介して通信可能に接続された、制御手段を備え、アミノ酸の濃度値に関する前記評価対象のアミノ酸濃度データを提供する情報通信端末装置であって、前記制御手段は、前記評価対象の前記アミノ酸濃度データを前記脂肪性肝疾患評価装置へ送信するアミノ酸濃度データ送信手段と、前記脂肪性肝疾患評価装置から送信された前記脂肪性肝疾患の状態評価に関する前記評価対象の評価結果を受信する評価結果受信手段とを備え、前記評価結果は、前記肪性肝疾患評価装置が、前記情報通信端末装置から送信された前記アミノ酸濃度データを受信し、受信した前記アミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む前記肪性肝疾患評価装置で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出し、算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価した結果であること、を特徴とする。 In addition, the information communication terminal device according to the present invention is a state of fatty liver disease including at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis) per evaluation object. An information communication terminal device that provides control means connected to a fatty liver disease evaluation device for assessing a network via a network, and provides the amino acid concentration data of the evaluation object related to the amino acid concentration value, The control means relates to amino acid concentration data transmitting means for transmitting the amino acid concentration data to be evaluated to the fatty liver disease evaluating apparatus, and state evaluation of the fatty liver disease transmitted from the fatty liver disease evaluating apparatus. Receive the evaluation result of the evaluation target Evaluation result receiving means, wherein the evaluation result indicates that the fatty liver disease evaluation device receives the amino acid concentration data transmitted from the information communication terminal device, and the received amino acid concentration data, and the amino acid Based on the multivariate discriminant stored in the apparatus for assessing fatty liver disease including the concentration of the liver as a variable, a discriminant value that is the value of the multivariate discriminant is calculated, and the evaluation is performed based on the calculated discriminant value. It is a result of evaluating the state of the fatty liver disease per subject.
 また、本発明にかかる脂肪性肝疾患評価装置は、アミノ酸の濃度値に関する評価対象のアミノ酸濃度データを提供する情報通信端末装置とネットワークを介して通信可能に接続された、制御手段と記憶手段とを備え、前記評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する脂肪性肝疾患評価装置であって、前記制御手段は、前記情報通信端末装置から送信された前記アミノ酸濃度データを受信するアミノ酸濃度データ受信手段と、前記アミノ酸濃度データ受信手段で受信した前記アミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出手段と、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価する判別値基準評価手段と、前記判別値基準評価手段での前記評価対象の評価結果を前記情報通信端末装置へ送信する評価結果送信手段と、を備えたこと、を特徴とする。 The fatty liver disease evaluation apparatus according to the present invention includes a control unit and a storage unit that are communicably connected to an information communication terminal device that provides amino acid concentration data to be evaluated regarding amino acid concentration values via a network. The evaluation subject is a fatty liver disease evaluation for evaluating the status of fatty liver disease including at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis) An amino acid concentration data receiving means for receiving the amino acid concentration data transmitted from the information communication terminal device, the amino acid concentration data received by the amino acid concentration data receiving means, and the amino acid Concentration of Based on the multivariate discriminant stored in the storage unit included as a variable, based on the discriminant value calculated by the discriminant value calculated by the discriminant value calculator and the discriminant value calculated by the discriminant value calculator A discriminant value criterion-evaluating unit that evaluates the state of fatty liver disease for the evaluation object, and an evaluation result transmission that transmits the evaluation result of the evaluation object in the discriminant value criterion-evaluating unit to the information communication terminal device And means.
 また、本発明にかかる脂肪性肝疾患の予防・改善物質の探索方法は、1つ又は複数の物質から成る所望の物質群が投与された評価対象から採取した血液中のアミノ酸の濃度値に関するアミノ酸濃度データを取得する取得ステップと、前記取得ステップで取得した前記アミノ酸濃度データに基づいて、前記評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する濃度値基準評価ステップと、前記濃度値基準評価ステップでの評価結果に基づいて、前記所望の前記物質群が、前記脂肪性肝疾患を予防させる又は前記脂肪性肝疾患の状態を改善させるものであるか否かを判定する判定ステップと、を含むことを特徴とする。 The method for searching for a substance for preventing / ameliorating fatty liver disease according to the present invention is an amino acid related to the concentration value of amino acids in blood collected from an evaluation subject to which a desired substance group consisting of one or more substances is administered. Based on the acquisition step of acquiring concentration data and the amino acid concentration data acquired in the acquisition step, for the evaluation target, fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis) Based on the evaluation result in the concentration value reference evaluation step for evaluating the state of fatty liver disease including at least one of them, and the concentration value reference evaluation step, the desired substance group has the fatty liver disease Prevent or treat the condition of fatty liver disease Characterized in that it comprises a a judgment step of judging whether one which good, the.
 本発明によれば、評価対象から採取した血液中のアミノ酸の濃度値に関するアミノ酸濃度データを取得し、取得したアミノ酸濃度データに基づいて、前記評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する。これにより、血液中のアミノ酸の濃度を利用して、脂肪性肝疾患の状態を精度よく評価することができるという効果を奏する。 According to the present invention, amino acid concentration data relating to the concentration value of amino acids in blood collected from an evaluation object is obtained, and based on the obtained amino acid concentration data, fatty acid liver, NAFLD (non-alcoholic fatity river) is obtained for the evaluation object. disease), and the status of fatty liver disease including at least one of NASH (non-alcoholic steatohepatitis). Thereby, there exists an effect that the state of fatty liver disease can be accurately evaluated using the concentration of amino acids in blood.
 また、本発明によれば、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値に基づいて、評価対象につき、NASHの状態を評価する。これにより、血液中のアミノ酸の濃度のうちNASHの状態と関連するアミノ酸の濃度を利用して、NASHの状態を精度よく評価することができるという効果を奏する。 Moreover, according to the present invention, at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data. Based on the density value, the state of NASH is evaluated for each evaluation target. This produces an effect that the NASH state can be accurately evaluated using the amino acid concentration related to the NASH state among the amino acid concentrations in the blood.
 また、本発明によれば、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値に基づいて、NASHまたは非NASHであるか否かを判別する。これにより、血液中のアミノ酸の濃度のうちNASHと非NASHの2群判別に有用なアミノ酸の濃度を利用して、この2群判別を精度よく行うことができるという効果を奏する。 Moreover, according to the present invention, at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data. Based on the density value, it is determined whether or not it is NASH or non-NASH. As a result, the amino acid concentration useful for the two-group discrimination of NASH and non-NASH among the amino acid concentrations in the blood is utilized, and this has the effect that the two-group discrimination can be performed with high accuracy.
 また、本発明によれば、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値に基づいて、評価対象につき、NAFLDの状態を評価する。これにより、血液中のアミノ酸の濃度のうちNAFLDの状態と関連するアミノ酸の濃度を利用して、NAFLDの状態を精度よく評価することができるという効果を奏する。 Further, according to the present invention, Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, which are included in the amino acid concentration data. Based on the concentration value of at least one of Asn, the state of NAFLD is evaluated for each evaluation target. Accordingly, the NAFLD state can be accurately evaluated using the amino acid concentration related to the NAFLD state among the amino acid concentrations in the blood.
 また、本発明によれば、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値に基づいて、評価対象につき、NAFLDまたは非NAFLDであるか否かを判別する。これにより、血液中のアミノ酸の濃度のうちNAFLDと非NAFLDの2群判別に有用なアミノ酸の濃度を利用して、この2群判別を精度よく行うことができるという効果を奏する。 Further, according to the present invention, Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, which are included in the amino acid concentration data. Based on the concentration value of at least one of Asn, it is determined whether the evaluation target is NAFLD or non-NAFLD. As a result, the amino acid concentration useful for the 2-group discrimination between NAFLD and non-NAFLD among the amino acid concentrations in the blood is utilized, and this has the effect that the 2-group discrimination can be accurately performed.
 また、本発明によれば、アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値に基づいて、評価対象につき、脂肪肝の状態を評価する。これにより、血液中のアミノ酸の濃度のうち脂肪肝の状態と関連するアミノ酸の濃度を利用して、脂肪肝の状態を精度よく評価することができるという効果を奏する。 According to the present invention, at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data. Based on one concentration value, the state of fatty liver is evaluated for each evaluation object. This produces an effect that the fatty liver state can be accurately evaluated using the amino acid concentration related to the fatty liver state among the amino acid concentrations in the blood.
 また、本発明によれば、アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値に基づいて、評価対象につき、脂肪肝または非脂肪肝であるか否かを判別する。これにより、血液中のアミノ酸の濃度のうち脂肪肝と非脂肪肝の2群判別に有用なアミノ酸の濃度を利用して、この2群判別を精度よく行うことができるという効果を奏する。 According to the present invention, at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data. Based on one concentration value, it is discriminated whether the subject of evaluation is fatty liver or non-fatty liver. As a result, the amino acid concentration useful for the 2-group discrimination between fatty liver and non-fatty liver among the amino acid concentrations in the blood can be used, and this 2-group discrimination can be accurately performed.
 また、本発明によれば、アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値に基づいて、評価対象につき、NASHおよびNAFLDの状態を評価する。これにより、血液中のアミノ酸の濃度のうちNASHおよびNAFLDの状態と関連するアミノ酸の濃度を利用して、NASHおよびNAFLDの状態を精度よく評価することができるという効果を奏する。 Further, according to the present invention, based on at least one concentration value among Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA contained in amino acid concentration data. Then, the state of NASH and NAFLD is evaluated for each evaluation object. This produces an effect that the state of NASH and NAFLD can be accurately evaluated using the concentration of amino acids related to the state of NASH and NAFLD among the concentrations of amino acids in blood.
 また、本発明によれば、アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値に基づいて、評価対象につき、NASH、または非NASH且つNAFLDであるか否かを判別する。これにより、血液中のアミノ酸の濃度のうちNASHと単純性脂肪肝の2群判別に有用なアミノ酸の濃度を利用して、この2群判別を精度よく行うことができるという効果を奏する。 Further, according to the present invention, based on at least one concentration value among Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA contained in amino acid concentration data. Thus, it is determined whether the evaluation target is NASH or non-NASH and NAFLD. As a result, the amino acid concentration useful for the 2-group discrimination between NASH and simple fatty liver among the amino acid concentrations in the blood can be used, and this 2-group discrimination can be accurately performed.
 また、本発明によれば、アミノ酸濃度データ、およびアミノ酸の濃度を変数として含む予め設定した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて、評価対象につき、脂肪性肝疾患の状態を評価する。これにより、アミノ酸の濃度を変数として含む多変量判別式で得られる判別値を利用して、脂肪性肝疾患の状態を精度よく評価することができるという効果を奏する。 Further, according to the present invention, based on the amino acid concentration data and a preset multivariate discriminant including the amino acid concentration as a variable, a discriminant value that is the value of the multivariate discriminant is calculated, and the calculated discriminant value Based on the above, the status of fatty liver disease is evaluated for each evaluation subject. Thereby, the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable can be used to produce an effect that the state of fatty liver disease can be accurately evaluated.
 また、本発明によれば、多変量判別式は、ロジスティック回帰式、分数式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つである。これにより、アミノ酸の濃度を変数として含む多変量判別式で得られる判別値を利用して、脂肪性肝疾患の状態をさらに精度よく評価することができるという効果を奏する。 Further, according to the present invention, the multivariate discriminant is a logistic regression equation, a fractional equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, an equation created by the Mahalanobis distance method, a canonical discriminant. One of an expression created by analysis and an expression created by a decision tree. Accordingly, the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable can be used to produce an effect that the state of fatty liver disease can be more accurately evaluated.
 また、本発明によれば、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値に基づいて、評価対象につき、NASHの状態を評価する。これにより、NASHの状態と有意な相関がある多変量判別式で得られる判別値を利用して、NASHの状態を精度よく評価することができるという効果を奏する。 Moreover, according to the present invention, at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data. Based on a concentration value and a multivariate discriminant including at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser as a variable. Then, the discriminant value is calculated, and the state of NASH is evaluated for each evaluation object based on the calculated discriminant value. Thus, the NASH state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NASH state.
 また、本発明によれば、判別値に基づいて、評価対象につき、NASHまたは非NASHであるか否かを判別する。これにより、NASHと非NASHの2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができるという効果を奏する。 Further, according to the present invention, based on the discriminant value, it is discriminated whether the evaluation target is NASH or non-NASH. Thus, the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between NASH and non-NASH is used, and this has the effect that the two-group discrimination can be performed with high accuracy.
 また、本発明によれば、多変量判別式は、Glu,Gln,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式である。これにより、NASHと非NASHの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができるという効果を奏する。 Further, according to the present invention, the multivariate discriminant is a logistic regression equation including Glu, Gln, Gly, Ala, Val, and Tyr as variables. Accordingly, the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH is used, and this has the effect that the two-group discrimination can be performed with higher accuracy.
 また、本発明によれば、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値に基づいて、評価対象につき、NAFLDの状態を評価する。これにより、NAFLDの状態と有意な相関がある多変量判別式で得られる判別値を利用して、NAFLDの状態を精度よく評価することができるという効果を奏する。 Further, according to the present invention, Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, which are included in the amino acid concentration data. At least one concentration value of Asn, and at least of Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn A discriminant value is calculated based on a multivariate discriminant including one as a variable, and the state of NAFLD is evaluated for each evaluation object based on the calculated discriminant value. Thereby, the NAFLD state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NAFLD state.
 また、本発明によれば、判別値に基づいて、評価対象につき、NAFLDまたは非NAFLDであるか否かを判別する。これにより、NAFLDと非NAFLDの2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができるという効果を奏する。 Further, according to the present invention, it is determined whether the evaluation target is NAFLD or non-NAFLD based on the determination value. Accordingly, the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between NAFLD and non-NAFLD can be used to achieve the effect that the two-group discrimination can be performed with high accuracy.
 また、本発明によれば、多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式である。これにより、NAFLDと非NAFLDの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができるという効果を奏する。 Further, according to the present invention, the multivariate discriminant is a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables. Thus, the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NAFLD and non-NAFLD is used, and this has the effect that the two-group discrimination can be performed more accurately.
 また、本発明によれば、アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値、およびThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値に基づいて、評価対象につき、脂肪肝の状態を評価する。これにより、脂肪肝の状態と有意な相関がある多変量判別式で得られる判別値を利用して、脂肪肝の状態を精度よく評価することができるという効果を奏する。 According to the present invention, at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data. Multivariate including one concentration value and at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn as a variable A discriminant value is calculated based on the discriminant, and the state of fatty liver is evaluated for each evaluation object based on the calculated discriminant value. This produces an effect that the state of fatty liver can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of fatty liver.
 また、本発明によれば、判別値に基づいて、評価対象につき、脂肪肝または非脂肪肝であるか否かを判別する。これにより、脂肪肝と非脂肪肝の2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができるという効果を奏する。 Further, according to the present invention, it is determined whether the evaluation target is fatty liver or non-fatty liver based on the discriminant value. Thereby, the discriminant value obtained by the multivariate discriminant useful for discriminating between the two groups of fatty liver and non-fatty liver is used, and the effect that the two-group discrimination can be performed with high accuracy is achieved.
 また、本発明によれば、多変量判別式は、Ser,Glu,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式である。これにより、脂肪肝と非脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができるという効果を奏する。 Further, according to the present invention, the multivariate discriminant is a logistic regression equation including Ser, Glu, Gly, Ala, Val, and Tyr as variables. Accordingly, the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver is used, and this has the effect that the two-group discrimination can be performed with higher accuracy.
 また、本発明によれば、アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値、およびGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値に基づいて、評価対象につき、NASHおよびNAFLDの状態を評価する。これにより、NASHおよびNAFLDの状態と有意な相関がある多変量判別式で得られる判別値を利用して、NASHおよびNAFLDの状態を精度よく評価することができるという効果を奏する。 Further, according to the present invention, at least one concentration value of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA included in the amino acid concentration data, and A discriminant value is calculated based on a multivariate discriminant including at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA as a variable, Based on the calculated discriminant value, the state of NASH and NAFLD is evaluated for each evaluation target. Thus, the NASH and NAFLD states can be accurately evaluated using the discriminant values obtained by the multivariate discriminant having a significant correlation with the NASH and NAFLD states.
 また、本発明によれば、判別値に基づいて、評価対象につき、NASH、または非NASH且つNAFLDであるか否かを判別する。これにより、NASHと単純性脂肪肝の2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができるという効果を奏する。 Further, according to the present invention, based on the discriminant value, it is discriminated whether the evaluation target is NASH, non-NASH and NAFLD. Thus, the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between NASH and simple fatty liver can be used to achieve the effect that the two-group discrimination can be performed with high accuracy.
 また、本発明によれば、多変量判別式は、Asn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式である。これにより、NASHと単純性脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができるという効果を奏する。 Further, according to the present invention, the multivariate discriminant is a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. As a result, the two-group discrimination can be performed more accurately by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver.
 また、本発明によれば、判別値に基づいて、評価対象につき、非NAFLD、NASH、または非NASH且つNAFLDであるか否かを判別する。これにより、非NAFLDとNASHと単純性脂肪肝の3群判別に有用な多変量判別式で得られる判別値を利用して、この3群判別を精度よく行うことができるという効果を奏する。 Further, according to the present invention, based on the discriminant value, it is discriminated whether the evaluation target is non-NAFLD, NASH, non-NASH and NAFLD. Thus, the three-group discrimination can be performed with high accuracy by using the discriminant value obtained by the multivariate discriminant useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver.
 また、本発明によれば、多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式、およびAsn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式である。これにより、非NAFLDとNASHと単純性脂肪肝の3群判別に特に有用な多変量判別式で得られる判別値を利用して、この3群判別をさらに精度よく行うことができるという効果を奏する。 According to the present invention, the multivariate discriminant includes logistic regression equations including Ser, Glu, Gly, Val, Tyr, and His as variables, and logistics including Asn, Gln, Gly, Ala, Cit, and Met as variables. It is a regression equation. As a result, the three-group discrimination can be performed more accurately by using the discriminant value obtained by the multivariate discriminant particularly useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver. .
 なお、本発明によれば、アミノ酸濃度データと脂肪性肝疾患の状態を表す指標に関する脂肪性肝疾患状態指標データとを含む記憶手段で記憶した脂肪性肝疾患状態情報に基づいて、記憶手段で記憶する多変量判別式を作成してもよい。具体的には、(1)脂肪性肝疾患状態情報から所定の式作成手法に基づいて候補多変量判別式を作成し、(2)作成した候補多変量判別式を所定の検証手法に基づいて検証し、(3)その検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで(ただし、当該検証結果を考慮せず、所定の変数選択手法に基づいて候補多変量判別式の変数を選択してもよい。)、候補多変量判別式を作成する際に用いる脂肪性肝疾患状態情報に含まれるアミノ酸濃度データの組み合わせを選択し、(4)(1)、(2)および(3)を繰り返し実行して蓄積した検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成してもよい。これにより、脂肪性肝疾患の状態評価に最適な多変量判別式を作成することができるという効果を奏する。 According to the present invention, the storage means is based on the fatty liver disease state information stored in the storage means including the amino acid concentration data and the fatty liver disease state index data relating to the index representing the state of fatty liver disease. A multivariate discriminant to be stored may be created. Specifically, (1) a candidate multivariate discriminant is created from fatty liver disease state information based on a predetermined formula creation method, and (2) the created candidate multivariate discriminant is based on a predetermined verification method. (3) By selecting a variable of a candidate multivariate discriminant from the verification result based on a predetermined variable selection method (however, the candidate is based on the predetermined variable selection method without considering the verification result) A variable of the multivariate discriminant may be selected.), A combination of amino acid concentration data included in the fatty liver disease state information used when creating the candidate multivariate discriminant is selected, and (4) (1) By selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from a plurality of candidate multivariate discriminants based on the verification results accumulated by repeatedly executing (2) and (3), A variable discriminant may be created. Thereby, there exists an effect that the multivariate discriminant optimal for the state evaluation of fatty liver disease can be created.
 また、本発明によれば、当該記録媒体に記録された脂肪性肝疾患評価プログラムをコンピュータに読み取らせて実行することで、コンピュータに脂肪性肝疾患評価プログラムを実行させるので、上記と同様の効果を得ることができるという効果を奏する。 According to the present invention, since the fatty liver disease evaluation program recorded on the recording medium is read and executed by the computer, the computer executes the fatty liver disease evaluation program. There is an effect that can be obtained.
 また、本発明によれば、1つ又は複数の物質から成る所望の物質群が投与された評価対象から採取した血液中のアミノ酸の濃度値に関するアミノ酸濃度データを取得し、取得したアミノ酸濃度データに基づいて、評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価し、評価結果に基づいて、所望の物質群が、脂肪性肝疾患を予防させる又は脂肪性肝疾患の状態を改善させるものであるか否かを判定するので、血液中のアミノ酸の濃度を利用して脂肪性肝疾患の状態を精度よく評価することができる脂肪性肝疾患の評価方法を用いて、脂肪性肝疾患を予防させる又は脂肪性肝疾患の状態を改善させる物質を精度よく探索することができるという効果を奏する。また、本発明によれば、脂肪性肝疾患での典型的なアミノ酸濃度変動パターンの情報や脂肪性肝疾患に対応する多変量判別式を利用することで、脂肪性肝疾患の状態を一部反映した既存の動物モデルや、臨床で早期に有効な薬物を選択することが可能になる。 Further, according to the present invention, amino acid concentration data relating to amino acid concentration values collected from an evaluation subject to which a desired substance group consisting of one or a plurality of substances is administered is obtained, and the obtained amino acid concentration data is obtained. Based on the evaluation results, the evaluation target was evaluated for the status of fatty liver disease including at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis). Since it is determined whether the desired substance group is for preventing fatty liver disease or improving the state of fatty liver disease, the concentration of amino acids in blood is used to determine Using a method for assessing fatty liver disease that can accurately assess the condition, Substances which improve the condition or fatty liver disease is prevented 肪性 liver disease is an effect that it is possible to search accurately. In addition, according to the present invention, by using information on typical amino acid concentration fluctuation patterns in fatty liver disease and multivariate discriminants corresponding to fatty liver disease, the state of fatty liver disease is partially It is possible to select an existing animal model that reflects and an effective drug at an early stage in clinical practice.
 なお、本発明は、脂肪性肝疾患の状態評価を行う際、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。また、本発明は、脂肪性肝疾患の状態評価を行う際、多変量判別式における変数として、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。 In the present invention, when assessing the state of fatty liver disease, in addition to the concentration of amino acids, other biological information (for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones,・ Blood pressure value, gender, age, liver disease index, eating habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used. In addition, the present invention, when assessing the state of fatty liver disease, as a variable in the multivariate discriminant, in addition to the amino acid concentration, other biological information (for example, sugars, lipids, proteins, peptides, minerals, hormones, etc.) Biological metabolites and biological indices such as blood glucose level, blood pressure level, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
図1は、本発明の基本原理を示す原理構成図である。FIG. 1 is a principle configuration diagram showing the basic principle of the present invention. 図2は、第1実施形態にかかる脂肪性肝疾患の評価方法の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of the method for evaluating fatty liver disease according to the first embodiment. 図3は、本発明の基本原理を示す原理構成図である。FIG. 3 is a principle configuration diagram showing the basic principle of the present invention. 図4は、本システムの全体構成の一例を示す図である。FIG. 4 is a diagram illustrating an example of the overall configuration of the present system. 図5は、本システムの全体構成の他の一例を示す図である。FIG. 5 is a diagram showing another example of the overall configuration of the present system. 図6は、本システムの脂肪性肝疾患評価装置100の構成の一例を示すブロック図である。FIG. 6 is a block diagram showing an example of the configuration of the fatty liver disease evaluation apparatus 100 of the present system. 図7は、利用者情報ファイル106aに格納される情報の一例を示す図である。FIG. 7 is a diagram illustrating an example of information stored in the user information file 106a. 図8は、アミノ酸濃度データファイル106bに格納される情報の一例を示す図である。FIG. 8 is a diagram showing an example of information stored in the amino acid concentration data file 106b. 図9は、脂肪性肝疾患状態情報ファイル106cに格納される情報の一例を示す図である。FIG. 9 is a diagram illustrating an example of information stored in the fatty liver disease state information file 106c. 図10は、指定脂肪性肝疾患状態情報ファイル106dに格納される情報の一例を示す図である。FIG. 10 is a diagram illustrating an example of information stored in the designated fatty liver disease state information file 106d. 図11は、候補多変量判別式ファイル106e1に格納される情報の一例を示す図である。FIG. 11 is a diagram illustrating an example of information stored in the candidate multivariate discriminant file 106e1. 図12は、検証結果ファイル106e2に格納される情報の一例を示す図である。FIG. 12 is a diagram illustrating an example of information stored in the verification result file 106e2. 図13は、選択脂肪性肝疾患状態情報ファイル106e3に格納される情報の一例を示す図である。FIG. 13 is a diagram illustrating an example of information stored in the selected fatty liver disease state information file 106e3. 図14は、多変量判別式ファイル106e4に格納される情報の一例を示す図である。FIG. 14 is a diagram illustrating an example of information stored in the multivariate discriminant file 106e4. 図15は、判別値ファイル106fに格納される情報の一例を示す図である。FIG. 15 is a diagram illustrating an example of information stored in the discrimination value file 106f. 図16は、評価結果ファイル106gに格納される情報の一例を示す図である。FIG. 16 is a diagram illustrating an example of information stored in the evaluation result file 106g. 図17は、多変量判別式作成部102hの構成を示すブロック図である。FIG. 17 is a block diagram showing a configuration of the multivariate discriminant-preparing part 102h. 図18は、判別値基準評価部102jの構成を示すブロック図である。FIG. 18 is a block diagram illustrating a configuration of the discriminant value criterion-evaluating unit 102j. 図19は、本システムのクライアント装置200の構成の一例を示すブロック図である。FIG. 19 is a block diagram illustrating an example of the configuration of the client apparatus 200 of the present system. 図20は、本システムのデータベース装置400の構成の一例を示すブロック図である。FIG. 20 is a block diagram showing an example of the configuration of the database apparatus 400 of this system. 図21は、本システムで行う脂肪性肝疾患評価サービス処理の一例を示すフローチャートである。FIG. 21 is a flowchart showing an example of fatty liver disease evaluation service processing performed in the present system. 図22は、本システムの脂肪性肝疾患評価装置100で行う多変量判別式作成処理の一例を示すフローチャートである。FIG. 22 is a flowchart showing an example of multivariate discriminant creation processing performed by the fatty liver disease evaluation apparatus 100 of the present system. 図23は、本発明の基本原理を示す原理構成図である。FIG. 23 is a principle configuration diagram showing the basic principle of the present invention. 図24は、第3実施形態にかかる脂肪性肝疾患の予防・改善物質の探索方法の一例を示すフローチャートである。FIG. 24 is a flowchart illustrating an example of a method for searching for a substance for preventing / ameliorating fatty liver disease according to the third embodiment. 図25は、脂肪肝陽性と脂肪肝陰性の判別について良好な判別能を持つロジスティック回帰式の一覧を示す図である。FIG. 25 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between fatty liver positive and fatty liver negative. 図26は、脂肪肝陽性と脂肪肝陰性の判別について良好な判別能を持つロジスティック回帰式の一覧を示す図である。FIG. 26 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between fatty liver positive and fatty liver negative. 図27は、脂肪肝陽性と脂肪肝陰性の判別について良好な判別能を持つ分数式の一覧を示す図である。FIG. 27 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between fatty liver positive and fatty liver negative. 図28は、脂肪肝陽性と脂肪肝陰性の判別について良好な判別能を持つ分数式の一覧を示す図である。FIG. 28 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between fatty liver positive and fatty liver negative. 図29は、NAFLD陽性とNAFLD陰性の判別について良好な判別能を持つロジスティック回帰式の一覧を示す図である。FIG. 29 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between NAFLD positive and NAFLD negative. 図30は、NAFLD陽性とNAFLD陰性の判別について良好な判別能を持つロジスティック回帰式の一覧を示す図である。FIG. 30 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between NAFLD positive and NAFLD negative. 図31は、NAFLD陽性とNAFLD陰性の判別について良好な判別能を持つ分数式の一覧を示す図である。FIG. 31 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between NAFLD positive and NAFLD negative. 図32は、NAFLD陽性とNAFLD陰性の判別について良好な判別能を持つ分数式の一覧を示す図である。FIG. 32 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between NAFLD positive and NAFLD negative. 図33は、NASH陽性とNASH陰性の判別について良好な判別能を持つロジスティック回帰式の一覧を示す図である。FIG. 33 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between NASH positive and NASH negative. 図34は、NASH陽性とNASH陰性の判別について良好な判別能を持つロジスティック回帰式の一覧を示す図である。FIG. 34 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between NASH positive and NASH negative. 図35は、NASH陽性とNASH陰性の判別について良好な判別能を持つ分数式の一覧を示す図である。FIG. 35 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between NASH positive and NASH negative. 図36は、NASH陽性とNASH陰性の判別について良好な判別能を持つ分数式の一覧を示す図である。FIG. 36 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between NASH positive and NASH negative. 図37は、NASH陽性と単純性脂肪肝の判別について良好な判別能を持つロジスティック回帰式の一覧を示す図である。FIG. 37 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between NASH positive and simple fatty liver. 図38は、NASH陽性と単純性脂肪肝の判別について良好な判別能を持つロジスティック回帰式の一覧を示す図である。FIG. 38 is a diagram showing a list of logistic regression equations having good discrimination ability for discrimination between NASH positive and simple fatty liver. 図39は、NASH陽性と単純性脂肪肝の判別について良好な判別能を持つ分数式の一覧を示す図である。FIG. 39 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between NASH positive and simple fatty liver. 図40は、NASH陽性と単純性脂肪肝の判別について良好な判別能を持つ分数式の一覧を示す図である。FIG. 40 is a diagram showing a list of fractional expressions having good discrimination ability for discrimination between NASH positive and simple fatty liver. 図41は、NAFLD陰性と単純性脂肪肝とNASH陽性の判別についての判別結果を示す図である。FIG. 41 is a diagram showing discrimination results for discrimination between NAFLD negative, simple fatty liver, and NASH positive. 図42は、NAFLD陰性と単純性脂肪肝とNASH陽性の判別についての判別結果の詳細を示す図である。FIG. 42 is a diagram showing details of a discrimination result for discrimination between NAFLD negative, simple fatty liver, and NASH positive.
 以下に、本発明にかかる脂肪性肝疾患の評価方法の実施の形態(第1実施形態)、本発明にかかる脂肪性肝疾患評価装置、脂肪性肝疾患評価方法、脂肪性肝疾患評価プログラム、記録媒体、脂肪性肝疾患評価システム、および情報通信端末装置の実施の形態(第2実施形態)、ならびに本発明にかかる脂肪性肝疾患の予防・改善物質の探索方法の実施の形態(第3実施形態)を、図面に基づいて詳細に説明する。なお、本実施の形態により本発明が限定されるものではない。 Hereinafter, an embodiment (first embodiment) of an evaluation method for fatty liver disease according to the present invention, an apparatus for evaluating fatty liver disease, an evaluation method for fatty liver disease, an evaluation program for fatty liver disease, Embodiment of Recording Medium, Fatty Liver Disease Evaluation System, and Information Communication Terminal Device (Second Embodiment), and Embodiment of Method for Searching for Substance for Preventing / Improving Fatty Liver Disease According to the Present Invention (Third Embodiment) Embodiment) will be described in detail with reference to the drawings. In addition, this invention is not limited by this Embodiment.
[第1実施形態]
[1-1.本発明の概要]
 ここでは、本発明にかかる脂肪性肝疾患の評価方法の概要について図1を参照して説明する。図1は本発明の基本原理を示す原理構成図である。
[First Embodiment]
[1-1. Outline of the present invention]
Here, the outline | summary of the evaluation method of the fatty liver disease concerning this invention is demonstrated with reference to FIG. FIG. 1 is a principle configuration diagram showing the basic principle of the present invention.
 まず、評価対象(例えば動物やヒトなどの個体)から採取した血液(例えば血漿、血清などを含む)中のアミノ酸の濃度値に関するアミノ酸濃度データを取得する(ステップS11)。なお、ステップS11では、例えば、アミノ酸濃度測定を行う企業等が測定したアミノ酸濃度データを取得してもよく、また、評価対象から採取した血液から、例えば以下の(A)または(B)などの測定方法でアミノ酸濃度データを測定することでアミノ酸濃度データを取得してもよい。ここで、アミノ酸濃度の単位は、例えばモル濃度や重量濃度、これらの濃度に任意の定数を加減乗除することで得られるものでもよい。
(A)採取した血液サンプルを遠心することにより血液から血漿を分離した。全ての血漿サンプルは、アミノ酸濃度の測定時まで-80℃で凍結保存した。アミノ酸濃度測定時には、アセトニトリルを添加し除蛋白処理を行った後、標識試薬(3-アミノピリジル-N-ヒドロキシスクシンイミジルカルバメート)を用いてプレカラム誘導体化を行い、そして、液体クロマトグラフ質量分析計(LC-MS)によりアミノ酸濃度を分析した(国際公開第2003/069328号、国際公開第2005/116629号を参照)。
(B)採取した血液サンプルを遠心することにより血液から血漿を分離した。全ての血漿サンプルは、アミノ酸濃度の測定時まで-80℃で凍結保存した。アミノ酸濃度測定時には、スルホサリチル酸を添加し除蛋白処理を行った後、ニンヒドリン試薬を用いたポストカラム誘導体化法を原理としたアミノ酸分析計によりアミノ酸濃度を分析した。
First, amino acid concentration data relating to the concentration value of amino acids in blood (eg, including plasma, serum, etc.) collected from an evaluation target (eg, an individual such as an animal or a human) is acquired (step S11). In step S11, for example, amino acid concentration data measured by a company or the like that performs amino acid concentration measurement may be acquired. Further, for example, the following (A) or (B) may be obtained from blood collected from an evaluation target. Amino acid concentration data may be obtained by measuring amino acid concentration data by a measurement method. Here, the unit of amino acid concentration may be obtained by, for example, molar concentration, weight concentration, or by adding / subtracting / subtracting an arbitrary constant to / from these concentrations.
(A) Plasma was separated from blood by centrifuging the collected blood sample. All plasma samples were stored frozen at −80 ° C. until the measurement of amino acid concentration. For amino acid concentration measurement, acetonitrile was added to remove protein, followed by precolumn derivatization using a labeling reagent (3-aminopyridyl-N-hydroxysuccinimidyl carbamate), and liquid chromatography mass spectrometry The amino acid concentration was analyzed by a total (LC-MS) (see International Publication No. 2003/069328 and International Publication No. 2005/116629).
(B) Plasma was separated from blood by centrifuging the collected blood sample. All plasma samples were stored frozen at −80 ° C. until the measurement of amino acid concentration. When measuring the amino acid concentration, sulfosalicylic acid was added to remove the protein, and then the amino acid concentration was analyzed by an amino acid analyzer based on the post-column derivatization method using a ninhydrin reagent.
 つぎに、ステップS11で取得したアミノ酸濃度データに基づいて、評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する(ステップS12)。 Next, based on the amino acid concentration data obtained in step S11, the fatty liver containing at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis) is evaluated based on the amino acid concentration data obtained in step S11. The state of the disease is evaluated (Step S12).
 以上、本発明によれば、評価対象から採取した血液中のアミノ酸の濃度値に関するアミノ酸濃度データを取得し、取得した評価対象のアミノ酸濃度データに基づいて、評価対象につき、脂肪肝、NAFLD、およびNASHのうち少なくとも1つを含む脂肪性肝疾患の状態を評価する。これにより、血液中のアミノ酸の濃度を利用して、脂肪性肝疾患の状態を精度よく評価することができる。 As described above, according to the present invention, amino acid concentration data relating to the concentration value of amino acids in blood collected from an evaluation object is obtained, and based on the obtained amino acid concentration data of the evaluation object, fatty liver, NAFLD, and Assess the status of fatty liver disease comprising at least one of NASH. Thereby, the state of fatty liver disease can be accurately evaluated using the concentration of amino acids in blood.
 ここで、ステップS12を実行する前に、ステップS11で取得したアミノ酸濃度データから欠損値や外れ値などのデータを除去してもよい。これにより、脂肪性肝疾患の状態をさらに精度よく評価することができる。 Here, before executing step S12, data such as missing values and outliers may be removed from the amino acid concentration data acquired in step S11. Thereby, the state of fatty liver disease can be more accurately evaluated.
 また、ステップS12では、ステップS11で取得したアミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値に基づいて、評価対象につき、NASHの状態を評価してもよい。これにより、血液中のアミノ酸の濃度のうちNASHの状態と関連するアミノ酸の濃度を利用して、NASHの状態を精度よく評価することができる。具体的には、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値に基づいて、NASHまたは非NASHであるか否かを判別してもよい。これにより、血液中のアミノ酸の濃度のうちNASHと非NASHの2群判別に有用なアミノ酸の濃度を利用して、この2群判別を精度よく行うことができる。 In step S12, among the Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data acquired in step S11. The state of NASH may be evaluated for the evaluation target based on at least one concentration value. Thereby, the state of NASH can be accurately evaluated using the concentration of amino acids related to the state of NASH among the concentrations of amino acids in blood. Specifically, at least one concentration value of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data. Based on this, it may be determined whether it is NASH or non-NASH. Thus, the amino acid concentration useful for the two-group discrimination of NASH and non-NASH among the amino acid concentrations in the blood can be used to accurately perform the two-group discrimination.
 また、ステップS12では、ステップS11で取得したアミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値に基づいて、評価対象につき、NAFLDの状態を評価してもよい。これにより、血液中のアミノ酸の濃度のうちNAFLDの状態と関連するアミノ酸の濃度を利用して、NAFLDの状態を精度よく評価することができる。具体的には、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値に基づいて、評価対象につき、NAFLDまたは非NAFLDであるか否かを判別してもよい。これにより、血液中のアミノ酸の濃度のうちNAFLDと非NAFLDの2群判別に有用なアミノ酸の濃度を利用して、この2群判別を精度よく行うことができる。 In step S12, Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser included in the amino acid concentration data acquired in step S11. , Thr, Asn, the state of NAFLD may be evaluated for each evaluation object based on at least one concentration value. Thereby, the state of NAFLD can be accurately evaluated using the concentration of amino acids related to the state of NAFLD among the concentrations of amino acids in blood. Specifically, among Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn included in the amino acid concentration data. Based on at least one concentration value, it may be determined whether the evaluation target is NAFLD or non-NAFLD. Thus, the amino acid concentration useful for the 2-group discrimination between NAFLD and non-NAFLD among the amino acid concentrations in the blood can be used to accurately perform the 2-group discrimination.
 また、ステップS12では、ステップS11で取得したアミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値に基づいて、評価対象につき、脂肪肝の状態を評価してもよい。これにより、血液中のアミノ酸の濃度のうち脂肪肝の状態と関連するアミノ酸の濃度を利用して、脂肪肝の状態を精度よく評価することができる。具体的には、アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値に基づいて、評価対象につき、脂肪肝または非脂肪肝であるか否かを判別してもよい。これにより、血液中のアミノ酸の濃度のうち脂肪肝と非脂肪肝の2群判別に有用なアミノ酸の濃度を利用して、この2群判別を精度よく行うことができる。 In step S12, Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data acquired in step S11. The state of fatty liver may be evaluated for each evaluation object based on at least one concentration value. Thereby, the state of fatty liver can be accurately evaluated using the concentration of amino acids related to the state of fatty liver among the concentrations of amino acids in blood. Specifically, at least one concentration of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data. Based on the value, it may be determined whether or not the subject is a fatty liver or non-fatty liver. Thus, the amino acid concentration useful for the 2-group discrimination between fatty liver and non-fatty liver among the amino acid concentrations in the blood can be used to accurately perform the 2-group discrimination.
 また、ステップS12では、ステップS11で取得したアミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値に基づいて、評価対象につき、NASHおよびNAFLDの状態を評価してもよい。これにより、血液中のアミノ酸の濃度のうちNASHおよびNAFLDの状態と関連するアミノ酸の濃度を利用して、NASHおよびNAFLDの状態を精度よく評価することができる。具体的には、アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値に基づいて、評価対象につき、NASH、または非NASH且つNAFLDであるか否かを判別してもよい。これにより、血液中のアミノ酸の濃度のうちNASHと単純性脂肪肝の2群判別に有用なアミノ酸の濃度を利用して、この2群判別を精度よく行うことができる。 In step S12, at least one concentration of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data acquired in step S11. Based on the value, the state of NASH and NAFLD may be evaluated for each evaluation target. Thereby, the state of NASH and NAFLD can be accurately evaluated using the concentration of amino acids related to the state of NASH and NAFLD among the concentrations of amino acids in blood. Specifically, based on the concentration value of at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data. Whether the subject is NASH or non-NASH and NAFLD may be determined. This makes it possible to accurately perform this 2-group discrimination by using the amino acid concentrations useful for 2-group discrimination between NASH and simple fatty liver among the amino acid concentrations in the blood.
 また、ステップS12では、ステップS11で取得したアミノ酸濃度データ、およびアミノ酸の濃度を変数として含む予め設定した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて、評価対象につき、脂肪性肝疾患の状態を評価してもよい。これにより、アミノ酸の濃度を変数として含む多変量判別式で得られる判別値を利用して、脂肪性肝疾患の状態を精度よく評価することができる。 In step S12, based on the amino acid concentration data acquired in step S11 and a preset multivariate discriminant including the amino acid concentration as a variable, a discriminant value that is the value of the multivariate discriminant is calculated and calculated. Based on the discriminated value, the state of fatty liver disease may be evaluated for each evaluation target. Thereby, the state of fatty liver disease can be accurately evaluated using the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable.
 なお、多変量判別式は、ロジスティック回帰式、分数式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。これにより、アミノ酸の濃度を変数として含む多変量判別式で得られる判別値を利用して、脂肪性肝疾患の状態をさらに精度よく評価することができる。 Multivariate discriminants are logistic regression formula, fractional formula, linear discriminant formula, multiple regression formula, formula created by support vector machine, formula created by Mahalanobis distance method, formula created by canonical discriminant analysis. Any one of the expressions created by the decision tree may be used. Thereby, the state of fatty liver disease can be more accurately evaluated using the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable.
