WO2013002311A1 - Substrate for stem cell culture, and culture method using same - Google Patents

Substrate for stem cell culture, and culture method using same Download PDF

Info

Publication number
WO2013002311A1
WO2013002311A1 PCT/JP2012/066491 JP2012066491W WO2013002311A1 WO 2013002311 A1 WO2013002311 A1 WO 2013002311A1 JP 2012066491 W JP2012066491 W JP 2012066491W WO 2013002311 A1 WO2013002311 A1 WO 2013002311A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cell
peptide
cell culture
substrate
culture substrate
Prior art date
Application number
PCT/JP2012/066491
Other languages
French (fr)
Japanese (ja)
Inventor
谷原 正夫
匠徳 佐藤
友美 幸得
賀彰 柴崎
Original Assignee
国立大学法人奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人奈良先端科学技術大学院大学 filed Critical 国立大学法人奈良先端科学技術大学院大学
Publication of WO2013002311A1 publication Critical patent/WO2013002311A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins

Definitions

  • the present invention relates to a stem cell culture substrate that does not have the risk of pathogen infection and undesirable side effects, and a method for using the same. More specifically, the present invention relates to a culture substrate that is useful for the proliferation and differentiation of stem cells and has high safety, and a culture method thereof.
  • Stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells) reconstruct tissues and organs inside and outside the body, and realize regenerative medicine that transplants in place of lost tissues and organs Indispensable for.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • fibroblasts derived from animals or humans are used as feeder cells, or culture containers coated with animal-derived materials such as gelatin and matrigel are used.
  • animal-derived materials such as gelatin and matrigel
  • Patent Document 1 discloses a novel polypeptide useful as a carrier for various physiologically active substances and apatites without the risk of causing infection of pathogens and transmission of pathogenic factors and undesirable side effects.
  • X represents Pro or Hyp
  • OYZ -Pro-Hyp
  • Y has a carbonyl group or a carbonyl group
  • a polypeptide comprising a peptide unit having an amino acid sequence is disclosed.
  • Non-Patent Document 2 discloses a material obtained by binding a cell adhesion sequence Gly-Arg-Gly-Asp-Ser and Pro-His-Ser-Arg-Asn found in fibronectin to a polypeptide poly (Pro-Hyp-Gly). Have been reported to promote cell adhesion and migration of the mouse fibroblast cell line NIH3T3 and to promote stratification of the rabbit corneal epithelial cell line.
  • Patent Document 2 discloses a human pluripotent stem cell culture substrate coated with a human laminin fragment in order to maintain human pluripotent stem cells while maintaining differentiation pluripotency in a feeder-free culture environment. A culture method using this has been proposed.
  • Patent Document 3 proposes a substrate for culturing embryonic stem cells mainly composed of a sponge-like cross-linked polysaccharide for the purpose of providing a method and material for efficiently inducing differentiation of hepatocytes from embryonic stem cells. Has been.
  • Patent Document 4 discloses a porous substrate such as a nonwoven fabric for the purpose of providing a culture substrate and a culture method for maintaining undifferentiated embryonic stem cells in large quantities and safely in the absence of feeder cells and feeder cell-derived components.
  • a culture substrate composed of a solid material is proposed.
  • Patent Document 5 describes a stem cell culture characterized by containing a cell adhesion active substance for the purpose of providing a culture substrate for efficiently proliferating stem cells while maintaining their differentiation ability. Substrates have been proposed.
  • Non-Patent Document 3 reports a method for binding a cell adhesion sequence Arg-Gly-Asp to a polymer surface containing polylactic acid and a method for constructing a bone tissue using this.
  • the present invention is excellent in adhesion to stem cells, has no risk of causing pathogen infection or transmission of pathogenic factors, and there is no risk of undesirable side effects, and stem cells using the same
  • a culture method of Another object of the present invention is to provide a culture substrate capable of safely and simply separating stem cells adhered to the culture substrate from the substrate, and a method for culturing stem cells using the same.
  • the present inventor has intensively studied to solve the above-mentioned problems, and in order to improve the cell adhesion between the culture substrate obtained by chemical synthesis and the stem cells, the concept of binding the cell adhesion peptide to the synthetic culture substrate is proposed. It came. However, as shown in Test Example 1 to be described later, Gly-Arg-Gly-Asp-Ser (SEQ ID NO: 1) known as a cell adhesion peptide was actually bound to a synthetic culture substrate, and stem cells were cultured. However, although adhesion improvement has been reported in cells other than stem cells (Patent Document 1), no improvement was observed in the adhesion of stem cells to a synthetic culture substrate.
  • the present inventors improved the adhesion of stem cells to the culture substrate by binding the cell adhesion peptide having a cyclic skeleton structure to the synthetic culture substrate, and more efficiently differentiated stem cells. It was found that the cells can be cultured while maintaining the performance. Based on these findings, the present inventors have further studied stem cell culture and improvement of its use. In order to differentiate cultured stem cells according to their intended use, the cultured cells are used as a base material. Although it is necessary to liberate it, it has been found that there is a problem that the conventional method using an enzyme or the like causes a large damage to the cells and causes a decrease in the survival rate.
  • the present inventors use a cytotoxic reagent such as an enzyme by binding a cell adhesive peptide having a cyclic skeleton structure via a photodegradable linker. It was found that the cells can be easily released from the substrate by irradiation with light.
  • the present inventors have completed the present invention by further studying and improving the above knowledge.
  • the representative present invention is as follows.
  • Item 1. A stem cell culture substrate in which a cell adhesion peptide having a cyclic skeleton structure is bound to a polymer substrate.
  • Item 2. Item 2. The stem cell culture substrate according to Item 1, wherein the cell adhesion peptide having a cyclic skeleton structure comprises an Arg-Gly-Asp sequence.
  • Item 3. Item 2. The stem cell culture substrate according to Item 1, wherein the cell adhesion peptide having a cyclic skeleton structure is cyclo (Arg-Gly-Asp- (D) Phe-Lys) (SEQ ID NO: 2).
  • Item 4. Item 2.
  • the stem cell culture substrate according to Item 1 wherein the polymer substrate is a polypeptide and / or a polysaccharide.
  • Item 5 A polypeptide in which the polymer substrate comprises a peptide unit (1) having an amino acid sequence represented by the following formula (1) and a peptide unit (2) having an amino acid sequence represented by the following formula (2):
  • the stem cell culture substrate according to Item 1. -Pro-X-Gly- (1) -Pro-Hyp (OYZ) -Gly- (2) (In the formula, X represents Pro or Hyp, Y represents a carbonyl group, or a saturated or unsaturated hydrocarbon group with or without a carbonyl group, and Z represents a carboxyl group)
  • X represents Pro or Hyp
  • Y represents a carbonyl group, or a saturated or unsaturated hydrocarbon group with or without a carbonyl group
  • Z represents a carboxyl group
  • Item 8. Item 6. The stem cell culture substrate according to Item 5, wherein the polymer substrate exhibits a positive cotton effect at a wavelength of 220 to 230 nm and a negative cotton effect at a wavelength of 195 to 205 nm in a circular dichroism spectrum.
  • Item 9. 6 The stem cell culture substrate according to item 5, wherein at least a part of the polypeptide forms a triple helical structure. Item 10. 6.
  • the stem cell culture substrate wherein the polymer substrate is a polypeptide according to item 5, which exhibits a peak in a molecular weight range of 5 ⁇ 10 3 to 5 ⁇ 10 6 .
  • Item 11. Item 2. The stem cell culture substrate according to Item 1, wherein the cell adhesive peptide having a cyclic skeleton structure is bound to a polymer substrate via a photodegradable linker.
  • Item 12. Item 12. The stem cell culture substrate according to Item 11, wherein the photodegradable linker has a 2-nitrobenzene skeleton, a 2-nitrophenol skeleton, a nitroindole skeleton, or a coumarin skeleton.
  • Item 13. Item 13.
  • a method for culturing a stem cell comprising a step of culturing a stem cell on the stem cell culture substrate according to any one of Items 1 to 12.
  • Item 14. Item 14. The culture method according to Item 13, wherein the stem cells are embryonic stem cells and / or induced pluripotent stem cells (iPS cells).
  • Item 15. The step of culturing stem cells on the stem cell culture substrate according to Item 11 or 12, and A method for culturing stem cells, comprising a step of separating stem cells from a stem cell culture substrate by irradiating the culture substrate after the culture with light.
  • Cell adhesion having a cyclic skeleton structure by an amide bond obtained by dehydration condensation of a carboxyl group of a polypeptide of a polymer substrate according to Item 5 and an amino group of a cell adhesion peptide having a cyclic skeleton structure A method for producing a stem cell culture substrate, comprising binding a peptide and a polymer substrate.
  • the adhesion rate of stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells) to the substrate is dramatically improved. It becomes possible to culture efficiently while maintaining the pluripotency.
  • the stem cell culture substrate of the present invention does not use animal-derived materials, the risk of pathogen infection and other undesirable side effects (for example, allergic reactions due to animal-derived proteins) are reduced, Excellent safety.
  • the stem cells adhered to the culture substrate can be easily and efficiently released from the culture substrate while suppressing damage to the stem cells. Therefore, by using the stem cell culture substrate of the present invention, the cultured stem cells can be efficiently used for differentiation induction, so that the operability of a series of operations from stem cell culture to differentiation induction is greatly improved. Can do.
  • FIG. 2 shows a micrograph showing mouse embryonic stem cells (EB3) cultured for 30 hours on the stem cell culture substrate prepared in Test Example 2.
  • EB3 mouse embryonic stem cells
  • Production Example 4 a procedure in which a photodegradable linker is bonded to a polymer substrate is shown.
  • the pattern irradiated with light in Test Example 5 is shown.
  • dye dissociated by the light irradiation in Test Example 5 is shown.
  • the cell adhesion peptide is a peptide that is involved in adhesion with cells and has a function of promoting cell adhesion with a substrate.
  • the cell adhesive peptide used in the present invention is not particularly limited as long as it has such a function, and a naturally occurring peptide and an artificially designed peptide can be widely used.
  • Preferred cell adhesion peptides include integrin recognition sequences in the extracellular matrix that bind to integrin molecules on the cell membrane.
  • cell adhesion peptides include, for example, Arg-Gly-Asp, Pro-His-Ser-Arg-Asn (SEQ ID NO: 3), Tyr-Ile-Gly-Ser-Arg (SEQ ID NO: 4), Ile -Lys-Val-Ala-Val (SEQ ID NO: 5), Leu-Asp-Val, Arg-Glu-Asp-Val (SEQ ID NO: 6), Leu-Arg-Glu sequences, etc.
  • the peptide containing can be used suitably.
  • a cell adhesive peptide containing an Arg-Gly-Asp sequence found in fibronectin is preferable.
  • the cell adhesive peptide used in the present invention has a cyclic skeleton structure.
  • having a cyclic skeleton structure means that the cell-adhesive peptide described above forms a cyclic skeleton structure.
  • the cyclic skeleton structure may be composed only of a cell adhesive peptide or may be composed of a combination with other peptides.
  • the number of amino acids forming the cyclic skeleton structure is not particularly limited as long as the adhesion to stem cells is maintained. For example, the lower limit is 3 or more and 4 or more, and the upper limit is 7 or less or 6 or less. is there.
  • Fibronectin is a typical adhesion protein of the extracellular matrix, and is known to have an important role in controlling cell adhesion, proliferation, migration and differentiation. Fibronectin has multiple cell / extracellular matrix binding domains. Among them, III-10 corresponds to a “cell binding domain”, has an Arg-Gly-Asp sequence, and this part binds to an integrin molecule present on the cell membrane to perform cell adhesion.
  • the cell adhesive peptide having a cyclic skeleton structure may be, for example, a cyclic peptide composed of the above-mentioned cell adhesive peptide alone or a combination thereof with one or more other amino acids.
  • a cell adhesion peptide having a preferred cyclic skeleton structure is a cyclic peptide containing the Arg-Gly-Asp sequence found in fibronectin, for example, the general formula (I): cyclo (Arg-Gly-Asp-BJ) (where , B and J are arbitrary amino acids independent of each other, one of which is a D type), and a cyclic peptide composed of 5 amino acids.
  • general formula (I) shows that the ⁇ -amino group of Arg and the ⁇ -carboxyl group of J form a peptide bond and form a ring as a whole.
  • a cell-adhesive peptide having a more preferred cyclic skeleton structure is as follows.
  • B is (D) Phe and J is any amino acid, or B is any amino acid and J is (D) Val. is there.
  • cell adhesion peptide having a suitable cyclic skeleton structure examples include cyclo (Arg-Gly-Asp- (D) Phe-Lys) (SEQ ID NO: 7), cyclo (Arg-Gly-Asp- ( D) Phe-Val (SEQ ID NO: 8) cyclo (Arg-Gly-Asp-Phe- (D) Val) (SEQ ID NO: 9), cyclo (Arg-Gly-Asp- (D) -Phe-Ser) (SEQ ID NO: 10), and cyclo (Cys-Arg-Gly-Asp- (D) Phe-Cys) (SEQ ID NO: 11), etc.
  • the cell adhesion peptide having a cyclic skeleton structure is a cell adhesion to stem cells. As long as the property is maintained, it may be modified with other peptides or sugar chains.
  • the peptide having a cyclic skeleton structure used in the present invention can be produced using a known peptide synthesis method.
  • it is prepared by a solid phase synthesis method or a liquid phase synthesis method, but the solid phase synthesis method is simple in operation [for example, “Sequence Chemistry Laboratory Lecture 2 Protein Chemistry (below)” edited by the Japanese Biochemical Society (Showa) May 20, 62, issued by Tokyo Chemical Co., Ltd.), pages 641-694].
  • Preparation of a peptide having a cyclic skeleton structure according to the present invention by a solid phase synthesis method can be performed, for example, by the following procedure.
  • the amino acid or peptide fragment corresponding to the amino acid in the direction of the N-terminal of the target peptide is protected with a functional group such as an ⁇ -amino group other than the ⁇ -COOH group of the amino acid or peptide fragment.
  • a functional group such as an ⁇ -amino group other than the ⁇ -COOH group of the amino acid or peptide fragment.
  • the peptide chain is elongated by sequentially repeating this operation and the operation of removing the protecting group of the amino group that forms a peptide bond such as an ⁇ -amino group in the bound amino acid or peptide fragment.
  • the peptide chain is detached from the polymer and then cyclized.
  • the protecting group is removed from the protected functional group of the resulting cyclic peptide.
  • the obtained peptide is purified.
  • the elimination of the peptide chain from the polymer and the removal of the protecting group are preferably performed using trifluoroacetic acid from the viewpoint of suppressing side reactions. Further, it is effective to purify the obtained peptide by reverse phase liquid chromatography.
  • the type of polymer substrate used in the present invention is not particularly limited as long as the risk of pathogen infection and other undesirable side effects are reduced, but is usually a polypeptide and / or polysaccharide.
  • a polypeptide is preferable, and a polypeptide including a peptide unit having an amino acid sequence represented by the formula (1) -Pro-X-Gly- is particularly preferable.
  • the sequence represented by -Pro-X-Gly- contributes to making the entire polypeptide into a stable triple helical structure. Therefore, this unit (1) has a repeating structure (oligo or polypeptide unit structure) represented by-(Pro-X-Gly) n- in the polypeptide from the viewpoint of the stability of the triple helix structure. It may be formed.
  • the repeating number n of this arrangement is, for example, about 1 to 5000, preferably about 2 to 3000.
  • X may be either Pro or Hyp, but is more preferably Hyp in view of the stability of the triple helical structure.
  • Hyp is usually a 4Hyp (eg, trans-4-hydroxy-L-proline) residue.
  • the polypeptide includes a peptide unit having an amino acid sequence represented by the formula (2) -Pro-Hyp (O-Y-Z) -Gly-.
  • a cell adhesive peptide having a cyclic skeleton structure can be bound to the polypeptide.
  • Y represents a carbonyl group or an alkyl group with or without a carbonyl group
  • Z represents a carboxyl group.
  • YZ in the formula (2) serves as a linker group for binding a cell adhesion peptide having a cyclic skeleton structure to the polypeptide.
  • Z is a linker terminal and represents a carboxyl group.
  • Y is — (C ⁇ O) — (CH 2 ) n—, n preferably represents 0 or an integer of 1 to 18, more preferably 1 to 15, and most preferably 2 to 12.
  • n and k are independently preferably 0 or 1 to 18, More preferably, it represents an integer of 1 to 15, most preferably 2 to 12, and m preferably represents 0 or an integer of 1 to 18, more preferably 1 to 12, and most preferably 1 to 8.
  • Y is — (C ⁇ O) — (CH 2 ) n— (C 6 H 4 ) — (CH 2 ) k—, n and k are independently preferably 0 or 1 to 18, More preferably, it represents an integer of 0 to 12, most preferably 0 to 8, and C 6 H 4 represents a phenylene group.
  • phthalic anhydride Etc. can be added by reacting with the hydroxyl group of the hydroxyproline residue of the polypeptide main chain.
  • the polypeptide is, for example, a molecular weight of 5 ⁇ 10 3 to 5 ⁇ 10 6 , preferably a molecular weight of 1 ⁇ 10 4 to 3 ⁇ 10 6 in terms of globular protein measured by aqueous gel permeation chromatography (GPC).
  • the peak is preferably in the range of about 3 ⁇ 10 4 to 2 ⁇ 10 6 , more preferably about 5 ⁇ 10 4 to 1 ⁇ 10 6 .
  • the polypeptide exhibits a positive cotton effect at wavelengths of 220 to 230 nm and a negative cotton effect at wavelengths of 195 to 205 nm in a circular dichroism spectrum. Therefore, at least a part of the polypeptide (that is, part or all) forms a triple helical structure, and forms a collagen-like polypeptide.
  • the cotton effect refers to a phenomenon that occurs because the optical rotation material has different absorption coefficients for left and right circularly polarized light at a specific wavelength.
  • the polypeptide (including the complex) is chemically synthesized from a pure reagent, infection with pathogens or pathogenic factors [eg, proteins converted to pathogenicity (eg, abnormal prions, etc.)] There is no danger of transmission. Therefore, the polypeptide is highly safe. It is also excellent in cell affinity and biocompatibility.
  • pathogens or pathogenic factors eg, proteins converted to pathogenicity (eg, abnormal prions, etc.)
  • the polypeptide can be produced according to a known method. For example, a polypeptide obtained by condensing an amino acid component or peptide fragment component containing at least an amino acid or peptide fragment corresponding to formula (1) and an amino acid or peptide fragment corresponding to formula (3) below, It is preferable to obtain a polypeptide by reacting the compound represented by 4).
  • -Pro-Hyp-Gly- (3) HO-YZ (4) (Wherein Y represents a carbonyl group or an alkyl group having or not having a carbonyl group, and Z represents a carboxyl group)
  • polypeptide suitable for use as a polymer substrate and the production method thereof are described in detail in WO2009 / 035092, and can be produced with reference to them.
  • WO2009 / 035092 is incorporated herein in its entirety with the aid of it.
  • the base material for stem cell culture of the present invention is obtained by binding the cell adhesive peptide having the above cyclic skeleton structure to the above polymer base material, and in a culture vessel such as a plastic dish used for normal cell culture. And can be commercialized.
  • a culture container provided with the stem cell culture substrate of the present invention is obtained, for example, by binding a cell adhesion peptide having a cyclic skeleton structure after coating a polymer substrate on a culture surface such as a plastic dish. be able to.
  • the culture vessel may be prepared by coating the culture surface such as a plastic dish using the solution.
  • a cell-adhesive peptide having a cyclic skeleton structure after processing a polymer substrate in various shapes such as a film shape, a sponge shape, a fiber shape, a rod shape, a bead shape, and a gel in advance. May be combined.
  • a solution in which a polymer substrate and a cell-adhesive peptide having a cyclic skeleton structure are combined may be processed into the above shape, and the surface or inner surface of various forms of processed products such as metals, ceramics, semiconductors, and plastics may be coated. May be.
  • the polymer substrate of the present invention or the polymer substrate to which the cell-adhesive peptide having a cyclic skeleton structure is bonded can be formed into a desired form by a conventional method depending on the application.
  • a polymer substrate solution or suspension is cast on a peelable substrate (for example, a fluororesin (specifically, polytetrafluoroethylene)) sheet, dried, and the peelable group
  • a polymer substrate in the form of a sheet or film can be obtained by peeling from the material.
  • a fibrous polymer substrate is obtained by extruding a solution or suspension of the polymer substrate from a nozzle in a poor solvent for the polymer substrate (or a solution containing a high concentration of salt, etc.).
  • a gel-like polymer substrate can be obtained by allowing an aqueous solution or suspension of the polymer substrate to stand, or if necessary, adding a polyvalent crosslinking reagent (glutaraldehyde, etc.) and allowing to stand. it can.
  • a sponge-like porous body can be obtained by freeze-drying the gel-like polymer substrate thus produced.
  • a polymer substrate that is a porous body can be obtained by foaming (foaming) an aqueous solution or suspension of the polymer substrate by stirring or the like and drying.
  • the polymer substrate may be bound with a cell adhesive peptide having a cyclic skeleton structure.
  • a polymer substrate to which a cell adhesion peptide having a cyclic skeleton structure is bound can also be used as a coating.
  • the surface of the molded body can be coated with the polymer base material by applying or dispersing the solution or suspension of the polymer base material on the surface of various molded bodies and then drying.
  • the molded body include molded bodies formed of various materials such as metals, ceramics, and polymers (synthetic or natural polymers).
  • base materials such as a polymer molded object, may have biodegradability or biodegradability.
  • the form of the molded body and the polymer substrate is not particularly limited, and is granular, one-dimensional shaped substrate (fibrous or thread-like substrate, linear substrate, rod-shaped substrate, etc.), two-dimensional shape Base materials (film (or sheet) or plate-like base material), and three-dimensional base materials (tube-like base material etc.).
  • the molded body and the polymer substrate may be non-porous bodies (for example, powdered porous bodies, cellulose fiber papers, two-dimensional porous bodies such as nonwoven fabrics and woven fabrics, cylindrical shapes) Or a three-dimensional porous body).
  • a polymer substrate solution or suspension may be impregnated to hold the polymer substrate.
  • the molded body may be surface-treated with a surface treatment agent (for example, a physiologically acceptable surface treatment agent).
  • the cell adhesion peptide having a polymer substrate and a cyclic skeleton structure is an amide obtained by dehydration condensation of a carboxyl group usually possessed by a polymer substrate and an amino group possessed by a cell adhesion peptide having a cyclic skeleton structure. It can be combined by bonding.
  • the binding method is not particularly limited as long as it can be immobilized without losing the cell adhesion activity of the cell adhesive peptide, and can be immobilized by any method known in the art.
  • the preferred immobilization method may vary depending on the type of cell adhesive peptide, the type of polymer base material, and the like.
  • the cell base peptide having a carboxyl group and a cyclic skeleton structure is amino acid.
  • an active ester method using N-hydroxysuccinimide, a direct condensation method using water-soluble carbodiimide, or the like is preferably employed.
  • the substrate may be used after sterilization or sterilization as necessary. In particular, in medical applications and the like, usually, sterilization or sterilization is often performed.
  • sterilization and sterilization method conventional methods such as wet heat steam sterilization, gamma ray sterilization, ethylene oxide gas sterilization, chemical sterilization, and ultraviolet sterilization can be used.
  • gamma ray sterilization and ethylene oxide gas sterilization are preferable in that they have a small effect on sterilization efficiency and materials.
  • the amount of the peptide having a cyclic skeleton structure bonded to the polymer substrate is not particularly limited, and can be appropriately set according to the type of cells to be used.
  • the cell adhesive peptide having a cyclic skeleton structure may be directly bonded to the polymer substrate as described above, but can also be bonded via various functional linkers. Suitable linkers include photodegradable linkers. By binding a cell adhesion peptide having a cyclic skeleton structure to a polymer substrate via a photodegradable linker, the stem cells cultured on the substrate are irradiated with light, and the damage to the stem cells is minimized. It can be separated from the stem cell culture substrate in a suppressed manner.
  • the photodegradable linker that can be used for the above purpose has the property that intramolecular bonds are cleaved by irradiation with light, as long as it does not adversely affect the adhesion of cell adhesion peptides, the growth of stem cells, etc.
  • a photodegradable linker known in the art (for example, one used for producing a caged compound) can be appropriately selected and used. Specific examples include a photodegradable linker having a 2-nitrobenzene skeleton, a 5-nitrophenol skeleton, a nitroindole skeleton, or a coumarin skeleton, and preferably a photolysis having a 5-nitrophenol skeleton and a coumarin skeleton. These are all known linkers.
  • More specific photodegradable linkers include 4- [4- (1-Hydroxyethyl) -2-methoxy-5-nitrophenoxy] butanoic acid, Bis (4- (4- (1- (acryloyloxy) ethyl) -2 Examples include linkers formed using -methoxy-5-nitrophenoxy) butanate) PEG and N- (6-bromo-7-hydroxycoumarin-4-ylmethoxycarbonyl) -L-glutamate.
  • the structure of the photodegradable linker and cell adhesion It can implement by the arbitrary methods according to the structure of sex peptide. For example, when a hydroxymethyl photolinker is used, the carboxy group and the carboxy group of the polymer substrate of the present invention are linked via Lys-Lys, and then the cell having the hydroxy group of the hydroxymethyl photolinker and a cyclic skeleton structure is used.
  • a stem cell culture substrate in which the cyclic cell adhesive peptide is bound to the polymer substrate via a photodegradable linker can be obtained.
  • the cell adhesive peptide having a cyclic structure and the polymer substrate can be bonded via the photodegradable linker.
  • stem cells are cells having both undifferentiated and pluripotent properties such as embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), hematopoietic stem cells, mesenchymal stem cells, neural stem cells, etc. Means.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • hematopoietic stem cells mesenchymal stem cells
  • neural stem cells etc.
  • the culture of stem cells optimal culture methods and conditions are known depending on the type of stem cells. Among the culture conditions, the culture substrate, feeder cells, medium, passage time, etc. are considered important for maintaining the cell properties. Conventionally, plastic culture flasks and dishes are usually used as the culture substrate. Depending on the type of stem cells, collagen, gelatin, laminin, matrigel, etc. are coated on the plastic culture surface, or feeder cells such as MEF are simply used.
  • Stem cells cultured using a stem cell culture substrate in which a cell-adhesive peptide having a cyclic skeleton structure and a polymer substrate are bonded via the photodegradable linker described above can be easily obtained by irradiating light. It can be separated from the material. Therefore, since it is not necessary to perform a toxic treatment such as enzyme treatment, the stem cells can be separated from the substrate without reducing the viability of the cultured stem cells. It is also possible to specifically separate only the cells present at the site irradiated with laser light from the substrate.
  • the stem cells thus separated from the base material can be used as they are, and can be used for further subculture or various differentiation induction treatments as necessary.
  • the light intensity, wavelength, and irradiation time necessary for separating the cells from the substrate can be appropriately set according to the photodegradable linker used.
  • the irradiation can be carried out by irradiating light in the vicinity of 350 nm to 410 nm for about 5 minutes.
  • the means for irradiating such light is not particularly limited, but it is preferable to use a confocal laser microscope or the like because irradiation intensity can be controlled and pattern irradiation can be performed.
  • Production Example 1 Production of polymer substrate and incubator provided with the same H-Pro-Hyp-Gly-OH (manufactured by Peptide Institute, Inc.) 100 mg (0.35 mmol) in 2 mL of 10 mM phosphoric acid Dissolved in salt buffer (pH 7.4). To this mixture, 9.5 mg (0.07 mmol) of 1-hydroxybenzotriazole was added and dissolved by stirring. While the mixture was cooled to 4 ° C. and stirred, 335 mg (1.75 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide hydrochloride was added, and the mixture was further stirred at 4 ° C. for 90 minutes. Continued.
  • the temperature is raised to 20 ° C., diluted with 4 mL of 10 mM phosphate buffer saline (containing 0.15 M NaCl, pH 7.4), dialyzed against Milli-Q water for 7 days, condensing agent, etc.
  • the reagents and unreacted monomers were removed.
  • the obtained polypeptide was subjected to gel permeation chromatography (Amersham Biosciences, AKTApurifier system). A Superdex 200 HR GL column was used and the flow rate was 0.5 mL / min. As an eluent, 10 mM phosphate buffered saline (containing 0.15 mM NaCl, pH 7.4) was used. As a result, a polypeptide peak was observed at the elution position where the molecular weight was 120,000 or more. The molecular weight was calculated using a polyethylene glycol standard product manufactured by Waters as a standard substance. When the circular dichroism spectrum of the obtained polypeptide was measured, a positive cotton effect was observed at 225 nm and a negative cotton effect was observed at 197 nm, confirming the formation of a triple helical structure.
  • the obtained polypeptide was diluted with MilliQ water to give a 1 mg / mL aqueous solution.
  • 1 mL of the aqueous solution of the obtained polypeptide was added to a glass dish having a diameter of 28 mm, and evenly diffused on the bottom surface, and then allowed to stand at room temperature for 48 hours to obtain a dry film.
  • the polypeptide film prepared on the bottom surface of the glass dish was washed twice with a small amount of dimethylformamide (DMF).
  • DMF dimethylformamide
  • Production Example 2 Binding of linear cell adhesion peptide
  • the succinylated polypeptide film obtained in Production Example 1 was washed once with DMF. After adding 4.3 mg (0.038 mmol) of N-hydroxysuccinimide and 7.3 mg (0.038 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide hydrochloride, the mixture was stirred at room temperature overnight.
  • Test Example 1 Stem cell adhesion test 1 A glass dish in which the polymer substrate obtained in Production Examples 1 and 2 is provided on the bottom surface, a glass dish in which a polymer substrate to which a linear cell-adhesive peptide is bound is provided on the bottom surface, and gelatin Mouse embryonic stem cells (CJ7) were dispensed at a rate of 1 ⁇ 10 4 cells / cm 2 into the plastic dish coated with the above.
  • CJ7 cells used were dispersed in GMEM medium (1% FCS, 0.1 mM MEM-NEAA, 0.1 mM sodium pyruvate, 0.1 mM 2-mercaptoethanol, 10% Knockout SR, 40 U / mL penicillin / streptomycin).
  • the cells were cultured for 2 hours at 37 ° C. and 5% CO 2 , and the cell adhesion rate was measured.
  • the cell adhesion rate was determined by removing the cells that did not adhere to the culture substrate film by washing once with PBS, counting the number of adhered cells under a microscope, and the number of cells dispensed (1 ⁇ 10 4 cells / cm Calculated as the ratio (%) of the number of adherent cells to 2 ).
  • the cell adhesion rate in the gelatin-coated dish was 25%, whereas the cell adhesion rate in the dishes obtained in Production Examples 1 and 2 was 5% or less.
  • Test Example 2 Stem cell adhesion test 2 A test similar to Test Example 1 was performed using another stem cell, mouse-derived stem cell EB3 (AES0139). GMEM medium (1% FCS, 0.1 mM MEM-NEAA, 1 mM sodium pyruvate, 0.1 mM 2-mercaptoethanol, 10% Knockout SR, 50 U / mL penicillin / streptomycin, 2000 U / mL ESGRO (Chemicon) Registered trademark), 10 ⁇ g / mL blasticidin S). After culturing at 37 ° C. and 5% CO 2 for 12 hours and washing with PBS to remove non-adherent cells, the number of adherent cells was counted by observation with a phase contrast microscope.
  • GMEM medium 1% FCS, 0.1 mM MEM-NEAA, 1 mM sodium pyruvate, 0.1 mM 2-mercaptoethanol, 10% Knockout SR, 50 U / mL penicillin / str
  • Test Example 3 Stem cell adhesion test 3 Instead of the glass dishes obtained in Production Examples 1 and 2, a glass dish in which a polymer substrate to which a cell adhesive peptide having a cyclic structure skeleton obtained in Production Example 3 was bonded was provided on the bottom surface was used. Except for the above, the adhesion rate of mouse-derived stem cells EB3 was measured in the same manner as in Test Example 2. As a comparison target, a plastic dish for culture manufactured by Iwaki Co., Ltd., whose bottom surface was coated with a 0.1% gelatin solution was used. After culturing for 12 hours, the cell adhesion rate was measured.
  • Test Example 4 Confirmation of Undifferentiated Culture Stem cell culture of Test Example 3 was continued for 3 days at 37 ° C. and 5% CO 2 . The medium was replaced with fresh one day after the start of culture. After culturing for 3 days, the cells were detached from the substrate with 0.25% trypsin and 0.02% EDTA, and EB3 dispersed in the GMEM medium on each substrate was again dispensed at a rate of 1 ⁇ 10 4 cells / cm 2 . Thereafter, the cells were further cultured for 3 days, and the ALP activity of the cells was measured using NBT / BCIP stock solution manufactured by Roche. As a result, stem cells on both substrates were stained positive for ALP. Thus, it was confirmed that stem cells can be cultured in an undifferentiated state by using a polymer base material to which a cell adhesive peptide having a cyclic skeleton structure of the present invention is bound.
  • Test Example 5 Effect of binding amount of cell adhesion peptide having cyclic skeleton structure Except that the amount of cyclo (Arg-Gly-Asp- (D) Phe-Lys) and diisopropylethylamine was changed to 380 nmol, 190 nmol, and 48 nmol
  • a glass dish was prepared in which a polymer substrate to which a cell adhesion peptide having a cyclic skeleton structure was bound was provided on the bottom surface.
  • mouse-derived stem cells EB3 were cultured for 12 hours in the same manner as in Test Example 2.
  • the cells were washed with PBS to remove cells not adhered to the substrate, and the number of adherent cells was measured using a phase contrast microscope.
  • a gelatin-coated dish was used.
  • culture was performed on a substrate prepared using 380 nmol, 190 nmol, and 48 nmol of cyclo (Arg-Gly-Asp- (D) Phe-Lys).
  • the number of adherent cells was 1.6 times, 1.8 times, and 1.4 times, respectively.
  • Production Example 4 Preparation of Photodegradable Linker-Linked Polymer Substrate A photodegradable linker was bonded to a polypeptide (polymer substrate) that forms a triple helical structure according to the following procedure. First, a Lys-Lys group was bonded to a polymer substrate. 0.29 ml of an aqueous solution containing a polymer base material confirmed to form a triple helical structure in Production Example 1 at a concentration of 1 mg / ml was applied to a diameter of 18 mm on a cover glass and air-dried.
  • the obtained succinic polymer substrate was washed 3 times with DMF, 6.3 mg HOSu and 10.5 mg EDC ⁇ HCl dissolved in 80 ⁇ L DMF were added, and the mixture was stirred at room temperature overnight. After washing 5 times with DMF and 5 times with methanol, it was dried under reduced pressure. The FTIR spectrum of the obtained film was measured, and the formation of HOSu ester was confirmed by the appearance of two new absorption peaks attributed to the HOSu ester near 1,800 cm ⁇ 1 .
  • the polymer base HOSu ester was washed 3 times with DMF, and then 2.3 mg Lys-Lys ⁇ HCl and 3.5 ⁇ l diisopropylethylamine dissolved in 80 ⁇ L 50% DMF / H 2 O were added at room temperature. Stir overnight. The extract was washed 5 times with 50% DMF / H 2 O, washed 5 times with methanol, and then dried under reduced pressure. The FTIR spectrum of the obtained film was measured, and the reaction of the HOSu ester was confirmed by the disappearance of two absorption peaks attributed to the HOSu ester near 1,800 cm ⁇ 1 . In this way, a polymer substrate to which Lys-Lys was bonded was obtained.
  • FIG. 2 R represents a fluorescent dye or a cell adhesion peptide.
  • R represents a fluorescent dye or a cell adhesion peptide.
  • the obtained polymer substrate was washed 3 times with DMF, 5.5 mg of succinic anhydride recrystallized from isopropanol and 80 ⁇ L of DMF solution of 9.5 ⁇ l of diisopropylethylamine were added, and the mixture was shaken on ice for 30 minutes, and then at room temperature. Stir overnight. After washing 5 times with DMF and 3 times with methanol, it was dried under reduced pressure. The FTIR spectrum of the obtained film was measured, and a marked increase in the absorption peak attributed to the carboxylic acid ester was observed at 1,730 cm ⁇ 1 , confirming the addition of succinic acid.
  • the polymer substrate with the photodegradable linker obtained in Production Example 4 was washed 3 times with 10 mM phosphate buffer (pH 7.4) and then dissolved in 200 ⁇ L of 10 mM phosphate buffer (pH 7.4).
  • Rhodamine 110 (53.5 mol / ml) was added, and the mixture was stirred overnight at room temperature in the dark. Thereafter, the polymer substrate was washed 5 times with 10 mM phosphate buffer (pH 7.4) to obtain a polymer substrate to which Rhodamine 110 was bonded through a photolabile crosslinking agent.
  • a confocal laser microscope Zeiss LSM710: manufactured by Carl Zeiss
  • Irradiation conditions are as follows: objective lens: 10 times, laser: 405 nm (30 mW), intensity: 5%, 10%, 30%, ⁇ 60%, 90%, irradiation time: 1 minute, 5 minutes, 10 Min. Thereafter, the fluorescence obtained by exciting the dissociation of the fluorescent dye with light irradiation at 488 nm was observed at 491 nm to 740 nm.
  • the conditions at the time of observation are as follows: objective lens: 10 times, laser: 488 nm (250 mW), intensity: 2%, observation wavelength: 491-740 nm. The results are shown in FIG.
  • Test Example 7 Dissociation of Stem Cell after Culture by Light Irradiation from Substrate for Culture in which Cell Adhesive Peptide with Cyclic Skeleton Structure is Bonded to Polymer Substrate via Photodegradable Linker Obtained in Production Example 5
  • Stem cells are adhered to the substrate in the same manner as in Test Example 2.
  • a part of the substrate is irradiated with a 405 nm laser (30 mW) at an intensity of 10% for 5 minutes. When observed 1 hour after irradiation, it is confirmed that the stem cells are released specifically in the light irradiation site.
  • the base material for stem cell culture of the present invention is a safety that does not rely on animal-derived materials to enable proliferation while maintaining the undifferentiation and pluripotency of stem cells, which are indispensable elements for realizing regenerative medicine. It is a base material with high properties. Therefore, the realization of regenerative medicine, which has been delayed in practical use due to the risk of contamination with foreign proteins and pathogens from conventional base materials, is promoted.
  • the substrate for stem cell culture of the present invention is a carrier or support for tissue engineering of tissues / organs such as artificial bone, artificial tooth root, bone repair agent, bone filler, artificial skin, artificial nerve, artificial liver, etc., regenerative medicine It can be used as a carrier or support for use.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Provided are a substrate for stem cell cultures having no risk of pathogen infection or undesirable side effects, and a method for using the same. The present invention comprises a substrate for stem cell cultures in which a cell adhesion peptide having a cyclic skeleton structure is bonded to a polymer substrate, and a stem cell culture method using the substrate for stem cell cultures. A substance containing the Arg-Gly-Asp sequence found in fibronectin can be used as the cell adhesion peptide with a cyclic skeleton structure. A polypeptide and/or a polysaccharide can be used for the polymer substrate.

