WO2013002109A1 - 画像処理装置および方法 - Google Patents

画像処理装置および方法 Download PDF

Info

Publication number
WO2013002109A1
WO2013002109A1 PCT/JP2012/065818 JP2012065818W WO2013002109A1 WO 2013002109 A1 WO2013002109 A1 WO 2013002109A1 JP 2012065818 W JP2012065818 W JP 2012065818W WO 2013002109 A1 WO2013002109 A1 WO 2013002109A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
unit
image
correlation
vector
Prior art date
Application number
PCT/JP2012/065818
Other languages
English (en)
French (fr)
Inventor
良知 高橋
しのぶ 服部
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/128,055 priority Critical patent/US20140126641A1/en
Priority to KR20137033496A priority patent/KR20140046421A/ko
Priority to CN201280030883.XA priority patent/CN103621094A/zh
Priority to BR112013033334A priority patent/BR112013033334A2/pt
Priority to RU2013157155/08A priority patent/RU2013157155A/ru
Priority to EP12805085.3A priority patent/EP2760204A1/en
Publication of WO2013002109A1 publication Critical patent/WO2013002109A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/161Encoding, multiplexing or demultiplexing different image signal components

Definitions

  • the present disclosure relates to an image processing apparatus and method, and more particularly, to an image processing apparatus and method that can improve coding efficiency.
  • image information is treated as digital, and at that time, it is an MPEG that is compressed by orthogonal transformation such as discrete cosine transformation and motion compensation for the purpose of efficient transmission and storage of information, using redundancy unique to image information.
  • orthogonal transformation such as discrete cosine transformation and motion compensation
  • MPEG2 International Organization for Standardization
  • IEC International Electrotechnical Commission
  • MPEG2 was mainly intended for high-quality coding suitable for broadcasting, it did not correspond to a coding amount (bit rate) lower than that of MPEG1, that is, a coding method with a higher compression rate.
  • bit rate bit rate
  • MPEG4 coding amount
  • the standard was approved as an international standard as ISO / IEC 14496-2 in December 1998.
  • H.26L International Telecommunication Union Telecommunication Standardization Sector (ITU-T Q6 / 16 Video Coding Expert Group)
  • ITU-T Q6 / 16 Video Coding Expert Group International Telecommunication Union Telecommunication Standardization Sector
  • MPEG4 Joint Model of Enhanced-Compression Video Coding was implemented based on the H.26L to incorporate functions not supported by the H.26L to achieve higher coding efficiency.
  • AVC Advanced Video Coding
  • HEVC High Efficiency Video Coding
  • JCTVC Joint Collaboration Team-Video Coding
  • a coding unit (Coding Unit) is defined as a processing unit similar to a macroblock in AVC.
  • This CU is not fixed in size to 16 ⁇ 16 pixels like a macroblock of AVC, and is designated in image compression information in each sequence.
  • JCT-VC Joint Collaborative Team on Video Coding
  • the present disclosure is made in view of such a situation, and an object of the present disclosure is to suppress a reduction in coding efficiency.
  • a restriction unit for restricting use of a correlation area for obtaining a candidate of a prediction vector which is a prediction value of a vector of the attention area according to the prediction direction of the attention area of multi-viewpoint images; And a prediction vector generation unit that generates the prediction vector using a vector of a correlation region whose use is not restricted by the above.
  • the restriction unit may prohibit the use of a correlation area at a different time of the same view as the attention area, which predicts the parallax direction.
  • the restriction unit is a correlation region of a region of interest performing prediction only in the parallax direction, and can prohibit use of a correlation region at the same time as the region of interest different in time of the view and performing prediction in the time direction.
  • the restriction unit may prohibit use of a correlation area at the same time of a view different from the attention area, in which prediction of the parallax direction is performed.
  • the restriction unit may generate restriction information indicating the restriction of the correlation area.
  • the communication apparatus may further include a transmission unit for transmitting the restriction information generated by the restriction unit.
  • Another aspect of the present disclosure is the image processing method of the image processing apparatus, wherein the limiting unit is a predicted vector of the vector of the target area according to the prediction direction of the target area of the multi-viewpoint image.
  • the use of a correlation area for obtaining a candidate is limited, and the prediction vector generation unit generates the prediction vector using a vector of the correlation area whose use is not restricted.
  • Another aspect of the present disclosure relates to a receiver that receives restriction information for restricting a correlation region from which a candidate of a prediction vector is a predicted value of a vector of a region of interest in a multiview image, and the restriction information received by the receiver. And a predicted vector generation unit configured to generate the predicted vector using a vector of a correlation region whose use is not prohibited.
  • Another aspect of the present disclosure is also the image processing method of the image processing apparatus, wherein the receiving unit restricts a correlation area for obtaining candidates of predicted vectors that are predicted values of vectors of a target area of the multi-viewpoint image.
  • the information is received, and a prediction vector generation unit generates the prediction vector using a vector of a correlation region which is not prohibited from use by the received restriction information.
  • the use of the correlation area for obtaining the candidate of the prediction vector which is the prediction value of the vector of the attention area, is restricted depending on the prediction direction of the attention area of the multiview image, and the use is not restricted.
  • a vector of correlation regions is used to generate a prediction vector.
  • restriction information is received which restricts correlation areas for obtaining candidates of prediction vectors which are prediction values of vectors of attention areas of multi-view images, and the use is prohibited by the restriction information received.
  • a prediction vector is generated using a vector of no correlation region.
  • an image can be processed.
  • reduction in coding efficiency can be suppressed.
  • FIG. 36 is a diagram for explaining parallax and depth.
  • the depth of the subject M from the camera c1 (camera c2)
  • the depth Z which is the distance of the direction, is defined by the following equation (a).
  • L is the distance between the position C1 and the position C2 in the horizontal direction (hereinafter referred to as the inter-camera distance).
  • d is the position of the subject M on the color image taken with the camera c2 from the distance u1 in the horizontal direction from the center of the color image of the position of the subject M on the color image taken with the camera c1 A value obtained by subtracting the horizontal distance u2 from the center of the color image, that is, the parallax.
  • f is the focal length of the camera c1, and in equation (a), the focal lengths of the camera c1 and the camera c2 are the same.
  • the parallax d and the depth Z can be uniquely converted. Therefore, in the present specification, an image representing the parallax d of a color image of two viewpoints captured by the camera c1 and the camera c2 and an image representing the depth Z are collectively referred to as a depth image (parallax image).
  • the depth image may be an image representing the parallax d or the depth Z
  • the pixel value of the depth image is not the parallax d or the depth Z itself, but the parallax d is normalized. It is possible to adopt a value, a value obtained by normalizing the reciprocal 1 / Z of the depth Z, or the like.
  • a value I obtained by normalizing the parallax d with 8 bits (0 to 255) can be obtained by the following equation (b).
  • the normalization bit number of the parallax d is not limited to 8 bits, It is also possible to set it as another bit number, such as 10 bits and 12 bits.
  • D max is the maximum value of disparity d
  • D min is the minimum value of disparity d.
  • the maximum value D max and the minimum value D min may be set in units of one screen or may be set in units of plural screens.
  • a value y obtained by normalizing the reciprocal 1 / Z of the depth Z with 8 bits (0 to 255) can be obtained by the following equation (c).
  • the normalized bit number of the reciprocal 1 / Z of the depth Z is not limited to 8 bits, and may be another bit number such as 10 bits or 12 bits.
  • Z far is the maximum value of depth Z
  • Z near is the minimum value of depth Z.
  • the maximum value Z far and the minimum value Z near may be set in units of one screen or may be set in units of plural screens.
  • an image in which the value I obtained by normalizing the parallax d is a pixel value, and the inverse 1 / Z of the depth Z is collectively referred to as a depth image (parallax image).
  • a depth image parllax image
  • the color format of the depth image is assumed to be YUV420 or YUV400, but other color formats can also be used.
  • the value I or the value y is taken as depth information (disparity information). Furthermore, the mapping of the value I or the value y is taken as a depth map (disparity map).
  • blocks with a hierarchical structure such as macroblocks and sub-macroblocks are defined as processing units of such prediction processing, but in HEVC, a coding unit (CU (Coding Unit)) is defined. .
  • CU Coding Unit
  • the CU is also called a Coding Tree Block (CTB), and is a partial area of a picture-based image that plays a role similar to a macroblock in AVC.
  • CTB Coding Tree Block
  • the latter is fixed at a size of 16 ⁇ 16 pixels, whereas the size of the former is not fixed, and is designated in the image compression information in each sequence.
  • a CU maximum size (Largest Coding Unit)
  • a minimum size ((SCU (Smallest Coding Unit))
  • split-flag 1 within the range not exceeding the size of the SCU.
  • split_flag 1
  • a 2N ⁇ 2N-sized CU is divided into an N ⁇ N-sized CU, which is one level lower.
  • a CU is divided into prediction units (Prediction Units (PUs)) which are areas serving as processing units for intra or inter prediction (partial areas of images in units of pictures), and regions serving as processing units for orthogonal transformation ( It is divided into transform units (Transform Units (TUs)), which are partial areas of a picture-based image.
  • Prediction Units PUs
  • transform units Transform Units (TUs)
  • a macro block in AVC corresponds to an LCU.
  • the size of the LCU in the top layer is generally set larger than the AVC macroblock, for example, 128 ⁇ 128 pixels.
  • area includes all the various areas described above (for example, macro block, sub macro block, LCU, CU, SCU, PU, TU, etc.) (which may be any of them) .
  • units other than those described above may be included, and units that are impossible according to the contents of the description are appropriately excluded.
  • FIG. 1 shows a configuration example of a prediction unit (PU) which is a prediction processing unit with respect to a CU which is a coding processing unit.
  • PU prediction unit
  • FIG. 1 shows a configuration example of a prediction unit (PU) which is a prediction processing unit with respect to a CU which is a coding processing unit.
  • four types of PU can be formed for one CU.
  • the four large squares shown in FIG. 1 represent CUs, and the rectangles or squares therein represent PUs.
  • the numbers indicate the index of each PU, not the contents of the image.
  • a CU is configured by one PU (2N ⁇ 2N). That is, in this case, CU and PU are equivalent.
  • the CU is divided into upper and lower halves, and is configured by two horizontally long PUs (2N ⁇ N).
  • the CU is divided into two left and right, and is configured by two vertically long PUs (N ⁇ 2N).
  • the CU is vertically and horizontally divided into two (totally divided into four), and is configured by four square PUs (N ⁇ N). Which one of these patterns is applied is determined by the content of the image (the cost function value of the prediction result).
  • Non-Patent Document 3 proposes a method called Motion Partition Merging (merge mode) as one of motion information coding methods.
  • merge mode two flags, MergeFlag and MergeLeftFlag, are transmitted as merge information which is information related to the merge mode.
  • MergeLeftFlag is included in the merge information and transmitted.
  • each prediction unit (PU) in the example of FIG. 1 is as shown in FIG.
  • the prediction unit at index 0 in the upper left example of FIG. 1 makes area A to area D in the example shown in the upper left of FIG.
  • the prediction unit of index 1 in the upper right example of FIG. 1 sets area A to area D in the example shown in the upper right of FIG. 2 as the peripheral area.
  • the prediction unit of index 1 in the lower left example of FIG. 1 makes area A to area D of the example shown in the lower left of FIG. 2 a peripheral area.
  • the prediction unit of the index 3 in the lower right example of FIG. 1 sets the area A to the area D of the example shown in the lower right of FIG. 2 as the peripheral area.
  • the reference image index is a peripheral area A adjacent to the left of the current area to be processed (Current Block), a peripheral area B adjacent to the upper side, and a peripheral area adjacent to the upper right Based on the reference image index of the area C, it is determined as shown in the table shown in FIG.
  • the second to fourth columns from the left represent the states of the reference image indexes of the peripheral area A to the peripheral area C, respectively.
  • the first column from the left is the determined reference image index.
  • “X”, “y”, and “z” indicate arbitrary natural numbers, and “ ⁇ 1” indicates that reference is impossible.
  • the reference image index of the block is used. In addition, if there are two reference areas among the peripheral area A to the peripheral area C, the smallest reference image index is used. Furthermore, when all of the peripheral area A to the peripheral area C can not be referred to, the reference image index is set to 0.
  • the temporal correlation area located in the temporal periphery with respect to the attention area to be processed is determined as shown in FIG.
  • the left side shows a partial area of a target picture (CurrPic) to be processed, and the upper left square in the picture shows a target area (CurrPU).
  • the right side of FIG. 5 shows a partial region of a temporal correlation picture (colPic) located temporally around the target picture.
  • an area including a pixel at the same position as the lower right pixel in the attention area is taken as a temporal correlation area (colPU). If this area can not be referred to, an area including a pixel at the same position as the central pixel of the decoding area is set as a temporal correlation area (colPU).
  • the temporal correlation picture is determined as shown in FIG. For example, if the picture of interest is a B picture and collocated_from_I 0 _flag is 0, then the picture at reference image index 0 in list L1 is taken as the temporal correlation picture. In addition, when the target picture is a P picture or a B picture and collocated_from_I 0 _flag is 1, the picture of the reference image index 0 in the list L0 is set as a temporal correlation picture.
  • the jump flag is set according to the positional relationship between the attention picture and the temporal correlation picture. For example, as shown in the upper part of FIG. 7, when the temporal position of the reference image of the temporal correlation picture skips the target picture (the target picture is present between the temporal correlation picture and the reference image), the jump flag is set to 1 It is set.
  • the jump flag is set to 0.
  • the region of interest is the interpolation of the time correlation region and the reference image of the time correlation region, so the reliability of the prediction vector is high.
  • motion vectors mvCol in the temporal correlation area may be used.
  • scaling of the motion vectors in the temporal correlation area is a row as in the example shown in FIG. It will be. That is, based on the temporal distance A between the attention area and the reference image of the attention area and the temporal distance B between the time correlation area and the reference image in the time correlation area, scaling is performed as in Equations (1) and (2) below. Is done.
  • the peripheral area of the spatial correlation area other than the merge mode is as shown in the example shown in FIG. That is, the area A0, the area A1, the area B0, the area B1, and the area B2 are considered as candidates for the peripheral area.
  • motion vectors mvArr in the spatial correlation area may be used.
  • scaling of the motion vectors in the spatial correlation area is a row as in the example shown in FIG. It will be. That is, based on the temporal distance A between the attention area and the reference image of the attention area and the temporal distance B between the spatial correlation area and the reference image in the spatial correlation area, scaling is performed as in Equations (3) and (4) below Is done.
  • FIG. 11 shows an example of the reference relationship of the three viewpoint images.
  • the three-viewpoint image shown in FIG. 11 consists of three views of view 0, view 1 and view 2.
  • POC indicates an index of time.
  • PicNum indicates an index of decoding order.
  • View 0 is called a base view, and is encoded using temporal prediction in which prediction is performed using temporal correlation.
  • View 1 is called a non-base view and is encoded using temporal prediction and disparity prediction.
  • disparity prediction encoded view 0 and view 2 can be referenced.
  • View 2 is called a non-base view and is encoded using temporal prediction and disparity prediction.
  • disparity prediction encoded view 0 can be referenced.
  • disparity vector is information corresponding to a motion vector of temporal prediction, and is used for temporal prediction of generating a predicted image of a region of interest using images of different views at the same time. Therefore, the prediction of the disparity vector can not be appropriately performed, which may reduce the coding efficiency.
  • candidates for the prediction vector are limited as follows.
  • the limitation method for the time correlation area will be described. An example is shown in FIG.
  • the time correlation area use restriction flag is set to 1.
  • the temporal correlation region is excluded from the candidates for the prediction vector.