 また、ステップS12では、ステップS11で取得したアミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値に基づいて、評価対象につき、NASHの状態を評価してもよい。これにより、NASHの状態と有意な相関がある多変量判別式で得られる判別値を利用して、NASHの状態を精度よく評価することができる。具体的には、判別値に基づいて、評価対象につき、NASHまたは非NASHであるか否かを判別してもよい。これにより、NASHと非NASHの2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができる。なお、多変量判別式は、Glu,Gln,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。これにより、NASHと非NASHの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。 In step S12, among the Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data acquired in step S11. Multivariate discrimination including at least one concentration value and at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser A discriminant value may be calculated based on the formula, and the state of NASH may be evaluated for each evaluation object based on the calculated discriminant value. Thereby, the NASH state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NASH state. Specifically, it may be determined whether the evaluation target is NASH or non-NASH based on the determination value. This makes it possible to accurately perform the two-group discrimination using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between NASH and non-NASH. The multivariate discriminant may be a logistic regression equation including Glu, Gln, Gly, Ala, Val, Tyr as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH.
 また、ステップS12では、ステップS11で取得したアミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値に基づいて、評価対象につき、NAFLDの状態を評価してもよい。これにより、NAFLDの状態と有意な相関がある多変量判別式で得られる判別値を利用して、NAFLDの状態を精度よく評価することができる。具体的には、判別値に基づいて、評価対象につき、NAFLDまたは非NAFLDであるか否かを判別してもよい。これにより、NAFLDと非NAFLDの2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができる。なお、多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式でもよい。これにより、NAFLDと非NAFLDの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。 In step S12, Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser included in the amino acid concentration data acquired in step S11. , Thr, Asn, and Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn The discriminant value may be calculated based on a multivariate discriminant including at least one of them as a variable, and the state of NAFLD may be evaluated for each evaluation object based on the calculated discriminant value. Thereby, the NAFLD state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NAFLD state. Specifically, it may be determined whether the evaluation target is NAFLD or non-NAFLD based on the determination value. This makes it possible to accurately perform the two-group discrimination by using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between NAFLD and non-NAFLD. Note that the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NAFLD and non-NAFLD.
 また、ステップS12では、ステップS11で取得したアミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値、およびThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値に基づいて、評価対象につき、脂肪肝の状態を評価してもよい。これにより、脂肪肝の状態と有意な相関がある多変量判別式で得られる判別値を利用して、脂肪肝の状態を精度よく評価することができる。具体的には、判別値に基づいて、評価対象につき、脂肪肝または非脂肪肝であるか否かを判別してもよい。これにより、脂肪肝と非脂肪肝の2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができる。なお、多変量判別式は、Ser,Glu,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。これにより、脂肪肝と非脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。 In step S12, Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data acquired in step S11. And at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn A discriminant value may be calculated based on the multivariate discriminant included, and the state of fatty liver may be evaluated for each evaluation object based on the calculated discriminant value. Thereby, the state of fatty liver can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of fatty liver. Specifically, based on the discriminant value, it may be discriminated whether the evaluation target is fatty liver or non-fatty liver. This makes it possible to accurately perform the two-group discrimination using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between fatty liver and non-fatty liver. The multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Ala, Val, and Tyr as variables. Thus, the two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver.
 また、ステップS12では、ステップS11で取得したアミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値、およびGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値に基づいて、評価対象につき、NASHおよびNAFLDの状態を評価してもよい。これにより、NASHおよびNAFLDの状態と有意な相関がある多変量判別式で得られる判別値を利用して、NASHおよびNAFLDの状態を精度よく評価することができる。具体的には、判別値に基づいて、評価対象につき、NASH、または「非NASH且つNAFLD」(単純性脂肪肝)であるか否かを判別してもよい。これにより、NASHと単純性脂肪肝の2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができる。なお、多変量判別式は、Asn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。これにより、NASHと単純性脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、具体的には、判別値に基づいて、評価対象につき、非NAFLD、NASH、または「非NASH且つNAFLD」であるか否かを判別してもよい。これにより、非NAFLDとNASHと単純性脂肪肝の3群判別に有用な多変量判別式で得られる判別値を利用して、この3群判別を精度よく行うことができる。なお、多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式、およびAsn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。これにより、非NAFLDとNASHと単純性脂肪肝の3群判別に特に有用な多変量判別式で得られる判別値を利用して、この3群判別をさらに精度よく行うことができる。 In step S12, at least one concentration of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data acquired in step S11. The discriminant value is based on a multivariate discriminant including at least one of a value and Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA as a variable. The state of NASH and NAFLD may be evaluated for each evaluation object based on the calculated discriminant value. Thereby, the state of NASH and NAFLD can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of NASH and NAFLD. Specifically, it may be determined whether the evaluation target is NASH or “non-NASH and NAFLD” (simple fatty liver) based on the determination value. This makes it possible to accurately perform this two-group discrimination using a discriminant value obtained by a multivariate discriminant useful for two-group discrimination between NASH and simple fatty liver. Note that the multivariate discriminant may be a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver. Specifically, it may be determined whether the evaluation target is non-NAFLD, NASH, or “non-NASH and NAFLD” based on the determination value. This makes it possible to accurately perform this three-group discrimination by using the discriminant value obtained by the multivariate discriminant useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver. The multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables, and a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Thereby, this three-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver.
 ここで、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法または本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する第2実施形態に記載の多変量判別式作成処理)で作成してもよい。なお、これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を脂肪性肝疾患の状態評価に好適に用いることができる。 Here, each multivariate discriminant described above is described in the method described in International Publication No. 2004/052191 which is an international application by the present applicant or International Publication No. 2006/098192 which is an international application by the present applicant. You may produce by the method (The multivariate discriminant creation process as described in 2nd Embodiment mentioned later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is preferably used for the evaluation of the state of fatty liver disease regardless of the unit of amino acid concentration in the amino acid concentration data as input data. be able to.
 また、多変量判別式とは、一般に多変量解析で用いられる式の形式を意味し、例えば分数式、重回帰式、多重ロジスティック回帰式、線形判別関数、マハラノビス距離、正準判別関数、サポートベクターマシン、決定木などを包含する。また、異なる形式の多変量判別式の和で示されるような式も含まれる。また、重回帰式、多重ロジスティック回帰式、正準判別関数においては各変数に係数および定数項が付加されるが、この場合の係数および定数項は、好ましくは実数であること、より好ましくはデータから判別を行うために得られた係数および定数項の99%信頼区間の範囲に属する値、さらに好ましくはデータから判別を行うために得られた係数および定数項の95%信頼区間の範囲に属する値であればかまわない。また、各係数の値、及びその信頼区間は、それを実数倍したものでもよく、定数項の値、及びその信頼区間は、それに任意の実定数を加減乗除したものでもよい。ロジスティック回帰、線形判別、重回帰分析などの表示式を指標に用いる場合、表示式の線形変換(定数の加算、定数倍)や単調増加(減少)の変換(例えばlogit変換など)は判別性能を変えるものではなく同等であるので、表示式はそれらを含むものである。 The multivariate discriminant generally means the format of formulas used in multivariate analysis. For example, fractional formulas, multiple regression formulas, multiple logistic regression formulas, linear discriminant functions, Mahalanobis distances, canonical discriminant functions, support vectors Includes machines, decision trees, etc. Also included are expressions as indicated by the sum of different forms of multivariate discriminants. In the multiple regression equation, multiple logistic regression equation, and canonical discriminant function, a coefficient and a constant term are added to each variable. In this case, the coefficient and the constant term are preferably real numbers, more preferably data. Values belonging to the range of 99% confidence intervals of the coefficients and constant terms obtained from the data, more preferably belonging to the range of 95% confidence intervals of the coefficients and constant terms obtained from the data Any value can be used. Further, the value of each coefficient and its confidence interval may be obtained by multiplying it by a real number, and the value of the constant term and its confidence interval may be obtained by adding / subtracting / multiplying / dividing an arbitrary real constant thereto. When using display formulas such as logistic regression, linear discriminant, multiple regression analysis as indicators, linear transformation (addition of constants, multiple of constants) or monotonically increasing (decreasing) transformations of display formulas (such as logit transformation) have discriminative performance. The display formulas include them because they are equivalent, not changed.
 なお、分数式とは、当該分数式の分子がアミノ酸A,B,C,・・・の和で表わされ及び/又は当該分数式の分母がアミノ酸a,b,c,・・・の和で表わされるものである。また、分数式には、このような構成の分数式α,β,γ,・・・の和(例えばα+βのようなもの)も含まれる。また、分数式には、分割された分数式も含まれる。なお、分子や分母に用いられるアミノ酸にはそれぞれ適当な係数がついてもかまわない。また、分子や分母に用いられるアミノ酸は重複してもかまわない。また、各分数式に適当な係数がついてもかまわない。また、各変数の係数の値や定数項の値は、実数であればかまわない。分数式で、分子の変数と分母の変数を入れ替えた組み合わせは、目的変数との相関の正負の符号は概して逆転するが、それらの相関性は保たれるので、判別性では同等と見なせるので、分子の変数と分母の変数を入れ替えた組み合わせも、包含するものである。 The fractional expression means that the numerator of the fractional expression is represented by the sum of amino acids A, B, C,... And / or the denominator of the fractional expression is the sum of amino acids a, b, c,. It is represented by In addition, the fractional expression includes a sum of fractional expressions α, β, γ,. The fractional expression also includes a divided fractional expression. An appropriate coefficient may be added to each amino acid used in the numerator and denominator. In addition, amino acids used in the numerator and denominator may overlap. Moreover, an appropriate coefficient may be attached to each fractional expression. The value of the coefficient of each variable and the value of the constant term may be real numbers. In the fractional expression, the combination of the numerator variable and the denominator variable is generally reversed in the sign of the correlation with the target variable, but since the correlation is maintained, it can be considered equivalent in discriminability. Combinations of swapping numerator and denominator variables are also included.
 そして、本発明は、脂肪性肝疾患の状態評価を行う際、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。また、本発明は、脂肪性肝疾患の状態評価を行う際、多変量判別式における変数として、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。 And when this invention evaluates the state of fatty liver disease, in addition to the concentration of amino acids, other biological information (for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones,・ Blood pressure value, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used. In addition, the present invention, when assessing the state of fatty liver disease, as a variable in the multivariate discriminant, in addition to the amino acid concentration, other biological information (for example, sugars, lipids, proteins, peptides, minerals, hormones, etc.) Biological metabolites and biological indices such as blood glucose level, blood pressure level, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
[1-2.第1実施形態にかかる脂肪性肝疾患の評価方法]
 ここでは、第1実施形態にかかる脂肪性肝疾患の評価方法について図2を参照して説明する。図2は、第1実施形態にかかる脂肪性肝疾患の評価方法の一例を示すフローチャートである。
[1-2. Method for Evaluating Fatty Liver Disease According to First Embodiment]
Here, the method for evaluating fatty liver disease according to the first embodiment will be described with reference to FIG. FIG. 2 is a flowchart showing an example of the method for evaluating fatty liver disease according to the first embodiment.
 まず、動物やヒトなどの個体から採取した血液中のアミノ酸の濃度値に関するアミノ酸濃度データを取得する(ステップSA11)。なお、ステップSA11では、例えば、アミノ酸濃度測定を行う企業等が測定したアミノ酸濃度データを取得してもよく、また、評価対象から採取した血液から例えば上述した(A)または(B)などの測定方法でアミノ酸濃度データを測定することでアミノ酸濃度データを取得してもよい。 First, amino acid concentration data relating to the concentration value of amino acids in blood collected from individuals such as animals and humans is acquired (step SA11). In step SA11, for example, amino acid concentration data measured by a company or the like that performs amino acid concentration measurement may be acquired, and measurement such as (A) or (B) described above is performed from blood collected from an evaluation target. Amino acid concentration data may be obtained by measuring amino acid concentration data by a method.
 つぎに、ステップSA11で取得した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去する(ステップSA12)。 Next, data such as missing values and outliers are removed from the amino acid concentration data of the individual obtained in step SA11 (step SA12).
 つぎに、ステップSA12で欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに基づいて、個体につき、以下に示す11.~15.の判別のいずれか1つを実行する(ステップSA13)。 Next, based on the amino acid concentration data of individuals from which data such as missing values and outliers have been removed in step SA12, the following is shown for each individual: ~ 15. Any one of these determinations is executed (step SA13).
11.NASHと非NASHの判別
 (i)アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、NASHまたは非NASHであるか否かを判別する、または、(ii)アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、NASHまたは非NASHであるか否かを判別する。
11. Discrimination between NASH and non-NASH (i) At least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in amino acid concentration data Determine whether each individual is NASH or non-NASH by comparing one concentration value with a preset threshold (cutoff value), or (ii) Gln, included in the amino acid concentration data Concentration value of at least one of Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser, and Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser On the basis of a multivariate discriminant including at least one of the variables, a discriminant value is calculated, and the calculated discriminant value is compared with a preset threshold value (cutoff value). It is determined whether or not it is NASH.
12.NAFLDと非NAFLDの判別
 (i)アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、NAFLDまたは非NAFLDであるか否かを判別する、または、(ii)アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、NAFLDまたは非NAFLDであるか否かを判別する。
12 Discrimination between NAFLD and non-NAFLD (i) Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr included in amino acid concentration data , Asn to determine whether each individual is NAFLD or non-NAFLD by comparing at least one concentration value with a preset threshold (cutoff value), or (ii) amino acid concentration At least one concentration value of Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn included in the data, and Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, T A discriminant value is calculated based on a multivariate discriminant including at least one of yr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn as a variable, and the calculated discriminant value is set in advance. It is determined whether each individual is NAFLD or non-NAFLD by comparing with the threshold value (cutoff value).
13.脂肪肝と非脂肪肝の判別
 (i)アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、脂肪肝または非脂肪肝であるか否かを判別する、または、(ii)アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値、およびThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、脂肪肝または非脂肪肝であるか否かを判別する。
13. Discrimination between fatty liver and non-fatty liver (i) Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in amino acid concentration data By comparing at least one concentration value and a preset threshold value (cut-off value), it is determined whether the individual has fatty liver or non-fatty liver, or (ii) amino acid concentration Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the data, and Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, A By calculating a discriminant value based on a multivariate discriminant including at least one of sn and Orn as a variable, and comparing the calculated discriminant value with a preset threshold value (cutoff value), Determine whether it is fatty liver or non-fatty liver.
14.NASHと単純性脂肪肝の判別
 (i)アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、NASHまたは単純性脂肪肝(非NASH且つNAFLD)であるか否かを判別する、または、(ii)アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値、およびGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、NASHまたは単純性脂肪肝(非NASH且つNAFLD)であるか否かを判別する。
14 Discrimination between NASH and simple fatty liver (i) Concentration of at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA included in amino acid concentration data By comparing the value with a preset threshold value (cutoff value), it is determined whether the individual is NASH or simple fatty liver (non-NASH and NAFLD), or (ii) amino acid concentration Concentration value of at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA included in the data, and Gln, Glu, Gly, Ala, Cit, Atn one of Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA Is calculated on the basis of a multivariate discriminant that includes a variable, and the calculated discriminant value is compared with a preset threshold value (cut-off value), whereby NASH or simple fatty liver ( It is determined whether it is non-NASH and NAFLD.
15.NASHと単純性脂肪肝と非NAFLDの判別
 アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値、およびGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、非NAFLD、NASH、または単純性脂肪肝(非NASH且つNAFLD)であるか否かを判別する。
15. Discrimination between NASH, simple fatty liver and non-NAFLD Concentration of at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro and ABA contained in amino acid concentration data The discriminant value is based on a multivariate discriminant including at least one of a value and Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA as a variable. By calculating and comparing the calculated discriminant value with a preset threshold value (cut-off value), it is determined whether or not each individual is non-NAFLD, NASH, or simple fatty liver (non-NASH and NAFLD). Determine.
[1-3.第1実施形態のまとめ、およびその他の実施形態]
 以上、詳細に説明したように、第1実施形態にかかる脂肪性肝疾患の評価方法によれば、(i)個体から採取した血液中のアミノ酸濃度データを取得し、(ii)取得した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去し、(iii)欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに基づいて、個体につき、上述した11.~15.の判別のいずれか1つを実行する。これにより、血液中のアミノ酸の濃度のうち、NASHと非NASHの2群判別、NAFLDと非NAFLDの2群判別、脂肪肝と非脂肪肝の2群判別、またはNASHと単純性脂肪肝の2群判別に有用なアミノ酸の濃度を利用して、これらの2群判別を精度よく行うことができる。また、NASHと非NASHの2群判別、NAFLDと非NAFLDの2群判別、脂肪肝と非脂肪肝の2群判別、NASHと単純性脂肪肝の2群判別、または非NAFLDとNASHと単純性脂肪肝の3群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別または3群判別を精度よく行うことができる。
[1-3. Summary of First Embodiment and Other Embodiments]
As described above in detail, according to the method for evaluating fatty liver disease according to the first embodiment, (i) amino acid concentration data in blood collected from an individual is acquired, and (ii) the acquired individual The data such as missing values and outliers are removed from the amino acid concentration data, and (iii) the above-mentioned 11. above for each individual based on the amino acid concentration data of the individual from which the data such as missing values and outliers have been removed. ~ 15. One of the determinations is performed. As a result, among the amino acid concentrations in the blood, 2 groups of NASH and non-NASH, 2 groups of NAFLD and non-NAFLD, 2 groups of fatty liver and non-fatty liver, or 2 of NASH and simple fatty liver Using the amino acid concentration useful for group discrimination, these two group discriminations can be performed with high accuracy. Also, NASH and non-NASH 2-group discrimination, NAFLD and non-NAFLD 2-group discrimination, fatty liver and non-fatty liver 2-group discrimination, NASH and simple fatty liver 2-group discrimination, or non-NAFLD and NASH and simplicity By using the discriminant value obtained by the multivariate discriminant useful for the 3-group discrimination of fatty liver, the 2-group discrimination or the 3-group discrimination can be accurately performed.
 ここで、ステップSA13で用いられる多変量判別式は、ロジスティック回帰式、分数式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。これにより、NASHと非NASHの2群判別、NAFLDと非NAFLDの2群判別、脂肪肝と非脂肪肝の2群判別、NASHと単純性脂肪肝の2群判別、または非NAFLDとNASHと単純性脂肪肝の3群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別または3群判別をさらに精度よく行うことができる。 Here, the multivariate discriminant used in step SA13 is a logistic regression equation, a fractional equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, an equation created by the Mahalanobis distance method, and a canonical discriminant. Any one of an expression created by analysis and an expression created by a decision tree may be used. As a result, NASH and non-NASH 2-group discrimination, NAFLD and non-NAFLD 2-group discrimination, fatty liver and non-fatty liver 2-group discrimination, NASH and simple fatty liver 2-group discrimination, or non-NAFLD and NASH and simple By using the discriminant value obtained by the multivariate discriminant useful for the 3-group discrimination of the fatty liver, these 2-group discrimination or 3-group discrimination can be performed with higher accuracy.
 具体的には、上述した11.の判別で用いられる多変量判別式は、Glu,Gln,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。これにより、NASHと非NASHの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、上述した12.の判別で用いられる多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式でもよい。これにより、NAFLDと非NAFLDの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、上述した13.の判別で用いられる多変量判別式は、Ser,Glu,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。これにより、脂肪肝と非脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、上述した14.の判別で用いられる多変量判別式は、Asn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。これにより、NASHと単純性脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、上述した15.の判別で用いられる多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式、およびAsn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。これにより、非NAFLDとNASHと単純性脂肪肝の3群判別に特に有用な多変量判別式で得られる判別値を利用して、この3群判別をさらに精度よく行うことができる。 Specifically, the above-mentioned 11. The multivariate discriminant used in the discriminant may be a logistic regression equation including Glu, Gln, Gly, Ala, Val, Tyr as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH. In addition, the above-mentioned 12. The multivariate discriminant used in discriminating the above may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NAFLD and non-NAFLD. In addition, the above-mentioned 13. The multivariate discriminant used in this discrimination may be a logistic regression equation including Ser, Glu, Gly, Ala, Val, and Tyr as variables. Thus, the two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver. Further, the above-mentioned 14. The multivariate discriminant used in the discriminant may be a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver. Further, the above-mentioned 15. The multivariate discriminant used for discriminating is a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables, and a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Good. Thereby, this three-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver.
 なお、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法または本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する第2実施形態に記載の多変量判別式作成処理)で作成してもよい。なお、これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を脂肪性肝疾患の状態評価に好適に用いることができる。 Each multivariate discriminant described above is a method described in International Publication No. 2004/052191 which is an international application by the present applicant or a method described in International Publication No. 2006/098192 which is an international application by the present applicant. It may be created by (multivariate discriminant creation processing described in the second embodiment to be described later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is preferably used for the evaluation of the state of fatty liver disease regardless of the unit of amino acid concentration in the amino acid concentration data as input data. be able to.
[第2実施形態]
[2-1.本発明の概要]
 ここでは、本発明にかかる脂肪性肝疾患評価装置、脂肪性肝疾患評価方法、脂肪性肝疾患評価プログラム、記録媒体、脂肪性肝疾患評価システム、および情報通信端末装置の概要について、図3を参照して説明する。図3は本発明の基本原理を示す原理構成図である。
[Second Embodiment]
[2-1. Outline of the present invention]
Here, for the outline of the fatty liver disease evaluation apparatus, fatty liver disease evaluation method, fatty liver disease evaluation program, recording medium, fatty liver disease evaluation system, and information communication terminal device according to the present invention, FIG. The description will be given with reference. FIG. 3 is a principle configuration diagram showing the basic principle of the present invention.
 まず、本発明は、制御部で、アミノ酸の濃度値に関する予め取得した評価対象(例えば動物やヒトなどの個体)のアミノ酸濃度データ、およびアミノ酸の濃度を変数する記憶部で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する(ステップS21)。 First, according to the present invention, the control unit obtains the amino acid concentration data of the evaluation target (for example, an individual such as an animal or a human) previously obtained with respect to the amino acid concentration value, and the multivariate discriminant stored in the storage unit for varying the amino acid concentration. Based on, a discriminant value that is the value of the multivariate discriminant is calculated (step S21).
 つぎに、本発明は、制御部で、ステップS21で算出した判別値に基づいて、評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する(ステップS22)。 Next, according to the present invention, at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis) is evaluated with respect to the evaluation target based on the discriminant value calculated in step S21 by the control unit. The state of fatty liver disease including one is evaluated (step S22).
 以上、本発明によれば、評価対象のアミノ酸濃度データ、およびアミノ酸の濃度を変数として含む多変量判別式に基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて、評価対象につき、脂肪肝、NAFLD、およびNASHのうち少なくとも1つを含む脂肪性肝疾患の状態を評価する。これにより、アミノ酸の濃度を変数として含む多変量判別式で得られる判別値を利用して、脂肪性肝疾患の状態を精度よく評価することができる。 As described above, according to the present invention, based on the amino acid concentration data to be evaluated and the multivariate discriminant including the amino acid concentration as a variable, the discriminant value that is the value of the multivariate discriminant is calculated, and the calculated discriminant value Based on the above, the status of fatty liver disease including at least one of fatty liver, NAFLD, and NASH is evaluated for each evaluation subject. Thereby, the state of fatty liver disease can be accurately evaluated using the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable.
 なお、多変量判別式は、ロジスティック回帰式、分数式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。これにより、アミノ酸の濃度を変数として含む多変量判別式で得られる判別値を利用して、脂肪性肝疾患の状態をさらに精度よく評価することができる。 Multivariate discriminants are logistic regression formula, fractional formula, linear discriminant formula, multiple regression formula, formula created by support vector machine, formula created by Mahalanobis distance method, formula created by canonical discriminant analysis. Any one of the expressions created by the decision tree may be used. Thereby, the state of fatty liver disease can be more accurately evaluated using the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable.
 また、ステップS21では、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、ステップS22では、ステップS21で算出した判別値に基づいて、評価対象につき、NASHの状態を評価してもよい。これにより、NASHの状態と有意な相関がある多変量判別式で得られる判別値を利用して、NASHの状態を精度よく評価することができる。具体的には、判別値に基づいて、評価対象につき、NASHまたは非NASHであるか否かを判別してもよい。これにより、NASHと非NASHの2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができる。なお、多変量判別式は、Glu,Gln,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。これにより、NASHと非NASHの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。 In step S21, at least one concentration value among Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data. And a multivariate discriminant including at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser as a variable, A discriminant value may be calculated, and in step S22, the state of NASH may be evaluated for the evaluation target based on the discriminant value calculated in step S21. Thereby, the NASH state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NASH state. Specifically, it may be determined whether the evaluation target is NASH or non-NASH based on the determination value. This makes it possible to accurately perform the two-group discrimination using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between NASH and non-NASH. The multivariate discriminant may be a logistic regression equation including Glu, Gln, Gly, Ala, Val, Tyr as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH.
 また、ステップS21では、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、ステップS22では、ステップS21で算出した判別値に基づいて、評価対象につき、NAFLDの状態を評価してもよい。これにより、NAFLDの状態と有意な相関がある多変量判別式で得られる判別値を利用して、NAFLDの状態を精度よく評価することができる。具体的には、判別値に基づいて、評価対象につき、NAFLDまたは非NAFLDであるか否かを判別してもよい。これにより、NAFLDと非NAFLDの2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができる。なお、多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式でもよい。これにより、NAFLDと非NAFLDの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。 In step S21, Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn included in the amino acid concentration data. At least one of the concentration values and at least one of Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn The discriminant value may be calculated based on a multivariate discriminant including the variable, and in step S22, the NAFLD state may be evaluated for the evaluation target based on the discriminant value calculated in step S21. Thereby, the NAFLD state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NAFLD state. Specifically, it may be determined whether the evaluation target is NAFLD or non-NAFLD based on the determination value. This makes it possible to accurately perform the two-group discrimination by using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between NAFLD and non-NAFLD. Note that the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NAFLD and non-NAFLD.
 また、ステップS21では、アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値、およびThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、ステップS22では、ステップS21で算出した判別値に基づいて、評価対象につき、脂肪肝の状態を評価してもよい。これにより、脂肪肝の状態と有意な相関がある多変量判別式で得られる判別値を利用して、脂肪肝の状態を精度よく評価することができる。具体的には、判別値に基づいて、評価対象につき、脂肪肝または非脂肪肝であるか否かを判別してもよい。これにより、脂肪肝と非脂肪肝の2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができる。なお、多変量判別式は、Ser,Glu,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。これにより、脂肪肝と非脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。 In step S21, at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data. Multivariate discriminant including a concentration value and at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn as a variable The discriminant value may be calculated based on the above, and in step S22, the state of fatty liver may be evaluated for the evaluation target based on the discriminant value calculated in step S21. Thereby, the state of fatty liver can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of fatty liver. Specifically, based on the discriminant value, it may be discriminated whether the evaluation target is fatty liver or non-fatty liver. This makes it possible to accurately perform the two-group discrimination using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between fatty liver and non-fatty liver. The multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Ala, Val, and Tyr as variables. Thus, the two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver.
 また、ステップS21では、アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値、およびGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、ステップS22では、ステップS21で算出した判別値に基づいて、評価対象につき、NASHおよびNAFLDの状態を評価してもよい。これにより、NASHおよびNAFLDの状態と有意な相関がある多変量判別式で得られる判別値を利用して、NASHおよびNAFLDの状態を精度よく評価することができる。具体的には、判別値に基づいて、評価対象につき、NASH、または「非NASH且つNAFLD」(単純性脂肪肝)であるか否かを判別してもよい。これにより、NASHと単純性脂肪肝の2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができる。なお、多変量判別式は、Asn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。これにより、NASHと単純性脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、具体的には、判別値に基づいて、評価対象につき、非NAFLD、NASH、または「非NASH且つNAFLD」であるか否かを判別してもよい。これにより、非NAFLDとNASHと単純性脂肪肝の3群判別に有用な多変量判別式で得られる判別値を利用して、この3群判別を精度よく行うことができる。なお、多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式、およびAsn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。これにより、非NAFLDとNASHと単純性脂肪肝の3群判別に特に有用な多変量判別式で得られる判別値を利用して、この3群判別をさらに精度よく行うことができる。 In step S21, at least one concentration value of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data, and Gln, A discriminant value is calculated based on a multivariate discriminant including at least one of Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro and ABA as a variable, and step S22 Then, based on the discriminant value calculated in step S21, the state of NASH and NAFLD may be evaluated for each evaluation target. Thereby, the state of NASH and NAFLD can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of NASH and NAFLD. Specifically, it may be determined whether the evaluation target is NASH or “non-NASH and NAFLD” (simple fatty liver) based on the determination value. This makes it possible to accurately perform this two-group discrimination using a discriminant value obtained by a multivariate discriminant useful for two-group discrimination between NASH and simple fatty liver. Note that the multivariate discriminant may be a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver. Specifically, it may be determined whether the evaluation target is non-NAFLD, NASH, or “non-NASH and NAFLD” based on the determination value. This makes it possible to accurately perform this three-group discrimination by using the discriminant value obtained by the multivariate discriminant useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver. The multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables, and a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Thereby, this three-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver.
 ここで、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法または本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する多変量判別式作成処理)で作成してもよい。なお、これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を脂肪性肝疾患の状態評価に好適に用いることができる。 Here, each multivariate discriminant described above is described in the method described in International Publication No. 2004/052191 which is an international application by the present applicant or International Publication No. 2006/098192 which is an international application by the present applicant. It may be created by a method (multivariate discriminant creation process described later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is preferably used for the evaluation of the state of fatty liver disease regardless of the unit of amino acid concentration in the amino acid concentration data as input data. be able to.
 また、多変量判別式とは、一般に多変量解析で用いられる式の形式を意味し、例えば分数式、重回帰式、多重ロジスティック回帰式、線形判別関数、マハラノビス距離、正準判別関数、サポートベクターマシン、決定木などを包含する。また、異なる形式の多変量判別式の和で示されるような式も含まれる。また、重回帰式、多重ロジスティック回帰式、正準判別関数においては各変数に係数および定数項が付加されるが、この場合の係数および定数項は、好ましくは実数であること、より好ましくはデータから判別を行うために得られた係数および定数項の99%信頼区間の範囲に属する値、さらに好ましくはデータから判別を行うために得られた係数および定数項の95%信頼区間の範囲に属する値であればかまわない。また、各係数の値、及びその信頼区間は、それを実数倍したものでもよく、定数項の値、及びその信頼区間は、それに任意の実定数を加減乗除したものでもよい。ロジスティック回帰、線形判別、重回帰分析などの表示式を指標に用いる場合、表示式の線形変換(定数の加算、定数倍)や単調増加(減少)の変換(例えばlogit変換など)は判別性能を変えるものではなく同等であるので、表示式はそれらを含むものである。 The multivariate discriminant generally means the format of formulas used in multivariate analysis. For example, fractional formulas, multiple regression formulas, multiple logistic regression formulas, linear discriminant functions, Mahalanobis distances, canonical discriminant functions, support vectors Includes machines, decision trees, etc. Also included are expressions as indicated by the sum of different forms of multivariate discriminants. In the multiple regression equation, multiple logistic regression equation, and canonical discriminant function, a coefficient and a constant term are added to each variable. In this case, the coefficient and the constant term are preferably real numbers, more preferably data. Values belonging to the range of 99% confidence intervals of the coefficients and constant terms obtained from the data, more preferably belonging to the range of 95% confidence intervals of the coefficients and constant terms obtained from the data Any value can be used. Further, the value of each coefficient and its confidence interval may be obtained by multiplying it by a real number, and the value of the constant term and its confidence interval may be obtained by adding / subtracting / multiplying / dividing an arbitrary real constant thereto. When using display formulas such as logistic regression, linear discriminant, multiple regression analysis as indicators, linear transformation (addition of constants, multiple of constants) or monotonically increasing (decreasing) transformations of display formulas (such as logit transformation) have discriminative performance. The display formulas include them because they are equivalent, not changed.
 なお、分数式とは、当該分数式の分子がアミノ酸A,B,C,・・・の和で表わされ及び/又は当該分数式の分母がアミノ酸a,b,c,・・・の和で表わされるものである。また、分数式には、このような構成の分数式α,β,γ,・・・の和(例えばα+βのようなもの)も含まれる。また、分数式には、分割された分数式も含まれる。なお、分子や分母に用いられるアミノ酸にはそれぞれ適当な係数がついてもかまわない。また、分子や分母に用いられるアミノ酸は重複してもかまわない。また、各分数式に適当な係数がついてもかまわない。また、各変数の係数の値や定数項の値は、実数であればかまわない。分数式で、分子の変数と分母の変数を入れ替えた組み合わせは、目的変数との相関の正負の符号は概して逆転するが、それらの相関性は保たれるので、判別性では同等と見なせるので、分子の変数と分母の変数を入れ替えた組み合わせも、包含するものである。 The fractional expression means that the numerator of the fractional expression is represented by the sum of amino acids A, B, C,... And / or the denominator of the fractional expression is the sum of amino acids a, b, c,. It is represented by In addition, the fractional expression includes a sum of fractional expressions α, β, γ,. The fractional expression also includes a divided fractional expression. An appropriate coefficient may be added to each amino acid used in the numerator and denominator. In addition, amino acids used in the numerator and denominator may overlap. Moreover, an appropriate coefficient may be attached to each fractional expression. The value of the coefficient of each variable and the value of the constant term may be real numbers. In the fractional expression, the combination of the numerator variable and the denominator variable is generally reversed in the sign of the correlation with the target variable, but since the correlation is maintained, it can be considered equivalent in discriminability. Combinations of swapping numerator and denominator variables are also included.
 そして、本発明は、脂肪性肝疾患の状態評価を行う際、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。また、本発明は、脂肪性肝疾患の状態評価を行う際、多変量判別式における変数として、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。 And when this invention evaluates the state of fatty liver disease, in addition to the concentration of amino acids, other biological information (for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones,・ Blood pressure value, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used. In addition, the present invention, when assessing the state of fatty liver disease, as a variable in the multivariate discriminant, in addition to the amino acid concentration, other biological information (for example, sugars, lipids, proteins, peptides, minerals, hormones, etc.) Biological metabolites and biological indices such as blood glucose level, blood pressure level, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
 ここで、多変量判別式作成処理(工程1~工程4)の概要について詳細に説明する。なお、ここで説明する処理はあくまでも一例であり、多変量判別式の作成方法はこれに限定されない。 Here, the outline of the multivariate discriminant creation process (step 1 to step 4) will be described in detail. Note that the processing described here is merely an example, and the method of creating the multivariate discriminant is not limited to this.
 まず、本発明は、制御部で、アミノ酸濃度データと脂肪性肝疾患の状態を表す指標に関する脂肪性肝疾患状態指標データとを含む記憶部で記憶した脂肪性肝疾患状態情報から所定の式作成手法に基づいて、多変量判別式の候補である候補多変量判別式(例えば、y=a+a+・・・+a、y:脂肪性肝疾患状態指標データ、x:アミノ酸濃度データ、a:定数、i=1,2,・・・,n)を作成する(工程1)。なお、事前に、脂肪性肝疾患状態情報から欠損値や外れ値などを持つデータを除去してもよい。 First, according to the present invention, the control unit creates a predetermined formula from the fatty liver disease state information stored in the storage unit including the amino acid concentration data and the fatty liver disease state index data relating to the index representing the state of fatty liver disease. Based on the technique, a candidate multivariate discriminant that is a candidate for the multivariate discriminant (for example, y = a 1 x 1 + a 2 x 2 +... + A n x n , y: fatty liver disease state index data, x i : amino acid concentration data, a i : constant, i = 1, 2,..., n) are created (step 1). Note that data having missing values or outliers may be removed from the fatty liver disease state information in advance.
 なお、工程1において、脂肪性肝疾患状態情報から、複数の異なる式作成手法(主成分分析や判別分析、サポートベクターマシン、重回帰分析、ロジスティック回帰分析、k-means法、クラスター解析、決定木などの多変量解析に関するものを含む。)を併用して複数の候補多変量判別式を作成してもよい。具体的には、多数の正常群および脂肪性肝疾患群から得た血液を分析して得たアミノ酸濃度データおよび脂肪性肝疾患状態指標データから構成される多変量データである脂肪性肝疾患状態情報に対して、複数の異なるアルゴリズムを利用して複数群の候補多変量判別式を同時並行的に作成してもよい。例えば、異なるアルゴリズムを利用して判別分析およびロジスティック回帰分析を同時に行い、2つの異なる候補多変量判別式を作成してもよい。また、主成分分析を行って作成した候補多変量判別式を利用して脂肪性肝疾患状態情報を変換し、変換した脂肪性肝疾患状態情報に対して判別分析を行うことで候補多変量判別式を作成してもよい。これにより、最終的に、診断条件に合った適切な多変量判別式を作成することができる。 In Step 1, a plurality of different formula creation methods (principal component analysis, discriminant analysis, support vector machine, multiple regression analysis, logistic regression analysis, k-means method, cluster analysis, decision tree, from fatty liver disease state information A plurality of candidate multivariate discriminants may be created in combination. Specifically, fatty liver disease state which is multivariate data composed of amino acid concentration data and fatty liver disease state index data obtained by analyzing blood obtained from many normal groups and fatty liver disease groups A plurality of groups of candidate multivariate discriminants may be created in parallel for information using a plurality of different algorithms. For example, two different candidate multivariate discriminants may be created by performing discriminant analysis and logistic regression analysis simultaneously using different algorithms. Candidate multivariate discrimination is performed by converting fatty liver disease state information using candidate multivariate discriminants created by principal component analysis and performing discriminant analysis on the converted fatty liver disease state information An expression may be created. Thereby, finally, an appropriate multivariate discriminant suitable for the diagnostic condition can be created.
 ここで、主成分分析を用いて作成した候補多変量判別式は、全てのアミノ酸濃度データの分散を最大にするような各アミノ酸変数からなる一次式である。また、判別分析を用いて作成した候補多変量判別式は、各群内の分散の和の全てのアミノ酸濃度データの分散に対する比を最小にするような各アミノ酸変数からなる高次式(指数や対数を含む)である。また、サポートベクターマシンを用いて作成した候補多変量判別式は、群間の境界を最大にするような各アミノ酸変数からなる高次式(カーネル関数を含む)である。また、重回帰分析を用いて作成した候補多変量判別式は、全てのアミノ酸濃度データからの距離の和を最小にするような各アミノ酸変数からなる高次式である。ロジスティック回帰分析を用いて作成した候補多変量判別式は、尤度を最大にするような各アミノ酸変数からなる一次式を指数とする自然対数を項に持つ分数式である。また、k-means法とは、各アミノ酸濃度データのk個近傍を探索し、近傍点の属する群の中で一番多いものをそのデータの所属群と定義し、入力されたアミノ酸濃度データの属する群と定義された群とが最も合致するようなアミノ酸変数を選択する手法である。また、クラスター解析とは、全てのアミノ酸濃度データの中で最も近い距離にある点同士をクラスタリング(群化)する手法である。また、決定木とは、アミノ酸変数に序列をつけて、序列が上位であるアミノ酸変数の取りうるパターンからアミノ酸濃度データの群を予測する手法である。 Here, the candidate multivariate discriminant created using principal component analysis is a linear expression composed of amino acid variables that maximizes the variance of all amino acid concentration data. In addition, the candidate multivariate discriminant created using discriminant analysis is a higher-order formula (index or Including logarithm). The candidate multivariate discriminant created using the support vector machine is a higher-order formula (including a kernel function) made up of amino acid variables that maximizes the boundary between groups. In addition, the candidate multivariate discriminant created using multiple regression analysis is a higher-order expression composed of amino acid variables that minimizes the sum of distances from all amino acid concentration data. A candidate multivariate discriminant created using logistic regression analysis is a fractional expression having a natural logarithm as a term, which is a linear expression composed of amino acid variables that maximize the likelihood. The k-means method searches k neighborhoods of each amino acid concentration data, defines the largest group among the groups to which the neighboring points belong as the group to which the data belongs, This is a method of selecting an amino acid variable that best matches the group to which the group belongs. Cluster analysis is a method of clustering (grouping) points that are closest to each other in all amino acid concentration data. The decision tree is a technique for predicting a group of amino acid concentration data based on patterns that can be taken by amino acid variables having higher ranks by adding ranks to amino acid variables.