Description

幹細胞培養用基材及びそれを用いた培養方法Stem cell culture substrate and culture method using the same
 本発明は、病原体感染の危険性や好ましくない副作用がない幹細胞培養用基材及びその利用方法に関する。さらに詳しくは、幹細胞の増殖や分化に有用でかつ安全性の高い培養用基材及びその培養方法に関する。 The present invention relates to a stem cell culture substrate that does not have the risk of pathogen infection and undesirable side effects, and a method for using the same. More specifically, the present invention relates to a culture substrate that is useful for the proliferation and differentiation of stem cells and has high safety, and a culture method thereof.
 胚性幹細胞(ES細胞)や誘導多能性幹細胞(iPS細胞)等の幹細胞は、組織や臓器を生体内外で再構築し、失われた組織や臓器の代わりに移植をする再生医療を実現するために不可欠である。現在、多能性を維持したまま幹細胞を増殖させるために、動物やヒト由来の線維芽細胞をフィーダー細胞として用いるか、ゼラチンやマトリゲル等の動物由来材料を被覆した培養容器が用いられている。これらの手法は、動物やヒト由来の線維芽細胞や動物由来材料にプリオン等の病原体あるいは未知のウイルス等が混入する危険性があり、再生医療の実現を妨げる一つの要因となっている。 Stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells) reconstruct tissues and organs inside and outside the body, and realize regenerative medicine that transplants in place of lost tissues and organs Indispensable for. Currently, in order to proliferate stem cells while maintaining pluripotency, fibroblasts derived from animals or humans are used as feeder cells, or culture containers coated with animal-derived materials such as gelatin and matrigel are used. These techniques have a risk of contaminating animal or human-derived fibroblasts or animal-derived materials with pathogens such as prions or unknown viruses, which is one factor that hinders the realization of regenerative medicine.
 発明者らは、動物やヒト由来の材料の代替手段となる安全性の高い生体適合性材料の創成を目指して鋭意研究を重ね、これまでにそのような性質を備えた完全化学合成のポリペプチドの合成技術を完成させている。例えば、特許文献1には、病原体の感染や病原性因子の伝達を生じる危険性や望ましくない副作用を生じる虞がなく、種々の生理活性物質やアパタイト類の担体として有用な新規なポリペプチドとして、-Pro-X-Gly-(Xは、Pro又はHypを表す)で表されるアミノ酸配列を有するペプチドユニットと、-Pro-Hyp(O-Y-Z)-Gly-(Yは、カルボニル基、カルボニル基を有するか又は有しない飽和又は不飽和の炭化水素基、又は芳香族基を含む、カルボニル基を有するか又は有しない飽和又は不飽和の炭化水素基を表し、Zはカルボキシル基を表す)で表されるアミノ酸配列を有するペプチドユニットとを含むポリペプチドが開示されている。 The inventors have conducted intensive research aimed at creating highly safe biocompatible materials that can be used as alternatives to materials derived from animals and humans, and have so far fully synthesized chemically synthesized polypeptides. Has completed the synthesis technology. For example, Patent Document 1 discloses a novel polypeptide useful as a carrier for various physiologically active substances and apatites without the risk of causing infection of pathogens and transmission of pathogenic factors and undesirable side effects. A peptide unit having an amino acid sequence represented by -Pro-X-Gly- (X represents Pro or Hyp), and -Pro-Hyp (OYZ) -Gly- (Y has a carbonyl group or a carbonyl group) A saturated or unsaturated hydrocarbon group with or without, or a saturated or unsaturated hydrocarbon group with or without a carbonyl group, including an aromatic group, and Z represents a carboxyl group) A polypeptide comprising a peptide unit having an amino acid sequence is disclosed.
 一方、非特許文献2には、フィブロネクチンに見出される細胞接着配列Gly-Arg-Gly-Asp-Serと Pro-His-Ser-Arg-Asnをポリペプチドpoly(Pro-Hyp-Gly)に結合した材料がマウス線維芽細胞株NIH3T3の細胞接着と移動を促進すること、及びウサギ角膜上皮細胞株の重層化を促進することが報告されている。 On the other hand, Non-Patent Document 2 discloses a material obtained by binding a cell adhesion sequence Gly-Arg-Gly-Asp-Ser and Pro-His-Ser-Arg-Asn found in fibronectin to a polypeptide poly (Pro-Hyp-Gly). Have been reported to promote cell adhesion and migration of the mouse fibroblast cell line NIH3T3 and to promote stratification of the rabbit corneal epithelial cell line.
 特許文献2には、フィーダーフリーの培養環境で、分化多能性を保持したままヒト多能性幹細胞を維持するために、ヒトラミニンのフラグメントがコーティングされているヒト多能性幹細胞培養用基材とこれを用いる培養方法が提案されている。 Patent Document 2 discloses a human pluripotent stem cell culture substrate coated with a human laminin fragment in order to maintain human pluripotent stem cells while maintaining differentiation pluripotency in a feeder-free culture environment. A culture method using this has been proposed.
 特許文献3には、胚性幹細胞から肝細胞を効率良く分化誘導させる方法及びその素材を提供することを目的に、スポンジ形態の架橋多糖を主成分とする胚性幹細胞の培養用基材が提案されている。 Patent Document 3 proposes a substrate for culturing embryonic stem cells mainly composed of a sponge-like cross-linked polysaccharide for the purpose of providing a method and material for efficiently inducing differentiation of hepatocytes from embryonic stem cells. Has been.
 特許文献4には、フィーダー細胞及びフィーダー細胞由来成分非存在下で、大量にかつ安全に未分化な胚性幹細胞を維持する培養基材及び培養方法を提供することを目的に、不織布等の多孔質体よりなる培養用基材を提案している。 Patent Document 4 discloses a porous substrate such as a nonwoven fabric for the purpose of providing a culture substrate and a culture method for maintaining undifferentiated embryonic stem cells in large quantities and safely in the absence of feeder cells and feeder cell-derived components. A culture substrate composed of a solid material is proposed.
 特許文献5には、幹細胞を、その分化能を維持したまま効率良く増殖させるための培養基材を提供することを目的として、細胞接着活性物質を含有してなることを特徴とする幹細胞培養用基材が提案されている。 Patent Document 5 describes a stem cell culture characterized by containing a cell adhesion active substance for the purpose of providing a culture substrate for efficiently proliferating stem cells while maintaining their differentiation ability. Substrates have been proposed.
 非特許文献3には、細胞接着配列Arg-Gly-Aspを、ポリ乳酸を含む高分子表面に結合する方法及びこれを用いて骨組織を構築する方法が報告されている。 Non-Patent Document 3 reports a method for binding a cell adhesion sequence Arg-Gly-Asp to a polymer surface containing polylactic acid and a method for constructing a bone tissue using this.
国際公開特許WO2009/035092公報International Patent Publication WO2009 / 035092 特許公開2011-78370公報Patent Publication 2011-78370 特許公開2006-42758公報Patent Publication 2006-42758 国際公開特許WO2003/038070公報International Patent Publication WO2003 / 038070 特許公開2002-315567公報Patent Publication 2002-315567
 このような現状の下、本発明は、幹細胞との接着性に優れ、病原体の感染や病原性因子の伝達を生じる危険性や好ましくない副作用のおそれがない幹細胞培養用基材及びこれを用いる幹細胞の培養方法を提供することを目的とする。また、本発明は、培養基材に接着した幹細胞を安全且つ簡便に基材から分離することが可能な培養基材及びそれを用いて幹細胞を培養する方法を提供することを更なる目的とする。 Under such circumstances, the present invention is excellent in adhesion to stem cells, has no risk of causing pathogen infection or transmission of pathogenic factors, and there is no risk of undesirable side effects, and stem cells using the same It is an object of the present invention to provide a culture method of Another object of the present invention is to provide a culture substrate capable of safely and simply separating stem cells adhered to the culture substrate from the substrate, and a method for culturing stem cells using the same. .
 本発明者は前記課題を解決するため鋭意検討を行い、化学合成で得られる培養基材と幹細胞との細胞接着性を高めるために、合成培養基材に細胞接着性ペプチドを結合させるという構想に至った。しかしながら、後述する試験例1に示す通り、実際に、細胞接着性ペプチドとして知られるGly-Arg-Gly-Asp-Ser(配列番号1)を合成培養基材に結合させて、幹細胞を培養させたところ、幹細胞以外の細胞では接着性の改善が報告されているにも拘わらず(特許文献1)、幹細胞の合成培養基材に対する接着性に改善は見られなかった。この結果は、幹細胞のインテグリンは、幹細胞以外の細胞とは異なり、細胞接着性ペプチドとして知られるペプチド配列を認識しないことを示すものであった。このような知見が得られたにも拘わらず、本発明者等は更に日夜検討に励み、細胞接着性ペプチドとして環状構造を有するものを培養基材に結合させ、幹細胞を培養することを試みたところ、驚くべきことにその接着性が飛躍的に向上し、幹細胞を未分化な状態で培養することが可能であることを見出した。 The present inventor has intensively studied to solve the above-mentioned problems, and in order to improve the cell adhesion between the culture substrate obtained by chemical synthesis and the stem cells, the concept of binding the cell adhesion peptide to the synthetic culture substrate is proposed. It came. However, as shown in Test Example 1 to be described later, Gly-Arg-Gly-Asp-Ser (SEQ ID NO: 1) known as a cell adhesion peptide was actually bound to a synthetic culture substrate, and stem cells were cultured. However, although adhesion improvement has been reported in cells other than stem cells (Patent Document 1), no improvement was observed in the adhesion of stem cells to a synthetic culture substrate. This result showed that the integrin of stem cells, unlike cells other than stem cells, did not recognize a peptide sequence known as a cell adhesion peptide. Despite such knowledge, the present inventors made further efforts to study day and night, and tried to culture stem cells by binding a cell adhesion peptide having a cyclic structure to a culture substrate. However, it was surprisingly found that the adhesiveness was dramatically improved and the stem cells can be cultured in an undifferentiated state.
 このようにして本発明者らは、環状骨格構造をする細胞接着性ペプチドを合成培養基材に結合させることによって、幹細胞の培養基材に対する接着性を向上させ、より効率的に幹細胞を多分化能を維持した状態で培養できることを見出した。このような知見を踏まえ、本発明者等は、幹細胞の培養とその利用の改良ついて更に検討したところ、培養した幹細胞をその使用目的に応じて分化させるためには、培養した細胞を基材から遊離させる必要があるが、従来の酵素等を使用する方法では、細胞に対するダメージが大きく、生存率の低下を引き起こすという問題の存在を見出した。そして、この問題を解決する手段として、本発明者等は、環状骨格構造を有する細胞接着性ペプチドを、光分解性リンカーを介して結合させることにより、酵素等の細胞傷害性のある試薬を利用することなく、光の照射により簡便に細胞を基材から遊離させることが可能であることを見出した。 In this way, the present inventors improved the adhesion of stem cells to the culture substrate by binding the cell adhesion peptide having a cyclic skeleton structure to the synthetic culture substrate, and more efficiently differentiated stem cells. It was found that the cells can be cultured while maintaining the performance. Based on these findings, the present inventors have further studied stem cell culture and improvement of its use. In order to differentiate cultured stem cells according to their intended use, the cultured cells are used as a base material. Although it is necessary to liberate it, it has been found that there is a problem that the conventional method using an enzyme or the like causes a large damage to the cells and causes a decrease in the survival rate. As a means for solving this problem, the present inventors use a cytotoxic reagent such as an enzyme by binding a cell adhesive peptide having a cyclic skeleton structure via a photodegradable linker. It was found that the cells can be easily released from the substrate by irradiation with light.
 本発明者等は、以上のような知見に更なる検討と改良を重ねることにより本発明を完成するに至った。代表的な本発明は以下の通りである。
項1. 環状骨格構造を有する細胞接着性ペプチドが高分子基材に結合されている幹細胞培養用基材。
項2. 前記環状骨格構造を有する細胞接着性ペプチドがArg-Gly-Asp配列を含む項1記載の幹細胞培養用基材。
項3. 前記環状骨格構造を有する細胞接着性ペプチドがcyclo(Arg-Gly-Asp-(D)Phe-Lys)(配列番号2)である項1記載の幹細胞培養用基材。
項4. 前記高分子基材がポリペプチド及び/又は多糖類である項1記載の幹細胞培養用基材。
項5. 前記高分子基材が下記式(1)で表されるアミノ酸配列を有するペプチドユニット(1)と、下記式(2)で表されるアミノ酸配列を有するペプチドユニット(2)とを含むポリペプチドである項1記載の幹細胞培養用基材。
       -Pro-X-Gly-             (1)
       -Pro-Hyp(O-Y-Z)-Gly-         (2)
(式中、XはPro又はHypを示し、Yはカルボニル基、又はカルボニル基を有するか若しくは有しない飽和又は不飽和の炭化水素基を示し、Zはカルボキシル基を示す)
項6. Yが、-(C=O)-(CH2)n- (式中nは0又は1~18の整数を示す);-(C=O)-(CH2)n-(CH=CH)m-(CH2)k- (式中n及びkは独立に0又は1~18の整数を示し、mは1~18の整数を示す);及び-(C=O)-(CH2)n-(C6H4)-(CH2)k- (式中n及びkは独立に0又は1~18の整数を示し、C6H4はフェニレン基を示す)からなる群より選択される1種以上である項5記載の幹細胞培養用基材。
項7. ペプチドユニット(1)とペプチドユニット(2)との割合(モル比)が、(1)/(2)=99.9/0.1~1/99である項5記載の幹細胞培養用基材。
項8. 前記高分子基材が、円二色性スペクトルにおいて、波長220~230nmに正のコットン効果を示し、波長195~205nmに負のコットン効果を示す項5記載の幹細胞培養用基材。
項9. 前記高分子基材が、ポリペプチドの少なくとも一部が3重らせん構造を形成している項5記載の幹細胞培養用基材。
項10. 前記高分子基材が、分子量5×10~5×10の範囲にピークを示す項5記載のポリペプチドである幹細胞培養用基材。
項11. 前記環状骨格構造を有する細胞接着性ペプチドが光分解性リンカーを介して高分子基材に結合されている、項1記載の幹細胞培養基材。
項12. 光分解性リンカーが2-ニトロベンゼン骨格、2-ニトロフェノール骨格、ニトロインドール骨格、又はクマリン骨格を有する項11記載の幹細胞培養基材。
項13. 項1から12のいずれか記載の幹細胞培養用基材上で幹細胞を培養する工程を含む幹細胞の培養方法。
項14. 幹細胞が胚性幹細胞及び/又は誘導多能性幹細胞(iPS細胞)である項13記載の培養方法。
項15. 項11又は12に記載の幹細胞培養基材上で幹細胞を培養する工程、及び、
前記培養後の培養基材に光を照射することにより、幹細胞を幹細胞培養基材から分離する工程
を含む、幹細胞の培養方法。
項16. 項5記載の高分子基材のポリペプチドが有するカルボキシル基と、環状骨格構造を有する細胞接着性ペプチドが有するアミノ基とを脱水縮合して得られるアミド結合により、環状骨格構造を有する細胞接着性ペプチドと高分子基材とが結合することを含む幹細胞培養基材の製造方法。
The present inventors have completed the present invention by further studying and improving the above knowledge. The representative present invention is as follows.
Item 1. A stem cell culture substrate in which a cell adhesion peptide having a cyclic skeleton structure is bound to a polymer substrate.
Item 2. Item 2. The stem cell culture substrate according to Item 1, wherein the cell adhesion peptide having a cyclic skeleton structure comprises an Arg-Gly-Asp sequence.
Item 3. Item 2. The stem cell culture substrate according to Item 1, wherein the cell adhesion peptide having a cyclic skeleton structure is cyclo (Arg-Gly-Asp- (D) Phe-Lys) (SEQ ID NO: 2).
Item 4. Item 2. The stem cell culture substrate according to Item 1, wherein the polymer substrate is a polypeptide and / or a polysaccharide.
Item 5. A polypeptide in which the polymer substrate comprises a peptide unit (1) having an amino acid sequence represented by the following formula (1) and a peptide unit (2) having an amino acid sequence represented by the following formula (2): The stem cell culture substrate according to Item 1.
-Pro-X-Gly- (1)
-Pro-Hyp (OYZ) -Gly- (2)
(In the formula, X represents Pro or Hyp, Y represents a carbonyl group, or a saturated or unsaturated hydrocarbon group with or without a carbonyl group, and Z represents a carboxyl group)
Item 6. Y is, - (C = O) - (CH 2) n- (n in the formula is an integer of 0 or 1 ~ 18) ;-( C = O ) - (CH 2) n- (CH = CH) m- (CH 2 ) k- (wherein n and k independently represent 0 or an integer of 1 to 18, and m represents an integer of 1 to 18); and-(C = O)-(CH 2 ) n- (C 6 H 4 )-(CH 2 ) k- (wherein n and k independently represent 0 or an integer of 1 to 18, and C 6 H 4 represents a phenylene group). Item 6. The stem cell culture substrate according to Item 5, which is one or more types.
Item 7. Item 6. The stem cell culture substrate according to Item 5, wherein the ratio (molar ratio) of peptide unit (1) to peptide unit (2) is (1) / (2) = 99.9 / 0.1 to 1/99. .
Item 8. Item 6. The stem cell culture substrate according to Item 5, wherein the polymer substrate exhibits a positive cotton effect at a wavelength of 220 to 230 nm and a negative cotton effect at a wavelength of 195 to 205 nm in a circular dichroism spectrum.
Item 9. 6. The stem cell culture substrate according to item 5, wherein at least a part of the polypeptide forms a triple helical structure.
Item 10. 6. The stem cell culture substrate, wherein the polymer substrate is a polypeptide according to item 5, which exhibits a peak in a molecular weight range of 5 × 10 3 to 5 × 10 6 .
Item 11. Item 2. The stem cell culture substrate according to Item 1, wherein the cell adhesive peptide having a cyclic skeleton structure is bound to a polymer substrate via a photodegradable linker.
Item 12. Item 12. The stem cell culture substrate according to Item 11, wherein the photodegradable linker has a 2-nitrobenzene skeleton, a 2-nitrophenol skeleton, a nitroindole skeleton, or a coumarin skeleton.
Item 13. Item 13. A method for culturing a stem cell, comprising a step of culturing a stem cell on the stem cell culture substrate according to any one of Items 1 to 12.
Item 14. Item 14. The culture method according to Item 13, wherein the stem cells are embryonic stem cells and / or induced pluripotent stem cells (iPS cells).
Item 15. The step of culturing stem cells on the stem cell culture substrate according to Item 11 or 12, and
A method for culturing stem cells, comprising a step of separating stem cells from a stem cell culture substrate by irradiating the culture substrate after the culture with light.
Item 16. Item 5. Cell adhesion having a cyclic skeleton structure by an amide bond obtained by dehydration condensation of a carboxyl group of a polypeptide of a polymer substrate according to Item 5 and an amino group of a cell adhesion peptide having a cyclic skeleton structure A method for producing a stem cell culture substrate, comprising binding a peptide and a polymer substrate.
