WO2013002199A1 - Conveyor device bearing unit with malfunction detection function, conveyor equipment and bearing unit monitoring system - Google Patents

Conveyor device bearing unit with malfunction detection function, conveyor equipment and bearing unit monitoring system Download PDF

Info

Publication number
WO2013002199A1
WO2013002199A1 PCT/JP2012/066229 JP2012066229W WO2013002199A1 WO 2013002199 A1 WO2013002199 A1 WO 2013002199A1 JP 2012066229 W JP2012066229 W JP 2012066229W WO 2013002199 A1 WO2013002199 A1 WO 2013002199A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
bearing unit
unit
power
detection function
Prior art date
Application number
PCT/JP2012/066229
Other languages
French (fr)
Japanese (ja)
Inventor
近藤博光
梅本武彦
笹部光男
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011144588A external-priority patent/JP2013011312A/en
Priority claimed from JP2011169783A external-priority patent/JP5681061B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to AU2012276745A priority Critical patent/AU2012276745A1/en
Priority to BR112013032220A priority patent/BR112013032220A2/en
Publication of WO2013002199A1 publication Critical patent/WO2013002199A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G39/00Rollers, e.g. drive rollers, or arrangements thereof incorporated in roller-ways or other types of mechanical conveyors 
    • B65G39/02Adaptations of individual rollers and supports therefor
    • B65G39/09Arrangements of bearing or sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • F16C13/02Bearings
    • F16C13/022Bearings supporting a hollow roll mantle rotating with respect to a yoke or axle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/042Housings for rolling element bearings for rotary movement
    • F16C35/047Housings for rolling element bearings for rotary movement with a base plate substantially parallel to the axis of rotation, e.g. horizontally mounted pillow blocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/008Identification means, e.g. markings, RFID-tags; Data transfer means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/58Conveyor systems, e.g. rollers or bearings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/004Electro-dynamic machines, e.g. motors, generators, actuators