 多変量判別式作成処理の説明に戻り、本発明は、制御部で、工程1で作成した候補多変量判別式を、所定の検証手法に基づいて検証(相互検証)する(工程2)。候補多変量判別式の検証は、工程1で作成した各候補多変量判別式に対して行う。 Returning to the description of the multivariate discriminant creation process, the present invention verifies (mutually verifies) the candidate multivariate discriminant created in step 1 based on a predetermined verification method in the control unit (step 2). The candidate multivariate discriminant is verified for each candidate multivariate discriminant created in step 1.
 なお、工程2において、ブートストラップ法やホールドアウト法、N-フォールド法、リーブワンアウト法などのうち少なくとも1つに基づいて候補多変量判別式の判別率や感度、特異度、情報量基準、ROC_AUC(受信者特性曲線の曲線下面積)などのうち少なくとも1つに関して検証してもよい。これにより、脂肪性肝疾患状態情報や診断条件を考慮した予測性または頑健性の高い候補多変量判別式を作成することができる。 In step 2, the discrimination rate, sensitivity, specificity, information criterion of the candidate multivariate discriminant based on at least one of the bootstrap method, holdout method, N-fold method, leave one out method, etc. The verification may be performed on at least one of ROC_AUC (area under the curve of the receiver characteristic curve) and the like. Thereby, a candidate multivariate discriminant with high predictability or robustness in consideration of fatty liver disease state information and diagnostic conditions can be created.
 ここで、判別率とは、全入力データの中で、本発明で評価した脂肪性肝疾患の状態が正しい割合である。また、感度とは、入力データに記載された脂肪性肝疾患の状態になっているものの中で、本発明で評価した脂肪性肝疾患の状態が正しい割合である。また、特異度とは、入力データに記載された脂肪性肝疾患が正常になっているものの中で、本発明で評価した脂肪性肝疾患の状態が正しい割合である。また、情報量基準とは、工程1で作成した候補多変量判別式のアミノ酸変数の数と、本発明で評価した脂肪性肝疾患の状態および入力データに記載された脂肪性肝疾患の状態の差異と、を足し合わせたものである。また、ROC_AUC(受信者特性曲線の曲線下面積)は、2次元座標上に(x,y)=(1-特異度,感度)をプロットして作成される曲線である受信者特性曲線(ROC)の曲線下面積として定義され、ROC_AUCの値は完全な判別では1となり、この値が1に近いほど判別性が高いことを示す。また、予測性とは、候補多変量判別式の検証を繰り返すことで得られた判別率や感度、特異性を平均したものである。また、頑健性とは、候補多変量判別式の検証を繰り返すことで得られた判別率や感度、特異性の分散である。 Here, the discrimination rate is the correct ratio of the fatty liver disease state evaluated by the present invention in all input data. Sensitivity is the correct proportion of the fatty liver disease state evaluated in the present invention among the fatty liver disease states described in the input data. The specificity is the correct proportion of the fatty liver disease state evaluated in the present invention among the normal fatty liver disease described in the input data. The information criterion is the number of amino acid variables of the candidate multivariate discriminant prepared in Step 1, the state of fatty liver disease evaluated in the present invention, and the state of fatty liver disease described in the input data. It is the sum of the differences. ROC_AUC (area under the curve of the receiver characteristic curve) is a receiver characteristic curve (ROC) that is a curve created by plotting (x, y) = (1−specificity, sensitivity) on a two-dimensional coordinate. ), The value of ROC_AUC is 1 in complete discrimination, and the closer this value is to 1, the higher the discriminability. The predictability is an average of the discrimination rate, sensitivity, and specificity obtained by repeating the verification of the candidate multivariate discriminant. Robustness is the variance of discrimination rate, sensitivity, and specificity obtained by repeating verification of candidate multivariate discriminants.
 多変量判別式作成処理の説明に戻り、本発明は、制御部で、工程2での検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで(ただし、工程2での検証結果を考慮せず、所定の変数選択手法に基づいて候補多変量判別式の変数を選択してもよい。)、候補多変量判別式を作成する際に用いる脂肪性肝疾患状態情報に含まれるアミノ酸濃度データの組み合わせを選択する(工程3)。アミノ酸変数の選択は、工程1で作成した各候補多変量判別式に対して行う。これにより、候補多変量判別式のアミノ酸変数を適切に選択することができる。そして、工程3で選択したアミノ酸濃度データを含む脂肪性肝疾患状態情報を用いて再び工程1を実行する。 Returning to the description of the multivariate discriminant creation process, the present invention allows the control unit to select a candidate multivariate discriminant variable from the verification result in step 2 based on a predetermined variable selection method (however, the process The variable of the candidate multivariate discriminant may be selected based on a predetermined variable selection method without considering the verification result in 2.), fatty liver disease state used when creating the candidate multivariate discriminant A combination of amino acid concentration data included in the information is selected (step 3). Amino acid variables are selected for each candidate multivariate discriminant created in step 1. Thereby, the amino acid variable of a candidate multivariate discriminant can be selected appropriately. Then, Step 1 is executed again using the fatty liver disease state information including the amino acid concentration data selected in Step 3.
 なお、工程3において、工程2での検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少なくとも1つに基づいて候補多変量判別式のアミノ酸変数を選択してもよい。 In step 3, the amino acid variable of the candidate multivariate discriminant may be selected from the verification result in step 2 based on at least one of stepwise method, best path method, neighborhood search method, and genetic algorithm. .
 ここで、ベストパス法とは、候補多変量判別式に含まれるアミノ酸変数を1つずつ順次減らしていき、候補多変量判別式が与える評価指標を最適化することでアミノ酸変数を選択する方法である。 Here, the best path method is a method of selecting amino acid variables by sequentially reducing amino acid variables included in the candidate multivariate discriminant one by one and optimizing the evaluation index given by the candidate multivariate discriminant. is there.
 多変量判別式作成処理の説明に戻り、本発明は、制御部で、上述した工程1、工程2および工程3を繰り返し実行し、これにより蓄積した検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成する(工程4)。なお、候補多変量判別式の選出には、例えば、同じ式作成手法で作成した候補多変量判別式の中から最適なものを選出する場合と、すべての候補多変量判別式の中から最適なものを選出する場合とがある。 Returning to the description of the multivariate discriminant creation process, the present invention repeatedly executes the above-described step 1, step 2 and step 3 in the control unit, and a plurality of candidate multivariate discriminants based on the verification results accumulated thereby. A multivariate discriminant is created by selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from the equations (step 4). In selecting candidate multivariate discriminants, for example, selecting the optimal one from among candidate multivariate discriminants created by the same formula creation method, and selecting the optimum from all candidate multivariate discriminants Sometimes there is a choice.
 以上、説明したように、多変量判別式作成処理では、脂肪性肝疾患状態情報に基づいて、候補多変量判別式の作成、候補多変量判別式の検証および候補多変量判別式の変数の選択に関する処理を一連の流れで体系化(システム化)して実行することにより、脂肪性肝疾患の状態評価に最適な多変量判別式を作成することができる。換言すると、多変量判別式作成処理では、アミノ酸濃度を多変量の統計解析に用い、最適でロバストな変数の組を選択するために変数選択法とクロスバリデーションとを組み合わせて、診断性能の高い多変量判別式を抽出する。多変量判別式としては、ロジスティック回帰、線形判別、サポートベクターマシン、マハラノビス距離法、重回帰分析、クラスター解析などを用いることができる。 As described above, in the multivariate discriminant creation process, based on fatty liver disease state information, candidate multivariate discriminant creation, candidate multivariate discriminant verification, and candidate multivariate discriminant variable selection By executing the processing related to systematization (systematization) in a series of flows, it is possible to create a multivariate discriminant that is optimal for evaluating the state of fatty liver disease. In other words, in the multivariate discriminant creation process, the amino acid concentration is used for multivariate statistical analysis, and the variable selection method and cross-validation are combined to select the optimal and robust variable set. Extract the variable discriminant. As the multivariate discriminant, logistic regression, linear discrimination, support vector machine, Mahalanobis distance method, multiple regression analysis, cluster analysis, and the like can be used.
[2-2.システム構成]
 ここでは、第2実施形態にかかる脂肪性肝疾患評価システム(以下では本システムと記す場合がある。)の構成について、図4から図20を参照して説明する。なお、本システムはあくまでも一例であり、本発明はこれに限定されない。
[2-2. System configuration]
Here, the configuration of the fatty liver disease evaluation system according to the second embodiment (hereinafter sometimes referred to as the present system) will be described with reference to FIGS. 4 to 20. This system is merely an example, and the present invention is not limited to this.
 まず、本システムの全体構成について図4および図5を参照して説明する。図4は本システムの全体構成の一例を示す図である。また、図5は本システムの全体構成の他の一例を示す図である。本システムは、図4に示すように、評価対象につき、脂肪性肝疾患の状態評価を行う脂肪性肝疾患評価装置100と、アミノ酸の濃度値に関する評価対象のアミノ酸濃度データを提供するクライアント装置200(本発明の情報通信端末装置に相当)とを、ネットワーク300を介して通信可能に接続して構成されている。 First, the overall configuration of this system will be described with reference to FIG. 4 and FIG. FIG. 4 is a diagram showing an example of the overall configuration of the present system. FIG. 5 is a diagram showing another example of the overall configuration of the present system. As shown in FIG. 4, the present system includes a fatty liver disease evaluation apparatus 100 that evaluates the state of fatty liver disease for each evaluation object, and a client apparatus 200 that provides amino acid concentration data of the evaluation object relating to the amino acid concentration value. (Corresponding to the information communication terminal device of the present invention) is connected to be communicable via the network 300.
 なお、本システムは、図5に示すように、脂肪性肝疾患評価装置100やクライアント装置200の他に、脂肪性肝疾患評価装置100で多変量判別式を作成する際に用いる脂肪性肝疾患状態情報や、脂肪性肝疾患の状態評価を行うために用いる多変量判別式などを格納したデータベース装置400を、ネットワーク300を介して通信可能に接続して構成されてもよい。これにより、ネットワーク300を介して、脂肪性肝疾患評価装置100からクライアント装置200やデータベース装置400へ、あるいはクライアント装置200やデータベース装置400から脂肪性肝疾患評価装置100へ、脂肪性肝疾患の状態に関する情報などが提供される。ここで、脂肪性肝疾患の状態に関する情報とは、ヒトを含む生物の脂肪性肝疾患の状態に関する特定の項目について測定した値に関する情報である。また、脂肪性肝疾患の状態に関する情報は、脂肪性肝疾患評価装置100やクライアント装置200や他の装置(例えば各種の計測装置等)で生成され、主にデータベース装置400に蓄積される。 In addition to the fatty liver disease evaluation apparatus 100 and the client apparatus 200, this system uses fatty liver disease used when creating a multivariate discriminant in the fatty liver disease evaluation apparatus 100, as shown in FIG. The database apparatus 400 that stores state information, a multivariate discriminant used for evaluating the state of fatty liver disease, and the like may be configured to be communicably connected via the network 300. Accordingly, the fatty liver disease state is transferred from the fatty liver disease evaluation device 100 to the client device 200 or the database device 400 or from the client device 200 or the database device 400 to the fatty liver disease evaluation device 100 via the network 300. Information about Here, the information relating to the state of fatty liver disease is information relating to values measured for specific items relating to the state of fatty liver disease in organisms including humans. Information regarding the state of fatty liver disease is generated by the fatty liver disease evaluation device 100, the client device 200, and other devices (for example, various measuring devices), and is mainly stored in the database device 400.
 つぎに、本システムの脂肪性肝疾患評価装置100の構成について図6から図18を参照して説明する。図6は、本システムの脂肪性肝疾患評価装置100の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。 Next, the configuration of the fatty liver disease evaluation apparatus 100 of this system will be described with reference to FIGS. FIG. 6 is a block diagram showing an example of the configuration of the fatty liver disease evaluation apparatus 100 of the present system, and conceptually shows only the portion related to the present invention in the configuration.
 脂肪性肝疾患評価装置100は、当該脂肪性肝疾患評価装置を統括的に制御するCPU等の制御部102と、ルータ等の通信装置および専用線等の有線または無線の通信回線を介して当該脂肪性肝疾患評価装置をネットワーク300に通信可能に接続する通信インターフェース部104と、各種のデータベースやテーブルやファイルなどを格納する記憶部106と、入力装置112や出力装置114に接続する入出力インターフェース部108と、で構成されており、これら各部は任意の通信路を介して通信可能に接続されている。ここで、脂肪性肝疾患評価装置100は、各種の分析装置(例えばアミノ酸アナライザー等)と同一筐体で構成されてもよい。また、脂肪性肝疾患評価装置100の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の付加等に応じてまたは機能負荷に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。すなわち、本明細書の実施形態を任意に組み合わせて実施してもよく、実施形態を選択的に実施してもよい。例えば、処理の一部をCGI(Common Gateway Interface)を用いて実現してもよい。 The fatty liver disease evaluation apparatus 100 includes a control unit 102 such as a CPU that comprehensively controls the fatty liver disease evaluation apparatus, a communication device such as a router, and a wired or wireless communication line such as a dedicated line. A communication interface unit 104 that connects the fatty liver disease evaluation device to the network 300 so as to be communicable, a storage unit 106 that stores various databases, tables, files, and the like, and an input / output interface that connects to the input device 112 and the output device 114 And these units are communicably connected via an arbitrary communication path. Here, the fatty liver disease evaluation apparatus 100 may be configured in the same housing as various analysis apparatuses (for example, an amino acid analyzer or the like). Further, the specific form of dispersion / integration of the fatty liver disease evaluation apparatus 100 is not limited to that shown in the figure, and all or a part thereof may be determined in arbitrary units according to various additions or according to functional load. It can be configured functionally or physically distributed and integrated. In other words, the embodiments of this specification may be implemented in any combination, and the embodiments may be selectively implemented. For example, a part of the processing may be realized using CGI (Common Gateway Interface).
 記憶部106は、ストレージ手段であり、例えば、RAM・ROM等のメモリ装置や、ハードディスクのような固定ディスク装置、フレキシブルディスク、光ディスク等を用いることができる。記憶部106には、OS(Operating System)と協働してCPUに命令を与え各種処理を行うためのコンピュータプログラムが記録されている。記憶部106は、図示の如く、利用者情報ファイル106aと、アミノ酸濃度データファイル106bと、脂肪性肝疾患状態情報ファイル106cと、指定脂肪性肝疾患状態情報ファイル106dと、多変量判別式関連情報データベース106eと、判別値ファイル106fと、評価結果ファイル106gと、を格納する。 The storage unit 106 is a storage means, and for example, a memory device such as a RAM / ROM, a fixed disk device such as a hard disk, a flexible disk, an optical disk, or the like can be used. The storage unit 106 stores a computer program for giving instructions to the CPU and performing various processes in cooperation with an OS (Operating System). As shown in the figure, the storage unit 106 includes a user information file 106a, an amino acid concentration data file 106b, a fatty liver disease state information file 106c, a designated fatty liver disease state information file 106d, and multivariate discriminant-related information. A database 106e, a discriminant value file 106f, and an evaluation result file 106g are stored.
 利用者情報ファイル106aは、利用者に関する利用者情報を格納する。図7は、利用者情報ファイル106aに格納される情報の一例を示す図である。利用者情報ファイル106aに格納される情報は、図7に示すように、利用者を一意に識別するための利用者IDと、利用者が正当な者であるか否かの認証を行うための利用者パスワードと、利用者の氏名と、利用者の所属する所属先を一意に識別するための所属先IDと、利用者の所属する所属先の部門を一意に識別するための部門IDと、部門名と、利用者の電子メールアドレスと、を相互に関連付けて構成されている。 The user information file 106a stores user information related to users. FIG. 7 is a diagram illustrating an example of information stored in the user information file 106a. As shown in FIG. 7, the information stored in the user information file 106a includes a user ID for uniquely identifying a user and authentication for whether or not the user is a valid person. A user password, a user name, an affiliation ID for uniquely identifying the affiliation to which the user belongs, a department ID for uniquely identifying the department to which the user belongs, The department name and the user's e-mail address are associated with each other.
 図6に戻り、アミノ酸濃度データファイル106bは、アミノ酸の濃度値に関するアミノ酸濃度データを格納する。図8は、アミノ酸濃度データファイル106bに格納される情報の一例を示す図である。アミノ酸濃度データファイル106bに格納される情報は、図8に示すように、評価対象である個体(サンプル)を一意に識別するための個体番号と、アミノ酸濃度データとを相互に関連付けて構成されている。ここで、図8では、アミノ酸濃度データを数値、すなわち連続尺度として扱っているが、アミノ酸濃度データは名義尺度や順序尺度でもよい。なお、名義尺度や順序尺度の場合は、それぞれの状態に対して任意の数値を与えることで解析してもよい。また、アミノ酸濃度データに、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)を組み合わせてもよい。 Referring back to FIG. 6, the amino acid concentration data file 106b stores amino acid concentration data relating to amino acid concentration values. FIG. 8 is a diagram showing an example of information stored in the amino acid concentration data file 106b. As shown in FIG. 8, the information stored in the amino acid concentration data file 106b is configured by associating an individual number for uniquely identifying an individual (sample) to be evaluated with amino acid concentration data. Yes. Here, in FIG. 8, the amino acid concentration data is treated as a numerical value, that is, a continuous scale, but the amino acid concentration data may be a nominal scale or an order scale. In the case of a nominal scale or an order scale, analysis may be performed by giving an arbitrary numerical value to each state. In addition, amino acid concentration data includes other biological information (for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones, etc. You may combine biomarkers such as habits, exercise habits, obesity levels, and disease histories.
 図6に戻り、脂肪性肝疾患状態情報ファイル106cは、多変量判別式を作成する際に用いる脂肪性肝疾患状態情報を格納する。図9は、脂肪性肝疾患状態情報ファイル106cに格納される情報の一例を示す図である。脂肪性肝疾患状態情報ファイル106cに格納される情報は、図9に示すように、個体番号と、脂肪性肝疾患の状態を表す指標(指標T、指標T、指標T・・・)に関する脂肪性肝疾患状態指標データ(T)と、アミノ酸濃度データと、を相互に関連付けて構成されている。ここで、図9では、脂肪性肝疾患状態指標データおよびアミノ酸濃度データを数値(すなわち連続尺度)として扱っているが、脂肪性肝疾患状態指標データおよびアミノ酸濃度データは名義尺度や順序尺度でもよい。なお、名義尺度や順序尺度の場合は、それぞれの状態に対して任意の数値を与えることで解析してもよい。また、脂肪性肝疾患状態指標データは、脂肪性肝疾患の状態のマーカーとなる既知の単一の状態指標であり、数値データを用いてもよい。 Returning to FIG. 6, the fatty liver disease state information file 106c stores fatty liver disease state information used when creating a multivariate discriminant. FIG. 9 is a diagram illustrating an example of information stored in the fatty liver disease state information file 106c. As shown in FIG. 9, information stored in the fatty liver disease state information file 106c includes an individual number and an index (index T 1 , index T 2 , index T 3 ... ) Related fatty acid disease state index data (T) and amino acid concentration data are associated with each other. Here, in FIG. 9, fatty liver disease state index data and amino acid concentration data are treated as numerical values (that is, a continuous scale), but fatty liver disease state index data and amino acid concentration data may be nominal scales or order scales. . In the case of a nominal scale or an order scale, analysis may be performed by giving an arbitrary numerical value to each state. The fatty liver disease state index data is a known single state index serving as a marker for the state of fatty liver disease, and numerical data may be used.
 図6に戻り、指定脂肪性肝疾患状態情報ファイル106dは、後述する脂肪性肝疾患状態情報指定部102gで指定した脂肪性肝疾患状態情報を格納する。図10は、指定脂肪性肝疾患状態情報ファイル106dに格納される情報の一例を示す図である。指定脂肪性肝疾患状態情報ファイル106dに格納される情報は、図10に示すように、個体番号と、指定した脂肪性肝疾患状態指標データと、指定したアミノ酸濃度データと、を相互に関連付けて構成されている。 Referring back to FIG. 6, the designated fatty liver disease state information file 106d stores the fatty liver disease state information designated by the fatty liver disease state information designation unit 102g described later. FIG. 10 is a diagram illustrating an example of information stored in the designated fatty liver disease state information file 106d. As shown in FIG. 10, the information stored in the designated fatty liver disease state information file 106d is obtained by associating an individual number, designated fatty liver disease state index data, and designated amino acid concentration data with each other. It is configured.
 図6に戻り、多変量判別式関連情報データベース106eは、後述する候補多変量判別式作成部102h1で作成した候補多変量判別式を格納する候補多変量判別式ファイル106e1と、後述する候補多変量判別式検証部102h2での検証結果を格納する検証結果ファイル106e2と、後述する変数選択部102h3で選択したアミノ酸濃度データの組み合わせを含む脂肪性肝疾患状態情報を格納する選択脂肪性肝疾患状態情報ファイル106e3と、後述する多変量判別式作成部102hで作成した多変量判別式を格納する多変量判別式ファイル106e4と、で構成される。 Returning to FIG. 6, the multivariate discriminant-related information database 106e includes a candidate multivariate discriminant file 106e1 for storing the candidate multivariate discriminant created by the candidate multivariate discriminant-preparing part 102h1 described below, and a candidate multivariate discriminant file 106e1 described later. Selected fatty liver disease state information for storing fatty liver disease state information including a combination of a verification result file 106e2 for storing the verification result in the discriminant verification unit 102h2 and amino acid concentration data selected by the variable selection unit 102h3 to be described later A file 106e3 and a multivariate discriminant file 106e4 that stores the multivariate discriminant created by the multivariate discriminant-preparing part 102h described later.
 候補多変量判別式ファイル106e1は、後述する候補多変量判別式作成部102h1で作成した候補多変量判別式を格納する。図11は、候補多変量判別式ファイル106e1に格納される情報の一例を示す図である。候補多変量判別式ファイル106e1に格納される情報は、図11に示すように、ランクと、候補多変量判別式(図11では、F(Gly,Leu,Phe,・・・)やF(Gly,Leu,Phe,・・・)、F(Gly,Leu,Phe,・・・)など)とを相互に関連付けて構成されている。 The candidate multivariate discriminant file 106e1 stores the candidate multivariate discriminant created by the candidate multivariate discriminant creation unit 102h1 described later. FIG. 11 is a diagram illustrating an example of information stored in the candidate multivariate discriminant file 106e1. As shown in FIG. 11, information stored in the candidate multivariate discriminant file 106e1 includes a rank, a candidate multivariate discriminant (in FIG. 11, F 1 (Gly, Leu, Phe,...)) And F 2. (Gly, Leu, Phe,...), F 3 (Gly, Leu, Phe,...)) Are associated with each other.
 図6に戻り、検証結果ファイル106e2は、後述する候補多変量判別式検証部102h2での検証結果を格納する。図12は、検証結果ファイル106e2に格納される情報の一例を示す図である。検証結果ファイル106e2に格納される情報は、図12に示すように、ランクと、候補多変量判別式(図12では、F(Gly,Leu,Phe,・・・)やF(Gly,Leu,Phe,・・・)、F(Gly,Leu,Phe,・・・)など)と、各候補多変量判別式の検証結果(例えば各候補多変量判別式の評価値)と、を相互に関連付けて構成されている。 Returning to FIG. 6, the verification result file 106e2 stores the verification result in the candidate multivariate discriminant verification unit 102h2 described later. FIG. 12 is a diagram illustrating an example of information stored in the verification result file 106e2. As shown in FIG. 12, the information stored in the verification result file 106e2 includes rank, candidate multivariate discriminant (in FIG. 12, F k (Gly, Leu, Phe,...) And F m (Gly, Le, Phe,...), Fl (Gly, Leu, Phe,...)) And the verification results of each candidate multivariate discriminant (for example, the evaluation value of each candidate multivariate discriminant). They are related to each other.
 図6に戻り、選択脂肪性肝疾患状態情報ファイル106e3は、後述する変数選択部102h3で選択した変数に対応するアミノ酸濃度データの組み合わせを含む脂肪性肝疾患状態情報を格納する。図13は、選択脂肪性肝疾患状態情報ファイル106e3に格納される情報の一例を示す図である。選択脂肪性肝疾患状態情報ファイル106e3に格納される情報は、図13に示すように、個体番号と、後述する脂肪性肝疾患状態情報指定部102gで指定した脂肪性肝疾患状態指標データと、後述する変数選択部102h3で選択したアミノ酸濃度データと、を相互に関連付けて構成されている。 Referring back to FIG. 6, the selected fatty liver disease state information file 106e3 stores fatty liver disease state information including a combination of amino acid concentration data corresponding to variables selected by the variable selection unit 102h3 described later. FIG. 13 is a diagram illustrating an example of information stored in the selected fatty liver disease state information file 106e3. As shown in FIG. 13, the information stored in the selected fatty liver disease state information file 106e3 includes an individual number, fatty liver disease state index data designated by the fatty liver disease state information designation unit 102g described later, Amino acid concentration data selected by a variable selection unit 102h3 described later is associated with each other.
 図6に戻り、多変量判別式ファイル106e4は、後述する多変量判別式作成部102hで作成した多変量判別式を格納する。図14は、多変量判別式ファイル106e4に格納される情報の一例を示す図である。多変量判別式ファイル106e4に格納される情報は、図14に示すように、ランクと、多変量判別式(図14では、F(Phe,・・・)やF(Gly,Leu,Phe)、F(Gly,Leu,Phe,・・・)など)と、各式作成手法に対応する閾値と、各多変量判別式の検証結果(例えば各多変量判別式の評価値)と、を相互に関連付けて構成されている。 Returning to FIG. 6, the multivariate discriminant file 106e4 stores the multivariate discriminant created by the multivariate discriminant-preparing part 102h described later. FIG. 14 is a diagram illustrating an example of information stored in the multivariate discriminant file 106e4. As shown in FIG. 14, the information stored in the multivariate discriminant file 106e4 includes the rank, the multivariate discriminant (in FIG. 14, F p (Phe,...) And F p (Gly, Leu, Phe). ), F k (Gly, Leu, Phe,...)), A threshold corresponding to each formula creation method, a verification result of each multivariate discriminant (for example, an evaluation value of each multivariate discriminant), Are related to each other.
 図6に戻り、判別値ファイル106fは、後述する判別値算出部102iで算出した判別値を格納する。図15は、判別値ファイル106fに格納される情報の一例を示す図である。判別値ファイル106fに格納される情報は、図15に示すように、評価対象である個体(サンプル)を一意に識別するための個体番号と、ランク(多変量判別式を一意に識別するための番号)と、判別値と、を相互に関連付けて構成されている。 Returning to FIG. 6, the discriminant value file 106f stores the discriminant value calculated by the discriminant value calculator 102i described later. FIG. 15 is a diagram illustrating an example of information stored in the discrimination value file 106f. As shown in FIG. 15, information stored in the discriminant value file 106f includes an individual number for uniquely identifying an individual (sample) to be evaluated and a rank (for uniquely identifying a multivariate discriminant). Number) and the discriminant value are associated with each other.
 図6に戻り、評価結果ファイル106gは、後述する判別値基準評価部102jでの評価結果(具体的には、後述する判別値基準判別部102j1での判別結果)を格納する。図16は、評価結果ファイル106gに格納される情報の一例を示す図である。評価結果ファイル106gに格納される情報は、評価対象である個体(サンプル)を一意に識別するための個体番号と、予め取得した評価対象のアミノ酸濃度データと、多変量判別式で算出した判別値と、脂肪性肝疾患の状態評価に関する評価結果と、を相互に関連付けて構成されている。 Returning to FIG. 6, the evaluation result file 106g stores an evaluation result in a discriminant value criterion-evaluating unit 102j described later (specifically, a discrimination result in a discriminant value criterion-discriminating unit 102j1 described later). FIG. 16 is a diagram illustrating an example of information stored in the evaluation result file 106g. Information stored in the evaluation result file 106g includes an individual number for uniquely identifying an individual (sample) to be evaluated, amino acid concentration data of the evaluation target acquired in advance, and a discriminant value calculated by a multivariate discriminant. And the evaluation result regarding the evaluation of the state of fatty liver disease are associated with each other.
 図6に戻り、記憶部106には、上述した情報以外にその他情報として、Webサイトをクライアント装置200に提供するための各種のWebデータや、CGIプログラム等が記録されている。Webデータとしては後述する各種のWebページを表示するためのデータ等があり、これらデータは例えばHTMLやXMLで記述されたテキストファイルとして形成されている。また、Webデータを作成するための部品用のファイルや作業用のファイルやその他一時的なファイル等も記憶部106に記憶される。記憶部106には、必要に応じて、クライアント装置200に送信するための音声をWAVE形式やAIFF形式の如き音声ファイルで格納したり、静止画や動画をJPEG形式やMPEG2形式の如き画像ファイルで格納したりすることができる。 Referring back to FIG. 6, the storage unit 106 stores various types of Web data for providing the Web site to the client device 200, CGI programs, and the like as other information in addition to the information described above. The Web data includes data for displaying various Web pages to be described later, and these data are formed as text files described in HTML or XML, for example. In addition, a part file, a work file, and other temporary files for creating Web data are also stored in the storage unit 106. The storage unit 106 stores audio for transmission to the client device 200 as an audio file such as WAVE format or AIFF format, and stores still images or moving images as image files such as JPEG format or MPEG2 format as necessary. Can be stored.
 通信インターフェース部104は、脂肪性肝疾患評価装置100とネットワーク300(またはルータ等の通信装置)との間における通信を媒介する。すなわち、通信インターフェース部104は、他の端末と通信回線を介してデータを通信する機能を有する。 The communication interface unit 104 mediates communication between the fatty liver disease evaluation device 100 and the network 300 (or a communication device such as a router). That is, the communication interface unit 104 has a function of communicating data with other terminals via a communication line.
 入出力インターフェース部108は、入力装置112や出力装置114に接続する。ここで、出力装置114には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用いることができる(なお、以下では、出力装置114をモニタ114として記載する場合がある。)。入力装置112には、キーボードやマウスやマイクの他、マウスと協働してポインティングデバイス機能を実現するモニタを用いることができる。 The input / output interface unit 108 is connected to the input device 112 and the output device 114. Here, in addition to a monitor (including a home television), a speaker or a printer can be used as the output device 114 (hereinafter, the output device 114 may be described as the monitor 114). As the input device 112, a monitor that realizes a pointing device function in cooperation with a mouse can be used in addition to a keyboard, a mouse, and a microphone.
 制御部102は、OS(Operating System)等の制御プログラム・各種の処理手順等を規定したプログラム・所要データなどを格納するための内部メモリを有し、これらのプログラムに基づいて種々の情報処理を実行する。制御部102は、図示の如く、大別して、要求解釈部102aと閲覧処理部102bと認証処理部102cと電子メール生成部102dとWebページ生成部102eと受信部102fと脂肪性肝疾患状態情報指定部102gと多変量判別式作成部102hと判別値算出部102iと判別値基準評価部102jと結果出力部102kと送信部102mとを備えている。制御部102は、データベース装置400から送信された脂肪性肝疾患状態情報やクライアント装置200から送信されたアミノ酸濃度データに対して、欠損値のあるデータの除去・外れ値の多いデータの除去・欠損値のあるデータの多い変数の除去などのデータ処理も行う。 The control unit 102 has an internal memory for storing a control program such as an OS (Operating System), a program defining various processing procedures, and necessary data, and performs various information processing based on these programs. Execute. As shown in the figure, the control unit 102 is roughly divided into a request interpretation unit 102a, a browsing processing unit 102b, an authentication processing unit 102c, an e-mail generation unit 102d, a Web page generation unit 102e, a reception unit 102f, and fatty liver disease state information designation. Unit 102g, multivariate discriminant creation unit 102h, discriminant value calculator 102i, discriminant value criterion-evaluator 102j, result output unit 102k, and transmitter 102m. The control unit 102 removes data with missing values, removes data with many outliers, and lacks data with respect to fatty liver disease state information transmitted from the database device 400 and amino acid concentration data transmitted from the client device 200. Data processing such as removal of variables with a lot of valued data is also performed.
 要求解釈部102aは、クライアント装置200やデータベース装置400からの要求内容を解釈し、その解釈結果に応じて制御部102の各部に処理を受け渡す。閲覧処理部102bは、クライアント装置200からの各種画面の閲覧要求を受けて、これら画面のWebデータの生成や送信を行なう。認証処理部102cは、クライアント装置200やデータベース装置400からの認証要求を受けて、認証判断を行う。電子メール生成部102dは、各種の情報を含んだ電子メールを生成する。Webページ生成部102eは、利用者がクライアント装置200で閲覧するWebページを生成する。 The request interpretation unit 102a interprets the request content from the client device 200 or the database device 400, and passes the processing to each unit of the control unit 102 according to the interpretation result. Upon receiving browsing requests for various screens from the client device 200, the browsing processing unit 102b generates and transmits Web data for these screens. Upon receiving an authentication request from the client device 200 or the database device 400, the authentication processing unit 102c makes an authentication determination. The e-mail generation unit 102d generates an e-mail including various types of information. The web page generation unit 102e generates a web page that the user browses on the client device 200.
 受信部102fは、クライアント装置200やデータベース装置400から送信された情報(具体的には、アミノ酸濃度データや脂肪性肝疾患状態情報、多変量判別式など)を、ネットワーク300を介して受信する。脂肪性肝疾患状態情報指定部102gは、多変量判別式を作成するにあたり、対象とする脂肪性肝疾患状態指標データおよびアミノ酸濃度データを指定する。 The receiving unit 102f receives information (specifically, amino acid concentration data, fatty liver disease state information, multivariate discriminant, etc.) transmitted from the client device 200 or the database device 400 via the network 300. The fatty liver disease state information designating unit 102g designates target fatty liver disease state index data and amino acid concentration data when creating a multivariate discriminant.
 多変量判別式作成部102hは、受信部102fで受信した脂肪性肝疾患状態情報や脂肪性肝疾患状態情報指定部102gで指定した脂肪性肝疾患状態情報に基づいて多変量判別式を作成する。具体的には、多変量判別式作成部102hは、脂肪性肝疾患状態情報から、候補多変量判別式作成部102h1、候補多変量判別式検証部102h2および変数選択部102h3を繰り返し実行させることにより蓄積された検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成する。 The multivariate discriminant creating unit 102h creates a multivariate discriminant based on the fatty liver disease state information received by the receiving unit 102f and the fatty liver disease state information specified by the fatty liver disease state information specifying unit 102g. . Specifically, the multivariate discriminant-preparing part 102h repeatedly executes the candidate multivariate discriminant-preparing part 102h1, the candidate multivariate discriminant-verifying part 102h2, and the variable selecting part 102h3 from the fatty liver disease state information. A multivariate discriminant is created by selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from a plurality of candidate multivariate discriminants based on the accumulated verification results.
 なお、多変量判別式が予め記憶部106の所定の記憶領域に格納されている場合には、多変量判別式作成部102hは、記憶部106から所望の多変量判別式を選択することで、多変量判別式を作成してもよい。また、多変量判別式作成部102hは、多変量判別式を予め格納した他のコンピュータ装置(例えばデータベース装置400)から所望の多変量判別式を選択しダウンロードすることで、多変量判別式を作成してもよい。 When the multivariate discriminant is stored in a predetermined storage area of the storage unit 106 in advance, the multivariate discriminant-preparing unit 102h selects a desired multivariate discriminant from the storage unit 106, A multivariate discriminant may be created. In addition, the multivariate discriminant creation unit 102h creates a multivariate discriminant by selecting and downloading a desired multivariate discriminant from another computer device (for example, the database device 400) that stores the multivariate discriminant in advance. May be.
 ここで、多変量判別式作成部102hの構成について図17を参照して説明する。図17は、多変量判別式作成部102hの構成を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。多変量判別式作成部102hは、候補多変量判別式作成部102h1と、候補多変量判別式検証部102h2と、変数選択部102h3と、をさらに備えている。候補多変量判別式作成部102h1は、脂肪性肝疾患状態情報から所定の式作成手法に基づいて多変量判別式の候補である候補多変量判別式を作成する。なお、候補多変量判別式作成部102h1は、脂肪性肝疾患状態情報から、複数の異なる式作成手法を併用して複数の候補多変量判別式を作成してもよい。候補多変量判別式検証部102h2は、候補多変量判別式作成部102h1で作成した候補多変量判別式を所定の検証手法に基づいて検証する。なお、候補多変量判別式検証部102h2は、ブートストラップ法、ホールドアウト法、N-フォールド法、リーブワンアウト法のうち少なくとも1つに基づいて候補多変量判別式の判別率、感度、特異度、情報量基準、ROC_AUC(受信者特性曲線の曲線下面積)のうち少なくとも1つに関して検証してもよい。変数選択部102h3は、候補多変量判別式検証部102h2での検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる脂肪性肝疾患状態情報に含まれるアミノ酸濃度データの組み合わせを選択する。なお、変数選択部102h3は、検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少なくとも1つに基づいて候補多変量判別式の変数を選択してもよい。 Here, the configuration of the multivariate discriminant-preparing part 102h will be described with reference to FIG. FIG. 17 is a block diagram showing the configuration of the multivariate discriminant-preparing part 102h, and conceptually shows only the part related to the present invention. The multivariate discriminant creation unit 102h further includes a candidate multivariate discriminant creation unit 102h1, a candidate multivariate discriminant verification unit 102h2, and a variable selection unit 102h3. The candidate multivariate discriminant-preparing part 102h1 creates a candidate multivariate discriminant that is a candidate for the multivariate discriminant from the fatty liver disease state information based on a predetermined formula creation method. In addition, the candidate multivariate discriminant-preparing part 102h1 may create a plurality of candidate multivariate discriminants from a fatty liver disease state information by using a plurality of different formula creation methods. The candidate multivariate discriminant verification unit 102h2 verifies the candidate multivariate discriminant created by the candidate multivariate discriminant creation unit 102h1 based on a predetermined verification method. Note that the candidate multivariate discriminant verification unit 102h2 determines the discriminant rate, sensitivity, and specificity of the candidate multivariate discriminant based on at least one of the bootstrap method, holdout method, N-fold method, and leave one out method. , Information criterion, ROC_AUC (area under the receiver characteristic curve) may be verified. When the variable selection unit 102h3 creates a candidate multivariate discriminant by selecting a variable of the candidate multivariate discriminant based on a predetermined variable selection method from the verification result in the candidate multivariate discriminant verification unit 102h2. A combination of amino acid concentration data included in the fatty liver disease state information to be used is selected. Note that the variable selection unit 102h3 may select a variable of the candidate multivariate discriminant from the verification result based on at least one of the stepwise method, the best path method, the neighborhood search method, and the genetic algorithm.
 図6に戻り、判別値算出部102iは、多変量判別式作成部102hで作成した多変量判別式、および受信部102fで受信した評価対象のアミノ酸濃度データに基づいて、当該多変量判別式の値である判別値を算出する。なお、多変量判別式は、ロジスティック回帰式、分数式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。 Returning to FIG. 6, the discriminant value calculation unit 102 i determines the multivariate discriminant based on the multivariate discriminant created by the multivariate discriminant creation unit 102 h and the evaluation target amino acid concentration data received by the receiver 102 f. The discriminant value which is a value is calculated. Multivariate discriminants are logistic regression formula, fractional formula, linear discriminant formula, multiple regression formula, formula created by support vector machine, formula created by Mahalanobis distance method, formula created by canonical discriminant analysis. Any one of the expressions created by the decision tree may be used.
 具体的には、判別値基準評価部102jでNASHの状態を評価する場合(具体的には、後述する判別値基準判別部102j1でNASHまたは非NASHであるか否かを判別する場合)、判別値算出部102iは、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出してもよい。なお、判別値基準判別部102j1でNASHまたは非NASHであるか否かを判別する場合、多変量判別式は、Glu,Gln,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。 Specifically, when the discriminant value criterion-evaluating unit 102j evaluates the NASH state (specifically, when the discriminant value criterion-discriminating unit 102j1 described later determines whether it is NASH or non-NASH). The value calculation unit 102i includes at least one concentration value among Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data. And a multivariate discriminant including at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser as a variable, The discrimination value may be calculated. When the discrimination value criterion discrimination unit 102j1 determines whether or not NASH or non-NASH, the multivariate discriminant may be a logistic regression equation including Glu, Gln, Gly, Ala, Val, Tyr as variables.
 また、判別値基準評価部102jでNAFLDの状態を評価する場合(具体的には、後述する判別値基準判別部102j1でNAFLDまたは非NAFLDであるか否かを判別する場合)、判別値算出部102iは、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出してもよい。なお、判別値基準判別部102j1でNAFLDまたは非NAFLDであるか否かを判別する場合、多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式でもよい。 Further, when the NAFLD state is evaluated by the discriminant value criterion evaluation unit 102j (specifically, when the discriminant value criterion discriminator 102j1 described later determines whether NAFLD or non-NAFLD), the discriminant value calculation unit 102i is at least 1 of Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn included in the amino acid concentration data. One concentration value and at least one of Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn as a variable The discriminant value may be calculated on the basis of the multivariate discriminant included. When the discriminant value criterion discriminating unit 102j1 determines whether or not NAFLD or non-NAFLD, the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables.
 また、判別値基準評価部102jで脂肪肝の状態を評価する場合(具体的には、後述する判別値基準判別部102j1で脂肪肝または非脂肪肝であるか否かを判別する場合)、判別値算出部102iは、アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値、およびThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出してもよい。なお、判別値基準判別部102j1で脂肪肝または非脂肪肝であるか否かを判別する場合、多変量判別式は、Ser,Glu,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。 Also, when the discriminant value criterion-evaluating unit 102j evaluates the state of fatty liver (specifically, when the discriminant value criterion-discriminating unit 102j1 described later determines whether the liver is fatty liver or non-fatty liver). The value calculation unit 102i includes at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, and Orn included in the amino acid concentration data. Multivariate discriminant including a concentration value and at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn as a variable The discriminant value may be calculated based on the above. When the discriminant value criterion discriminating unit 102j1 discriminates whether it is fatty liver or non-fatty liver, the multivariate discriminant is a logistic regression equation including Ser, Glu, Gly, Ala, Val, Tyr as variables. Good.
 また、判別値基準評価部102jでNASHおよびNAFLDの状態を評価する場合(具体的には、後述する判別値基準判別部102j1で、NASHまたは「非NASH且つNAFLD」(単純性脂肪肝)であるか否かを判別する場合、または非NAFLD、NASH、または「非NASH且つNAFLD」であるか否かを判別する場合)、判別値算出部102iは、アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値、およびGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出してもよい。なお、判別値基準判別部102j1でNASHまたは「非NASH且つNAFLD」(単純性脂肪肝)であるか否かを判別する場合、多変量判別式は、Asn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。また、判別値基準判別部102j1で非NAFLD、NASH、または「非NASH且つNAFLD」であるか否かを判別する場合、多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式、およびAsn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。 Further, when the discriminant value criterion evaluation unit 102j evaluates the state of NASH and NAFLD (specifically, the discriminant value criterion discriminator 102j1 described later is NASH or “non-NASH and NAFLD” (simple fatty liver). When determining whether or not it is non-NAFLD, NASH, or “non-NASH and NAFLD”), the discriminant value calculation unit 102i includes Gln, Glu, and Gly included in the amino acid concentration data. , Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA, and Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe , Met, Ile, Pro, Multivariate discriminant including at least one of ABA as a variable Based on may calculate the discrimination value. When the discriminant value criterion discriminating unit 102j1 discriminates whether it is NASH or “non-NASH and NAFLD” (simple fatty liver), the multivariate discriminant is Asn, Gln, Gly, Ala, Cit, Met. May be a logistic regression equation including as a variable. Further, when the discriminant value criterion discriminating unit 102j1 discriminates whether or not it is non-NAFLD, NASH, or “non-NASH and NAFLD”, the multivariate discriminant uses Ser, Glu, Gly, Val, Tyr, and His as variables. And a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables.
 判別値基準評価部102jは、判別値算出部102iで算出した判別値に基づいて、評価対象につき、脂肪性肝疾患(具体的には、NASH、NAFLD、および脂肪肝のうち少なくとも1つ)の状態を評価する。判別値基準評価部102jは、判別値基準判別部102j1をさらに備えている。ここで、判別値基準評価部102jの構成について図18を参照して説明する。図18は、判別値基準評価部102jの構成を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。判別値基準判別部102j1は、判別値に基づいて、評価対象につき、NASHまたは非NASHであるか否かの判別、NAFLDまたは非NAFLDであるか否かの判別、脂肪肝または非脂肪肝であるか否かの判別、NASHまたは「非NASH且つNAFLD」(単純性脂肪肝)であるか否かの判別、または非NAFLD、NASH、または「非NASH且つNAFLD」であるか否かの判別を実行する。具体的には、判別値基準判別部102j1は、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、これらの判別のうちのいずれか1つを実行する。 Based on the discriminant value calculated by the discriminant value calculating unit 102i, the discriminant value criterion-evaluating unit 102j is evaluated for fatty liver disease (specifically, at least one of NASH, NAFLD, and fatty liver). Assess the condition. The discrimination value criterion evaluation unit 102j further includes a discrimination value criterion discrimination unit 102j1. Here, the configuration of the discriminant value criterion-evaluating unit 102j will be described with reference to FIG. FIG. 18 is a block diagram showing the configuration of the discriminant value criterion-evaluating unit 102j, and conceptually shows only the portion related to the present invention. Based on the discriminant value, the discriminant value criterion discriminating unit 102j1 discriminates whether the evaluation target is NASH or non-NASH, discriminates whether it is NAFLD or non-NAFLD, fatty liver or non-fatty liver Whether it is NASH or “non-NASH and NAFLD” (simple fatty liver), or whether it is non-NAFLD, NASH, or “non-NASH and NAFLD” To do. Specifically, the discriminant value criterion discriminating unit 102j1 executes any one of these discriminators for each evaluation target by comparing the discriminant value with a preset threshold value (cut-off value). .