 本発明の幹細胞培養用基材を用いることにより、胚性幹細胞(ES細胞)や誘導多能性幹細胞(iPS細胞)等の幹細胞の基材への接着率が飛躍的に向上するため、幹細胞をその多分化能を維持した状態で効率的に培養することが可能となる。また、本発明の幹細胞培養基材は、動物由来の材料を用いていないため、病原体感染の危険性や他の好ましくない副作用(例えば、動物由来タンパク質によるアレルギー反応のおそれ)が低減されており、安全性に優れている。更に、本発明の好適な一実施形態では、培養基材に接着した幹細胞を幹細胞に対するダメージを抑制しつつ、簡便且つ効率的に培養基材から遊離させることが可能である。よって、本発明の幹細胞培養基材を用いることにより、培養した幹細胞を効率的に分化誘導に供することができるため、幹細胞の培養から分化誘導までの一連の作業の操作性を大幅に向上させることができる。 By using the stem cell culture substrate of the present invention, the adhesion rate of stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells) to the substrate is dramatically improved. It becomes possible to culture efficiently while maintaining the pluripotency. Moreover, since the stem cell culture substrate of the present invention does not use animal-derived materials, the risk of pathogen infection and other undesirable side effects (for example, allergic reactions due to animal-derived proteins) are reduced, Excellent safety. Furthermore, in a preferred embodiment of the present invention, the stem cells adhered to the culture substrate can be easily and efficiently released from the culture substrate while suppressing damage to the stem cells. Therefore, by using the stem cell culture substrate of the present invention, the cultured stem cells can be efficiently used for differentiation induction, so that the operability of a series of operations from stem cell culture to differentiation induction is greatly improved. Can do.
試験例2で作製した幹細胞培養用基材上で30時間培養したマウス胚性幹細胞(EB3)を示す顕微鏡写真を示す。2 shows a micrograph showing mouse embryonic stem cells (EB3) cultured for 30 hours on the stem cell culture substrate prepared in Test Example 2. 製造例4において、高分子基材に光分解性リンカーを結合した手順を示す。In Production Example 4, a procedure in which a photodegradable linker is bonded to a polymer substrate is shown. 試験例5で光照射したパターンを示す。The pattern irradiated with light in Test Example 5 is shown. 試験例5における光照射によって解離した色素のパターンを示す。The pattern of the pigment | dye dissociated by the light irradiation in Test Example 5 is shown.
 以下に本発明を詳細に説明する。
[定義等]
 本明細書では、各種アミノ酸残基を次の略号で記述する。
  Ala :L-アラニン残基
  Arg :L-アルギニン残基
  Asn :L-アスパラギン残基
  Asp :L-アスパラギン酸残基
  Cys :L-システイン残基
  Gln :L-グルタミン残基
  Glu :L-グルタミン酸残基
  Gly :グリシン残基
  His :L-ヒスチジン残基
   Hyp :L-ヒドロキシプロリン残基
  Ile :L-イソロイシン残基
  Leu :L-ロイシン残基
  Lys :L-リジン残基
  Met :L-メチオニン残基
  Phe :L-フェニルアラニン残基
  (D)Phe:D-フェニルアラニン残基
  Pro :L-プロリン残基
  Sar :サルコシン残基
  Ser :L-セリン残基
  Thr :L-トレオニン残基
  Trp :L-トリプトファン残基
  Tyr :L-チロシン残基
  Val :L-バリン残基
  (D)Val:D-バリン残基
 本明細書においては、別段の表記をした場合を除き、常法に従って、N末端のアミノ酸残基を左側に位置させ、C末端のアミノ酸残基を右側に位置させて、ペプチド鎖のアミノ酸配列を記述する。
The present invention is described in detail below.
[Definition etc.]
In this specification, various amino acid residues are described by the following abbreviations.
Ala: L-alanine residue Arg: L-arginine residue Asn: L-asparagine residue Asp: L-aspartic acid residue Cys: L-cysteine residue Gln: L-glutamine residue Glu: L-glutamic acid residue Gly: glycine residue His: L-histidine residue Hyp: L-hydroxyproline residue Ile: L-isoleucine residue Leu: L-leucine residue Lys: L-lysine residue Met: L-methionine residue Phe: L-phenylalanine residue (D) Phe: D-phenylalanine residue Pro: L-proline residue Sar: sarcosine residue Ser: L-serine residue Thr: L-threonine residue Trp: L-tryptophan residue Tyr: L-tyrosine residue Val: L-valine residue (D) Val: D-valine residue In the present specification, unless otherwise indicated, the N-terminal amino acid residue is left Is positioned, with the amino acid residues of the C-terminal is located on the right side describes the amino acid sequence of the peptide chain.
 [環状骨格構造を有する細胞接着性ペプチド]
 細胞接着性ペプチドとは、細胞との接着に関与し、基材との細胞接着を促進する機能を有するペプチドである。本発明に使用される細胞接着性ペプチドは、そのような機能を有するペプチドであれば特に制限されず、天然に存在するペプチド及び人工的に設計されたものを広く用いることができる。好ましい細胞接着性ペプチドとしては、細胞膜上のインテグリン分子と結合する細胞外マトリクス中のインテグリン認識配列が挙げられる。現在知られている細胞接着性ペプチドとして、例えば、Arg-Gly-Asp、Pro-His-Ser-Arg-Asn(配列番号3)、Tyr-Ile-Gly-Ser-Arg(配列番号4)、Ile-Lys-Val-Ala-Val(配列番号5)、Leu-Asp-Val、Arg-Glu-Asp-Val(配列番号6)、及びLeu-Arg-Glu配列等を挙げることができ、これらをを含むペプチド好適に使用することができる。これらの中でもフィブロネクチンに見出されるArg-Gly-Asp配列を含む細胞接着性ペプチドが好ましい。
[Cell-adhesive peptide having a cyclic skeleton structure]
The cell adhesion peptide is a peptide that is involved in adhesion with cells and has a function of promoting cell adhesion with a substrate. The cell adhesive peptide used in the present invention is not particularly limited as long as it has such a function, and a naturally occurring peptide and an artificially designed peptide can be widely used. Preferred cell adhesion peptides include integrin recognition sequences in the extracellular matrix that bind to integrin molecules on the cell membrane. Currently known cell adhesion peptides include, for example, Arg-Gly-Asp, Pro-His-Ser-Arg-Asn (SEQ ID NO: 3), Tyr-Ile-Gly-Ser-Arg (SEQ ID NO: 4), Ile -Lys-Val-Ala-Val (SEQ ID NO: 5), Leu-Asp-Val, Arg-Glu-Asp-Val (SEQ ID NO: 6), Leu-Arg-Glu sequences, etc. The peptide containing can be used suitably. Among these, a cell adhesive peptide containing an Arg-Gly-Asp sequence found in fibronectin is preferable.
 本発明において使用される細胞接着性ペプチドは、環状骨格構造を有する。ここで、環状骨格構造を有するとは、上述の細胞接着性ペプチドが環状骨格構造を形成していることを意味する。環状骨格構造は、細胞接着性ペプチドのみで構成されていてもよく、その他のペプチドとの組合せで構成されていてもよい。環状骨格構造を形成するアミノ酸の数は、幹細胞に対する接着性を維持している限り特に制限されないが、例えば、下限は3個以上又は4個以上であり、上限は7個以下又は6個以下である。環状骨格構造を形成するアミノ酸の数がこのように制限されることにより、細胞接着ペプチドの立体構造(即ち、構成アミノ酸が形成する角度)が、幹細胞の表面に存在する受容体であるインテグリン分子による認識に適した構造になると考えられる。フィブロネクチンは細胞外マトリックスの代表的な接着タンパク質であり、細胞の接着、増殖、遊走及び分化を制御する重要な役割を有することが知られている。フィブロネクチンには複数の細胞/細胞外マトリクス結合ドメインが存在する。そのうち、III-10は「細胞結合ドメイン」に対応しており、Arg-Gly-Asp配列を有し、この部分が細胞膜上に存在するインテグリン分子と結合して細胞接着を行う。 The cell adhesive peptide used in the present invention has a cyclic skeleton structure. Here, having a cyclic skeleton structure means that the cell-adhesive peptide described above forms a cyclic skeleton structure. The cyclic skeleton structure may be composed only of a cell adhesive peptide or may be composed of a combination with other peptides. The number of amino acids forming the cyclic skeleton structure is not particularly limited as long as the adhesion to stem cells is maintained. For example, the lower limit is 3 or more and 4 or more, and the upper limit is 7 or less or 6 or less. is there. By limiting the number of amino acids forming the cyclic skeleton structure in this way, the three-dimensional structure of the cell adhesion peptide (ie, the angle formed by the constituent amino acids) is caused by the integrin molecule that is a receptor present on the surface of the stem cell. It is thought that the structure is suitable for recognition. Fibronectin is a typical adhesion protein of the extracellular matrix, and is known to have an important role in controlling cell adhesion, proliferation, migration and differentiation. Fibronectin has multiple cell / extracellular matrix binding domains. Among them, III-10 corresponds to a “cell binding domain”, has an Arg-Gly-Asp sequence, and this part binds to an integrin molecule present on the cell membrane to perform cell adhesion.
 環状骨格構造を有する細胞接着性ペプチドは、例えば、上述の細胞接着性ペプチド単独又はそれと他の1又は2個以上のアミノ酸との組合せで構成された、環状ペプチドであり得る。好ましい環状骨格構造を有する細胞接着性ペプチドは、フィブロネクチンに見られるArg-Gly-Asp配列を含む環状ペプチドであり、例えば、一般式(I):cyclo(Arg-Gly-Asp-B-J)(ここで、B及びJは、互いに独立した任意のアミノ酸であり、いずれか一方はD型である)で表示される5個のアミノ酸で構成される環状ペプチドである。尚、一般式(I)は、Argのα-アミノ基とJのα-カルボキシル基とがペプチド結合を形成し、全体として環を形成することを示す。より好ましい環状骨格構造を有する細胞接着性ペプチドは、前記一般式(1)において、Bが(D)PheでJが任意のアミノ酸であるか、Bが任意のアミノ酸でJが(D)Valである。より具体的な好適な環状骨格構造を有する細胞接着性ペプチドとしては、例えば、cyclo(Arg-Gly-Asp-(D)Phe-Lys)(配列番号7)、cyclo(Arg-Gly-Asp-(D)Phe-Val(配列番号8)cyclo(Arg-Gly-Asp-Phe-(D)Val)(配列番号9)、cyclo(Arg-Gly-Asp-(D)-Phe-Ser)(配列番号10)、及びcyclo(Cys-Arg-Gly-Asp-(D)Phe-Cys)(配列番号11)、等を挙げることができる。環状骨格構造を有する細胞接着性ペプチドは、幹細胞との細胞接着性を維持している限り、他のペプチド又は糖鎖等によって修飾されていてもよい。 The cell adhesive peptide having a cyclic skeleton structure may be, for example, a cyclic peptide composed of the above-mentioned cell adhesive peptide alone or a combination thereof with one or more other amino acids. A cell adhesion peptide having a preferred cyclic skeleton structure is a cyclic peptide containing the Arg-Gly-Asp sequence found in fibronectin, for example, the general formula (I): cyclo (Arg-Gly-Asp-BJ) (where , B and J are arbitrary amino acids independent of each other, one of which is a D type), and a cyclic peptide composed of 5 amino acids. In addition, general formula (I) shows that the α-amino group of Arg and the α-carboxyl group of J form a peptide bond and form a ring as a whole. A cell-adhesive peptide having a more preferred cyclic skeleton structure is as follows. In the general formula (1), B is (D) Phe and J is any amino acid, or B is any amino acid and J is (D) Val. is there. More specific examples of the cell adhesion peptide having a suitable cyclic skeleton structure include cyclo (Arg-Gly-Asp- (D) Phe-Lys) (SEQ ID NO: 7), cyclo (Arg-Gly-Asp- ( D) Phe-Val (SEQ ID NO: 8) cyclo (Arg-Gly-Asp-Phe- (D) Val) (SEQ ID NO: 9), cyclo (Arg-Gly-Asp- (D) -Phe-Ser) (SEQ ID NO: 10), and cyclo (Cys-Arg-Gly-Asp- (D) Phe-Cys) (SEQ ID NO: 11), etc. The cell adhesion peptide having a cyclic skeleton structure is a cell adhesion to stem cells. As long as the property is maintained, it may be modified with other peptides or sugar chains.
 本発明で使用される環状骨格構造を有するペプチドは、公知ペプチド合成方法を用いて製造することができる。例えば、固相合成法又は液相合成法によって調製されるが、固相合成法が操作上簡便である〔例えば、日本生化学会編「続生化学実験講座2 タンパク質の化学(下)」(昭和62年5月20日 株式会社東京化学同人発行)、第641-694頁参照〕。 The peptide having a cyclic skeleton structure used in the present invention can be produced using a known peptide synthesis method. For example, it is prepared by a solid phase synthesis method or a liquid phase synthesis method, but the solid phase synthesis method is simple in operation [for example, “Sequence Chemistry Laboratory Lecture 2 Protein Chemistry (below)” edited by the Japanese Biochemical Society (Showa) May 20, 62, issued by Tokyo Chemical Co., Ltd.), pages 641-694].
 本発明の環状骨格構造のペプチドの固相合成法による調製は、例えば、次の手順で行うことができる。まず、スチレン-ジビニルベンゼン共重合体等の反応溶媒に不溶性である重合体に、目的とするペプチドのC末端に対応するアミノ酸をそれが有するα-COOH基を介して結合させる。次いで、該アミノ酸に目的とするペプチドのN末端の方向に向かって、対応するアミノ酸又はペプチド断片を該アミノ酸又はペプチド断片が有するα-COOH基以外のα-アミノ基等の官能基を保護した上で縮合させて結合させる。そして、この操作と該結合したアミノ酸又はペプチド断片におけるα-アミノ基等のペプチド結合を形成するアミノ基が有する保護基を除去する操作を順次繰り返すことによってペプチド鎖を伸長させる。目的とするペプチドに対応するペプチド鎖が形成されると、該ペプチド鎖を重合体から脱離させた後、環化させる。得られた環状ペプチドの保護されている官能基から保護基を除去する。最後に得られたペプチドを精製する。ここで、ペプチド鎖の重合体からの脱離及び保護基の除去は、トリフルオロ酢酸を用いて行うのが副反応を抑制する観点から好ましい。また、得られたペプチドの精製は逆相液体クロマトグラフィーで行うことが効果的である。 Preparation of a peptide having a cyclic skeleton structure according to the present invention by a solid phase synthesis method can be performed, for example, by the following procedure. First, an amino acid corresponding to the C-terminus of the target peptide is bonded to a polymer that is insoluble in a reaction solvent such as a styrene-divinylbenzene copolymer via the α-COOH group that it has. Next, the amino acid or peptide fragment corresponding to the amino acid in the direction of the N-terminal of the target peptide is protected with a functional group such as an α-amino group other than the α-COOH group of the amino acid or peptide fragment. To condense and bond. Then, the peptide chain is elongated by sequentially repeating this operation and the operation of removing the protecting group of the amino group that forms a peptide bond such as an α-amino group in the bound amino acid or peptide fragment. When a peptide chain corresponding to the target peptide is formed, the peptide chain is detached from the polymer and then cyclized. The protecting group is removed from the protected functional group of the resulting cyclic peptide. Finally, the obtained peptide is purified. Here, the elimination of the peptide chain from the polymer and the removal of the protecting group are preferably performed using trifluoroacetic acid from the viewpoint of suppressing side reactions. Further, it is effective to purify the obtained peptide by reverse phase liquid chromatography.
 [高分子基材]
 本発明で使用される高分子基材の種類は、病原体感染の危険性や他の好ましくない副作用が低減されている限り特に制限されないが、通常ポリペプチド及び/又は多糖類である。ポリペプチドであることが好ましく、中でも、式(1)-Pro-X-Gly-で表されるアミノ酸配列を有するペプチドユニットを含むポリペプチドであることが特に好ましい。-Pro-X-Gly-で表される配列は、ポリペプチド全体を安定な3重らせん構造にすることに寄与する。よって、このユニット(1)は、3重らせん構造の安定性の点から、ポリペプチド中において、-(Pro-X-Gly)n-で表される繰返し構造(オリゴ又はポリペプチドユニット構造)を形成してもよい。この配列の繰返し数nは、例えば、1~5000、好ましくは2~3000程度である。Xは、Pro又はHypのいずれであってもよいが、3重らせん構造の安定性からHypであるのがより好ましい。なお、Hypは、通常、4Hyp(例えば、trans-4-ヒドロキシ-L-プロリン)残基である。
[Polymer substrate]
The type of polymer substrate used in the present invention is not particularly limited as long as the risk of pathogen infection and other undesirable side effects are reduced, but is usually a polypeptide and / or polysaccharide. A polypeptide is preferable, and a polypeptide including a peptide unit having an amino acid sequence represented by the formula (1) -Pro-X-Gly- is particularly preferable. The sequence represented by -Pro-X-Gly- contributes to making the entire polypeptide into a stable triple helical structure. Therefore, this unit (1) has a repeating structure (oligo or polypeptide unit structure) represented by-(Pro-X-Gly) n- in the polypeptide from the viewpoint of the stability of the triple helix structure. It may be formed. The repeating number n of this arrangement is, for example, about 1 to 5000, preferably about 2 to 3000. X may be either Pro or Hyp, but is more preferably Hyp in view of the stability of the triple helical structure. Hyp is usually a 4Hyp (eg, trans-4-hydroxy-L-proline) residue.
 また、該ポリペプチドは、式(2)-Pro-Hyp(O-Y-Z)-Gly-で表されるアミノ酸配列を有するペプチドユニットを含む。このようなペプチドユニット(2)を有することにより、ポリペプチドに環状骨格構造を有する細胞接着性ペプチドを結合することができる。前記式(2)において、Yはカルボニル基、又はカルボニル基を有するか又は有しないアルキル基を示し、Zはカルボキシル基を示す。 The polypeptide includes a peptide unit having an amino acid sequence represented by the formula (2) -Pro-Hyp (O-Y-Z) -Gly-. By having such a peptide unit (2), a cell adhesive peptide having a cyclic skeleton structure can be bound to the polypeptide. In the formula (2), Y represents a carbonyl group or an alkyl group with or without a carbonyl group, and Z represents a carboxyl group.
 式(2)中のY-Zはポリペプチドに環状骨格構造を有する細胞接着性ペプチドを結合するためのリンカー基の役割を果たす。Zはリンカー末端であってカルボキシル基を表す。Yが-(C=O)-(CH2)n-である場合のnは好ましくは0又は1~18、より好ましくは1~15、最も好ましくは2~12の整数を表す。また、Yが-(C=O)-(CH2)n-(CH=CH)m-(CH2)k-である場合のn及びkは独立して、好ましくは0又は1~18、より好ましくは1~15、最も好ましくは2~12の整数を表し、mは好ましくは0又は1~18、より好ましくは1~12、最も好ましくは1~8の整数を表す。さらに、Yが-(C=O)-(CH2)n-(C6H4)-(CH2)k-である場合のn及びkは独立して、好ましくは0又は1~18、より好ましくは0~12、最も好ましくは0~8の整数を表し、C6H4はフェニレン基を表す。 YZ in the formula (2) serves as a linker group for binding a cell adhesion peptide having a cyclic skeleton structure to the polypeptide. Z is a linker terminal and represents a carboxyl group. When Y is — (C═O) — (CH 2 ) n—, n preferably represents 0 or an integer of 1 to 18, more preferably 1 to 15, and most preferably 2 to 12. In addition, when Y is — (C═O) — (CH 2 ) n— (CH═CH) m— (CH 2 ) k—, n and k are independently preferably 0 or 1 to 18, More preferably, it represents an integer of 1 to 15, most preferably 2 to 12, and m preferably represents 0 or an integer of 1 to 18, more preferably 1 to 12, and most preferably 1 to 8. Further, when Y is — (C═O) — (CH 2 ) n— (C 6 H 4 ) — (CH 2 ) k—, n and k are independently preferably 0 or 1 to 18, More preferably, it represents an integer of 0 to 12, most preferably 0 to 8, and C 6 H 4 represents a phenylene group.
 式(2)において(Y-Z)で表されるジカルボン酸リンカーは、無水ジカルボン酸をポリペプチド主鎖に付加することにより形成することができる。すなわち、Yが-(C=O)-(CH2)n- の場合は、無水シュウ酸、無水マロン酸、無水コハク酸、無水4-カルボキシ酪酸、無水5-カルボキシ吉草酸、無水6-カルボキシカプロン酸、無水7-カルボキシヘプタン酸、無水8-カルボキシカプリル酸、無水9-カルボキシペラルゴン酸等をポリペプチド主鎖のヒドロキシプロリン残基のヒドロキシル基と反応させて付加することができる。同様に、Yが-(C=O)-(CH2)n-(CH=CH)m-(CH2)k-の場合は、無水マレイン酸、ペンタ-2-エン二酸無水物、ヘキサ-3-エン二酸無水物、シトラコン酸無水物等を、-(C=O)-(CH2)n-(C6H4)-(CH2)k-の場合は、フタル酸無水物等をポリペプチド主鎖のヒドロキシプロリン残基のヒドロキシル基と反応させて付加することができる。 The dicarboxylic acid linker represented by (YZ) in formula (2) can be formed by adding dicarboxylic anhydride to the polypeptide main chain. That is, when Y is-(C = O)-(CH 2 ) n-, oxalic anhydride, malonic anhydride, succinic anhydride, 4-carboxybutyric anhydride, 5-carboxyvaleric anhydride, 6-carboxy anhydride Caproic acid, 7-carboxyheptanoic anhydride, 8-carboxycaprylic anhydride, 9-carboxypelargonic anhydride and the like can be added by reacting with the hydroxyl group of the hydroxyproline residue of the polypeptide main chain. Likewise, Y is - (C = O) - ( CH 2) n- (CH = CH) if m- the (CH 2) k-, maleic anhydride, pent-2-ene dioic acid anhydride, hexa In the case of-(C = O)-(CH 2 ) n- (C 6 H 4 )-(CH 2 ) k- for -3-enedioic anhydride, citraconic anhydride, etc., phthalic anhydride Etc. can be added by reacting with the hydroxyl group of the hydroxyproline residue of the polypeptide main chain.