Definitions

  • the present invention relates to a bearing unit for a conveying device with an abnormality detection function applied to a conveying device such as a belt conveyor (for example, a conveying conveyor in a mining site such as iron ore or coal), and a conveyor facility and a bearing provided with the bearing unit. It relates to a unit monitoring system.
  • a conveying device such as a belt conveyor (for example, a conveying conveyor in a mining site such as iron ore or coal), and a conveyor facility and a bearing provided with the bearing unit. It relates to a unit monitoring system.
  • Patent Document 1 an electromotive force generated by a rotor / stator installed in a conveyor roller is used as means for operating a rotation abnormality alarm device.
  • Patent Document 1 has a problem that it is difficult to apply because the generator by the rotor / stator is installed in the conveyor roller, the structure is complicated, the design is dedicated, and the degree of freedom is small. Also, as an alarm means for abnormality, lighting of a lamp installed in the vicinity of each conveyor roller and transmission by a buzzer are shown as an example, but in a conveyor with a long conveying distance, a lamp or buzzer in the vicinity of each conveyor roller In some cases, abnormal alarms cannot be confirmed reliably. In addition, if an abnormality detection signal of each conveyor roller is guided to the central control room by wiring and centrally managed, the alarm of the abnormality can be surely confirmed.
  • the present invention overcomes these problems, has a simple sensor, power supply, and wiring system configuration, facilitates centralized management, and can contribute to accurate abnormality detection of a bearing, and a bearing unit for a conveyor device and a conveyor facility with an abnormality detection function. And providing a bearing unit monitoring system.
  • a bearing unit for a conveying device with an abnormality detection function is a bearing unit for a conveying device that includes a rolling bearing and a housing in which the rolling bearing is installed, and is equipped in the conveying device.
  • a transmitter having a transmission circuit unit for transmitting a signal and a transmission control unit for causing the transmission circuit unit to wirelessly transmit the signal; a power generation element that generates power by environmental energy; and a power storage unit that stores power generated by the power generation element
  • the power supply for supplying power to the transmitter is provided in the housing, and the transmission control unit causes the transmission circuit unit to transmit a signal each time the amount of power stored by the power storage unit reaches a set value.
  • the transmitter is typically a transmitter that uses radio waves. However, the transmitter is not limited to radio waves, and may be any transmitter as long as wireless transmission is possible, such as using light or another medium.
  • the power generated by the power generation element is stored in the power storage means, and transmission is performed by the transmission circuit unit every time the storage amount reaches the set value under the control of the transmission control unit.
  • the power generation element generates power by environmental energy, for example, heat generation or vibration associated with the operation of the bearing.
  • heat generation or vibration associated with the operation of the bearing.
  • the amount of power generation increases and vibration also increases. Therefore, when an abnormality occurs in the bearing, the amount of heat generated by the power generation element increases, the amount of stored electricity reaches the set value quickly, and the transmission interval by the transmission circuit unit is shortened. Therefore, the bearing abnormality can be determined by monitoring the transmission interval from the bearing unit on the receiving side.
  • the abnormality detection is performed by using the power generation element serving as the power source for transmission, so that the abnormality detection can be performed with a simple configuration.
  • Signal transmission is performed using wireless transmission, and the power source for transmission is obtained from a power source having a power generation element in the bearing unit, so that complete abnormality detection, information transmission, and power supply securing can be performed for each bearing unit.
  • This eliminates the need for wiring between the bearing units and the central control room, and simplifies the wiring system.
  • the structure is complicated because the infrastructure such as wiring is laid, and the degree of freedom in design is reduced.
  • the power source uses a power generation element that generates electricity using environmental energy
  • the configuration is simplified and compact compared to the case of providing a rotor / stator generator that requires components on both the rotating and stationary sides. It becomes. Therefore, it is possible to eliminate the need for a dedicated design, and a great degree of design freedom can be obtained, which makes it easy to apply.
  • Existing bearing units can be easily replaced.
  • the usual idea is to use a generator with a rotor / stator that uses the rotational function of the bearing.
  • vibration and heat are generated not a little as the rolling bearing rotates.
  • the present invention uses a power generation element that generates power by environmental energy, focusing on the characteristics of such a bearing unit. If the power is enough to be used for signal transmission, there is a possibility of using the power generated by such vibration and heat. Moreover, even if the generated power is small, it can be put into practical use by making a device for detection and transmission.
  • the storage means a capacitor or a secondary battery can be used. If the power storage means is provided, transmission is possible by storing the generated power in the power storage means even when the generated power is small for wireless transmission as it is. In addition, if transmission is always performed, power consumption increases, but for abnormality detection, for example, detection and transmission may be performed every few minutes. Electricity is enough. By taking into consideration such vibration and heat generation characteristics of the bearing unit and the necessity of abnormality detection, the use of the power generation element by environmental energy can be realized.
  • the transmission control unit may cause the power storage unit to discharge each time the amount of power stored by the power storage unit reaches a set value and causes the transmission circuit unit to perform transmission.
  • the power storage means reduces the amount of power stored when power is used for transmission, but the power consumed for transmission may vary. Stabilize.
  • the senor further includes a sensor that detects the status of the rolling bearing, and the transmission control causes the transmission circuit unit to wirelessly transmit information including the status of the rolling bearing detected by the sensor. Provides power to the sensor.
  • the situation of the rolling bearing is data indicating one or more characteristics of the rolling bearing, and includes vibration, temperature, rotational speed, and the like of the rolling bearing.
  • a sensor that detects the state of the rolling bearing is provided in the bearing unit, and the transmission circuit unit of the transmitter wirelessly transmits information (hereinafter referred to as “sensor information”) including the detected state.
  • sensor information information
  • the sensor information to be transmitted is not limited to the raw signal of the signal detected by the sensor or simply the amplified signal, but may be information subjected to signal processing such as analog-digital conversion and determination processing.
  • the sensor information may be included in the signal transmitted by the transmission circuit unit.
  • the power generation element of the bearing unit generates power using environmental energy, but there is a possibility of using the generated power due to such vibration and heat as long as the power is used to transmit sensor information.
  • the bearing unit is provided with power storage means, detection by the sensor and transmission of the sensor signal can be performed even when the power generation element such as the stop of the transport device is not generating power.
  • a thermal power generation element or a vibration power generation element can be used as the power generation element that generates power by the environmental energy.
  • a Seebeck power generation element can be used as the thermoelectric power generation element.
  • An electret element or the like is used as the vibration power generation element.
  • the senor may be at least one of a vibration sensor, a temperature sensor, and a rotation sensor.
  • a vibration sensor When an abnormality occurs in a rolling bearing, vibration, temperature rise, rotation effects, etc. occur. Therefore, if at least one of a vibration sensor, a temperature sensor, and a rotation sensor is provided, a bearing abnormality can be detected.
  • the transmitter may transmit identification information of the bearing unit for the conveying device as the signal to be transmitted.
  • the identification information By transmitting the identification information, on the receiving side, it is possible to identify a large number of bearing units provided in the transport device, and identify which transport device the bearing unit is.
  • storage means for storing information detected by the sensor may be further provided.
  • the storage means may be an IC tag. If the storage means is provided, it is possible to transmit the detected signals collectively to some extent, and it is possible to manage the abnormality with the stored information separately from the management by wireless transmission. If the storage means is an IC tag, the stored information can be easily read by using a tag reader.
  • a GPS terminal that is a terminal of the global positioning system may be further provided in the housing. If a GPS terminal is provided, the position of the bearing unit is specified. Therefore, even if there is no centralized control panel with a complicated configuration and no means for identifying the bearing unit is provided, the bearing in which an abnormality has occurred. Unit identification is easy. In the case of using the GPS terminal together with the transmission of the identification information, even if the identification information is only information for identifying which bearing unit in the conveying device, which bearing unit of which conveying device is installed in large numbers Can be identified.
  • the conveying device may be a belt conveyor.
  • the belt conveyor may be a belt conveyor provided from a mining site such as iron ore or coal to a truck loading site.
  • Some belt conveyors have a long conveying distance and many bearing units are used. Even in such a case, according to the bearing unit for a conveying device with an abnormality detection function of the present invention, sensors, power supplies, wiring systems The structure is simple, centralized management is easy, and it can contribute to the accurate detection of bearing abnormalities.
  • the housing When applied to a belt conveyor, the housing is a member provided at an end of a cylindrical body on the outer periphery of a conveyor roller on which the belt of the belt conveyor is hung, and the rolling bearing includes a fixed shaft and the housing
  • the conveyor roller may be supported so as to be rotatable.
  • the bearing unit for a conveyance device with an abnormality detection function of the present invention can be applied to each conveyor roller provided in a large number on one conveyor.
  • the conveyor roller is provided with a cover made of synthetic resin that covers the end surface of the cylindrical body, and the transmitter has a radio wave shielding member between the antenna of the transmitter and the cover in a space inside the cover. It is good to arrange in the place which does not intervene. Thus, transmission can be performed from the transmitter antenna built in the conveyor roller without causing a problem of radio wave shielding, and the end of the conveyor roller can be sealed.
  • the housing When applied to a conveyor roller, the housing may be a plummer block bearing box that supports a rotating shaft of a conveyor roller that is provided with a belt of the belt conveyor. Although the conveyor roller at the end of the conveyor is supported by the plummer block, it is important to detect an abnormality because the load on the bearing is large or the influence upon damage is large. By applying to such a plummer block, accurate abnormality detection can be performed for a bearing having a high necessity for abnormality detection.
  • a bearing box of the plummer block is composed of a housing main body having an opening facing both end faces and inserting a shaft into one opening, and a lid member closing the other end opening of the housing main body, the transmitter, and
  • the power source may be installed on the lid member.
  • the conveyor equipment with an abnormality detection function is provided with one or more bearing units for the conveying device with an abnormality detection function of the above configuration on each of a plurality of conveyors. Even in such a conveyor facility having a plurality of conveyors, the configuration of the power supply and wiring system is simple, centralized management is easy to perform, and it is possible to contribute to accurate abnormality detection of the bearing.
  • a centralized control panel that collectively monitors each piece of information transmitted by the transmitter of each bearing unit of the one or more conveying device bearing units with an abnormality detection function provided on each of the plurality of conveyors;
  • a relay device that receives, amplifies, and wirelessly transmits information transmitted by the transmitter may be provided between a plurality of conveyors. Even when the distance between the conveyor and the central control panel such as the central control room is long, wireless communication is possible by using the relay device.
  • a bearing unit monitoring system includes a conveying device bearing unit with an abnormality detection function configured as described above, a receiver that receives the signal transmitted by the transmission circuit unit, and a monitoring device that includes an abnormality determination unit.
  • the abnormality determination means determines an abnormality from a change in the interval of signals transmitted from the transmitter and received by the receiver.
  • the above-described operations and effects described for the bearing unit for a conveying device with an abnormality detection function having the above-described configuration can be obtained, and a bearing abnormality can be determined from a change in signal interval.
  • the change in the interval mentioned here includes a case where the signal is not received. When the bearing is stopped, power generation is not performed. However, since no signal is received, it can be determined that an abnormality has occurred to the extent that the bearing stops.
  • the abnormality determination means always includes a signal interval in a reference period or a reference transmission count that is set in advance in the past, and a current target period or target transmission count.
  • the abnormality determination may be performed by comparing the signal interval. For example, the moving average of the comparison reference period and the moving average of the target period are compared.
  • the occurrence of heat generation and vibration differs depending on whether the bearing has been used for many years or if it is nearly new.
  • an accurate abnormality determination cannot be performed simply by comparing the transmission interval with the set interval.
  • the signal interval in the reference period or the reference transmission count that is always determined before the present in the past, and the signal interval of the currently determined target period or the target transmission count By performing the abnormality determination by comparing the two, it is possible to perform the abnormality determination with high reliability. This is because if the amount of heat generation or vibration suddenly increases during use of the bearing as compared to a certain period in the past, the bearing is often abnormal.
  • FIG. 5 is a block diagram showing an example of the configuration of a sensor, a power supply, a transmitter, and the like in the bearing unit for a conveyance device with an abnormality detection function according to the first to third embodiments of the present invention. It is a block diagram which shows the modification of a structure of the sensor, a power supply, a transmitter, etc. It is a graph which shows the repetition condition of the electrical storage and discharge by the electric power generation element of the electrical storage means of the power supply in the bearing unit of FIG.
  • FIG. 3 is a front view of a conveyor to which the bearing unit for a conveyance device with an abnormality detection function according to any one of the first to third embodiments of the present invention is applied. It is a figure which shows typically the installation which installed the multiple conveyor of FIG.
  • FIG. 12 is a front view of the conveyor 1 which is a transport apparatus equipped with the bearing unit for a transport apparatus with an abnormality detection function.
  • the conveyor 1 is a belt conveyor, and an endless conveyor belt 2 is hung between the conveyor rollers 3 and 3 at both ends, and a plurality of conveyor rollers 4 arranged in the transport direction (direction A) are arranged in the middle portion of the conveyor belt 2.
  • the lower surface is supported.
  • a conveyor roller 4A for applying tension is provided.
  • the conveyor belt 2 is rotationally driven by rotating one of the conveyor rollers 3 at both ends by a motor (not shown).
  • 1 and 2 show the bearing units in the intermediate conveyor roller 4, and FIGS. 3 to 5 show the bearing units in the plummer block that supports the conveyor rollers 3 at both ends.
  • FIG. 1 shows a bearing unit according to a first embodiment of the present invention, which is mounted on the conveyor 1.
  • This bearing unit is applied to a conveyor roller 4 located in the middle of the conveyor 1 (located at both ends).
  • the conveyor roller 4 includes a cylindrical body 7 that is rotatably attached to a fixed shaft 5 via a bearing 6. Both ends of the fixed shaft 5 are fixed to the conveyor frame 1a.
  • the cylindrical body 7 is provided with a stepped cylindrical housing 8 serving as a side plate at both ends, and a bearing 6 is fitted in a small diameter cylindrical portion 8 a of the housing 8.
  • the housing 8 is fitted to the inner periphery of the cylindrical body 7 with a large-diameter cylindrical portion 8 b.
  • the bearing 6 is a rolling bearing such as a deep groove ball bearing, and an inner ring thereof is fitted to the outer periphery of the fixed shaft 5.
  • the bearing 6 and the housing 8 constitute a bearing unit 10.
  • This bearing unit 10 constitutes a bearing unit for a conveyance device with an abnormality detection function according to the first embodiment together with a sensor, a power source, a transmitter and the like which will be described later.
  • a cover 9 and a labyrinth seal 29 are attached to the outside of the bearing 6 in the housing 8 to prevent rainwater and dust from entering the bearing 6 and the cylindrical body 7.
  • the labyrinth seal 29 includes a fixed side seal member 29 a provided on the fixed shaft 5 and a rotation side seal member 29 b attached to the housing 8.
  • a sensor 11, a power supply 12, and a transmitter 13 are disposed between the bearing 6 and the cover 9.
  • the sensor 11, the power source 12, and the transmitter 13 are fixed to the outer periphery of the fixed shaft 5 on the fixed side.
  • the sensor 11, the power source 12, and the transmitter 13 may be provided on a part of the outer periphery of the fixed shaft 5, or may be provided over the entire periphery.
  • the cover 9 is made of a synthetic resin, and the transmitter 13 is arranged at a location where the antenna is not interposed between the cover 9 and the radio wave shielding member such as metal in the space inside the cover 9.
  • the rotation side seal member 29b of the labyrinth seal 29 is interposed between the cover 9 and the transmitter 13, and the interposed portion or the whole of the rotation side seal member 29b does not have a radio wave shielding property. It is made of synthetic resin.
  • the sensor 11 is a sensor that detects the state of the bearing 6 and is preferably disposed in contact with the bearing 6, but may not necessarily be in contact.
  • the “situation of the bearing” is data indicating one or more characteristics of the rolling bearing.
  • the sensor 11 is, for example, any one of a vibration sensor, a temperature sensor, and a rotation sensor.
  • any two of these vibration sensors, temperature sensors, and rotation sensors may be provided, or all three types may be provided.
  • An acceleration sensor or the like can be used as the vibration sensor, and a thermistor or the like can be used as the temperature sensor.
  • the rotation sensor detects a relative rotation speed between the inner and outer rings of the bearing 6 or a relative rotation speed between the cylindrical body 7 of the conveyor roller 4 and the fixed shaft 5.
  • a magnetic sensor provided on the outer periphery of the fixed shaft 5.
  • An optical or optical annular encoder (not shown) and a magnetic or optical sensor element for detecting the encoder are fixed to the housing 8.
  • the “bearing status” is one or a combination of vibration, temperature, and rotational speed of the rolling bearing, depending on the type of the sensor 11.
  • the sensor 11 may be composed of a sensor element or may have a sensor element and a signal processing circuit (not shown) that processes an output signal of the sensor element.
  • the signal processing circuit may be an amplifier, or may further have an analog / digital conversion means, a filter, or the like.
  • the power source 12 is for driving the sensor 11 and the transmitter 13, and includes a power generation element 14, a rectification / charging circuit 15, and a power storage means 16, as shown in a block diagram in FIG.
  • a vibration power generation element or a thermoelectric power generation element that generates power using environmental energy in the environment of the element can be used.
  • a semiconductor element such as an electret element is used.
  • a Seebeck power generation element can be used as the thermoelectric power generation element.
  • the necessary electric power can be generated by disposing the high temperature side of the element inside and disposing the low temperature side on the outside air (atmosphere) side. Furthermore, if the contact area with the atmospheric air on the outside air side is increased and the comb shape (fins) is formed so as to promote heat dissipation, the temperature difference is further increased and the power generation amount can be increased.
  • the power storage means 16 is a storage battery such as a capacitor or a lithium secondary battery.
  • the rectification / charging circuit 15 is a circuit that rectifies the current generated by the power generation element 14 and charges the power storage means 16. Note that the power source 12 may include only the power generation element 14 without the power storage unit 16.
  • the transmitter 13 includes a transmission antenna 17, a transmission circuit unit 18, and a transmission control unit 19.
  • the transmission circuit unit 18 is a circuit that modulates a signal in a predetermined modulation format and transmits the signal as a radio wave from the antenna 17.
  • the transmission control unit 19 causes the transmission circuit unit 18 to transmit a signal according to a predetermined condition, and includes a circuit, a microcomputer, and the like that transmit this signal.
  • the signal may include arbitrary information.
  • the signal may include information output from the sensor 11, that is, information including the status of the bearing 6 (FIG. 1).
  • transmission is performed using radio waves.
  • transmission may be performed using radio waves other than radio waves as long as transmission is performed wirelessly.
  • the transmission control unit 19 is, for example, a unit that determines whether or not the amount of charge (for example, stored electric charge) of the power storage unit 16 reaches a set value, and transmits when the set value is reached.
  • the transmission control unit 19 includes, for example, an electronic circuit such as a switching circuit that opens and closes the connection of the power storage unit 16 with respect to the transmission circuit unit 18. Details of transmission control by the transmission control unit 19 will be described later with reference to FIGS. 8 and 9A and 9B.
  • the determination of the charge amount of the power storage unit 16 is performed based on the terminal voltage of the power storage unit 16, for example.
  • the transmission interval depends on the generated power of the power generation element 14 of the power supply 12, for example, when the power generation element 14 can generate power of about 100 ⁇ W, transmission can be performed every 5 minutes.
  • the transmission control unit 19 may perform transmission after the transmission reaches the set value, and then cause the power storage unit 16 to discharge until the amount of power stored becomes zero or less than the set value for stopping discharge.
  • the power storage unit 16 reduces the amount of power stored when power is used for transmission, but the transmission interval is stabilized by further discharging. That is, the power consumed for transmission is not necessarily constant, but the time required for power storage becomes constant by further discharging.
  • the transmission control unit 19 transmits the identification information of the bearing unit 10 (FIG. 1) where the sensor 11 is installed together with the information output from the sensor 11.
  • This identification information may be stored in the transmission control unit 19 or may be stored in a storage means provided separately from the transmission control unit 19.
  • storage means 20 for storing information detected by the sensor 11 (information consisting of the status of the bearing 6 (FIG. 1)) is stored.
  • the bearing unit 10 may be provided.
  • the storage means 20 may be a storage circuit element provided on a circuit board (not shown) of the transmitter 13 or the sensor 11 or an IC tag.
  • the transmitter 13 may transmit the information stored in the storage unit 20.
  • the storage means 20 is an IC tag
  • the maintenance staff can use the IC tag reader to check the usage status / state of the bearing unit 10 on the spot when performing an on-site inspection. In addition to this management, more reliable maintenance management becomes possible.
  • the GPS terminal 21 may be provided in the housing 8 (FIG. 1).
  • the GPS terminal 21 is a global positioning system (GPS) terminal and outputs a signal for informing the position.
  • the GPS terminal 21 may receive position information corresponding to the transmission signal from the global positioning system and transmit the received position information together with detection information of the sensor 11.
  • the identification information transmitted by the transmitter 13 may be information for identifying only which part of the bearing unit 10 in one conveyor 1, and even in that case, by combining with the position information of the GPS terminal 21. The details of which bearing unit 10 of which conveyor 1 is can be specified.
  • the senor 11, the power source 12, and the transmitter 13 are individually installed in the bearing unit 10. However, as shown in FIG. 7, for example, the sensor 11, the power source 12, and the transmitter 13 are combined together.
  • the sensor module 22 with a transmission power generation function which is a component, may be installed in the bearing unit 10. As such a sensor module 22 with a transmission power generation function, for example, a module having a size of about 25 mm square has been commercialized, and it can be used.
  • the power generated by the power generation element 14 in FIG. 6 is stored in the power storage means 16, and transmission is performed by the transmission circuit unit 18 every time the storage amount reaches a set value under the control of the transmission control unit 19.
  • the determination of the charge amount of the power storage unit 16 is performed based on, for example, the terminal voltage of the power storage unit 16.
  • FIG. 8 shows this state, the vertical axis is the terminal voltage V of the power storage means 16, and the horizontal axis is time t.
  • the power generation element 14 is a thermoelectric power generation element such as a Seebeck power generation element will be described.
  • the bearing 6 Since the bearing 6 (FIG. 1) generates heat during operation, power generation is performed by the power generation element 14 of FIG. 6 due to a temperature difference from the ambient atmosphere such as the atmosphere.
  • the generated power is charged in the power storage means 16.
  • the power storage means 16 has a terminal voltage V that increases as the amount of charge increases.
  • the transmission control unit 19 in FIG. Signals are transmitted by the transmission circuit unit 18 under the control of the switching operation and the like. By this signal transmission, the stored power of the power storage means 16 is consumed, and the terminal voltage V decreases.
  • the transmission control unit 19 changes the terminal voltage V to the discharge stop setting voltage VB until the amount of power stored in the power storage means 16 becomes equal to or lower than the discharge stop set value, that is, as shown in FIG. You may make it discharge until it falls. Thereafter, the amount of power storage is increased again by power generation by the power generation element 14 (FIG. 6), the terminal voltage V rises, and transmission and discharge are performed when the terminal voltage V rises to the set value VA. Such an operation is repeated.
  • the transmission cycle T is constant.
  • the transmission cycle T is shortened.
  • the power generation state of the power generation element 14 when the bearing temperature is 40 ° C. is 1 V / h (that is, 1 V increase per hour) at the terminal voltage V
  • the bearing temperature is about 50 ° C.
  • the power generation state of the power generation element 14 becomes 1.5 V / h (that is, 1.5 V increase per hour) at the terminal voltage V. Therefore, the transmission frequency is 1.5 times (transmission cycle is 2/3).
  • a monitoring device (not shown) arranged away from the conveyor 1 (FIG. 1) receives and monitors the signal transmitted in this way, and the transmission frequency is constant as shown in FIG. 9A, for example.
  • the transmission frequency is high (transmission cycle T is short) as in the section tc of FIG. 9B, it is determined that a bearing abnormality has occurred, and the determination result is Output.
  • the presence or absence of abnormality may be determined by performing statistical processing. For example, in the abnormality determination process, the signal interval in the reference period or the number of reference transmissions in the past, which is just before the present, is always compared with the signal interval in the currently determined target period or the number of target transmissions. Thus, the abnormality determination may be performed.
  • the reference transmission frequency (3 times) before the current time t1 is determined (for example, 3 times) before the current time t1 (FIG. 9).
  • the average signal interval in the interval ta) is compared with the average signal interval in the current number of target transmissions (for example, three times of signals) of the current (t1) (interval tb in FIG. 9B). If the difference is greater than or equal to the set value, it is determined that there is an abnormality. In other words, the moving averages are compared.
  • the bearing 6 (FIG. 1) By monitoring the signal transmission interval from the bearing unit 10, it is possible to determine the abnormality of the bearing 6 (FIG. 1). In addition, when an abnormality occurs in which the bearing 6 (FIG. 1) stops, transmission is not performed. Therefore, when the conveyor 1 equipped with the bearing unit 10 is in a driving state and no signal is received, It can be determined that an abnormality that stops the bearing 6 (FIG. 1) has occurred. As described above, since the abnormality of the bearing can be detected by using the power generation element 14, the abnormality can be detected even if the sensor 11 is not provided. And when a malfunction occurs, the bearing 6 (FIG. 1) can be replaced at an early stage before the rotation becomes impossible.
  • the signal transmitted by the transmission circuit unit 18 of the transmitter 13 does not need to include any information.
  • this signal may include arbitrary information, and may include information including a bearing state detected by the sensor 11.
  • an abnormality can be detected from the transmission interval of the signal transmitted by the transmission circuit unit 18 of the transmitter 13, and the abnormality can also be detected from the sensor information included in this signal. Therefore, more reliable abnormality detection is possible.
  • the information including the status of the bearing may be transmitted by being included in a signal different from the signal whose transmission interval is monitored.
  • FIG. 3 and FIG. 4 show a bearing unit according to the second embodiment of the present invention, which is mounted on the conveyor 1.
  • This bearing unit is composed of plummer blocks 10P located at both ends of the conveyor 1, respectively.
  • This plummer block 10P supports the rotating shaft 31 which the conveyor roller 3 of the both ends in the conveyor 1 of FIG. 12 has, and the bearing 36 which supports the rotating shaft 31 is provided in the housing 32 which is a plummer block bearing box.
  • the bearing 36 is a rolling bearing such as a double row spherical roller bearing.
  • the housing 32 includes a housing body 32a and a lid member 32b.
  • the housing main body 32a is provided with a bearing 36 therein, has an opening facing both end faces, and allows the rotary shaft 31 to be inserted into the opening at one end.
  • the lid member 32b is a member that closes the opening at the other end.
  • the senor 11, the power source 12, and the transmitter 13 are embedded in the upper surface portion of the housing body 32a of the housing 32.
  • a recess is provided on the surface of the housing 32, and the sensor 11, the power source 12, and the transmitter 13 are disposed therein.
  • the sensor 11, the power source 12, and the transmitter 13 can be configured as described above with reference to the first embodiment shown in FIGS. 1 and 2, but the transmitter 17 has the antenna 17 (FIG. 6) exposed to the atmosphere.
  • the sensor 11, the power source 12, and the transmitter 13 may be integrated as a sensor module 22 with a transmission power generation function.
  • the storage means 20 and the GPS terminal 21 may be installed in the housing 32 as in the bearing unit according to the first embodiment.
  • the sensor 11 and the like are provided in the housing body 32a.
  • the bearing unit (plummer block 10P) according to the third embodiment shown in FIG. As described above, the sensor 11, the power supply 12, and the transmitter 13 may be embedded in the lid member 32 b of the housing 32. Also in this case, the transmitter 13 is provided so that the antenna 17 (FIG. 6) is exposed to the atmosphere.
  • FIG. 13 shows a conveyor facility 100 with an abnormality detection function in which a plurality of conveyors 1 equipped with the conveyor 1 of FIG. 12, that is, the bearing unit 10 for a conveyance device with an abnormality detection function, are installed.
  • This conveyor facility 100 is for conveying, for example, iron ore or coal, and a conveyor row in which the conveyors 1 are arranged in a vertical row is provided from the mining site to the track loading site.
  • a central management room 42 having a central management panel 41 and a relay device 43 are installed.
  • the central control board 41 has an antenna 44 and a receiver (not shown), and a display device (not shown) with a pictorial diagram or a table showing each conveyor 1 and each bearing unit 10 for a conveyance device with an abnormality detection function thereof. And it has a function which displays the abnormality occurrence information of each bearing unit 10 on the pictorial chart or table.
  • the picture or table showing the bearing unit 10 may be displayed as an image on the screen of one display device.
  • the central management board 41 has an abnormality determining means 45 for determining an abnormality for each of the bearings 6 (FIG. 1) and 36 (FIG. 3), and displays the abnormality determination result on the display device (not shown).
  • the abnormality determination unit 45 determines that an abnormality has occurred when a signal is not received for a set time or more, even though the conveyor 1 equipped with the bearing unit 10 is in a driving state. Furthermore, abnormality determination may be performed based on information in the received signal (sensor detection information, that is, information including the status of the bearing). In addition, the abnormality determination unit 45 may perform abnormality determination based on both the received signal information and the signal reception interval.
  • the power generation element 14 is a thermoelectric generation element or a vibration power generation element
  • the temperature increases and the vibration increases, so the power generation amount increases. This is because the transmission interval is shortened, so that a sign of bearing abnormality appears due to this transmission interval.
  • the relay device 43 is installed between each conveyor 1 and the centralized management board 41, and receives a signal transmitted from each transmitter 13 of the bearing unit 10 (or 10P) provided in each conveyor 1 or more.
  • the sensor 11 for detecting the status of the bearings 6 (FIG. 1) and 36 (FIG. 3) and information including the detected status (hereinafter referred to as “sensor information”). Since the bearing unit 10 (or 10P) is provided with the transmitter 13 that wirelessly transmits the bearing 6 (or 10P), in addition to monitoring the signal transmission interval, the sensor information is monitored in the centralized control room 42 or the like, whereby the bearing 6 (FIG. Abnormalities 1) and 36 (FIG. 3) can be easily and accurately detected without much time and effort. For this reason, when a problem that makes rotation impossible occurs, the bearings 6 (FIG. 1) and 36 (FIG. 3) can be replaced at an early stage before rotation becomes impossible.
  • each bearing unit 10 Completed abnormality detection, information transmission, and securing of power supply can be performed, wiring between the bearing units 10 and the central control room 42 is unnecessary, and the wiring system is simplified. In the case of wired, the structure becomes complicated due to the installation of infrastructure such as wiring, and the degree of freedom in design is reduced, whereas in wireless, such a problem is eliminated.
  • the relay device 43 is installed along the conveyor 1 for each transmission possible range, so that transmission to the centralized management room 42 can be performed wirelessly. For this reason, for example, it can be easily applied to a conveyor facility having a long conveying path such as a conveying conveyor such as iron ore or coal.
  • the antenna 17 becomes incapable of communication if it is covered with metal, but the belt conveyor 1 used outdoors has the first to third implementations of FIGS.
  • a good communication state can be obtained by arranging the surface of the antenna 17 so as to be exposed to the atmosphere.
  • the power supply 12 in FIG. 6 is supplied by “self-power generation” to operate the equipment, it can be made stand-alone.
  • the power generation element 14 that generates power using environmental energy is used, the configuration is simplified and compact compared to the case of providing a rotor / stator generator that requires components on both the rotating side and the stationary side. Is done. Therefore, it is possible to eliminate the need for a dedicated design, and a great degree of design freedom can be obtained, which makes it easy to apply. Existing bearing units can be easily replaced.
  • the environmental power generation element 14 that performs “self-power generation” for example, a vibration power generation element that can generate power of about 100 ⁇ W has been commercialized, and when this is used, the generated power can be transmitted every 5 minutes. Further, if the power storage means 16 such as a lithium secondary battery is charged in advance, information can be transmitted by the power storage means 16 even when power is not generated when the conveyor is stopped.
  • the power storage means 16 As described above and making a device for detection and transmission such as transmission when the charge amount is sufficient. .
  • thermoelectric generation element using heat generated by the rotation of the bearing 6 can be used.
  • necessary power can be generated by disposing the high temperature side of the element inside and disposing the low temperature side on the outside air (atmosphere) side.
  • the comb-shaped (fin) shape is used to increase the contact area with the atmosphere on the outside air side and promote heat dissipation, the power generation amount can be further increased due to a temperature difference.
  • a temperature sensor can be used as the abnormality detection sensor 11 in addition to the vibration sensor. Moreover, it can be said that it is an effective sensing method in that if a rotation sensor is used, the occurrence of a malfunction can be predicted by capturing the phenomenon that the rotation speed decreases.
  • each bearing unit 10 When the identification information is transmitted from the transmitter 13 of each bearing unit 10 together with the sensor information, it is possible to identify which bearings 6 and 36 information is used. In the case of the provided equipment, it is possible to specify the details of which bearing 6 (FIG. 1) and 36 (FIG. 3) of which conveyor 1 by interlocking with the GPS terminal 21.
  • the bearing unit for a conveyance device with an abnormality detection function does not necessarily include the sensor 11 (FIG. 1).
  • the sensor 11 When the sensor 11 is omitted in the conveyance device bearing unit with an abnormality detection function according to the first embodiment shown in FIGS. 1 to 6, there is a sensor 11 interposed between the bearing 6 and the power supply 12 in FIG. Instead, a spacer 11 is interposed instead of the sensor 11.
  • the power source 12 may be disposed in contact with the bearing 6 without providing the spacer 11.
  • the power source 12 serves as a driving power source for the transmitter 13, but as a sensor for detecting an abnormality in the bearing 6 in FIG. Combine functions. That is, since the signal transmission interval corresponding to the power generation time of the power source 12 is monitored and an abnormality is detected, the power source 12 functions as a sensor for detecting an abnormality.
  • the bearing unit monitoring system 50 includes the bearing unit 10 (or 10P) according to any one of the first to third embodiments.
  • the same or corresponding parts as those described with respect to the first to third embodiments of the bearing unit of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the bearing unit monitoring system 50 includes one or more bearing units 10 (or 10P) and a centralized control panel 41 including a monitoring device 46.
  • the bearing unit 10 (or 10P) is a bearing unit according to any one of the first to third embodiments. However, this bearing unit 10 (or 10P) is not provided with the sensor 11 (FIG. 6). Moreover, these bearing units 10 (or 10P) are equipped in the conveyor 1 as demonstrated regarding FIG.
  • the bearing unit 10 (or 10P) may be provided with a GSP terminal 21 attached to the transmitter 13 as shown in FIG.
  • a monitoring device 46 is a device that is provided on the central management board 41 of the central management room and monitors a signal transmitted from the transmitter 13 of the bearing unit 10.
  • the monitoring unit 46 and the bearing unit 10 (or 10P) for the conveying device with an abnormality detection function constitute a bearing unit monitoring system 50.
  • the monitoring device 46 includes a receiver 47 that receives a transmission signal of the transmitter 13 of the bearing unit 10 (or 10P), an abnormality determination unit 45A, and a bearing unit specifying unit 49.
  • the receiver 47 includes an antenna 52 and a receiving circuit unit 51.
  • the bearing unit specifying means 49 is means for specifying which bearing unit 10 the signal is from the signal received by the receiver 47, and is specified by the identification information in the transmission information.
  • the bearing unit specifying means 49 uses the position signal from the GPS terminal 21 (FIG. 11) or the position of the GPS terminal 21 (FIG. 11).
  • the bearing unit 10 (or 10P) is specified using both the signal and the identification information.
  • the abnormality determination unit 45A determines an abnormality from a change in the interval of signals transmitted from the transmitter 13 and received by the receiver 47.
  • the specific determination process of the abnormality determination unit 45A is as described with reference to FIGS. 8, 9A, and 9B for the bearing unit for a transport device according to the first embodiment.
  • the abnormality determination means 45A of the monitoring device 46 monitors the signal transmitted from the transmitter 13 of the bearing unit 10 and is normal if the transmission frequency is constant as shown in FIG. 9A.
  • the transmission frequency is high (transmission cycle T is short) as in the section tc shown in FIG. 9B, it is determined that a bearing abnormality has occurred, and the determination result is output.
  • the configuration in which the sensor is not provided in the bearing unit has been described, but a sensor may be provided.
  • the abnormality of the bearing is detected not only based on the time interval of the transmission signal but also based on the sensor information as in the first to third embodiments. Thereby, the abnormality of a bearing is detected more reliably.
  • a bearing unit for a conveyance device with an abnormality detection function includes a rolling bearing and a housing in which the rolling bearing is installed, and is a bearing unit for a conveyance device equipped in the conveyance device, the rolling unit A sensor that detects a state of the bearing, a transmitter having a transmission circuit unit that wirelessly transmits information including the state of the rolling bearing detected by the sensor, and a power generation element that generates power using environmental energy. And a power supply for supplying power to the machine.
  • the power source may include power storage means for storing the power generated by the power generation element.
  • the transmission means may perform wireless transmission of information detected by the sensor each time the amount of power stored in the power storage means reaches a set value.
  • the power storage means a capacitor or a secondary battery can be used.
  • a vibration power generation element or a thermoelectric power generation element can be used as the power generation element that generates electric power using the environmental energy.
  • An electret element or the like is used as the vibration power generation element.
  • a Seebeck power generation element can be used as the thermoelectric power generation element. According to these power generation elements, it is possible to generate power using vibration and heat generated in the environment where the bearings of the transfer device are installed.
  • a storage unit that stores information detected by the sensor may be provided.
  • the storage means may be an IC tag.
  • a GPS terminal that is a terminal of the global positioning system may be provided in the housing.
  • the conveyance device with an abnormality detection function may be a belt conveyor.
  • the housing is a member provided at an end of a cylindrical body on the outer periphery of a conveyor roller around which a belt of the belt conveyor is hung, and the rolling bearing is provided between a fixed shaft and the housing. It may be interposed so as to rotatably support the conveyor roller.
  • the conveyor roller is provided with a synthetic resin cover that covers an end surface of the cylindrical body, and the transmitter shields radio waves between the antenna of the transmitter and the cover in a space inside the cover. It is good to arrange
  • the housing may be a plumer block bearing box that supports a rotation shaft of a conveyor roller on which the belt of the belt conveyor is hung.
  • the bearing box of the plummer block includes a housing body having an opening facing both end faces and a shaft inserted into the opening at one end, and a lid member closing the opening at the other end of the housing body, A sensor, a transmitter, and a power source may be installed on the lid member.
  • the conveyor equipment with an abnormality detection function according to the aspect 12 is provided with a plurality of conveyors equipped with the bearing unit for an abnormality detection function with the abnormality detection function according to any one of the above aspects 1 to 11.
  • the information transmitted by the transmitter is received, amplified, and wirelessly transmitted between the centralized control panel that collectively monitors the information transmitted by the transmitters mounted on the conveyors and the conveyor.
  • a relay device may be provided.
  • the power storage means may be charged by means other than the power generation element. Thereby, for example, the power storage means is charged in advance, and even when power is not generated when the conveyor 1 is stopped, it is possible to transmit information such as sensor information with stored power.