 図6に戻り、結果出力部102kは、制御部102の各処理部での処理結果(判別値基準評価部102jでの評価結果(具体的には判別値基準判別部102j1での判別結果)を含む)等を出力装置114に出力する。 Returning to FIG. 6, the result output unit 102k displays the processing results in the respective processing units of the control unit 102 (evaluation results in the discrimination value criterion evaluation unit 102j (specifically, discrimination results in the discrimination value criterion discrimination unit 102j1)). Output) to the output device 114.
 送信部102mは、評価対象のアミノ酸濃度データの送信元のクライアント装置200に対して評価結果を送信したり、データベース装置400に対して、脂肪性肝疾患評価装置100で作成した多変量判別式や評価結果を送信したりする。 The transmission unit 102m transmits the evaluation result to the client apparatus 200 that is the transmission source of the amino acid concentration data to be evaluated, or the multivariate discriminant created by the fatty liver disease evaluation apparatus 100 to the database apparatus 400 Send evaluation results.
 つぎに、本システムのクライアント装置200の構成について図19を参照して説明する。図19は、本システムのクライアント装置200の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。 Next, the configuration of the client device 200 of this system will be described with reference to FIG. FIG. 19 is a block diagram showing an example of the configuration of the client apparatus 200 of the present system, and conceptually shows only the portion related to the present invention in the configuration.
 クライアント装置200は、制御部210とROM220とHD230とRAM240と入力装置250と出力装置260と入出力IF270と通信IF280とで構成されており、これら各部は任意の通信路を介して通信可能に接続されている。 The client device 200 includes a control unit 210, a ROM 220, an HD 230, a RAM 240, an input device 250, an output device 260, an input / output IF 270, and a communication IF 280. These units are communicably connected via an arbitrary communication path. Has been.
 制御部210は、Webブラウザ211、電子メーラ212、受信部213、送信部214を備えている。Webブラウザ211は、Webデータを解釈し、解釈したWebデータを後述するモニタ261に表示するブラウズ処理を行う。なお、Webブラウザ211には、ストリーム映像の受信・表示・フィードバック等を行う機能を備えたストリームプレイヤ等の各種のソフトウェアをプラグインしてもよい。電子メーラ212は、所定の通信規約(例えば、SMTP(Simple Mail Transfer Protocol)やPOP3(Post Office Protocol version 3)等)に従って電子メールの送受信を行う。受信部213は、通信IF280を介して、脂肪性肝疾患評価装置100から送信された評価結果などの各種情報を受信する。送信部214は、通信IF280を介して、評価対象のアミノ酸濃度データなどの各種情報を脂肪性肝疾患評価装置100へ送信する。 The control unit 210 includes a web browser 211, an electronic mailer 212, a reception unit 213, and a transmission unit 214. The web browser 211 performs browse processing for interpreting the web data and displaying the interpreted web data on a monitor 261 described later. The Web browser 211 may be plugged in with various software such as a stream player having a function of receiving, displaying, and feeding back a stream video. The electronic mailer 212 transmits and receives electronic mail according to a predetermined communication protocol (for example, SMTP (Simple Mail Transfer Protocol), POP3 (Post Office Protocol version 3), etc.). The receiving unit 213 receives various information such as the evaluation result transmitted from the fatty liver disease evaluation apparatus 100 via the communication IF 280. The transmission unit 214 transmits various types of information such as evaluation target amino acid concentration data to the fatty liver disease evaluation apparatus 100 via the communication IF 280.
 入力装置250はキーボードやマウスやマイク等である。なお、後述するモニタ261もマウスと協働してポインティングデバイス機能を実現する。出力装置260は、通信IF280を介して受信した情報を出力する出力手段であり、モニタ(家庭用テレビを含む)261およびプリンタ262を含む。この他、出力装置260にスピーカ等を設けてもよい。入出力IF270は入力装置250や出力装置260に接続する。 The input device 250 is a keyboard, a mouse, a microphone, or the like. A monitor 261, which will be described later, also realizes a pointing device function in cooperation with the mouse. The output device 260 is an output unit that outputs information received via the communication IF 280, and includes a monitor (including a home television) 261 and a printer 262. In addition, the output device 260 may be provided with a speaker or the like. The input / output IF 270 is connected to the input device 250 and the output device 260.
 通信IF280は、クライアント装置200とネットワーク300(またはルータ等の通信装置)とを通信可能に接続する。換言すると、クライアント装置200は、モデムやTAやルータなどの通信装置および電話回線を介して、または専用線を介してネットワーク300に接続される。これにより、クライアント装置200は、所定の通信規約に従って脂肪性肝疾患評価装置100にアクセスすることができる。 The communication IF 280 connects the client device 200 and the network 300 (or a communication device such as a router) so that they can communicate with each other. In other words, the client device 200 is connected to the network 300 via a communication device such as a modem, TA, or router and a telephone line, or via a dedicated line. Thereby, the client apparatus 200 can access the fatty liver disease evaluation apparatus 100 according to a predetermined communication protocol.
 ここで、プリンタ・モニタ・イメージスキャナ等の周辺装置を必要に応じて接続した情報処理装置(例えば、既知のパーソナルコンピュータ・ワークステーション・家庭用ゲーム装置・インターネットTV・PHS端末・携帯端末・移動体通信端末・PDA等の情報処理端末など)に、Webデータのブラウジング機能や電子メール機能を実現させるソフトウェア(プログラム、データ等を含む)を実装することにより、クライアント装置200を実現してもよい。 Here, an information processing device (for example, a known personal computer, workstation, home game device, Internet TV, PHS terminal, portable terminal, mobile object) connected with peripheral devices such as a printer, a monitor, and an image scanner as necessary. The client device 200 may be realized by installing software (including programs, data, and the like) that realizes a Web data browsing function and an e-mail function in a communication terminal / information processing terminal such as a PDA).
 また、クライアント装置200の制御部210は、制御部210で行う処理の全部または任意の一部を、CPUおよび当該CPUにて解釈して実行するプログラムで実現してもよい。ROM220またはHD230には、OS(Operating System)と協働してCPUに命令を与え、各種処理を行うためのコンピュータプログラムが記録されている。当該コンピュータプログラムは、RAM240にロードされることで実行され、CPUと協働して制御部210を構成する。また、当該コンピュータプログラムは、クライアント装置200と任意のネットワークを介して接続されるアプリケーションプログラムサーバに記録されてもよく、クライアント装置200は、必要に応じてその全部または一部をダウンロードしてもよい。また、制御部210で行う処理の全部または任意の一部を、ワイヤードロジック等によるハードウェアで実現してもよい。 Further, the control unit 210 of the client device 200 may be realized by a CPU and a program that is interpreted and executed by the CPU and all or any part of the processing performed by the control unit 210. The ROM 220 or the HD 230 stores computer programs for giving instructions to the CPU and performing various processes in cooperation with an OS (Operating System). The computer program is executed by being loaded into the RAM 240, and constitutes the control unit 210 in cooperation with the CPU. Further, the computer program may be recorded in an application program server connected to the client apparatus 200 via an arbitrary network, and the client apparatus 200 may download all or a part thereof as necessary. . In addition, all or any part of the processing performed by the control unit 210 may be realized by hardware such as wired logic.
 つぎに、本システムのネットワーク300について図4、図5を参照して説明する。ネットワーク300は、脂肪性肝疾患評価装置100とクライアント装置200とデータベース装置400とを相互に通信可能に接続する機能を有し、例えばインターネットやイントラネットやLAN(有線/無線の双方を含む)等である。なお、ネットワーク300は、VANや、パソコン通信網や、公衆電話網(アナログ/デジタルの双方を含む)や、専用回線網(アナログ/デジタルの双方を含む)や、CATV網や、携帯回線交換網または携帯パケット交換網(IMT2000方式、GSM(登録商標)方式またはPDC/PDC-P方式等を含む)や、無線呼出網や、Bluetooth(登録商標)等の局所無線網や、PHS網や、衛星通信網(CS、BSまたはISDB等を含む)等でもよい。 Next, the network 300 of this system will be described with reference to FIGS. The network 300 has a function of connecting the fatty liver disease evaluation apparatus 100, the client apparatus 200, and the database apparatus 400 so that they can communicate with each other. For example, the network 300 is connected to the Internet, an intranet, a LAN (including both wired / wireless), and the like. is there. The network 300 includes a VAN, a personal computer communication network, a public telephone network (including both analog / digital), a dedicated line network (including both analog / digital), a CATV network, and a mobile line switching network. Or mobile packet switching network (including IMT2000 system, GSM (registered trademark) system or PDC / PDC-P system), wireless paging network, local wireless network such as Bluetooth (registered trademark), PHS network, satellite A communication network (including CS, BS or ISDB) may be used.
 つぎに、本システムのデータベース装置400の構成について図20を参照して説明する。図20は、本システムのデータベース装置400の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。 Next, the configuration of the database apparatus 400 of this system will be described with reference to FIG. FIG. 20 is a block diagram showing an example of the configuration of the database apparatus 400 of this system, and conceptually shows only the portion related to the present invention in the configuration.
 データベース装置400は、脂肪性肝疾患評価装置100または当該データベース装置で多変量判別式を作成する際に用いる脂肪性肝疾患状態情報や、脂肪性肝疾患評価装置100で作成した多変量判別式、脂肪性肝疾患評価装置100での評価結果などを格納する機能を有する。図20に示すように、データベース装置400は、当該データベース装置を統括的に制御するCPU等の制御部402と、ルータ等の通信装置および専用線等の有線または無線の通信回路を介して当該データベース装置をネットワーク300に通信可能に接続する通信インターフェース部404と、各種のデータベースやテーブルやファイル(例えばWebページ用ファイル)などを格納する記憶部406と、入力装置412や出力装置414に接続する入出力インターフェース部408と、で構成されており、これら各部は任意の通信路を介して通信可能に接続されている。 The database device 400 is a fatty liver disease state information used when creating a multivariate discriminant in the fatty liver disease evaluation device 100 or the database device, a multivariate discriminant created in the fatty liver disease evaluation device 100, It has a function of storing evaluation results and the like in the fatty liver disease evaluation apparatus 100. As shown in FIG. 20, the database device 400 includes a control unit 402 such as a CPU that comprehensively controls the database device, a communication device such as a router, and a wired or wireless communication circuit such as a dedicated line. A communication interface unit 404 that connects the apparatus to the network 300 to be communicable, a storage unit 406 that stores various databases, tables, and files (for example, files for Web pages), and an input unit that connects to the input unit 412 and the output unit 414. And an output interface unit 408. These units are communicably connected via an arbitrary communication path.
 記憶部406は、ストレージ手段であり、例えば、RAM・ROM等のメモリ装置や、ハードディスクのような固定ディスク装置や、フレキシブルディスクや、光ディスク等を用いることができる。記憶部406には、各種処理に用いる各種プログラム等を格納する。通信インターフェース部404は、データベース装置400とネットワーク300(またはルータ等の通信装置)との間における通信を媒介する。すなわち、通信インターフェース部404は、他の端末と通信回線を介してデータを通信する機能を有する。入出力インターフェース部408は、入力装置412や出力装置414に接続する。ここで、出力装置414には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用いることができる(なお、以下で、出力装置414をモニタ414として記載する場合がある。)。また、入力装置412には、キーボードやマウスやマイクの他、マウスと協働してポインティングデバイス機能を実現するモニタを用いることができる。 The storage unit 406 is a storage means, and for example, a memory device such as a RAM / ROM, a fixed disk device such as a hard disk, a flexible disk, an optical disk, or the like can be used. The storage unit 406 stores various programs used for various processes. The communication interface unit 404 mediates communication between the database device 400 and the network 300 (or a communication device such as a router). That is, the communication interface unit 404 has a function of communicating data with other terminals via a communication line. The input / output interface unit 408 is connected to the input device 412 and the output device 414. Here, in addition to a monitor (including a home TV), a speaker or a printer can be used as the output device 414 (hereinafter, the output device 414 may be described as the monitor 414). In addition to the keyboard, mouse, and microphone, the input device 412 can be a monitor that realizes a pointing device function in cooperation with the mouse.
 制御部402は、OS(Operating System)等の制御プログラム・各種の処理手順等を規定したプログラム・所要データなどを格納するための内部メモリを有し、これらのプログラムに基づいて種々の情報処理を実行する。制御部402は、図示の如く、大別して、要求解釈部402aと閲覧処理部402bと認証処理部402cと電子メール生成部402dとWebページ生成部402eと送信部402fとを備えている。 The control unit 402 has an internal memory for storing a control program such as an OS (Operating System), a program that defines various processing procedures, and necessary data, and performs various information processing based on these programs. Execute. As shown in the figure, the control unit 402 is roughly divided into a request interpreting unit 402a, a browsing processing unit 402b, an authentication processing unit 402c, an e-mail generating unit 402d, a Web page generating unit 402e, and a transmitting unit 402f.
 要求解釈部402aは、脂肪性肝疾患評価装置100からの要求内容を解釈し、その解釈結果に応じて制御部402の各部に処理を受け渡す。閲覧処理部402bは、脂肪性肝疾患評価装置100からの各種画面の閲覧要求を受けて、これら画面のWebデータの生成や送信を行う。認証処理部402cは、脂肪性肝疾患評価装置100からの認証要求を受けて、認証判断を行う。電子メール生成部402dは、各種の情報を含んだ電子メールを生成する。Webページ生成部402eは、利用者がクライアント装置200で閲覧するWebページを生成する。送信部402fは、脂肪性肝疾患状態情報や多変量判別式などの各種情報を、脂肪性肝疾患評価装置100へ送信する。 The request interpretation unit 402a interprets the request content from the fatty liver disease evaluation apparatus 100, and passes the processing to each unit of the control unit 402 according to the interpretation result. Upon receiving browsing requests for various screens from the fatty liver disease evaluation apparatus 100, the browsing processing unit 402b generates and transmits Web data for these screens. The authentication processing unit 402c receives an authentication request from the fatty liver disease evaluation apparatus 100 and makes an authentication determination. The e-mail generation unit 402d generates an e-mail including various types of information. The web page generation unit 402e generates a web page that the user browses on the client device 200. The transmission unit 402f transmits various types of information such as fatty liver disease state information and multivariate discriminants to the fatty liver disease evaluation apparatus 100.
[2-3.本システムの処理]
 ここでは、以上のように構成された本システムで行われる脂肪性肝疾患評価サービス処理の一例を、図21を参照して説明する。図21は、脂肪性肝疾患評価サービス処理の一例を示すフローチャートである。
[2-3. Processing of this system]
Here, an example of a fatty liver disease evaluation service process performed by the present system configured as described above will be described with reference to FIG. FIG. 21 is a flowchart illustrating an example of fatty liver disease evaluation service processing.
 なお、本処理で用いるアミノ酸濃度データは、個体から予め採取した血液(例えば血漿、血清などを含む)を、以下の(A)または(B)などの測定方法で専門業者が分析又は独自に分析して得たアミノ酸の濃度値に関するものである。ここで、アミノ酸濃度の単位は、例えばモル濃度や重量濃度、これらの濃度に任意の定数を加減乗除することで得られるものでもよい。
(A)採取した血液サンプルを遠心することにより血液から血漿を分離した。全ての血漿サンプルは、アミノ酸濃度の測定時まで-80℃で凍結保存した。アミノ酸濃度測定時には、アセトニトリルを添加し除蛋白処理を行った後、標識試薬(3-アミノピリジル-N-ヒドロキシスクシンイミジルカルバメート)を用いてプレカラム誘導体化を行い、そして、液体クロマトグラフ質量分析計(LC-MS)によりアミノ酸濃度を分析した(国際公開第2003/069328号、国際公開第2005/116629号を参照)。
(B)採取した血液サンプルを遠心することにより血液から血漿を分離した。全ての血漿サンプルは、アミノ酸濃度の測定時まで-80℃で凍結保存した。アミノ酸濃度測定時には、スルホサリチル酸を添加し除蛋白処理を行った後、ニンヒドリン試薬を用いたポストカラム誘導体化法を原理としたアミノ酸分析計によりアミノ酸濃度を分析した。
In addition, the amino acid concentration data used in the present processing is analyzed by a specialist in the blood (including plasma, serum, etc.) collected in advance from an individual by a measuring method such as the following (A) or (B) or independently. It is related with the concentration value of the amino acid obtained as described above. Here, the unit of amino acid concentration may be obtained by, for example, molar concentration, weight concentration, or by adding / subtracting / subtracting an arbitrary constant to / from these concentrations.
(A) Plasma was separated from blood by centrifuging the collected blood sample. All plasma samples were stored frozen at −80 ° C. until the measurement of amino acid concentration. For amino acid concentration measurement, acetonitrile was added to remove protein, followed by precolumn derivatization using a labeling reagent (3-aminopyridyl-N-hydroxysuccinimidyl carbamate), and liquid chromatography mass spectrometry The amino acid concentration was analyzed by a total (LC-MS) (see International Publication No. 2003/069328 and International Publication No. 2005/116629).
(B) Plasma was separated from blood by centrifuging the collected blood sample. All plasma samples were stored frozen at −80 ° C. until the measurement of amino acid concentration. When measuring the amino acid concentration, sulfosalicylic acid was added to remove the protein, and then the amino acid concentration was analyzed by an amino acid analyzer based on the post-column derivatization method using a ninhydrin reagent.
 まず、Webブラウザ211を表示した画面上で利用者が入力装置250を介して脂肪性肝疾患評価装置100が提供するWebサイトのアドレス(URLなど)を指定すると、クライアント装置200は脂肪性肝疾患評価装置100へアクセスする。具体的には、利用者がクライアント装置200のWebブラウザ211の画面更新を指示すると、Webブラウザ211は、脂肪性肝疾患評価装置100が提供するWebサイトのアドレスを所定の通信規約で脂肪性肝疾患評価装置100へ送信することで、アミノ酸濃度データ送信画面に対応するWebページの送信要求を、当該アドレスに基づくルーティングで脂肪性肝疾患評価装置100へ行う。 First, when the user designates an address (such as a URL) of a Web site provided by the fatty liver disease evaluation apparatus 100 via the input device 250 on the screen displaying the Web browser 211, the client apparatus 200 causes the fatty liver disease to be displayed. Access the evaluation device 100. Specifically, when the user instructs to update the screen of the Web browser 211 of the client device 200, the Web browser 211 uses the predetermined communication protocol to specify the address of the Web site provided by the fatty liver disease evaluation device 100. By transmitting to the disease evaluation apparatus 100, a transmission request for a Web page corresponding to the amino acid concentration data transmission screen is made to the fatty liver disease evaluation apparatus 100 by routing based on the address.
 つぎに、脂肪性肝疾患評価装置100は、要求解釈部102aで、クライアント装置200からの送信を受け、当該送信の内容を解析し、解析結果に応じて制御部102の各部に処理を移す。具体的には、送信の内容がアミノ酸濃度データ送信画面に対応するWebページの送信要求であった場合、脂肪性肝疾患評価装置100は、主として閲覧処理部102bで、記憶部106の所定の記憶領域に格納されている当該Webページを表示するためのWebデータを取得し、取得したWebデータをクライアント装置200へ送信する。より具体的には、利用者からアミノ酸濃度データ送信画面に対応するWebページの送信要求があった場合、脂肪性肝疾患評価装置100は、まず、制御部102で、利用者IDや利用者パスワードの入力を利用者に対して求める。そして、利用者IDやパスワードが入力されると、脂肪性肝疾患評価装置100は、認証処理部102cで、入力された利用者IDやパスワードと利用者情報ファイル106aに格納されている利用者IDや利用者パスワードとの認証判断を行う。そして、脂肪性肝疾患評価装置100は、認証可の場合にのみ、閲覧処理部102bで、アミノ酸濃度データ送信画面に対応するWebページを表示するためのWebデータをクライアント装置200へ送信する。なお、クライアント装置200の特定は、クライアント装置200から送信要求と共に送信されたIPアドレスで行う。 Next, the fatty liver disease evaluation apparatus 100 receives the transmission from the client apparatus 200 at the request interpretation unit 102a, analyzes the contents of the transmission, and moves the processing to each unit of the control unit 102 according to the analysis result. Specifically, when the content of the transmission is a web page transmission request corresponding to the amino acid concentration data transmission screen, the fatty liver disease evaluation apparatus 100 is a predetermined memory stored in the storage unit 106 mainly in the browsing processing unit 102b. Web data for displaying the Web page stored in the area is acquired, and the acquired Web data is transmitted to the client device 200. More specifically, when there is a transmission request for a Web page corresponding to the amino acid concentration data transmission screen from the user, the fatty liver disease evaluation apparatus 100 first uses the user ID and the user password in the control unit 102. Is requested from the user. When the user ID and password are input, the fatty liver disease evaluation apparatus 100 causes the authentication processing unit 102c to input the input user ID and password and the user ID stored in the user information file 106a. And authentication with user password. And the fatty liver disease evaluation apparatus 100 transmits the web data for displaying the web page corresponding to an amino acid concentration data transmission screen to the client apparatus 200 by the browsing process part 102b only when authentication is possible. The client device 200 is identified by the IP address transmitted from the client device 200 together with the transmission request.
 つぎに、クライアント装置200は、脂肪性肝疾患評価装置100から送信されたWebデータ(アミノ酸濃度データ送信画面に対応するWebページを表示するためのもの)を受信部213で受信し、受信したWebデータをWebブラウザ211で解釈し、モニタ261にアミノ酸濃度データ送信画面を表示する。 Next, the client apparatus 200 receives the Web data transmitted from the fatty liver disease evaluation apparatus 100 (for displaying a Web page corresponding to the amino acid concentration data transmission screen) by the receiving unit 213, and receives the received Web The data is interpreted by the Web browser 211, and an amino acid concentration data transmission screen is displayed on the monitor 261.
 つぎに、モニタ261に表示されたアミノ酸濃度データ送信画面に対し利用者が入力装置250を介して個体のアミノ酸濃度データなどを入力・選択すると、クライアント装置200は、送信部214で、入力情報や選択事項を特定するための識別子を脂肪性肝疾患評価装置100へ送信することで、評価対象の個体のアミノ酸濃度データを脂肪性肝疾患評価装置100へ送信する(ステップSA21)。なお、ステップSA21におけるアミノ酸濃度データの送信は、FTP等の既存のファイル転送技術等により実現してもよい。 Next, when the user inputs / selects individual amino acid concentration data or the like via the input device 250 on the amino acid concentration data transmission screen displayed on the monitor 261, the client device 200 uses the transmission unit 214 to input information and By transmitting an identifier for specifying a selection item to fatty liver disease evaluation apparatus 100, amino acid concentration data of the individual to be evaluated is transmitted to fatty liver disease evaluation apparatus 100 (step SA21). The transmission of amino acid concentration data in step SA21 may be realized by an existing file transfer technique such as FTP.
 つぎに、脂肪性肝疾患評価装置100は、要求解釈部102aで、クライアント装置200から送信された識別子を解釈することによりクライアント装置200の要求内容を解釈し、脂肪性肝疾患の状態評価用の多変量判別式(具体的には、NASHと非NASHの2群判別、NAFLDと非NAFLDの2群判別、脂肪肝と非脂肪肝の2群判別、NASHと単純性脂肪肝の2群判別、またはNASHと単純性脂肪肝と非NAFLDの3群判別用の多変量判別式)の送信要求をデータベース装置400へ行う。 Next, the fatty liver disease evaluation apparatus 100 interprets the request contents of the client device 200 by interpreting the identifier transmitted from the client device 200 by the request interpretation unit 102a, and evaluates the state of fatty liver disease. Multivariate discriminant (specifically, 2-group discrimination of NASH and non-NASH, 2-group discrimination of NAFLD and non-NAFLD, 2-group discrimination of fatty liver and non-fatty liver, 2-group discrimination of NASH and simple fatty liver, Alternatively, a transmission request for a multivariate discriminant for discriminating three groups of NASH, simple fatty liver, and non-NAFLD is made to the database apparatus 400.
 つぎに、データベース装置400は、要求解釈部402aで、脂肪性肝疾患評価装置100からの送信要求を解釈し、記憶部406の所定の記憶領域に格納した多変量判別式(例えばアップデートされた最新のもの)を脂肪性肝疾患評価装置100へ送信する(ステップSA22)。 Next, the database apparatus 400 interprets the transmission request from the fatty liver disease evaluation apparatus 100 by the request interpretation unit 402a and stores the multivariate discriminant (for example, updated latest data) stored in a predetermined storage area of the storage unit 406. Are transmitted to fatty liver disease evaluation apparatus 100 (step SA22).
 例えば、ステップSA26にてNASHまたは非NASHであるか否かを判別する場合、ステップSA22では、Gln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つを変数として含む多変量判別式を脂肪性肝疾患評価装置100へ送信する。また、ステップSA26にてNAFLDまたは非NAFLDであるか否かを判別する場合、ステップSA22では、Gln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つを変数として含む多変量判別式を脂肪性肝疾患評価装置100へ送信する。また、ステップSA26にて脂肪肝または非脂肪肝であるか否かを判別する場合、ステップSA22では、Thr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つを変数として含む多変量判別式を脂肪性肝疾患評価装置100へ送信する。また、ステップSA26にてNASHまたは単純性脂肪肝であるか否かを判別する場合または非NAFLD、NASH、または単純性脂肪肝であるか否かを判別する場合、ステップSA22では、Gln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを変数として含む多変量判別式を脂肪性肝疾患評価装置100へ送信する。 For example, when it is determined whether or not NASH or non-NASH in step SA26, in step SA22, Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, A multivariate discriminant including at least one of Thr, Asn, and Ser as a variable is transmitted to the fatty liver disease evaluation apparatus 100. Further, when it is determined whether or not it is NAFLD or non-NAFLD in step SA26, in step SA22, Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, A multivariate discriminant including at least one of Trp, Lys, Orn, Ser, Thr, Asn as a variable is transmitted to fatty liver disease evaluation apparatus 100. When it is determined in step SA26 whether the liver is fatty liver or non-fatty liver, in step SA22, Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, A multivariate discriminant including at least one of Met, His, Trp, Asn, and Orn as a variable is transmitted to the fatty liver disease evaluation apparatus 100. Further, when determining whether or not it is NASH or simple fatty liver in step SA26, or when determining whether or not it is non-NAFLD, NASH, or simple fatty liver, in step SA22, Gln, Glu, A multivariate discriminant including at least one of Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA as a variable is transmitted to the fatty liver disease evaluation apparatus 100.
 つぎに、脂肪性肝疾患評価装置100は、受信部102fで、クライアント装置200から送信された個体のアミノ酸濃度データおよびデータベース装置400から送信された多変量判別式を受信し、受信したアミノ酸濃度データをアミノ酸濃度データファイル106bの所定の記憶領域に格納すると共に、受信した多変量判別式を多変量判別式ファイル106e4の所定の記憶領域に格納する(ステップSA23)。 Next, the fatty liver disease evaluation apparatus 100 receives the individual amino acid concentration data transmitted from the client apparatus 200 and the multivariate discriminant transmitted from the database apparatus 400 by the receiving unit 102f, and receives the received amino acid concentration data. Are stored in a predetermined storage area of the amino acid concentration data file 106b, and the received multivariate discriminant is stored in a predetermined storage area of the multivariate discriminant file 106e4 (step SA23).
 つぎに、脂肪性肝疾患評価装置100は、制御部102で、ステップSA23で受信した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去する(ステップSA24)。 Next, in the fatty liver disease evaluation apparatus 100, the controller 102 removes data such as missing values and outliers from the individual amino acid concentration data received in step SA23 (step SA24).
 つぎに、脂肪性肝疾患評価装置100は、判別値算出部102iで、ステップSA24で欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データ、およびステップSA23で受信した多変量判別式に基づいて、判別値を算出する(ステップSA25)。 Next, the fatty liver disease evaluation apparatus 100 uses the discriminant value calculation unit 102i to determine the amino acid concentration data of the individual from which data such as missing values and outliers have been removed in step SA24, and the multivariate discriminant received in step SA23. Based on the above, a discrimination value is calculated (step SA25).
 具体的には、ステップSA26にてNASHまたは非NASHであるか否かを判別する場合、脂肪性肝疾患評価装置100は、判別値算出部102iで、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出する。 Specifically, when determining whether or not NASH or non-NASH in step SA26, fatty liver disease evaluating apparatus 100 uses Gln, Glu, Pro included in the amino acid concentration data in discriminant value calculation unit 102i. , Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser, at least one concentration value, and Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val , Tyr, Phe, Met, His, Trp, Thr, Asn, Ser. The discriminant value is calculated based on a multivariate discriminant including at least one as a variable.
 また、ステップSA26にてNAFLDまたは非NAFLDであるか否かを判別する場合、脂肪性肝疾患評価装置100は、判別値算出部102iで、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出する。 When determining whether NAFLD or non-NAFLD in step SA26, the fatty liver disease evaluation apparatus 100 uses the discriminant value calculation unit 102i to determine whether the Gln, Glu, Pro, Gly, At least one concentration value among Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn, and Gln, Glu, Pro, Gly, Ala, Cit, A discriminant value is calculated based on a multivariate discriminant including at least one of Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn as a variable.
 また、ステップSA26にて脂肪肝または非脂肪肝であるか否かを判別する場合、脂肪性肝疾患評価装置100は、判別値算出部102iで、アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値、およびThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出する。 When it is determined in step SA26 whether the liver is fatty liver or non-fatty liver, the fatty liver disease evaluation apparatus 100 uses the discriminant value calculation unit 102i to determine Thr, Ser, Glu, At least one concentration value among Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn, and Thr, Ser, Glu, Pro, Gly, Ala, Cit, A discriminant value is calculated based on a multivariate discriminant including at least one of Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, and Orn as a variable.
 また、ステップSA26にてNASHまたは単純性脂肪肝であるか否かを判別する場合、または、ステップSA26にて非NAFLD、NASH、または単純性脂肪肝であるか否かを判別する場合、脂肪性肝疾患評価装置100は、判別値算出部102iで、アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値、およびGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出する。 Further, when determining whether or not it is NASH or simple fatty liver in Step SA26, or when determining whether or not it is non-NAFLD, NASH, or simple fatty liver in Step SA26, In the liver disease evaluation apparatus 100, the discriminant value calculation unit 102i uses at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data. Based on a multivariate discriminant including one concentration value and at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA as a variable, A discrimination value is calculated.
 つぎに、脂肪性肝疾患評価装置100は、判別値基準判別部102j1で、ステップSA25で算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、NASHまたは非NASHであるか否かの判別、NAFLDまたは非NAFLDであるか否かの判別、脂肪肝または非脂肪肝であるか否かの判別、NASHまたは単純性脂肪肝(非NASH且つNAFLD)であるか否かの判別、または非NAFLD、NASH、または単純性脂肪肝(非NASH且つNAFLD)であるか否かの判別を実行し、その判別結果を評価結果ファイル106gの所定の記憶領域に格納する(ステップSA26)。 Next, the fatty liver disease evaluation apparatus 100 compares the discriminant value calculated in step SA25 with a preset threshold value (cut-off value) in the discriminant value criterion discriminating unit 102j1, so that NASH or Whether it is non-NASH, whether it is NAFLD or non-NAFLD, whether it is fatty liver or non-fatty liver, NASH or simple fatty liver (non-NASH and NAFLD) Or whether it is non-NAFLD, NASH, or simple fatty liver (non-NASH and NAFLD), and the determination result is stored in a predetermined storage area of the evaluation result file 106g. (Step SA26).
 つぎに、脂肪性肝疾患評価装置100は、送信部102mで、ステップSA26で得た判別結果を、アミノ酸濃度データの送信元のクライアント装置200とデータベース装置400とへ送信する(ステップSA27)。具体的には、まず、脂肪性肝疾患評価装置100は、Webページ生成部102eで、判別結果を表示するためのWebページを作成し、作成したWebページに対応するWebデータを記憶部106の所定の記憶領域に格納する。ついで、利用者がクライアント装置200のWebブラウザ211に入力装置250を介して所定のURLを入力し上述した認証を経た後、クライアント装置200は、当該Webページの閲覧要求を脂肪性肝疾患評価装置100へ送信する。ついで、脂肪性肝疾患評価装置100は、閲覧処理部102bで、クライアント装置200から送信された閲覧要求を解釈し、判別結果を表示するためのWebページに対応するWebデータを記憶部106の所定の記憶領域から読み出す。そして、脂肪性肝疾患評価装置100は、送信部102mで、読み出したWebデータをクライアント装置200へ送信すると共に、当該Webデータ又は判別結果をデータベース装置400へ送信する。 Next, fatty liver disease evaluation apparatus 100 transmits the determination result obtained in step SA26 to client apparatus 200 and database apparatus 400 that are the transmission source of amino acid concentration data, in transmission unit 102m (step SA27). Specifically, first, fatty liver disease evaluation apparatus 100 creates a web page for displaying a discrimination result in web page generation unit 102e, and stores web data corresponding to the created web page in storage unit 106. Store in a predetermined storage area. Next, after the user inputs a predetermined URL to the Web browser 211 of the client device 200 via the input device 250 and performs the above-described authentication, the client device 200 sends a request for browsing the Web page to the fatty liver disease evaluation device. To 100. Subsequently, in the fatty liver disease evaluation apparatus 100, the browsing processing unit 102b interprets the browsing request transmitted from the client device 200, and stores Web data corresponding to the Web page for displaying the determination result in the storage unit 106. Read from the storage area. The fatty liver disease evaluation apparatus 100 transmits the read Web data to the client apparatus 200 and transmits the Web data or the determination result to the database apparatus 400 by the transmission unit 102m.
 ここで、ステップSA27において、脂肪性肝疾患評価装置100は、制御部102で、判別結果を電子メールで利用者のクライアント装置200へ通知してもよい。具体的には、まず、脂肪性肝疾患評価装置100は、電子メール生成部102dで、利用者IDなどを基にして利用者情報ファイル106aに格納されている利用者情報を送信タイミングに従って参照し、利用者の電子メールアドレスを取得する。ついで、脂肪性肝疾患評価装置100は、電子メール生成部102dで、取得した電子メールアドレスを宛て先とし利用者の氏名および判別結果を含む電子メールに関するデータを生成する。ついで、脂肪性肝疾患評価装置100は、送信部102mで、生成した当該データを利用者のクライアント装置200へ送信する。 Here, in Step SA27, the fatty liver disease evaluation apparatus 100 may notify the user client apparatus 200 of the determination result by e-mail at the control unit 102. Specifically, first, the fatty liver disease evaluation apparatus 100 refers to the user information stored in the user information file 106a based on the user ID or the like according to the transmission timing in the e-mail generation unit 102d. Get the user's email address. Subsequently, the fatty liver disease evaluation apparatus 100 uses the e-mail generation unit 102d to generate data related to the e-mail including the name and determination result of the user with the acquired e-mail address as the destination. Subsequently, fatty liver disease evaluation apparatus 100 transmits the generated data to user's client apparatus 200 by transmission unit 102m.
 また、ステップSA27において、脂肪性肝疾患評価装置100は、FTP等の既存のファイル転送技術等で、判別結果を利用者のクライアント装置200へ送信してもよい。 In step SA27, fatty liver disease evaluation apparatus 100 may transmit the discrimination result to user's client apparatus 200 using an existing file transfer technique such as FTP.
 図21の説明に戻り、データベース装置400は、制御部402で、脂肪性肝疾患評価装置100から送信された判別結果またはWebデータを受信し、受信した判別結果またはWebデータを記憶部406の所定の記憶領域に保存(蓄積)する(ステップSA28)。 Returning to the description of FIG. 21, in the database device 400, the control unit 402 receives the discrimination result or Web data transmitted from the fatty liver disease evaluation device 100, and stores the received discrimination result or Web data in the storage unit 406. Is stored (accumulated) in the storage area (step SA28).
 また、クライアント装置200は、受信部213で、脂肪性肝疾患評価装置100から送信されたWebデータを受信し、受信したWebデータをWebブラウザ211で解釈し、個体の判別結果が記されたWebページの画面をモニタ261に表示する(ステップSA29)。なお、判別結果が脂肪性肝疾患評価装置100から電子メールで送信された場合には、クライアント装置200は、電子メーラ212の公知の機能で、脂肪性肝疾患評価装置100から送信された電子メールを任意のタイミングで受信し、受信した電子メールをモニタ261に表示する。 The client device 200 receives the Web data transmitted from the fatty liver disease evaluation device 100 by the receiving unit 213, interprets the received Web data by the Web browser 211, and stores the individual determination result. The page screen is displayed on the monitor 261 (step SA29). When the determination result is transmitted from the fatty liver disease evaluation apparatus 100 by e-mail, the client apparatus 200 uses the known function of the electronic mailer 212 to send the e-mail transmitted from the fatty liver disease evaluation apparatus 100. Is received at an arbitrary timing, and the received electronic mail is displayed on the monitor 261.
 以上により、利用者は、モニタ261に表示されたWebページを閲覧することで、「NASHまたは非NASHであるか否かの判別」、「NAFLDまたは非NAFLDであるか否かの判別」、「脂肪肝または非脂肪肝であるか否かの判別」、「NASHまたは単純性脂肪肝であるか否かの判別」、または「非NAFLD、NASH、または単純性脂肪肝であるか否かの判別」に関する個体の判別結果を確認することができる。なお、利用者は、モニタ261に表示されたWebページの表示内容をプリンタ262で印刷してもよい。 As described above, the user browses the Web page displayed on the monitor 261, thereby “determining whether or not NASH or non-NASH”, “determining whether or not NAFLD or non-NAFLD”, “ "Determining whether it is fatty liver or non-fatty liver", "Determining whether it is NASH or simple fatty liver", or "Determining whether it is non-NAFLD, NASH, or simple fatty liver" Can be confirmed. Note that the user may print the display content of the Web page displayed on the monitor 261 with the printer 262.
 また、判別結果が脂肪性肝疾患評価装置100から電子メールで送信された場合には、利用者は、モニタ261に表示された電子メールを閲覧することで、「NASHまたは非NASHであるか否かの判別」、「NAFLDまたは非NAFLDであるか否かの判別」、「脂肪肝または非脂肪肝であるか否かの判別」、「NASHまたは単純性脂肪肝であるか否かの判別」、または「非NAFLD、NASH、または単純性脂肪肝であるか否かの判別」に関する個体の判別結果を確認することができる。利用者は、モニタ261に表示された電子メールの表示内容をプリンタ262で印刷してもよい。 Further, when the determination result is transmitted from the fatty liver disease evaluation apparatus 100 by e-mail, the user browses the e-mail displayed on the monitor 261 to indicate whether “NASH or non-NASH”. "Determination of whether it is NAFLD or non-NAFLD", "determination of whether it is fatty liver or non-fatty liver", "determination of whether it is NASH or simple fatty liver" Or, it is possible to confirm the discrimination result of the individual regarding “discrimination of whether or not non-NAFLD, NASH, or simple fatty liver”. The user may print the content of the e-mail displayed on the monitor 261 with the printer 262.
 これにて、脂肪性肝疾患評価サービス処理の説明を終了する。 This completes the explanation of the fatty liver disease evaluation service process.
[2-4.第2実施形態のまとめ、およびその他の実施形態]
 以上、詳細に説明したように、脂肪性肝疾患評価システムによれば、クライアント装置200は個体のアミノ酸濃度データを脂肪性肝疾患評価装置100へ送信し、データベース装置400は脂肪性肝疾患評価装置100からの要求を受けて、NASHと非NASHの判別用の多変量判別式、NAFLDと非NAFLDの判別用の多変量判別式、脂肪肝と非脂肪肝の判別用の多変量判別式、NASHと単純性脂肪肝の判別用の多変量判別式、または非NAFLDとNASHと単純性脂肪肝の判別用の多変量判別式を脂肪性肝疾患評価装置100へ送信する。そして、脂肪性肝疾患評価装置100は、(1)クライアント装置200からアミノ酸濃度データを受信すると共にデータベース装置400から多変量判別式を受信し、(2)受信したアミノ酸濃度データおよび多変量判別式に基づいて判別値を算出し、(3)算出した判別値と予め設定した閾値とを比較することで個体につき、「NASHまたは非NASHであるか否かの判別」、「NAFLDまたは非NAFLDであるか否かの判別」、「脂肪肝または非脂肪肝であるか否かの判別」、「NASHまたは単純性脂肪肝であるか否かの判別」、または「非NAFLD、NASH、または単純性脂肪肝であるか否かの判別」を実行し、(4)この判別結果をクライアント装置200やデータベース装置400へ送信する。そして、クライアント装置200は脂肪性肝疾患評価装置100から送信された判別結果を受信して表示し、データベース装置400は脂肪性肝疾患評価装置100から送信された判別結果を受信して格納する。これにより、NASHと非NASHの2群判別、NAFLDと非NAFLDの2群判別、脂肪肝と非脂肪肝の2群判別、NASHと単純性脂肪肝の2群判別、または非NAFLDとNASHと単純性脂肪肝の3群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別または3群判別を精度よく行うことができる。
[2-4. Summary of Second Embodiment and Other Embodiments]
As described above in detail, according to the fatty liver disease evaluation system, the client device 200 transmits the individual amino acid concentration data to the fatty liver disease evaluation device 100, and the database device 400 includes the fatty liver disease evaluation device. In response to a request from 100, a multivariate discriminant for discrimination between NASH and non-NASH, a multivariate discriminant for discrimination between NAFLD and non-NAFLD, a multivariate discriminant for discrimination between fatty liver and non-fatty liver, NASH And a multivariate discriminant for discriminating simple fatty liver, or a multivariate discriminant for discriminating non-NAFLD, NASH, and simple fatty liver are transmitted to fatty liver disease evaluation apparatus 100. The fatty liver disease evaluation apparatus 100 (1) receives the amino acid concentration data from the client device 200 and receives the multivariate discriminant from the database device 400, and (2) the received amino acid concentration data and the multivariate discriminant. (3) By comparing the calculated discriminant value with a preset threshold value, “discriminating whether NASH or non-NASH” or “NAFLD or non-NAFLD” "Determining whether or not there is", "Determining whether or not fatty liver or non-fatty liver", "Determining whether or not NASH or simple fatty liver", or "Non-NAFLD, NASH, or simplicity" “Determining whether or not it is fatty liver” is executed, and (4) the determination result is transmitted to the client device 200 and the database device 400. The client apparatus 200 receives and displays the discrimination result transmitted from the fatty liver disease evaluation apparatus 100, and the database apparatus 400 receives and stores the discrimination result transmitted from the fatty liver disease evaluation apparatus 100. As a result, NASH and non-NASH 2-group discrimination, NAFLD and non-NAFLD 2-group discrimination, fatty liver and non-fatty liver 2-group discrimination, NASH and simple fatty liver 2-group discrimination, or non-NAFLD and NASH and simple Using the discriminant value obtained by the multivariate discriminant useful for the three-group discrimination of fatty fatty liver, the two-group discrimination or the three-group discrimination can be accurately performed.
 ここで、脂肪性肝疾患評価システムによれば、ステップSA25で用いられる多変量判別式は、ロジスティック回帰式、分数式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。これにより、NASHと非NASHの2群判別、NAFLDと非NAFLDの2群判別、脂肪肝と非脂肪肝の2群判別、NASHと単純性脂肪肝の2群判別、または非NAFLDとNASHと単純性脂肪肝の3群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別または3群判別をさらに精度よく行うことができる。 Here, according to the fatty liver disease evaluation system, the multivariate discriminant used in step SA25 is a logistic regression equation, a fractional equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, a Mahalanobis distance Any one of an expression created by the method, an expression created by canonical discriminant analysis, and an expression created by a decision tree may be used. As a result, NASH and non-NASH 2-group discrimination, NAFLD and non-NAFLD 2-group discrimination, fatty liver and non-fatty liver 2-group discrimination, NASH and simple fatty liver 2-group discrimination, or non-NAFLD and NASH and simple By using the discriminant value obtained by the multivariate discriminant useful for the 3-group discrimination of the fatty liver, these 2-group discrimination or 3-group discrimination can be performed with higher accuracy.
 具体的には、ステップSA26にてNASHまたは非NASHであるか否かを判別する場合、ステップSA25で用いられる多変量判別式は、Glu,Gln,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。これにより、NASHと非NASHの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、ステップSA26にてNAFLDまたは非NAFLDであるか否かを判別する場合、ステップSA25で用いられる多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式でもよい。これにより、NAFLDと非NAFLDの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、ステップSA26にて脂肪肝または非脂肪肝であるか否かを判別する場合、ステップSA25で用いられる多変量判別式は、Ser,Glu,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。これにより、脂肪肝と非脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、ステップSA26にてNASHまたは単純性脂肪肝であるか否かを判別する場合、ステップSA25で用いられる多変量判別式は、Asn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。これにより、NASHと単純性脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、ステップSA26にて非NAFLD、NASH、または単純性脂肪肝であるか否かを判別する場合、ステップSA25で用いられる多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式、およびAsn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。これにより、非NAFLDとNASHと単純性脂肪肝の3群判別に特に有用な多変量判別式で得られる判別値を利用して、この3群判別をさらに精度よく行うことができる。 Specifically, when it is determined whether or not NASH or non-NASH in step SA26, the multivariate discriminant used in step SA25 is a logistic including Glu, Gln, Gly, Ala, Val, and Tyr as variables. A regression equation may be used. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH. Further, when determining whether NAFLD or non-NAFLD in step SA26, the multivariate discriminant used in step SA25 is a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables. Good. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NAFLD and non-NAFLD. When determining whether or not the liver is fatty liver or non-fatty liver in step SA26, the multivariate discriminant used in step SA25 is logistic regression including Ser, Glu, Gly, Ala, Val, and Tyr as variables. It may be an expression. Thus, the two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver. Further, when it is determined in step SA26 whether or not it is NASH or simple fatty liver, the multivariate discriminant used in step SA25 is logistic regression including Asn, Gln, Gly, Ala, Cit, and Met as variables. It may be an expression. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver. When determining whether or not non-NAFLD, NASH, or simple fatty liver in step SA26, the multivariate discriminant used in step SA25 is a variable of Ser, Glu, Gly, Val, Tyr, and His. And a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Thereby, this three-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver.
 なお、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法または本出願人による国際出願である国際公開第2006/098192号に記載の方法(後述する多変量判別式作成処理)で作成してもよい。なお、これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を脂肪性肝疾患の状態評価に好適に用いることができる。 Each multivariate discriminant described above is a method described in International Publication No. 2004/052191 which is an international application by the present applicant or a method described in International Publication No. 2006/098192 which is an international application by the present applicant. It may be created by (multivariate discriminant creation processing described later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is preferably used for the evaluation of the state of fatty liver disease regardless of the unit of amino acid concentration in the amino acid concentration data as input data. be able to.