  • the processing time can be reduced by omitting the process of calculating a predicted vector using a time correlation region.
  • the memory usage can be reduced.
  • the number of prediction vector candidates decreases, the amount of code to be assigned to the prediction vector index flag can be reduced, and the coding efficiency can be improved.
  • the time correlation area use restriction flag is set to 1. Also when disparity prediction and time prediction are performed in the time correlation area, the time correlation area use restriction flag is set to 1. This is because, when disparity correlation is performed at the same time in the time correlation area, scaling of a prediction vector according to the conventional method can not be performed. That is, since the temporal distance between the temporal correlation region and the reference image in the temporal correlation region is 0, the division necessary for scaling can not be performed.
  • the temporal correlation region use restriction flag is set to 0 to predict motion vectors in the temporal correlation region. It is a candidate of vector.
  • the scaling method of the conventional method For example, when time prediction is performed in a region of interest, the same effect as the conventional method can be obtained. Also, for example, when disparity prediction is performed in the region of interest, the temporal distance between the region of interest and its reference image is zero, and thus the predicted vector of the scaled time correlation region is zero.
  • the processing time can be reduced by omitting the process of calculating predicted vectors using spatial correlation regions having different reference image indexes. Also, for example, since the number of prediction vector candidates decreases, the amount of code to be assigned to the prediction vector index flag can be reduced, and the coding efficiency can be improved.
  • the spatial correlation region use restriction flag is set to 0, and motion vectors of spatial correlation regions having different reference image indexes are candidates for prediction vectors I assume.
  • the scaling method of the conventional method there is no problem with the scaling method of the conventional method.
  • time prediction is performed in a region of interest
  • disparity prediction is performed in the region of interest
  • the temporal distance between the region of interest and its reference image is zero, and thus the predicted vector of the scaled spatial correlation region is zero.
  • FIG. 14 is a block diagram showing an example of the main configuration of an image coding apparatus which is an image processing apparatus.
  • the image coding apparatus 100 shown in FIG. 14 codes image data using prediction processing, as in, for example, a coding method such as AVC or HEVC.
  • the image coding apparatus 100 codes a multi-view image consisting of a plurality of views.
  • a multi-viewpoint image processing of a three-viewpoint image including three views will be described.
  • the image coding apparatus 100 can code a multi-view image of an arbitrary number of viewpoints (number of views).
  • the image coding apparatus 100 includes an A / D conversion unit 101, a screen rearrangement buffer 102, an operation unit 103, an orthogonal conversion unit 104, a quantization unit 105, a lossless coding unit 106, and an accumulation buffer. It has 107.
  • the image coding apparatus 100 includes an inverse quantization unit 108, an inverse orthogonal transformation unit 109, an operation unit 110, a loop filter 111, a decoded picture buffer 112, a selection unit 113, an intra prediction unit 114, and a motion disparity prediction / compensation unit 115.
  • the prediction image selection unit 116, the multiview decoded picture buffer 121, and the correlation area determination unit 122 are included.
  • the A / D conversion unit 101 A / D converts the input image data, supplies the converted image data (digital data) to the screen rearrangement buffer 102, and stores it.
  • the screen rearrangement buffer 102 rearranges the images of the stored display order in the frame order for encoding according to GOP (Group Of Picture), and arranges the images in which the frame order is rearranged, It supplies to the calculating part 103 with view ID and POC of the image.
  • the screen rearrangement buffer 102 supplies the image in which the order of the frames is rearranged, to the intra prediction unit 114 and the motion disparity prediction / compensation unit 115 together with the view ID and POC of the image.
  • the view ID is information for identifying a viewpoint
  • the POC is information for identifying a time.
  • the operation unit 103 subtracts the predicted image supplied from the intra prediction unit 114 or the motion disparity prediction / compensation unit 115 from the image read from the screen rearrangement buffer 102 via the predicted image selection unit 116, and the difference thereof
  • the information is output to the orthogonal transform unit 104.
  • the operation unit 103 subtracts the predicted image supplied from the intra prediction unit 114 from the image read from the screen rearrangement buffer 102. Also, for example, in the case of an image on which inter coding is performed, the operation unit 103 subtracts the predicted image supplied from the motion disparity prediction / compensation unit 115 from the image read from the screen rearrangement buffer 102.
  • the orthogonal transformation unit 104 performs orthogonal transformation such as discrete cosine transformation or Karhunen-Loeve transformation on the difference information supplied from the arithmetic unit 103. In addition, the method of this orthogonal transformation is arbitrary.
  • the orthogonal transform unit 104 supplies the transform coefficient to the quantization unit 105.
  • the quantization unit 105 quantizes the transform coefficient supplied from the orthogonal transform unit 104.
  • the quantization unit 105 sets a quantization parameter based on the information on the target value of the code amount, and performs the quantization. In addition, the method of this quantization is arbitrary.
  • the quantization unit 105 supplies the quantized transform coefficient to the lossless encoding unit 106.
  • the lossless encoding unit 106 encodes the transform coefficient quantized by the quantization unit 105 by an arbitrary encoding method.
  • the lossless encoding unit 106 acquires intra prediction information including information indicating an intra prediction mode from the intra prediction unit 114, and inter prediction information including information indicating an inter prediction mode, motion disparity vector information, and the like. It is acquired from the motion disparity prediction / compensation unit 115. Further, the lossless encoding unit 106 acquires the filter coefficient and the like used in the loop filter 111.
  • the lossless encoding unit 106 encodes these various pieces of information according to an arbitrary encoding method, and makes it part of header information of encoded data (multiplexing).
  • the lossless encoding unit 106 supplies the encoded data obtained by the encoding to the accumulation buffer 107 for accumulation.
  • Examples of the coding method of the lossless coding unit 106 include variable-length coding and arithmetic coding.
  • variable-length coding for example, H.264.
  • Examples include CAVLC (Context-Adaptive Variable Length Coding) defined by the H.264 / AVC system.
  • Examples of arithmetic coding include CABAC (Context-Adaptive Binary Arithmetic Coding).
  • the accumulation buffer 107 temporarily holds the encoded data supplied from the lossless encoding unit 106.
  • the accumulation buffer 107 outputs, at a predetermined timing, the held encoded data as a bit stream to, for example, a not-shown recording device (recording medium) or a transmission line in the subsequent stage. That is, various types of encoded information are supplied to the decoding side.
  • the transform coefficient quantized in the quantization unit 105 is also supplied to the inverse quantization unit 108.
  • the inverse quantization unit 108 inversely quantizes the quantized transform coefficient by a method corresponding to the quantization by the quantization unit 105.
  • the inverse quantization method may be any method as long as it corresponds to the quantization processing by the quantization unit 105.
  • the inverse quantization unit 108 supplies the obtained transform coefficient to the inverse orthogonal transform unit 109.
  • the inverse orthogonal transform unit 109 performs inverse orthogonal transform on the transform coefficient supplied from the inverse quantization unit 108 by a method corresponding to orthogonal transform processing by the orthogonal transform unit 104. Any method may be used as this inverse orthogonal transformation method as long as it corresponds to the orthogonal transformation processing by the orthogonal transformation unit 104.
  • the inverse orthogonal transformed output (locally restored difference information) is supplied to the calculation unit 110.
  • the calculation unit 110 performs the intra prediction unit 114 or the motion disparity prediction / compensation unit via the predicted image selection unit 116 on the inverse orthogonal transformation result supplied from the inverse orthogonal transformation unit 109, that is, the locally restored difference information.
  • the prediction images supplied from 115 are added to obtain a locally reconstructed image (hereinafter referred to as a reconstructed image).
  • the reconstructed image is supplied to the loop filter 111 or the decoded picture buffer 112.
  • the loop filter 111 includes a deblocking filter, an adaptive loop filter, and the like, and appropriately performs filter processing on the decoded image supplied from the calculation unit 110.
  • the loop filter 111 removes block distortion of the decoded image by performing deblocking filter processing on the decoded image.
  • the loop filter 111 improves the image quality by performing loop filter processing on the deblock filter processing result (decoded image subjected to removal of block distortion) using a Wiener filter. Do.
  • the loop filter 111 may perform arbitrary filter processing on the decoded image.
  • the loop filter 111 can also supply information such as the filter coefficient used for the filter processing to the lossless encoding unit 106 to encode it, as necessary.
  • the loop filter 111 supplies the result of the filter processing (hereinafter referred to as a decoded image) to the decoded picture buffer 112.
  • the decoded picture buffer 112 stores the reconstructed image supplied from the arithmetic unit 110 and the decoded image supplied from the loop filter 111, respectively. Also, the decoded picture buffer 112 stores the view ID and POC of the image.
  • the decoded picture buffer 112 selects a stored reconstructed image (and its view ID and POC of the image) at a predetermined timing or based on an external request from the intra prediction unit 114 or the like. , To the intra prediction unit 114. In addition, the decoded picture buffer 112 stores the decoded image (and its view ID and POC) at a predetermined timing or based on an external request such as the motion disparity prediction / compensation unit 115 or the like. , And supplies the motion parallax prediction / compensation unit 115 via the selection unit 113.
  • the selection unit 113 indicates the supply destination of the image output from the decoded picture buffer 112. For example, in the case of intra prediction, the selection unit 113 reads an image (reconstructed image) that has not been subjected to the filter process from the decoded picture buffer 112, and supplies the image to the intra prediction unit 114 as a peripheral pixel.
  • the selection unit 113 reads the image (decoded image) subjected to the filter process from the decoded picture buffer 112, and supplies it to the motion disparity prediction / compensation unit 115 as a reference image.
  • the intra prediction unit 114 When the intra prediction unit 114 acquires an image (peripheral image) of a peripheral area located around the processing target area from the decoded picture buffer 112, the intra prediction unit 114 basically uses a pixel value of the peripheral image to basically obtain a prediction unit (PU). Intra prediction (in-screen prediction) is performed to generate a predicted image with the unit of processing as a processing unit. The intra prediction unit 114 performs this intra prediction in a plurality of modes (intra prediction modes) prepared in advance.
  • Intra prediction modes intra prediction modes
  • the intra prediction unit 114 generates predicted images in all candidate intra prediction modes, evaluates the cost function value of each predicted image using the input image supplied from the screen rearrangement buffer 102, and selects the optimum mode. select. When the optimal intra prediction mode is selected, the intra prediction unit 114 supplies the predicted image generated in the optimal mode to the predicted image selection unit 116.
  • the intra prediction unit 114 appropriately supplies intra prediction information including information on intra prediction such as an optimal intra prediction mode to the lossless encoding unit 106 as appropriate, and causes the lossless encoding unit 106 to encode the information.
  • the motion disparity prediction / compensation unit 115 basically uses the input image supplied from the screen rearranging buffer 102 and the reference image supplied from the decoded picture buffer 112 as a processing unit of PU, and performs motion prediction and disparity
  • the prediction (inter prediction) is performed, the compensation processing is performed according to the detected motion disparity vector, and a prediction image (inter prediction image information) is generated.
  • the motion disparity prediction / compensation unit 115 performs such inter prediction (inter-screen prediction) in a plurality of modes (inter prediction modes) prepared in advance.
  • the motion disparity prediction / compensation unit 115 generates prediction images in all candidate inter prediction modes, evaluates the cost function value of each prediction image, and selects an optimum mode. When the motion disparity prediction / compensation unit 115 selects the optimal inter prediction mode, the motion disparity prediction / compensation unit 115 supplies the predicted image generated in the optimal mode to the predicted image selection unit 116.
  • the motion disparity prediction / compensation unit 115 supplies inter prediction information including information on inter prediction, such as an optimal inter prediction mode, to the lossless encoding unit 106 and causes the lossless encoding unit 106 to encode.
  • the predicted image selection unit 116 selects the supply source of the predicted image to be supplied to the calculation unit 103 and the calculation unit 110.
  • the prediction image selection unit 116 selects the intra prediction unit 114 as a supply source of a prediction image, and supplies the prediction image supplied from the intra prediction unit 114 to the calculation unit 103 and the calculation unit 110.
  • the predicted image selection unit 116 selects the motion disparity prediction / compensation unit 115 as a source of a predicted image, and calculates the predicted image supplied from the motion disparity prediction / compensation unit 115 It is supplied to the unit 103 and the calculation unit 110.
  • the decoded picture buffer 112 stores only the image of the view to be processed (as well as the view ID and POC of the image), but the multiview decoded picture buffer 121 stores the image of each view (view) (and the image Store the view ID and POC). That is, the multiview decoded picture buffer 121 acquires the decoded image (and the view ID and POC of the image) supplied to the decoded picture buffer 112, and the decoded image (and the view of the image) together with the decoded picture buffer 112. Store the ID and POC).
  • the decoded picture buffer 112 erases the decoded image, but the multi-view decoded picture buffer 121 holds it as it is. Then, in accordance with the request of the decoded picture buffer 112 and the like, the stored decoded image (as well as the view ID and POC of the image) is supplied to the decoded picture buffer 112 as “the decoded image of the view not to be processed”.
  • the decoded picture buffer 112 receives the “decoded image of the view not to be processed (and its view ID and POC)” read from the multi-view decoded picture buffer 121 through the selecting unit 113 and performs motion disparity prediction / compensation unit It supplies to 115.
  • the correlation area determination unit 122 sets the values of the temporal correlation area use restriction flag and the spatial correlation area use restriction flag according to the type of prediction (spatial prediction, temporal prediction, disparity prediction, etc.) performed in the attention area or the correlation area. Do.
  • the correlation area determination unit 122 supplies the motion correlation prediction / compensation unit 115 with the time correlation area use restriction flag and the space correlation area use restriction flag in which the values are set.
  • the motion disparity prediction / compensation unit 115 generates a prediction vector under the restriction of these flags.
  • the correlation region determination unit 122 supplies the time correlation region use restriction flag and the space correlation region use restriction flag with values set therein to the lossless encoding unit 106 and causes the lossless encoding unit 106 to encode the same. That is, the flag information is encoded by the lossless encoding unit 106, added to, for example, a slice header, and transmitted to the decoding side. That is, reconstruction of a prediction vector in motion disparity compensation processing at the time of decoding is also performed under the restriction of these flags.
  • FIG. 15 is a block diagram showing an example of the main configuration of the motion disparity prediction / compensation unit of FIG.
  • the motion disparity prediction / compensation unit 115 includes a motion disparity vector searching unit 131, a predicted image generating unit 132, a coded information storage buffer 133, and a selecting unit 134.
  • the motion disparity prediction / compensation unit 115 further includes a spatial correlation prediction vector generation unit 135, a time disparity correlation prediction vector generation unit 136, a selection unit 137, a coding cost calculation unit 138, and a mode determination unit 139.
  • the motion disparity vector search unit 131 acquires the decoded image pixel value from the decoded picture buffer 112 and acquires the original image pixel value from the screen rearrangement buffer 102. The motion disparity vector search unit 131 uses them to determine the reference image index of the target area to be processed, performs motion search in the time direction and in the disparity direction, and generates a motion vector and a disparity vector.
  • the motion vector indicating the motion between frames (pictures) and the parallax direction that is, the disparity vector indicating the motion between views, or both of them. Is referred to as a motion disparity vector.
  • the motion disparity vector search unit 131 supplies the reference image index and the motion disparity vector to the predicted image generation unit 132 and the coding cost calculation unit 138.
  • the predicted image generation unit 132 obtains the reference image index and the motion disparity vector from the motion disparity vector search unit 131, and obtains the decoded image pixel value from the decoded picture buffer 112.
  • the predicted image generation unit 132 generates a predicted image of the region of interest using them.
  • the predicted image generation unit 132 supplies the predicted image pixel value to the coding cost calculation unit 138.