Abstract

The invention is obtained by setting a rolling bearing (6) inside a housing (8) and is used as a conveyor device bearing unit (10) that is provided in conveying devices such as conveyors (1). The invention is provided with: a power source (12) having a power-generating element (14) that generates electricity using environmental energy and an accumulating means (16) for accumulating the power generated by the power-generating element (14); and a transmitter (13) that wirelessly transmits a signal every time the amount of electricity accumulated by the accumulating means (16) reaches an established value. For the power-generating element (14), a vibrational power-generating element or a thermal power-generating element is used. The invention is used in conveyor rollers (4), plummer blocks, etc. in conveyors (1).

Description

異常検出機能付き搬送装置用軸受ユニット、コンベア設備および軸受ユニット監視システムBearing unit for conveyor with abnormality detection function, conveyor equipment and bearing unit monitoring system 関連出願Related applications
 本出願は、2011年6月29日出願の特願2011-144588、2011年8月3日出願の特願2011-169783の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2011-144588 filed on June 29, 2011 and Japanese Patent Application No. 2011-169783 filed on August 3, 2011, which is incorporated herein by reference in its entirety. Cited as what constitutes
 この発明は、ベルトコンベア等の搬送装置(例えば鉄鉱石や石炭等の採掘場の搬送用コンベア)に適用される異常検出機能付き搬送装置用軸受ユニット、ならびにその軸受ユニットを備える、コンベア設備および軸受ユニット監視システムに関する。 The present invention relates to a bearing unit for a conveying device with an abnormality detection function applied to a conveying device such as a belt conveyor (for example, a conveying conveyor in a mining site such as iron ore or coal), and a conveyor facility and a bearing provided with the bearing unit. It relates to a unit monitoring system.
 鉄鉱石、石炭等を搬送するベルトコンベアは、例えば採掘場からトラック載積場まで比較的長い距離で運用されるために、コンベア用軸受が多数使用される。コンベア用軸受としては、コンベア中間に位置する各コンベアローラの両端に内蔵される軸受や、コンベア両端のコンベアローラの回転軸を支持するプランマブロックの軸受がある。上記のような環境で使用される軸受は、回転不能となるような不具合が発生した際、早期に交換することが望ましい。しかし、長い距離に渡って多数の軸受が設置されているため、保守要員の点検では多大な時間を要し、場合によってはベルトコンベア全体を停止しなければならない状況に陥ることがある。 Since a belt conveyor that conveys iron ore, coal, and the like is operated at a relatively long distance from a mining site to a truck loading site, for example, many conveyor bearings are used. As the conveyor bearings, there are bearings built in at both ends of each conveyor roller located in the middle of the conveyor, and plummer block bearings that support the rotation shafts of the conveyor rollers at both ends of the conveyor. It is desirable to replace the bearing used in the above environment at an early stage when a malfunction that makes it impossible to rotate occurs. However, since a large number of bearings are installed over a long distance, it takes a lot of time to inspect maintenance personnel, and in some cases, the entire belt conveyor must be stopped.
 その対策として、各コンベアローラに使用される軸受において、温度スイッチや警報機を設け、軸受損傷等の異常停止を検出し、警報することが提案されている(例えば、特許文献1)。同特許文献では、回転異常警報器を作動させるための手段としてコンベアローラ内に設置したロータ・ステータによる発電起電力を用いている。 As a countermeasure, it has been proposed to provide a temperature switch and an alarm in the bearing used for each conveyor roller to detect an abnormal stop such as a bearing damage and to give an alarm (for example, Patent Document 1). In this patent document, an electromotive force generated by a rotor / stator installed in a conveyor roller is used as means for operating a rotation abnormality alarm device.
特許第3798494号Patent No. 3798494
 特許文献1の構成では、ロータ・ステータによる発電機をコンベアローラ内に設置するため、構造が複雑で専用設計になり、自由度が小さい等、適用し難いという問題がある。また、異常の警報手段として、個々のコンベアローラ毎にその近傍に設置したランプの点灯、ブザーによる発信を一例として示しているが、搬送距離の長いコンベアでは、各コンベアローラ近傍のランプやブザーでは、異常の警報を確実に確認できない場合がある。なお、各コンベアローラの異常の検出信号を配線で集中管理室に導き、集中管理すれば、異常の警報の確実な確認が行える。しかし、採掘場からトラック載積場に至る鉄鉱石、石炭の搬送用ベルトコンベアのような長い経路に沿って前記信号配線を敷設することは、配線だけでなく、その配線を支持したり、接続する手段も必要で、設備が大掛かりとなり、断線の問題も有って、実用的ではない。 The configuration of Patent Document 1 has a problem that it is difficult to apply because the generator by the rotor / stator is installed in the conveyor roller, the structure is complicated, the design is dedicated, and the degree of freedom is small. Also, as an alarm means for abnormality, lighting of a lamp installed in the vicinity of each conveyor roller and transmission by a buzzer are shown as an example, but in a conveyor with a long conveying distance, a lamp or buzzer in the vicinity of each conveyor roller In some cases, abnormal alarms cannot be confirmed reliably. In addition, if an abnormality detection signal of each conveyor roller is guided to the central control room by wiring and centrally managed, the alarm of the abnormality can be surely confirmed. However, laying the signal wiring along a long route such as a belt conveyor for iron ore and coal from the mining site to the truck loading site supports not only the wiring but also the connection It is also not practical because it requires a means to do this, requires large facilities, and has a problem of disconnection.
 そこでこの発明は、これら課題を克服し、センサ、電源、配線系の構成が簡素で、集中管理が行い易く、軸受の的確な異常検出に貢献できる異常検出機能付き搬送装置用軸受ユニット、コンベア設備、および軸受ユニット監視システムを提供することである。 Accordingly, the present invention overcomes these problems, has a simple sensor, power supply, and wiring system configuration, facilitates centralized management, and can contribute to accurate abnormality detection of a bearing, and a bearing unit for a conveyor device and a conveyor facility with an abnormality detection function. And providing a bearing unit monitoring system.
 この発明の一構成にかかる異常検出機能付き搬送装置用軸受ユニットは、転がり軸受と、この転がり軸受が内部に設置されたハウジングとを備え、搬送装置に装備される搬送装置用軸受ユニットであって、信号を送信する送信回路部および前記送信回路部に前記信号を無線送信させる送信制御部を有する送信機と、環境エネルギによって発電する発電素子および前記発電素子で発電した電力を蓄電する蓄電手段を有し、前記送信機に電力を与える電源とを前記ハウジングに備え、前記送信制御部は、前記蓄電手段による蓄電量が設定値に達する毎に前記送信回路部に信号を送信させる。前記送信機は、電波を使用する送信機が代表的であるが、電波に限らず、光や他の媒体を用いるなど、無線送信が可能なものであればいかなる送信機でも良い。 A bearing unit for a conveying device with an abnormality detection function according to one configuration of the present invention is a bearing unit for a conveying device that includes a rolling bearing and a housing in which the rolling bearing is installed, and is equipped in the conveying device. A transmitter having a transmission circuit unit for transmitting a signal and a transmission control unit for causing the transmission circuit unit to wirelessly transmit the signal; a power generation element that generates power by environmental energy; and a power storage unit that stores power generated by the power generation element And the power supply for supplying power to the transmitter is provided in the housing, and the transmission control unit causes the transmission circuit unit to transmit a signal each time the amount of power stored by the power storage unit reaches a set value. The transmitter is typically a transmitter that uses radio waves. However, the transmitter is not limited to radio waves, and may be any transmitter as long as wireless transmission is possible, such as using light or another medium.
 この構成によると、発電素子で発電した電力が蓄電手段で蓄電され、送信制御部の制御により、蓄電量が設定値に達する毎に、送信回路部による送信が行われる。発電素子は、環境エネルギによって、例えば、軸受の運転に伴う発熱や振動によって発電を行う。軸受は、潤滑不良や摩耗等の異常が生じると、発電量が多くなり、また振動も大きくなる。そのため、軸受に異常が発生すると、発電素子による発熱量が増えて、蓄電量が早く設定値に達することになり、送信回路部による送信の間隔が短くなる。そのため、受信側で、軸受ユニットからの送信の間隔を監視することで、軸受の異常判定が行える。また、軸受が停止する異常が発生した場合は、送信が行われないため、軸受ユニットを装備した搬送装置が駆動状態であるにも係わらず、信号が受信されない場合は、軸受が停止する異常が発生したと判定できる。このように、送信用の電源となる発電素子を利用して異常検出を行うようにしたため、簡素な構成で異常検出が行える。 According to this configuration, the power generated by the power generation element is stored in the power storage means, and transmission is performed by the transmission circuit unit every time the storage amount reaches the set value under the control of the transmission control unit. The power generation element generates power by environmental energy, for example, heat generation or vibration associated with the operation of the bearing. When an abnormality such as poor lubrication or wear occurs in the bearing, the amount of power generation increases and vibration also increases. Therefore, when an abnormality occurs in the bearing, the amount of heat generated by the power generation element increases, the amount of stored electricity reaches the set value quickly, and the transmission interval by the transmission circuit unit is shortened. Therefore, the bearing abnormality can be determined by monitoring the transmission interval from the bearing unit on the receiving side. Also, if an abnormality occurs that causes the bearing to stop, transmission is not performed. Therefore, if a signal is not received even though the transport device equipped with the bearing unit is in a driving state, an abnormality that causes the bearing to stop occurs. It can be determined that it has occurred. As described above, the abnormality detection is performed by using the power generation element serving as the power source for transmission, so that the abnormality detection can be performed with a simple configuration.
 信号の送信には無線送信を用い、かつその送信用の電源を、軸受ユニット内の発電素子を有する電源から得るようにしたため、各軸受ユニット毎に完結した異常検出、情報送信、電源確保が行えて、軸受ユニットの相互間や集中管理室への配線が不要で、配線系が簡素化される。有線では配線等のインフラを敷設するため構造が複雑になり、設計の自由度が下がるのに対し、無線送信のため、そのような不都合がない。このため、例えば鉄鉱石や石炭等の搬送用コンベア等のような搬送経路の長いコンベア設備においても適用が簡単に行える。また電源は、環境エネルギによって発電する発電素子を用いたため、回転側および静止側の両方に部品を設けることが必要なロータ・ステータによる発電機を設ける場合に比べて構成が簡素化され、かつコパクト化される。そのため、専用設計の不要化も可能で、設計の自由度も大きく得られ、適用が容易となる。既存設計の軸受ユニットとも容易に置換可能となる。 Signal transmission is performed using wireless transmission, and the power source for transmission is obtained from a power source having a power generation element in the bearing unit, so that complete abnormality detection, information transmission, and power supply securing can be performed for each bearing unit. This eliminates the need for wiring between the bearing units and the central control room, and simplifies the wiring system. In the case of wired communication, the structure is complicated because the infrastructure such as wiring is laid, and the degree of freedom in design is reduced. However, there is no such inconvenience due to wireless transmission. For this reason, for example, it can be easily applied to a conveyor facility having a long conveying path such as a conveying conveyor such as iron ore or coal. In addition, since the power source uses a power generation element that generates electricity using environmental energy, the configuration is simplified and compact compared to the case of providing a rotor / stator generator that requires components on both the rotating and stationary sides. It becomes. Therefore, it is possible to eliminate the need for a dedicated design, and a great degree of design freedom can be obtained, which makes it easy to apply. Existing bearing units can be easily replaced.
 軸受ユニットにおいて自己発電する場合、通常の発想では、軸受の回転機能を利用するロータ・ステータによる発電機が用いられる。しかし、軸受ユニットでは、転がり軸受の回転に伴って少なからず振動や熱を発生する。この発明は、このような軸受ユニットの特性に着眼し、環境エネルギによって発電する発電素子を用いる。信号の送信に使用する程度の電力であれば、このような振動や熱による発電電力の利用の可能性がある。また、発電電力が小さくても、検出や送信上の工夫を施すことで、実用化が可能である。 When self-generating power in a bearing unit, the usual idea is to use a generator with a rotor / stator that uses the rotational function of the bearing. However, in the bearing unit, vibration and heat are generated not a little as the rolling bearing rotates. The present invention uses a power generation element that generates power by environmental energy, focusing on the characteristics of such a bearing unit. If the power is enough to be used for signal transmission, there is a possibility of using the power generated by such vibration and heat. Moreover, even if the generated power is small, it can be put into practical use by making a device for detection and transmission.
 前記蓄電手段としては、コンデンサや二次電池が使用できる。蓄電手段を設ければ、発電電力が、そのまま無線送信に用いるには小さい場合であっても、蓄電手段に溜めておくことで送信可能となる。また、常時送信を行うと使用電力が多くなるが、異常検出のためであれば、例えば数分おきに検出して送信すれば良く、その程度の電力であれば、環境エネルギによる発電素子の発電電力で足りる。このような軸受ユニットの振動や発熱の特性と異常検出の必要性を勘案することで、環境エネルギによる発電素子の使用が実現できる。 As the storage means, a capacitor or a secondary battery can be used. If the power storage means is provided, transmission is possible by storing the generated power in the power storage means even when the generated power is small for wireless transmission as it is. In addition, if transmission is always performed, power consumption increases, but for abnormality detection, for example, detection and transmission may be performed every few minutes. Electricity is enough. By taking into consideration such vibration and heat generation characteristics of the bearing unit and the necessity of abnormality detection, the use of the power generation element by environmental energy can be realized.
 この構成において、前記送信制御部は、前記蓄電手段による蓄電量が設定値に達して前記送信回路部に送信を行わせる毎に、前記蓄電手段の放電を行わせるようにしても良い。前記蓄電手段は、電力が送信に利用されることで蓄電量が低下するが、送信に消費される電力にばらつきが生じることがあるため、さらに放電を行わせるようにすることにより、送信間隔が安定する。 In this configuration, the transmission control unit may cause the power storage unit to discharge each time the amount of power stored by the power storage unit reaches a set value and causes the transmission circuit unit to perform transmission. The power storage means reduces the amount of power stored when power is used for transmission, but the power consumed for transmission may vary. Stabilize.
 この構成において、さらに、前記転がり軸受の状況を検出するセンサを備え、前記送信制御は、前記送信回路部に、前記センサで検出した前記転がり軸受の前記状況からなる情報を無線送信させ、前記電源は、前記センサに電力を与える。ここで「転がり軸受の状況」は、転がり軸受の1つ以上の特性を示すデータのことであり、転がり軸受の振動、温度、回転数などを含む。 In this configuration, the sensor further includes a sensor that detects the status of the rolling bearing, and the transmission control causes the transmission circuit unit to wirelessly transmit information including the status of the rolling bearing detected by the sensor. Provides power to the sensor. Here, “the situation of the rolling bearing” is data indicating one or more characteristics of the rolling bearing, and includes vibration, temperature, rotational speed, and the like of the rolling bearing.
 この構成によると、転がり軸受の状況を検出するセンサを軸受ユニットに設け、その検出した状況からなる情報(以下、「センサ情報」と称す)を送信機の送信回路部が無線送信するため、そのセンサ情報を集中管理室内等で検知することにより、多数の軸受の異常を、多大な時間や労力をかけずに容易に、かつ的確に検出できる。送信するセンサ情報は、センサで検出した信号の生信号や単に増幅した信号に限らず、アナログ・デジタル変換や判定処理等の信号処理された情報であっても良い。なお、送信回路部によって送信される信号に、センサ情報を含めてもよい。 According to this configuration, a sensor that detects the state of the rolling bearing is provided in the bearing unit, and the transmission circuit unit of the transmitter wirelessly transmits information (hereinafter referred to as “sensor information”) including the detected state. By detecting sensor information in a centralized control room or the like, it is possible to easily and accurately detect a large number of bearing abnormalities without much time and effort. The sensor information to be transmitted is not limited to the raw signal of the signal detected by the sensor or simply the amplified signal, but may be information subjected to signal processing such as analog-digital conversion and determination processing. The sensor information may be included in the signal transmitted by the transmission circuit unit.
 軸受ユニットの発電素子は、環境エネルギによって発電するが、センサ情報の送信に使用する程度の電力であれば、このような振動や熱による発電電力の利用の可能性がある。また、軸受ユニットは蓄電手段を設けているため、搬送装置の停止等の発電素子が発電を行っていない時にも、センサによる検出やセンサ信号の送信が行える。 The power generation element of the bearing unit generates power using environmental energy, but there is a possibility of using the generated power due to such vibration and heat as long as the power is used to transmit sensor information. In addition, since the bearing unit is provided with power storage means, detection by the sensor and transmission of the sensor signal can be performed even when the power generation element such as the stop of the transport device is not generating power.
 この構成において、前記環境エネルギによって発電する発電素子としては、熱発電素子や振動発電素子を用いることができる。熱発電素子としてはゼーベック発電素子を用いることができる。振動発電素子としてはエレクレット素子等が用いられる。これらの発電素子によると、搬送装置の軸受が設置される環境において発生する熱や振動を利用し、発電が可能になる。また、軸受に潤滑不良や摩耗等の異常が発生した場合、発熱量や振動が増えるため、軸受異常が発電量として現れ、前記のように蓄電量が設定値に達する毎に送信させることで、異常検出のセンサに兼用できる。 In this configuration, a thermal power generation element or a vibration power generation element can be used as the power generation element that generates power by the environmental energy. A Seebeck power generation element can be used as the thermoelectric power generation element. An electret element or the like is used as the vibration power generation element. According to these power generation elements, it is possible to generate power using heat and vibration generated in the environment where the bearings of the transfer device are installed. In addition, when an abnormality such as poor lubrication or wear occurs in the bearing, the amount of heat generation and vibration increase, so the bearing abnormality appears as the amount of power generation, and when the amount of stored electricity reaches the set value as described above, Can also be used as an abnormality detection sensor.
 この構成において、前記センサは、振動センサ、温度センサ、および回転センサのうちの少なくとも一つであっても良い。転がり軸受に異常が発生した場合、振動の発生や、温度の上昇、回転の影響等が生じる。そのため、振動センサ、温度センサ、および回転センサのうちの少なくとも一つを設ければ、軸受の異常検出が行える。 In this configuration, the sensor may be at least one of a vibration sensor, a temperature sensor, and a rotation sensor. When an abnormality occurs in a rolling bearing, vibration, temperature rise, rotation effects, etc. occur. Therefore, if at least one of a vibration sensor, a temperature sensor, and a rotation sensor is provided, a bearing abnormality can be detected.
 この構成において、前記送信機は、前記送信される前記信号として当該搬送装置用軸受ユニットの識別情報を送信するようにしても良い。識別情報を送信することで、受信側で、搬送装置に多数設けられる軸受ユニットの特定や、どの搬送装置の軸受ユニットであるか等の識別が行える。 In this configuration, the transmitter may transmit identification information of the bearing unit for the conveying device as the signal to be transmitted. By transmitting the identification information, on the receiving side, it is possible to identify a large number of bearing units provided in the transport device, and identify which transport device the bearing unit is.
 この構成において、さらに、前記センサで検出した情報を記憶する記憶手段を備えても良い。前記記憶手段はICタグであっても良い。記憶手段を設ければ、検出した信号をある程度纏めて送信することも可能であり、また無線送信による管理とは別に、記憶情報で異常を管理することも可能となる。記憶手段がICタグであれば、タグリーダを用いることで、記憶情報を容易に読み出すことができる。 In this configuration, storage means for storing information detected by the sensor may be further provided. The storage means may be an IC tag. If the storage means is provided, it is possible to transmit the detected signals collectively to some extent, and it is possible to manage the abnormality with the stored information separately from the management by wireless transmission. If the storage means is an IC tag, the stored information can be easily read by using a tag reader.
 この構成において、さらに、全地球的測位システムの端末であるGPS端末を前記ハウジングに設けても良い。GPS端末が設けられていると、軸受ユニットの位置が特定されるため、複雑な構成の集中管理盤がなくても、また軸受ユニットを識別する手段を設けていなくても、異常の発生した軸受ユニットの特定が容易に行える。上記の識別情報の送信とGPS端末を併用する場合は、識別情報が搬送装置内のどの軸受ユニットかを識別するだけの情報であっても、多数設置されたどの搬送装置のどの軸受ユニットであるかを特定することができる。 In this configuration, a GPS terminal that is a terminal of the global positioning system may be further provided in the housing. If a GPS terminal is provided, the position of the bearing unit is specified. Therefore, even if there is no centralized control panel with a complicated configuration and no means for identifying the bearing unit is provided, the bearing in which an abnormality has occurred. Unit identification is easy. In the case of using the GPS terminal together with the transmission of the identification information, even if the identification information is only information for identifying which bearing unit in the conveying device, which bearing unit of which conveying device is installed in large numbers Can be identified.
 この発明において、前記搬送装置がベルトコンベアであっても良い。そのベルトコンベアは、例えば鉄鉱石や石炭等の採掘場からトラック載積場まで設けられるベルトコンベアであっても良い。ベルトコンベアでは、搬送距離が長く、多数の軸受ユニットが使用されるものがあるが、そのような場合でも、この発明の異常検出機能付き搬送装置用軸受ユニットによると、センサ、電源、配線系の構成が簡素で、集中管理が行い易く、軸受の的確な異常検出に貢献できる。 In this invention, the conveying device may be a belt conveyor. The belt conveyor may be a belt conveyor provided from a mining site such as iron ore or coal to a truck loading site. Some belt conveyors have a long conveying distance and many bearing units are used. Even in such a case, according to the bearing unit for a conveying device with an abnormality detection function of the present invention, sensors, power supplies, wiring systems The structure is simple, centralized management is easy, and it can contribute to the accurate detection of bearing abnormalities.
 ベルトコンベアに適用する場合に、前記ハウジングは、前記ベルトコンベアのベルトを掛装したコンベアローラの外周の円筒体の端部に設けられた部材であり、前記転がり軸受は、固定の軸と前記ハウジングとの間に介在して前記コンベアローラを回転自在に支持するものであっても良い。この場合、1台のコンベアに多数設けられる各コンベアローラ毎に、この発明の異常検出機能付き搬送装置用軸受ユニットを適用することができる。 When applied to a belt conveyor, the housing is a member provided at an end of a cylindrical body on the outer periphery of a conveyor roller on which the belt of the belt conveyor is hung, and the rolling bearing includes a fixed shaft and the housing The conveyor roller may be supported so as to be rotatable. In this case, the bearing unit for a conveyance device with an abnormality detection function of the present invention can be applied to each conveyor roller provided in a large number on one conveyor.
 前記コンベアローラに、前記円筒体の端面を覆う合成樹脂製のカバーを設け、前記送信機は、前記カバーの内側の空間における、送信機のアンテナと前記カバーとの間で電波遮蔽性の部材が介在しない箇所に配置されるのが良い。これにより、コンベアローラに内蔵の送信機アンテナから、電波遮蔽の問題を生じることなく送信が行え、またコンベアローラの端部の密封も行える。 The conveyor roller is provided with a cover made of synthetic resin that covers the end surface of the cylindrical body, and the transmitter has a radio wave shielding member between the antenna of the transmitter and the cover in a space inside the cover. It is good to arrange in the place which does not intervene. Thus, transmission can be performed from the transmitter antenna built in the conveyor roller without causing a problem of radio wave shielding, and the end of the conveyor roller can be sealed.