 また、本発明にかかる脂肪性肝疾患評価装置、脂肪性肝疾患評価方法、脂肪性肝疾患評価プログラム、記録媒体、脂肪性肝疾患評価システム、および情報通信端末装置は、上述した第2実施形態以外にも、特許請求の範囲に記載した技術的思想の範囲内において種々の異なる実施形態にて実施されてよいものである。例えば、上述した第2実施形態で説明した各処理のうち、自動的に行なわれるものとして説明した処理の全部または一部を手動的に行うこともでき、手動的に行なわれるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種の登録データおよび検索条件等のパラメータを含む情報、画面例、データベース構成については、特記する場合を除いて任意に変更することができる。例えば、脂肪性肝疾患評価装置100に関して、図示の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。また、脂肪性肝疾患評価装置100の各部または各装置が備える処理機能(特に制御部102にて行なわれる各処理機能)については、CPU(Central Processing Unit)および当該CPUにて解釈実行されるプログラムにて、その全部または任意の一部を実現してもよく、また、ワイヤードロジックによるハードウェアとして実現してもよい。また、脂肪性肝疾患評価装置100は、既知のパーソナルコンピュータ、ワークステーション等の情報処理装置として構成してもよく、また、該情報処理装置に任意の周辺装置を接続して構成してもよい。また、脂肪性肝疾患評価装置100は、該情報処理装置に本発明の方法を実現させるソフトウェア(プログラム、データ等を含む)を実装することにより実現してもよい。 Also, the fatty liver disease evaluation apparatus, fatty liver disease evaluation method, fatty liver disease evaluation program, recording medium, fatty liver disease evaluation system, and information communication terminal device according to the present invention are the second embodiment described above. In addition, the invention may be implemented in various different embodiments within the scope of the technical idea described in the claims. For example, among the processes described in the second embodiment, all or part of the processes described as being automatically performed can be manually performed, or the processes described as being performed manually All or a part of the above can be automatically performed by a known method. In addition, the processing procedures, control procedures, specific names, information including parameters such as various registration data and search conditions, screen examples, and database configurations shown in the above documents and drawings, unless otherwise specified. It can be changed arbitrarily. For example, regarding the fatty liver disease evaluation apparatus 100, each illustrated component is functionally conceptual and does not necessarily need to be physically configured as illustrated. In addition, with regard to the processing functions (particularly the processing functions performed by the control unit 102) of each unit or each device of the fatty liver disease evaluation apparatus 100, a CPU (Central Processing Unit) and a program interpreted and executed by the CPU In this case, all or any part thereof may be realized, or it may be realized as hardware by wired logic. The fatty liver disease evaluation apparatus 100 may be configured as an information processing apparatus such as a known personal computer or workstation, or may be configured by connecting any peripheral device to the information processing apparatus. . The fatty liver disease evaluation apparatus 100 may be realized by installing software (including a program, data, and the like) that causes the information processing apparatus to realize the method of the present invention.
 ここで、「プログラム」とは任意の言語や記述方法にて記述されたデータ処理方法であり、ソースコードやバイナリコード等の形式を問わない。なお、「プログラム」は、必ずしも単一的に構成されるものに限られず、複数のモジュールやライブラリとして分散構成されるものや、OS(Operating System)に代表される別個のプログラムと協働してその機能を達成するものを含む。なお、プログラムは、記録媒体に記録されており、必要に応じて脂肪性肝疾患評価装置100に機械的に読み取られる。すなわち、ROMまたはHDD(Hard Disk Drive)などの記憶部106などには、OS(Operating System)と協働してCPUに命令を与え、各種処理を行うためのコンピュータプログラムが記録されている。このコンピュータプログラムは、RAMにロードされることによって実行され、CPUと協働して制御部を構成する。また、このコンピュータプログラムは、脂肪性肝疾患評価装置100に対して任煮のネットワーク300を介して接続されたアプリケーションプログラムサーバに記憶されていてもよく、必要に応じてその全部又は一部をダウンロードすることも可能である。記録媒体に記録されたプログラムを各装置で読み取るための具体的な構成や読み取り手順や読み取り後のインストール手順等については、周知の構成や手順を用いることができる。 Here, “program” is a data processing method described in an arbitrary language or description method, and may be in any form such as source code or binary code. The “program” is not necessarily limited to a single configuration, but is distributed in the form of a plurality of modules and libraries, or in cooperation with a separate program typified by an OS (Operating System). Includes those that achieve that function. The program is recorded on a recording medium and is mechanically read by the fatty liver disease evaluation apparatus 100 as necessary. That is, in the storage unit 106 such as a ROM or an HDD (Hard Disk Drive), a computer program for giving instructions to the CPU in cooperation with an OS (Operating System) and performing various processes is recorded. This computer program is executed by being loaded into the RAM, and constitutes a control unit in cooperation with the CPU. In addition, this computer program may be stored in an application program server connected to the fatty liver disease evaluation apparatus 100 via a dedicated network 300, and may be downloaded in whole or in part as necessary. It is also possible to do. As a specific configuration for reading the program recorded on the recording medium by each device, a reading procedure, an installation procedure after reading, and the like, a well-known configuration and procedure can be used.
 また、「記録媒体」とは任意の「可搬用の物理媒体」を含むものとする。なお、「可搬用の物理媒体」とは、メモリーカード、USBメモリ、SDカード、フレキシブルディスク、光磁気ディスク、ROM、EPROM、EEPROM、CD-ROM、MO、DVD、およびBlu-ray Disc等である。本発明に係るプログラムを、コンピュータ読み取り可能な記録媒体に格納してもよく、また、プログラム製品として構成することもできる。 In addition, “recording medium” includes any “portable physical medium”. The “portable physical medium” is a memory card, USB memory, SD card, flexible disk, magneto-optical disk, ROM, EPROM, EEPROM, CD-ROM, MO, DVD, Blu-ray Disc, or the like. . The program according to the present invention may be stored in a computer-readable recording medium, or may be configured as a program product.
 最後に、脂肪性肝疾患評価装置100で行う多変量判別式作成処理の一例について図22を参照して詳細に説明する。なお、ここで説明する処理はあくまでも一例であり、多変量判別式の作成方法はこれに限定されない。図22は多変量判別式作成処理の一例を示すフローチャートである。なお、当該多変量判別式作成処理は、脂肪性肝疾患状態情報を管理するデータベース装置400で行ってもよい。 Finally, an example of the multivariate discriminant creation process performed by the fatty liver disease evaluation apparatus 100 will be described in detail with reference to FIG. Note that the processing described here is merely an example, and the method of creating the multivariate discriminant is not limited to this. FIG. 22 is a flowchart illustrating an example of multivariate discriminant creation processing. The multivariate discriminant creation process may be performed by the database device 400 that manages fatty liver disease state information.
 なお、本説明では、脂肪性肝疾患評価装置100は、データベース装置400から事前に取得した脂肪性肝疾患状態情報を、脂肪性肝疾患状態情報ファイル106cの所定の記憶領域に格納しているものとする。また、脂肪性肝疾患評価装置100は、脂肪性肝疾患状態情報指定部102gで事前に指定した脂肪性肝疾患状態指標データおよびアミノ酸濃度データを含む脂肪性肝疾患状態情報を、指定脂肪性肝疾患状態情報ファイル106dの所定の記憶領域に格納しているものとする。 In this description, the fatty liver disease evaluation device 100 stores the fatty liver disease state information acquired in advance from the database device 400 in a predetermined storage area of the fatty liver disease state information file 106c. And Also, the fatty liver disease evaluation apparatus 100 converts the fatty liver disease state information including the fatty liver disease state index data and the amino acid concentration data designated in advance by the fatty liver disease state information designation unit 102g into the designated fatty liver disease information. It is assumed that it is stored in a predetermined storage area of the disease state information file 106d.
 まず、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、指定脂肪性肝疾患状態情報ファイル106dの所定の記憶領域に格納されている脂肪性肝疾患状態情報から所定の式作成手法に基づいて候補多変量判別式を作成し、作成した候補多変量判別式を候補多変量判別式ファイル106e1の所定の記憶領域に格納する(ステップSB21)。具体的には、まず、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、複数の異なる式作成手法(主成分分析や判別分析、サポートベクターマシン、重回帰分析、ロジスティック回帰分析、k-means法、クラスター解析、決定木などの多変量解析に関するものを含む。)の中から所望のものを1つ選択し、選択した式作成手法に基づいて、作成する候補多変量判別式の形(式の形)を決定する。つぎに、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、脂肪性肝疾患状態情報に基づいて、選択した式選択手法に対応する種々(例えば平均や分散など)の計算を実行する。つぎに、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、計算結果および決定した候補多変量判別式のパラメータを決定する。これにより、選択した式作成手法に基づいて候補多変量判別式が作成される。なお、複数の異なる式作成手法を併用して候補多変量判別式を同時並行(並列)的に作成する場合は、選択した式作成手法ごとに上記の処理を並行して実行すればよい。また、複数の異なる式作成手法を併用して候補多変量判別式を直列的に作成する場合は、例えば、主成分分析を行って作成した候補多変量判別式を利用して脂肪性肝疾患状態情報を変換し、変換した脂肪性肝疾患状態情報に対して判別分析を行うことで候補多変量判別式を作成してもよい。 First, the multivariate discriminant-preparing part 102 h is a candidate multivariate discriminant-preparing part 102 h 1 that uses a predetermined formula from the fatty liver disease state information stored in a predetermined storage area of the designated fatty liver disease state information file 106 d. A candidate multivariate discriminant is created based on the creation method, and the created candidate multivariate discriminant is stored in a predetermined storage area of the candidate multivariate discriminant file 106e1 (step SB21). Specifically, first, the multivariate discriminant-preparing part 102h is a candidate multivariate discriminant-preparing part 102h1, and a plurality of different formula creation methods (principal component analysis, discriminant analysis, support vector machine, multiple regression analysis, logistic regression) Analysis, k-means method, cluster analysis, decision tree, etc. related to multivariate analysis.) Select a desired one from among them, and create candidate multivariate discrimination based on the selected formula creation method Determine the form of the expression (form of the expression). Next, the multivariate discriminant-preparing part 102h is a candidate multivariate discriminant-preparing part 102h1, which calculates various (for example, average and variance) corresponding to the formula selection method selected based on the fatty liver disease state information. Execute. Next, the multivariate discriminant-preparing part 102h determines the calculation result and parameters of the determined candidate multivariate discriminant-expression in the candidate multivariate discriminant-preparing part 102h1. Thereby, a candidate multivariate discriminant is created based on the selected formula creation method. In addition, when a candidate multivariate discriminant is created in parallel and in parallel by using a plurality of different formula creation methods, the above-described processing may be executed in parallel for each selected formula creation method. In addition, when a candidate multivariate discriminant is created in series using a plurality of different formula creation methods, for example, a fatty liver disease state using a candidate multivariate discriminant created by performing principal component analysis A candidate multivariate discriminant may be created by converting information and performing discriminant analysis on the converted fatty liver disease state information.
 つぎに、多変量判別式作成部102hは、候補多変量判別式検証部102h2で、ステップSB21で作成した候補多変量判別式を所定の検証手法に基づいて検証(相互検証)し、検証結果を検証結果ファイル106e2の所定の記憶領域に格納する(ステップSB22)。具体的には、多変量判別式作成部102hは、候補多変量判別式検証部102h2で、指定脂肪性肝疾患状態情報ファイル106dの所定の記憶領域に格納されている脂肪性肝疾患状態情報に基づいて候補多変量判別式を検証する際に用いる検証用データを作成し、作成した検証用データに基づいて候補多変量判別式を検証する。なお、ステップSB21で複数の異なる式作成手法を併用して候補多変量判別式を複数作成した場合には、多変量判別式作成部102hは、候補多変量判別式検証部102h2で、各式作成手法に対応する候補多変量判別式ごとに所定の検証手法に基づいて検証する。ここで、ステップSB22において、ブートストラップ法やホールドアウト法、N-フォールド法、リーブワンアウト法などのうち少なくとも1つに基づいて候補多変量判別式の判別率や感度、特異度、情報量基準、ROC_AUC(受信者特性曲線の曲線下面積)などのうち少なくとも1つに関して検証してもよい。これにより、脂肪性肝疾患状態情報や診断条件を考慮した予測性または頑健性の高い候補指標式を選択することができる。 Next, the multivariate discriminant-preparing part 102h verifies (mutually verifies) the candidate multivariate discriminant created in step SB21 with the candidate multivariate discriminant-verifying part 102h2, and verifies the verification result. The result is stored in a predetermined storage area of the verification result file 106e2 (step SB22). Specifically, the multivariate discriminant-preparing part 102h uses the candidate multivariate discriminant-verifying part 102h2 to store the fatty liver disease state information stored in a predetermined storage area of the designated fatty liver disease state information file 106d. Based on this, the verification data used when verifying the candidate multivariate discriminant is created, and the candidate multivariate discriminant is verified based on the created verification data. If a plurality of candidate multivariate discriminants are created in combination with a plurality of different formula creation methods in step SB21, the multivariate discriminant creation unit 102h creates each formula in the candidate multivariate discriminant verification unit 102h2. Each candidate multivariate discriminant corresponding to the method is verified based on a predetermined verification method. Here, in step SB22, the discrimination rate, sensitivity, specificity, information criterion of the candidate multivariate discriminant based on at least one of the bootstrap method, holdout method, N-fold method, leave one out method, etc. , ROC_AUC (area under the curve of the receiver characteristic curve) or the like. Thereby, a candidate index formula having high predictability or robustness in consideration of fatty liver disease state information and diagnosis conditions can be selected.
 つぎに、多変量判別式作成部102hは、変数選択部102h3で、ステップSB22での検証結果から所定の変数選択手法に基づいて、候補多変量判別式の変数を選択することで(ただし、ステップSB22での検証結果を考慮せず、所定の変数選択手法に基づいて、候補多変量判別式の変数を選択してもよい。)、候補多変量判別式を作成する際に用いる脂肪性肝疾患状態情報に含まれるアミノ酸濃度データの組み合わせを選択し、選択したアミノ酸濃度データの組み合わせを含む脂肪性肝疾患状態情報を選択脂肪性肝疾患状態情報ファイル106e3の所定の記憶領域に格納する(ステップSB23)。なお、ステップSB21で複数の異なる式作成手法を併用して候補多変量判別式を複数作成し、ステップSB22で各式作成手法に対応する候補多変量判別式ごとに所定の検証手法に基づいて検証した場合には、ステップSB23において、多変量判別式作成部102hは、変数選択部102h3で、候補多変量判別式(例えば、ステップSB22での検証結果に対応する候補多変量判別式)ごとに所定の変数選択手法に基づいて候補多変量判別式の変数を選択してもよい。ここで、ステップSB23において、検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少なくとも1つに基づいて候補多変量判別式の変数を選択してもよい。なお、ベストパス法とは、候補多変量判別式に含まれる変数を1つずつ順次減らしていき、候補多変量判別式が与える評価指標を最適化することで変数を選択する方法である。また、ステップSB23において、多変量判別式作成部102hは、変数選択部102h3で、指定脂肪性肝疾患状態情報ファイル106dの所定の記憶領域に格納されている脂肪性肝疾患状態情報に基づいてアミノ酸濃度データの組み合わせを選択してもよい。 Next, the multivariate discriminant-preparing part 102h selects the variable of the candidate multivariate discriminant based on a predetermined variable selection method from the verification result in step SB22 by the variable selection part 102h3 (however, the step The variable of the candidate multivariate discriminant may be selected based on a predetermined variable selection method without considering the verification result in SB22.), Fatty liver disease used when creating the candidate multivariate discriminant A combination of amino acid concentration data included in the state information is selected, and fatty liver disease state information including the selected combination of amino acid concentration data is stored in a predetermined storage area of the selected fatty liver disease state information file 106e3 (step SB23). ). In step SB21, a plurality of candidate multivariate discriminants are created in combination with a plurality of different formula creation methods, and in step SB22, each candidate multivariate discriminant corresponding to each formula creation method is verified based on a predetermined verification method In such a case, in step SB23, the multivariate discriminant-preparing part 102h is predetermined for each candidate multivariate discriminant (for example, the candidate multivariate discriminant corresponding to the verification result in step SB22) by the variable selector 102h3. The variable of the candidate multivariate discriminant may be selected based on the variable selection method. Here, in step SB23, the variable of the candidate multivariate discriminant may be selected based on at least one of the stepwise method, the best path method, the neighborhood search method, and the genetic algorithm from the verification result. The best path method is a method of selecting variables by sequentially reducing the variables included in the candidate multivariate discriminant one by one and optimizing the evaluation index given by the candidate multivariate discriminant. In step SB23, the multivariate discriminant-preparing part 102h uses the variable selection part 102h3 to select amino acids based on fatty liver disease state information stored in a predetermined storage area of the designated fatty liver disease state information file 106d. A combination of density data may be selected.
 つぎに、多変量判別式作成部102hは、指定脂肪性肝疾患状態情報ファイル106dの所定の記憶領域に格納されている脂肪性肝疾患状態情報に含まれるアミノ酸濃度データの全ての組み合わせが終了したか否かを判定し、判定結果が「終了」であった場合(ステップSB24:Yes)には次のステップ(ステップSB25)へ進み、判定結果が「終了」でなかった場合(ステップSB24:No)にはステップSB21へ戻る。なお、多変量判別式作成部102hは、予め設定した回数が終了したか否かを判定し、判定結果が「終了」であった場合には(ステップSB24:Yes)次のステップ(ステップSB25)へ進み、判定結果が「終了」でなかった場合(ステップSB24:No)にはステップSB21へ戻ってもよい。また、多変量判別式作成部102hは、ステップSB23で選択したアミノ酸濃度データの組み合わせが、指定脂肪性肝疾患状態情報ファイル106dの所定の記憶領域に格納されている脂肪性肝疾患状態情報に含まれるアミノ酸濃度データの組み合わせまたは前回のステップSB23で選択したアミノ酸濃度データの組み合わせと同じであるか否かを判定し、判定結果が「同じ」であった場合(ステップSB24:Yes)には次のステップ(ステップSB25)へ進み、判定結果が「同じ」でなかった場合(ステップSB24:No)にはステップSB21へ戻ってもよい。また、多変量判別式作成部102hは、検証結果が具体的には各候補多変量判別式に関する評価値である場合には、当該評価値と各式作成手法に対応する所定の閾値との比較結果に基づいて、ステップSB25へ進むかステップSB21へ戻るかを判定してもよい。 Next, the multivariate discriminant-preparing part 102h completes all combinations of amino acid concentration data included in the fatty liver disease state information stored in the predetermined storage area of the designated fatty liver disease state information file 106d. If the determination result is “end” (step SB24: Yes), the process proceeds to the next step (step SB25). If the determination result is not “end” (step SB24: No) ) Returns to Step SB21. The multivariate discriminant-preparing part 102h determines whether or not the preset number of times has ended, and if the determination result is “end” (step SB24: Yes), the next step (step SB25). If the determination result is not “end” (step SB24: No), the process may return to step SB21. Further, the multivariate discriminant-preparing part 102h includes the combination of the amino acid concentration data selected in step SB23 in the fatty liver disease state information stored in the predetermined storage area of the designated fatty liver disease state information file 106d. Is determined to be the same as the combination of the amino acid concentration data or the combination of the amino acid concentration data selected in the previous step SB23, and if the determination result is “same” (step SB24: Yes) The process proceeds to step (step SB25), and if the determination result is not “same” (step SB24: No), the process may return to step SB21. Further, when the verification result is specifically an evaluation value related to each candidate multivariate discriminant, the multivariate discriminant creation unit 102h compares the evaluation value with a predetermined threshold corresponding to each formula creation method. Based on the result, it may be determined whether to proceed to step SB25 or to return to step SB21.
 つぎに、多変量判別式作成部102hは、検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで多変量判別式を決定し、決定した多変量判別式(選出した候補多変量判別式)を多変量判別式ファイル106e4の所定の記憶領域に格納する(ステップSB25)。ここで、ステップSB25において、例えば、同じ式作成手法で作成した候補多変量判別式の中から最適なものを選出する場合と、すべての候補多変量判別式の中から最適なものを選出する場合とがある。 Next, the multivariate discriminant-preparing part 102h selects a multivariate discriminant by selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from a plurality of candidate multivariate discriminants based on the verification result. The determined multivariate discriminant (selected candidate multivariate discriminant) is stored in a predetermined storage area of the multivariate discriminant file 106e4 (step SB25). Here, in step SB25, for example, when the optimum one is selected from candidate multivariate discriminants created by the same formula creation method, and when the optimum one is selected from all candidate multivariate discriminants There is.
 これにて、多変量判別式作成処理の説明を終了する。 This completes the explanation of the multivariate discriminant creation process.
[第3実施形態]
[3-1.本発明の概要]
 ここでは、本発明にかかる脂肪性肝疾患の予防・改善物質の探索方法の概要について図23を参照して説明する。図23は本発明の基本原理を示す原理構成図である。
[Third Embodiment]
[3-1. Outline of the present invention]
Here, the outline of the method for searching for a substance for preventing / ameliorating fatty liver disease according to the present invention will be described with reference to FIG. FIG. 23 is a principle configuration diagram showing the basic principle of the present invention.
 まず、1つまたは複数の物質から成る所望の物質群を、評価対象(例えば動物やヒトなどの個体)に投与する(ステップS31)。例えば、ヒトに投与可能な既存の薬物・アミノ酸・食品・サプリメントを適宜組み合わせたもの(例えば、脂肪性肝疾患(具体的には脂肪肝、NAFLD、およびNASHのうち少なくとも1つ)の諸症状の改善に効果があること知られている薬物(例えば、インスリン抵抗性改善薬、ビグアナイト薬、ウルソデオキシコール酸、抗高脂血症薬、または抗酸化薬など)・サプリメントなどを適宜組み合わせたもの)を、所定の期間(例えば1日から12ヶ月の範囲)にわたり、所定量ずつ所定の頻度・タイミング(例えば1日3回・食後)で、所定の投与方法(例えば経口投与)により投与してもよい。ここで、投与方法や用量、剤形は、病状に応じて適宜組み合わせてもよい。なお、剤形は、公知の技術に基づいて決めてもよい。また、用量は、特に定めは無いが、例えば有効成分として1ugから100gを含有した形態で与えてもよい。 First, a desired substance group composed of one or a plurality of substances is administered to an evaluation target (for example, an individual such as an animal or a human) (step S31). For example, an appropriate combination of existing drugs, amino acids, foods, and supplements that can be administered to humans (for example, various symptoms of fatty liver disease (specifically, at least one of fatty liver, NAFLD, and NASH) Drugs that are known to be effective for improvement (for example, insulin resistance improvers, biguanite drugs, ursodeoxycholic acid, antihyperlipidemic drugs, or antioxidants) and supplements, etc., as appropriate) May be administered by a predetermined administration method (for example, oral administration) at a predetermined frequency and timing (for example, 3 times a day, after meal) over a predetermined period (for example, a range of 1 day to 12 months). Good. Here, the administration method, dose, and dosage form may be appropriately combined depending on the disease state. The dosage form may be determined based on a known technique. The dose is not particularly defined, but may be given, for example, in a form containing 1 ug to 100 g as an active ingredient.
 つぎに、ステップS31で物質群が投与された評価対象から血液を採取する(ステップS32)。 Next, blood is collected from the evaluation target to which the substance group has been administered in step S31 (step S32).
 つぎに、ステップS32で採取した血液中のアミノ酸の濃度値に関するアミノ酸濃度データを取得する(ステップS33)。なお、ステップS11では、例えば、アミノ酸濃度測定を行う企業等が測定したアミノ酸濃度データを取得してもよく、また、評価対象から採取した血液(例えば血漿、血清などを含む)から、例えば以下の(A)または(B)などの測定方法でアミノ酸濃度データを測定することでアミノ酸濃度データを取得してもよい。ここで、アミノ酸濃度の単位は、例えばモル濃度や重量濃度、これらの濃度に任意の定数を加減乗除することで得られるものでもよい。
(A)採取した血液サンプルを遠心することにより血液から血漿を分離した。全ての血漿サンプルは、アミノ酸濃度の測定時まで-80℃で凍結保存した。アミノ酸濃度測定時には、アセトニトリルを添加し除蛋白処理を行った後、標識試薬(3-アミノピリジル-N-ヒドロキシスクシンイミジルカルバメート)を用いてプレカラム誘導体化を行い、そして、液体クロマトグラフ質量分析計(LC-MS)によりアミノ酸濃度を分析した(国際公開第2003/069328号、国際公開第2005/116629号を参照)。
(B)採取した血液サンプルを遠心することにより血液から血漿を分離した。全ての血漿サンプルは、アミノ酸濃度の測定時まで-80℃で凍結保存した。アミノ酸濃度測定時には、スルホサリチル酸を添加し除蛋白処理を行った後、ニンヒドリン試薬を用いたポストカラム誘導体化法を原理としたアミノ酸分析計によりアミノ酸濃度を分析した。
Next, amino acid concentration data relating to the concentration value of amino acids in blood collected in step S32 is acquired (step S33). In step S11, for example, amino acid concentration data measured by a company or the like that performs amino acid concentration measurement may be acquired. Further, from blood collected from an evaluation target (including plasma, serum, etc.), for example, the following Amino acid concentration data may be obtained by measuring amino acid concentration data by a measurement method such as (A) or (B). Here, the unit of amino acid concentration may be obtained by, for example, molar concentration, weight concentration, or by adding / subtracting / subtracting an arbitrary constant to / from these concentrations.
(A) Plasma was separated from blood by centrifuging the collected blood sample. All plasma samples were stored frozen at −80 ° C. until the measurement of amino acid concentration. For amino acid concentration measurement, acetonitrile was added to remove protein, followed by precolumn derivatization using a labeling reagent (3-aminopyridyl-N-hydroxysuccinimidyl carbamate), and liquid chromatography mass spectrometry The amino acid concentration was analyzed by a total (LC-MS) (see International Publication No. 2003/069328 and International Publication No. 2005/116629).
(B) Plasma was separated from blood by centrifuging the collected blood sample. All plasma samples were stored frozen at −80 ° C. until the measurement of amino acid concentration. When measuring the amino acid concentration, sulfosalicylic acid was added to remove the protein, and then the amino acid concentration was analyzed by an amino acid analyzer based on the post-column derivatization method using a ninhydrin reagent.
 つぎに、ステップS33で取得した評価対象のアミノ酸濃度データに基づいて、評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する(ステップS34)。 Next, based on the amino acid concentration data of the evaluation target acquired in step S33, the evaluation target includes at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis) The state of fatty liver disease is evaluated (step S34).
 つぎに、ステップS34での評価結果に基づいて、ステップS31で投与した物質群が、脂肪性肝疾患を予防させるまたは脂肪性肝疾患の状態を改善させるものであるか否かを判定する(ステップS35)。 Next, based on the evaluation result in step S34, it is determined whether the substance group administered in step S31 is for preventing fatty liver disease or improving the state of fatty liver disease (step). S35).
 そして、ステップS35での判定結果が「予防させるまたは改善させる」というものであった場合、ステップS31で投与した物質群が、脂肪性肝疾患を予防させるまたは脂肪性肝疾患の状態を改善させるものとして探索される。 If the determination result in step S35 is “prevent or improve”, the substance group administered in step S31 prevents fatty liver disease or improves the state of fatty liver disease To be explored.
 以上、本発明によれば、所望の物質群を評価対象に投与し、当該物質群が投与された評価対象から血液を採取し、採取した血液中のアミノ酸の濃度値に関するアミノ酸濃度データを取得し、取得したアミノ酸濃度データに基づいて、評価対象につき、脂肪性肝疾患の状態を評価し、その評価結果に基づいて、所望の物質群が、脂肪性肝疾患を予防させる又は脂肪性肝疾患の状態を改善させるものであるか否かを判定する。これにより、血液中のアミノ酸の濃度を利用して脂肪性肝疾患の状態を精度よく評価することができる脂肪性肝疾患の評価方法を用いて、脂肪性肝疾患を予防させる又は脂肪性肝疾患の状態を改善させる物質を精度よく探索することができる。 As described above, according to the present invention, a desired substance group is administered to an evaluation object, blood is collected from the evaluation object to which the substance group is administered, and amino acid concentration data relating to the concentration value of amino acids in the collected blood is obtained. Based on the obtained amino acid concentration data, the state of fatty liver disease is evaluated for the evaluation target, and based on the evaluation result, the desired substance group prevents fatty liver disease or It is determined whether or not the condition is improved. Thus, fatty liver disease can be prevented or fatty liver disease can be prevented using a method for evaluating fatty liver disease, which can accurately evaluate the state of fatty liver disease using the concentration of amino acids in blood. It is possible to accurately search for a substance that improves the state of.
 ここで、ステップS34を実行する前に、アミノ酸濃度データから欠損値や外れ値などのデータを除去してもよい。これにより、脂肪性肝疾患の状態をさらに精度よく評価することができる。 Here, before executing step S34, data such as missing values and outliers may be removed from the amino acid concentration data. Thereby, the state of fatty liver disease can be more accurately evaluated.
 また、ステップS34では、ステップS33で取得したアミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値に基づいて、評価対象につき、NASHの状態を評価してもよい。これにより、血液中のアミノ酸の濃度のうちNASHの状態と関連するアミノ酸の濃度を利用して、NASHの状態を精度よく評価することができる。具体的には、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値に基づいて、NASHまたは非NASHであるか否かを判別してもよい。これにより、血液中のアミノ酸の濃度のうちNASHと非NASHの2群判別に有用なアミノ酸の濃度を利用して、この2群判別を精度よく行うことができる。 In step S34, among the Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data acquired in step S33. The state of NASH may be evaluated for the evaluation target based on at least one concentration value. Thereby, the state of NASH can be accurately evaluated using the concentration of amino acids related to the state of NASH among the concentrations of amino acids in blood. Specifically, at least one concentration value of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data. Based on this, it may be determined whether it is NASH or non-NASH. Thus, the amino acid concentration useful for the two-group discrimination of NASH and non-NASH among the amino acid concentrations in the blood can be used to accurately perform the two-group discrimination.
 また、ステップS34では、ステップS33で取得したアミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値に基づいて、評価対象につき、NAFLDの状態を評価してもよい。これにより、血液中のアミノ酸の濃度のうちNAFLDの状態と関連するアミノ酸の濃度を利用して、NAFLDの状態を精度よく評価することができる。具体的には、アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値に基づいて、評価対象につき、NAFLDまたは非NAFLDであるか否かを判別してもよい。これにより、血液中のアミノ酸の濃度のうちNAFLDと非NAFLDの2群判別に有用なアミノ酸の濃度を利用して、この2群判別を精度よく行うことができる。 In step S34, Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser included in the amino acid concentration data acquired in step S33. , Thr, Asn, the state of NAFLD may be evaluated for each evaluation object based on at least one concentration value. Thereby, the state of NAFLD can be accurately evaluated using the concentration of amino acids related to the state of NAFLD among the concentrations of amino acids in blood. Specifically, among Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn included in the amino acid concentration data. Based on at least one concentration value, it may be determined whether the evaluation target is NAFLD or non-NAFLD. Thus, the amino acid concentration useful for the 2-group discrimination between NAFLD and non-NAFLD among the amino acid concentrations in the blood can be used to accurately perform the 2-group discrimination.
 また、ステップS34では、ステップS33で取得したアミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値に基づいて、評価対象につき、脂肪肝の状態を評価してもよい。これにより、血液中のアミノ酸の濃度のうち脂肪肝の状態と関連するアミノ酸の濃度を利用して、脂肪肝の状態を精度よく評価することができる。具体的には、アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値に基づいて、評価対象につき、脂肪肝または非脂肪肝であるか否かを判別してもよい。これにより、血液中のアミノ酸の濃度のうち脂肪肝と非脂肪肝の2群判別に有用なアミノ酸の濃度を利用して、この2群判別を精度よく行うことができる。 In step S34, Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data acquired in step S33. The state of fatty liver may be evaluated for each evaluation target based on at least one concentration value. Thereby, the state of fatty liver can be accurately evaluated using the concentration of amino acids related to the state of fatty liver among the concentrations of amino acids in blood. Specifically, at least one concentration of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data. Based on the value, it may be determined whether or not the subject is a fatty liver or non-fatty liver. Thus, the amino acid concentration useful for the 2-group discrimination between fatty liver and non-fatty liver among the amino acid concentrations in the blood can be used to accurately perform the 2-group discrimination.
 また、ステップS34では、ステップS33で取得したアミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値に基づいて、評価対象につき、NASHおよびNAFLDの状態を評価してもよい。これにより、血液中のアミノ酸の濃度のうちNASHおよびNAFLDの状態と関連するアミノ酸の濃度を利用して、NASHおよびNAFLDの状態を精度よく評価することができる。具体的には、アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値に基づいて、評価対象につき、NASH、または非NASH且つNAFLDであるか否かを判別してもよい。これにより、血液中のアミノ酸の濃度のうちNASHと単純性脂肪肝の2群判別に有用なアミノ酸の濃度を利用して、この2群判別を精度よく行うことができる。 In step S34, at least one concentration of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data acquired in step S33. Based on the value, the state of NASH and NAFLD may be evaluated for each evaluation object. Thereby, the state of NASH and NAFLD can be accurately evaluated using the concentration of amino acids related to the state of NASH and NAFLD among the concentrations of amino acids in blood. Specifically, based on the concentration value of at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data. Whether the subject is NASH or non-NASH and NAFLD may be determined. This makes it possible to accurately perform this 2-group discrimination by using the amino acid concentrations useful for 2-group discrimination between NASH and simple fatty liver among the amino acid concentrations in the blood.
 また、ステップS34では、ステップS33で取得したアミノ酸濃度データ、およびアミノ酸の濃度を変数として含む予め設定した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて、評価対象につき、脂肪性肝疾患の状態を評価してもよい。これにより、アミノ酸の濃度を変数として含む多変量判別式で得られる判別値を利用して、脂肪性肝疾患の状態を精度よく評価することができる。 In step S34, based on the amino acid concentration data acquired in step S33 and the preset multivariate discriminant including the amino acid concentration as a variable, a discriminant value that is the value of the multivariate discriminant is calculated and calculated. The state of fatty liver disease may be evaluated for the evaluation target based on the discriminant value. Thereby, the state of fatty liver disease can be accurately evaluated using the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable.
 なお、多変量判別式は、ロジスティック回帰式、分数式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。これにより、アミノ酸の濃度を変数として含む多変量判別式で得られる判別値を利用して、脂肪性肝疾患の状態をさらに精度よく評価することができる。 Multivariate discriminants are logistic regression formula, fractional formula, linear discriminant formula, multiple regression formula, formula created by support vector machine, formula created by Mahalanobis distance method, formula created by canonical discriminant analysis. Any one of the expressions created by the decision tree may be used. Thereby, the state of fatty liver disease can be more accurately evaluated using the discriminant value obtained by the multivariate discriminant including the amino acid concentration as a variable.
 また、ステップS34では、ステップS33で取得したアミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値に基づいて、評価対象につき、NASHの状態を評価してもよい。これにより、NASHの状態と有意な相関がある多変量判別式で得られる判別値を利用して、NASHの状態を精度よく評価することができる。具体的には、判別値に基づいて、評価対象につき、NASHまたは非NASHであるか否かを判別してもよい。これにより、NASHと非NASHの2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができる。なお、多変量判別式は、Glu,Gln,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。これにより、NASHと非NASHの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。 In step S34, among the Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in the amino acid concentration data acquired in step S33. Multivariate discrimination including at least one concentration value and at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser The discriminant value may be calculated based on the equation, and the state of NASH may be evaluated for each evaluation object based on the calculated discriminant value. Thereby, the NASH state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NASH state. Specifically, it may be determined whether the evaluation target is NASH or non-NASH based on the determination value. This makes it possible to accurately perform the two-group discrimination using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between NASH and non-NASH. The multivariate discriminant may be a logistic regression equation including Glu, Gln, Gly, Ala, Val, Tyr as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH.
 また、ステップS34では、ステップS33で取得したアミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値に基づいて、評価対象につき、NAFLDの状態を評価してもよい。これにより、NAFLDの状態と有意な相関がある多変量判別式で得られる判別値を利用して、NAFLDの状態を精度よく評価することができる。具体的には、判別値に基づいて、評価対象につき、NAFLDまたは非NAFLDであるか否かを判別してもよい。これにより、NAFLDと非NAFLDの2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができる。なお、多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式でもよい。これにより、NAFLDと非NAFLDの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。 In step S34, Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser included in the amino acid concentration data acquired in step S33. , Thr, Asn, and Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn A discriminant value may be calculated based on a multivariate discriminant including at least one of them as a variable, and the NAFLD state may be evaluated for each evaluation object based on the calculated discriminant value. Thereby, the NAFLD state can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the NAFLD state. Specifically, it may be determined whether the evaluation target is NAFLD or non-NAFLD based on the determination value. This makes it possible to accurately perform the two-group discrimination by using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between NAFLD and non-NAFLD. Note that the multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NAFLD and non-NAFLD.
 また、ステップS34では、ステップS33で取得したアミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値、およびThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値に基づいて、評価対象につき、脂肪肝の状態を評価してもよい。これにより、脂肪肝の状態と有意な相関がある多変量判別式で得られる判別値を利用して、脂肪肝の状態を精度よく評価することができる。具体的には、判別値に基づいて、評価対象につき、脂肪肝または非脂肪肝であるか否かを判別してもよい。これにより、脂肪肝と非脂肪肝の2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができる。なお、多変量判別式は、Ser,Glu,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。これにより、脂肪肝と非脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。 In step S34, Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the amino acid concentration data acquired in step S33. And at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn A discriminant value may be calculated based on the multivariate discriminant included, and the state of fatty liver may be evaluated for each evaluation object based on the calculated discriminant value. Thereby, the state of fatty liver can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of fatty liver. Specifically, based on the discriminant value, it may be discriminated whether the evaluation target is fatty liver or non-fatty liver. This makes it possible to accurately perform the two-group discrimination using the discriminant value obtained by the multivariate discriminant useful for the two-group discrimination between fatty liver and non-fatty liver. The multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Ala, Val, and Tyr as variables. Thus, the two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver.
 また、ステップS34では、ステップS33で取得したアミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値、およびGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値に基づいて、評価対象につき、NASHおよびNAFLDの状態を評価してもよい。これにより、NASHおよびNAFLDの状態と有意な相関がある多変量判別式で得られる判別値を利用して、NASHおよびNAFLDの状態を精度よく評価することができる。具体的には、判別値に基づいて、評価対象につき、NASH、または「非NASH且つNAFLD」(単純性脂肪肝)であるか否かを判別してもよい。これにより、NASHと単純性脂肪肝の2群判別に有用な多変量判別式で得られる判別値を利用して、この2群判別を精度よく行うことができる。なお、多変量判別式は、Asn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。これにより、NASHと単純性脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、具体的には、判別値に基づいて、評価対象につき、非NAFLD、NASH、または「非NASH且つNAFLD」であるか否かを判別してもよい。これにより、非NAFLDとNASHと単純性脂肪肝の3群判別に有用な多変量判別式で得られる判別値を利用して、この3群判別を精度よく行うことができる。なお、多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式、およびAsn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。これにより、非NAFLDとNASHと単純性脂肪肝の3群判別に特に有用な多変量判別式で得られる判別値を利用して、この3群判別をさらに精度よく行うことができる。 In step S34, at least one concentration of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data acquired in step S33. The discriminant value is based on a multivariate discriminant including at least one of a value and Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA as a variable. The state of NASH and NAFLD may be evaluated for each evaluation object based on the calculated discriminant value. Thereby, the state of NASH and NAFLD can be accurately evaluated using the discriminant value obtained by the multivariate discriminant having a significant correlation with the state of NASH and NAFLD. Specifically, it may be determined whether the evaluation target is NASH or “non-NASH and NAFLD” (simple fatty liver) based on the determination value. This makes it possible to accurately perform this two-group discrimination using a discriminant value obtained by a multivariate discriminant useful for two-group discrimination between NASH and simple fatty liver. Note that the multivariate discriminant may be a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver. Specifically, it may be determined whether the evaluation target is non-NAFLD, NASH, or “non-NASH and NAFLD” based on the determination value. This makes it possible to accurately perform this three-group discrimination by using the discriminant value obtained by the multivariate discriminant useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver. The multivariate discriminant may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables, and a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Thereby, this three-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver.
 ここで、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法または本出願人による国際出願である国際公開第2006/098192号に記載の方法(上述した第2実施形態に記載の多変量判別式作成処理)で作成してもよい。なお、これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を脂肪性肝疾患の状態の評価に好適に用いることができる。 Here, each multivariate discriminant described above is described in the method described in International Publication No. 2004/052191 which is an international application by the present applicant or International Publication No. 2006/098192 which is an international application by the present applicant. It may be created by a method (multivariate discriminant creation process described in the second embodiment described above). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is suitable for the evaluation of the state of fatty liver disease regardless of the unit of amino acid concentration in the amino acid concentration data as input data. Can be used.
 また、多変量判別式とは、一般に多変量解析で用いられる式の形式を意味し、例えば分数式、重回帰式、多重ロジスティック回帰式、線形判別関数、マハラノビス距離、正準判別関数、サポートベクターマシン、決定木などを包含する。また、異なる形式の多変量判別式の和で示されるような式も含まれる。また、重回帰式、多重ロジスティック回帰式、正準判別関数においては各変数に係数および定数項が付加されるが、この場合の係数および定数項は、好ましくは実数であること、より好ましくはデータから判別を行うために得られた係数および定数項の99%信頼区間の範囲に属する値、さらに好ましくはデータから判別を行うために得られた係数および定数項の95%信頼区間の範囲に属する値であればかまわない。また、各係数の値、及びその信頼区間は、それを実数倍したものでもよく、定数項の値、及びその信頼区間は、それに任意の実定数を加減乗除したものでもよい。ロジスティック回帰、線形判別、重回帰分析などの表示式を指標に用いる場合、表示式の線形変換(定数の加算、定数倍)や単調増加(減少)の変換(例えばlogit変換など)は判別性能を変えるものではなく同等であるので、表示式はそれらを含むものである。 The multivariate discriminant generally means the format of formulas used in multivariate analysis. For example, fractional formulas, multiple regression formulas, multiple logistic regression formulas, linear discriminant functions, Mahalanobis distances, canonical discriminant functions, support vectors Includes machines, decision trees, etc. Also included are expressions as indicated by the sum of different forms of multivariate discriminants. In the multiple regression equation, multiple logistic regression equation, and canonical discriminant function, a coefficient and a constant term are added to each variable. In this case, the coefficient and the constant term are preferably real numbers, more preferably data. Values belonging to the range of 99% confidence intervals of the coefficients and constant terms obtained from the data, more preferably belonging to the range of 95% confidence intervals of the coefficients and constant terms obtained from the data Any value can be used. Further, the value of each coefficient and its confidence interval may be obtained by multiplying it by a real number, and the value of the constant term and its confidence interval may be obtained by adding / subtracting / multiplying / dividing an arbitrary real constant thereto. When using display formulas such as logistic regression, linear discriminant, multiple regression analysis as indicators, linear transformation (addition of constants, multiple of constants) or monotonically increasing (decreasing) transformations of display formulas (such as logit transformation) have discriminative performance. The display formulas include them because they are equivalent, not changed.
 なお、分数式とは、当該分数式の分子がアミノ酸A,B,C,・・・の和で表わされ及び/又は当該分数式の分母がアミノ酸a,b,c,・・・の和で表わされるものである。また、分数式には、このような構成の分数式α,β,γ,・・・の和(例えばα+βのようなもの)も含まれる。また、分数式には、分割された分数式も含まれる。なお、分子や分母に用いられるアミノ酸にはそれぞれ適当な係数がついてもかまわない。また、分子や分母に用いられるアミノ酸は重複してもかまわない。また、各分数式に適当な係数がついてもかまわない。また、各変数の係数の値や定数項の値は、実数であればかまわない。分数式で、分子の変数と分母の変数を入れ替えた組み合わせは、目的変数との相関の正負の符号は概して逆転するが、それらの相関性は保たれるので、判別性では同等と見なせるので、分子の変数と分母の変数を入れ替えた組み合わせも、包含するものである。 The fractional expression means that the numerator of the fractional expression is represented by the sum of amino acids A, B, C,... And / or the denominator of the fractional expression is the sum of amino acids a, b, c,. It is represented by In addition, the fractional expression includes a sum of fractional expressions α, β, γ,. The fractional expression also includes a divided fractional expression. An appropriate coefficient may be added to each amino acid used in the numerator and denominator. In addition, amino acids used in the numerator and denominator may overlap. Moreover, an appropriate coefficient may be attached to each fractional expression. The value of the coefficient of each variable and the value of the constant term may be real numbers. In the fractional expression, the combination of the numerator variable and the denominator variable is generally reversed in the sign of the correlation with the target variable, but since the correlation is maintained, it can be considered equivalent in discriminability. Combinations of swapping numerator and denominator variables are also included.