  • the coding information accumulation buffer 133 stores mode information indicating the mode selected as the optimum mode by the mode determination unit 139, and a reference image index and a motion disparity vector of the mode.
  • the encoded information storage buffer 133 supplies the stored information to the selection unit 134 at a predetermined timing or according to an external request.
  • the selection unit 134 supplies the mode information, the reference image index, and the motion disparity vector supplied from the coding information storage buffer 133 to the spatial correlation predicted vector generation unit 135 or the temporal disparity correlation predicted vector generation unit 136.
  • the spatial correlation prediction vector generation unit 135 and the time disparity correlation prediction vector generation unit 136 generate a prediction value (prediction vector) of a motion vector of a region of interest to be processed.
  • the spatial correlation prediction vector generation unit 135 generates a prediction vector (spatial correlation prediction vector) using spatial correlation. More specifically, the spatial correlation prediction vector generation unit 135 uses the encoding information storage buffer 133 via the selection unit 134 to position the frame in the same frame as the region of interest (frame of interest) in the spatial periphery of the region of interest. Information (mode information, a reference image index, a motion disparity vector, etc.) regarding motion information of the surrounding area (space surrounding area) to be acquired.
  • Information mode information, a reference image index, a motion disparity vector, etc.
  • the spatial correlation prediction vector generation unit 135 performs, for example, a median operation using motion vectors of a plurality of space peripheral regions (space peripheral motion vectors) to generate a spatial correlation prediction vector.
  • the spatial correlation prediction vector generation unit 135 supplies the generated spatial correlation prediction vector to the selection unit 137.
  • the spatial correlation prediction vector generation unit 135 performs the above-described processing according to the control of the correlation area determination unit 122. That is, when the value of the spatial correlation region use restriction flag is 1, the spatial correlation prediction vector generation unit 135 does not generate the spatial correlation prediction vector. In addition, when the value of the spatial correlation region use restriction flag is 0, the spatial correlation prediction vector generation unit 135 generates a spatial correlation prediction vector.
  • the temporal disparity correlation prediction vector generation unit 136 generates a prediction vector (temporal disparity correlation prediction vector (temporal correlation prediction vector or disparity correlation prediction vector)) using temporal correlation or parallax correlation. More specifically, the temporal disparity correlation prediction vector generation unit 136, for example, from the encoded information storage buffer 133 via the selection unit 134, the peripheral region (temporal peripheral region) located in the temporal periphery of the region of interest. Get information about motion information.
  • the temporal surrounding area indicates an area at a position corresponding to an attention area of a frame (picture) different from the attention frame, or an area in the vicinity of the same area as the attention area (an attention view).
  • the time disparity correlation predicted vector generation unit 136 causes the selection unit 134 to use the encoded information storage buffer 133 to provide information on motion information of a peripheral area (parallax peripheral area) located in a parallax like periphery of the target area.
  • the parallax peripheral area indicates an area at a position corresponding to an attention area of a frame (picture) at the same time as the attention frame, or an area in the vicinity of the view different from the view of the attention area (observation view).
  • the temporal disparity correlation prediction vector generation unit 136 performs, for example, median operation using motion vectors of a plurality of temporal peripheral regions (temporal peripheral motion vectors) to generate a temporal correlation predictive vector. Also, for example, the temporal disparity correlation prediction vector generation unit 136 performs median operation using, for example, motion vectors (disparity peripheral motion vectors) of a plurality of disparity peripheral regions, and generates a disparity correlation prediction vector.
  • the temporal disparity correlation prediction vector generation unit 136 supplies the temporal disparity correlation prediction vector generated in this manner to the selection unit 137.
  • the temporal disparity correlation prediction vector generation unit 136 performs the above-described processing according to the control of the correlation area determination unit 122. That is, when the value of the temporal correlation region use restriction flag is 1, the temporal disparity correlation prediction vector generation unit 136 does not generate a temporal disparity correlation prediction vector. In addition, when the value of the temporal correlation region use restriction flag is 0, the temporal disparity correlation prediction vector generation unit 136 generates a temporal disparity correlation prediction vector.
  • the spatial correlation prediction vector generation unit 135 and the time disparity correlation prediction vector generation unit 136 each generate a prediction vector for each inter prediction mode.
  • the selection unit 137 supplies the spatial correlation prediction vector supplied from the spatial correlation prediction vector generation unit 135 and the temporal disparity correlation prediction vector supplied from the temporal disparity correlation prediction vector generation unit 136 to the coding cost calculation unit 138. Do.
  • the coding cost calculation unit 138 uses the predicted image pixel value supplied from the predicted image generation unit 132 and the original image pixel value supplied from the screen rearrangement buffer 102 to calculate the difference value between the predicted image and the original image (see FIG. The difference image is calculated for each inter prediction mode. Also, the coding cost calculation unit 138 uses the difference image pixel value to calculate a cost function value (also referred to as a coding cost value) for each inter prediction mode.
  • a cost function value also referred to as a coding cost value
  • the coding cost calculation unit 138 selects one of the spatial correlation prediction vector supplied from the selection unit 137 and the temporal disparity correlation prediction vector that is closer to the motion disparity vector of the target area supplied from the motion disparity vector search unit 131. Is selected as a prediction vector of the region of interest.
  • the coding cost calculation unit 138 generates a differential motion disparity vector which is a difference value between the predicted vector and the motion disparity vector of the attention area.
  • the coding cost calculation unit 138 generates a differential motion disparity vector for each inter prediction mode.
  • the coding cost calculation unit 138 performs mode determination on the coding cost value, the predicted image pixel value, the differential motion disparity information including the differential motion disparity vector, and the prediction information including the predicted vector and the reference image index in each inter prediction mode. It supplies to the part 139.
  • the mode determination unit 139 selects the inter prediction mode that minimizes the coding cost value as the optimal mode.
  • the mode determination unit 139 supplies the predicted image pixel value of the inter prediction mode selected as the optimal mode to the predicted image selection unit 116.
  • the mode determination unit 139 determines mode information which is information on the inter prediction mode selected as the optimal mode, and differential motion disparity information and prediction of the inter prediction mode.
  • the information is supplied to the lossless encoding unit 106 and encoded. These pieces of information are encoded and transmitted to the decoding side.
  • the mode determination unit 139 supplies the mode information, the differential motion disparity information, and the prediction information of the inter prediction mode selected as the optimal mode to the coding information storage buffer 133 and stores the same. These pieces of information are used as information of the peripheral area in processing for other areas processed later in time than the area of interest.
  • the temporal disparity correlation prediction vector generation unit 136 can generate not only the motion correlation prediction vector but also the disparity correlation prediction vector. Therefore, the motion disparity prediction / compensation unit 115 can generate a prediction vector with high prediction accuracy even if the vector of the region of interest is a disparity vector. Thereby, the image coding apparatus 100 can suppress the reduction of the coding efficiency.
  • the correlation region determination unit 122 controls the use of the correlation region based on the relationship of the prediction direction, so that the spatial correlation prediction vector generation unit 135 and the time disparity correlation prediction vector generation unit 136 generate the prediction vector. It is possible to suppress the generation of unnecessary load such as generating a prediction vector with low prediction accuracy or breaking a process, and to reduce processing time and memory usage. Further, due to this limitation, the spatial correlation prediction vector generation unit 135 and the time disparity correlation prediction vector generation unit 136 can appropriately generate a prediction vector with high prediction accuracy, so that the coding efficiency can be improved. Can. In the case of the present technology, since the base view prediction method is limited, it is easy to extend from the conventional method.
  • the use of the time correlation area is prohibited. That is, the value of the time correlation area use restriction flag is set to 1.
  • the use of the spatial correlation region is prohibited. That is, the value of the spatial correlation area use restriction flag is set to 1.
  • FIG. 17 shows an example of the syntax of the sequence parameter set in this case.
  • the total number of views, the ID for distinguishing views, the number of disparity predictions in the list L0, and the disparity prediction in the list L0 Information such as the ID of the view to be referred to, the number of parallax predictions in the list L1, and the ID of the view to be referred to in the parallax prediction in the list L1 is included in the sequence parameter set.
  • These pieces of information are information necessary for multi-viewpoint images. In other words, the present technology can be applied without adding new syntax to the sequence parameter set.
  • FIG. 18 shows an example of slice header syntax in this case.
  • the temporal correlation area use restriction flag is set on the ninth and tenth lines from the bottom.
  • the spatial correlation area use restriction flag is set on the fifth line from the bottom.
  • step S101 the A / D conversion unit 101 A / D converts the input image.
  • step S102 the screen rearrangement buffer 102 stores the A / D converted image, and performs rearrangement from the display order of each picture to the coding order.
  • step S103 the intra prediction unit 114 performs intra prediction processing.
  • step S104 the motion disparity prediction / compensation unit 115 performs inter motion prediction processing.
  • step S105 the prediction image selection unit 116 selects one of the prediction image generated by intra prediction and the prediction image generated by inter prediction.
  • step S106 the computing unit 103 computes the difference between the image rearranged in the process of step S102 and the predicted image selected in the process of step S105 (generates a difference image).
  • the generated difference image has a reduced amount of data compared to the original image. Therefore, the amount of data can be compressed as compared to the case of encoding the image as it is.
  • step S107 the orthogonal transformation unit 104 orthogonally transforms the difference image generated by the process of step S106. Specifically, orthogonal transformation such as discrete cosine transformation and Karhunen-Loeve transformation is performed, and orthogonal transformation coefficients are output.
  • step S108 the quantization unit 105 quantizes the orthogonal transformation coefficient obtained by the process of step S107.
  • step S109 the inverse quantization unit 108 inversely quantizes the quantized orthogonal transformation coefficient (also referred to as a quantization coefficient) generated by the process of step S108 with a characteristic corresponding to the characteristic of the quantization unit 105.
  • step S110 the inverse orthogonal transformation unit 109 performs inverse orthogonal transformation on the orthogonal transformation coefficient obtained by the process of step S109 with a characteristic corresponding to the characteristic of the orthogonal transformation unit 104. Thereby, the difference image is restored.
  • step S111 the calculation unit 110 adds the prediction image selected in step S105 to the difference image generated in step S110, to generate a locally decoded decoded image (reconstructed image).
  • step S112 the loop filter 111 appropriately performs loop filter processing including deblock filter processing, adaptive loop filter processing, and the like on the reconstructed image obtained by the processing of step S111, and generates a decoded image.
  • step S113 the decoded picture buffer 112 and the multiview decoded picture buffer 121 store the decoded image generated by the process of step S112 or the reconstructed image generated by the process of step S111.
  • step S114 the lossless encoding unit 106 encodes the orthogonal transformation coefficient quantized in the process of step S108. That is, lossless coding such as variable-length coding or arithmetic coding is performed on the difference image.
  • the lossless encoding unit 106 encodes information related to prediction, information related to quantization, information related to filter processing, and the like, and adds the encoded information to a bit stream.
  • step S115 the accumulation buffer 107 accumulates the bit stream obtained by the process of step S114.
  • the encoded data stored in the storage buffer 107 is appropriately read and transmitted to the decoding side via a transmission path or a recording medium.
  • step S116 the quantization unit 105 performs a quantization operation so that overflow or underflow does not occur based on the code amount (generated code amount) of the encoded data accumulated in the accumulation buffer 107 by the process of step S115. Control the rate.
  • step S116 ends, the encoding process ends.
  • step S121 the correlation area determination unit 122 performs restriction determination processing of setting the value of the correlation area restriction flag.
  • step S122 the motion disparity vector search unit 131 performs motion search for the inter prediction mode to be processed, and generates a motion disparity vector (motion vector or disparity vector) of the target area to be processed.
  • step S123 the predicted image generation unit 132 performs a compensation process using the motion disparity vector generated in step S122 to generate a predicted image.
  • step S124 the coding cost calculation unit 138 generates a difference image between the predicted image generated in step S123 and the original image (input image).
  • step S125 the coding cost calculation unit 138 performs merge mode processing using the spatial correlation prediction vector generation unit 135, the time disparity correlation prediction vector generation unit 136, and the like.
  • step S126 the coding cost calculation unit 138 compares the motion disparity vector of the region of interest generated in step S122 with the predicted vector of the region of interest generated by the process of step S125, and the merge mode is Determine if it applies.
  • step S127 the coding cost calculation unit 138 proceeds to step S127, and uses the spatial correlation prediction vector generation unit 135, the time disparity correlation prediction vector generation unit 136, etc. Motion disparity vector prediction processing.
  • step S128 the coding cost calculation unit 138 advances the process to step S128.
  • step S126 determines whether the motion disparity vector of the attention area matches the prediction vector and it is determined that the merge mode is applied to the attention area.
  • the coding cost calculation unit 138 omits the process of step S127, and step Proceed to S128.
  • step S128 the coding cost calculation unit 138 determines whether or not the above processing has been performed in all the inter prediction modes, and when it is determined that there is an unprocessed inter prediction mode, the process proceeds to step S121. It returns and controls that subsequent processes are repeated about the unprocessed inter prediction mode. That is, each process of step S121 to step S128 is performed about each inter prediction mode.
  • step S128 If it is determined in step S128 that processing has been performed for all inter prediction modes, the coding cost calculation unit 138 advances the process to step S129. In step S129, the coding cost calculation unit 138 calculates a cost function value of each inter prediction mode.
  • step S130 the mode determination unit 139 determines an inter prediction mode with the smallest cost function value (coding cost value) calculated in step S129 as an optimal mode (optimal inter prediction mode).
  • step S131 the predicted image generation unit 132 generates a predicted image in the optimal inter prediction mode.
  • the predicted image is supplied to the predicted image selection unit 116.
  • step S132 when the inter prediction is selected in step S105 of FIG. 19, the coding information storage buffer 133 stores mode information and motion information (such as a motion disparity vector and a reference image index) of the optimal inter prediction mode.
  • mode information and motion information such as a motion disparity vector and a reference image index
  • motion information such as a motion disparity vector and a reference image index
  • step S132 When the process of step S132 ends, the coding information storage buffer 133 ends the inter motion prediction process, and returns the process to FIG.
  • the correlation area determination unit 122 acquires a reference image of the attention area from the decoded picture buffer 112 using the reference image index acquired from the encoded information storage buffer 133 in step S141.
  • step S 142 the correlation area determination unit 122 acquires the reference image of the time correlation area from the decoded picture buffer 112 using the reference image index acquired from the encoding information storage buffer 133.
  • step S143 the correlation area determination unit 122 uses these pieces of information to determine whether parallax prediction is performed in the time correlation area. If it is determined that disparity prediction is to be performed in the temporal correlation region, the correlation region determination unit 122 proceeds to step S144 and sets the temporal correlation region use restriction flag to 1. When the process of step S144 ends, the correlation region determination unit 122 causes the process to proceed to step S147.
  • step S143 When it is determined in step S143 that disparity prediction is not performed in the time correlation area, the correlation area determination unit 122 causes the process to proceed to step S145.
  • step S145 the correlation area determination unit 122 determines whether only parallax prediction is performed in the attention area. If it is determined that only parallax prediction is performed in the region of interest, the correlation region determination unit 122 returns the process to step S144. That is, the time correlation area use restriction flag is set to 1.
  • step S145 If it is determined in step S145 that something other than parallax prediction is also performed in the attention area, the correlation area determination unit 122 causes the process to proceed to step S146.
  • step S146 the correlation area determination unit 122 sets the time correlation area use restriction flag to 0.
  • the correlation region determination unit 122 causes the process to proceed to step S147.
  • step S147 the correlation area determination unit 122 determines whether parallax prediction is performed in the attention area. If it is determined that parallax prediction is not performed in the region of interest, the correlation region determination unit 122 proceeds to step S148, sets the value of the spatial correlation region use restriction flag to 0, and ends the restriction determination processing, and processing Is returned to FIG.