 コンベアローラに適用する場合に、前記ハウジングは、前記ベルトコンベアのベルトを掛装したコンベアローラが有する回転軸を支持するプランマブロックの軸受箱であっても良い。コンベア端部のコンベアローラはプランマブロックで支持されるが、軸受の負荷が大きく、または損傷時の影響も大きいため、異常検出が重要となる。このようなプランマブロックに適用することで、異常検出の必要性の高い軸受につき、的確な異常検出を行うことができる。 When applied to a conveyor roller, the housing may be a plummer block bearing box that supports a rotating shaft of a conveyor roller that is provided with a belt of the belt conveyor. Although the conveyor roller at the end of the conveyor is supported by the plummer block, it is important to detect an abnormality because the load on the bearing is large or the influence upon damage is large. By applying to such a plummer block, accurate abnormality detection can be performed for a bearing having a high necessity for abnormality detection.
 前記プランマブロックの軸受箱は、両端面に対向する開口を有し一端の開口に軸を挿入させるハウジング本体と、このハウジング本体の他端の開口を閉じる蓋部材とでなり、前記送信機、および前記電源を前記蓋部材に設置しても良い。蓋部材に前記センサ等を設けることで、異常検出機能付きとする軸受ユニットと検出機能を有しない通常の軸受ユニットとで、蓋部材以外の部品の共通化が図れ、生産性に優れる。既存の軸受ユニットに、蓋部材を交換するだけで異常検出機能付きとすることも可能となる。なお、軸受ユニットにセンサが設けられている場合は、このセンサも前記蓋部材に設置されてもよい。 A bearing box of the plummer block is composed of a housing main body having an opening facing both end faces and inserting a shaft into one opening, and a lid member closing the other end opening of the housing main body, the transmitter, and The power source may be installed on the lid member. By providing the sensor or the like on the lid member, it is possible to share parts other than the lid member between the bearing unit having an abnormality detection function and the normal bearing unit having no detection function, and the productivity is excellent. An existing bearing unit can be provided with an abnormality detection function simply by replacing the lid member. In addition, when the sensor is provided in the bearing unit, this sensor may also be installed in the said cover member.
 この発明の一構成にかかる異常検出機能付きコンベア設備は、上記構成の異常検出機能付き搬送装置用軸受ユニットを複数のコンベアにそれぞれ1つ以上装備したものである。このような複数のコンベアを有するコンベア設備においても、電源、配線系の構成が簡素で、集中管理が行い易く、軸受の的確な異常検出に貢献できる。 The conveyor equipment with an abnormality detection function according to one configuration of the present invention is provided with one or more bearing units for the conveying device with an abnormality detection function of the above configuration on each of a plurality of conveyors. Even in such a conveyor facility having a plurality of conveyors, the configuration of the power supply and wiring system is simple, centralized management is easy to perform, and it is possible to contribute to accurate abnormality detection of the bearing.
 この場合に、前記複数のコンベアにそれぞれ装備された前記1つ以上の異常検出機能付き搬送装置用軸受ユニットの各軸受ユニットの前記送信機が送信する各情報を纏めて監視する集中管理盤と前記複数のコンベアとの間に、前記送信機が送信する情報を受信して増幅し無線送信する中継装置を設けても良い。コンベアと集中管理室等の集中管理盤との距離が長い場合であっても、中継装置を用いることで、無線通信が可能である。 In this case, a centralized control panel that collectively monitors each piece of information transmitted by the transmitter of each bearing unit of the one or more conveying device bearing units with an abnormality detection function provided on each of the plurality of conveyors; A relay device that receives, amplifies, and wirelessly transmits information transmitted by the transmitter may be provided between a plurality of conveyors. Even when the distance between the conveyor and the central control panel such as the central control room is long, wireless communication is possible by using the relay device.
 この発明の一構成にかかる軸受ユニット監視システムは、上記構成の異常検出機能付き搬送装置用軸受ユニットと、前記送信回路部が送信する前記信号を受信する受信機および異常判定手段を有する監視装置とでなり、前記異常判定手段は、前記送信機から送信されて前記受信機で受信された信号の間隔の変化から異常の判定を行う。この軸受ユニット監視システムによると、上記構成の異常検出機能付き搬送装置用軸受ユニットにつき説明した前述の各作用、効果が得られ、信号の間隔の変化から軸受の異常の判定が行える。なお、ここで言う間隔の変化は、信号が受信されなくなった場合も含む。軸受が停止した場合、発電が行われなくなるが、信号が受信されないことで、軸受が停止する程度に異常を発生していると判定できる。 A bearing unit monitoring system according to one configuration of the present invention includes a conveying device bearing unit with an abnormality detection function configured as described above, a receiver that receives the signal transmitted by the transmission circuit unit, and a monitoring device that includes an abnormality determination unit. The abnormality determination means determines an abnormality from a change in the interval of signals transmitted from the transmitter and received by the receiver. According to this bearing unit monitoring system, the above-described operations and effects described for the bearing unit for a conveying device with an abnormality detection function having the above-described configuration can be obtained, and a bearing abnormality can be determined from a change in signal interval. It should be noted that the change in the interval mentioned here includes a case where the signal is not received. When the bearing is stopped, power generation is not performed. However, since no signal is received, it can be determined that an abnormality has occurred to the extent that the bearing stops.
 この軸受ユニット監視システムにおいて、前記異常判定手段は、常に、過去の、現在よりも定められただけ前の基準期間または基準送信回数における信号間隔と、現在の定められた対象期間または対象送信回数の信号間隔とを比較して異常判定を行うものとしても良い。例えば、比較基準期間の移動平均と対象期間の移動平均を比較する。軸受は、長年に渡って使用された場合と、新品に近い状態の場合等とで、発熱や振動の発生状況が異なることが多い。長期使用の場合は、発熱量や振動がある程度多くても、異常ではない場合がある。そのため、送信間隔を単に設定間隔と比較しただけでは、正確な異常判定が行えない。これに対して、上記構成のように、常に、過去の現在よりも定められただけ前の基準期間または基準送信回数における信号間隔と、現在の定められた対象期間または対象送信回数の信号間隔とを比較して異常判定を行うことで、信頼性の高い異常判定を行うことができる。軸受を使用する間に、その過去の一定期間と比較して急に発熱量や振動が増えた場合は、軸受の異常である場合が多いからである。 In this bearing unit monitoring system, the abnormality determination means always includes a signal interval in a reference period or a reference transmission count that is set in advance in the past, and a current target period or target transmission count. The abnormality determination may be performed by comparing the signal interval. For example, the moving average of the comparison reference period and the moving average of the target period are compared. In many cases, the occurrence of heat generation and vibration differs depending on whether the bearing has been used for many years or if it is nearly new. In the case of long-term use, even if there is a large amount of heat generation or vibration, it may not be abnormal. For this reason, an accurate abnormality determination cannot be performed simply by comparing the transmission interval with the set interval. On the other hand, as in the above configuration, the signal interval in the reference period or the reference transmission count that is always determined before the present in the past, and the signal interval of the currently determined target period or the target transmission count, By performing the abnormality determination by comparing the two, it is possible to perform the abnormality determination with high reliability. This is because if the amount of heat generation or vibration suddenly increases during use of the bearing as compared to a certain period in the past, the bearing is often abnormal.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態に係る異常検出機能付き搬送装置用軸受ユニットを備えたコンベアローラの縦断面図である。 同コンベアローラの部分拡大断面図である。 この発明の第2実施形態に係る異常検出機能付き搬送装置用軸受ユニットであるプランマブロックの切欠斜視図である。 同プランマブロックの正面図である。 この発明の第3実施形態に係る異常検出機能付き搬送装置用軸受ユニットであるプランマブロックの切欠斜視図である。 この発明の第1~第3実施形態に係る異常検出機能付き搬送装置用軸受ユニットにおけるセンサ、電源、送信機等の構成の一例を示すブロック図である。 同センサ、電源、送信機等の構成の変形例を示すブロック図である。 図6の軸受ユニットにおける電源の蓄電手段の発電素子による蓄電と放電の繰り返し状況を示すグラフである。 (A),(B)はそれぞれ正常時および異常発生時における、図6の軸受ユニットの電源の蓄電手段の放電の繰り返し周期の変化を示す特性図である。 この発明の第4実施形態にかかる軸受ユニット監視システムを示すブロック図である。 図10の軸受ユニット監視システムの軸受ユニットの変形例を示すブロック図である。 この発明の第1~3のいずれかの実施形態の異常検出機能付き搬送装置用軸受ユニットを適用したコンベアの正面図である。 図12のコンベアを複数台設置した設備を模式的に示す図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
It is a longitudinal cross-sectional view of the conveyor roller provided with the bearing unit for conveyance apparatuses with an abnormality detection function which concerns on 1st Embodiment of this invention. It is a partial expanded sectional view of the conveyor roller. It is a notch perspective view of the plummer block which is a bearing unit for conveyance devices with an anomaly detection function concerning a 2nd embodiment of this invention. It is a front view of the plummer block. It is a notch perspective view of the plummer block which is a bearing unit for conveyance devices with an anomaly detection function concerning a 3rd embodiment of this invention. FIG. 5 is a block diagram showing an example of the configuration of a sensor, a power supply, a transmitter, and the like in the bearing unit for a conveyance device with an abnormality detection function according to the first to third embodiments of the present invention. It is a block diagram which shows the modification of a structure of the sensor, a power supply, a transmitter, etc. It is a graph which shows the repetition condition of the electrical storage and discharge by the electric power generation element of the electrical storage means of the power supply in the bearing unit of FIG. (A), (B) is a characteristic view showing the change of the repetition cycle of the discharge of the power storage means of the power source of the bearing unit of FIG. 6 when normal and abnormal, respectively. It is a block diagram which shows the bearing unit monitoring system concerning 4th Embodiment of this invention. It is a block diagram which shows the modification of the bearing unit of the bearing unit monitoring system of FIG. FIG. 3 is a front view of a conveyor to which the bearing unit for a conveyance device with an abnormality detection function according to any one of the first to third embodiments of the present invention is applied. It is a figure which shows typically the installation which installed the multiple conveyor of FIG.
 この発明の実施形態を図面と共に説明する。図12は、この異常検出機能付き搬送装置用軸受ユニットを装備した搬送装置であるコンベア1の正面図である。コンベア1は、ベルトコンベアであり、無端のコンベアベルト2が両端のコンベアローラ3,3間に掛装され、中間部分では、搬送方向(A方向)に並ぶ複数のコンベアローラ4によりコンベアベルト2の下面が支持されている。この他に、テンション付与用のコンベアローラ4Aが設けられている。コンベアベルト2の回動駆動は、両端のコンベアローラ3のいずれか一方を、モータ(図示せず)で回転させることで行う。中間のコンベアローラ4における軸受ユニットを図1,2に示し、両端のコンベアローラ3を支持するプランマブロックにおける軸受ユニットを図3~5に示す。 Embodiments of the present invention will be described with reference to the drawings. FIG. 12 is a front view of the conveyor 1 which is a transport apparatus equipped with the bearing unit for a transport apparatus with an abnormality detection function. The conveyor 1 is a belt conveyor, and an endless conveyor belt 2 is hung between the conveyor rollers 3 and 3 at both ends, and a plurality of conveyor rollers 4 arranged in the transport direction (direction A) are arranged in the middle portion of the conveyor belt 2. The lower surface is supported. In addition, a conveyor roller 4A for applying tension is provided. The conveyor belt 2 is rotationally driven by rotating one of the conveyor rollers 3 at both ends by a motor (not shown). 1 and 2 show the bearing units in the intermediate conveyor roller 4, and FIGS. 3 to 5 show the bearing units in the plummer block that supports the conveyor rollers 3 at both ends.
 図1に、コンベア1に装備される、本発明の第1実施形態にかかる軸受ユニットを示す。この軸受ユニットは、コンベア1の中間に位置する(両端以外に位置する)コンベアローラ4に適用される。コンベアローラ4は、固定軸5に軸受6を介して回転自在に取付けられた円筒体7から構成されている。固定軸5は、コンベアフレーム1aに両端が固定されている。円筒体7には、両端に側板となる段付き円筒状のハウジング8が設けられ、このハウジング8の小径の円筒部8a内に軸受6が嵌め込まれている。ハウジング8は、図2に示すように、その大径の円筒部8bで円筒体7の内周に嵌合している。軸受6は、深溝玉軸受等の転がり軸受からなり、その内輪は固定軸5の外周に嵌合している。前記軸受6とハウジング8とで、軸受ユニット10が構成される。この軸受ユニット10が、後述のセンサ、電源、送信機等と共に、第1実施形態にかかる異常検出機能付き搬送装置用軸受ユニットを構成する。 FIG. 1 shows a bearing unit according to a first embodiment of the present invention, which is mounted on the conveyor 1. This bearing unit is applied to a conveyor roller 4 located in the middle of the conveyor 1 (located at both ends). The conveyor roller 4 includes a cylindrical body 7 that is rotatably attached to a fixed shaft 5 via a bearing 6. Both ends of the fixed shaft 5 are fixed to the conveyor frame 1a. The cylindrical body 7 is provided with a stepped cylindrical housing 8 serving as a side plate at both ends, and a bearing 6 is fitted in a small diameter cylindrical portion 8 a of the housing 8. As shown in FIG. 2, the housing 8 is fitted to the inner periphery of the cylindrical body 7 with a large-diameter cylindrical portion 8 b. The bearing 6 is a rolling bearing such as a deep groove ball bearing, and an inner ring thereof is fitted to the outer periphery of the fixed shaft 5. The bearing 6 and the housing 8 constitute a bearing unit 10. This bearing unit 10 constitutes a bearing unit for a conveyance device with an abnormality detection function according to the first embodiment together with a sensor, a power source, a transmitter and the like which will be described later.
 ハウジング8における軸受6の外側には、カバー9とラビリンスシール29とが取付けられ、軸受6や円筒体7の内部への雨水や塵埃の侵入を防止している。ラビリンスシール29は、固定軸5に設けられた固定側シール部材29aと、ハウジング8に取付けられた回転側シール部材29bとで構成される。 A cover 9 and a labyrinth seal 29 are attached to the outside of the bearing 6 in the housing 8 to prevent rainwater and dust from entering the bearing 6 and the cylindrical body 7. The labyrinth seal 29 includes a fixed side seal member 29 a provided on the fixed shaft 5 and a rotation side seal member 29 b attached to the housing 8.
 コンベアローラ4の両端のハウジング8内には、軸受6とカバー9の間に、センサ11と、電源12と、送信機13とが配置されている。これらセンサ11、電源12、および送信機13は、固定側となる固定軸5の外周に固定されている。これらセンサ11、電源12、および送信機13は、固定軸5の外周の一部に設けても、また全周に渡って設けても良い。カバー9は合成樹脂製とされ、送信機13は、そのアンテナが、カバー9の内側の空間における、カバー9との間に金属等の電波遮蔽性の部材が介在しない箇所に配置される。図1,図2では、ラビリンスシール29の回転側シール部材29bがカバー9と送信機13との間に介在し、この回転側シール部材29bの介在部分または全体が、電波遮蔽性を有しないように合成樹脂製とされている。 In the housing 8 at both ends of the conveyor roller 4, a sensor 11, a power supply 12, and a transmitter 13 are disposed between the bearing 6 and the cover 9. The sensor 11, the power source 12, and the transmitter 13 are fixed to the outer periphery of the fixed shaft 5 on the fixed side. The sensor 11, the power source 12, and the transmitter 13 may be provided on a part of the outer periphery of the fixed shaft 5, or may be provided over the entire periphery. The cover 9 is made of a synthetic resin, and the transmitter 13 is arranged at a location where the antenna is not interposed between the cover 9 and the radio wave shielding member such as metal in the space inside the cover 9. 1 and 2, the rotation side seal member 29b of the labyrinth seal 29 is interposed between the cover 9 and the transmitter 13, and the interposed portion or the whole of the rotation side seal member 29b does not have a radio wave shielding property. It is made of synthetic resin.
 センサ11は、軸受6の状況を検出するセンサであり、軸受6に接して配置することが好ましいが、必ずしも接していなくても良い。ここで、前記「軸受の状況」とは、転がり軸受の1つ以上の特性を示すデータのことである。前記センサ11は、例えば振動センサ、温度センサ、および回転センサのいずれかとされる。センサ11として、これら振動センサ、温度センサ、および回転センサのうち、任意の2種類を設けても良く、3種類とも設けても良い。振動センサとしては加速度センサ等が使用でき、温度センサとしてはサーミスタ等が使用できる。回転センサは、軸受6の内外輪間の相対回転速度、あるいはコンベアローラ4の円筒体7と固定軸5との相対回転速度を検出するものであり、例えば、固定軸5の外周に設けた磁気式または光学式の環状のエンコーダ(図示せず)と、このエンコーダを検出する磁気または光学式のセンサ素子とからなり、そのセンサ素子がハウジング8に固定される。これより、前記「軸受の状況」は、センサ11の種別に応じて、転がり軸受の振動、温度、および回転数などのいずれか1つまたは組合せである。 The sensor 11 is a sensor that detects the state of the bearing 6 and is preferably disposed in contact with the bearing 6, but may not necessarily be in contact. Here, the “situation of the bearing” is data indicating one or more characteristics of the rolling bearing. The sensor 11 is, for example, any one of a vibration sensor, a temperature sensor, and a rotation sensor. As the sensor 11, any two of these vibration sensors, temperature sensors, and rotation sensors may be provided, or all three types may be provided. An acceleration sensor or the like can be used as the vibration sensor, and a thermistor or the like can be used as the temperature sensor. The rotation sensor detects a relative rotation speed between the inner and outer rings of the bearing 6 or a relative rotation speed between the cylindrical body 7 of the conveyor roller 4 and the fixed shaft 5. For example, a magnetic sensor provided on the outer periphery of the fixed shaft 5. An optical or optical annular encoder (not shown) and a magnetic or optical sensor element for detecting the encoder are fixed to the housing 8. Thus, the “bearing status” is one or a combination of vibration, temperature, and rotational speed of the rolling bearing, depending on the type of the sensor 11.
 センサ11は、センサ素子からなるものであっても、センサ素子とこのセンサ素子の出力信号を処理する信号処理回路(図示せず)とを有するものであっても良い。信号処理回路は、アンプであっても、さらにアナログ・デジタル変換手段や、フィルタ等を有するものであっても良い。 The sensor 11 may be composed of a sensor element or may have a sensor element and a signal processing circuit (not shown) that processes an output signal of the sensor element. The signal processing circuit may be an amplifier, or may further have an analog / digital conversion means, a filter, or the like.
 電源12は、センサ11および送信機13の駆動用であり、図6にブロック図で示すように、発電素子14、整流・充電回路15、および蓄電手段16により構成される。発電素子14は、この素子の環境における環境エネルギによって発電する振動発電素子や熱発電素子を用いることができる。振動発電素子としては、エレクレット素子等の半導体素子が用いられる。熱発電素子としてはゼーベック発電素子を用いることができる。熱発電素子の場合、素子の高温側を内部に配置し、低温側を外気(大気)側に配置することにより、必要な電力を発電させることができる。さらに、外気側の大気との接触面積を増やし、放熱を促進するように櫛形(フィン)形状とすれば、より一層温度差がつき、発電量を増加させることができる。 The power source 12 is for driving the sensor 11 and the transmitter 13, and includes a power generation element 14, a rectification / charging circuit 15, and a power storage means 16, as shown in a block diagram in FIG. As the power generation element 14, a vibration power generation element or a thermoelectric power generation element that generates power using environmental energy in the environment of the element can be used. As the vibration power generation element, a semiconductor element such as an electret element is used. A Seebeck power generation element can be used as the thermoelectric power generation element. In the case of a thermoelectric generator, the necessary electric power can be generated by disposing the high temperature side of the element inside and disposing the low temperature side on the outside air (atmosphere) side. Furthermore, if the contact area with the atmospheric air on the outside air side is increased and the comb shape (fins) is formed so as to promote heat dissipation, the temperature difference is further increased and the power generation amount can be increased.
 蓄電手段16は、コンデンサ、またはリチウム二次電池等の蓄電池である。整流・充電回路15は、発電素子14で発電された電流を整流し、蓄電手段16に充電する回路である。なお、電源12は、蓄電手段16を有せずに、発電素子14のみからなるものとしても良い。 The power storage means 16 is a storage battery such as a capacitor or a lithium secondary battery. The rectification / charging circuit 15 is a circuit that rectifies the current generated by the power generation element 14 and charges the power storage means 16. Note that the power source 12 may include only the power generation element 14 without the power storage unit 16.
 送信機13は、送信用のアンテナ17、送信回路部18、および送信制御部19を有する。送信回路部18は、信号を、定められた変調形式で変調してアンテナ17から電波として送信させる回路である。送信制御部19は、定められた条件に従って送信回路部18に信号を送信させるものであり、この信号を送信する回路やマイクロコンピュータ等からなる。信号は、任意の情報を含むことができ、例えば、センサ11の出力する情報、つまり軸受6(図1)の状況からなる情報を含んでもよい。なお、この例では電波で送信するものとしているが、無線で送信するものであれば、電波以外を利用して送信するものであっても良い。 The transmitter 13 includes a transmission antenna 17, a transmission circuit unit 18, and a transmission control unit 19. The transmission circuit unit 18 is a circuit that modulates a signal in a predetermined modulation format and transmits the signal as a radio wave from the antenna 17. The transmission control unit 19 causes the transmission circuit unit 18 to transmit a signal according to a predetermined condition, and includes a circuit, a microcomputer, and the like that transmit this signal. The signal may include arbitrary information. For example, the signal may include information output from the sensor 11, that is, information including the status of the bearing 6 (FIG. 1). In this example, transmission is performed using radio waves. However, transmission may be performed using radio waves other than radio waves as long as transmission is performed wirelessly.
 送信制御部19は、例えば、蓄電手段16の充電量(例えば、蓄電した電荷)が設定値に達するか否かを判定し、設定値に達すると送信を行わせる手段である。送信制御部19は、例えば、送信回路部18に対して蓄電手段16の接続を開閉するスイッチング回路等の電子回路等からなる。なお、送信制御部19による送信制御の詳細については、図8および図9(A),(B)を参照して後述する。蓄電手段16の充電量の判定は、例えば蓄電手段16の端子電圧で行う。この場合、送信間隔は電源12の発電素子14の発電電力に依存するが、例えば、発電素子14が100μW程度の発電が可能なものである場合、5分毎に送信を行うことができる。送信制御部19は、前記設定値に達すると送信を行わせた後、蓄電手段16に蓄電量が零または放電停止用の設定値以下になるまで放電させるものとしても良い。蓄電手段16は電力が送信に利用されることで蓄電量が低下するが、さらに放電を行わせるようにすることにより、送信間隔が安定する。すなわち、送信に消費される電力は必ずしも一定ではないが、さらに放電させることで、蓄電に要する時間が一定になる。 The transmission control unit 19 is, for example, a unit that determines whether or not the amount of charge (for example, stored electric charge) of the power storage unit 16 reaches a set value, and transmits when the set value is reached. The transmission control unit 19 includes, for example, an electronic circuit such as a switching circuit that opens and closes the connection of the power storage unit 16 with respect to the transmission circuit unit 18. Details of transmission control by the transmission control unit 19 will be described later with reference to FIGS. 8 and 9A and 9B. The determination of the charge amount of the power storage unit 16 is performed based on the terminal voltage of the power storage unit 16, for example. In this case, although the transmission interval depends on the generated power of the power generation element 14 of the power supply 12, for example, when the power generation element 14 can generate power of about 100 μW, transmission can be performed every 5 minutes. The transmission control unit 19 may perform transmission after the transmission reaches the set value, and then cause the power storage unit 16 to discharge until the amount of power stored becomes zero or less than the set value for stopping discharge. The power storage unit 16 reduces the amount of power stored when power is used for transmission, but the transmission interval is stabilized by further discharging. That is, the power consumed for transmission is not necessarily constant, but the time required for power storage becomes constant by further discharging.