 そして、本発明は、脂肪性肝疾患の状態評価を行う際、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。また、本発明は、脂肪性肝疾患の状態評価を行う際、多変量判別式における変数として、アミノ酸の濃度以外に、他の生体情報(例えば糖類・脂質・タンパク質・ペプチド・ミネラル・ホルモン等の生体代謝物や、例えば血糖値・血圧値・性別・年齢・肝疾患指標・食習慣・飲酒習慣・運動習慣・肥満度・疾患歴等の生体指標、など)をさらに用いてもかまわない。 And when this invention evaluates the state of fatty liver disease, in addition to the concentration of amino acids, other biological information (for example, biological metabolites such as sugars, lipids, proteins, peptides, minerals, hormones,・ Blood pressure value, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used. In addition, the present invention, when assessing the state of fatty liver disease, as a variable in the multivariate discriminant, in addition to the amino acid concentration, other biological information (for example, sugars, lipids, proteins, peptides, minerals, hormones, etc.) Biological metabolites and biological indices such as blood glucose level, blood pressure level, gender, age, liver disease index, dietary habits, drinking habits, exercise habits, obesity level, disease history, etc. may be further used.
[3-2.第3実施形態にかかる脂肪性肝疾患の予防・改善物質の探索方法の一例]
 ここでは、第3実施形態にかかる脂肪性肝疾患の予防・改善物質の探索方法の一例について図24を参照して説明する。図24は第3実施形態にかかる脂肪性肝疾患の予防・改善物質の探索方法の一例を示すフローチャートである。
[3-2. Example of a method for searching for a substance for preventing / ameliorating fatty liver disease according to the third embodiment]
Here, an example of a method for searching for a substance for preventing / ameliorating fatty liver disease according to the third embodiment will be described with reference to FIG. FIG. 24 is a flowchart showing an example of a method for searching for a substance for preventing / ameliorating fatty liver disease according to the third embodiment.
 まず、1つまたは複数の物質から成る所望の物質群を、例えば脂肪性肝疾患の動物やヒトなどの個体に投与する(ステップSA31)。 First, a desired substance group composed of one or a plurality of substances is administered to an individual such as an animal or a human having a fatty liver disease (step SA31).
 つぎに、ステップS31で物質群が投与された個体から血液を採取する(ステップSA32)。 Next, blood is collected from the individual to which the substance group has been administered in step S31 (step SA32).
 つぎに、ステップS32で採取した血液中のアミノ酸の濃度値に関するアミノ酸濃度データを取得する(ステップSA33)。なお、ステップSA33では、例えば、アミノ酸濃度測定を行う企業等が測定したアミノ酸濃度データを取得してもよく、また、評価対象から採取した血液から例えば上述した(A)または(B)などの測定方法でアミノ酸濃度データを測定することでアミノ酸濃度データを取得してもよい。 Next, amino acid concentration data relating to the concentration value of amino acids in blood collected in step S32 is acquired (step SA33). In step SA33, for example, amino acid concentration data measured by a company or the like that measures amino acid concentration may be acquired, and measurement such as (A) or (B) described above is performed from blood collected from an evaluation target. Amino acid concentration data may be obtained by measuring amino acid concentration data by a method.
 つぎに、ステップS33で取得した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去する(ステップSA34)。 Next, data such as missing values and outliers are removed from the amino acid concentration data of the individual obtained in step S33 (step SA34).
 つぎに、ステップS34で欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに基づいて、個体につき、以下に示す31.~35.の判別のいずれか1つを実行する(ステップSA35)。 Next, based on the amino acid concentration data of individuals from which data such as missing values and outliers have been removed in step S34, the following 31. To 35. One of the determinations is executed (step SA35).
31.NASHと非NASHの判別
 (i)アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、NASHまたは非NASHであるか否かを判別する、または、(ii)アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、NASHまたは非NASHであるか否かを判別する。
31. Discrimination between NASH and non-NASH (i) At least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser included in amino acid concentration data Determine whether each individual is NASH or non-NASH by comparing one concentration value with a preset threshold (cutoff value), or (ii) Gln, included in the amino acid concentration data Concentration value of at least one of Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser, and Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser On the basis of a multivariate discriminant including at least one of the variables, a discriminant value is calculated, and the calculated discriminant value is compared with a preset threshold value (cutoff value). It is determined whether or not it is NASH.
32.NAFLDと非NAFLDの判別
 (i)アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、NAFLDまたは非NAFLDであるか否かを判別する、または、(ii)アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの濃度値、およびGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、NAFLDまたは非NAFLDであるか否かを判別する。
32. Discrimination between NAFLD and non-NAFLD (i) Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr included in amino acid concentration data , Asn to determine whether each individual is NAFLD or non-NAFLD by comparing at least one concentration value with a preset threshold (cutoff value), or (ii) amino acid concentration At least one concentration value of Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn included in the data, and Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, T A discriminant value is calculated based on a multivariate discriminant including at least one of yr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn as a variable, and the calculated discriminant value is set in advance. It is determined whether each individual is NAFLD or non-NAFLD by comparing with the threshold value (cutoff value).
33.脂肪肝と非脂肪肝の判別
 (i)アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、脂肪肝または非脂肪肝であるか否かを判別する、または、(ii)アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの濃度値、およびThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、脂肪肝または非脂肪肝であるか否かを判別する。
33. Discrimination between fatty liver and non-fatty liver (i) Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in amino acid concentration data By comparing at least one concentration value and a preset threshold value (cut-off value), it is determined whether the individual has fatty liver or non-fatty liver, or (ii) amino acid concentration Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn included in the data, and Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, A By calculating a discriminant value based on a multivariate discriminant including at least one of sn and Orn as a variable, and comparing the calculated discriminant value with a preset threshold value (cutoff value), Determine whether it is fatty liver or non-fatty liver.
34.NASHと単純性脂肪肝の判別
 (i)アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、NASHまたは単純性脂肪肝(非NASH且つNAFLD)であるか否かを判別する、または、(ii)アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値、およびGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、NASHまたは単純性脂肪肝(非NASH且つNAFLD)であるか否かを判別する。
34. Discrimination between NASH and simple fatty liver (i) Concentration of at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA included in amino acid concentration data By comparing the value with a preset threshold value (cutoff value), it is determined whether the individual has NASH or simple fatty liver (non-NASH and NAFLD), or (ii) amino acid concentration Concentration value of at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA, and Gln, Glu, Gly, Ala, Cit, Atn one of Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, ABA Is calculated on the basis of a multivariate discriminant that includes a variable, and the calculated discriminant value is compared with a preset threshold value (cut-off value), whereby NASH or simple fatty liver ( It is determined whether it is non-NASH and NAFLD.
35.NASHと単純性脂肪肝と非NAFLDの判別
 アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの濃度値、およびGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを変数として含む多変量判別式に基づいて、判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、非NAFLD、NASH、または単純性脂肪肝(非NASH且つNAFLD)であるか否かを判別する。
35. Discrimination between NASH, simple fatty liver and non-NAFLD Concentration of at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro and ABA contained in amino acid concentration data The discriminant value is based on a multivariate discriminant including at least one of a value and Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA as a variable. By calculating and comparing the calculated discriminant value with a preset threshold value (cut-off value), it is determined whether or not each individual is non-NAFLD, NASH, or simple fatty liver (non-NASH and NAFLD). Determine.
 つぎに、ステップSA35での判別結果に基づいて、ステップSA31で投与した物質群が、脂肪性肝疾患を予防させるまたは脂肪性肝疾患の状態を改善させるものであるか否かを判定する(ステップSA36)。 Next, based on the determination result in step SA35, it is determined whether the substance group administered in step SA31 is for preventing fatty liver disease or improving the state of fatty liver disease (step). SA36).
 そして、ステップSA36での判定結果が「予防させるまたは改善させる」であった場合、ステップSA31で投与した物質群が、脂肪性肝疾患を予防させるまたは脂肪性肝疾患の状態を改善させるものとして探索される。なお、本探索方法によって探索された物質として、例えば、「Gln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つを含むアミノ酸群」、「Gln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つを含むアミノ酸群」、「Thr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つを含むアミノ酸群」、および「Gln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを含むアミノ酸群」が挙げられる。 If the determination result in step SA36 is “prevent or improve”, the substance group administered in step SA31 is searched for preventing fatty liver disease or improving the state of fatty liver disease. Is done. In addition, as a substance searched by this search method, for example, at least 1 of “Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser” A group of amino acids containing at least one of Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, Thr, Asn. Amino acid group containing at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn " , And "Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Or , Phe, Met, Ile, Pro, a group of amino acids comprising at least one of ABA "are mentioned.
[3-3.第3実施形態のまとめ、およびその他の実施形態]
 以上、詳細に説明したように、第3実施形態にかかる脂肪性肝疾患の予防・改善物質の探索方法によれば、(i)所望の物質群を個体に投与し、(ii)物質群が投与された個体から血液を採取し、(iii)採取した血液中のアミノ酸濃度データを取得し、(iv)取得した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去し、(v)欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに基づいて、個体につき、上述した31.~35.の判別のいずれか1つを実行し、(vi)この判別結果に基づいて、投与した物質群が、脂肪性肝疾患を予防させるまたは脂肪性肝疾患の状態を改善させるものであるか否かを判別する。これにより、上述した第1実施形態の脂肪性肝疾患の評価方法を用いて、脂肪性肝疾患を予防させる又は脂肪性肝疾患の状態を改善させる物質を精度よく探索することができる。
[3-3. Summary of Third Embodiment and Other Embodiments]
As described above in detail, according to the method for searching for a substance for preventing / ameliorating fatty liver disease according to the third embodiment, (i) a desired substance group is administered to an individual; (ii) Blood is collected from the administered individual, (iii) amino acid concentration data in the collected blood is obtained, (iv) data such as missing values and outliers are removed from the obtained amino acid concentration data of the individual, (v ) Based on the amino acid concentration data of individuals from which data such as missing values and outliers have been removed, the above-mentioned 31. 35. (Vi) whether the administered substance group prevents fatty liver disease or improves the state of fatty liver disease based on the result of this discrimination Is determined. Thereby, it is possible to accurately search for a substance that prevents fatty liver disease or improves the state of fatty liver disease using the method for evaluating fatty liver disease of the first embodiment described above.
 ここで、ステップSA35で用いられる多変量判別式は、ロジスティック回帰式、分数式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。これにより、NASHと非NASHの2群判別、NAFLDと非NAFLDの2群判別、脂肪肝と非脂肪肝の2群判別、NASHと単純性脂肪肝の2群判別、または非NAFLDとNASHと単純性脂肪肝の3群判別に有用な多変量判別式で得られる判別値を利用して、これらの2群判別または3群判別をさらに精度よく行うことができる。 Here, the multivariate discriminant used in step SA35 is a logistic regression equation, a fractional equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, an equation created by the Mahalanobis distance method, and a canonical discriminant. Any one of an expression created by analysis and an expression created by a decision tree may be used. As a result, NASH and non-NASH 2-group discrimination, NAFLD and non-NAFLD 2-group discrimination, fatty liver and non-fatty liver 2-group discrimination, NASH and simple fatty liver 2-group discrimination, or non-NAFLD and NASH and simple By using the discriminant value obtained by the multivariate discriminant useful for the 3-group discrimination of the fatty liver, these 2-group discrimination or 3-group discrimination can be performed with higher accuracy.
 具体的には、上述した31.の判別で用いられる多変量判別式は、Glu,Gln,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。これにより、NASHと非NASHの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、上述した32.の判別で用いられる多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式でもよい。これにより、NAFLDと非NAFLDの2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、上述した33.の判別で用いられる多変量判別式は、Ser,Glu,Gly,Ala,Val,Tyrを変数として含むロジスティック回帰式でもよい。これにより、脂肪肝と非脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、上述した34.の判別で用いられる多変量判別式は、Asn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。これにより、NASHと単純性脂肪肝の2群判別に特に有用な多変量判別式で得られる判別値を利用して、この2群判別をさらに精度よく行うことができる。また、上述した35.の判別で用いられる多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを変数として含むロジスティック回帰式、およびAsn,Gln,Gly,Ala,Cit,Metを変数として含むロジスティック回帰式でもよい。これにより、非NAFLDとNASHと単純性脂肪肝の3群判別に特に有用な多変量判別式で得られる判別値を利用して、この3群判別をさらに精度よく行うことができる。 Specifically, 31. The multivariate discriminant used in the discriminant may be a logistic regression equation including Glu, Gln, Gly, Ala, Val, Tyr as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NASH and non-NASH. In addition, the 32. mentioned above. The multivariate discriminant used in discriminating the above may be a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables. This makes it possible to perform the two-group discrimination with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination of NAFLD and non-NAFLD. In addition, as described above 33. The multivariate discriminant used in this discrimination may be a logistic regression equation including Ser, Glu, Gly, Ala, Val, and Tyr as variables. Thus, the two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between fatty liver and non-fatty liver. In addition, as described above 34. The multivariate discriminant used in the discriminant may be a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Thereby, this two-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the two-group discrimination between NASH and simple fatty liver. In addition, as described above 35. The multivariate discriminant used for discriminating is a logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as variables, and a logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as variables. Good. Thereby, this three-group discrimination can be performed with higher accuracy by using the discriminant value obtained by the multivariate discriminant particularly useful for the three-group discrimination of non-NAFLD, NASH, and simple fatty liver.
 なお、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法または本出願人による国際出願である国際公開第2006/098192号に記載の方法(上述した第2実施形態に記載の多変量判別式作成処理)で作成してもよい。なお、これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を脂肪性肝疾患の状態の評価に好適に用いることができる。 Each multivariate discriminant described above is a method described in International Publication No. 2004/052191 which is an international application by the present applicant or a method described in International Publication No. 2006/098192 which is an international application by the present applicant. It may be created by (multivariate discriminant creation processing described in the second embodiment described above). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant is suitable for the evaluation of the state of fatty liver disease regardless of the unit of amino acid concentration in the amino acid concentration data as input data. Can be used.
 また、第3実施形態にかかる脂肪性肝疾患の予防・改善物質の探索方法は、「Gln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つを含むアミノ酸群」、「Gln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つを含むアミノ酸群」、「Thr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つを含むアミノ酸群」、または「Gln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを含むアミノ酸群」の濃度値や上記した各多変量判別式の判別値を正常化させる物質を、上述した第1実施形態の脂肪性肝疾患の評価方法や第2実施形態の脂肪性肝疾患評価装置を用いて選択することができる。 The method for searching for a substance for preventing or improving fatty liver disease according to the third embodiment is described in “Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr. , Asn, Ser, a group of amino acids containing at least one of “Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser, An amino acid group containing at least one of Thr and Asn ”,“ Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn Amino acid group containing at least one ", or" Gln, Glu, Gly, Ala, Cit, Asn, Tr " , Leu, Orn, Phe, Met, Ile, Pro, and ABA, a substance that normalizes the concentration value of each of the multivariate discriminants described above, It can be selected by using the form of the fatty liver disease evaluation method or the fatty liver disease evaluation apparatus of the second embodiment.
 また、第3実施形態にかかる脂肪性肝疾患の予防・改善物質の探索方法において、「予防・改善物質を探索する」とは、脂肪性肝疾患の予防・改善に有効な新規物質を見出すことのみならず、公知物質の脂肪性肝疾患の予防・改善用途を新規に見出すことや、脂肪性肝疾患の予防・改善に有効性を期待できる既存の薬剤・サプリメント等を組み合わせた新規組成物を見出すことや、上記した適切な用法・用量・組み合わせを見出し、それをキットとすることや、食事・運動等も含めた予防・治療メニューを提示することや、当該予防・治療メニューの効果をモニタリングし、必要に応じて個人ごとにメニューの変更を提示すること等が含まれる。 In the method for searching for a substance for preventing / ameliorating fatty liver disease according to the third embodiment, “searching for a substance for preventing / ameliorating” means finding a new substance effective for the prevention / amelioration of fatty liver disease. In addition to finding new uses of known substances for preventing and improving fatty liver disease, and combining new drugs and supplements that can be expected to be effective in preventing and improving fatty liver disease. Finding and finding the appropriate usage / dose / combination as described above, making it a kit, presenting a prevention / treatment menu including food / exercise, etc., and monitoring the effectiveness of the prevention / treatment menu And presenting menu changes for each individual as needed.
 脂肪肝の有無に関する超音波診断が行われた受診者を診断結果に基づいて脂肪肝陰性と脂肪肝陽性の2群に分類したところ、脂肪肝陰性群および脂肪肝陽性群はそれぞれ、1021名および561名であった。受診者から採取された血漿中のアミノ酸濃度を測定し、各アミノ酸濃度についての脂肪肝陽性の判別能をROC_AUC(受信者特性曲線の曲線下面積)で評価した。なお、アミノ酸濃度の測定は、上述した実施形態で説明した(A)の測定方法で行った。 Based on the diagnosis results, the patients who had undergone ultrasound diagnosis regarding the presence or absence of fatty liver were classified into two groups: fatty liver negative and fatty liver positive. There were 561 people. The amino acid concentration in plasma collected from the examinee was measured, and the ability to discriminate fatty liver positive for each amino acid concentration was evaluated by ROC_AUC (area under the curve of the receiver characteristic curve). The amino acid concentration was measured by the measurement method (A) described in the above embodiment.
 ROC_AUCがノンパラメトリックの仮定のもとで帰無仮説をROC_AUC=0.5とした場合の検定で有意(p<0.05)であったアミノ酸は、Thr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trpであった。これらのアミノ酸の内、Glu,Pro,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trpについては脂肪肝陽性群で有意な増加を示し、一方、Thr,Ser,Gly,Citについては脂肪肝陽性群で有意な減少を示した。 Amino acids that were significant (p <0.05) in the test when ROC_AUC is nonparametric and the null hypothesis is ROC_AUC = 0.5 are Thr, Ser, Glu, Pro, Gly, Ala , Cit, Leu, Ile, Val, Tyr, Phe, Met, His, and Trp. Among these amino acids, Glu, Pro, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, and Trp showed a significant increase in the fatty liver positive group, while Thr, Ser, Gly, and Cit. Showed a significant decrease in the fatty liver positive group.
 NAFLD(非アルコール性脂肪性肝疾患)の診断において以下の4つの診断条件を満たす受診者はNAFLDハイリスク群と考えられることから、当該受診者をNAFLD陽性群に分類した。
診断条件1)超音波診断で脂肪肝が有るとの診断結果が得られた。
診断条件2)ALT値が高値(38(IU/L)以上)を示す。
診断条件3)アルコールの多量摂取(毎日摂取)がない。(除外規定)
診断条件4)肝炎ウイルスHBVおよびHCVについて陽性でない。(除外規定)
In the diagnosis of NAFLD (non-alcoholic fatty liver disease), since the examinees who satisfy the following four diagnostic conditions are considered to be NAFLD high risk groups, the examinees were classified into NAFLD positive groups.
Diagnosis condition 1) A diagnosis result that there was fatty liver was obtained by ultrasonic diagnosis.
Diagnosis condition 2) The ALT value is high (38 (IU / L) or more).
Diagnosis condition 3) There is no large intake of alcohol (daily intake). (Exclusion rules)
Diagnosis condition 4) Not positive for hepatitis virus HBV and HCV. (Exclusion rules)
 この4つの診断条件に基づいて受診者をNAFLD陰性とNAFLD陽性の2群に分類したところ、NAFLD陰性群およびNAFLD陽性群はそれぞれ、1415名および167名であった。受診者から採取された血漿中のアミノ酸濃度を測定し、各アミノ酸濃度についてのNAFLD陽性の判別能をROC_AUCで評価した。なお、アミノ酸濃度の測定は、上述した実施形態で説明した(A)の測定方法で行った。 The subjects were classified into two groups, NAFLD-negative and NAFLD-positive, based on these four diagnostic conditions. The NAFLD-negative and NAFLD-positive groups were 1415 and 167, respectively. The amino acid concentration in plasma collected from the examinee was measured, and the NAFLD positive discrimination ability for each amino acid concentration was evaluated by ROC_AUC. The amino acid concentration was measured by the measurement method (A) described in the above embodiment.
 ROC_AUCがノンパラメトリックの仮定のもとで帰無仮説をROC_AUC=0.5とした場合の検定で有意(p<0.05)であったアミノ酸は、Gln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lysであった。これらのアミノ酸の内、Glu,Pro,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,LysについてはNAFLD陽性群で有意な増加を示し、一方、Gln,Gly,CitについてはNAFLD陽性群で有意な減少を示した。 The amino acids that were significant (p <0.05) in the test when ROC_AUC is nonparametric and the null hypothesis is ROC_AUC = 0.5 are Gln, Glu, Pro, Gly, Ala, Cit Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys. Among these amino acids, Glu, Pro, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, and Lys show a significant increase in the NAFLD positive group, while Gln, Gly, and Cit The NAFLD positive group showed a significant decrease.
 NASH(非アルコール性脂肪肝炎)の診断において、実施例2で示したNAFLDの診断条件1)~4)に下記の診断条件5)を加えた5つの診断条件を満たす受診者はNASHハイリスク群と考えられることから、当該受診者をNASH陽性群に分類した。
診断条件5)メタボリック・シンドロームの診断条件(文献「メタボリック・シンドローム診断基準検討委員会,日本内科学会雑誌,94,794,2005.」参照)を満たす。
In the diagnosis of NASH (non-alcoholic steatohepatitis), patients who meet the five diagnostic conditions obtained by adding the following diagnostic conditions 5) to the NAFLD diagnostic conditions 1) to 4) shown in Example 2 are NASH high risk groups Therefore, the examinee was classified into a NASH positive group.
Diagnosis condition 5) Satisfy the diagnosis condition of metabolic syndrome (refer to the document “Metabolic Syndrome Diagnosis Criteria Review Committee, Journal of Japan Society for Internal Medicine, 94, 794, 2005”).
 この5つの診断条件に基づいて受診者をNASH陰性とNASH陽性の2群に分類したところ、NASH陰性群およびNASH陽性群はそれぞれ、1518名および64名であった。受診者から採取された血漿中のアミノ酸濃度を測定し、各アミノ酸濃度についてのNASH陽性の判別能をROC_AUCで評価した。なお、アミノ酸濃度の測定は、上述した実施形態で説明した(A)の測定方法で行った。 The examinees were classified into two groups, NASH negative and NASH positive, based on these five diagnostic conditions, and the NASH negative group and NASH positive group were 1518 and 64, respectively. The amino acid concentration in plasma collected from the examinee was measured, and the NASH positive discrimination ability for each amino acid concentration was evaluated by ROC_AUC. The amino acid concentration was measured by the measurement method (A) described in the above embodiment.
 ROC_AUCがノンパラメトリックの仮定のもとで帰無仮説をROC_AUC=0.5とした場合の検定で有意(p<0.05)であったアミノ酸は、Gln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trpであった。これらのアミノ酸の内、Glu,Pro,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trpについては、NASH陽性群で有意な増加を示し、一方、Gln,GlyについてはNASH陽性群で有意な減少を示した。 Amino acids that were significant (p <0.05) in the test when ROC_AUC is nonparametric and the null hypothesis is ROC_AUC = 0.5 are Gln, Glu, Pro, Gly, Ala, Leu Ile, Val, Tyr, Phe, Met, His, Trp. Among these amino acids, Glu, Pro, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, and Trp show a significant increase in the NASH positive group, while Gln and Gly have the NASH positive group. Showed a significant decrease.
 実施例1で測定したものと同じアミノ酸濃度データを用いて、実施例1で記述した脂肪肝の診断に有効な、血漿中のアミノ酸濃度を変数に持つ脂肪肝陽性を判別するための多変量判別式(多変量関数)を求めた。 Using the same amino acid concentration data as measured in Example 1, it is effective for the diagnosis of fatty liver described in Example 1, and multivariate discrimination for discriminating positive fatty liver having amino acid concentration in plasma as a variable. The formula (multivariate function) was obtained.
 まず、多変量判別式としてロジスティック回帰式を用い、ロジスティック回帰式に含める変数の組み合わせを探索し、そしてクロスバリデーションとしてLeave-One-Out法を採用して、脂肪肝陽性の良好な判別能を持つロジスティック回帰式の探索を鋭意実施した。 First, the logistic regression equation is used as a multivariate discriminant, the combination of variables included in the logistic regression equation is searched, and the Leave-One-Out method is adopted as a cross-validation. The search of the logistic regression equation was carried out earnestly.
 ROC_AUCで評価した判別能が同等に良好なロジスティック回帰式の一覧を、図25および図26に示す。ここで、図25および図26には、ロジスティック回帰式に含まれる変数の組み合わせ、クロスバリデーション有りでのROC_AUC値、およびクロスバリデーション無しでのROC_AUC値が示されている。図25および図26に含まれる式における変数の出現頻度を多い順に10位まで列挙すると、Glu,Ala,Tyr,Ser,Gly,Val,Leu,Ile,Cit,Hisである。 A list of logistic regression equations with equally good discrimination ability evaluated by ROC_AUC is shown in FIG. 25 and FIG. Here, FIGS. 25 and 26 show combinations of variables included in the logistic regression equation, ROC_AUC values with cross validation, and ROC_AUC values without cross validation. Enumerated in descending order of the appearance frequency of variables in the expressions included in FIGS. 25 and 26 are Glu, Ala, Tyr, Ser, Gly, Val, Leu, Ile, Cit, and His.
 なお、判別能が同等に良好なロジスティック回帰式のうち、例えば、変数の組「Ser,Glu,Gly,Ala,Val,Tyr」を持つ指標式「(-4.833)+(-0.017)Ser+(0.0344)Glu+(-0.0057)Gly+(0.0049)Ala+(0.00675)Val+(0.025)Tyr」の判別能は、ROC_AUC=0.796,感度=0.715,特異度=0.731と良好なものであった。 Among logistic regression equations with equally good discriminating ability, for example, an index formula “(−4.833) + (− 0.017) having a variable set“ Ser, Glu, Gly, Ala, Val, Tyr ”. ) Ser + (0.0344) Glu + (− 0.0057) Gly + (0.0049) Ala + (0.00675) Val + (0.025) Tyr ”, ROC_AUC = 0.996, sensitivity = 0.715 , Specificity was 0.731 and good.
 また、多変量判別式として分数式を用い、分数式に含める変数の組み合わせを探索し、そしてクロスバリデーションとしてブートストラップ法を採用して、脂肪肝陽性の良好な判別能を持つ分数式の探索を鋭意実施した。 Also, using fractional expressions as multivariate discriminants, searching for combinations of variables to be included in fractional expressions, and adopting the bootstrap method as cross-validation, search for fractional expressions with good discrimination ability of fatty liver positive. Conducted earnestly.
 ROC_AUCで評価した判別能が同等に良好な分数式の一覧を、図27および図28に示す。ここで、図27および図28には、分数式、クロスバリデーション有りでのROC_AUC値の平均値、およびクロスバリデーション無しでのROC_AUC値が示されている。図27および図28に含まれる式における変数の出現頻度を多い順に10位まで列挙すると、Glu,Gly,Ser,Tyr,Cit,Ala,Asn,Orn,Ile,Metである。 FIG. 27 and FIG. 28 show a list of fractional expressions with equally good discrimination ability evaluated by ROC_AUC. Here, FIG. 27 and FIG. 28 show fractional expressions, average values of ROC_AUC values with cross validation, and ROC_AUC values without cross validation. Enumerated in descending order of the appearance frequency of variables in the expressions included in FIGS. 27 and 28 are Glu, Gly, Ser, Tyr, Cit, Ala, Asn, Orn, Ile, and Met.
 実施例2で測定したものと同じアミノ酸濃度データを用いて、実施例2で記述したNAFLDの診断に有効な、血漿中のアミノ酸濃度を変数に持つNAFLD陽性を判別するための多変量判別式(多変量関数)を求めた。 Using the same amino acid concentration data as measured in Example 2, a multivariate discriminant for determining NAFLD positivity having the amino acid concentration in plasma as a variable, which is effective for the diagnosis of NAFLD described in Example 2 ( Multivariate function).
 まず、多変量判別式としてロジスティック回帰式を用い、ロジスティック回帰式に含める変数の組み合わせを探索し、そしてクロスバリデーションとしてLeave-One-Out法を採用して、NAFLD陽性の良好な判別能を持つロジスティック回帰式の探索を鋭意実施した。 First, use logistic regression as a multivariate discriminant, search for combinations of variables to be included in the logistic regression, and adopt the Leave-One-Out method as cross-validation, and logistic with good NAFLD positive discrimination The search of the regression equation was conducted earnestly.
 ROC_AUCで評価した判別能が同等に良好なロジスティック回帰式の一覧を、図29および図30に示す。ここで、図29および図30には、ロジスティック回帰式に含まれる変数の組み合わせ、クロスバリデーション有りでのROC_AUC値、およびクロスバリデーション無しでのROC_AUC値が示されている。図29および図30に含まれる式における変数の出現頻度を多い順に10位まで列挙すると、Glu,Tyr,His,Val,Orn,Ile,Ser,Thr,Trp,Pheである。 29 and 30 show a list of logistic regression equations with equally good discrimination ability evaluated by ROC_AUC. Here, FIGS. 29 and 30 show combinations of variables included in the logistic regression equation, ROC_AUC values with cross-validation, and ROC_AUC values without cross-validation. Enumerating the appearance frequency of variables in the formulas included in FIG. 29 and FIG. 30 up to the 10th order is Glu, Tyr, His, Val, Orn, Ile, Ser, Thr, Trp, Phe.
 なお、判別能が同等に良好なロジスティック回帰式のうち、例えば、変数の組「Ser,Glu,Gly,Val,Tyr,His」を持つ指標式「(-9.035)+(-0.0121)Ser+(0.0325)Glu+(-0.00565)Gly+(0.0113)Val+(0.0299)Tyr+(0.0271)His」の判別能は、ROC_AUC=0.825,感度=0.737,特異度=0.776と良好なものであった。 Among logistic regression equations having equally good discriminating ability, for example, an index formula “(−9.035) + (− 0.0121) having a variable set“ Ser, Glu, Gly, Val, Tyr, His ”is used. ) Ser + (0.0325) Glu + (− 0.00565) Gly + (0.0113) Val + (0.0299) Tyr + (0.0271) His ”has a discriminating ability of ROC_AUC = 0.825, sensitivity = 0.737. The specificity was 0.776 and good.
 また、多変量判別式として分数式を用い、分数式に含める変数の組み合わせを探索し、そしてクロスバリデーションとしてブートストラップ法を採用して、NAFLD陽性の良好な判別能を持つ分数式の探索を鋭意実施した。 Also, using fractional expressions as multivariate discriminants, searching for combinations of variables to be included in fractional expressions, and employing the bootstrap method as cross-validation, we are eager to search for fractional expressions with good NAFLD positive discriminating ability. Carried out.
 ROC_AUCで評価した判別能が同等に良好な分数式の一覧を、図31および図32に示す。ここで、図31および図32には、分数式、クロスバリデーション有りでのROC_AUC値の平均値、およびクロスバリデーション無しでのROC_AUC値が示されている。図31および図32に含まれる式における変数の出現頻度を多い順に10位まで列挙すると、Glu,Tyr,Gly,Cit,Orn,Ser,Asn,His,Met,Ileである。 A list of fractional expressions with equally good discrimination ability evaluated by ROC_AUC is shown in FIG. 31 and FIG. Here, FIG. 31 and FIG. 32 show fractional expressions, average values of ROC_AUC values with cross validation, and ROC_AUC values without cross validation. When the appearance frequency of the variables in the formulas included in FIGS. 31 and 32 is listed in descending order, they are Glu, Tyr, Gly, Cit, Orn, Ser, Asn, His, Met, and Ile.
 実施例3で測定したものと同じアミノ酸濃度データを用いて、実施例3で記述したNASHの診断に有効な、血漿中のアミノ酸濃度を変数に持つNASH陽性を判別するための多変量判別式(多変量関数)を求めた。 A multivariate discriminant for determining NASH positivity having the amino acid concentration in plasma as a variable, which is effective for diagnosis of NASH described in Example 3, using the same amino acid concentration data as measured in Example 3 ( Multivariate function).
 まず、多変量判別式としてロジスティック回帰式を用い、ロジスティック回帰式に含める変数の組み合わせを探索し、そしてクロスバリデーションとしてLeave-One-Out法を採用して、NASH陽性の良好な判別能を持つロジスティック回帰式の探索を鋭意実施した。 First, use logistic regression as a multivariate discriminant, search for combinations of variables to be included in the logistic regression, and adopt the Leave-One-Out method as cross-validation, and logistic with good NASH positive discrimination The search of the regression equation was conducted earnestly.
 ROC_AUCで評価した判別能が同等に良好な多変量ロジスティック回帰式の一覧を、図33および図34に示す。ここで、図33および図34には、ロジスティック回帰式に含まれる変数の組み合わせ、クロスバリデーション有りでのROC_AUC値、およびクロスバリデーション無しでのROC_AUC値が示されている。図33および図34に含まれる式における変数の出現頻度を多い順に10位まで列挙すると、Glu,Tyr,Ala,Val,Gln,His,Phe,Thr,Asn,Serである。 33 and 34 show a list of multivariate logistic regression equations with equally good discrimination ability evaluated by ROC_AUC. Here, FIGS. 33 and 34 show combinations of variables included in the logistic regression equation, ROC_AUC values with cross validation, and ROC_AUC values without cross validation. When the appearance frequency of the variables in the formulas included in FIGS. 33 and 34 is listed up to 10th in descending order, they are Glu, Tyr, Ala, Val, Gln, His, Phe, Thr, Asn, Ser.
 なお、判別能が同等に良好なロジスティック回帰式のうち、例えば、変数の組「Glu,Gln,Gly,Ala,Val,Tyr」を持つ指標式「(-7.443)+(0.0283)Glu+(-0.00648)Gln+(-0.00757)Gly+(0.00468)Ala+(0.0131)Val+(0.0298)Tyr」の判別能は、ROC_AUC=0.857,感度=0.766,特異度=0.789と良好なものであった。 Among logistic regression equations with equally good discriminability, for example, an index formula “(−7.443) + (0.0283) having a variable set“ Glu, Gln, Gly, Ala, Val, Tyr ”. The discriminating ability of “Glu + (− 0.00648) Gln + (− 0.00757) Gly + (0.00468) Ala + (0.0131) Val + (0.0298) Tyr” is ROC_AUC = 0.857, sensitivity = 0.766 , Specificity was 0.789 and good.
 また、多変量判別式として分数式を用い、分数式に含める変数の組み合わせを探索し、そしてクロスバリデーションとしてブートストラップ法を採用して、NASH陽性の良好な判別能を持つ分数式の探索を鋭意実施した。 Also, using fractional expressions as multivariate discriminants, searching for combinations of variables to be included in fractional expressions, and using the bootstrap method as cross-validation, eager to search for fractional expressions with good NASH positive discriminating ability Carried out.
 ROC_AUCで評価した判別能が同等に良好な分数式の一覧を、図35および図36に示す。ここで、図35および図36には、分数式、クロスバリデーション有りでのROC_AUC値の平均値、およびクロスバリデーション無しでのROC_AUC値が示されている。図35および図36に含まれる式における変数の出現頻度を多い順に10位まで列挙すると、Glu,Gly,Gln,Ala,Tyr,Val,His,Ser,Met,Thrである。 FIG. 35 and FIG. 36 show a list of fractional expressions with equally good discriminating ability evaluated by ROC_AUC. Here, FIG. 35 and FIG. 36 show fractional expressions, average values of ROC_AUC values with cross validation, and ROC_AUC values without cross validation. When the variable frequencies in the expressions included in FIGS. 35 and 36 are listed in descending order of the frequency of occurrence, they are Glu, Gly, Gln, Ala, Tyr, Val, His, Ser, Met, Thr.
 実施例2で記述したNAFLDの診断と実施例3で記述したNASHの診断に基づいて、NAFLD陽性の受診者を単純性脂肪肝(simple steatosis)とNASH陽性の2群に分類したところ、単純性脂肪肝群およびNASH陽性群はそれぞれ、103名および64名であった。NAFLD陽性の受診者から採取された血漿中のアミノ酸濃度を測定し、各アミノ酸濃度についてのNASH陽性の判別能をROC_AUCで評価した。なお、アミノ酸濃度の測定は、上述した実施形態で説明した(A)の測定方法で行った。 Based on the diagnosis of NAFLD described in Example 2 and the diagnosis of NASH described in Example 3, NAFLD-positive patients were classified into two groups, simple fatty liver (simple steatosis) and NASH-positive. The fatty liver group and NASH positive group were 103 and 64, respectively. The amino acid concentration in plasma collected from NAFLD-positive examinees was measured, and the NASH-positive discrimination ability for each amino acid concentration was evaluated by ROC_AUC. The amino acid concentration was measured by the measurement method (A) described in the above embodiment.
 ROC_AUCがノンパラメトリックの仮定のもとで帰無仮説をROC_AUC=0.5とした場合の検定で有意(p<0.05)であったアミノ酸は、Gln,Glu,Gly,Alaであった。これらのアミノ酸の内、Glu,Alaについては、NASH陽性群で有意な増加を示し、一方、Gln,GlyはNASH陽性群で有意な減少を示した。 The amino acids that were significant (p <0.05) in the test when ROC_AUC was nonparametric and the null hypothesis was ROC_AUC = 0.5 were Gln, Glu, Gly, and Ala. Among these amino acids, Glu and Ala showed a significant increase in the NASH positive group, while Gln and Gly showed a significant decrease in the NASH positive group.
 また、本実施例で測定したものと同じアミノ酸濃度データを用いて、血漿中のアミノ酸濃度を変数に持つNASH陽性を判別するための多変量判別式(多変量関数)を求めた。 Also, using the same amino acid concentration data as measured in this example, a multivariate discriminant (multivariate function) for determining NASH positivity having the amino acid concentration in plasma as a variable was obtained.
 まず、多変量関数としてロジスティック回帰式を用い、ロジスティック回帰式に含める変数の組み合わせを探索し、そしてクロスバリデーションとしてLeave-One-Out法を採用して、NASH陽性の良好な判別能を持つロジスティック回帰式の探索を鋭意実施した。 First, logistic regression using logistic regression as a multivariate function, searching for combinations of variables to be included in logistic regression, and adopting Leave-One-Out method as cross-validation, logistic regression with good NASH positive discrimination The search of the expression was carried out earnestly.
 ROC_AUCで評価した判別能が同等に良好なロジスティック回帰式の一覧を、図37および図38に示す。ここで、図37および図38には、ロジスティック回帰式に含まれる変数の組み合わせ、クロスバリデーション有りでのROC_AUC値、およびクロスバリデーション無しでのROC_AUC値が示されている。図37および図38に含まれる式における変数の出現頻度を多い順に10位まで列挙すると、Ala,Cit,Gln,Asn,Trp,Leu,Orn,Phe,Met,Ileである。 FIG. 37 and FIG. 38 show a list of logistic regression equations with equally good discrimination ability evaluated by ROC_AUC. Here, FIGS. 37 and 38 show combinations of variables included in the logistic regression equation, ROC_AUC values with cross validation, and ROC_AUC values without cross validation. When the appearance frequency of the variables in the formulas included in FIGS. 37 and 38 is listed in descending order, they are Ala, Cit, Gln, Asn, Trp, Leu, Orn, Phe, Met, and Ile.
 なお、判別能が同等に良好なロジスティック回帰式のうち、例えば、変数の組「Asn,Gln,Gly,Ala,Cit,Met」を持つ指標式「(1.989)+(-0.0708)Asn+(-0.0104)Gln+(-0.00473)Gly+(0.00649)Ala+(0.0776)Cit+(0.0768)Met」の判別能は、ROC_AUC=0.753,感度=0.688,特異度=0.718と良好なものであった。 Among logistic regression equations with equally good discriminating ability, for example, an index formula “(1.989) + (− 0.0708) having a variable set“ Asn, Gln, Gly, Ala, Cit, Met ”. Asn + (− 0.0104) Gln + (− 0.00473) Gly + (0.00649) Ala + (0.0776) Cit + (0.0768) Met ”has a discriminating ability of ROC_AUC = 0.553, sensitivity = 0.688. Specificity = 0.718 was good.
 また、多変量判別式として分数式を用い、分数式に含める変数の組み合わせを探索し、そしてクロスバリデーションとしてブートストラップ法を採用して、NASH陽性の良好な判別能を持つ分数式の探索を鋭意実施した。 Also, using fractional expressions as multivariate discriminants, searching for combinations of variables to be included in fractional expressions, and using the bootstrap method as cross-validation, eager to search for fractional expressions with good NASH positive discriminating ability Carried out.
 ROC_AUCで評価した判別能が同等に良好な分数式の一覧を、図39および図40に示す。ここで、図39および図40には、分数式、クロスバリデーション有りでのROC_AUC値の平均値、およびクロスバリデーション無しでのROC_AUC値が示されている。図39および図40に含まれる式における変数の出現頻度を多い順に10位まで列挙すると、Cit,Gln,Ala,Asn,Leu,Pro,Trp,Met,Glu,ABAである。 39 and 40 show a list of fractional expressions with equally good discriminating ability evaluated by ROC_AUC. Here, FIG. 39 and FIG. 40 show fractional expressions, average values of ROC_AUC values with cross validation, and ROC_AUC values without cross validation. 39. When the appearance frequency of the variables in the formulas included in FIGS. 39 and 40 is listed up to 10th in descending order, they are Cit, Gln, Ala, Asn, Leu, Pro, Trp, Met, Glu, and ABA.
 実施例2で記述したNAFLDの診断と実施例3で記述したNASHの診断に基づいて、全受診者を、NAFLD陰性(正常)、単純性脂肪肝(simple steatosis)とNASH陽性の3群に分類したところ、正常、単純性脂肪肝、およびNASH陽性はそれぞれ、1415名、103名、および64名であった。当該受診者から採取された血漿中のアミノ酸濃度を測定し、各アミノ酸を変数として含む多変量関数式により、最初に、全受診者について正常またはNAFLD陽性であるかを判別し、次に、NAFLD陽性と判別された群について単純性脂肪肝とNASH陽性を判別することにより、全体として2段階の正常、単純性脂肪肝、NASH陽性の3群の判別を実施した。なお、アミノ酸濃度の測定は、上述した実施形態で説明した(A)の測定方法で行った。正常とNAFLD陽性の最初の判別では、実施例5で記述した多変量関数式「(-9.035)+(-0.0121)Ser+(0.0325)Glu+(-0.00565)Gly+(0.0113)Val+(0.0299)Tyr+(0.0271)His」を用い、次にNAFLD陽性と判別された群に対する単純性脂肪肝とNASH陽性の判別では、実施例7で記述した多変量関数式「(1.989)+(-0.0708)Asn+(-0.0104)Gln+(-0.00473)Gly+(0.00649)Ala+(0.0776)Cit+(0.0768)Met」を用いた。 Based on the diagnosis of NAFLD described in Example 2 and the diagnosis of NASH described in Example 3, all examinees are classified into three groups: NAFLD negative (normal), simple fatty liver (simple steatosis), and NASH positive. As a result, normal, simple fatty liver, and NASH positive were 1415, 103, and 64, respectively. The concentration of amino acids in plasma collected from the examinee is measured, and a multivariate function expression including each amino acid as a variable is first used to determine whether all examinees are normal or NAFLD positive, and then NAFLD By discriminating between simple fatty liver and NASH positivity for the group determined to be positive, two groups of normal, simple fatty liver and NASH positive were discriminated as a whole. The amino acid concentration was measured by the measurement method (A) described in the above embodiment. In the first discrimination between normal and NAFLD positive, the multivariate function expression “(−9.035) + (− 0.0121) Ser + (0.0325) Glu + (− 0.00565) Gly + (0 .0113) Val + (0.0299) Tyr + (0.0271) His ”and the discrimination between simple fatty liver and NASH positive for the group determined to be NAFLD positive next, the multivariate function described in Example 7 Using the formula “(1.989) + (− 0.0708) Asn + (− 0.0104) Gln + (− 0.00473) Gly + (0.00649) Ala + (0.0776) Cit + (0.0768) Met” It was.
 2段階の正常、単純性脂肪肝、NASH陽性の3群の判別の結果を、図41(図中では正常をNormalと表記し、単純性脂肪肝をSteatosisと表記した。)に示す。図中の4組の数字は、各判別予測結果の合計数(正常、単純性脂肪肝、NASH陽性の3群の数)を表す。 FIG. 41 shows the results of discrimination between three groups of normal, simple fatty liver and NASH positive in two stages (in the figure, normal is represented as Normal and simple fatty liver is represented as Steatosis). The four sets of numbers in the figure represent the total number of each discrimination prediction result (number of normal, simple fatty liver, NASH positive 3 groups).
 2段階の正常、単純性脂肪肝、NASH陽性の3群の判別の結果について、有症率(Prev)、感度(Sen)、陽性適中率(PPV)、および予測の濃縮率(PPV/Prev)を、図42(図中では正常をNormalと表記し、単純性脂肪肝をSteatosisと表記した。)に示す。 Prevalence (Prev), sensitivity (Sen), positive predictive value (PPV), and predictive enrichment rate (PPV / Prev) for the results of discrimination of 3 groups of 2 stages normal, simple fatty liver, NASH positive Is shown in FIG. 42 (in the figure, normal is expressed as Normal and simple fatty liver is expressed as Steatosis).
 2段階の正常、単純性脂肪肝、NASH陽性の3群の判別では、NASH陽性の予測の濃縮率は5倍程度と良好な判別能であった。 In the discrimination between the three groups of normal, simple fatty liver and NASH positive in two stages, the concentration rate of NASH positive prediction was about 5 times, which was a good discrimination ability.
 以上のように、本発明にかかる脂肪性肝疾患の評価方法などは、産業上の多くの分野、特に医薬品や食品、医療などの分野で広く実施することができ、特に、脂肪性肝疾患の状態の進行予測や疾病リスク予測やプロテオームやメタボローム解析などを行うバイオインフォマティクス分野において極めて有用である。 As described above, the method for evaluating fatty liver disease according to the present invention can be widely implemented in many industrial fields, particularly pharmaceuticals, foods, and medical fields. It is extremely useful in the field of bioinformatics that performs state progression prediction, disease risk prediction, proteome and metabolomic analysis.
 100 脂肪性肝疾患評価装置
 102 制御部
  102a 要求解釈部
  102b 閲覧処理部
  102c 認証処理部
  102d 電子メール生成部
  102e Webページ生成部
  102f 受信部
  102g 脂肪性肝疾患状態情報指定部
  102h 多変量判別式作成部
  102h1 候補多変量判別式作成部
  102h2 候補多変量判別式検証部
  102h3 変数選択部
  102i 判別値算出部
  102j 判別値基準評価部
  102j1 判別値基準判別部
  102k 結果出力部
  102m 送信部
 104 通信インターフェース部
 106 記憶部
  106a 利用者情報ファイル
  106b アミノ酸濃度データファイル
  106c 脂肪性肝疾患状態情報ファイル
  106d 指定脂肪性肝疾患状態情報ファイル
  106e 多変量判別式関連情報データベース
  106e1 候補多変量判別式ファイル
  106e2 検証結果ファイル
  106e3 選択脂肪性肝疾患状態情報ファイル
  106e4 多変量判別式ファイル
  106f 判別値ファイル
  106g 評価結果ファイル
 108 入出力インターフェース部
 112 入力装置
 114 出力装置
 200 クライアント装置(情報通信端末装置)
 300 ネットワーク
 400 データベース装置
DESCRIPTION OF SYMBOLS 100 Fatty liver disease evaluation apparatus 102 Control part 102a Request interpretation part 102b Browsing process part 102c Authentication process part 102d E-mail production | generation part 102e Web page production | generation part 102f Reception part 102g Fatty liver disease state information designation | designated part 102h Multivariate discriminant preparation Unit 102h1 candidate multivariate discriminant creation unit 102h2 candidate multivariate discriminant verification unit 102h3 variable selection unit 102i discriminant value calculation unit 102j discriminant value criterion evaluation unit 102j1 discriminant value criterion discriminator 102k result output unit 102m transmission unit 104 communication interface unit 106 Storage unit 106a User information file 106b Amino acid concentration data file 106c Fatty liver disease state information file 106d Designated fatty liver disease state information file 106e Multivariate discriminant-related information database 06e1 candidate multivariate discriminant file 106e2 verification result file 106e3 selected fatty liver disease state information file 106e4 multivariate discriminant file 106f discriminant value file 106g evaluation result file 108 input / output interface unit 112 input device 114 output device 200 client device (information Communication terminal device)
300 network 400 database device