  • step S147 If it is determined in step S147 that parallax prediction is to be performed in the attention area, the correlation area determination unit 122 proceeds to step S149, sets the spatial correlation area use restriction flag to 1, and ends the restriction determination process. And the process returns to FIG.
  • step S161 the spatial correlation prediction vector generation unit 135 performs spatial correlation prediction processing of generating a spatial correlation prediction vector using the correlation with the space peripheral area.
  • step S162 the temporal disparity correlation prediction vector generation unit 136 performs temporal correlation prediction processing for generating a temporal disparity correlation prediction vector using the correlation with the temporal peripheral region and the parallax peripheral region.
  • step S163 the coding cost calculation unit 138 deletes overlapping vectors between the spatial correlation prediction vector generated in step S161 and the temporal disparity prediction vector generated in step S162.
  • step S164 the coding cost calculation unit 138 determines whether a vector exists. If it is determined that there is at least one spatial correlation prediction vector or temporal disparity correlation prediction vector, the coding cost calculation unit 138 proceeds with the process to step S165.
  • step S165 the coding cost calculation unit 138 determines whether there is a plurality of vectors. If it is determined that there is a plurality, the coding cost calculation unit 138 proceeds with the process to step S166 and acquires a merge index. If it is determined that there is not a plurality, the coding cost calculation unit 138 omits the process of step S166.
  • the coding cost calculation unit 138 acquires the matching vector as a prediction vector in step S167, and in step S168 Get reference image index.
  • step S168 the coding cost calculation unit 138 ends the merge mode process, and returns the process to FIG.
  • step S164 If it is determined in step S164 that no spatial correlation prediction vector or temporal disparity correlation prediction vector exists, the coding cost calculation unit 138 proceeds with the process to step S169.
  • step S169 the coding cost calculation unit 138 gives an initial value (for example, a zero vector) to the prediction vector.
  • the coding cost calculation unit 138 gives an initial value (for example, 0) to the reference image index.
  • step S170 When the process of step S170 ends, the coding cost calculation unit 138 ends the merge mode process, and returns the process to FIG.
  • the spatial correlation prediction vector generation unit 135 determines in step S181 whether or not the use restriction flag of the spatial correlation region is 0. If it is determined that the spatial correlation region use restriction flag is 1, the spatial correlation prediction vector generation unit 135 ends the spatial correlation prediction process and returns the process to FIG.
  • step S181 if it is determined in step S181 that the spatial correlation area use restriction flag is 0, the spatial correlation prediction vector generation unit 135 proceeds to step S182 and sequentially sets the peripheral areas A to D (FIG. 2) to 1 Select one by one.
  • the selected peripheral region is referred to as a target peripheral region.
  • step S183 the spatial correlation prediction vector generation unit 135 determines whether the prediction mode of the region of interest (that is, any of the peripheral regions A to D) selected in step S182 is inter prediction. When it is determined that inter prediction is not performed, the spatial correlation prediction vector generation unit 135 proceeds with the process to step S184. In step S184, the spatial correlation prediction vector generation unit 135 removes the motion vector of the target surrounding area from candidates for the prediction vector.
  • step S185 the spatial correlation prediction vector generation unit 135 determines whether the attention peripheral region is the peripheral region D, and when it is determined that the attention peripheral region is the peripheral region D, the spatial correlation prediction process is ended. And the process returns to FIG.
  • step S185 If it is determined in step S185 that the attention peripheral region is not the peripheral region D, the spatial correlation prediction vector generation unit 135 returns the process to step S182 and repeats the subsequent processing. That is, the attention peripheral area is updated, and the same processing is repeated.
  • step S183 when it is determined that the prediction mode of the attention peripheral region is the inter prediction, the space correlation prediction vector generation unit 135 advances the process to step S186.
  • step S186 the spatial correlation prediction vector generation unit 135 determines whether the part mode of the prediction unit is 2N ⁇ N (the upper right example in FIG. 1) and the index of the region of interest (prediction unit to be processed) is 1. Determine if If it is determined that the part mode of the prediction unit is 2N ⁇ N and the index of the region of interest is 1, the space correlation prediction vector generation unit 135 advances the process to step S187.
  • step S187 the spatial correlation prediction vector generation unit 135 determines whether the region of interest has the same motion information as the surrounding region B or not. When it is determined that the same motion information is included, the spatial correlation prediction vector generation unit 135 returns the process to step S184.
  • step S187 When it is determined in step S187 that the motion information of the attention area is different from that of the surrounding area B, the spatial correlation prediction vector generation unit 135 advances the process to step S188. Also, if it is determined in step S186 that the part mode of the prediction unit is not 2N ⁇ N, or if the part mode of the prediction unit is 2N ⁇ N but the index of the region of interest is not 1, the space The correlation prediction vector generation unit 135 proceeds with the process to step S188.
  • step S188 the spatial correlation prediction vector generation unit 135 determines whether the part mode of the prediction unit is N ⁇ 2 N (example in the lower left of FIG. 1) and the index of the region of interest (prediction unit to be processed) is 1. Determine if If it is determined that the part mode of the prediction unit is N ⁇ 2N and the index of the region of interest is 1, the space correlation prediction vector generation unit 135 advances the process to step S189.
  • step S189 the spatial correlation prediction vector generation unit 135 determines whether or not the region of interest has the same motion information as the surrounding region A. When it is determined that the same motion information is included, the spatial correlation prediction vector generation unit 135 returns the process to step S184.
  • step S189 When it is determined in step S189 that the motion information of the attention area is different from that of the surrounding area A, the spatial correlation prediction vector generation unit 135 advances the process to step S190.
  • step S188 if it is determined that the part mode of the prediction unit is not N ⁇ 2 N, or if it is determined that the part mode of the prediction unit is N ⁇ 2 N but the index of the region of interest is not 1 The correlation prediction vector generation unit 135 proceeds with the process to step S190.
  • step S190 the spatial correlation prediction vector generation unit 135 determines whether the part mode of the prediction unit is N ⁇ N (example in the lower right of FIG. 1) and the index of the region of interest (prediction unit to be processed) is 3 It is determined whether or not. If it is determined that the part mode of the prediction unit is N ⁇ N and the index of the region of interest is 3, the spatial correlation prediction vector generation unit 135 advances the process to step S191.
  • step S191 the spatial correlation prediction vector generation unit 135 determines whether the surrounding area X and the surrounding area A have the same motion information and the attention area has the same motion information as the surrounding area B. If it is determined that the peripheral region X and the peripheral region A have the same motion information and the region of interest has the same motion information as the peripheral region B, the spatial correlation prediction vector generation unit 135 returns the process to step S184.
  • step S191 if it is determined that the motion information of the peripheral region X is not the same as the peripheral region A, or it is determined that the motion information of the attention region is different from the peripheral region B, the spatial correlation prediction vector generation unit The processing proceeds to step S192.
  • step S 192 the spatial correlation prediction vector generation unit 135 determines whether the surrounding area X and the surrounding area B have the same motion information and the attention area has the same motion information as the surrounding area A. If it is determined that the peripheral region X and the peripheral region B have the same motion information and the region of interest has the same motion information as the peripheral region A, the spatial correlation prediction vector generation unit 135 returns the process to step S184.
  • step S192 if it is determined that the motion information of the peripheral region X is not the same as the peripheral region B, or it is determined that the motion information of the attention region is different from the peripheral region A, the spatial correlation prediction vector generation unit The processing proceeds to step S193.
  • step S190 determines whether the part mode of the prediction unit is N ⁇ N, or if the part mode of the prediction unit is N ⁇ N but the index of the region of interest is not 3
  • the correlation prediction vector generation unit 135 proceeds with the process to step S193.
  • step S193 the spatial correlation prediction vector generation unit 135 holds the motion vector of the peripheral region of interest, and holds the reference image index of the peripheral region of interest in step S194.
  • the spatial correlation prediction vector generation unit 135 returns the process to step S185.
  • the spatial correlation prediction vector generation unit 135 narrows down the prediction vector candidates (spatial correlation prediction vector) as described above.
  • the time disparity correlation predicted vector generation unit 136 determines whether the time correlation area use restriction flag is 0 in step S201. If it is determined that the time disparity correlation area use restriction flag is 1, the time disparity correlation prediction vector generation unit 136 ends the time disparity correlation prediction process, and returns the process to FIG.
  • step S201 If it is determined in step S201 that the temporal disparity correlation area use restriction flag is 0, the temporal disparity correlation prediction vector generation unit 136 proceeds to step S202 and determines a reference image index of the attention area. In addition, in step S203, the temporal disparity correlation prediction vector generation unit 136 determines a picture for which motion information is to be predicted. Furthermore, in step S204, the temporal disparity correlation prediction vector generation unit 136 determines a region (target correlation region) in which motion information is to be predicted.
  • step S205 the temporal disparity correlation prediction vector generation unit 136 determines whether the correlation region of interest is an intra predicted region or it can not be referred to. If it is determined that the target correlation area is an intra-predicted area, or it is determined that the target correlation area is not referable, the temporal disparity correlation prediction vector generation unit 136 proceeds with the process to step S206.
  • step S206 the temporal disparity correlation prediction vector generation unit 136 removes the motion vector of the correlation area of interest from the candidates for the prediction vector, ends the temporal disparity correlation prediction process, and returns the process to FIG.
  • step S205 If it is determined in step S205 that the target correlation area is a referenceable inter predicted area, the temporal disparity correlation prediction vector generation unit 136 advances the process to step S207.
  • step S207 the temporal disparity correlation prediction vector generation unit 136 determines whether the correlation region of interest is a region of L1 reference. If it is determined that the correlation region of interest is a region of L1 reference, the time disparity correlation prediction vector generation unit 136 advances the process to step S208.
  • the temporal disparity correlation prediction vector generation unit 136 acquires the motion vector of the correlation region of interest in step S208, acquires the reference image index in step S209, determines the jump flag of the reference image in step S210, and executes the process. Proceed to step S211. In addition, in step S207, when it is determined that the target correlation area is not the area of L1 reference, the temporal disparity correlation prediction vector generation unit 136 proceeds with the process to step S211.
  • step S211 the temporal disparity correlation prediction vector generation unit 136 determines whether the correlation region of interest is a region of L0 reference. If it is determined that the correlation region of interest is a region of L0 reference, the time disparity correlation prediction vector generation unit 136 advances the process to step S212.
  • the temporal disparity correlation prediction vector generation unit 136 acquires the motion vector of the correlation region of interest in step S212, acquires the reference image index in step S213, determines the jump flag of the reference image in step S214, and performs processing The process proceeds to step S221 in FIG. Further, when it is determined in step S211 in FIG. 24 that the target correlation area is not the area referring to L0, the time disparity correlation prediction vector generation unit 136 proceeds with the process to step S221 in FIG.
  • step S221 of FIG. 25 the temporal disparity correlation prediction vector generation unit 136 determines whether only the jump flag of L1 is 1 or the values of the jump flags of L0 / L1 are equal and there is a reference to L1. Do.
  • step S222 When it is determined that only the jump flag of L1 is 1 or when it is determined that the values of the jump flag of L0 / L1 are equal and there is a reference to L1, the time disparity correlation prediction vector generation unit 136 The process then proceeds to step S222.
  • step S222 the temporal disparity correlation prediction vector generation unit 136 obtains a vector of L1 reference.
  • step S223 the temporal disparity correlation prediction vector generation unit 136 obtains a reference image index with reference to L1, and the process proceeds to step S226.
  • step S221 it is determined that the interlace flag of L1 is not 1 or the interlace flag of L0 is also 0, and the values of the interlace flags of L0 / L1 are not equal, or there is no reference to L1. If it is determined that the time disparity correlation prediction vector generation unit 136 determines that the process proceeds to step S224.
  • step S224 the temporal disparity correlation prediction vector generation unit 136 obtains a vector of L0 reference.
  • step S225 the time disparity correlation predicted vector generation unit 136 obtains a reference image index of reference to L0, and the process proceeds to step S226.
  • step S226 the temporal disparity correlation prediction vector generation unit 136 sets the acquired L1 reference vector or the L0 reference vector as a prediction vector.
  • the temporal disparity correlation prediction vector generation unit 136 performs scaling of the vector using the distance to the reference image in the attention area or the correlation area, and sets the scaling result as a prediction vector.
  • step S226 the time disparity correlation predicted vector generation unit 136 returns the process to FIG. 24, ends the time disparity correlation prediction process, and returns the process to FIG.
  • step S231 the spatial correlation prediction vector generation unit 135 performs spatial correlation prediction processing to generate a spatial correlation prediction vector.
  • the temporal disparity correlation prediction vector generation unit 136 performs temporal disparity correlation prediction processing to generate a temporal disparity correlation prediction vector. Note that the time disparity correlation prediction process in this case is performed in the same manner as the case described with reference to the flowcharts of FIGS. 24 and 25.
  • step S233 the coding cost calculation unit 138 deletes overlapping vectors between the spatial correlation prediction vector generated in step S231 and the temporal disparity prediction vector generated in step S232.
  • the coding cost calculation unit 138 selects a vector closest to the motion vector of the region of interest out of the remaining vectors, creates a prediction vector index indicating the vector in step S234, and predicts the vector in step S235. I assume. When the process of step S235 ends, the coding cost calculation unit 138 ends the motion disparity vector prediction process, and returns the process to FIG.
  • the spatial correlation prediction vector generation unit 135 When the spatial correlation prediction process is started, the spatial correlation prediction vector generation unit 135 generates the peripheral area A motion vector, which is motion vector prediction processing for the peripheral area A (A0 and A1 in FIG. 9) in step S241 in FIG. Perform prediction processing.
  • step S242 the spatial correlation prediction vector generation unit 135 performs peripheral region B motion vector prediction processing, which is motion vector prediction processing for the peripheral region B (B0 to B2 in FIG. 9).
  • step S242 the spatial correlation prediction vector generation unit 135 ends the spatial correlation prediction process, and returns the process to FIG.
  • the spatial correlation prediction vector generation unit 135 selects the surrounding areas A0 and A1 (FIG. 9) one by one in step S251.
  • the selected peripheral region is referred to as a target peripheral region.
  • step S252 the spatial correlation prediction vector generation unit 135 determines whether the reference peripheral region can be referred to and is not intra and the reference list and the reference image index are equal to the target region.
  • the spatial correlation prediction vector generation unit 135 steps the processing. Proceed to S253.
  • step S253 the spatial correlation prediction vector generation unit 135 acquires the motion vector of the target surrounding area as a prediction vector.
  • the spatial correlation prediction vector generation unit 135 acquires a reference index of the focused neighboring area.
  • step S255 the space correlation prediction vector generation unit 135 performs scaling using the distance between the attention area and the reference image thereof, the distance between the space correlation area and the reference image, and the like to calculate a prediction vector.
  • the spatial correlation prediction vector generation unit 135 ends the surrounding area A motion vector prediction process, and returns the process to FIG.
  • step S252 if it is determined in step S252 that the region of interest is not a referenceable inter predicted region, or it is determined that the reference list of the region of interest and the reference image index are different from the region of interest
  • the prediction vector generation unit 135 proceeds with the process to step S256.
  • step S256 the spatial correlation prediction vector generation unit 135 determines whether the attention peripheral region is the peripheral region A1. If it is determined that the peripheral region is not the peripheral region A1, the process returns to step S251.
  • step S256 When it is determined in step S256 that the attention peripheral region is the peripheral region A1, the space correlation prediction vector generation unit 135 advances the process to step S257.
  • step S 257 the spatial correlation prediction vector generation unit 135 sequentially selects the surrounding areas A 0 and A 1 (FIG. 9) one by one.