 該ポリペプチドにおいて、前記ペプチドユニット(1)と前記ペプチドユニット(2)との割合(モル比)は、例えば、(1)/(2)=99.9/0.1~1/99であり、好ましくは0.5/99.5~2/98、さらに好ましくは99/1~5/95程度である。前記ペプチドユニット(1)及び前記ペプチドユニット(2)の合計量と、他のペプチドユニットとの割合(モル比)は、前者/後者=100/0~50/50、好ましくは100/0~60/40、さらに好ましくは100/0~70/30程度である。 In the polypeptide, the ratio (molar ratio) between the peptide unit (1) and the peptide unit (2) is, for example, (1) / (2) = 99.9 / 0.1 to 1/99 The ratio is preferably about 0.5 / 99.5 to 2/98, more preferably about 99/1 to 5/95. The ratio (molar ratio) between the total amount of the peptide unit (1) and the peptide unit (2) and other peptide units is the former / the latter = 100/0 to 50/50, preferably 100/0 to 60 / 40, more preferably about 100/0 to 70/30.
 また、該ポリペプチドは、水系ゲルパーミエーションクロマトグラフィー(GPC)で測定される球状蛋白質換算で、例えば、分子量5×10~5×10、好ましくは分子量1×10~3×10、好ましくは3×10~2×10、さらに好ましくは5×10~1×10程度の範囲にピークを示す。 The polypeptide is, for example, a molecular weight of 5 × 10 3 to 5 × 10 6 , preferably a molecular weight of 1 × 10 4 to 3 × 10 6 in terms of globular protein measured by aqueous gel permeation chromatography (GPC). The peak is preferably in the range of about 3 × 10 4 to 2 × 10 6 , more preferably about 5 × 10 4 to 1 × 10 6 .
 さらに、該ポリペプチドは、円二色性スペクトルにおいて、波長220~230nmに 正のコットン効果を示し、波長195~205nmに負のコットン効果を示す。そのため、ポリペプチドの少なくとも一部(すなわち、一部又は全部)が3重らせん構造を形成しており、コラーゲン様ポリペプチドを形成する。なお、コットン効果とは、旋光性物質において特定の波長で左右の円偏光に対する吸収係数が異なるために起こる現象をいう。 Further, the polypeptide exhibits a positive cotton effect at wavelengths of 220 to 230 nm and a negative cotton effect at wavelengths of 195 to 205 nm in a circular dichroism spectrum. Therefore, at least a part of the polypeptide (that is, part or all) forms a triple helical structure, and forms a collagen-like polypeptide. The cotton effect refers to a phenomenon that occurs because the optical rotation material has different absorption coefficients for left and right circularly polarized light at a specific wavelength.
 該ポリペプチド(複合体も含む)は、純粋な試薬から化学的に合成されるため、病原体や病原性因子[例えば、病原性に転化したタンパク質(例えば、異常型プリオン等)等]の感染や伝達の危険性がない。そのため、該ポリペプチドは、安全性が高い。また、細胞親和性や生体適合性にも優れている。 Since the polypeptide (including the complex) is chemically synthesized from a pure reagent, infection with pathogens or pathogenic factors [eg, proteins converted to pathogenicity (eg, abnormal prions, etc.)] There is no danger of transmission. Therefore, the polypeptide is highly safe. It is also excellent in cell affinity and biocompatibility.
 該ポリペプチドは、公知の方法に従って製造することができる。例えば、式(1)に対応するアミノ酸又はペプチドフラグメントと、下記式(3)に対応するアミノ酸又はペプチドフラグメントとを少なくとも含むアミノ酸成分又はペプチドフラグメント成分を縮合させて得られるポリペプチドに、下記式(4)で示される化合物を反応させてポリペプチドを得るのが好ましい。
       -Pro-Hyp-Gly-           (3)
       HO-Y-Z               (4)
(式中、Yはカルボニル基、又はカルボニル基を有するか又は有しないアルキル基を示し、Zはカルボキシル基を示す)
The polypeptide can be produced according to a known method. For example, a polypeptide obtained by condensing an amino acid component or peptide fragment component containing at least an amino acid or peptide fragment corresponding to formula (1) and an amino acid or peptide fragment corresponding to formula (3) below, It is preferable to obtain a polypeptide by reacting the compound represented by 4).
-Pro-Hyp-Gly- (3)
HO-YZ (4)
(Wherein Y represents a carbonyl group or an alkyl group having or not having a carbonyl group, and Z represents a carboxyl group)
 高分子基材としての使用に好適である上述のポリペプチド及びその製造方法は、WO2009/035092に詳細に説明されているため、それを参照して製造することができる。WO2009/035092は援用によってその全体が本書に取り込まれる。 The above-mentioned polypeptide suitable for use as a polymer substrate and the production method thereof are described in detail in WO2009 / 035092, and can be produced with reference to them. WO2009 / 035092 is incorporated herein in its entirety with the aid of it.
[幹細胞培養用基材]
 本発明の幹細胞培養用基材は、上記の高分子基材に上記環状骨格構造を有する細胞接着性ペプチドが結合されたものであり、通常の細胞の培養に用いられるプラスティックディッシュ等の培養容器内に設けて製品化することができる。このような本発明の幹細胞培養用基材が設けられた培養容器は、例えば、高分子基材をプラスティックディッシュ等の培養面にコーティングした後に環状骨格構造を有する細胞接着性ペプチドを結合して得ることができる。また、高分子基材と環状骨格構造を有する細胞接着性ペプチドを結合した後、該溶液を用いて、プラスティックディッシュ等の培養面にコーティングして当該培養容器を作成しても良い。このような製造工程において、高分子基材を予めフィルム状、スポンジ状、繊維状、ロッド状、ビーズ状、ゲル上等の様々な形状に加工した上で、環状骨格構造を有する細胞接着性ペプチドを結合しても良い。また高分子基材と環状骨格構造を有する細胞接着性ペプチドを結合した溶液を上記形状に加工しても良く、金属やセラミックス、半導体、プラスティック等の種々の形態の加工品表面又は内面をコーティングしても良い。
[Stem cell culture substrate]
The base material for stem cell culture of the present invention is obtained by binding the cell adhesive peptide having the above cyclic skeleton structure to the above polymer base material, and in a culture vessel such as a plastic dish used for normal cell culture. And can be commercialized. Such a culture container provided with the stem cell culture substrate of the present invention is obtained, for example, by binding a cell adhesion peptide having a cyclic skeleton structure after coating a polymer substrate on a culture surface such as a plastic dish. be able to. Alternatively, after the cell substrate peptide having a cyclic skeleton structure is bound to the polymer substrate, the culture vessel may be prepared by coating the culture surface such as a plastic dish using the solution. In such a production process, a cell-adhesive peptide having a cyclic skeleton structure after processing a polymer substrate in various shapes such as a film shape, a sponge shape, a fiber shape, a rod shape, a bead shape, and a gel in advance. May be combined. In addition, a solution in which a polymer substrate and a cell-adhesive peptide having a cyclic skeleton structure are combined may be processed into the above shape, and the surface or inner surface of various forms of processed products such as metals, ceramics, semiconductors, and plastics may be coated. May be.
 本発明の高分子基材あるいは環状骨格構造を有する細胞接着性ペプチドを結合した高分子基材は、用途に応じて、慣用の方法により所望の形態に成形することができる。例えば、高分子基材の溶液又は懸濁液を、剥離性基材(例えば、フッ素樹脂(具体的には、ポリテトラフルオロエチレン))シート上に流延して、乾燥し、前記剥離性基材から剥離することによりシート又はフィルム状の高分子基材を得ることができる。また、高分子基材に対する貧溶媒(又は高濃度の塩を含む溶液等)中に、高分子基材の溶液又は懸濁液をノズルから押出すことにより繊維状の高分子基材を得ることができる。さらに、高分子基材の水溶液又は懸濁液を静置したり、必要により多価架橋性試薬(グルタルアルデヒド等)を添加して静置することによりゲル状の高分子基材を得ることができる。このようにして生成したゲル状高分子基材を凍結乾燥することによりスポンジ状の多孔質体とすることもできる。高分子基材の水溶液又は懸濁液に撹拌等により泡立て(発泡させて)、乾燥することによって多孔質体である高分子基材を得ることもできる。尚、上記において、高分子基材は、環状骨格構造を有する細胞接着性ペプチドが結合していても良い。 The polymer substrate of the present invention or the polymer substrate to which the cell-adhesive peptide having a cyclic skeleton structure is bonded can be formed into a desired form by a conventional method depending on the application. For example, a polymer substrate solution or suspension is cast on a peelable substrate (for example, a fluororesin (specifically, polytetrafluoroethylene)) sheet, dried, and the peelable group A polymer substrate in the form of a sheet or film can be obtained by peeling from the material. Also, a fibrous polymer substrate is obtained by extruding a solution or suspension of the polymer substrate from a nozzle in a poor solvent for the polymer substrate (or a solution containing a high concentration of salt, etc.). Can do. Furthermore, a gel-like polymer substrate can be obtained by allowing an aqueous solution or suspension of the polymer substrate to stand, or if necessary, adding a polyvalent crosslinking reagent (glutaraldehyde, etc.) and allowing to stand. it can. A sponge-like porous body can be obtained by freeze-drying the gel-like polymer substrate thus produced. A polymer substrate that is a porous body can be obtained by foaming (foaming) an aqueous solution or suspension of the polymer substrate by stirring or the like and drying. In the above, the polymer substrate may be bound with a cell adhesive peptide having a cyclic skeleton structure.
 さらに、環状骨格構造を有する細胞接着性ペプチドが結合した高分子基材はコーティングとして利用することも出来る。例えば、当該高分子基材の溶液又は懸濁液を、各種の成形体の表面に塗布又は散布した後、乾燥することにより、成形体の表面を高分子基材で被覆することができる。ここで成形体としては、種々の材料、例えば、金属、セラミックス、高分子(合成又は天然高分子等)等で形成された成形体等が挙げられる。なお、高分子成形体等の基材は、生分解性又は生体内分解性を有していてもよい。 Furthermore, a polymer substrate to which a cell adhesion peptide having a cyclic skeleton structure is bound can also be used as a coating. For example, the surface of the molded body can be coated with the polymer base material by applying or dispersing the solution or suspension of the polymer base material on the surface of various molded bodies and then drying. Here, examples of the molded body include molded bodies formed of various materials such as metals, ceramics, and polymers (synthetic or natural polymers). In addition, base materials, such as a polymer molded object, may have biodegradability or biodegradability.
 成形体並びに高分子基材の形態は、特に制限されず、粉粒状、一次元的形状の基材(繊維状又は糸状基材、線状基材、ロッド状基材等)、二次元的形状の基材(フィルム(又はシート)又は板状基材等)、及び三次元的形状の基材(チューブ状基材等)等であってもよい。さらに成形体及び高分子基材は、非多孔質体であってもよく多孔質体(例えば、粉粒状多孔質体、セルロース繊維紙、不織布や織布等の二次元的多孔質体、円筒状等の三次元的多孔質体)であってもよい。このような多孔質体では、高分子基材の溶液又は懸濁液を含浸させ、高分子基材を保持させてもよい。なお、前記成形体は、必要であれば、表面処理剤(例えば、生理学的に許容可能な表面処理剤)で表面処理してもよい。 The form of the molded body and the polymer substrate is not particularly limited, and is granular, one-dimensional shaped substrate (fibrous or thread-like substrate, linear substrate, rod-shaped substrate, etc.), two-dimensional shape Base materials (film (or sheet) or plate-like base material), and three-dimensional base materials (tube-like base material etc.). Further, the molded body and the polymer substrate may be non-porous bodies (for example, powdered porous bodies, cellulose fiber papers, two-dimensional porous bodies such as nonwoven fabrics and woven fabrics, cylindrical shapes) Or a three-dimensional porous body). In such a porous body, a polymer substrate solution or suspension may be impregnated to hold the polymer substrate. If necessary, the molded body may be surface-treated with a surface treatment agent (for example, a physiologically acceptable surface treatment agent).
[細胞接着性ペプチドと高分子基材との結合]
 高分子基材と環状骨格構造を有する細胞接着性ペプチドとは、通常高分子基材が有するカルボキシル基と、環状骨格構造を有する細胞接着性ペプチドが有するアミノ基とを脱水縮合して得られるアミド結合により結合することができる。結合方法は、細胞接着性ペプチドの細胞接着活性が失われず固定化され得る方法であれば特に制限されず、当該技術分野に公知の任意の方法で固定化することが出来る。細胞接着性ペプチドの種類や高分子基材の種類等に応じて好ましい固定化方法は異なり得るが、例えば、高分子基材がカルボキシル基を有し、環状骨格構造を有する細胞接着性ペプチドがアミノ基を有する場合には、N-ヒドロキシコハク酸イミドを用いる活性エステル法、水溶性カルボジイミドを用いる直接縮合法等が好ましく採用される。該基材は、必要に応じて、殺菌又は滅菌して用いてもよい。特に、医療用途等においては、通常、殺菌又は滅菌を施す場合が多い。殺菌及び滅菌方法としては、慣用の方法、例えば、湿熱蒸気滅菌、ガンマ線滅菌、エチレンオキサイドガス滅菌、薬剤殺菌、紫外線殺菌等が利用できる。これらの方法のうち、ガンマ線滅菌、エチレンオキサイドガス滅菌は、滅菌効率及び材料に与える影響が少ない点で好ましい。高分子基材と結合される環状骨格構造を有するペプチドの量は、特に制限されず、使用する細胞の種類等に応じて適宜設定することができる。
[Bonding of cell adhesion peptide and polymer substrate]
The cell adhesion peptide having a polymer substrate and a cyclic skeleton structure is an amide obtained by dehydration condensation of a carboxyl group usually possessed by a polymer substrate and an amino group possessed by a cell adhesion peptide having a cyclic skeleton structure. It can be combined by bonding. The binding method is not particularly limited as long as it can be immobilized without losing the cell adhesion activity of the cell adhesive peptide, and can be immobilized by any method known in the art. The preferred immobilization method may vary depending on the type of cell adhesive peptide, the type of polymer base material, and the like. For example, the cell base peptide having a carboxyl group and a cyclic skeleton structure is amino acid. When it has a group, an active ester method using N-hydroxysuccinimide, a direct condensation method using water-soluble carbodiimide, or the like is preferably employed. The substrate may be used after sterilization or sterilization as necessary. In particular, in medical applications and the like, usually, sterilization or sterilization is often performed. As the sterilization and sterilization method, conventional methods such as wet heat steam sterilization, gamma ray sterilization, ethylene oxide gas sterilization, chemical sterilization, and ultraviolet sterilization can be used. Among these methods, gamma ray sterilization and ethylene oxide gas sterilization are preferable in that they have a small effect on sterilization efficiency and materials. The amount of the peptide having a cyclic skeleton structure bonded to the polymer substrate is not particularly limited, and can be appropriately set according to the type of cells to be used.
 環状骨格構造を有する細胞接着性ペプチドは、上記のように直接的に高分子基材に結合してもよいが、各種の機能性リンカーを介して結合させることも可能である。好適なリンカーとしては、光分解性リンカーを挙げることができる。光分解性リンカーを介して環状骨格構造を有する細胞接着性ペプチドを高分子基材に結合させることにより、当該基材上で培養した幹細胞を光の照射によって、簡便且つ幹細胞に対するダメージを最小限に抑えた態様で幹細胞培養基材から分離させることが可能となる。 The cell adhesive peptide having a cyclic skeleton structure may be directly bonded to the polymer substrate as described above, but can also be bonded via various functional linkers. Suitable linkers include photodegradable linkers. By binding a cell adhesion peptide having a cyclic skeleton structure to a polymer substrate via a photodegradable linker, the stem cells cultured on the substrate are irradiated with light, and the damage to the stem cells is minimized. It can be separated from the stem cell culture substrate in a suppressed manner.
 上記の目的で使用することが可能な光分解性リンカーは、光の照射によって分子内の結合が切断される性質を有し、細胞接着ペプチドの接着性及び幹細胞の生育等に悪影響を与えない限り当該技術分野に公知の光分解性リンカー(例えば、ケージド化合物の作製に使用されるもの)を適宜選択して使用することができる。具体的には、2-ニトロベンゼン骨格、5-ニトロフェノール骨格、ニトロインドール骨格、又はクマリン骨格を有する光分解性リンカー等を挙げることがで、好ましくは5-ニトロフェノール骨格及びクマリン骨格を有する光分解性リンカーであり、これらはいずれも公知である。より具体的な光分解性リンカーとしては、4-[4-(1-Hydroxyethyl)-2-methoxy-5-nitrophenoxy]butanoic acid、Bis(4-(4-(1-(acryloyloxy)ethyl)-2-methoxy-5-nitrophenoxy)butanate)PEG及びN-(6-bromo-7-hydroxycoumarin-4-ylmethoxycarbonyl)-L-glutamate等を用いて形成されるリンカーを挙げることができる。 The photodegradable linker that can be used for the above purpose has the property that intramolecular bonds are cleaved by irradiation with light, as long as it does not adversely affect the adhesion of cell adhesion peptides, the growth of stem cells, etc. A photodegradable linker known in the art (for example, one used for producing a caged compound) can be appropriately selected and used. Specific examples include a photodegradable linker having a 2-nitrobenzene skeleton, a 5-nitrophenol skeleton, a nitroindole skeleton, or a coumarin skeleton, and preferably a photolysis having a 5-nitrophenol skeleton and a coumarin skeleton. These are all known linkers. More specific photodegradable linkers include 4- [4- (1-Hydroxyethyl) -2-methoxy-5-nitrophenoxy] butanoic acid, Bis (4- (4- (1- (acryloyloxy) ethyl) -2 Examples include linkers formed using -methoxy-5-nitrophenoxy) butanate) PEG and N- (6-bromo-7-hydroxycoumarin-4-ylmethoxycarbonyl) -L-glutamate.
 光分解性リンカーを介した高分子基材と環状骨格構造を有する細胞接着性ペプチドとの結合は、細胞接着性ペプチドの細胞接着活性に影響を及ぼさない限り、光分解性リンカーの構造や細胞接着性ペプチドの構造に応じた任意の手法で実施することができる。例えば、ヒドロキシメチル光リンカーを用いる場合、そのカルボキシ基と本発明の高分子基材のカルボキシ基とをLys-Lysを介して結合した後、ヒドロキシメチル光リンカーのヒドロキシ基と環状骨格構造を有する細胞接着性ペプチドのアミノ基またはヒドロキシ基をコハク酸を介して結合することで、光分解性リンカーを介して環状の細胞接着性ペプチドが高分子基材に結合した幹細胞培養基材を得ることが出来る。他の光分解性リンカーを用いる場合も同様にして環状構造を有する細胞接着性ペプチドと高分子基材とを光分解性リンカーを解して結合させることが出来る。 As long as the bond between the polymer substrate and the cell-adhesive peptide having a cyclic skeleton structure via the photodegradable linker does not affect the cell-adhesive activity of the cell-adhesive peptide, the structure of the photodegradable linker and cell adhesion It can implement by the arbitrary methods according to the structure of sex peptide. For example, when a hydroxymethyl photolinker is used, the carboxy group and the carboxy group of the polymer substrate of the present invention are linked via Lys-Lys, and then the cell having the hydroxy group of the hydroxymethyl photolinker and a cyclic skeleton structure is used. By binding the amino group or hydroxy group of the adhesive peptide via succinic acid, a stem cell culture substrate in which the cyclic cell adhesive peptide is bound to the polymer substrate via a photodegradable linker can be obtained. . Similarly, when other photodegradable linkers are used, the cell adhesive peptide having a cyclic structure and the polymer substrate can be bonded via the photodegradable linker.