 送信制御部19は、センサ11の出力する情報と共に、このセンサ11が設置された軸受ユニット10(図1)の識別情報を送信する。この識別情報は、送信制御部19で記憶しておいても良く、また送信制御部19とは別に設けた記憶手段で記憶するようにしても良い。 The transmission control unit 19 transmits the identification information of the bearing unit 10 (FIG. 1) where the sensor 11 is installed together with the information output from the sensor 11. This identification information may be stored in the transmission control unit 19 or may be stored in a storage means provided separately from the transmission control unit 19.
 送信機13またはセンサ11の一部として、あるいは送信機13およびセンサ11とは独立して、センサ11の検出した情報(軸受6(図1)の状況からなる情報)を記憶する記憶手段20を軸受ユニット10に設けても良い。記憶手段20は、送信機13やセンサ11の回路基板(図示せず)に設けられた記憶回路素子であっても、ICタグであっても良い。記憶手段20を有する場合、送信機13は、記憶手段20の記憶した情報を送信するようにしても良い。記憶手段20がICタグの場合、保守要員が現場点検の際に、ICタグリーダを用い、その場でその軸受ユニット10の使用状況・状態を確認することができ、集中管理室のような場所での管理と併せて、より信頼性の高い保守管理が可能となる。 As a part of the transmitter 13 or the sensor 11, or independently of the transmitter 13 and the sensor 11, storage means 20 for storing information detected by the sensor 11 (information consisting of the status of the bearing 6 (FIG. 1)) is stored. The bearing unit 10 may be provided. The storage means 20 may be a storage circuit element provided on a circuit board (not shown) of the transmitter 13 or the sensor 11 or an IC tag. When the storage unit 20 is included, the transmitter 13 may transmit the information stored in the storage unit 20. When the storage means 20 is an IC tag, the maintenance staff can use the IC tag reader to check the usage status / state of the bearing unit 10 on the spot when performing an on-site inspection. In addition to this management, more reliable maintenance management becomes possible.
 また、GPS端末21を前記ハウジング8(図1)に設けても良い。GPS端末21は、全地球的測位システム(GPS)の端末であり、位置を知らせるための信号を出力する。GPS端末21は、その送信信号に応じた位置情報を全地球的測位システムから受信し、受信した位置情報をセンサ11の検出情報と共に送信するようにしても良い。前記送信機13で送信する識別情報は、一つのコンベア1におけるどの部位の軸受ユニット10であるかのみを識別する情報であっても良く、その場合でも、GPS端末21の位置情報と組み合わせることで、どのコンベア1のどの軸受ユニット10であるか、という詳細までを特定することができる。 Further, the GPS terminal 21 may be provided in the housing 8 (FIG. 1). The GPS terminal 21 is a global positioning system (GPS) terminal and outputs a signal for informing the position. The GPS terminal 21 may receive position information corresponding to the transmission signal from the global positioning system and transmit the received position information together with detection information of the sensor 11. The identification information transmitted by the transmitter 13 may be information for identifying only which part of the bearing unit 10 in one conveyor 1, and even in that case, by combining with the position information of the GPS terminal 21. The details of which bearing unit 10 of which conveyor 1 is can be specified.
 なお、上記の例では、センサ11、電源12、および送信機13は個別に軸受ユニット10に設置したが、例えば図7に示すように、センサ11、電源12、および送信機13が一体に組み合わされた部品である送信発電機能付きセンサモジュール22を、軸受ユニット10に設置するようにしても良い。このような送信発電機能付きセンサモジュール22としては、例えは25mm角程度の大きさのものが商品化されており、それを用いることができる。 In the above example, the sensor 11, the power source 12, and the transmitter 13 are individually installed in the bearing unit 10. However, as shown in FIG. 7, for example, the sensor 11, the power source 12, and the transmitter 13 are combined together. The sensor module 22 with a transmission power generation function, which is a component, may be installed in the bearing unit 10. As such a sensor module 22 with a transmission power generation function, for example, a module having a size of about 25 mm square has been commercialized, and it can be used.
 センサ11が検知した情報に基づかずに転がり軸受6の異常を判定する手法について、すなわち、送信機13から送信されて受信機(図示せず)で受信される信号の間隔の変化から異常の判定を行う手法について、図8,図9(A),(B)と共に説明する。 Regarding the method of determining the abnormality of the rolling bearing 6 without being based on the information detected by the sensor 11, that is, determining the abnormality from the change in the interval of signals transmitted from the transmitter 13 and received by the receiver (not shown). A method for performing the above will be described with reference to FIGS. 8, 9 </ b> A, and 9 </ b> B.
 図6の発電素子14で発電した電力が蓄電手段16で蓄電され、送信制御部19の制御により、蓄電量が設定値に達する毎に、送信回路部18による送信が行われる。蓄電手段16の充電量の判定は、例えば蓄電手段16の端子電圧で行う。図8は、その様子を示し、縦軸が蓄電手段16の端子電圧Vであり、横軸が時間tである。以下、発電素子14がゼーベック発電素子等の熱発電素子の場合について説明する。 The power generated by the power generation element 14 in FIG. 6 is stored in the power storage means 16, and transmission is performed by the transmission circuit unit 18 every time the storage amount reaches a set value under the control of the transmission control unit 19. The determination of the charge amount of the power storage unit 16 is performed based on, for example, the terminal voltage of the power storage unit 16. FIG. 8 shows this state, the vertical axis is the terminal voltage V of the power storage means 16, and the horizontal axis is time t. Hereinafter, the case where the power generation element 14 is a thermoelectric power generation element such as a Seebeck power generation element will be described.
 軸受6(図1)は運転に伴って発熱するため、大気等の周囲雰囲気との温度差により、図6の発電素子14により発電が行われる。発電電力は蓄電手段16に充電される。図8に示すように、蓄電手段16は充電量が増えるに従って端子電圧Vが高くなり、充電量が設定まで増大すると、つまり端子電圧Vが設定値VAまで上昇すると、図6の送信制御部19のスイッチング動作等の制御により、送信回路部18によって信号の送信が行われる。この信号送信によって蓄電手段16の蓄電電力が消費され、端子電圧Vが低下する。このとき、送信制御部19は、信号送信後に、蓄電手段16の蓄電量が放電停止用の設定値以下になるまで、つまり図8に示すように端子電圧Vが放電停止用の設定電圧VBに低下するまで、放電を行うようにしても良い。この後、発電素子14(図6)による発電で再び蓄電量が増えて端子電圧Vが上昇し、設定値VAまで上昇すると送信および放電が行われる。このような動作が繰返される。 Since the bearing 6 (FIG. 1) generates heat during operation, power generation is performed by the power generation element 14 of FIG. 6 due to a temperature difference from the ambient atmosphere such as the atmosphere. The generated power is charged in the power storage means 16. As shown in FIG. 8, the power storage means 16 has a terminal voltage V that increases as the amount of charge increases. When the amount of charge increases to a set value, that is, when the terminal voltage V increases to a set value VA, the transmission control unit 19 in FIG. Signals are transmitted by the transmission circuit unit 18 under the control of the switching operation and the like. By this signal transmission, the stored power of the power storage means 16 is consumed, and the terminal voltage V decreases. At this time, after the signal transmission, the transmission control unit 19 changes the terminal voltage V to the discharge stop setting voltage VB until the amount of power stored in the power storage means 16 becomes equal to or lower than the discharge stop set value, that is, as shown in FIG. You may make it discharge until it falls. Thereafter, the amount of power storage is increased again by power generation by the power generation element 14 (FIG. 6), the terminal voltage V rises, and transmission and discharge are performed when the terminal voltage V rises to the set value VA. Such an operation is repeated.
 軸受6(図1)の温度が一定であると、図6の発電素子14による発電量も一定であるため、送信の周期Tが一定となる。しかし、軸受6(図1)の異常等により温度が上昇すると、送信周期Tが短くなる。具体例を挙げると、軸受温度が40°Cのときの発電素子14の発電状態が端子電圧Vで1V/h(つまり、1時間当たり1V上昇)であるとすると、軸受温度が50°C位になると、発電素子14の発電状態が端子電圧Vで1.5V/h(つまり、1時間当たり1.5V上昇)となる。そのため、送信頻度は1.5倍(送信周期は2/3)となる。 When the temperature of the bearing 6 (FIG. 1) is constant, the amount of power generated by the power generation element 14 of FIG. 6 is also constant, so the transmission cycle T is constant. However, if the temperature rises due to an abnormality in the bearing 6 (FIG. 1) or the like, the transmission cycle T is shortened. As a specific example, if the power generation state of the power generation element 14 when the bearing temperature is 40 ° C. is 1 V / h (that is, 1 V increase per hour) at the terminal voltage V, the bearing temperature is about 50 ° C. Then, the power generation state of the power generation element 14 becomes 1.5 V / h (that is, 1.5 V increase per hour) at the terminal voltage V. Therefore, the transmission frequency is 1.5 times (transmission cycle is 2/3).
 コンベア1(図1)から離れて配置された監視装置(図示せず)では、このように送信される信号を受信して監視し、例えば図9(A)のように送信頻度が一定であると、正常であると判断し、図9(B)の区間tcの間のように、送信頻度が多く(送信周期Tが短く)なると、軸受の異常が発生したと判定し、その判定結果を出力する。 A monitoring device (not shown) arranged away from the conveyor 1 (FIG. 1) receives and monitors the signal transmitted in this way, and the transmission frequency is constant as shown in FIG. 9A, for example. When the transmission frequency is high (transmission cycle T is short) as in the section tc of FIG. 9B, it is determined that a bearing abnormality has occurred, and the determination result is Output.
 また、軸受6(図1)が異常により停止してしまうと、全く信号送信が行われなくなるため、コンベア1の駆動源の駆動が行われていても、設定時間内に送信信号が受信されない場合は、軸受6(図1)が停止に至る程度の異常であると判定する。 Further, when the bearing 6 (FIG. 1) stops due to an abnormality, no signal transmission is performed. Therefore, even if the drive source of the conveyor 1 is driven, a transmission signal is not received within the set time. Is determined to be abnormal to the extent that the bearing 6 (FIG. 1) stops.
 この異常判定処理において、送信頻度がどの程度になれば異常であると判定するかは、経験やシミュレーション等によって適宜設定すれば良い。また、送信頻度あるいは送信周期を単に設定値と比較して異常有無の判定を行う他に、統計学的な処理を行って異常有無の判定を行うようにしても良い。例えば、異常判定処理では、常に、過去の、現在よりも定められただけ前の基準期間または基準送信回数における信号間隔と、現在の定められた対象期間または対象送信回数の信号間隔とを比較して異常判定を行うようにしても良い。 In this abnormality determination process, what is determined as abnormal when the transmission frequency is determined may be appropriately set based on experience, simulation, or the like. In addition to determining the presence or absence of abnormality by simply comparing the transmission frequency or transmission cycle with a set value, the presence or absence of abnormality may be determined by performing statistical processing. For example, in the abnormality determination process, the signal interval in the reference period or the number of reference transmissions in the past, which is just before the present, is always compared with the signal interval in the currently determined target period or the number of target transmissions. Thus, the abnormality determination may be performed.
 図9(B)の具体例で説明すると、現在時刻がt1であるとして、過去における、現在t1よりも定められただけ(例えば信号3回分だけ)前の基準送信回数(3回)(図9(B)では区間ta)における平均の信号間隔と、現在(t1)の定められた対象送信回数(例えは信号3回分)(図9(B)では区間tb)の平均の信号間隔とを比較して、その差が設定値以上であれば、異常であると判定する。換言すれば、移動平均同士を比較する。 In the specific example of FIG. 9B, assuming that the current time is t1, the reference transmission frequency (3 times) before the current time t1 is determined (for example, 3 times) before the current time t1 (FIG. 9). In (B), the average signal interval in the interval ta) is compared with the average signal interval in the current number of target transmissions (for example, three times of signals) of the current (t1) (interval tb in FIG. 9B). If the difference is greater than or equal to the set value, it is determined that there is an abnormality. In other words, the moving averages are compared.
 軸受は、長年に渡って使用された場合と、新品に近い状態の場合等とで、発熱や振動の発生状況が異なることが多い。長期使用の場合は、発熱量や振動がある程度多くても、異常ではない場合がある。そのため、送信間隔を単に設定間隔と比較しただけでは、正確な異常判定が行えない。これに対して、上記構成のように、常に、過去の現在よりも定められただけ前の基準期間または基準送信回数における信号間隔と、現在の定められた対象期間または対象送信回数の信号間隔とを比較して異常判定を行うことで、信頼性の高い異常判定を行うことができる。軸受を使用する間に、その過去の一定期間と比較して急に発熱量や振動が増えた場合は、軸受の異常である場合が多いからである。 Bearings often generate different heat and vibration when used for many years and when they are almost new. In the case of long-term use, even if there is a large amount of heat generation or vibration, it may not be abnormal. For this reason, an accurate abnormality determination cannot be performed simply by comparing the transmission interval with the set interval. On the other hand, as in the above configuration, the signal interval in the reference period or the reference transmission count that is always determined before the present in the past, and the signal interval of the currently determined target period or the target transmission count, By performing the abnormality determination by comparing the two, it is possible to perform the abnormality determination with high reliability. This is because if the amount of heat generation or vibration suddenly increases during use of the bearing as compared to a certain period in the past, the bearing is often abnormal.
 このように、軸受ユニット10からの信号送信の間隔を監視することで、軸受6(図1)の異常判定が行える。また、軸受6(図1)が停止する異常が発生した場合は、送信が行われないため、軸受ユニット10を装備したコンベア1が駆動状態であるにも係わらず、信号が受信されない場合は、軸受6(図1)が停止する異常が発生したと判定できる。このように発電素子14を利用して軸受の異常を検出することができるため、たとえセンサ11が設けられていなくとも、異常検出を行うことができる。そして、不具合が発生した際に、回転不能に至るよりも前に、軸受6(図1)を早期に交換することができる。 Thus, by monitoring the signal transmission interval from the bearing unit 10, it is possible to determine the abnormality of the bearing 6 (FIG. 1). In addition, when an abnormality occurs in which the bearing 6 (FIG. 1) stops, transmission is not performed. Therefore, when the conveyor 1 equipped with the bearing unit 10 is in a driving state and no signal is received, It can be determined that an abnormality that stops the bearing 6 (FIG. 1) has occurred. As described above, since the abnormality of the bearing can be detected by using the power generation element 14, the abnormality can be detected even if the sensor 11 is not provided. And when a malfunction occurs, the bearing 6 (FIG. 1) can be replaced at an early stage before the rotation becomes impossible.
 このように、軸受の異常は信号送信の間隔に基づいて判定されるため、送信機13の送信回路部18が送信する信号は、何らかの情報を含む必要はない。しかし、この信号は、任意の情報を含むことができ、センサ11が検出した軸受の状況からなる情報を含んでもよい。その場合、送信機13の送信回路部18が送信する信号の送信間隔から異常を検出できる上に、この信号が含むセンサ情報からも異常を検出することができる。そのため、より確実な異常検出が可能となる。ただし、軸受の状況からなる情報は、送信間隔が監視される信号とは別の信号に含まれて送信されてもよい。 As described above, since the abnormality of the bearing is determined based on the signal transmission interval, the signal transmitted by the transmission circuit unit 18 of the transmitter 13 does not need to include any information. However, this signal may include arbitrary information, and may include information including a bearing state detected by the sensor 11. In that case, an abnormality can be detected from the transmission interval of the signal transmitted by the transmission circuit unit 18 of the transmitter 13, and the abnormality can also be detected from the sensor information included in this signal. Therefore, more reliable abnormality detection is possible. However, the information including the status of the bearing may be transmitted by being included in a signal different from the signal whose transmission interval is monitored.
 図3,図4に、コンベア1に装備される、本発明の第2実施形態にかかる軸受ユニットを示す。この軸受ユニットは、コンベア1の両端にそれぞれ位置するプランマブロック10Pからなる。このプランマブロック10Pは、図12のコンベア1における両端のコンベアローラ3が有する回転軸31を支持するものであり、プランマブロック軸受箱であるハウジング32内に、回転軸31を支持する軸受36を設けて構成される。軸受36は、複列自動調心ころ軸受等の転がり軸受からなる。ハウジング32は、ハウジング本体32aと蓋部材32bとでなる。ハウジング本体32aは、内部に軸受36が設置されるものであり、両端面に対向する開口を有し一端の開口に回転軸31を挿入させる。蓋部材32bは他端の開口を閉じる部材である。 FIG. 3 and FIG. 4 show a bearing unit according to the second embodiment of the present invention, which is mounted on the conveyor 1. This bearing unit is composed of plummer blocks 10P located at both ends of the conveyor 1, respectively. This plummer block 10P supports the rotating shaft 31 which the conveyor roller 3 of the both ends in the conveyor 1 of FIG. 12 has, and the bearing 36 which supports the rotating shaft 31 is provided in the housing 32 which is a plummer block bearing box. Configured. The bearing 36 is a rolling bearing such as a double row spherical roller bearing. The housing 32 includes a housing body 32a and a lid member 32b. The housing main body 32a is provided with a bearing 36 therein, has an opening facing both end faces, and allows the rotary shaft 31 to be inserted into the opening at one end. The lid member 32b is a member that closes the opening at the other end.
 この第2実施形態では、ハウジング32のハウジング本体32aの上面部に、センサ11、電源12、および送信機13を埋め込んで構成される。例えば、ハウジング32の表面に凹部を設けてその中にセンサ11、電源12、および送信機13を配置する。センサ11、電源12、および送信機13は、図1,2に示した第1実施形態に関して前述した構成のものが使用できるが、送信機13は、アンテナ17(図6)が大気に露出するように設ける。センサ11、電源12、および送信機13は、図7に示したように、送信発電機能付きセンサモジュール22として一体化されたものであっても良い。また、この第2実施形態においても、第1実施形態にかかる軸受ユニットと同様に記憶手段20やGPS端末21をハウジング32に設置しても良い。 In the second embodiment, the sensor 11, the power source 12, and the transmitter 13 are embedded in the upper surface portion of the housing body 32a of the housing 32. For example, a recess is provided on the surface of the housing 32, and the sensor 11, the power source 12, and the transmitter 13 are disposed therein. The sensor 11, the power source 12, and the transmitter 13 can be configured as described above with reference to the first embodiment shown in FIGS. 1 and 2, but the transmitter 17 has the antenna 17 (FIG. 6) exposed to the atmosphere. Provide as follows. As shown in FIG. 7, the sensor 11, the power source 12, and the transmitter 13 may be integrated as a sensor module 22 with a transmission power generation function. Also in the second embodiment, the storage means 20 and the GPS terminal 21 may be installed in the housing 32 as in the bearing unit according to the first embodiment.
 図3,4に示す第2実施形態にかかる軸受ユニット(プランマブロック10P)では、ハウジング本体32aにセンサ11等を設けたが、図5に示す第3実施形態にかかる軸受ユニット(プランマブロック10P)のように、ハウジング32の蓋部材32bに、センサ11、電源12、および送信機13を埋め込んで設置しても良い。この場合も、送信機13は、アンテナ17(図6)が大気に露出するように設ける。 In the bearing unit (plummer block 10P) according to the second embodiment shown in FIGS. 3 and 4, the sensor 11 and the like are provided in the housing body 32a. However, the bearing unit (plummer block 10P) according to the third embodiment shown in FIG. As described above, the sensor 11, the power supply 12, and the transmitter 13 may be embedded in the lid member 32 b of the housing 32. Also in this case, the transmitter 13 is provided so that the antenna 17 (FIG. 6) is exposed to the atmosphere.
 これら図3,4の第2実施形態にかかる軸受ユニット(プランマブロック10P)および図5の第3実施形態にかかる軸受ユニット(プランマブロック10P)における、センサ11、電源12、および送信機13の構成については、図1,2と共に前述した第1実施形態にかかる軸受ユニット10と同様である。また、図3~5の第2、3実施形態にかかる軸受ユニット(プランマブロック10P)においても、前記と同様に記憶手段20やGPS端末21を設けても良い。 Configurations of the sensor 11, the power supply 12, and the transmitter 13 in the bearing unit (plummer block 10P) according to the second embodiment of FIGS. 3 and 4 and the bearing unit (plummer block 10P) according to the third embodiment of FIG. This is the same as the bearing unit 10 according to the first embodiment described above with reference to FIGS. Also in the bearing unit (plummer block 10P) according to the second and third embodiments of FIGS. 3 to 5, the storage means 20 and the GPS terminal 21 may be provided in the same manner as described above.
 図13は、図12のコンベア1、つまり異常検出機能付き搬送装置用軸受ユニット10が装備されたコンベア1を複数台設置した異常検出機能付きコンベア設備100を示す。このコンベア設備100は、例えば、鉄鉱石や石炭等の搬送用であって、コンベア1を縦列に配列したコンベア列が、採掘場からトラック載積場に渡って設けられる。 FIG. 13 shows a conveyor facility 100 with an abnormality detection function in which a plurality of conveyors 1 equipped with the conveyor 1 of FIG. 12, that is, the bearing unit 10 for a conveyance device with an abnormality detection function, are installed. This conveyor facility 100 is for conveying, for example, iron ore or coal, and a conveyor row in which the conveyors 1 are arranged in a vertical row is provided from the mining site to the track loading site.
 この例では、集中管理盤41を備えた集中管理室42と、中継装置43とが設置される。集中管理盤41は、アンテナ44および受信機(図示せず)と、各コンベア1およびその各異常検出機能付き搬送装置用軸受ユニット10を示した絵図または表による表示装置(図示せず)を有していて、その絵図または表上に、各軸受ユニット10の異常発生情報を表示する機能を有する。上記の軸受ユニット10を示した絵図または表は、一つの表示装置の画面に画像として表示されるものであっても良い。 In this example, a central management room 42 having a central management panel 41 and a relay device 43 are installed. The central control board 41 has an antenna 44 and a receiver (not shown), and a display device (not shown) with a pictorial diagram or a table showing each conveyor 1 and each bearing unit 10 for a conveyance device with an abnormality detection function thereof. And it has a function which displays the abnormality occurrence information of each bearing unit 10 on the pictorial chart or table. The picture or table showing the bearing unit 10 may be displayed as an image on the screen of one display device.
 集中管理盤41は、個々の軸受6(図1)、36(図3)毎の異常を判定する異常判定手段45を有していて、その異常判断結果を前記図示しない表示装置に表示する。異常判定手段45は、軸受ユニット10を装備したコンベア1が駆動状態にあるにも係わらず、信号が設定時間以上、受信されなかった場合は異常と判断する。さらに、受信した信号における情報(センサ検出情報、つまり軸受の状況からなる情報)に基づき異常判定を行っても良い。また、異常判定手段45は、受信した信号の情報と、信号の受信間隔との双方に基づいて異常判定を行うものとしても良い。発電素子14が熱発電素子や振動発電素子である場合、軸受6(図1)、36(図3)の異常が進むに従って、温度が高くなり、また振動が増えるため、発電量が多くなり、送信間隔が短くなるため、この送信間隔によって軸受異常の兆候が現れるためである。 The central management board 41 has an abnormality determining means 45 for determining an abnormality for each of the bearings 6 (FIG. 1) and 36 (FIG. 3), and displays the abnormality determination result on the display device (not shown). The abnormality determination unit 45 determines that an abnormality has occurred when a signal is not received for a set time or more, even though the conveyor 1 equipped with the bearing unit 10 is in a driving state. Furthermore, abnormality determination may be performed based on information in the received signal (sensor detection information, that is, information including the status of the bearing). In addition, the abnormality determination unit 45 may perform abnormality determination based on both the received signal information and the signal reception interval. When the power generation element 14 is a thermoelectric generation element or a vibration power generation element, as the abnormality of the bearings 6 (FIG. 1) and 36 (FIG. 3) progresses, the temperature increases and the vibration increases, so the power generation amount increases. This is because the transmission interval is shortened, so that a sign of bearing abnormality appears due to this transmission interval.
 中継装置43は、各コンベア1と集中管理盤41との間に設置され、各コンベア1に1つ以上装備された軸受ユニット10(または10P)の各送信機13が送信する信号を受信して増幅し無線送信する装置である。 The relay device 43 is installed between each conveyor 1 and the centralized management board 41, and receives a signal transmitted from each transmitter 13 of the bearing unit 10 (or 10P) provided in each conveyor 1 or more. A device that amplifies and wirelessly transmits.