Claims (32)

  1.  評価対象から採取した血液中のアミノ酸の濃度値に関するアミノ酸濃度データを取得する取得ステップと、
     前記取得ステップで取得した前記評価対象の前記アミノ酸濃度データに基づいて、前記評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する濃度値基準評価ステップと
     を含むことを特徴とする脂肪性肝疾患の評価方法。
    An acquisition step of acquiring amino acid concentration data relating to the concentration value of amino acids in blood collected from the evaluation target;
    Based on the amino acid concentration data of the evaluation target acquired in the acquisition step, at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcohol steathepatitis) is determined for the evaluation target. A method for evaluating fatty liver disease, comprising: a concentration value reference evaluation step for evaluating a state of fatty liver disease.
  2.  前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記NASHの状態を評価すること、
     を特徴とする請求項1に記載の脂肪性肝疾患の評価方法。
    The concentration value reference evaluation step includes Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn included in the amino acid concentration data acquired in the acquisition step. , Evaluating the state of the NASH for the evaluation object based on the concentration value of at least one of Ser,
    The method for evaluating fatty liver disease according to claim 1.
  3.  前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの前記濃度値に基づいて、前記NASHまたは非NASHであるか否かを判別する濃度値基準判別ステップ
     をさらに含むことを特徴とする請求項2に記載の脂肪性肝疾患の評価方法。
    The concentration value reference evaluation step includes Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn included in the amino acid concentration data acquired in the acquisition step. 3. The fatty liver disease according to claim 2, further comprising: a concentration value criterion determination step for determining whether the NASH or the non-NASH is based on the concentration value of at least one of Ser and Ser. Evaluation method.
  4.  前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記NAFLDの状態を評価すること、
     を特徴とする請求項1に記載の脂肪性肝疾患の評価方法。
    The concentration value reference evaluation step includes Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys included in the amino acid concentration data acquired in the acquisition step. , Orn, Ser, Thr, Asn, based on the concentration value, evaluating the state of the NAFLD for the evaluation object,
    The method for evaluating fatty liver disease according to claim 1.
  5.  前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記NAFLDまたは非NAFLDであるか否かを判別する濃度値基準判別ステップ
     をさらに含むことを特徴とする請求項4に記載の脂肪性肝疾患の評価方法。
    The concentration value reference evaluation step includes Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys included in the amino acid concentration data acquired in the acquisition step. , Orn, Ser, Thr, Asn, and further comprising a concentration value reference determining step for determining whether the evaluation object is the NAFLD or the non-NAFLD based on the concentration value. The method for evaluating fatty liver disease according to claim 4.
  6.  前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記脂肪肝の状態を評価すること、
     を特徴とする請求項1に記載の脂肪性肝疾患の評価方法。
    The concentration value reference evaluation step includes Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp included in the amino acid concentration data acquired in the acquisition step. , Asn, Orn, based on the concentration value of at least one of the evaluation object, to evaluate the state of the fatty liver,
    The method for evaluating fatty liver disease according to claim 1.
  7.  前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記脂肪肝または非脂肪肝であるか否かを判別する濃度値基準判別ステップ
     をさらに含むことを特徴とする請求項6に記載の脂肪性肝疾患の評価方法。
    The concentration value reference evaluation step includes Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp included in the amino acid concentration data acquired in the acquisition step. , Asn, Orn, further comprising: a concentration value reference determining step for determining whether the evaluation target is the fatty liver or non-fatty liver based on the concentration value. Item 7. The method for evaluating fatty liver disease according to Item 6.
  8.  前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記NASHおよび前記NAFLDの状態を評価すること、
     を特徴とする請求項1に記載の脂肪性肝疾患の評価方法。
    The concentration value reference evaluation step includes Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data acquired in the acquisition step. Evaluating the state of the NASH and the NAFLD for the evaluation object based on at least one of the concentration values;
    The method for evaluating fatty liver disease according to claim 1.
  9.  前記濃度値基準評価ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記NASH、または非NASH且つ前記NAFLDであるか否かを判別する濃度値基準判別ステップ
     をさらに含むことを特徴とする請求項8に記載の脂肪性肝疾患の評価方法。
    The concentration value reference evaluation step includes Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data acquired in the acquisition step. The density value reference determination step of determining whether the evaluation target is the NASH or the non-NASH and the NAFLD based on at least one of the density values. Method for fatty liver disease in children.
  10.  前記濃度値基準評価ステップは、
     前記取得ステップで取得した前記アミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む予め設定した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、
     前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価する判別値基準評価ステップと
     をさらに含むこと、
     を特徴とする請求項1に記載の脂肪性肝疾患の評価方法。
    The density value reference evaluation step includes:
    A discriminant value calculating step of calculating a discriminant value which is a value of the multivariate discriminant based on the amino acid concentration data acquired in the acquiring step and a preset multivariate discriminant including the amino acid concentration as a variable; ,
    A discriminant value criterion evaluating step for evaluating the state of fatty liver disease for the evaluation object based on the discriminant value calculated in the discriminant value calculating step;
    The method for evaluating fatty liver disease according to claim 1.
  11.  前記多変量判別式は、ロジスティック回帰式、分数式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであること、
     を特徴とする請求項10に記載の脂肪性肝疾患の評価方法。
    The multivariate discriminant is a logistic regression formula, fractional formula, linear discriminant formula, multiple regression formula, formula created with support vector machine, formula created with Mahalanobis distance method, formula created with canonical discriminant analysis, Be one of the formulas created in the decision tree,
    The method for evaluating fatty liver disease according to claim 10.
  12.  前記判別値算出ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つの前記濃度値、およびGln,Glu,Pro,Gly,Ala,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Thr,Asn,Serのうち少なくとも1つを前記変数として含む前記多変量判別式に基づいて、前記判別値を算出し、
     前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記NASHの状態を評価すること、
     を特徴とする請求項10または11に記載の脂肪性肝疾患の評価方法。
    The discriminant value calculating step includes Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, included in the amino acid concentration data acquired in the acquiring step. And at least one of the concentration values of Ser, and at least one of Gln, Glu, Pro, Gly, Ala, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Thr, Asn, Ser. Calculating the discriminant value based on the multivariate discriminant included as:
    The discriminant value reference evaluation step evaluates the state of the NASH for the evaluation object based on the discriminant value calculated in the discriminant value calculation step;
    The method for evaluating fatty liver disease according to claim 10 or 11.
  13.  前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記NASHまたは非NASHであるか否かを判別する判別値基準判別ステップ
     をさらに含むことを特徴とする請求項12に記載の脂肪性肝疾患の評価方法。
    The discriminant value criterion evaluation step further includes a discriminant value criterion discriminating step for discriminating whether the evaluation target is the NASH or non-NASH based on the discriminant value calculated in the discriminant value calculation step. The method for evaluating fatty liver disease according to claim 12.
  14.  前記多変量判別式は、Glu,Gln,Gly,Ala,Val,Tyrを前記変数として含む前記ロジスティック回帰式であること、
     を特徴とする請求項13に記載の脂肪性肝疾患の評価方法。
    The multivariate discriminant is the logistic regression equation including Glu, Gln, Gly, Ala, Val, Tyr as the variables;
    The method for evaluating fatty liver disease according to claim 13.
  15.  前記判別値算出ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つの前記濃度値、およびGln,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Lys,Orn,Ser,Thr,Asnのうち少なくとも1つを前記変数として含む前記多変量判別式に基づいて、前記判別値を算出し、
     前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記NAFLDの状態を評価すること、
     を特徴とする請求項10または11に記載の脂肪性肝疾患の評価方法。
    The discriminant value calculating step includes Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, included in the amino acid concentration data acquired in the acquiring step. The concentration value of at least one of Orn, Ser, Thr, Asn, and Gln, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Lys, Orn, Ser , Thr, Asn based on the multivariate discriminant including at least one of the variables as the variable,
    The discriminant value reference evaluation step evaluates the state of the NAFLD for the evaluation object based on the discriminant value calculated in the discriminant value calculation step;
    The method for evaluating fatty liver disease according to claim 10 or 11.
  16.  前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記NAFLDまたは非NAFLDであるか否かを判別する判別値基準判別ステップ
     をさらに含むことを特徴とする請求項15に記載の脂肪性肝疾患の評価方法。
    The discriminant value criterion evaluation step further includes a discriminant value criterion discriminating step for discriminating whether the evaluation object is the NAFLD or non-NAFLD based on the discriminant value calculated in the discriminant value calculation step. The method for evaluating fatty liver disease according to claim 15.
  17.  前記多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを前記変数として含む前記ロジスティック回帰式であること、
     を特徴とする請求項16に記載の脂肪性肝疾患の評価方法。
    The multivariate discriminant is the logistic regression equation including Ser, Glu, Gly, Val, Tyr, His as the variables;
    The method for evaluating fatty liver disease according to claim 16.
  18.  前記判別値算出ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つの前記濃度値、およびThr,Ser,Glu,Pro,Gly,Ala,Cit,Leu,Ile,Val,Tyr,Phe,Met,His,Trp,Asn,Ornのうち少なくとも1つを前記変数として含む前記多変量判別式に基づいて、前記判別値を算出し、
     前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記脂肪肝の状態を評価すること、
     を特徴とする請求項10または11に記載の脂肪性肝疾患の評価方法。
    The discriminant value calculating step includes Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, included in the amino acid concentration data acquired in the acquiring step. At least one of Asn and Orn, and at least one of Thr, Ser, Glu, Pro, Gly, Ala, Cit, Leu, Ile, Val, Tyr, Phe, Met, His, Trp, Asn, Orn Calculating the discriminant value based on the multivariate discriminant including one as the variable,
    The discriminant value criterion evaluation step evaluates the state of fatty liver for the evaluation object based on the discriminant value calculated in the discriminant value calculation step;
    The method for evaluating fatty liver disease according to claim 10 or 11.
  19.  前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記脂肪肝または非脂肪肝であるか否かを判別する判別値基準判別ステップ
     をさらに含むことを特徴とする請求項18に記載の脂肪性肝疾患の評価方法。
    The discriminant value criterion evaluation step further includes a discriminant value criterion discriminating step for discriminating whether the evaluation target is the fatty liver or non-fatty liver based on the discriminant value calculated in the discriminant value calculating step. The method for evaluating fatty liver disease according to claim 18, comprising:
  20.  前記多変量判別式は、Ser,Glu,Gly,Ala,Val,Tyrを前記変数として含む前記ロジスティック回帰式であること、
     を特徴とする請求項19に記載の脂肪性肝疾患の評価方法。
    The multivariate discriminant is the logistic regression equation including Ser, Glu, Gly, Ala, Val, Tyr as the variables;
    The method for evaluating fatty liver disease according to claim 19.
  21.  前記判別値算出ステップは、前記取得ステップで取得した前記アミノ酸濃度データに含まれるGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つの前記濃度値、およびGln,Glu,Gly,Ala,Cit,Asn,Trp,Leu,Orn,Phe,Met,Ile,Pro,ABAのうち少なくとも1つを前記変数として含む前記多変量判別式に基づいて、前記判別値を算出し、
     前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記NASHおよび前記NAFLDの状態を評価すること、
     を特徴とする請求項10または11に記載の脂肪性肝疾患の評価方法。
    The discriminant value calculating step includes at least one of Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA included in the amino acid concentration data acquired in the acquiring step. The multivariate discriminant including at least one of the one concentration value and Gln, Glu, Gly, Ala, Cit, Asn, Trp, Leu, Orn, Phe, Met, Ile, Pro, and ABA as the variable. Based on the discriminant value,
    The discriminant value reference evaluation step evaluates the state of the NASH and the NAFLD for the evaluation object based on the discriminant value calculated in the discriminant value calculation step;
    The method for evaluating fatty liver disease according to claim 10 or 11.
  22.  前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記NASH、または非NASH且つ前記NAFLDであるか否かを判別する判別値基準判別ステップ
     をさらに含むことを特徴とする請求項21に記載の脂肪性肝疾患の評価方法。
    In the discriminant value criterion evaluation step, a discriminant value criterion discriminating step for discriminating whether the evaluation target is the NASH, non-NASH, or the NAFLD based on the discriminant value calculated in the discriminant value calculation step. The method for evaluating fatty liver disease according to claim 21, further comprising:
  23.  前記多変量判別式は、Asn,Gln,Gly,Ala,Cit,Metを前記変数として含む前記ロジスティック回帰式であること、
     を特徴とする請求項22に記載の脂肪性肝疾患の評価方法。
    The multivariate discriminant is the logistic regression equation including Asn, Gln, Gly, Ala, Cit, Met as the variables;
    The method for evaluating fatty liver disease according to claim 22.
  24.  前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、非NAFLD、前記NASH、または非NASH且つ前記NAFLDであるか否かを判別する判別値基準判別ステップ
     をさらに含むことを特徴とする請求項21に記載の脂肪性肝疾患の評価方法。
    The discriminant value reference evaluation step discriminates whether or not the evaluation object is non-NAFLD, NASH, non-NASH and NAFLD based on the discriminant value calculated in the discriminant value calculation step. The method for evaluating fatty liver disease according to claim 21, further comprising a reference discriminating step.
  25.  前記多変量判別式は、Ser,Glu,Gly,Val,Tyr,Hisを前記変数として含む前記ロジスティック回帰式、およびAsn,Gln,Gly,Ala,Cit,Metを前記変数として含む前記ロジスティック回帰式であること、
     を特徴とする請求項24に記載の脂肪性肝疾患の評価方法。
    The multivariate discriminant is the logistic regression equation including Ser, Glu, Gly, Val, Tyr, and His as the variables, and the logistic regression equation including Asn, Gln, Gly, Ala, Cit, and Met as the variables. There is,
    The method for evaluating fatty liver disease according to claim 24.
  26.  制御手段と記憶手段とを備え、評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する脂肪性肝疾患評価装置であって、
     前記制御手段は、
     アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出手段と、
     前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価する判別値基準評価手段と
     を備えたこと、
     を特徴とする脂肪性肝疾患評価装置。
    A control means and a storage means are provided, and the status of fatty liver disease including at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis) is evaluated for an evaluation target An apparatus for evaluating fatty liver disease,
    The control means includes
    A discriminant value that is a value of the multivariate discriminant based on the previously obtained amino acid concentration data of the evaluation object relating to the amino acid concentration value and the multivariate discriminant stored in the storage means including the amino acid concentration as a variable Discriminant value calculating means for calculating
    Based on the discriminant value calculated by the discriminant value calculating unit, the discriminant value criterion-evaluating unit for evaluating the status of the fatty liver disease for the evaluation target,
    An apparatus for evaluating fatty liver disease.
  27.  制御手段と記憶手段とを備えた情報処理装置において実行される、評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する脂肪性肝疾患評価方法であって、
     前記制御手段において実行される、
     アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、
     前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価する判別値基準評価ステップと
     を含むこと、
     を特徴とする脂肪性肝疾患評価方法。
    A fat that includes at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis), which is executed in an information processing apparatus including a control unit and a storage unit A method for evaluating fatty liver disease for evaluating the state of congenital liver disease,
    Executed in the control means,
    A discriminant value that is a value of the multivariate discriminant based on the previously obtained amino acid concentration data of the evaluation object relating to the amino acid concentration value and the multivariate discriminant stored in the storage means including the amino acid concentration as a variable A discriminant value calculating step for calculating
    A discriminant value criterion evaluating step for evaluating the state of fatty liver disease for the evaluation object based on the discriminant value calculated in the discriminant value calculating step;
    A method for evaluating fatty liver disease.
  28.  制御手段と記憶手段とを備えた情報処理装置において実行させるための、評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する脂肪性肝疾患評価プログラムであって、
     前記制御手段において実行させるための、
     アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、
     前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価する判別値基準評価ステップと
     を含むこと、
     を特徴とする脂肪性肝疾患評価プログラム。
    Evaluation targets to be executed in an information processing apparatus including a control unit and a storage unit include at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcohol steathepatitis) A fatty liver disease evaluation program for evaluating the status of fatty liver disease,
    For execution in the control means;
    A discriminant value that is a value of the multivariate discriminant based on the previously obtained amino acid concentration data of the evaluation object relating to the amino acid concentration value and the multivariate discriminant stored in the storage means including the amino acid concentration as a variable A discriminant value calculating step for calculating
    A discriminant value criterion evaluating step for evaluating the state of fatty liver disease for the evaluation object based on the discriminant value calculated in the discriminant value calculating step;
    An evaluation program for fatty liver disease characterized by
  29.  制御手段と記憶手段とを備え、評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する脂肪性肝疾患評価装置と、制御手段を備え、アミノ酸の濃度値に関する前記評価対象のアミノ酸濃度データを提供する情報通信端末装置とを、ネットワークを介して通信可能に接続して構成された脂肪性肝疾患評価システムであって、
     前記情報通信端末装置の前記制御手段は、
     前記評価対象の前記アミノ酸濃度データを前記脂肪性肝疾患評価装置へ送信するアミノ酸濃度データ送信手段と、
     前記脂肪性肝疾患評価装置から送信された前記脂肪性肝疾患の状態評価に関する前記評価対象の評価結果を受信する評価結果受信手段と
     を備え、
     前記脂肪性肝疾患評価装置の前記制御手段は、
     前記情報通信端末装置から送信された前記アミノ酸濃度データを受信するアミノ酸濃度データ受信手段と、
     前記アミノ酸濃度データ受信手段で受信した前記アミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出手段と、
     前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価する判別値基準評価手段と、
     前記判別値基準評価手段での前記評価対象の前記評価結果を前記情報通信端末装置へ送信する評価結果送信手段と、
     を備えたこと、
     を特徴とする脂肪性肝疾患評価システム。
    A control means and a storage means are provided, and the status of fatty liver disease including at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis) is evaluated for an evaluation target Fatty liver disease evaluation apparatus, comprising a control means, and an information communication terminal apparatus that provides amino acid concentration data of the evaluation target relating to the amino acid concentration value, and configured to be communicably connected via a network A liver disease evaluation system,
    The control means of the information communication terminal device comprises:
    Amino acid concentration data transmitting means for transmitting the evaluation target amino acid concentration data to the fatty liver disease evaluation device;
    An evaluation result receiving means for receiving the evaluation result of the evaluation object related to the state evaluation of the fatty liver disease transmitted from the fatty liver disease evaluation device, and
    The control means of the fatty liver disease evaluation apparatus comprises:
    Amino acid concentration data receiving means for receiving the amino acid concentration data transmitted from the information communication terminal device;
    Based on the amino acid concentration data received by the amino acid concentration data receiving means and the multivariate discriminant stored in the storage means including the amino acid concentration as a variable, a discriminant value that is the value of the multivariate discriminant is calculated. Discriminant value calculating means for
    Based on the discriminant value calculated by the discriminant value calculating unit, the discriminant value criterion-evaluating unit that evaluates the state of the fatty liver disease for the evaluation target;
    Evaluation result transmission means for transmitting the evaluation result of the evaluation object in the discriminant value reference evaluation means to the information communication terminal device;
    Having
    Fatty liver disease evaluation system characterized by
  30.  評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する脂肪性肝疾患評価装置とネットワークを介して通信可能に接続された、制御手段を備え、アミノ酸の濃度値に関する前記評価対象のアミノ酸濃度データを提供する情報通信端末装置であって、
     前記制御手段は、
     前記評価対象の前記アミノ酸濃度データを前記脂肪性肝疾患評価装置へ送信するアミノ酸濃度データ送信手段と、
     前記脂肪性肝疾患評価装置から送信された前記脂肪性肝疾患の状態評価に関する前記評価対象の評価結果を受信する評価結果受信手段と
     を備え、
     前記評価結果は、前記肪性肝疾患評価装置が、前記情報通信端末装置から送信された前記アミノ酸濃度データを受信し、受信した前記アミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む前記肪性肝疾患評価装置で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出し、算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価した結果であること、
     を特徴とする情報通信端末装置。
    A fatty liver disease evaluation apparatus and network for evaluating the state of fatty liver disease including at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcohol steatohepatitis) An information communication terminal device comprising control means connected to be communicable via the communication device, and providing the amino acid concentration data of the evaluation object related to the amino acid concentration value,
    The control means includes
    Amino acid concentration data transmitting means for transmitting the evaluation target amino acid concentration data to the fatty liver disease evaluation device;
    An evaluation result receiving means for receiving the evaluation result of the evaluation object related to the state evaluation of the fatty liver disease transmitted from the fatty liver disease evaluation device, and
    The evaluation result indicates that the apparatus for evaluating fatty liver disease receives the amino acid concentration data transmitted from the information communication terminal device, and includes the received amino acid concentration data and the amino acid concentration as variables. Based on the multivariate discriminant stored in the liver disease evaluation apparatus, a discriminant value that is the value of the multivariate discriminant is calculated, and based on the calculated discriminant value, the fatty liver disease The result of evaluating the condition,
    An information communication terminal device.
  31.  アミノ酸の濃度値に関する評価対象のアミノ酸濃度データを提供する情報通信端末装置とネットワークを介して通信可能に接続された、制御手段と記憶手段とを備え、前記評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する脂肪性肝疾患評価装置であって、
     前記制御手段は、
     前記情報通信端末装置から送信された前記アミノ酸濃度データを受信するアミノ酸濃度データ受信手段と、
     前記アミノ酸濃度データ受信手段で受信した前記アミノ酸濃度データ、および前記アミノ酸の濃度を変数として含む前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出手段と、
     前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記脂肪性肝疾患の状態を評価する判別値基準評価手段と、
     前記判別値基準評価手段での前記評価対象の評価結果を前記情報通信端末装置へ送信する評価結果送信手段と、
     を備えたこと、
     を特徴とする脂肪性肝疾患評価装置。
    A control means and a storage means, which are communicably connected to an information communication terminal device that provides amino acid concentration data to be evaluated regarding the amino acid concentration value, via a network, include fatty liver, NAFLD (non A fatty liver disease evaluation apparatus for evaluating a state of fatty liver disease including at least one of alcoholic fatty liver disease (NAL) and NASH (non-alcoholic steatohepatitis),
    The control means includes
    Amino acid concentration data receiving means for receiving the amino acid concentration data transmitted from the information communication terminal device;
    Based on the amino acid concentration data received by the amino acid concentration data receiving means and the multivariate discriminant stored in the storage means including the amino acid concentration as a variable, a discriminant value that is the value of the multivariate discriminant is calculated. Discriminant value calculating means for
    Based on the discriminant value calculated by the discriminant value calculating unit, the discriminant value criterion-evaluating unit that evaluates the state of the fatty liver disease for the evaluation target;
    An evaluation result transmitting means for transmitting the evaluation result of the evaluation object in the discriminant value reference evaluating means to the information communication terminal device;
    Having
    An apparatus for evaluating fatty liver disease.
  32.  1つ又は複数の物質から成る所望の物質群が投与された評価対象から採取した血液中のアミノ酸の濃度値に関するアミノ酸濃度データを取得する取得ステップと、
     前記取得ステップで取得した前記アミノ酸濃度データに基づいて、前記評価対象につき、脂肪肝、NAFLD(non-alcoholic fatty liver disease)、およびNASH(non-alcoholic steatohepatitis)のうち少なくとも1つを含む脂肪性肝疾患の状態を評価する濃度値基準評価ステップと、
     前記濃度値基準評価ステップでの評価結果に基づいて、前記所望の前記物質群が、前記脂肪性肝疾患を予防させる又は前記脂肪性肝疾患の状態を改善させるものであるか否かを判定する判定ステップと、
     を含むことを特徴とする脂肪性肝疾患の予防・改善物質の探索方法。
    An acquisition step of acquiring amino acid concentration data relating to a concentration value of an amino acid in blood collected from an evaluation subject to which a desired substance group consisting of one or more substances is administered;
    Based on the amino acid concentration data acquired in the acquisition step, the evaluation target includes fatty liver containing at least one of fatty liver, NAFLD (non-alcoholic fatty liver disease), and NASH (non-alcoholic steatohepatitis). A concentration standard evaluation step for evaluating a disease state;
    Based on the evaluation result in the concentration value reference evaluation step, it is determined whether or not the desired substance group prevents the fatty liver disease or improves the state of the fatty liver disease. A determination step;
    A method for searching for a substance for preventing / ameliorating fatty liver disease, comprising:
PCT/JP2012/066739 2011-06-30 2012-06-29 Method for evaluating fatty liver disease, device for evaluating fatty liver disease, method for evaluating fatty liver disease, program for evaluating fatty liver disease, system for evaluating fatty liver disease, information-communication terminal device, and method for searching for substance used to prevent or improve fatty-liver-disease WO2013002381A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013522983A JP6260275B2 (en) 2011-06-30 2012-06-29 Fatty liver evaluation method, fatty liver evaluation device, fatty liver evaluation method, fatty liver evaluation program, fatty liver evaluation system, and terminal device
US14/140,152 US9971866B2 (en) 2011-06-30 2013-12-24 Method of evaluating fatty liver related disease, fatty liver related disease-evaluating apparatus, fatty liver related disease-evaluating method, fatty liver related disease-evaluating program product, fatty liver related disease-evaluating system, information communication terminal apparatus, and method of searching for prophylactic/ameliorating substance for fatty liver related disease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-146696 2011-06-30
JP2011146696 2011-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/140,152 Continuation US9971866B2 (en) 2011-06-30 2013-12-24 Method of evaluating fatty liver related disease, fatty liver related disease-evaluating apparatus, fatty liver related disease-evaluating method, fatty liver related disease-evaluating program product, fatty liver related disease-evaluating system, information communication terminal apparatus, and method of searching for prophylactic/ameliorating substance for fatty liver related disease