[幹細胞の培養方法]
 本明細書において、幹細胞とは、胚性幹細胞(ES細胞)、誘導多能性幹細胞(iPS細胞)、造血幹細胞、間葉系幹細胞、神経幹細胞等の未分化性と多能性を合わせ持つ細胞を意味する。幹細胞の培養は、幹細胞の種類によって最適な培養方法及び条件が知られている。培養条件の中でも培養基材、フィーダー細胞、培地、継代の時期等が細胞の性質の維持のために重要と考えられている。従来、培養基材としては、通常、プラスティック製の培養フラスコやディッシュが用いられ、幹細胞の種類によりコラーゲンやゼラチン、ラミニン、マトリゲル等を該プラスティック培養面にコーティングするか、MEF等のフィーダー細胞を単層培養したものが使用されている。本発明の幹細胞培養方法は、従来の幹細胞の培養方法における動物由来材料を用いた培養基材に代えて上述する環状骨格構造を有する細胞接着性ペプチドが結合した高分子基材を用いる。これにより、異種タンパク質等の混入や病原体混入の危険性が無く安全に用いることができる。培養基材として本発明の培養基材を用いる以外の条件については、培養する各種の幹細胞について知られる適当な条件(例えば、GMEM培地等の適当な培地、37℃、5%COの条件)で培養することが出来る。
[Stem cell culture method]
In the present specification, stem cells are cells having both undifferentiated and pluripotent properties such as embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), hematopoietic stem cells, mesenchymal stem cells, neural stem cells, etc. Means. As for the culture of stem cells, optimal culture methods and conditions are known depending on the type of stem cells. Among the culture conditions, the culture substrate, feeder cells, medium, passage time, etc. are considered important for maintaining the cell properties. Conventionally, plastic culture flasks and dishes are usually used as the culture substrate. Depending on the type of stem cells, collagen, gelatin, laminin, matrigel, etc. are coated on the plastic culture surface, or feeder cells such as MEF are simply used. Layer culture is used. In the stem cell culturing method of the present invention, a polymer substrate to which the cell adhesive peptide having the above-described cyclic skeleton structure is bonded instead of the culture substrate using the animal-derived material in the conventional stem cell culturing method is used. Thereby, there is no danger of contamination with a heterologous protein or a pathogen and it can be used safely. Regarding conditions other than using the culture substrate of the present invention as a culture substrate, appropriate conditions known for various types of stem cells to be cultured (for example, an appropriate medium such as a GMEM medium, conditions of 37 ° C. and 5% CO 2 ) Can be cultured.
[幹細胞の光分離方法]
 上述する光分解性リンカーを介して環状骨格構造を有する細胞接着性ペプチドと高分子基材とを結合させた幹細胞培養基材を用いて培養した幹細胞は、光を照射することにより、簡便に基材から分離することができる。よって、酵素処理等の幹細胞に傷害性のある処理を施す必要がないため、培養した幹細胞の生存率を低下させることなく、基材から分離することができる。また、レーザー光を照射した部位に存在する細胞のみを特異的に基材から分離させることも可能である。このようにして基材から分離した幹細胞は、そのまま使用することが可能であり、必要に応じて更なる継代培養や各種の分化誘導処理に供することも可能である。細胞を基板から分離するために必要な光の強度や波長及び照射時間は、使用する光分解性リンカーに応じて適宜設定することができる。使用する光分解性リンカーの種類によっては、350nm~410nm付近の光を5分程度照射して実施することができる。このような光を照射する手段は特に制限されないが、共焦点レーザー顕微鏡等を用いて行うことが照射強度の制御やパターン照射も可能であるので好ましい。
[Method of light separation of stem cells]
Stem cells cultured using a stem cell culture substrate in which a cell-adhesive peptide having a cyclic skeleton structure and a polymer substrate are bonded via the photodegradable linker described above can be easily obtained by irradiating light. It can be separated from the material. Therefore, since it is not necessary to perform a toxic treatment such as enzyme treatment, the stem cells can be separated from the substrate without reducing the viability of the cultured stem cells. It is also possible to specifically separate only the cells present at the site irradiated with laser light from the substrate. The stem cells thus separated from the base material can be used as they are, and can be used for further subculture or various differentiation induction treatments as necessary. The light intensity, wavelength, and irradiation time necessary for separating the cells from the substrate can be appropriately set according to the photodegradable linker used. Depending on the type of the photodegradable linker used, the irradiation can be carried out by irradiating light in the vicinity of 350 nm to 410 nm for about 5 minutes. The means for irradiating such light is not particularly limited, but it is preferable to use a confocal laser microscope or the like because irradiation intensity can be controlled and pattern irradiation can be performed.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
製造例1:高分子基材及びそれが設けられた培養器の作製
 H-Pro-Hyp-Gly-OH((株)ペプチド研究所製)100 mg(0.35 mmol)を2 mLの10 mMリン酸塩緩衝液(pH7.4)に溶解した。この混合液に、9.5 mg(0.07 mmol)の1-ヒドロキシベンゾトリアゾールを加え、攪拌溶解した。この混合液を4℃に冷却して攪拌しながら、335 mg(1.75 mmol)の1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド塩酸塩を添加して、さらに4℃で90分間攪拌を続けた。その後、20℃に昇温し、4 mLの10 mMリン酸塩緩衝生食液(0.15 MのNaCl含有、pH7.4)で希釈し、ミリQ水に対して7日間透析して、縮合剤等の試薬と未反応モノマーを除去した。
Production Example 1: Production of polymer substrate and incubator provided with the same H-Pro-Hyp-Gly-OH (manufactured by Peptide Institute, Inc.) 100 mg (0.35 mmol) in 2 mL of 10 mM phosphoric acid Dissolved in salt buffer (pH 7.4). To this mixture, 9.5 mg (0.07 mmol) of 1-hydroxybenzotriazole was added and dissolved by stirring. While the mixture was cooled to 4 ° C. and stirred, 335 mg (1.75 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide hydrochloride was added, and the mixture was further stirred at 4 ° C. for 90 minutes. Continued. Then, the temperature is raised to 20 ° C., diluted with 4 mL of 10 mM phosphate buffer saline (containing 0.15 M NaCl, pH 7.4), dialyzed against Milli-Q water for 7 days, condensing agent, etc. The reagents and unreacted monomers were removed.
 得られたポリペプチドをゲルパーミエーションクロマトグラフィー(アマシャム・バイオサイエンス(株)製、AKTApurifierシステム)に供した。Superdex 200  HR GLカラムを使用し、流速は0.5mL/分で実施した。溶離液として10 mMリン酸塩緩衝生食液(0.15 MのNaCl含有s、pH7.4))を用いた。その結果、分子量が12万以上の溶出位置にポリペプチドのピークが認められた。分子量はWaters社製のポリエチレングリコール標準品を標準物質として使用して算出した。得られたポリペプチドの円二色性スペクトルを測定したところ、225nmに正のコットン効果、197nmに負のコットン効果が観測され、3重らせん構造を形成していることが確認された。 The obtained polypeptide was subjected to gel permeation chromatography (Amersham Biosciences, AKTApurifier system). A Superdex 200 HR GL column was used and the flow rate was 0.5 mL / min. As an eluent, 10 mM phosphate buffered saline (containing 0.15 mM NaCl, pH 7.4) was used. As a result, a polypeptide peak was observed at the elution position where the molecular weight was 120,000 or more. The molecular weight was calculated using a polyethylene glycol standard product manufactured by Waters as a standard substance. When the circular dichroism spectrum of the obtained polypeptide was measured, a positive cotton effect was observed at 225 nm and a negative cotton effect was observed at 197 nm, confirming the formation of a triple helical structure.
 得られたポリペプチドをミリQ水で希釈して1 mg/mLの水溶液とした。得られたポリペプチドの水溶液1 mLを直径28 mmのガラス製ディッシュに加え、底表面に均一に拡散させた後に室温で48時間静置して乾燥フィルムを得た。ガラス製ディッシュの底表面に作製したポリペプチドフィルムを、少量のジメチルホルムアミド(DMF)で2回洗浄した。洗浄後のフィルムに熱イソプロパノールから再結晶して精製した無水コハク酸(和光純薬特級)3.8 mg(0.038 mmol)とジイソプロピルエチルアミン6.5μL(0.038 mmol)を氷冷下に加えて、その後室温で終夜振盪した。反応液を除去した後、少量のDMFで5回、続いて少量のメタノールで5回、ポリペプチドのフィルムを洗浄し、減圧乾燥した。 The obtained polypeptide was diluted with MilliQ water to give a 1 mg / mL aqueous solution. 1 mL of the aqueous solution of the obtained polypeptide was added to a glass dish having a diameter of 28 mm, and evenly diffused on the bottom surface, and then allowed to stand at room temperature for 48 hours to obtain a dry film. The polypeptide film prepared on the bottom surface of the glass dish was washed twice with a small amount of dimethylformamide (DMF). To the washed film, 3.8 mg (0.038 mmol) of succinic anhydride (Wako Pure Chemical), purified by recrystallization from hot isopropanol, and 6.5µL (0.038 mmol) of diisopropylethylamine were added under ice cooling, and then overnight at room temperature. Shake. After removing the reaction solution, the polypeptide film was washed 5 times with a small amount of DMF, then 5 times with a small amount of methanol, and dried under reduced pressure.
 得られたコハク酸化ポリペプチドの赤外吸収スペクトルには1735 cm-1にエステルの吸収が出現し、コハク酸化が確認された。また、1639 cm-1のアミドの吸収との強度比から、ペプチドユニット(1)と(2)の割合((1)/(2))は、25/75(モル比)であった。得られたコハク酸化ポリペプチドの円二色性スペクトルを測定したところ、225 nmに正のコットン効果、199 nmに負のコットン効果が観測され、3重らせん構造を形成していることが確認された。以上のようにしてコハク酸化ポリペプチドフィルムである高分子基材が底表面に設けられたガラスディッシュを作製した。 In the infrared absorption spectrum of the resulting succinylated polypeptide, ester absorption appeared at 1735 cm −1 , confirming succinic oxidation. Further, from the intensity ratio with the absorption of amide at 1639 cm −1, the ratio of peptide units (1) and (2) ((1) / (2)) was 25/75 (molar ratio). When the circular dichroism spectrum of the obtained succinylated polypeptide was measured, a positive cotton effect was observed at 225 nm and a negative cotton effect was observed at 199 nm, confirming the formation of a triple helical structure. It was. As described above, a glass dish in which a polymer substrate which is a succinylated polypeptide film was provided on the bottom surface was produced.
 製造例2:直鎖細胞接着性ペプチドの結合
 上記製造例1で得られたコハク酸化ポリペプチドフィルムをDMFで1回洗浄した。N-ヒドロキシコハク酸イミド4.3 mg(0.038 mmol)と1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド塩酸塩7.3 mg(0.038 mmol)を加え室温で終夜攪拌した。その後、DMFで5回洗浄し、直鎖状の細胞接着性ペプチドであるGly-Arg-Gly-Asp-Ser・1/2AcOH・2H2O 0.053 mg(95 nmol:(株)ペプチド研究所製)とジイソプロピルエチルアミン17 nL(95 nmol)を100μLのDMFに溶解して添加した。その後室温で終夜攪拌した。DMFで5回、その後エタノールで3回洗浄した後、無菌的に減圧乾燥した。このようにして直鎖状の細胞接着性ペプチドが結合した高分子基材が設けられたガラスディッシュを作製した。
Production Example 2: Binding of linear cell adhesion peptide The succinylated polypeptide film obtained in Production Example 1 was washed once with DMF. After adding 4.3 mg (0.038 mmol) of N-hydroxysuccinimide and 7.3 mg (0.038 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide hydrochloride, the mixture was stirred at room temperature overnight. Then, it was washed 5 times with DMF, and the linear cell adhesion peptide Gly-Arg-Gly-Asp-Ser, 1 / 2AcOH, 2H 2 O 0.053 mg (95 nmol: manufactured by Peptide Institute, Inc.) And 17 nL (95 nmol) of diisopropylethylamine were dissolved in 100 μL of DMF and added. The mixture was then stirred overnight at room temperature. After washing 5 times with DMF and then 3 times with ethanol, it was aseptically dried under reduced pressure. Thus, a glass dish provided with a polymer substrate to which a linear cell adhesive peptide was bound was prepared.
 試験例1:幹細胞の接着性試験1
 製造例1及び2で得られた高分子基材が底表面に設けられたガラスディッシュ及び直鎖状細胞接着性ペプチドが結合した高分子基材が底表面に設けられたガラスディッシュ、並びに、ゼラチンでコーティングしたプラスティックディッシュに、マウス胚性幹細胞(CJ7)を1×10個/cm2の割合で分注した。CJ7細胞は、GMEM培地(1% FCS、0.1 mM  MEM-NEAA、0.1 mM  sodium pyruvate、0.1 mM 2-mercaptoethanol、10% Knockout SR、40 U/mL penicillin/streptomycin)に分散したものを用いた。37℃、5% CO2の条件下で2時間培養し、細胞接着率を測定した。細胞接着率は、培養基材フィルムに接着しなかった細胞をPBSで1回洗浄して除去し、 接着した細胞数を顕微鏡下に計数し、分注した細胞数(1×104個/cm2)に対する接着細胞数の比率(%)として算出した。その結果、ゼラチンコーティングされたディッシュにおける細胞接着率は25%であったのに対し、製造例1及び2で得られたディッシュにおける細胞接着率はいずれも5%と以下であった。これは、幹細胞が直鎖状の細胞接着性ペプチドを結合させた高分子基材及び細胞接着性ペプチドが結合していない高分子基材のいずれに対しても実質的に細胞接着性を有さないことを示す。この結果は、WO2009/035092に報告される非幹細胞であるNIH3T3細胞を用いた細胞接着性試験の結果と相違する。これは、非幹細胞と異なり、幹細胞は、細胞接着性ペプチドを認識しないことを示すと考えられた。
Test Example 1: Stem cell adhesion test 1
A glass dish in which the polymer substrate obtained in Production Examples 1 and 2 is provided on the bottom surface, a glass dish in which a polymer substrate to which a linear cell-adhesive peptide is bound is provided on the bottom surface, and gelatin Mouse embryonic stem cells (CJ7) were dispensed at a rate of 1 × 10 4 cells / cm 2 into the plastic dish coated with the above. CJ7 cells used were dispersed in GMEM medium (1% FCS, 0.1 mM MEM-NEAA, 0.1 mM sodium pyruvate, 0.1 mM 2-mercaptoethanol, 10% Knockout SR, 40 U / mL penicillin / streptomycin). The cells were cultured for 2 hours at 37 ° C. and 5% CO 2 , and the cell adhesion rate was measured. The cell adhesion rate was determined by removing the cells that did not adhere to the culture substrate film by washing once with PBS, counting the number of adhered cells under a microscope, and the number of cells dispensed (1 × 10 4 cells / cm Calculated as the ratio (%) of the number of adherent cells to 2 ). As a result, the cell adhesion rate in the gelatin-coated dish was 25%, whereas the cell adhesion rate in the dishes obtained in Production Examples 1 and 2 was 5% or less. This is substantially cell-adhesive to both polymer substrates to which stem cells bind linear cell-adhesive peptides and polymer substrates to which cell-adhesive peptides are not bound. Indicates no. This result is different from the result of the cell adhesion test using NIH3T3 cells which are non-stem cells reported in WO2009 / 035092. This was thought to indicate that, unlike non-stem cells, stem cells do not recognize cell adhesion peptides.
 試験例2:幹細胞の接着性試験2
 上記試験例1と同様の試験を別の幹細胞であるマウス由来幹細胞EB3(AES0139)を用いて実施した。培地には、GMEM培地(1% FCS、0.1 mM  MEM-NEAA、1 mM  sodium pyruvate、0.1 mM 2-mercaptoethanol、10% Knockout SR、50 U/mL penicillin/streptomycin、2000 U/mL ESGRO(ケミコン社製;登録商標)、10μg/mL blasticidin S)を用いた。37℃、5% CO2の条件下で12時間培養し、PBSで洗浄して非付着細胞を除去した後、位相差顕微鏡で観察して接着細胞数をカウントした。その結果、試験例2と同様に、EB3細胞の接着率は、ゼラチンコーティングされたディッシュを用いた場合よりも低かった。この結果から、幹細胞は非幹細胞とは異なり、細胞接着性ペプチドを認識せず、接着性を有さないことが強く示唆された。
Test Example 2: Stem cell adhesion test 2
A test similar to Test Example 1 was performed using another stem cell, mouse-derived stem cell EB3 (AES0139). GMEM medium (1% FCS, 0.1 mM MEM-NEAA, 1 mM sodium pyruvate, 0.1 mM 2-mercaptoethanol, 10% Knockout SR, 50 U / mL penicillin / streptomycin, 2000 U / mL ESGRO (Chemicon) Registered trademark), 10 μg / mL blasticidin S). After culturing at 37 ° C. and 5% CO 2 for 12 hours and washing with PBS to remove non-adherent cells, the number of adherent cells was counted by observation with a phase contrast microscope. As a result, as in Test Example 2, the adhesion rate of EB3 cells was lower than that when a gelatin-coated dish was used. This result strongly suggested that stem cells, unlike non-stem cells, did not recognize cell adhesive peptides and did not have adhesiveness.
 製造例3:環状細胞接着性ペプチドの結合
 上記製造例2において、直鎖状細胞性ペプチドに代えて環状骨格構造を有する細胞接着性ペプチドcyclo(Arg-Gly-Asp-(D)Phe-Lys)(AnaSpec社製)を0.057 mg(95 nmol)用いた以外は、製造例2と同様にして、環状骨格構造を有する細胞接着性ペプチドが結合した高分子基材が設けられたガラスディッシュを作製した。
Production Example 3 Binding of Cyclic Cell Adhesive Peptide In Production Example 2 above, cell adhesive peptide cyclo (Arg-Gly-Asp- (D) Phe-Lys) having a cyclic skeleton structure instead of the linear cellular peptide A glass dish provided with a polymer substrate to which a cell-adhesive peptide having a cyclic skeleton structure was bonded was prepared in the same manner as in Production Example 2 except that 0.057 mg (95 nmol) (AnaSpec) was used. .
 試験例3:幹細胞の細胞接着性試験3
 製造例1及び2で得られたガラスディッシュに代えて、製造例3で得られた環状構造骨格を有する細胞接着性ペプチドが結合した高分子基材が底表面に設けられたガラスディッシュを用いた以外は、上記試験例2と同様にして、マウス由来幹細胞EB3の接着率を測定した。比較対象として、0.1% gelatin溶液で底表面をコーティングしたIwaki社製培養用プラスティックディッシュを用いた。12時間培養した後、細胞接着率を測定した。その結果、環状構造骨格を有する細胞接着性ペプチドを結合させたディッシュでは、ゼラチンコートしたディッシュと比較して、約1.9倍の細胞接着性が認められた。これは、細胞接着性ペプチドが環状構造を有する結果、幹細胞表面上のインテグリンが認識可能な立体構造を有するようになったことが原因と考えられる。また、培養開始後30時間で増殖した幹細胞は、両基材上でコロニーを形成した(図1)。
Test Example 3: Stem cell adhesion test 3
Instead of the glass dishes obtained in Production Examples 1 and 2, a glass dish in which a polymer substrate to which a cell adhesive peptide having a cyclic structure skeleton obtained in Production Example 3 was bonded was provided on the bottom surface was used. Except for the above, the adhesion rate of mouse-derived stem cells EB3 was measured in the same manner as in Test Example 2. As a comparison target, a plastic dish for culture manufactured by Iwaki Co., Ltd., whose bottom surface was coated with a 0.1% gelatin solution was used. After culturing for 12 hours, the cell adhesion rate was measured. As a result, in the dish to which the cell adhesion peptide having a cyclic structure skeleton was bound, about 1.9 times cell adhesion was recognized as compared with the gelatin-coated dish. This is probably because the cell adhesion peptide has a three-dimensional structure that can be recognized by integrins on the stem cell surface as a result of the cyclic structure. Moreover, the stem cells grown 30 hours after the start of culture formed colonies on both substrates (FIG. 1).