  • the spatial correlation prediction vector generation unit 135 can refer to the peripheral region of interest and is non-intra, the reference list is different from the region of interest, the reference image index is equal to the region of interest, and the spatial correlation region is used. It is determined whether the restriction flag is 0 or not.
  • the correlation prediction vector generation unit 135 returns the process to step S253.
  • step S258 it is determined that the region of interest is not a referenceable inter predicted region, or the reference list is determined to be equal to the region of interest, or the reference image index is determined to be different from the region of interest Alternatively, if it is determined that the spatial correlation area use restriction flag is 1, the spatial correlation prediction vector generation unit 135 advances the process to step S259.
  • the spatial correlation prediction vector generation unit 135 can refer to the peripheral region of interest and is non-intra, whether the reference list is equal to the region of interest, and the spatial correlation region use restriction flag is 0 or not Determine
  • the spatial correlation prediction vector generation unit 135 performs processing when it is determined that the region of interest can be referred to, is not intra, the reference list is equal to the region of interest, and the spatial correlation region use restriction flag is 0. Is returned to step S253.
  • step S259 it is determined that the region of interest is not a referenceable inter predicted region, or the reference list is determined to be different from the region of interest, or the spatial correlation region use restriction flag is 1. If it is determined that the space correlation prediction vector is generated, the space correlation prediction vector generation unit 135 proceeds with the process to step S260.
  • the spatial correlation prediction vector generation unit 135 can refer to the peripheral region of interest and is non-intra, whether the reference list is different from the region of interest, and the spatial correlation region use restriction flag is 0 or not Determine
  • the spatial correlation prediction vector generation unit 135 performs processing when it is determined that the region of interest can be referred to, is not intra, the reference list is different from the region of interest, and the spatial correlation region use restriction flag is 0. Is returned to step S253.
  • step S260 it is determined that the region of interest is not a referenceable inter predicted region, or the reference list is determined to be equal to the region of interest, or the spatial correlation region use restriction flag is 1.
  • the process proceeds to step S261.
  • step S261 the spatial correlation prediction vector generation unit 135 determines whether the attention peripheral region is A1. If it is determined that the attention peripheral region is not A1, the process returns to step S257.
  • step S261 If it is determined in step S261 that the attention surrounding area is A1, the spatial correlation prediction vector generation unit 135 ends the surrounding area A motion vector prediction process, and returns the process to FIG.
  • the surrounding area B motion vector prediction process is performed in the same manner as the surrounding area A motion vector prediction process described with reference to the flowchart in FIG. 28 except that the surrounding area to be processed is B0 to B2. That is, each process of step S271 to step S281 of FIG. 29 is performed similarly to each process of step S251 to step S261 of FIG.
  • the spatial correlation prediction vector generation unit 135 returns the process to FIG.
  • the temporal disparity correlation prediction vector generation unit 136 can generate not only the motion correlation prediction vector but also the disparity correlation prediction vector. Therefore, the motion disparity prediction / compensation unit 115 can generate a prediction vector with high prediction accuracy even if the vector of the region of interest is a disparity vector. Thereby, the image coding apparatus 100 can suppress the reduction of the coding efficiency.
  • the correlation region determination unit 122 controls the use of the correlation region based on the relationship of the prediction direction, so that the spatial correlation prediction vector generation unit 135 and the time disparity correlation prediction vector generation unit 136 generate the prediction vector. It is possible to suppress the generation of unnecessary load such as generating a prediction vector with low prediction accuracy or breaking a process, and to reduce processing time and memory usage. Further, due to this limitation, the spatial correlation prediction vector generation unit 135 and the time disparity correlation prediction vector generation unit 136 can appropriately generate a prediction vector with high prediction accuracy, so that the coding efficiency can be improved. Can. In the case of the present technology, since the base view prediction method is limited, it is easy to extend from the conventional method.
  • FIG. 30 is a block diagram illustrating an exemplary main configuration of an image decoding apparatus which is an image processing apparatus.
  • An image decoding apparatus 300 shown in FIG. 30 is an apparatus corresponding to the image coding apparatus 100 of FIG. That is, the image decoding apparatus 300 decodes the encoded data (bit stream) generated by encoding the multi-view image by the image encoding apparatus 100 using the decoding method corresponding to the encoding method of the image encoding apparatus 100, Obtain a multi-view decoded image.
  • the image decoding apparatus 300 includes an accumulation buffer 301, a lossless decoding unit 302, an inverse quantization unit 303, an inverse orthogonal transformation unit 304, an operation unit 305, a loop filter 306, a screen rearrangement buffer 307, and A D / A converter 308 is provided.
  • the image decoding apparatus 300 further includes a decoded picture buffer 309, a selection unit 310, an intra prediction unit 311, a motion disparity compensation unit 312, and a selection unit 313.
  • the image decoding apparatus 300 includes a multiview decoded picture buffer 321.
  • the accumulation buffer 301 accumulates the transmitted encoded data, and supplies the encoded data to the lossless decoding unit 302 at a predetermined timing.
  • the lossless decoding unit 302 decodes the information supplied from the accumulation buffer 301 and encoded by the lossless encoding unit 106 in FIG. 14 by a method corresponding to the encoding method of the lossless encoding unit 106.
  • the lossless decoding unit 302 supplies the quantized coefficient data of the differential image obtained by the decoding to the inverse quantization unit 303.
  • the lossless decoding unit 302 refers to the information on the optimal prediction mode obtained by decoding the encoded data, and determines whether the intra prediction mode is selected as the optimal prediction mode or the inter prediction mode is selected. .
  • the lossless decoding unit 302 supplies the information on the optimal prediction mode to the intra prediction unit 311 or the motion disparity compensation unit 312 based on the determination result. That is, for example, when the intra prediction mode is selected as the optimum prediction mode in the image coding apparatus 100, intra prediction information etc., which is information on the optimum prediction mode, is supplied to the intra prediction unit 311. Also, for example, when the inter prediction mode is selected as the optimal prediction mode in the image coding apparatus 100, the inter prediction information etc., which is information on the optimal prediction mode, is supplied to the motion disparity compensation unit 312.
  • the lossless decoding unit 302 supplies the spatial correlation use restriction flag and the temporal correlation use restriction flag to the motion disparity compensation unit 312.
  • the inverse quantization unit 303 performs inverse quantization on the quantized coefficient data obtained by being decoded by the lossless decoding unit 302 using a method corresponding to the quantization method of the quantization unit 105 in FIG.
  • the data is supplied to the inverse orthogonal transform unit 304.
  • the inverse orthogonal transform unit 304 performs inverse orthogonal transform on the coefficient data supplied from the inverse quantization unit 303 in a method corresponding to the orthogonal transform method of the orthogonal transform unit 104 in FIG.
  • the inverse orthogonal transformation unit 304 obtains a difference image corresponding to the difference image before orthogonal transformation in the image coding apparatus 100 by the inverse orthogonal transformation processing.
  • the difference image obtained by the inverse orthogonal transformation is supplied to the calculation unit 305.
  • a predicted image is supplied to the calculation unit 305 from the intra prediction unit 311 or the motion disparity compensation unit 312 via the selection unit 313.
  • the operation unit 305 adds the difference image and the prediction image, and obtains a reconstructed image corresponding to the image before the prediction image is subtracted by the operation unit 103 of the image coding apparatus 100.
  • the arithmetic unit 305 supplies the reconstructed image to the loop filter 306.
  • the loop filter 306 appropriately performs loop filter processing including deblock filter processing, adaptive loop filter processing and the like on the supplied reconstructed image to generate a decoded image.
  • the loop filter 306 removes block distortion by performing deblocking filter processing on the reconstructed image.
  • the loop filter 306 improves the image quality by performing a loop filter process on the deblock filter process result (reconstructed image from which block distortion has been removed) using a Wiener filter. I do.
  • the type of filter processing performed by the loop filter 306 is arbitrary, and filter processing other than that described above may be performed. Also, the loop filter 306 may perform filter processing using the filter coefficient supplied from the image coding apparatus 100 of FIG.
  • the loop filter 306 supplies the decoded image which is the filter processing result to the screen rearrangement buffer 307 and the decoded picture buffer 309.
  • the filter processing by the loop filter 306 can be omitted. That is, the output of the arithmetic unit 305 can be stored in the decoded picture buffer 309 without being filtered.
  • the intra prediction unit 311 uses the pixel value of the pixel included in this image as the pixel value of the peripheral pixel.
  • the screen rearrangement buffer 307 rearranges the supplied decoded image. That is, the order of the frames rearranged for the order of encoding by the screen rearrangement buffer 102 in FIG. 14 is rearranged in the order of the original display.
  • the D / A conversion unit 308 D / A converts the decoded image supplied from the screen rearrangement buffer 307, and outputs it to a display (not shown) for display.
  • the decoded picture buffer 309 stores the supplied reconstructed image (as well as the view ID and POC of the image) and the decoded image (and the view ID and POC of the image). In addition, the decoded picture buffer 309 stores the reconstructed image (and the view ID of the image at a predetermined timing or based on an external request such as the intra prediction unit 311 or the motion disparity compensation unit 312).
  • the POC) and the decoded image (as well as the view ID and POC of the image) are supplied to the intra prediction unit 311 and the motion disparity compensation unit 312 via the selection unit 310.
  • the intra prediction unit 311 basically performs the same process as the intra prediction unit 114 in FIG. 14. However, the intra prediction unit 311 performs intra prediction only on a region in which a predicted image is generated by intra prediction at the time of encoding.
  • the motion disparity compensation unit 312 performs motion disparity compensation on the basis of the inter prediction information supplied from the lossless decoding unit 302, and generates a predicted image. Note that the motion disparity compensation unit 312 performs motion disparity compensation only on a region where inter prediction has been performed at the time of encoding, based on the inter prediction information supplied from the lossless decoding unit 302.
  • the motion disparity compensation unit 312 supplies the generated predicted image to the calculation unit 305 via the selection unit 313 for each region of the prediction processing unit.
  • the selection unit 313 supplies the predicted image supplied from the intra prediction unit 311 or the predicted image supplied from the motion disparity compensation unit 312 to the calculation unit 305.
  • the decoded picture buffer 309 stores only the image of the view to be processed (as well as the view ID and POC of the image), but the multiview decoded picture buffer 321 stores the image of each view (view) (and the image Store the view ID and POC). That is, the multiview decoded picture buffer 321 acquires the decoded image (and the view ID and POC of the image) supplied to the decoded picture buffer 309, and the decoded image (and the view of the image) together with the decoded picture buffer 309. Store the ID and POC).
  • the decoded picture buffer 309 erases the decoded image, but the multi-view decoded picture buffer 321 holds it as it is. Then, in accordance with the request of the decoded picture buffer 309 and the like, the stored decoded image (as well as the view ID and POC of the image) is supplied to the decoded picture buffer 309 as “the decoded image of the view not to be processed”.
  • the decoded picture buffer 309 transmits the “decoded image of the view not to be processed (and the view ID and POC of the image)” read from the multiview decoded picture buffer 321 to the motion disparity compensation unit 312 via the selection unit 310. Supply.
  • FIG. 31 is a block diagram showing a main configuration example of the motion disparity compensation unit 312. As shown in FIG.
  • the motion disparity compensation unit 312 includes a coding information storage buffer 331, a selection unit 332, a spatial correlation prediction vector generation unit 333, a temporal disparity correlation prediction vector generation unit 334, a selection unit 335, and an operation unit 336. And a predicted image generation unit 337.
  • the encoded information accumulation buffer 331 acquires mode information, differential motion disparity information, and prediction information obtained by the lossless decoding unit 302. Further, the encoded information storage buffer 331 stores the decoded motion disparity vector used in the predicted image generation unit 337. This motion disparity vector is used as a motion disparity vector of a surrounding area in processing for another area.
  • the coding information storage buffer 331 selects the mode information from the type of prediction vector specified in the prediction information of the spatial correlation prediction vector generation unit 333 or the time disparity correlation prediction vector generation unit 334 via the selection unit 332 (see FIG. It supplies to one corresponding to a spatial correlation prediction vector or a temporal disparity correlation prediction vector).
  • the encoded information storage buffer 331 supplies the motion disparity vector of the decoded peripheral region to the spatial correlation predicted vector generation unit 333 and the temporal disparity correlation predicted vector generation unit 334.
  • the coding information accumulation buffer 331 supplies the differential motion disparity vector included in the differential motion disparity information to the calculation unit 336. Also, the encoded information storage buffer 331 supplies the reference image index included in the prediction information to the predicted image generation unit 337.
  • the spatial correlation prediction vector generation unit 333 obtains the spatial correlation region use restriction flag extracted from the encoded data in the lossless decoding unit 302. In addition, the spatial correlation prediction vector generation unit 333 acquires mode information, a decoded motion disparity vector, and the like from the encoding information storage buffer 331 according to the spatial correlation region use restriction flag, and based on those information, the spatial correlation prediction vector Generate This generation method is the same as that of the spatial correlation prediction vector generation unit 135. However, in the case of the spatial correlation prediction vector generation unit 333, since the optimal inter prediction mode is determined in advance, the spatial correlation prediction vector may be generated for only that mode. The spatial correlation prediction vector generation unit 333 supplies the generated spatial correlation prediction vector to the calculation unit 336 via the selection unit 335.
  • the time disparity correlation predicted vector generation unit 334 acquires the time correlation region use restriction flag extracted from the encoded data in the lossless decoding unit 302. In addition, the time disparity correlation predicted vector generation unit 334 acquires mode information, a decoded motion disparity vector, and the like from the encoding information storage buffer 331 according to the time correlation area use restriction flag, and based on those information, time disparity correlation Generate a prediction vector. This generation method is the same as that of the time disparity correlation prediction vector generation unit 136. However, in the case of the time disparity correlation prediction vector generation unit 334, since the optimal inter prediction mode is determined in advance, the time disparity correlation prediction vector may be generated for only that mode. The time disparity correlation prediction vector generation unit 334 supplies the generated time disparity correlation prediction vector to the calculation unit 336 via the selection unit 335.
  • the selection unit 335 supplies the spatial correlation prediction vector to the calculation unit 336.
  • the selection unit 335 supplies the temporal disparity correlation prediction vector to the computing unit 336.
  • the operation unit 336 adds the differential motion disparity vector supplied from the encoded information storage buffer 331 to the spatial correlation predicted vector or temporal disparity correlation predicted vector supplied from the selection unit 335, and re-adds the motion disparity vector of the attention area. To construct.
  • the calculation unit 336 supplies the motion disparity vector of the re-constructed region of interest to the predicted image generation unit 337.
  • the predicted image generation unit 337 is supplied from the decoded picture buffer 309 with the motion disparity vector of the restructured attention area supplied from the operation unit 336, the reference image index supplied from the encoded information storage buffer 331, and the like.
  • a predicted image is generated using peripheral image pixel values that are images of the peripheral region.
  • the predicted image generation unit 337 supplies the generated predicted image pixel value to the selection unit 313.
  • the temporal disparity correlation prediction vector generation unit 334 can generate not only the motion correlation prediction vector but also the disparity correlation prediction vector. Therefore, the motion disparity compensation unit 312 can generate a prediction vector with high prediction accuracy even if the vector of the region of interest is a disparity vector. Thereby, the image decoding apparatus 300 can realize improvement in coding efficiency.
  • the spatial correlation prediction vector generation unit 333 and the time disparity correlation prediction vector generation unit 334 In reconstruction, generation of unnecessary load such as reconstruction of a prediction vector with low prediction accuracy or failure of processing can be suppressed, and processing time and memory usage can be reduced. Further, due to this limitation, the spatial correlation prediction vector generation unit 333 and the time disparity correlation prediction vector generation unit 334 can appropriately generate a prediction vector with high prediction accuracy, so that the coding efficiency can be improved. Can. In the case of the present technology, since the base view prediction method is limited, it is easy to extend from the conventional method.