 上記第1~3実施形態にかかる軸受ユニットでは、軸受6(図1),36(図3)の状況を検出するセンサ11とその検出した状況からなる情報(以下、「センサ情報」と称す)を無線送信する送信機13とを軸受ユニット10(または10P)に設けたため、信号の送信間隔の監視に加えて、そのセンサ情報を集中管理室42内等で監視することにより、軸受6(図1),36(図3)の異常を、多大な時間や労力をかけずに容易に、かつ的確に検出できる。そのため、回転不能となるような不具合が発生した際に、回転不能に至るよりも前に、軸受6(図1),36(図3)を早期に交換することができる。 In the bearing units according to the first to third embodiments, the sensor 11 for detecting the status of the bearings 6 (FIG. 1) and 36 (FIG. 3) and information including the detected status (hereinafter referred to as “sensor information”). Since the bearing unit 10 (or 10P) is provided with the transmitter 13 that wirelessly transmits the bearing 6 (or 10P), in addition to monitoring the signal transmission interval, the sensor information is monitored in the centralized control room 42 or the like, whereby the bearing 6 (FIG. Abnormalities 1) and 36 (FIG. 3) can be easily and accurately detected without much time and effort. For this reason, when a problem that makes rotation impossible occurs, the bearings 6 (FIG. 1) and 36 (FIG. 3) can be replaced at an early stage before rotation becomes impossible.
 信号の送信には無線送信を用い、かつその送信用の電力を、軸受ユニット10内の発電素子14(図6)を有する電源12(図6)から得るようにしたため、各軸受ユニット10毎に完結した異常検出、情報送信、電源確保が行えて、軸受ユニット10の相互間や集中管理室42への配線が不要で、配線系が簡素化される。有線では配線等インフラを敷設するため構造が複雑になり、設計の自由度が下がるのに対し、無線ではそのような課題は無くなる。また、コンベア1の距離が長い場合は、送信可能範囲内毎に中継装置43をコンベア1に沿って設置することにより、集中管理室42まで無線で送信可能となる。このため、例えば鉄鉱石や石炭等の搬送用コンベア等のような搬送経路の長いコンベア設備においても適用が簡単に行える。 Since radio transmission is used for signal transmission, and power for transmission is obtained from the power source 12 (FIG. 6) having the power generation element 14 (FIG. 6) in the bearing unit 10, each bearing unit 10 Completed abnormality detection, information transmission, and securing of power supply can be performed, wiring between the bearing units 10 and the central control room 42 is unnecessary, and the wiring system is simplified. In the case of wired, the structure becomes complicated due to the installation of infrastructure such as wiring, and the degree of freedom in design is reduced, whereas in wireless, such a problem is eliminated. In addition, when the distance of the conveyor 1 is long, the relay device 43 is installed along the conveyor 1 for each transmission possible range, so that transmission to the centralized management room 42 can be performed wirelessly. For this reason, for example, it can be easily applied to a conveyor facility having a long conveying path such as a conveying conveyor such as iron ore or coal.
 軸受ユニット10(または10P)からセンサ情報を送信する場合、アンテナ17は金属で覆われると通信不能となるが、屋外で使用されるベルトコンベア1では、図1~5の第1~第3実施形態にかかる軸受ユニットに示すように、アンテナ17面を大気に露出して配置することにより良好な通信状態が得られる。 When the sensor information is transmitted from the bearing unit 10 (or 10P), the antenna 17 becomes incapable of communication if it is covered with metal, but the belt conveyor 1 used outdoors has the first to third implementations of FIGS. As shown in the bearing unit according to the embodiment, a good communication state can be obtained by arranging the surface of the antenna 17 so as to be exposed to the atmosphere.
 また図6の電源12は、「自己発電」により供給し機器を稼動させるようにしたため、スタンドアローン化できる。すなわち、環境エネルギによって発電する発電素子14を用いたため、回転側および静止側の両方に部品を設けることが必要なロータ・ステータによる発電機を設ける場合に比べて構成が簡素化され、かつコパクト化される。そのため、専用設計の不要化も可能で、設計の自由度も大きく得られ、適用が容易となる。既存設計の軸受ユニットとも容易に置換可能となる。 In addition, since the power supply 12 in FIG. 6 is supplied by “self-power generation” to operate the equipment, it can be made stand-alone. In other words, since the power generation element 14 that generates power using environmental energy is used, the configuration is simplified and compact compared to the case of providing a rotor / stator generator that requires components on both the rotating side and the stationary side. Is done. Therefore, it is possible to eliminate the need for a dedicated design, and a great degree of design freedom can be obtained, which makes it easy to apply. Existing bearing units can be easily replaced.
 「自己発電」する環境発電素子14として、例えば振動発電素子では100μW程度の発電が可能なものが商品化されており、これを用いると、その発電電力により5分毎に送信することができる。また、予めリチウム二次電池等の蓄電手段16に充電しておけば、コンベア停止時に発電されない場合でも蓄電手段16で情報送信が可能である。 As the environmental power generation element 14 that performs “self-power generation”, for example, a vibration power generation element that can generate power of about 100 μW has been commercialized, and when this is used, the generated power can be transmitted every 5 minutes. Further, if the power storage means 16 such as a lithium secondary battery is charged in advance, information can be transmitted by the power storage means 16 even when power is not generated when the conveyor is stopped.
 軸受ユニット10(図1)(または10P(図3))において自己発電する場合、従来は、軸受の回転機能を利用するロータ・ステータによる発電機が用いられる。しかし、軸受ユニット10では、軸受6の回転に伴って少なからず振動や熱を発生する。このような軸受ユニットの特性に着眼し、従来の軸受ユニットでは考えられることのなかった、環境エネルギによって発電する発電素子14を用いたことで、コンパクト化、構成の簡易化が図れる。 When self-power generation is performed in the bearing unit 10 (FIG. 1) (or 10P (FIG. 3)), a generator using a rotor / stator that utilizes the rotational function of the bearing is conventionally used. However, in the bearing unit 10, vibration and heat are generated not a little as the bearing 6 rotates. Focusing on such characteristics of the bearing unit and using the power generation element 14 that generates power by environmental energy, which has not been considered in the conventional bearing unit, it is possible to achieve compactness and simplification of the configuration.
 信号の送信やセンサの駆動に使用する程度の電力であれば、このような振動や熱による発電電力の利用の可能性がある。また、発電電力が小さくても、前述のように蓄電手段16を設け、充電量が十分になった時点で送信する等の、検出や送信上の工夫を施すことで、実用化が可能である。 If the power is enough to transmit signals and drive the sensor, there is a possibility of using the generated power by such vibration and heat. Even if the generated power is small, it is possible to put it into practical use by providing the power storage means 16 as described above and making a device for detection and transmission such as transmission when the charge amount is sufficient. .
 発電素子14としては上記のように振動発電素子(エレクトレット素子)の他に、軸受6の回転による発熱を利用した熱発電素子(ゼーベック素子)を用いることが出来る。この場合では、素子の高温側を内部に配置し低温側を外気(大気)側に配置することにより、必要な電力を発電させることが出来る。更に、外気側の大気との接触面積を増やし、放熱を促進するよう櫛型(フィン)形状とすれば、一層温度差が付き発電量を増加させることが出来る。 As the power generation element 14, in addition to the vibration power generation element (electret element) as described above, a thermoelectric generation element (Seebeck element) using heat generated by the rotation of the bearing 6 can be used. In this case, necessary power can be generated by disposing the high temperature side of the element inside and disposing the low temperature side on the outside air (atmosphere) side. Furthermore, if the comb-shaped (fin) shape is used to increase the contact area with the atmosphere on the outside air side and promote heat dissipation, the power generation amount can be further increased due to a temperature difference.
 異常検出用のセンサ11には、上述のように、振動センサの他に温度センサを利用することができる。また、回転センサを用いれば回転速度が低下する現象を捉えることにより不具合発生を予知出来るという点で、有効なセンシング方法とも言える。 As described above, a temperature sensor can be used as the abnormality detection sensor 11 in addition to the vibration sensor. Moreover, it can be said that it is an effective sensing method in that if a rotation sensor is used, the occurrence of a malfunction can be predicted by capturing the phenomenon that the rotation speed decreases.
 各軸受ユニット10の送信機13から識別情報をセンサ情報と共に送信するようにした場合、どの軸受6,36の情報か識別できるが、個々の機器を組み合わせて使用する時や、多数のコンベア1を備えた設備の場合は、GPS端末21と連動させることにより、どのコンベア1のどの軸受6(図1),36(図3)であるかの詳細を特定することが可能となる。 When the identification information is transmitted from the transmitter 13 of each bearing unit 10 together with the sensor information, it is possible to identify which bearings 6 and 36 information is used. In the case of the provided equipment, it is possible to specify the details of which bearing 6 (FIG. 1) and 36 (FIG. 3) of which conveyor 1 by interlocking with the GPS terminal 21.
 本発明の上記第1~3実施形態に係る異常検出機能付き搬送装置用軸受ユニットは、センサ11(図1)を必ずしも設けなくともよい。図1~6に示した第1実施形態にかかる異常検出機能付き搬送装置用軸受ユニットにおいてセンサ11が省かれている場合、図1における軸受6と電源12との間に介在するセンサ11が存在せず、このセンサ11の代わりに間座11が介在している。この間座11を設けずに、電源12を軸受6に接して配置しても良い。また、センサ11が省かれた異常検出機能付き搬送装置用軸受ユニットでは、図6の電源12は、送信機13の駆動用電源となるが、図1の軸受6の異常検出用のセンサとしての機能を兼用する。すなわち、電源12の発電時間に対応した信号送信間隔が監視されて異常が検出されるため、電源12が異常検出用のセンサとしての機能を果たす。 The bearing unit for a conveyance device with an abnormality detection function according to the first to third embodiments of the present invention does not necessarily include the sensor 11 (FIG. 1). When the sensor 11 is omitted in the conveyance device bearing unit with an abnormality detection function according to the first embodiment shown in FIGS. 1 to 6, there is a sensor 11 interposed between the bearing 6 and the power supply 12 in FIG. Instead, a spacer 11 is interposed instead of the sensor 11. The power source 12 may be disposed in contact with the bearing 6 without providing the spacer 11. Moreover, in the bearing unit for a conveyance device with an abnormality detection function in which the sensor 11 is omitted, the power source 12 in FIG. 6 serves as a driving power source for the transmitter 13, but as a sensor for detecting an abnormality in the bearing 6 in FIG. Combine functions. That is, since the signal transmission interval corresponding to the power generation time of the power source 12 is monitored and an abnormality is detected, the power source 12 functions as a sensor for detecting an abnormality.
 次に、本発明の第4実施形態にかかる軸受ユニット監視システム50について、図10を参照して説明する。この軸受ユニット監視システム50は、第1~第3実施形態のいずれかにかかる軸受ユニット10(または10P)を備える。本実施形態の説明において、本発明の軸受ユニットの第1~第3実施形態に関して説明した部分と同一または相当する部分には、同一の符号を付してその詳しい説明を省略する。 Next, a bearing unit monitoring system 50 according to a fourth embodiment of the present invention will be described with reference to FIG. The bearing unit monitoring system 50 includes the bearing unit 10 (or 10P) according to any one of the first to third embodiments. In the description of the present embodiment, the same or corresponding parts as those described with respect to the first to third embodiments of the bearing unit of the present invention are denoted by the same reference numerals, and detailed description thereof is omitted.
 図10に示すように、第1実施形態にかかる軸受ユニット監視システム50は、1つ以上の軸受ユニット10(または10P)と、監視装置46を含む集中管理盤41とから構成される。軸受ユニット10(または10P)は、それぞれ、第1~第3実施形態のいずれかにかかる軸受ユニットである。ただし、この軸受ユニット10(または10P)には、センサ11(図6)が設けられていない。また、これら軸受ユニット10(または10P)は、図1に関して説明したとおり、コンベア1に装備されるものである。 As shown in FIG. 10, the bearing unit monitoring system 50 according to the first embodiment includes one or more bearing units 10 (or 10P) and a centralized control panel 41 including a monitoring device 46. The bearing unit 10 (or 10P) is a bearing unit according to any one of the first to third embodiments. However, this bearing unit 10 (or 10P) is not provided with the sensor 11 (FIG. 6). Moreover, these bearing units 10 (or 10P) are equipped in the conveyor 1 as demonstrated regarding FIG.
 軸受ユニット10(または10P)は、図11に示すように、GSP端末21を送信機13に付随して設けても良い。 The bearing unit 10 (or 10P) may be provided with a GSP terminal 21 attached to the transmitter 13 as shown in FIG.
 図10において、監視装置46は、集中管理室の集中管理盤41等に設けられ、軸受ユニット10の送信機13から送信された信号を監視する装置である。これら監視装置46と異常検出機能付きの搬送装置用軸受ユニット10(または10P)とで、軸受ユニット監視システム50が構成される。監視装置46は、軸受ユニット10(または10P)の送信機13の送信信号を受信する受信機47と、異常判定手段45Aと、軸受ユニット特定手段49とを有する。受信機47は、アンテナ52および受信回路部51を有する。軸受ユニット特定手段49は、受信機47で受信した信号から、どの軸受ユニット10の信号であるかを特定する手段であり、送信情報中の識別情報によって特定する。軸受ユニット10にGPS端末21(図11)が設けられている場合は、軸受ユニット特定手段49は、GPS端末21(図11)による位置の信号により、またはGPS端末21(図11)による位置の信号と前記識別情報との両方を用いて、軸受ユニット10(または10P)を特定する。 10, a monitoring device 46 is a device that is provided on the central management board 41 of the central management room and monitors a signal transmitted from the transmitter 13 of the bearing unit 10. The monitoring unit 46 and the bearing unit 10 (or 10P) for the conveying device with an abnormality detection function constitute a bearing unit monitoring system 50. The monitoring device 46 includes a receiver 47 that receives a transmission signal of the transmitter 13 of the bearing unit 10 (or 10P), an abnormality determination unit 45A, and a bearing unit specifying unit 49. The receiver 47 includes an antenna 52 and a receiving circuit unit 51. The bearing unit specifying means 49 is means for specifying which bearing unit 10 the signal is from the signal received by the receiver 47, and is specified by the identification information in the transmission information. When the GPS terminal 21 (FIG. 11) is provided in the bearing unit 10, the bearing unit specifying means 49 uses the position signal from the GPS terminal 21 (FIG. 11) or the position of the GPS terminal 21 (FIG. 11). The bearing unit 10 (or 10P) is specified using both the signal and the identification information.
 異常判定手段45Aは、送信機13から送信されて受信機47で受信された信号の間隔の変化から異常の判定を行う。異常判定手段45Aの具体的な判定処理は、第1実施形態にかかる搬送装置用軸受ユニットに関して、図8および図9(A),(B)を参照して説明したとおりである。 The abnormality determination unit 45A determines an abnormality from a change in the interval of signals transmitted from the transmitter 13 and received by the receiver 47. The specific determination process of the abnormality determination unit 45A is as described with reference to FIGS. 8, 9A, and 9B for the bearing unit for a transport device according to the first embodiment.
 したがって、監視装置46の異常判定手段45Aは、軸受ユニット10の送信機13から送信される信号を監視し、図9(A)に示したように送信頻度が一定であると、正常であると判断し、図9(B)に示した区間tcの間のように、送信頻度が多く(送信周期Tが短く)なると、軸受の異常が発生したと判定し、その判定結果を出力する。 Therefore, the abnormality determination means 45A of the monitoring device 46 monitors the signal transmitted from the transmitter 13 of the bearing unit 10 and is normal if the transmission frequency is constant as shown in FIG. 9A. When the transmission frequency is high (transmission cycle T is short) as in the section tc shown in FIG. 9B, it is determined that a bearing abnormality has occurred, and the determination result is output.
 この第4実施形態では、軸受ユニットにセンサが設けられない構成について説明したが、センサが設けられてもよい。その場合、軸受の異常の検出は、第1~3実施形態と同様に、送信信号の時間間隔に基づくだけでなく、センサ情報にも基づいて行われる。これにより、より確実に軸受の異常が検出される。 In the fourth embodiment, the configuration in which the sensor is not provided in the bearing unit has been described, but a sensor may be provided. In this case, the abnormality of the bearing is detected not only based on the time interval of the transmission signal but also based on the sensor information as in the first to third embodiments. Thereby, the abnormality of a bearing is detected more reliably.
 なお、前記の各実施形態は、搬送装置がベルトコンベア1である場合つき説明したが、この発明は、ベルト形式以外のコンベアや、さらにコンベア以外の搬送装置にも適用することができる。 In addition, although each said embodiment demonstrated the case where the conveying apparatus was the belt conveyor 1, this invention is applicable also to conveyors other than a belt type, and also conveying apparatuses other than a conveyor.
 以下、この発明の構成要素である、蓄電手段による蓄電量が設定値に達する毎に送信回路部に送信させる構成を要件としない態様1~12について説明する。
[態様1]
 態様1にかかる異常検出機能付き搬送装置用軸受ユニットは、転がり軸受と、この転がり軸受が内部に設置されたハウジングとを備え、搬送装置に装備される搬送装置用軸受ユニットであって、前記転がり軸受の状況を検出するセンサと、このセンサで検出した前記転がり軸受の前記状況からなる情報を無線送信する送信回路部を有する送信機と、環境エネルギによって発電する発電素子を有し前記センサおよび送信機に電力を与える電源とを前記ハウジングに備える。
Hereinafter, modes 1 to 12, which are components of the present invention and do not require a configuration that causes the transmission circuit unit to transmit each time the amount of power stored by the power storage unit reaches a set value, will be described.
[Aspect 1]
A bearing unit for a conveyance device with an abnormality detection function according to aspect 1 includes a rolling bearing and a housing in which the rolling bearing is installed, and is a bearing unit for a conveyance device equipped in the conveyance device, the rolling unit A sensor that detects a state of the bearing, a transmitter having a transmission circuit unit that wirelessly transmits information including the state of the rolling bearing detected by the sensor, and a power generation element that generates power using environmental energy. And a power supply for supplying power to the machine.
[態様2]
 態様1において、前記電源は、前記発電素子で発電した電力を蓄電する蓄電手段を有するのが良い。前記送信手段は、前記蓄電手段の蓄電量が設定値に達する毎に、前記センサで検出した情報の無線送信を行うようにしても良い。蓄電手段としては、コンデンサや二次電池が使用できる。
[Aspect 2]
In aspect 1, the power source may include power storage means for storing the power generated by the power generation element. The transmission means may perform wireless transmission of information detected by the sensor each time the amount of power stored in the power storage means reaches a set value. As the power storage means, a capacitor or a secondary battery can be used.
[態様3]
 態様1において、前記環境エネルギによって発電する発電素子としては、振動発電素子や熱発電素子を用いることができる。振動発電素子としては、エレクレット素子等が用いられる。熱発電素子としてはゼーベック発電素子を用いることができる。これらの発電素子によると、搬送装置の軸受が設置される環境において発生する振動や熱を利用し、発電が可能になる。
[Aspect 3]
In aspect 1, a vibration power generation element or a thermoelectric power generation element can be used as the power generation element that generates electric power using the environmental energy. An electret element or the like is used as the vibration power generation element. A Seebeck power generation element can be used as the thermoelectric power generation element. According to these power generation elements, it is possible to generate power using vibration and heat generated in the environment where the bearings of the transfer device are installed.
[態様4]
 態様1において、前記センサとして、振動センサ、温度センサ、および回転センサのうちの少なくとも一つを設けるのが良い。転がり軸受に異常が発生した場合、振動の発生や、温度の上昇、回転の影響等が生じる。そのため、振動センサ、温度センサ、および回転センサのうちの少なくとも一つを設ければ、軸受の異常検出が行える。
[Aspect 4]
In aspect 1, it is preferable to provide at least one of a vibration sensor, a temperature sensor, and a rotation sensor as the sensor. When an abnormality occurs in a rolling bearing, vibration, temperature rise, rotation effects, etc. occur. Therefore, if at least one of a vibration sensor, a temperature sensor, and a rotation sensor is provided, a bearing abnormality can be detected.
[態様5]
 態様1において、前記センサで検出した情報を記憶する記憶手段を設けても良い。前記記憶手段はICタグであっても良い。
[Aspect 5]
In the first aspect, a storage unit that stores information detected by the sensor may be provided. The storage means may be an IC tag.
[態様6]
 全地球的測位システムの端末であるGPS端末を前記ハウジングに設けても良い。
[Aspect 6]
A GPS terminal that is a terminal of the global positioning system may be provided in the housing.
[態様7]
 態様1において、前記異常検出機能付き搬送装置がベルトコンベアであっても良い。
[Aspect 7]
In the first aspect, the conveyance device with an abnormality detection function may be a belt conveyor.
[態様8]
 態様7において、前記ハウジングは、前記ベルトコンベアのベルトを掛装したコンベアローラの外周の円筒体の端部に設けられた部材であり、前記転がり軸受は、固定の軸と前記ハウジングとの間に介在して前記コンベアローラを回転自在に支持するものであっても良い。
[Aspect 8]
In aspect 7, the housing is a member provided at an end of a cylindrical body on the outer periphery of a conveyor roller around which a belt of the belt conveyor is hung, and the rolling bearing is provided between a fixed shaft and the housing. It may be interposed so as to rotatably support the conveyor roller.
[態様9]
 態様8において、前記コンベアローラに、前記円筒体の端面を覆う合成樹脂製のカバーを設け、前記送信機は、前記カバーの内側の空間における、送信機のアンテナと前記カバーとの間に電波遮蔽性の部材が介在しない箇所に配置するのが良い。
[Aspect 9]
In aspect 8, the conveyor roller is provided with a synthetic resin cover that covers an end surface of the cylindrical body, and the transmitter shields radio waves between the antenna of the transmitter and the cover in a space inside the cover. It is good to arrange | position in the location which does not interpose a property member.
[態様10]
 態様7において、前記ハウジングは、前記ベルトコンベアのベルトを掛装したコンベアローラが有する回転軸を支持するプランマブロックの軸受箱であっても良い。
[Aspect 10]
In the aspect 7, the housing may be a plumer block bearing box that supports a rotation shaft of a conveyor roller on which the belt of the belt conveyor is hung.
[態様11]
 態様10において、前記プランマブロックの軸受箱は、両端面に対向する開口を有し一端の開口に軸を挿入させるハウジング本体と、このハウジング本体の他端の開口を閉じる蓋部材とでなり、前記センサ、送信機、および電源を前記蓋部材に設置しても良い。
[Aspect 11]
In a tenth aspect, the bearing box of the plummer block includes a housing body having an opening facing both end faces and a shaft inserted into the opening at one end, and a lid member closing the opening at the other end of the housing body, A sensor, a transmitter, and a power source may be installed on the lid member.
[態様12]
 態様12にかかる異常検出機能付きコンベア設備は、上記態様1~11のいずれかの構成の異常検出機能付き搬送装置用軸受ユニットを複数のコンベアに装備したものである。
 この場合に、前記各コンベアに装備された前記各送信機の送信する情報を纏めて監視する集中管理盤と前記コンベアとの間に、前記送信機の送信する情報を受信して増幅し無線送信する中継装置を設けても良い。
[Aspect 12]
The conveyor equipment with an abnormality detection function according to the aspect 12 is provided with a plurality of conveyors equipped with the bearing unit for an abnormality detection function with the abnormality detection function according to any one of the above aspects 1 to 11.
In this case, the information transmitted by the transmitter is received, amplified, and wirelessly transmitted between the centralized control panel that collectively monitors the information transmitted by the transmitters mounted on the conveyors and the conveyor. A relay device may be provided.
 なお、上記態様1~12では、送信機の送信間隔によって軸受の異常が検出されるわけではないため、蓄電手段を発電素子とは別の手段によって充電してもよい。これにより、例えば蓄電手段を予め充電しておき、コンベア1の停止時に発電されない場合でも蓄電電力でセンサ情報のような情報送信を可能にできる。 In the above-described modes 1 to 12, since the bearing abnormality is not detected by the transmission interval of the transmitter, the power storage means may be charged by means other than the power generation element. Thereby, for example, the power storage means is charged in advance, and even when power is not generated when the conveyor 1 is stopped, it is possible to transmit information such as sensor information with stored power.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
1     …コンベア(搬送装置)
6,36  …軸受
8,32  …ハウジング
10,10P…軸受ユニット
10P   …プランマブロック
11…センサ
12…電源
13…送信機
14…発電素子
16…蓄電手段
18…送信回路部
19…送信制御部
1 ... Conveyor (conveying device)
6, 36 ... Bearings 8, 32 ... Housing 10, 10P ... Bearing unit 10P ... Plummer block 11 ... Sensor 12 ... Power source 13 ... Transmitter 14 ... Power generation element 16 ... Power storage means 18 ... Transmission circuit unit 19 ... Transmission control unit