 試験例4:未分化培養の確認
 上記試験例3の幹細胞の培養を37℃、5%CO2の条件下で3日間継続した。培地は、培養開始後1日で新鮮なものと交換した。3日間の培養後、0.25% trypsinと0.02% EDTAにより細胞を基材より脱着し、再び各基材上にGMEM培地に分散したEB3を1×104 個/cm2の割合で分注した。その後更に3日間培養し、細胞のALP活性をRoche社製NBT/BCIP stock solutionを用いて測定したところ、両基材上の幹細胞がALP陽性に染色された。これにより、本発明の環状骨格構造を有する細胞接着性ペプチドを結合した高分子基材を用いることにより、幹細胞を未分化な状態で培養することが可能であることが確認された。
Test Example 4: Confirmation of Undifferentiated Culture Stem cell culture of Test Example 3 was continued for 3 days at 37 ° C. and 5% CO 2 . The medium was replaced with fresh one day after the start of culture. After culturing for 3 days, the cells were detached from the substrate with 0.25% trypsin and 0.02% EDTA, and EB3 dispersed in the GMEM medium on each substrate was again dispensed at a rate of 1 × 10 4 cells / cm 2 . Thereafter, the cells were further cultured for 3 days, and the ALP activity of the cells was measured using NBT / BCIP stock solution manufactured by Roche. As a result, stem cells on both substrates were stained positive for ALP. Thus, it was confirmed that stem cells can be cultured in an undifferentiated state by using a polymer base material to which a cell adhesive peptide having a cyclic skeleton structure of the present invention is bound.
 試験例5:環状骨格構造を有する細胞接着性ペプチドの結合量の影響
 cyclo(Arg-Gly-Asp-(D)Phe-Lys)及びジイソプロピルエチルアミンの量を380nmol、190nmol、及び48nmolに変化した以外は製造例3と同様にして、環状骨格構造を有する細胞接着ペプチドが結合した高分子基材が底表面に設けられたガラスディッシュを作製した。これらを用いて上記試験例2と同様にマウス由来幹細胞EB3を12時間培養した。その後PBSで洗浄して、基材に接着していない細胞を除去し、位相差顕微鏡を用いて接着細胞数を測定した。比較対象として、ゼラチンコートしたディッシュを用いた。その結果、ゼラチンコートした培養基材を用いた場合と比較して、380nmol、190nmol、及び48nmolのcyclo(Arg-Gly-Asp-(D)Phe-Lys)を用いて作製した基材で培養した場合の接着細胞数は、各々1.6倍、1.8倍、及び1.4倍であった。
Test Example 5: Effect of binding amount of cell adhesion peptide having cyclic skeleton structure Except that the amount of cyclo (Arg-Gly-Asp- (D) Phe-Lys) and diisopropylethylamine was changed to 380 nmol, 190 nmol, and 48 nmol In the same manner as in Production Example 3, a glass dish was prepared in which a polymer substrate to which a cell adhesion peptide having a cyclic skeleton structure was bound was provided on the bottom surface. Using these, mouse-derived stem cells EB3 were cultured for 12 hours in the same manner as in Test Example 2. Thereafter, the cells were washed with PBS to remove cells not adhered to the substrate, and the number of adherent cells was measured using a phase contrast microscope. As a comparison object, a gelatin-coated dish was used. As a result, compared with the case of using a gelatin-coated culture substrate, culture was performed on a substrate prepared using 380 nmol, 190 nmol, and 48 nmol of cyclo (Arg-Gly-Asp- (D) Phe-Lys). The number of adherent cells was 1.6 times, 1.8 times, and 1.4 times, respectively.
 製造例4:光分解性リンカー結合型高分子基材の作製
 次の手順に従って3重らせん構造を形成するポリペプチド(高分子基材)に光分解性リンカーを結合させた。まず、高分子基材にLys-Lys基を結合させた。上記製造例1において3重らせん構造を形成することが確認された高分子基材を1mg/mlの濃度で含む水溶液0.29 mlを、カバーガラス上の直径18 mmの範囲に塗布し風乾した。これをDMFで3回洗浄し、イソプロパノールから再結晶した無水コハク酸5.5 mgとジイソプロピルエチルアミン9.6 μlを含むDMF溶液80μLを加えて、氷冷上で30分間振盪し、その後室温で終夜撹拌した。DMFで5回、メタノールで5回洗浄後、減圧乾燥した。このようにして得られたフィルムのFTIRスペクトルを測定し、1,730 cm-1のカルボン酸エステルに帰属される新たな吸収ピークの出現により、コハク酸の付加を確認した。
Production Example 4: Preparation of Photodegradable Linker-Linked Polymer Substrate A photodegradable linker was bonded to a polypeptide (polymer substrate) that forms a triple helical structure according to the following procedure. First, a Lys-Lys group was bonded to a polymer substrate. 0.29 ml of an aqueous solution containing a polymer base material confirmed to form a triple helical structure in Production Example 1 at a concentration of 1 mg / ml was applied to a diameter of 18 mm on a cover glass and air-dried. This was washed 3 times with DMF, added with 80 μL of DMF solution containing 5.5 mg of succinic anhydride recrystallized from isopropanol and 9.6 μl of diisopropylethylamine, shaken on ice for 30 minutes, and then stirred at room temperature overnight. After washing 5 times with DMF and 5 times with methanol, it was dried under reduced pressure. The FTIR spectrum of the film thus obtained was measured, and the addition of succinic acid was confirmed by the appearance of a new absorption peak attributed to 1,730 cm −1 carboxylic acid ester.
 得られたコハク酸化高分子基材をDMFで3回洗浄し、80μLのDMFに溶解した6.3 mgのHOSuと10.5 mgのEDC・HClを加え、室温で終夜撹拌した。DMFで5回、メタノールで5回洗浄後、減圧乾燥した。得られたフィルムのFTIRスペクトルを測定し1,800 cm-1付近のHOSuエステルに帰属される2本の新たな吸収ピークの出現により、HOSuエステルの生成を確認した。 The obtained succinic polymer substrate was washed 3 times with DMF, 6.3 mg HOSu and 10.5 mg EDC · HCl dissolved in 80 μL DMF were added, and the mixture was stirred at room temperature overnight. After washing 5 times with DMF and 5 times with methanol, it was dried under reduced pressure. The FTIR spectrum of the obtained film was measured, and the formation of HOSu ester was confirmed by the appearance of two new absorption peaks attributed to the HOSu ester near 1,800 cm −1 .
 得られた高分子基材のHOSuエステルをDMFで3回洗浄後、80μLの50%DMF/H2Oに溶解した2.3 mgのLys-Lys・HClと3.5μlのジイソプロピルエチルアミンを加えて、室温で終夜撹拌した。50%DMF/H2Oで5回洗浄し、メタノールで5回洗浄した後、減圧乾燥した。得られたフィルムのFTIRスペクトルを測定し、1,800 cm-1付近のHOSuエステルに帰属される2本の吸収ピークの消失により、HOSuエステルの反応を確認した。このようにして、Lys-Lysが結合した高分子基材を得た。 The polymer base HOSu ester was washed 3 times with DMF, and then 2.3 mg Lys-Lys · HCl and 3.5 μl diisopropylethylamine dissolved in 80 μL 50% DMF / H 2 O were added at room temperature. Stir overnight. The extract was washed 5 times with 50% DMF / H 2 O, washed 5 times with methanol, and then dried under reduced pressure. The FTIR spectrum of the obtained film was measured, and the reaction of the HOSu ester was confirmed by the disappearance of two absorption peaks attributed to the HOSu ester near 1,800 cm −1 . In this way, a polymer substrate to which Lys-Lys was bonded was obtained.
 次に、Lys-Lys 基が結合した高分子基材に光分解性リンカーを結合させた。以降の手順を図2に示す(図2において、Rは蛍光色素又は細胞接着性ペプチドを示す)。50mgの4-[4-(1-Hydroxyethyl)-2-methoxy-5-nitrophenoxy] butanoic acid (Merck社製)を3mlの脱水THFに溶解し、23mgのHOSuと41mgのDCCを加え、遮光氷冷下1時間撹拌した。その後、遮光下室温で終夜撹拌した。析出物をろ去し、ろ液を減圧濃縮して黄色固体を得た。これをイソプロパノールで洗浄後、遮光下減圧乾燥して、57 mgの4-[4-(1-Hydroxyethyl)-2-methoxy-5-nitrophenoxy] butanoic acid HOSu esterを得た。FTIRスペクトルを測定し、1,800 cm-1付近のHOSuエステルに帰属される2本の新たな吸収ピークの出現により、HOSuエステルの生成を確認した。 Next, a photodegradable linker was bonded to the polymer substrate to which the Lys-Lys group was bonded. The subsequent procedure is shown in FIG. 2 (in FIG. 2, R represents a fluorescent dye or a cell adhesion peptide). Dissolve 50 mg of 4- [4- (1-Hydroxyethyl) -2-methoxy-5-nitrophenoxy] butanoic acid (Merck) in 3 ml of dehydrated THF, add 23 mg of HOSu and 41 mg of DCC. Stirred for 1 hour. Thereafter, the mixture was stirred overnight at room temperature under light shielding. The precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a yellow solid. This was washed with isopropanol and then dried under reduced pressure under light shielding to obtain 57 mg of 4- [4- (1-Hydroxyethyl) -2-methoxy-5-nitrophenoxy] butanoic acid HOSu ester. The FTIR spectrum was measured, and the formation of HOSu ester was confirmed by the appearance of two new absorption peaks attributed to the HOSu ester near 1,800 cm −1 .
 Lys-Lysが結合した高分子基材をDMFで3回洗浄後、80μLのDMFに溶解した2.2mgの4-[4-(1-Hydroxyethyl)-2-methoxy-5-nitrophenoxy] butanoic acid HOSu esterと0.5μlのジイソプロピルエチルアミンを加えて、遮光下室温で終夜撹拌した。その後、DMFで5回、メタノールで5回洗浄後、減圧乾燥した。得られたフィルムのFTIRスペクトルを測定し、1,280 cm-1のニトロ基及び1,500 cm-1のフェニル基に帰属される2本の吸収ピークの新たな出現を確認した。また、得られたフィルムのUV吸収スペクトルを測定し、350 nmに新たな吸収ピークの出現を確認した。これらより高分子基材への4-[4-(1-Hydroxyethyl)-2-methoxy-5- nitrophenoxy]butanoic acidの結合を確認した。 After washing the Lys-Lys-bonded polymer substrate 3 times with DMF, 2.2 mg 4- [4- (1-Hydroxyethyl) -2-methoxy-5-nitrophenoxy] butanoic acid HOSu ester dissolved in 80 μL DMF And 0.5 μl of diisopropylethylamine were added, and the mixture was stirred overnight at room temperature in the dark. Then, after washing 5 times with DMF and 5 times with methanol, it was dried under reduced pressure. The FTIR spectrum of the obtained film was measured, and new appearance of two absorption peaks attributed to 1,280 cm −1 nitro group and 1,500 cm −1 phenyl group was confirmed. Moreover, the UV absorption spectrum of the obtained film was measured, and the appearance of a new absorption peak at 350 nm was confirmed. These confirmed the binding of 4- [4- (1-Hydroxyethyl) -2-methoxy-5-nitrophenoxy] butanoic acid to the polymer substrate.
 得られた高分子基材をDMFで3回洗浄後、イソプロパノールから再結晶した無水コハク酸5.5mgとジイソプロピルエチルアミン9.5μlのDMF溶液80μLを加えて、氷冷上で30分間振盪し、その後室温で終夜撹拌した。DMFで5回、メタノールで3回洗浄後、減圧乾燥した。得られたフィルムのFTIRスペクトルを測定し、1,730 cm-1にカルボン酸エステルに帰属される吸収ピークの顕著な増大が見られたことから、コハク酸の付加を確認した。 The obtained polymer substrate was washed 3 times with DMF, 5.5 mg of succinic anhydride recrystallized from isopropanol and 80 μL of DMF solution of 9.5 μl of diisopropylethylamine were added, and the mixture was shaken on ice for 30 minutes, and then at room temperature. Stir overnight. After washing 5 times with DMF and 3 times with methanol, it was dried under reduced pressure. The FTIR spectrum of the obtained film was measured, and a marked increase in the absorption peak attributed to the carboxylic acid ester was observed at 1,730 cm −1 , confirming the addition of succinic acid.
 得られたコハク酸化光分解性リンカーが結合した高分子基材をDMFで3回洗浄後、80μLのDMFに溶解した3.6mg のHOSuと6.3mgのEDC・HClを加え、室温で終夜撹拌した。DMFで5回、メタノールで3回洗浄後、減圧乾燥した。得られたフィルムのFTIRスペクトルを測定し、1,800 cm-1付近のHOSuエステルに帰属される2本の新たな吸収ピークの出現により、HOSuエステルの生成を確認した。このようにして、光分解性リンカーが結合した高分子基材を得た。
 試験例6:光照射によるRhodamine 110の基材からの解離
The obtained polymer substrate to which the succinylated photodegradable linker was bonded was washed 3 times with DMF, 3.6 mg HOSu and 6.3 mg EDC · HCl dissolved in 80 μL DMF were added, and the mixture was stirred overnight at room temperature. After washing 5 times with DMF and 3 times with methanol, it was dried under reduced pressure. The FTIR spectrum of the obtained film was measured, and the production of HOSu ester was confirmed by the appearance of two new absorption peaks attributed to the HOSu ester near 1,800 cm −1 . In this way, a polymer substrate to which a photodegradable linker was bonded was obtained.
Test Example 6: Dissociation of Rhodamine 110 from substrate by light irradiation
 製造例4で得られた光分解性リンカーが結合した高分子基材を10 mMリン酸塩緩衝液(pH 7.4)で3回洗浄後、200μLの10mMリン酸塩緩衝液(pH 7.4)に溶解したRhodamine 110 (53.5 nmol/ml)を加え、遮光下室温で終夜撹拌した。その後、10 mMリン酸塩緩衝液(pH 7.4)で5回洗浄してRhodamine 110が光解離性架橋剤を介して結合した高分子基材を得た。これに、共焦点レーザー顕微鏡(Zeiss LSM710:Carl Zeiss社製)を用いて、405 nmの光を図3に示すパターンの白抜き領域に照射した。照射条件は次の通りである:対物レンズ;10倍、レーザー;405 nm(30mW)、強度;5%, 10%, 30%, 60%, 90%、照射時間;1分、5分、10分。その後、蛍光色素の解離を488 nmの光照射で励起して得られる蛍光を491nm~740nmで観察した。観察時の条件は次の通りである:対物レンズ;10倍、レーザー;488nm(250mW)、強度;2%、観察波長:491-740nm。その結果を図4に示す(縦軸の数値は、照射レーザーの強度を示し、横軸の数値はレーザーの照射時間を示す)。図4の結果から、照射領域に対応する明確なパターンが得られたことから、光照射によって本発明の培養基材に結合した光解離リンカーを高い精度で解離させることが可能であることが確認された。これにより蛍光色素に代えて環状骨格構造を有するペプチドを光解離リンカーを介して高分子基材に結合させ、それを用いて幹細胞を培養することにより、培養した幹細胞を光照射処理によって簡便且つ容易に培養基材から遊離させることが可能となる。 The polymer substrate with the photodegradable linker obtained in Production Example 4 was washed 3 times with 10 mM phosphate buffer (pH 7.4) and then dissolved in 200 μL of 10 mM phosphate buffer (pH 7.4). Rhodamine 110 (53.5 mol / ml) was added, and the mixture was stirred overnight at room temperature in the dark. Thereafter, the polymer substrate was washed 5 times with 10 mM phosphate buffer (pH 7.4) to obtain a polymer substrate to which Rhodamine 110 was bonded through a photolabile crosslinking agent. A confocal laser microscope (Zeiss LSM710: manufactured by Carl Zeiss) was used to irradiate the white area of the pattern shown in FIG. Irradiation conditions are as follows: objective lens: 10 times, laser: 405 nm (30 mW), intensity: 5%, 10%, 30%, 、 60%, 90%, irradiation time: 1 minute, 5 minutes, 10 Min. Thereafter, the fluorescence obtained by exciting the dissociation of the fluorescent dye with light irradiation at 488 nm was observed at 491 nm to 740 nm. The conditions at the time of observation are as follows: objective lens: 10 times, laser: 488 nm (250 mW), intensity: 2%, observation wavelength: 491-740 nm. The results are shown in FIG. 4 (the numerical value on the vertical axis indicates the intensity of the irradiation laser, and the numerical value on the horizontal axis indicates the laser irradiation time). From the result of FIG. 4, since a clear pattern corresponding to the irradiation region was obtained, it was confirmed that the photodissociation linker bonded to the culture substrate of the present invention can be dissociated with high accuracy by light irradiation. It was done. In this way, instead of fluorescent dye, a peptide having a cyclic skeleton structure is bound to a polymer substrate via a photodissociation linker, and the stem cells are cultured using the peptide, thereby allowing the cultured stem cells to be easily and easily irradiated with light. Can be released from the culture substrate.
 製造例5:光分解性リンカーを介した環状ペプチドと高分子基材との結合
 試験例6において、200μLの10mMリン酸塩緩衝液(pH 7.4)に溶解したRhodamine 110 (53.5 nmol/ml)の代わりに、環状骨格構造を有する細胞接着性ペプチドcyclo(Arg-Gly-Asp-(D)Phe-Lys)(AnaSpec社製)を0.057 mg(95 nmol)用いた以外は、製造例4と同様にして、光分解性リンカーを介して環状骨格構造を有する細胞接着性ペプチドが高分子基材に結合した培養用基材を得た。
Production Example 5 Binding of Cyclic Peptide to Polymer Substrate via Photodegradable Linker In Test Example 6, Rhodamine 110 (53.5 nmol / ml) dissolved in 200 μL of 10 mM phosphate buffer (pH 7.4) was used. Instead, in the same manner as in Production Example 4, except that 0.057 mg (95 nmol) of the cell adhesion peptide cyclo (Arg-Gly-Asp- (D) Phe-Lys) (AnaSpec) having a cyclic skeleton structure was used. Thus, a culture substrate in which a cell adhesive peptide having a cyclic skeleton structure was bonded to a polymer substrate via a photodegradable linker was obtained.
 試験例7:光照射による培養後の幹細胞の基材からの解離
 製造例5で得られた光分解性リンカーを介して環状骨格構造を有する細胞接着性ペプチドが高分子基材に結合した培養用基材に、試験例2と同様にして幹細胞を接着させる。幹細胞の接着を確認した後、基材の一部に405nmのレーザー(30mW)を10%の強度で5分間照射する。照射1時間後に観察すると、光照射部位特異的に幹細胞が遊離していることが確認される。
Test Example 7: Dissociation of Stem Cell after Culture by Light Irradiation from Substrate for Culture in which Cell Adhesive Peptide with Cyclic Skeleton Structure is Bonded to Polymer Substrate via Photodegradable Linker Obtained in Production Example 5 Stem cells are adhered to the substrate in the same manner as in Test Example 2. After confirming the adhesion of the stem cells, a part of the substrate is irradiated with a 405 nm laser (30 mW) at an intensity of 10% for 5 minutes. When observed 1 hour after irradiation, it is confirmed that the stem cells are released specifically in the light irradiation site.
 本発明の幹細胞培養用基材は、再生医療を実現するために不可欠な要素である幹細胞の未分化性と多分化能を維持したまま増殖を可能にするための、動物由来材料に頼らない安全性が高い基材である。したがって、従来基材からの異種タンパク質等の混入や病原体混入の危険性から実用化が遅れていた再生医療の実現を促進するものである。本発明の幹細胞培養用基材は、人工骨、人工歯根、骨修復剤、骨充填剤、人工皮膚、人工神経、人工肝臓、等の組織・臓器の組織工学用の担体又は支持体、再生医療用の担体又は支持体等に利用できる。 The base material for stem cell culture of the present invention is a safety that does not rely on animal-derived materials to enable proliferation while maintaining the undifferentiation and pluripotency of stem cells, which are indispensable elements for realizing regenerative medicine. It is a base material with high properties. Therefore, the realization of regenerative medicine, which has been delayed in practical use due to the risk of contamination with foreign proteins and pathogens from conventional base materials, is promoted. The substrate for stem cell culture of the present invention is a carrier or support for tissue engineering of tissues / organs such as artificial bone, artificial tooth root, bone repair agent, bone filler, artificial skin, artificial nerve, artificial liver, etc., regenerative medicine It can be used as a carrier or support for use.