  • step S301 the accumulation buffer 301 accumulates the transmitted bit stream.
  • step S302 the lossless decoding unit 302 decodes the bit stream (coded difference image information) supplied from the accumulation buffer 301. At this time, various information other than the difference image information included in the bit stream, such as intra prediction information and inter prediction information, is also decoded.
  • step S303 the inverse quantization unit 303 inversely quantizes the quantized orthogonal transformation coefficient obtained by the process of step S302.
  • step S304 the inverse orthogonal transformation unit 304 performs inverse orthogonal transformation on the orthogonal transformation coefficient that has been dequantized in step S303.
  • step S305 the intra prediction unit 311 or the motion disparity compensation unit 312 performs a prediction process using the supplied information.
  • the computing unit 305 adds the predicted image generated in step S305 to the difference image information obtained by the inverse orthogonal transformation in step S304. This generates a reconstructed image.
  • step S307 the loop filter 306 appropriately performs loop filter processing including deblock filter processing, adaptive loop filter processing, and the like on the reconstructed image obtained in step S306.
  • step S308 the screen rearrangement buffer 307 rearranges the decoded image generated by the filtering process in step S307. That is, the order of the frames rearranged for encoding by the screen rearrangement buffer 102 of the image encoding device 100 is rearranged in the original display order.
  • step S309 the D / A conversion unit 308 D / A converts the decoded image in which the order of the frames is rearranged.
  • the decoded image is output to a display (not shown) and displayed.
  • step S310 the decoded picture buffer 309 stores the decoded image obtained by the filtering process in step S307. This decoded image is used as a reference image in the inter prediction process.
  • step S310 ends, the decoding process ends.
  • the lossless decoding unit 302 determines in step S331 whether or not intra-prediction has been performed at the time of encoding of the region of interest to be processed. If it is determined that intra prediction has been performed, the lossless decoding unit 302 moves the process to step S332.
  • the intra prediction unit 311 acquires intra prediction mode information from the lossless decoding unit 302 in step S332, and generates a prediction image by intra prediction in step S333.
  • the intra prediction unit 311 ends the prediction process, and returns the process to FIG.
  • step S331 If it is determined in step S331 that the region of interest is a region where inter prediction has been performed, the lossless decoding unit 302 advances the process to step S334.
  • step S334 the motion disparity compensation unit 312 performs motion disparity compensation processing. When the motion disparity compensation process ends, the motion disparity compensation unit 312 ends the prediction process, and returns the process to FIG.
  • step S351 the encoded information storage buffer 331 stores the mode information, the motion disparity information, the prediction information, and the like decoded in step S351.
  • step S 352 the spatial correlation prediction vector generation unit 333, the time disparity correlation prediction vector generation unit 334, the selection unit 335, and the calculation unit 336 perform motion parallax vector generation processing to reconstruct the motion parallax vector of the attention area.
  • step S353 the predicted image generation unit 337 generates a predicted image using the motion disparity vector.
  • the predicted image generation unit 337 ends the motion disparity compensation processing, and returns the processing to FIG.
  • step S371 the coding information storage buffer 331 determines whether or not the mode is the skip mode based on the prediction information. If it is determined that the mode is the skip mode, the coding information storage buffer 331 causes the process to proceed to step S372.
  • step S372 the spatial correlation prediction vector generation unit 333 to the calculation unit 336 perform merge mode processing, and reconstruct a motion disparity vector in merge mode.
  • the merge mode process the same processes as the processes described with reference to the flowchart of FIG. 22 are performed.
  • the operation unit 336 ends the motion disparity vector generation process, and returns the process to FIG.
  • step S371 in FIG. 35 When it is determined in step S371 in FIG. 35 that the mode is not the skip mode, the coding information storage buffer 331 causes the process to proceed to step S373. In step S 373, the coding information storage buffer 331 determines from the prediction information whether or not it is in the merge mode. If it is determined that the merge mode is selected, the coding information storage buffer 331 returns the process to step S372 to execute merge mode processing.
  • step S 373 If it is determined in step S 373 that the merge mode is not set, the coding information storage buffer 331 causes the process to proceed to step S 374.
  • step S 374 the coding information storage buffer 331 acquires the index of the reference image.
  • step S 375 the coding information accumulation buffer 331 acquires a differential motion disparity vector.
  • step S 376 the spatial correlation prediction vector generation unit 333 or the temporal disparity correlation prediction vector generation unit 334 performs motion disparity vector prediction processing.
  • the motion disparity vector prediction process is performed in the same manner as the case described with reference to the flowchart of FIG. However, in this case, since the prediction method is determined, one of spatial correlation prediction processing and temporal disparity correlation prediction processing (one designated by prediction information) is performed.
  • step S377 the operation unit 336 adds the predicted motion vector reconstructed in step S376 and the differential motion disparity vector to reconstruct a motion disparity vector.
  • step S377 the operation unit 336 ends the motion disparity vector generation process, and returns the process to FIG.
  • the temporal disparity correlation prediction vector generation unit 334 can generate not only the motion correlation prediction vector but also the disparity correlation prediction vector. Therefore, the motion disparity compensation unit 312 can generate a prediction vector with high prediction accuracy even if the vector of the region of interest is a disparity vector. Thereby, the image decoding apparatus 300 can realize improvement in coding efficiency.
  • the spatial correlation prediction vector generation unit 333 and the time disparity correlation prediction vector generation unit 334 In reconstruction, generation of unnecessary load such as reconstruction of a prediction vector with low prediction accuracy or failure of processing can be suppressed, and processing time and memory usage can be reduced. Further, due to this limitation, the spatial correlation prediction vector generation unit 333 and the time disparity correlation prediction vector generation unit 334 can appropriately generate a prediction vector with high prediction accuracy, so that the coding efficiency can be improved. Can. In the case of the present technology, since the base view prediction method is limited, it is easy to extend from the conventional method.
  • the present technology is, for example, MPEG, H.
  • image information bit stream
  • orthogonal transformation such as discrete cosine transformation and motion compensation as in 26x etc. via satellite broadcasting, cable television, the Internet, or network media such as a cellular phone
  • the present technology can be applied to an image coding apparatus and an image decoding apparatus used for
  • the present technology can be applied to an image encoding device and an image decoding device that are used when processing on storage media such as an optical disk, a magnetic disk, and a flash memory.
  • the present technology can also be applied to motion prediction / compensation devices included in such image coding devices and image decoding devices.
  • the above-described series of processes may be performed by hardware or software.
  • a program that configures the software is installed on a computer.
  • the computer includes a computer incorporated in dedicated hardware, a general-purpose personal computer capable of executing various functions by installing various programs, and the like.
  • a central processing unit (CPU) 501 of a personal computer 500 executes various programs according to a program stored in a read only memory (ROM) 502 or a program loaded from a storage unit 513 to a random access memory (RAM) 503. Execute the process of The RAM 503 also appropriately stores data and the like necessary for the CPU 501 to execute various processes.
  • ROM read only memory
  • RAM random access memory
  • the CPU 501, the ROM 502, and the RAM 503 are connected to one another via a bus 504.
  • An input / output interface 510 is also connected to the bus 504.
  • the input / output interface 510 includes an input unit 511 such as a keyboard and a mouse, a display such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display), an output unit 512 such as a speaker, and a hard disk.
  • a communication unit 514 including a storage unit 513 and a modem is connected. The communication unit 514 performs communication processing via a network including the Internet.
  • a drive 515 is also connected to the input / output interface 510 as necessary, and removable media 521 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory are appropriately attached, and a computer program read from them is It is installed in the storage unit 513 as necessary.
  • a program that configures the software is installed from a network or a recording medium.
  • This recording medium is, for example, as shown in FIG. 37, a magnetic disc (including a flexible disc) on which a program is recorded, which is distributed for distributing the program to the user separately from the apparatus main body, an optical disc ( It consists only of removable media 521 such as CD-ROM (Compact Disc-Read Only Memory), DVD (Digital Versatile Disc), Magneto-Optical Disc (including MD (Mini Disc), or semiconductor memory etc. Instead, it is composed of the ROM 502 in which the program is recorded, which is distributed to the user in a state of being incorporated in the apparatus main body, a hard disk included in the storage unit 513, and the like.
  • a magnetic disc including a flexible disc
  • an optical disc It consists only of removable media 521 such as CD-ROM (Compact Disc-Read Only Memory), DVD (Digital Versatile Disc), Magneto-Optical Disc (including MD (Mini Disc), or semiconductor memory etc.
  • CD-ROM Compact Disc-Read Only Memory
  • DVD Digital Versa
  • the program executed by the computer may be a program that performs processing in chronological order according to the order described in this specification, in parallel, or when necessary, such as when a call is made. It may be a program to be processed.
  • the step of describing the program to be recorded on the recording medium is not limited to processing performed chronologically in the order described, but not necessarily parallel processing It also includes processing to be executed individually.
  • system represents the entire apparatus configured by a plurality of devices (apparatus).
  • the configuration described above as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configuration described as a plurality of devices (or processing units) in the above may be collectively configured as one device (or processing unit).
  • configurations other than those described above may be added to the configuration of each device (or each processing unit).
  • part of the configuration of one device (or processing unit) may be included in the configuration of another device (or other processing unit) if the configuration or operation of the entire system is substantially the same. . That is, the present technology is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present technology.
  • the image encoding device and the image decoding device include a transmitter or a receiver in optical satellite, cable broadcasting such as cable TV, distribution on the Internet, and distribution to terminals by cellular communication, etc.
  • the present invention can be applied to various electronic devices such as a recording apparatus which records an image on a medium such as a magnetic disk and a flash memory, or a reproduction apparatus which reproduces an image from the storage medium.
  • a recording apparatus which records an image on a medium such as a magnetic disk and a flash memory
  • a reproduction apparatus which reproduces an image from the storage medium.
  • FIG. 38 shows an example of a schematic configuration of a television set to which the embodiment described above is applied.
  • the television device 900 includes an antenna 901, a tuner 902, a demultiplexer 903, a decoder 904, a video signal processing unit 905, a display unit 906, an audio signal processing unit 907, a speaker 908, an external interface 909, a control unit 910, a user interface 911, And a bus 912.
  • the tuner 902 extracts a signal of a desired channel from a broadcast signal received via the antenna 901, and demodulates the extracted signal. Then, the tuner 902 outputs the coded bit stream obtained by demodulation to the demultiplexer 903. That is, the tuner 902 has a role as a transmission unit in the television apparatus 900 which receives a coded stream in which an image is coded.
  • the demultiplexer 903 separates the video stream and audio stream of the program to be viewed from the coded bit stream, and outputs the separated streams to the decoder 904. Also, the demultiplexer 903 extracts auxiliary data such as an EPG (Electronic Program Guide) from the encoded bit stream, and supplies the extracted data to the control unit 910. When the coded bit stream is scrambled, the demultiplexer 903 may perform descrambling.
  • EPG Electronic Program Guide
  • the decoder 904 decodes the video stream and audio stream input from the demultiplexer 903. Then, the decoder 904 outputs the video data generated by the decoding process to the video signal processing unit 905. Further, the decoder 904 outputs the audio data generated by the decoding process to the audio signal processing unit 907.
  • the video signal processing unit 905 reproduces the video data input from the decoder 904 and causes the display unit 906 to display a video. Also, the video signal processing unit 905 may cause the display unit 906 to display an application screen supplied via the network. Further, the video signal processing unit 905 may perform additional processing such as noise removal on the video data according to the setting. Furthermore, the video signal processing unit 905 may generate an image of a graphical user interface (GUI) such as a menu, a button, or a cursor, for example, and may superimpose the generated image on the output image.
  • GUI graphical user interface
  • the display unit 906 is driven by a drive signal supplied from the video signal processing unit 905, and displays an image on the image surface of a display device (for example, a liquid crystal display, a plasma display, or OELD (Organic ElectroLuminescence Display) (organic EL display)). Or display an image.
  • a display device for example, a liquid crystal display, a plasma display, or OELD (Organic ElectroLuminescence Display) (organic EL display)). Or display an image.
  • the audio signal processing unit 907 performs reproduction processing such as D / A conversion and amplification on audio data input from the decoder 904, and causes the speaker 908 to output audio. Further, the audio signal processing unit 907 may perform additional processing such as noise removal on the audio data.
  • the external interface 909 is an interface for connecting the television device 900 to an external device or a network.
  • a video stream or an audio stream received via the external interface 909 may be decoded by the decoder 904. That is, the external interface 909 also has a role as a transmission unit in the television apparatus 900 that receives the encoded stream in which the image is encoded.
  • the control unit 910 includes a processor such as a CPU, and memories such as a RAM and a ROM.
  • the memory stores a program executed by the CPU, program data, EPG data, data acquired via a network, and the like.
  • the program stored by the memory is read and executed by the CPU, for example, when the television device 900 is started.
  • the CPU controls the operation of the television apparatus 900 according to an operation signal input from, for example, the user interface 911 by executing a program.
  • the user interface 911 is connected to the control unit 910.
  • the user interface 911 has, for example, buttons and switches for the user to operate the television device 900, a receiver of remote control signals, and the like.
  • the user interface 911 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 910.
  • the bus 912 mutually connects the tuner 902, the demultiplexer 903, the decoder 904, the video signal processing unit 905, the audio signal processing unit 907, the external interface 909, and the control unit 910.
  • the decoder 904 has the function of the image decoding apparatus according to the above-described embodiment. Thus, when decoding an image in the television apparatus 900, it is possible to realize the suppression of the reduction in the coding efficiency.
  • FIG. 39 shows an example of a schematic configuration of a mobile phone to which the embodiment described above is applied.
  • the mobile phone 920 includes an antenna 921, a communication unit 922, an audio codec 923, a speaker 924, a microphone 925, a camera unit 926, an image processing unit 927, a multiplexing and separating unit 928, a recording and reproducing unit 929, a display unit 930, a control unit 931, an operation.
  • a unit 932 and a bus 933 are provided.
  • the antenna 921 is connected to the communication unit 922.
  • the speaker 924 and the microphone 925 are connected to the audio codec 923.
  • the operation unit 932 is connected to the control unit 931.
  • the bus 933 mutually connects the communication unit 922, the audio codec 923, the camera unit 926, the image processing unit 927, the demultiplexing unit 928, the recording / reproducing unit 929, the display unit 930, and the control unit 931.
  • the cellular phone 920 can transmit and receive audio signals, transmit and receive electronic mail or image data, capture an image, and record data in various operation modes including a voice call mode, a data communication mode, a shooting mode, and a videophone mode. Do the action.
  • the analog voice signal generated by the microphone 925 is supplied to the voice codec 923.
  • the audio codec 923 converts an analog audio signal into audio data, and A / D converts and compresses the converted audio data. Then, the audio codec 923 outputs the compressed audio data to the communication unit 922.
  • the communication unit 922 encodes and modulates audio data to generate a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921.
  • the communication unit 922 also amplifies and frequency-converts a radio signal received via the antenna 921 to obtain a reception signal.
  • the communication unit 922 demodulates and decodes the received signal to generate audio data, and outputs the generated audio data to the audio codec 923.
  • the audio codec 923 decompresses and D / A converts audio data to generate an analog audio signal. Then, the audio codec 923 supplies the generated audio signal to the speaker 924 to output audio.
  • the control unit 931 generates character data constituting an electronic mail in accordance with an operation by the user via the operation unit 932. Further, the control unit 931 causes the display unit 930 to display characters. Further, the control unit 931 generates electronic mail data in response to a transmission instruction from the user via the operation unit 932, and outputs the generated electronic mail data to the communication unit 922.