Claims (18)

  1.  転がり軸受と、この転がり軸受が内部に設置されたハウジングとを備え、搬送装置に装備される搬送装置用軸受ユニットであって、
     信号を送信する送信回路部および前記送信回路部に前記信号を無線送信させる送信制御部を有する送信機と、
     環境エネルギによって発電する発電素子および前記発電素子で発電した電力を蓄電する蓄電手段を有し、前記送信機に電力を与える電源とを前記ハウジングに備え、
     前記送信制御部は、前記蓄電手段による蓄電量が設定値に達する毎に前記送信回路部に信号を送信させる、異常検出機能付き搬送装置用軸受ユニット。
    A roller bearing and a bearing unit for a conveying device provided in the conveying device, including a rolling bearing and a housing in which the rolling bearing is installed.
    A transmitter having a transmission circuit unit that transmits a signal and a transmission control unit that causes the transmission circuit unit to wirelessly transmit the signal;
    The housing includes a power generation element that generates power using environmental energy and power storage means that stores power generated by the power generation element, and the housing includes a power source that supplies power to the transmitter.
    The said transmission control part is a bearing unit for conveyance apparatuses with an abnormality detection function which makes the said transmission circuit part transmit a signal whenever the electrical storage amount by the said electrical storage means reaches a setting value.
  2.  請求項1において、前記送信制御部は、前記蓄電手段による蓄電量が設定値に達して前記送信回路部に送信を行わせる毎に、前記蓄電手段の放電を行わせる異常検出機能付き搬送装置用軸受ユニット。 2. The transport device with an abnormality detection function according to claim 1, wherein the transmission control unit discharges the power storage unit each time the amount of power stored by the power storage unit reaches a set value and causes the transmission circuit unit to perform transmission. Bearing unit.
  3.  請求項1において、さらに、
     前記転がり軸受の状況を検出するセンサを備え、
     前記送信制御部は、前記送信回路部に、前記センサで検出した前記転がり軸受の前記状況からなる情報を無線送信させ、
     前記電源は、前記センサに電力を与える、異常検出機能付き搬送装置用軸受ユニット。
    The claim 1, further comprising:
    A sensor for detecting the condition of the rolling bearing;
    The transmission control unit causes the transmission circuit unit to wirelessly transmit information including the status of the rolling bearing detected by the sensor,
    The power supply is a bearing unit for a conveyance device with an abnormality detection function that supplies power to the sensor.
  4.  請求項1において、前記発電素子が振動発電素子である異常検出機能付き搬送装置用軸受ユニット。 2. The bearing unit for a conveyance device with an abnormality detection function according to claim 1, wherein the power generation element is a vibration power generation element.
  5.  請求項1において、前記発電素子が熱発電素子である異常検出機能付き搬送装置用軸受ユニット。 2. The bearing unit for a conveyance device with an abnormality detection function according to claim 1, wherein the power generation element is a thermoelectric generation element.
  6.  請求項3において、前記センサが、振動センサ、温度センサ、および回転センサのうちの少なくとも一つである異常検出機能付き搬送装置用軸受ユニット。 The bearing unit for a conveyance device with an abnormality detection function according to claim 3, wherein the sensor is at least one of a vibration sensor, a temperature sensor, and a rotation sensor.
  7.  請求項1において、前記送信機は、前記送信される前記信号として当該搬送装置用軸受ユニットの識別情報を送信する異常検出機能付き搬送装置用軸受ユニット。 2. The conveyance device bearing unit with an abnormality detection function according to claim 1, wherein the transmitter transmits identification information of the conveyance device bearing unit as the signal to be transmitted.
  8.  請求項3において、さらに、前記センサで検出した前記転がり軸受の前記状況からなる情報を記憶する記憶手段を備えた異常検出機能付き搬送装置用軸受ユニット。 4. The bearing unit for a conveyance device with an abnormality detection function according to claim 3, further comprising storage means for storing information including the status of the rolling bearing detected by the sensor.
  9.  請求項1において、さらに、全地球的測位システムの端末であるGPS端末を前記ハウジングに設けた異常検出機能付き搬送装置用軸受ユニット。 2. The bearing unit for a transport apparatus with an abnormality detection function according to claim 1, further comprising a GPS terminal, which is a terminal of a global positioning system, provided in the housing.
  10.  請求項1において、前記搬送装置がベルトコンベアである異常検出機能付き搬送装置用軸受ユニット。 2. The bearing unit for a conveyance device with an abnormality detection function according to claim 1, wherein the conveyance device is a belt conveyor.
  11.  請求項10において、前記ハウジングは、前記ベルトコンベアのベルトを掛装したコンベアローラの外周の円筒体の端部に設けられた部材であり、前記転がり軸受は、固定の軸と前記ハウジングとの間に介在して前記コンベアローラを回転自在に支持する異常検出機能付き搬送装置用軸受ユニット。 11. The housing according to claim 10, wherein the housing is a member provided at an end of a cylindrical body on an outer periphery of a conveyor roller on which a belt of the belt conveyor is hung, and the rolling bearing is provided between a fixed shaft and the housing. A bearing unit for a conveyance device with an abnormality detection function that rotatably supports the conveyor roller interposed between the two.
  12.  請求項11において、前記コンベアローラに、前記円筒体の端面を覆う合成樹脂製のカバーを設け、前記送信機は、前記カバーの内側の空間における、前記送信機のアンテナと前記カバーとの間で電波遮蔽性の部材が介在しない箇所に配置された異常検出機能付き搬送装置用軸受ユニット。 In Claim 11, the synthetic resin cover which covers the end surface of the cylindrical body is provided in the conveyor roller, and the transmitter is between the antenna of the transmitter and the cover in the space inside the cover. A bearing unit for a conveyance device with an abnormality detection function arranged at a location where no radio wave shielding member is interposed.
  13.  請求項10において、前記ハウジングは、前記ベルトコンベアのベルトを掛装したコンベアローラが有する回転軸を支持するプランマブロックの軸受箱である異常検出機能付き搬送装置用軸受ユニット。 11. The bearing unit for a conveyance device with an abnormality detection function according to claim 10, wherein the housing is a plumer block bearing box that supports a rotation shaft of a conveyor roller that is provided with a belt of the belt conveyor.
  14.  請求項13において、前記プランマブロックの軸受箱は、両端面に対向する開口を有し一端の開口に軸を挿入させるハウジング本体と、このハウジング本体の他端の開口を閉じる蓋部材とでなり、前記送信機、および前記電源を前記蓋部材に設置した異常検出機能付き搬送装置用軸受ユニット。 In Claim 13, the bearing box of the plummer block is composed of a housing main body having openings facing both end faces and inserting a shaft into one end opening, and a lid member closing the other end opening of the housing main body, The bearing unit for conveyance devices with an abnormality detection function which installed the said transmitter and the said power supply in the said cover member.
  15.  請求項1に記載の異常検出機能付き搬送装置用軸受ユニットを複数のコンベアにそれぞれ1つ以上装備した異常検出機能付きコンベア設備。 Conveyor equipment with an abnormality detection function in which one or more bearing units for a conveyance device with an abnormality detection function according to claim 1 are provided on each of a plurality of conveyors.
  16.  請求項15において、前記複数のコンベアにそれぞれ装備された前記1つ以上の異常検出機能付き搬送装置用軸受ユニットの各軸受ユニットの前記送信機が送信する各情報を纏めて監視する集中管理盤と前記複数のコンベアとの間に、前記送信機が送信する前記情報を受信して増幅し無線送信する中継装置を設けた異常検出機能付きコンベア設備。 In Claim 15, the centralized control board which collects and monitors each information which the said transmitter transmits of each bearing unit of the said one or more conveyance apparatus bearing unit with an abnormality detection function with which each of these conveyors was equipped, and Conveyor equipment with an abnormality detection function provided with a relay device that receives, amplifies and wirelessly transmits the information transmitted by the transmitter between the plurality of conveyors.
  17.  請求項1に記載の異常検出機能付き搬送装置用軸受ユニットと、前記送信回路部が送信する前記信号を受信する受信機および異常判定手段を有する監視装置とでなり、前記異常判定手段は、前記送信機から送信されて前記受信機で受信された信号の間隔の変化から異常の判定を行う軸受ユニット監視システム。 The bearing unit for a conveyance device with an abnormality detection function according to claim 1, and a monitoring device having a receiver that receives the signal transmitted by the transmission circuit unit and an abnormality determination unit, and the abnormality determination unit includes: A bearing unit monitoring system for determining an abnormality from a change in an interval of signals transmitted from a transmitter and received by the receiver.
  18.  請求項17において、前記異常判定手段は、常に、過去の、現在よりも定められただけ前の基準期間または基準送信回数における信号間隔と、現在の定められた対象期間または対象送信回数の信号間隔とを比較して異常判定を行う軸受ユニット監視システム。 18. The abnormality determination unit according to claim 17, wherein the abnormality determination unit always includes a signal interval in a reference period or a reference transmission count that is determined in the past, and a signal interval of a currently determined target period or target transmission count. Is a bearing unit monitoring system that makes an abnormality judgment by comparing with.
PCT/JP2012/066229 2011-06-29 2012-06-26 Conveyor device bearing unit with malfunction detection function, conveyor equipment and bearing unit monitoring system WO2013002199A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2012276745A AU2012276745A1 (en) 2011-06-29 2012-06-26 Conveyor device bearing unit with malfunction detection function, conveyor equipment and bearing unit monitoring system
BR112013032220A BR112013032220A2 (en) 2011-06-29 2012-06-26 conveyor device bearing unit, conveyor system, and bearing unit monitoring system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-144588 2011-06-29
JP2011144588A JP2013011312A (en) 2011-06-29 2011-06-29 Conveyor device bearing unit with malfunction detection function and conveyor equipment
JP2011-169783 2011-08-03
JP2011169783A JP5681061B2 (en) 2011-08-03 2011-08-03 Bearing unit for conveyor with anomaly detection function and conveyor equipment