Claims (16)

  1. 環状骨格構造を有する細胞接着性ペプチドが高分子基材に結合されている幹細胞培養用基材。 A stem cell culture substrate in which a cell adhesion peptide having a cyclic skeleton structure is bound to a polymer substrate.
  2. 前記環状骨格構造を有する細胞接着性ペプチドがArg-Gly-Asp配列を含む請求項1記載の幹細胞培養用基材。 The substrate for stem cell culture according to claim 1, wherein the cell adhesive peptide having a cyclic skeleton structure comprises an Arg-Gly-Asp sequence.
  3. 前記環状骨格構造を有する細胞接着性ペプチドがcyclo(Arg-Gly-Asp-(D)Phe-Lys)である請求項1記載の幹細胞培養用基材。 2. The stem cell culture substrate according to claim 1, wherein the cell adhesion peptide having a cyclic skeleton structure is cyclo (Arg-Gly-Asp- (D) Phe-Lys).
  4. 前記高分子基材がポリペプチド及び/又は多糖類である請求項1記載の幹細胞培養用基材。 The stem cell culture substrate according to claim 1, wherein the polymer substrate is a polypeptide and / or a polysaccharide.
  5. 前記高分子基材が下記式(1)で表されるアミノ酸配列を有するペプチドユニット(1)と、下記式(2)で表されるアミノ酸配列を有するペプチドユニット(2)とを含むポリペプチドである請求項1記載の幹細胞培養用基材。
           -Pro-X-Gly-             (1)
           -Pro-Hyp(O-Y-Z)-Gly-         (2)
    (式中、XはPro又はHypを示し、Yはカルボニル基、又はカルボニル基を有するか若しくは有しない飽和又は不飽和の炭化水素基を示し、Zはカルボキシル基を示す)
    A polypeptide in which the polymer substrate comprises a peptide unit (1) having an amino acid sequence represented by the following formula (1) and a peptide unit (2) having an amino acid sequence represented by the following formula (2): The stem cell culture substrate according to claim 1.
    -Pro-X-Gly- (1)
    -Pro-Hyp (OYZ) -Gly- (2)
    (In the formula, X represents Pro or Hyp, Y represents a carbonyl group, or a saturated or unsaturated hydrocarbon group with or without a carbonyl group, and Z represents a carboxyl group)
  6. Yが、-(C=O)-(CH2)n- (式中nは0又は1~18の整数を示す);-(C=O)-(CH2)n-(CH=CH)m-(CH2)k- (式中n及びkは独立に0又は1~18の整数を示し、mは1~18の整数を示す);及び-(C=O)-(CH2)n-(C6H4)-(CH2)k- (式中n及びkは独立に0又は1~18の整数を示し、C6H4はフェニレン基を示す)からなる群より選択される1種以上である請求項5記載の幹細胞培養用基材。 Y is, - (C = O) - (CH 2) n- (n in the formula is an integer of 0 or 1 ~ 18) ;-( C = O ) - (CH 2) n- (CH = CH) m- (CH 2 ) k- (wherein n and k independently represent 0 or an integer of 1 to 18, and m represents an integer of 1 to 18); and-(C = O)-(CH 2 ) n- (C 6 H 4 )-(CH 2 ) k- (wherein n and k independently represent 0 or an integer of 1 to 18, and C 6 H 4 represents a phenylene group). The stem cell culture substrate according to claim 5, which is at least one of the above.
  7. ペプチドユニット(1)とペプチドユニット(2)との割合(モル比)が、(1)/(2)=99.9/0.1~1/99である請求項5記載の幹細胞培養用基材。 6. The stem cell culture substrate according to claim 5, wherein the ratio (molar ratio) of the peptide unit (1) to the peptide unit (2) is (1) / (2) = 99.9 / 0.1 to 1/99. Wood.
  8. 前記高分子基材が、円二色性スペクトルにおいて、波長220~230nmに正のコットン効果を示し、波長195~205nmに負のコットン効果を示す請求項5記載の幹細胞培養用基材。 6. The stem cell culture substrate according to claim 5, wherein the polymer substrate exhibits a positive cotton effect at a wavelength of 220 to 230 nm and a negative cotton effect at a wavelength of 195 to 205 nm in a circular dichroism spectrum.
  9. 前記高分子基材が、ポリペプチドの少なくとも一部が3重らせん構造を形成している請求項5記載の幹細胞培養用基材。 The stem cell culture substrate according to claim 5, wherein at least a part of the polypeptide forms a triple helical structure in the polymer substrate.
  10. 前記高分子基材が、分子量5×10~5×10の範囲にピークを示す請求項5記載のポリペプチドである幹細胞培養用基材。 6. The stem cell culture substrate as a polypeptide according to claim 5, wherein the polymer substrate exhibits a peak in a molecular weight range of 5 × 10 3 to 5 × 10 6 .
  11. 前記環状骨格構造を有する細胞接着性ペプチドが光分解性リンカーを介して高分子基材に結合されている、請求項1記載の幹細胞培養基材。 The stem cell culture substrate according to claim 1, wherein the cell adhesive peptide having a cyclic skeleton structure is bound to a polymer substrate via a photodegradable linker.
  12. 光分解性リンカーが2-ニトロベンゼン骨格、2-ニトロフェノール骨格、ニトロインドール骨格、又はクマリン骨格を有する請求項11記載の幹細胞培養基材。 The stem cell culture substrate according to claim 11, wherein the photodegradable linker has a 2-nitrobenzene skeleton, a 2-nitrophenol skeleton, a nitroindole skeleton, or a coumarin skeleton.
  13. 請求項1から12のいずれか記載の幹細胞培養用基材上で幹細胞を培養する工程を含む幹細胞の培養方法。 A method for culturing a stem cell, comprising a step of culturing a stem cell on the stem cell culture substrate according to any one of claims 1 to 12.
  14. 幹細胞が胚性幹細胞及び/又は誘導多能性幹細胞(iPS細胞)である請求項13記載の培養方法。 The culture method according to claim 13, wherein the stem cells are embryonic stem cells and / or induced pluripotent stem cells (iPS cells).
  15. 請求項11又は12に記載の幹細胞培養基材上で幹細胞を培養する工程、及び、
    前記培養後の培養基材に光を照射することにより、幹細胞を幹細胞培養基材から分離する工程を含む、幹細胞の培養方法。
    Culturing stem cells on the stem cell culture substrate according to claim 11 or 12, and
    A method for culturing stem cells, comprising a step of separating stem cells from a stem cell culture substrate by irradiating the culture substrate after the culture with light.
  16. 請求項5記載の高分子基材のポリペプチドが有するカルボキシル基と、環状骨格構造を有する細胞接着性ペプチドが有するアミノ基とを脱水縮合して得られるアミド結合により、環状骨格構造を有する細胞接着性ペプチドと高分子基材とが結合することを含む幹細胞培養基材の製造方法。 A cell adhesion having a cyclic skeleton structure by an amide bond obtained by dehydration condensation of a carboxyl group of the polypeptide of the polymer substrate according to claim 5 and an amino group of a cell adhesive peptide having a cyclic skeleton structure. A method for producing a stem cell culture substrate, comprising binding a sex peptide and a polymer substrate.
PCT/JP2012/066491 2011-06-28 2012-06-28 Substrate for stem cell culture, and culture method using same WO2013002311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011142403 2011-06-28
JP2011-142403 2011-06-28