  • a communication unit 922 encodes and modulates electronic mail data to generate a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921. The communication unit 922 also amplifies and frequency-converts a radio signal received via the antenna 921 to obtain a reception signal.
  • the communication unit 922 demodulates and decodes the received signal to restore the e-mail data, and outputs the restored e-mail data to the control unit 931.
  • the control unit 931 causes the display unit 930 to display the content of the e-mail, and stores the e-mail data in the storage medium of the recording and reproduction unit 929.
  • the recording and reproducing unit 929 includes an arbitrary readable and writable storage medium.
  • the storage medium may be a built-in storage medium such as RAM or flash memory, and may be an externally mounted type such as a hard disk, magnetic disk, magneto-optical disk, optical disk, USB (Unallocated Space Bitmap) memory, or memory card Storage media.
  • the camera unit 926 captures an image of a subject to generate image data, and outputs the generated image data to the image processing unit 927.
  • the image processing unit 927 encodes the image data input from the camera unit 926, and stores the encoded stream in the storage medium of the storage and reproduction unit 929.
  • the demultiplexing unit 928 multiplexes the video stream encoded by the image processing unit 927 and the audio stream input from the audio codec 923, and the communication unit 922 multiplexes the multiplexed stream.
  • Output to The communication unit 922 encodes and modulates the stream to generate a transmission signal.
  • the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921.
  • the communication unit 922 also amplifies and frequency-converts a radio signal received via the antenna 921 to obtain a reception signal.
  • the transmission signal and the reception signal may include a coded bit stream.
  • the communication unit 922 demodulates and decodes the received signal to restore the stream, and outputs the restored stream to the demultiplexing unit 928.
  • the demultiplexing unit 928 separates the video stream and the audio stream from the input stream, and outputs the video stream to the image processing unit 927 and the audio stream to the audio codec 923.
  • the image processing unit 927 decodes the video stream to generate video data.
  • the video data is supplied to the display unit 930, and the display unit 930 displays a series of images.
  • the audio codec 923 decompresses and D / A converts the audio stream to generate an analog audio signal. Then, the audio codec 923 supplies the generated audio signal to the speaker 924 to output audio.
  • the image processing unit 927 has functions of the image encoding device and the image decoding device according to the above-described embodiment. Thus, reduction of coding efficiency can be suppressed at the time of encoding and decoding of an image in the mobile phone 920.
  • FIG. 40 shows an example of a schematic configuration of a recording and reproducing device to which the embodiment described above is applied.
  • the recording / reproducing device 940 encodes, for example, audio data and video data of the received broadcast program, and records the encoded data on a recording medium.
  • the recording and reproduction device 940 may encode, for example, audio data and video data acquired from another device and record the encoded data on a recording medium.
  • the recording / reproducing device 940 reproduces the data recorded on the recording medium on the monitor and the speaker, for example, in accordance with the user's instruction. At this time, the recording / reproducing device 940 decodes the audio data and the video data.
  • the recording / reproducing apparatus 940 includes a tuner 941, an external interface 942, an encoder 943, an HDD (Hard Disk Drive) 944, a disk drive 945, a selector 946, a decoder 947, an OSD (On-Screen Display) 948, a control unit 949, and a user interface. And 950.
  • the tuner 941 extracts a signal of a desired channel from a broadcast signal received via an antenna (not shown) and demodulates the extracted signal. Then, the tuner 941 outputs the coded bit stream obtained by demodulation to the selector 946. That is, the tuner 941 has a role as a transmission unit in the recording / reproducing apparatus 940.
  • the external interface 942 is an interface for connecting the recording and reproducing device 940 to an external device or a network.
  • the external interface 942 may be, for example, an IEEE 1394 interface, a network interface, a USB interface, or a flash memory interface.
  • video data and audio data received via the external interface 942 are input to the encoder 943. That is, the external interface 942 has a role as a transmission unit in the recording and reproducing device 940.
  • the encoder 943 encodes video data and audio data when the video data and audio data input from the external interface 942 are not encoded. Then, the encoder 943 outputs the coded bit stream to the selector 946.
  • the HDD 944 records an encoded bit stream obtained by compressing content data such as video and audio, various programs, and other data in an internal hard disk. Also, the HDD 944 reads these data from the hard disk when reproducing video and audio.
  • the disk drive 945 records and reads data on the attached recording medium.
  • the recording medium mounted on the disk drive 945 is, for example, a DVD disk (DVD-Video, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, etc.) or Blu-ray (registered trademark) disk, etc. It may be.
  • the selector 946 selects the coded bit stream input from the tuner 941 or the encoder 943 at the time of recording video and audio, and outputs the selected coded bit stream to the HDD 944 or the disk drive 945. Also, the selector 946 outputs the encoded bit stream input from the HDD 944 or the disk drive 945 to the decoder 947 at the time of reproduction of video and audio.
  • the decoder 947 decodes the coded bit stream to generate video data and audio data. Then, the decoder 947 outputs the generated video data to the OSD 948. Also, the decoder 904 outputs the generated audio data to an external speaker.
  • the OSD 948 reproduces the video data input from the decoder 947 and displays the video.
  • the OSD 948 may superimpose an image of a GUI such as a menu, a button, or a cursor on the video to be displayed.
  • the control unit 949 includes a processor such as a CPU, and memories such as a RAM and a ROM.
  • the memory stores programs executed by the CPU, program data, and the like.
  • the program stored by the memory is read and executed by the CPU, for example, when the recording and reproducing device 940 is started.
  • the CPU controls the operation of the recording / reproducing apparatus 940 in accordance with an operation signal input from, for example, the user interface 950 by executing a program.
  • the user interface 950 is connected to the control unit 949.
  • the user interface 950 includes, for example, buttons and switches for the user to operate the recording and reproducing device 940, a receiver of a remote control signal, and the like.
  • the user interface 950 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 949.
  • the encoder 943 has the function of the image coding apparatus according to the embodiment described above.
  • the decoder 947 has the function of the image decoding apparatus according to the above-described embodiment.
  • FIG. 41 illustrates an example of a schematic configuration of an imaging device to which the embodiment described above is applied.
  • the imaging device 960 captures an object to generate an image, encodes image data, and records the image data in a recording medium.
  • the imaging device 960 includes an optical block 961, an imaging unit 962, a signal processing unit 963, an image processing unit 964, a display unit 965, an external interface 966, a memory 967, a media drive 968, an OSD 969, a control unit 970, a user interface 971, and a bus. 972 is provided.
  • the optical block 961 is connected to the imaging unit 962.
  • the imaging unit 962 is connected to the signal processing unit 963.
  • the display unit 965 is connected to the image processing unit 964.
  • the user interface 971 is connected to the control unit 970.
  • the bus 972 mutually connects the image processing unit 964, the external interface 966, the memory 967, the media drive 968, the OSD 969, and the control unit 970.
  • the optical block 961 has a focus lens, an aperture mechanism, and the like.
  • the optical block 961 forms an optical image of a subject on the imaging surface of the imaging unit 962.
  • the imaging unit 962 includes an image sensor such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS), and converts an optical image formed on an imaging surface into an image signal as an electrical signal by photoelectric conversion. Then, the imaging unit 962 outputs the image signal to the signal processing unit 963.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the signal processing unit 963 performs various camera signal processing such as knee correction, gamma correction, and color correction on the image signal input from the imaging unit 962.
  • the signal processing unit 963 outputs the image data after camera signal processing to the image processing unit 964.
  • the image processing unit 964 encodes the image data input from the signal processing unit 963 to generate encoded data. Then, the image processing unit 964 outputs the generated encoded data to the external interface 966 or the media drive 968. The image processing unit 964 also decodes encoded data input from the external interface 966 or the media drive 968 to generate image data. Then, the image processing unit 964 outputs the generated image data to the display unit 965.
  • the image processing unit 964 may output the image data input from the signal processing unit 963 to the display unit 965 to display an image. The image processing unit 964 may superimpose the display data acquired from the OSD 969 on the image to be output to the display unit 965.
  • the OSD 969 generates an image of a GUI such as a menu, a button, or a cursor, for example, and outputs the generated image to the image processing unit 964.
  • a GUI such as a menu, a button, or a cursor
  • the external interface 966 is configured as, for example, a USB input / output terminal.
  • the external interface 966 connects the imaging device 960 and the printer, for example, when printing an image.
  • a drive is connected to the external interface 966 as necessary.
  • removable media such as a magnetic disk or an optical disk may be attached to the drive, and a program read from the removable media may be installed in the imaging device 960.
  • the external interface 966 may be configured as a network interface connected to a network such as a LAN or the Internet. That is, the external interface 966 has a role as a transmission unit in the imaging device 960.
  • the recording medium mounted in the media drive 968 may be, for example, any readable / writable removable medium such as a magnetic disk, a magneto-optical disk, an optical disk, or a semiconductor memory.
  • the recording medium may be fixedly attached to the media drive 968, and a non-portable storage unit such as, for example, a built-in hard disk drive or a solid state drive (SSD) may be configured.
  • SSD solid state drive
  • the control unit 970 includes a processor such as a CPU, and memories such as a RAM and a ROM.
  • the memory stores programs executed by the CPU, program data, and the like.
  • the program stored by the memory is read and executed by the CPU, for example, when the imaging device 960 starts up.
  • the CPU controls the operation of the imaging device 960 according to an operation signal input from, for example, the user interface 971 by executing a program.
  • the user interface 971 is connected to the control unit 970.
  • the user interface 971 includes, for example, buttons and switches for the user to operate the imaging device 960.
  • the user interface 971 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 970.
  • the image processing unit 964 has functions of the image coding device and the image decoding device according to the above-described embodiment. Thereby, reduction of encoding efficiency can be suppressed at the time of encoding and decoding of the image in the imaging device 960.
  • the method of transmitting such information is not limited to such an example.
  • the information may be transmitted or recorded as separate data associated with the coded bit stream without being multiplexed into the coded bit stream.
  • the term “associate” allows an image (a slice or a block, which may be a part of an image) included in a bitstream to be linked at the time of decoding with information corresponding to the image. Means That is, the information may be transmitted on a different transmission path from the image (or bit stream).
  • the information may be recorded on a recording medium (or another recording area of the same recording medium) different from the image (or bit stream).
  • the information and the image (or bit stream) may be associated with each other in any unit such as, for example, a plurality of frames, one frame, or a part in a frame.
  • An image processing apparatus comprising: a predicted vector generation unit that generates the predicted vector using a vector of a correlation region whose use is not restricted by the restriction unit.
  • the restriction unit performs prediction of a parallax direction and prohibits use of a correlation area at a different time of the same view as the attention area.
  • the restriction unit prohibits the use of a correlation area of a target area at the same time as the target area at a different time of the same view as the target area, which is a correlation area of a target area for performing prediction only in the parallax direction 1) or the image processing apparatus as described in (2).
  • An image processing method of an image processing apparatus A restriction unit restricts use of a correlation area for obtaining a candidate of a prediction vector which is a prediction value of a vector of the attention area according to the prediction direction of the attention area of the multi-viewpoint image;
  • a receiving unit for receiving restriction information for restricting a correlation area for obtaining a candidate of a prediction vector which is a prediction value of a vector of a region of interest in the multi-viewpoint image;
  • An image processing apparatus comprising: a predicted vector generation unit configured to generate the predicted vector using a vector of a correlation region that is not prohibited from being used by the restriction information received by the reception unit.
  • An image processing method of an image processing apparatus receives restriction information for restricting a correlation area for obtaining a candidate of a prediction vector which is a prediction value of a vector of an attention area of the multi-viewpoint image, The image processing method, wherein a prediction vector generation unit generates the prediction vector using a vector of a correlation region that is not prohibited from use by the received restriction information.