Publications (1)

Publication Number Publication Date
WO2013002199A1 true WO2013002199A1 (en) 2013-01-03

Family

ID=47424091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066229 WO2013002199A1 (en) 2011-06-29 2012-06-26 Conveyor device bearing unit with malfunction detection function, conveyor equipment and bearing unit monitoring system

Country Status (3)

Country Link
AU (1) AU2012276745A1 (en)
BR (1) BR112013032220A2 (en)
WO (1) WO2013002199A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107235305A (en) * 2017-05-10 2017-10-10 四川大学 A kind of interior depot fat self-lubricating carrying roller
WO2019191806A1 (en) * 2018-04-06 2019-10-10 Control Systems Technology Pty Ltd Sealing arrangement for idler rollers used in weighing roller belts
CN111094153A (en) * 2018-02-16 2020-05-01 工业金属机械铆钉公司 Multifunctional sensor including sensor for conveying belt roller sealing member
CN115285621A (en) * 2022-09-28 2022-11-04 常州海图信息科技股份有限公司 Belt bearing roller fault monitoring system based on artificial intelligence
US20220373036A1 (en) * 2019-09-26 2022-11-24 Ntn Corporation Bearing apparatus and spacer
JP7310014B2 (en) 2019-09-27 2023-07-18 プライメタルズ・テクノロジーズ・オーストリア・ゲーエムベーハー Apparatus and method for detecting motion of objects in industrial equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161473A1 (en) * 2015-04-10 2016-10-13 Orontide Group Ltd Conveyor pulley monitoring apparatus
JP6803149B2 (en) 2016-04-27 2020-12-23 川崎重工業株式会社 Bearing temperature detector for railroad bogies
WO2018141009A1 (en) * 2017-01-31 2018-08-09 Conveyor Innovations Pty Ltd Conveyor idler roller monitoring assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10218340A (en) * 1997-02-12 1998-08-18 Ntn Corp Abnormality detecting device for conveyor roller
JP2003308588A (en) * 2002-04-16 2003-10-31 Nsk Ltd Rolling device with wireless sensor
JP2004044676A (en) * 2002-07-11 2004-02-12 Oji Engineering Kk Bearing for light torque rotating roll
JP2005030588A (en) * 2004-05-10 2005-02-03 Ntn Corp Abnormality checking system for bearing with ic tag sensor in conveyor
JP2011069402A (en) * 2009-09-24 2011-04-07 Ntn Corp Bearing device with power generation function, and bearing device for vehicle using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10218340A (en) * 1997-02-12 1998-08-18 Ntn Corp Abnormality detecting device for conveyor roller
JP2003308588A (en) * 2002-04-16 2003-10-31 Nsk Ltd Rolling device with wireless sensor
JP2004044676A (en) * 2002-07-11 2004-02-12 Oji Engineering Kk Bearing for light torque rotating roll
JP2005030588A (en) * 2004-05-10 2005-02-03 Ntn Corp Abnormality checking system for bearing with ic tag sensor in conveyor
JP2011069402A (en) * 2009-09-24 2011-04-07 Ntn Corp Bearing device with power generation function, and bearing device for vehicle using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107235305A (en) * 2017-05-10 2017-10-10 四川大学 A kind of interior depot fat self-lubricating carrying roller
CN111094153A (en) * 2018-02-16 2020-05-01 工业金属机械铆钉公司 Multifunctional sensor including sensor for conveying belt roller sealing member
WO2019191806A1 (en) * 2018-04-06 2019-10-10 Control Systems Technology Pty Ltd Sealing arrangement for idler rollers used in weighing roller belts
US20220373036A1 (en) * 2019-09-26 2022-11-24 Ntn Corporation Bearing apparatus and spacer
US11940010B2 (en) 2019-09-26 2024-03-26 Ntn Corporation Bearing apparatus and spacer
JP7310014B2 (en) 2019-09-27 2023-07-18 プライメタルズ・テクノロジーズ・オーストリア・ゲーエムベーハー Apparatus and method for detecting motion of objects in industrial equipment
CN115285621A (en) * 2022-09-28 2022-11-04 常州海图信息科技股份有限公司 Belt bearing roller fault monitoring system based on artificial intelligence

Also Published As

Publication number Publication date
AU2012276745A1 (en) 2013-12-19
BR112013032220A2 (en) 2016-12-20

Similar Documents

Publication Publication Date Title
WO2013002199A1 (en) Conveyor device bearing unit with malfunction detection function, conveyor equipment and bearing unit monitoring system
JP5681061B2 (en) Bearing unit for conveyor with anomaly detection function and conveyor equipment
JP2013011312A (en) Conveyor device bearing unit with malfunction detection function and conveyor equipment
KR101901146B1 (en) SELF-GENERATION IoT SENSOR MODULE AND MONITORING SYSTEM FOR PREVENTING SAFETY ACCIDENT INCLUDING THE SAME
AU2011321060C1 (en) Roller for a belt transporter comprising sensors for monitoring the condition of the roller
US11608230B2 (en) Conveyor idler monitoring apparatus, systems, and methods
US10309516B2 (en) Measuring system and measuring method for detecting variables on planetary carriers of a planetary gear train
CN104126108A (en) Method of monitoring health status of bearing with warning device in percentage mode
JP2012149716A (en) Bearing with seal equipped with sensor
US20220281690A1 (en) A sensor assembly and monitoring system for an idler roller in a belt conveyor system
JP2005032256A (en) Ic tag sensor unit
CN108458053A (en) The axis being instrumented for condition monitoring
EP3246688A1 (en) A condition monitoring device and a system for the condition monitoring of industrial machinery
JP2005030588A (en) Abnormality checking system for bearing with ic tag sensor in conveyor
JP2003139155A (en) Bearing device with sensor
KR101966349B1 (en) conveyor rollers
JP2005024441A (en) Abnormality inspection system for bearing with ic tag sensor
JP2007256033A (en) Lubricant deterioration detecting system of bearing with ic tag and sensor
AU2018408980A1 (en) Multifunction sensor contained in a seal of a conveyor belt roller
JP2003065328A (en) Bearing apparatus having sensor
US20160125719A1 (en) Rfid enabled machine condition indicator and associated system for monitoring a health status of a bearing
JP2005030589A (en) Abnormality checking system for bearing with ic tag sensor in railway car
JP2019066230A (en) Rotary instrument-purpose monitoring device, and plant maintenance method using the same
TWI817138B (en) Machine status monitoring device and method
WO2016199846A1 (en) Sensor unit, sensor-equipped bearing and abnormality diagnosis system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012276745

Country of ref document: AU

Date of ref document: 20120626

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805260

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013032220

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013032220

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131213