Publications (1)

Publication Number Publication Date
WO2013002311A1 true WO2013002311A1 (en) 2013-01-03

Family

ID=47424198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066491 WO2013002311A1 (en) 2011-06-28 2012-06-28 Substrate for stem cell culture, and culture method using same

Country Status (2)

Country Link
JP (1) JPWO2013002311A1 (en)
WO (1) WO2013002311A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017087371A1 (en) 2015-11-16 2017-05-26 Think Surgical, Inc. Method for confirming registration of tracked bones
WO2017169259A1 (en) * 2016-03-28 2017-10-05 ソニー株式会社 Cell culture container, cell culture system, cell culture kit and cell culture method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035092A1 (en) * 2007-09-13 2009-03-19 National University Corporation NARA Institute of Science and Technology Novel polypeptide and production method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035092A1 (en) * 2007-09-13 2009-03-19 National University Corporation NARA Institute of Science and Technology Novel polypeptide and production method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HSIONG, S.X. ET AL.: "Cyclic arginine-glycine aspartate peptides enhance three-dimensional stem cell osteogenic differentiation.", TISSUE ENG. PART A., vol. 15, no. 2, February 2009 (2009-02-01), pages 263 - 72 *
MASAO TANIHARA: "Synthesis of Collagen-like Polypeptide and Its Potential", KAGAKU TO SEIBUTSU, vol. 47, no. 5, 1 May 2009 (2009-05-01), pages 339 - 44 *
SHIBASAKI, Y. ET AL.: "Collagen-like polypeptide poly(Pro-Hyp-Gly) conjugated with Gly-Arg-Gly-Asp-Ser and Pro-His-Ser-Arg-Asn peptides enchances cell adhesion, migration, and stratification.", BIOPOLYMERS, vol. 96, no. 3, 11 October 2010 (2010-10-11), pages 302 - 15 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017087371A1 (en) 2015-11-16 2017-05-26 Think Surgical, Inc. Method for confirming registration of tracked bones
WO2017169259A1 (en) * 2016-03-28 2017-10-05 ソニー株式会社 Cell culture container, cell culture system, cell culture kit and cell culture method
JPWO2017169259A1 (en) * 2016-03-28 2019-02-14 ソニー株式会社 Cell culture container, cell culture system, cell culture kit and cell culture method

Also Published As

Publication number Publication date
JPWO2013002311A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5162363B2 (en) Novel polypeptide and method for producing the same
Liu et al. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage
Gelain et al. BMHP1-derived self-assembling peptides: hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications
Jung et al. Fibrillar peptide gels in biotechnology and biomedicine
JP5833096B2 (en) Amphiphilic linear peptide / peptoid and hydrogel containing the same
KR101976207B1 (en) Synthetic, Defined Fibronectin Mimetic Peptides and Surfaces Modified with the Same
Wu et al. Hybrid hydrogels self-assembled from graft copolymers containing complementary β-sheets as hydroxyapatite nucleation scaffolds
EP2958933A1 (en) Crosslinked peptide hydrogels
US20130210147A1 (en) Bioactive amino acid sequence and use therefrom
Malcor et al. Biomaterial functionalization with triple-helical peptides for tissue engineering
Collier Modular self-assembling biomaterials for directing cellular responses
US8357774B2 (en) Polypeptide and process for producing the same
KR101663945B1 (en) Method for preparing of RGD peptide using aspartame
EP2598518A1 (en) Pre-polymer preparations for cell culture coatings
Kuo et al. Neuronal production from induced pluripotent stem cells in self-assembled collagen-hyaluronic acid-alginate microgel scaffolds with grafted GRGDSP/Ln5-P4
AU2009246203A1 (en) Collagen peptide conjugates and uses therefor
WO2013002311A1 (en) Substrate for stem cell culture, and culture method using same
Shamsi Investigation of human cell response to covalently attached RADA16-I peptide on silicon surfaces
JP4303137B2 (en) Novel polypeptide and method for producing the same
KR101348096B1 (en) Polypeptide with chondrogenic activity of stem cell
JP2005053878A (en) New polypeptide and method for producing the same
Perez Development of collagen peptide-based biomaterials and synthesis of small molecules targeted against anthrax protective antigen
Ernenwein Collagen peptide-based biomaterials for protein delivery and peptide-promoted self-assembly of gold nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804601

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013522926

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804601

Country of ref document: EP

Kind code of ref document: A1