Publications (1)

Publication Number Publication Date
WO2013002381A1 true WO2013002381A1 (en) 2013-01-03

Family

ID=47424266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066739 WO2013002381A1 (en) 2011-06-30 2012-06-29 Method for evaluating fatty liver disease, device for evaluating fatty liver disease, method for evaluating fatty liver disease, program for evaluating fatty liver disease, system for evaluating fatty liver disease, information-communication terminal device, and method for searching for substance used to prevent or improve fatty-liver-disease

Country Status (3)

Country Link
US (1) US9971866B2 (en)
JP (1) JP6260275B2 (en)
WO (1) WO2013002381A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168125A1 (en) * 2013-04-09 2014-10-16 味の素株式会社 Method for evaluating life style-related disease index, life style-related disease index evaluation device, life style-related disease index evaluation method, life style-related disease index evaluation program, life style-related disease index evaluation system and information communication terminal device
JP2016529971A (en) * 2013-08-02 2016-09-29 エコセンスEchosens A non-invasive system for calculating reliable, normalized and complete scores for humans or animals
JP2016540218A (en) * 2013-12-10 2016-12-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Differential diagnosis of liver disease
KR20170066409A (en) 2014-10-08 2017-06-14 아지노모토 가부시키가이샤 Evaluating method, evaluating apparatus, evaluating program product, evaluating system, and terminal apparatus
WO2020066162A1 (en) * 2018-09-26 2020-04-02 株式会社島津製作所 Method for detecting non-alcoholic fatty liver disease, kit for detecting non-alcoholic fatty liver disease, and biomarker for use in detection of non-alcoholic fatty liver disease

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129513A1 (en) * 2005-05-30 2006-12-07 Ajinomoto Co., Inc. Liver disease rating apparatus, method of liver disease rating, liver disease rating system, liver disease rating program and recording medium
WO2010073870A1 (en) * 2008-12-24 2010-07-01 学校法人 慶應義塾 Liver disease marker, method and apparatus for measuring same, and test method for pharmaceutical preparation
JP2011503547A (en) * 2007-11-02 2011-01-27 メタボロン、インコーポレイテッド Biomarker for fatty liver disease and method of use thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631330B1 (en) 2000-08-21 2003-10-07 Assistance Publique-Hopitaux De Paris (Ap-Hp) Diagnosis method of inflammatory, fibrotic or cancerous disease using biochemical markers
EP1311857B1 (en) 2000-08-21 2006-03-01 Assistance Publique, Hopitaux De Paris Diagnosis method of fibrotic disease using biochemical markers
WO2004052191A1 (en) 2002-12-09 2004-06-24 Ajinomoto Co., Inc. Organism condition information processor, organism condition information processing method, organism condition information managing system, program, and recording medium
JP2007315752A (en) 2004-08-16 2007-12-06 Ajinomoto Co Inc Judging method of hepatic fibrillation stage
JPWO2006098192A1 (en) 2005-03-16 2008-08-21 味の素株式会社 Biological condition evaluation apparatus, biological condition evaluation method, biological condition evaluation system, biological condition evaluation program, evaluation function creation apparatus, evaluation function creation method, evaluation function creation program, and recording medium
JPWO2008015929A1 (en) 2006-08-04 2009-12-24 味の素株式会社 Metabolic syndrome evaluation method, metabolic syndrome evaluation device, metabolic syndrome evaluation method, metabolic syndrome evaluation system, metabolic syndrome evaluation program and recording medium, and method for searching for metabolic syndrome prevention / improvement substances
EP2172775A4 (en) 2007-06-25 2010-12-01 Ajinomoto Kk Method of evaluating visceral fat accumulation
WO2009001892A1 (en) 2007-06-27 2008-12-31 Kankyokeieisogokenkyusho Co., Inc. Chopstick containing paper powder
AU2008279778B2 (en) 2007-07-17 2014-09-18 Metabolon, Inc. Method for Determining Insulin Sensitivity with Biomarkers
JPWO2009054351A1 (en) 2007-10-25 2011-03-03 味の素株式会社 Biological condition evaluation apparatus, biological condition evaluation method, biological condition evaluation system, biological condition evaluation program, and recording medium
WO2009054350A1 (en) 2007-10-25 2009-04-30 Ajinomoto Co., Inc. Method for evaluation of impaired glucose tolerance
WO2009090882A1 (en) 2008-01-18 2009-07-23 The University Of Tokyo Diagnosis method for non-alcoholic fatty liver disease
WO2010095682A1 (en) 2009-02-19 2010-08-26 味の素株式会社 Obesity evaluation method
US20120122981A1 (en) 2009-03-31 2012-05-17 Yun Fu Hu Biomarkers Related to Insulin Resistance and Methods using the Same
JP2011232164A (en) 2010-04-27 2011-11-17 Keio Gijuku Liver disease marker, method and device for measuring the same, and method for verifying medicine
JP2013040923A (en) 2011-07-15 2013-02-28 Ajinomoto Co Inc Method for evaluating nash, device for evaluating nash, program for evaluating nash, system for evaluating nash, information communication terminal device, and method for searching for substance used to prevent or improve nash

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129513A1 (en) * 2005-05-30 2006-12-07 Ajinomoto Co., Inc. Liver disease rating apparatus, method of liver disease rating, liver disease rating system, liver disease rating program and recording medium
JP2011503547A (en) * 2007-11-02 2011-01-27 メタボロン、インコーポレイテッド Biomarker for fatty liver disease and method of use thereof
WO2010073870A1 (en) * 2008-12-24 2010-07-01 学校法人 慶應義塾 Liver disease marker, method and apparatus for measuring same, and test method for pharmaceutical preparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUO TAKAHASHI ET AL.: "`Amino Index' to Shibokan (1st report) NAFLD?NASH Hanbetsu no Kanosei", NINGEN DOCK, vol. 26, no. 2, July 2011 (2011-07-01), pages 270 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102204498B1 (en) * 2013-04-09 2021-01-19 아지노모토 가부시키가이샤 Method of evaluating lifestyle-related disease indicator, lifestyle-related disease indicator-evaluating apparatus, lifestyle-related disease indicator-evaluating method, lifestyle-related disease indicator-evaluating program product, lifestyle-related disease indicator-evaluating system, and information communication terminal apparatus
KR20150140363A (en) 2013-04-09 2015-12-15 아지노모토 가부시키가이샤 Method for evaluating life style-related disease index, life style-related disease index evaluation device, life style-related disease index evaluation method, life style-related disease index evaluation program, life style-related disease index evaluation system and information communication terminal device
WO2014168125A1 (en) * 2013-04-09 2014-10-16 味の素株式会社 Method for evaluating life style-related disease index, life style-related disease index evaluation device, life style-related disease index evaluation method, life style-related disease index evaluation program, life style-related disease index evaluation system and information communication terminal device
JPWO2014168125A1 (en) * 2013-04-09 2017-02-16 味の素株式会社 Lifestyle-related disease index evaluation method, lifestyle-related disease index evaluation device, lifestyle-related disease index evaluation method, lifestyle-related disease index evaluation program, lifestyle-related disease index evaluation system, and information communication terminal device
JP7347587B2 (en) 2013-04-09 2023-09-20 味の素株式会社 Acquisition method, calculation method, diabetes evaluation device, calculation device, diabetes evaluation program, calculation program, diabetes evaluation system, and terminal device
JP7291605B2 (en) 2013-04-09 2023-06-15 味の素株式会社 Acquisition method, calculation method, diabetes evaluation device, calculation device, diabetes evaluation program, calculation program, diabetes evaluation system, and terminal device
JP2020073886A (en) * 2013-04-09 2020-05-14 味の素株式会社 Method of assessing life-style related disease index
KR20210007053A (en) 2013-04-09 2021-01-19 아지노모토 가부시키가이샤 Method for evaluating life style-related disease index, life style-related disease index evaluation device, life style-related disease index evaluation method, life style-related disease index evaluation program, life style-related disease index evaluation system and information communication terminal device
JP2016529971A (en) * 2013-08-02 2016-09-29 エコセンスEchosens A non-invasive system for calculating reliable, normalized and complete scores for humans or animals
JP2016540218A (en) * 2013-12-10 2016-12-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Differential diagnosis of liver disease
KR20230028566A (en) 2014-10-08 2023-02-28 아지노모토 가부시키가이샤 Evaluating method, evaluating apparatus, evaluating program product, evaluating system, and terminal apparatus
KR20170066409A (en) 2014-10-08 2017-06-14 아지노모토 가부시키가이샤 Evaluating method, evaluating apparatus, evaluating program product, evaluating system, and terminal apparatus
JPWO2020066162A1 (en) * 2018-09-26 2021-08-30 株式会社島津製作所 Non-alcoholic fatty liver disease detection method, non-alcoholic fatty liver disease detection kit and non-alcoholic fatty liver disease detection biomarker
JP6998023B2 (en) 2018-09-26 2022-02-10 株式会社島津製作所 Non-alcoholic fatty liver disease detection method, non-alcoholic fatty liver disease detection kit and non-alcoholic fatty liver disease detection biomarker
WO2020066162A1 (en) * 2018-09-26 2020-04-02 株式会社島津製作所 Method for detecting non-alcoholic fatty liver disease, kit for detecting non-alcoholic fatty liver disease, and biomarker for use in detection of non-alcoholic fatty liver disease

Also Published As

Publication number Publication date
JP6260275B2 (en) 2018-01-17
JPWO2013002381A1 (en) 2015-02-23
US20140113378A1 (en) 2014-04-24
US9971866B2 (en) 2018-05-15

Similar Documents

Publication Publication Date Title
JP2016029398A (en) Evaluation method of visceral fat area, visceral fat area evaluation apparatus, visceral fat area evaluation method, visceral fat area evaluation program, recording medium, visceral fat area evaluation system, and terminal device
WO2013011919A1 (en) Method for evaluating nash, device for evaluating nash, program for evaluating nash, system for evaluating nash, information-communication terminal device, and method for searching for substance used to prevent or improve nash
JP7291605B2 (en) Acquisition method, calculation method, diabetes evaluation device, calculation device, diabetes evaluation program, calculation program, diabetes evaluation system, and terminal device
JP7409530B2 (en) Acquisition method, evaluation device, evaluation program and evaluation system
JP5817527B2 (en) Obesity evaluation method, obesity evaluation device, obesity evaluation method, obesity evaluation system, obesity evaluation program, recording medium, and information communication terminal device
JPWO2008015929A1 (en) Metabolic syndrome evaluation method, metabolic syndrome evaluation device, metabolic syndrome evaluation method, metabolic syndrome evaluation system, metabolic syndrome evaluation program and recording medium, and method for searching for metabolic syndrome prevention / improvement substances
JPWO2008075663A1 (en) Colorectal cancer evaluation method, colorectal cancer evaluation device, colorectal cancer evaluation method, colorectal cancer evaluation system, colorectal cancer evaluation program, and recording medium
JP6260275B2 (en) Fatty liver evaluation method, fatty liver evaluation device, fatty liver evaluation method, fatty liver evaluation program, fatty liver evaluation system, and terminal device
JP5856364B2 (en) METHOD OF EVALUATION OF DEPRESSION, DEPRESSION EVALUATION DEVICE, DEPRESSION EVALUATION METHOD, DEPRESSION EVALUATION SYSTEM, DEPRESSION EVALUATION PROGRAM, RECORDING MEDIUM, AND TERMINAL DEVICE
JP2014106114A (en) Pancreas cancer risk disease evaluation method, pancreas cancer risk disease evaluation device, pancreas cancer risk disease evaluation method, pancreas cancer risk disease evaluation program, pancreas cancer risk disease evaluation system and information communication terminal device
JP6614215B2 (en) Acquisition method, calculation method, stroke evaluation device, calculation device, stroke evaluation program, calculation program, and stroke evaluation system
KR20150091113A (en) Method for evaluating pancreatic cancer, pancreatic cancer evaluation device, pancreatic cancer evaluation method, pancreatic cancer evaluation program, pancreatic cancer evaluation system and information communication terminal unit
JPWO2009054350A1 (en) Glucose tolerance abnormality evaluation method, glucose tolerance abnormality evaluation device, glucose tolerance abnormality evaluation method, glucose tolerance abnormality evaluation system, glucose tolerance abnormality evaluation program and recording medium, and glucose tolerance abnormality prevention / improvement method
WO2013115283A1 (en) Method for evaluating early stage nephropathy, early stage nephropathy evaluation device, early stage nephropathy evaluation method, early stage nephropathy evaluation program, early stage nephropathy evaluation system and information communication terminal device
JP6270257B2 (en) Acquisition method, cardiovascular event evaluation device, cardiovascular event evaluation program, cardiovascular event evaluation system, and terminal device
WO2013005790A1 (en) Method for evaluating bio-oxidation, device therefor, procedure therefor, program therefor, system therefor, data communication terminal device therefor, and method of searching for a substance to prevent or ameliorate bio-oxidation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804951

Country of ref document: EP

Kind code of ref document: A1