  • Reference Signs List 100 image coding apparatus, 115 motion disparity prediction / compensation unit, 121 multiview decoded picture buffer, 122 correlation region determination unit, 131 motion disparity vector search unit, 132 predicted image generation unit, 133 coded information storage buffer, 134 selection unit 1, 135 spatial correlation prediction vector generation unit, 136 time parallax correlation prediction vector generation unit, 137 selection unit, 138 encoding cost calculation unit, 139 mode determination unit, 300 image decoding apparatus, 312 motion parallax compensation unit, 321 multiview decoded picture Buffer, 331 coding information storage buffer, 332 selection unit, 333 spatial correlation prediction vector generation unit, 334 temporal disparity correlation prediction vector generation unit, 335 selection unit, 336 operation unit, 337 prediction image Generating unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Image Processing (AREA)

Abstract

本技術は、符号化効率の低減を抑制することができるようにする画像処理装置および方法に関する。多視点画像の符号化における予測画像生成の際に、注目領域の予測方向に応じて、前記注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域の使用を制限する制限部と、前記制限部により使用が制限されていない相関領域のベクトルを用いて前記予測ベクトルを生成する予測ベクトル生成部とを備える。本開示は画像処理装置に適用することができる。

Description

画像処理装置および方法
 本開示は、画像処理装置および方法に関し、特に、符号化効率を向上させることができるようにした画像処理装置および方法に関する。
 近年、画像情報をデジタルとして取り扱い、その際、効率の高い情報の伝送、蓄積を目的とし、画像情報特有の冗長性を利用して、離散コサイン変換等の直交変換と動き補償により圧縮するMPEG(Moving Picture Experts Group)などの方式に準拠した装置が、放送局などの情報配信、及び一般家庭における情報受信の双方において普及した。
 特に、MPEG2(ISO(International Organization for Standardization)/IEC(International Electrotechnical Commission) 13818-2)は、汎用画像符号化方式として定義されており、飛び越し走査画像及び順次走査画像の双方、並びに標準解像度画像及び高精細画像を網羅する標準で、プロフェッショナル用途及びコンシューマ用途の広範なアプリケーションに現在広く用いられている。MPEG2圧縮方式を用いることにより、例えば720×480画素を持つ標準解像度の飛び越し走査画像であれば4~8Mbps、1920×1088画素を持つ高解像度の飛び越し走査画像であれば18~22Mbpsの符号量(ビットレート)を割り当てることで、高い圧縮率と良好な画質の実現が可能である。
 MPEG2は主として放送用に適合する高画質符号化を対象としていたが、MPEG1より低い符号量(ビットレート)、つまりより高い圧縮率の符号化方式には対応していなかった。携帯端末の普及により、今後そのような符号化方式のニーズは高まると思われ、これに対応してMPEG4符号化方式の標準化が行われた。画像符号化方式に関しては、1998年12月にISO/IEC 14496-2としてその規格が国際標準に承認された。
 更に、近年、当初テレビ会議用の画像符号化を目的として、H.26L (ITU-T(International Telecommunication Union Telecommunication Standardization Sector) Q6/16 VCEG(Video Coding Expert Group))という標準の規格化が進んでいる。H.26LはMPEG2やMPEG4といった従来の符号化方式に比べ、その符号化、復号化により多くの演算量が要求されるものの、より高い符号化効率が実現されることが知られている。また、MPEG4の活動の一環として、このH.26Lをベースに、H.26Lではサポートされない機能をも取り入れ、より高い符号化効率を実現する標準化がJoint Model of Enhanced-Compression Video Codingとして行われた。
 標準化のスケジュールとしては、2003年3月にはH.264及びMPEG-4 Part10 (Advanced Video Coding、以下AVCと記す)という名の元に国際標準となった。
 しかしながら、マクロブロックサイズを16画素×16画素とするのは、次世代符号化方式の対象となるような、UHD(Ultra High Definition;4000画素×2000画素)といった大きな画枠に対しては、最適ではない恐れがあった。 
 そこで、AVCより更なる符号化効率の向上を目的として、ITU-Tと、ISO/IECの共同の標準化団体であるJCTVC(Joint Collaboration Team - Video Coding)により、HEVC(High Efficiency Video Coding)と呼ばれる符号化方式の標準化が進められている(例えば、非特許文献1参照)。
 このHEVC符号化方式においては、AVCにおけるマクロブロックと同様の処理単位としてコーディングユニット(CU(Coding Unit))が定義されている。このCUは、AVCのマクロブロックのようにサイズが16×16画素に固定されず、それぞれのシーケンスにおいて、画像圧縮情報中において指定される。
 ところで、AVCにおいて定義されているメジアン予測を用いた動きベクトルの符号化を改善するため、”Spatial Predictor”だけでなく、”Temporal Predictor”及び”Spatio-Temporal Predictor”も予測動きベクトルの候補にすることができるようにする方法が考えられた(例えば、非特許文献2参照)。
 また、動き情報の符号化方式の1つとして、Merge_FlagとMerge_Left_Flagが伝送される、Motion Partition Mergingと呼ばれる手法が提案されている(例えば、非特許文献3参照)。
Thomas Wiegand, Woo-Jin Han, Benjamin Bross, Jens-Rainer Ohm, Gary J. Sullivan, "Working Draft 1 of High-Efficiency Video Coding ", JCTVC-C403, Joint Collaborative Team on Video Coding (JCT-VC)of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG113rd Meeting: Guangzhou, CN, 7-15 October, 2010 Joel Jung,Guillaume Laroche,"Competition-Based Scheme for Motion Vector Selection and Coding", VCEG-AC06,ITU - Telecommunications Standardization SectorSTUDY GROUP 16 Question 6Video Coding Experts Group (VCEG)29th Meeting: Klagenfurt, Austria, 17-18 July, 2006 Martin Winken, Sebastian Bosse, Benjamin Bross, Philipp Helle, Tobias Hinz, Heiner Kirchhoffer, Haricharan Lakshman, Detlev Marpe, Simon Oudin, Matthias Preiss, Heiko Schwarz, Mischa Siekmann, Karsten Suehring, and Thomas Wiegand,"Description of video coding technology proposed by Fraunhofer HHI",JCTVC-A116,April,2010
 しかしながら、同一視点内における処理しか示されておらず、多視点符号化の場合に、視点間を跨るベクトルの予測ができず、符号化効率が低減する恐れがあった。
 本開示は、このような状況に鑑みてなされたものであり、符号化効率の低減を抑制することを目的とする。
 本開示の一側面は、多視点画像の注目領域の予測方向に応じて、前記注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域の使用を制限する制限部と、前記制限部により使用が制限されていない相関領域のベクトルを用いて前記予測ベクトルを生成する予測ベクトル生成部とを備える画像処理装置である。
 前記制限部は、視差方向の予測を行う、前記注目領域と同一ビューの異なる時刻の相関領域の使用を禁止することができる。
 前記制限部は、視差方向のみの予測を行う注目領域の相関領域であって、時間方向の予測を行う、前記注目領域と同一ビューの異なる時刻の相関領域の使用を禁止することができる。
 前記制限部は、視差方向の予測を行う、前記注目領域と異なるビューの同一時刻の相関領域の使用を禁止することができる。
 前記制限部は、前記相関領域の制限を示す制限情報を生成することができる。
 前記制限部により生成された制限情報を伝送する伝送部をさらに備えることができる。
 本開示の一側面は、また、画像処理装置の画像処理方法であって、制限部が、多視点画像の注目領域の予測方向に応じて、前記注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域の使用を制限し、予測ベクトル生成部が、使用が制限されていない相関領域のベクトルを用いて前記予測ベクトルを生成する画像処理方法である。
 本開示の他の側面は、多視点画像の注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域を制限する制限情報を受け取る受け取り部と、前記受け取り部により受け取られた前記制限情報により使用が禁止されていない相関領域のベクトルを用いて前記予測ベクトルを生成する予測ベクトル生成部とを備える画像処理装置である。
 本開示の他の側面は、また、画像処理装置の画像処理方法であって、受け取り部が、多視点画像の注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域を制限する制限情報を受け取り、予測ベクトル生成部が、受け取られた前記制限情報により使用が禁止されていない相関領域のベクトルを用いて前記予測ベクトルを生成する画像処理方法である。
 本開示の一側面においては、多視点画像の注目領域の予測方向に応じて、注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域の使用が制限され、使用が制限されていない相関領域のベクトルを用いて予測ベクトルが生成される。
 本開示の他の側面においては、多視点画像の注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域を制限する制限情報が受け取られ、受け取られた制限情報により使用が禁止されていない相関領域のベクトルを用いて予測ベクトルが生成される。
 本開示によれば、画像を処理することができる。特に、符号化効率の低減を抑制することができる。
予測ユニットの種類の例を説明する図である。 マージモードの空間相関領域における周辺領域の例を説明する図である。 マージモードの時間相関領域において、参照画像インデックス決定で使用する周辺領域の例を説明する図である。 マージモードの時間相関ブロックにおける参照画像インデックスの決定条件の例を示す図である。 時間相関領域の決定方法の例を説明する図である。 時間相関領域を含む画像の決定方法の例を説明する図である。 注目領域と時間相関領域の位置関係の例を説明する図である。 時間相関領域の動きベクトルのスケーリングの例を示す図である。 マージモード以外の空間相関領域の周辺領域の例を説明する図である。 参照画像インデックスが異なる空間相関領域の動きベクトルのスケーリングの例を示す図である。 3視点画像の参照関係の例を示す図である。 時間相関領域に対する制限の例を説明する図である。 空間相関領域に対する制限の例を説明する図である。 画像符号化装置の主な構成例を示すブロック図である。 動き視差予測・補償部の主な構成例を示すブロック図である。 時間相関ブロックと空間相関ブロックの使用条件の例を示す図である。 シーケンスパラメータセットのシンタックスの例を示す図である。 スライスヘッダのシンタックスの例を示す図である。 符号化処理の流れの例を説明するフローチャートである。 インター動き予測処理の流れの例を説明するフローチャートである。 制限判定処理の流れの例を説明するフローチャートである。 マージモード処理の流れの例を説明するフローチャートである。 空間相関予測処理の流れの例を説明するフローチャートである。 時間視差相関予測処理の流れの例を説明するフローチャートである。 時間視差相関予測処理の流れの例を説明する、図24に続くフローチャートである。 動き視差ベクトル予測処理の流れの例を説明するフローチャートである。 空間相関予測処理の流れの、他の例を説明するフローチャートである。 周辺領域A動きベクトル予測処理の流れの例を説明するフローチャートである。 周辺領域B動きベクトル予測処理の流れの例を説明するフローチャートである。 画像復号装置の主な構成例を示すブロック図である。 動き視差補償部の主な構成例を示すブロック図である。 復号処理の流れの例を説明するフローチャートである。 予測処理の流れの例を説明するフローチャートである。 動き視差補償処理の流れの例を説明するフローチャートである。 動き視差ベクトル生成処理の流れの例を説明するフローチャートである。 視差と奥行きについて説明する図である。 パーソナルコンピュータの主な構成例を示すブロック図である。 テレビジョン装置の概略的な構成の一例を示すブロック図である。 携帯電話機の概略的な構成の一例を示すブロック図である。 記録再生装置の概略的な構成の一例を示すブロック図である。 撮像装置の概略的な構成の一例を示すブロック図である。
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
 1.第1の実施の形態(画像符号化装置)
 2.第2の実施の形態(画像復号装置)
 3.第3の実施の形態(コンピュータ)
 4.第4の実施の形態(テレビジョン受像機)
 5.第5の実施の形態(携帯電話機)
 6.第6の実施の形態(記録再生装置)
 7.第7の実施の形態(撮像装置)
 <1.第1の実施の形態>
 [本明細書におけるデプス画像(視差画像)の説明]
 図36は、視差と奥行きについて説明する図である。
 図36に示すように、被写体Mのカラー画像が、位置C1に配置されたカメラc1と位置C2に配置されたカメラc2により撮影される場合、被写体Mの、カメラc1(カメラc2)からの奥行方向の距離である奥行きZは、以下の式(a)で定義される。
Figure JPOXMLDOC01-appb-M000001
 なお、Lは、位置C1と位置C2の水平方向の距離(以下、カメラ間距離という)である。また、dは、カメラc1で撮影されたカラー画像上の被写体Mの位置の、カラー画像の中心からの水平方向の距離u1から、カメラc2で撮影されたカラー画像上の被写体Mの位置の、カラー画像の中心からの水平方向の距離u2を減算した値、即ち視差である。さらに、fは、カメラc1の焦点距離であり、式(a)では、カメラc1とカメラc2の焦点距離は同一であるものとしている。
 式(a)に示すように、視差dと奥行きZは、一意に変換可能である。従って、本明細書では、カメラc1とカメラc2により撮影された2視点のカラー画像の視差dを表す画像と奥行きZを表す画像とを総称して、デプス画像(視差画像)とする。
 なお、デプス画像(視差画像)は、視差dまたは奥行きZを表す画像であればよく、デプス画像(視差画像)の画素値としては、視差dまたは奥行きZそのものではなく、視差dを正規化した値、奥行きZの逆数1/Zを正規化した値等を採用することができる。
 視差dを8bit(0~255)で正規化した値Iは、以下の式(b)により求めることができる。なお、視差dの正規化ビット数は8bitに限定されず、10bit,12bitなど他のビット数にすることも可能である。
Figure JPOXMLDOC01-appb-M000002
 なお、式(b)において、Dmaxは、視差dの最大値であり、Dminは、視差dの最小値である。最大値Dmaxと最小値Dminは、1画面単位で設定されてもよいし、複数画面単位で設定されてもよい。
 また、奥行きZの逆数1/Zを8bit(0~255)で正規化した値yは、以下の式(c)により求めることができる。なお、奥行きZの逆数1/Zの正規化ビット数は8bitに限定されず、10bit,12bitなど他のビット数にすることも可能である。
Figure JPOXMLDOC01-appb-M000003
 なお、式(c)において、Zfarは、奥行きZの最大値であり、Znearは、奥行きZの最小値である。最大値Zfarと最小値Znearは、1画面単位で設定されてもよいし、複数画面単位で設定されてもよい。
 このように、本明細書では、視差dと奥行きZとは一意に変換可能であることを考慮して、視差dを正規化した値Iを画素値とする画像と、奥行きZの逆数1/Zを正規化した値yを画素値とする画像とを総称して、デプス画像(視差画像)とする。ここでは、デプス画像(視差画像)のカラーフォーマットは、YUV420又はYUV400であるものとするが、他のカラーフォーマットにすることも可能である。
 なお、デプス画像(視差画像)の画素値としてではなく、値I又は値yの情報自体に着目する場合には、値I又は値yを、デプス情報(視差情報)とする。更に、値I又は値yをマッピングしたものをデプスマップ(視差マップ)とする。
 [動き予測]
 AVC(Advanced Video Coding)やHEVC(High Efficiency Video Coding)等の画像符号化においては、時間方向(フレーム間)の相関を利用した動き予測が行われる。
 このような予測処理の処理単位として、AVCにおいては、マクロブロックやサブマクロブロックといった階層構造のブロックが規定されているが、HEVCにおいては、コーディングユニット(CU(Coding Unit))が規定されている。
 CUは、Coding Tree Block(CTB)とも呼ばれ、AVCにおけるマクロブロックと同様の役割を果たす、ピクチャ単位の画像の部分領域である。後者は、16×16画素の大きさに固定されているのに対し、前者の大きさは固定されておらず、それぞれのシーケンスにおいて、画像圧縮情報中において指定されることになる。
 例えば、出力となる符号化データに含まれるシーケンスパラメータセット(SPS(Sequence Parameter Set))において、CUの最大サイズ(LCU(Largest Coding Unit))と最小サイズ((SCU(Smallest Coding Unit))が規定される。
 それぞれのLCU内においては、SCUのサイズを下回らない範囲で、split-flag=1とすることにより、より小さなサイズのCUに分割することができる。2N×2Nの大きさのCUは、split_flagの値が「1」である時、1つ下の階層となる、N×Nの大きさのCUに分割される。
 更に、CUは、イントラ若しくはインター予測の処理単位となる領域(ピクチャ単位の画像の部分領域)である予測ユニット(Prediction Unit(PU))に分割され、また、直交変換の処理単位となる領域(ピクチャ単位の画像の部分領域)である、変換ユニット(Transform Unit(TU))に分割される。現在、HEVCにおいては、4×4及び8×8に加え、16×16及び32×32直交変換を用いることが可能である。
 以上のHEVCのように、CUを定義し、そのCUを単位として各種処理を行うような符号化方式の場合、AVCにおけるマクロブロックはLCUに相当すると考えることができる。ただし、CUは階層構造を有するので、その最上位階層のLCUのサイズは、例えば128×128画素のように、AVCのマクロブロックより大きく設定されることが一般的である。
 なお、以下において、「領域」には、上述した各種領域(例えば、マクロブロック、サブマクロブロック、LCU、CU、SCU、PU、およびTU等)を全て含む(それらのいずれであってもよい)。もちろん、上述した以外の単位が含まれてもよいし、説明の内容に応じて不可能な単位は、適宜、除外するものとする。
 図1は、符号化処理単位であるCUに対する、予測処理単位である予測ユニット(PU)の構成例を示す。図1に示されるように、1CUに対して4種類のPUを形成することができる。図1に示される4つの大きな正方形がCUを示し、その内部の長方形若しくは正方形がPUを示す。数字は、各PUのインデックスを示すものであり、画像の内容を示すものではない。
 図1に示されるように、左上の例の場合、CUは1つのPU(2N×2N)により構成される。すなわち、この場合、CUとPUは等価である。また、右上の例の場合、CUは、上下に2分割され、2つの横長のPU(2N×N)により構成される。さらに、左下の例の場合、CUは、左右に2分割され、2つの縦長のPU(N×2N)により構成される。また、右下の例の場合、CUは、上下左右に2分割(合計4分割)され、4つの正方形のPU(N×N)により構成される。この中のいずれのパターンが適用されるかは、画像の内容(予測結果のコスト関数値)により決定される。
 ところで、非特許文献3には、動き情報の符号化方式の1つとして、Motion Partition Mergingと呼ばれる手法(マージモード)が提案されている。この手法においては、MergeFlagと、MergeLeftFlagという、2つのflagが、マージモードに関する情報であるマージ情報として伝送される。MergeFlag=1は、処理対象である注目領域Xの動き情報が、注目領域の上に隣接する周辺領域T、若しくは、注目領域の左に隣接する周辺領域Lの動き情報と同一であることを示す。この時、マージ情報には、MergeLeftFlagが含められ、伝送される。MergeFlag=0は、注目領域Xの動き情報が、周辺領域Tおよび周辺領域Lのいずれの動き情報とも異なることを示す。この場合、注目領域Xの動き情報が伝送される。
 注目領域Xの動き情報が、周辺領域Lの動き情報と同一である場合、MergeFlag=1、かつ、MergeLeftFlag=1となる。注目領域Xの動き情報が、周辺領域Tの動き情報と同一である場合、MergeFlag=1、かつ、MergeLeftFlag=0となる。
 なお、このようなマージモードにおいて、空間的な周辺領域LおよびTだけでなく、時間的な周辺領域(時間相関領域)も、注目領域Xとマージさせる領域の候補とすることが考えられている。
 図1の例における各予測ユニット(PU)の周辺領域は、図2に示されるようになる。例えば、図1の左上の例のインデックス0の予測ユニットは、図2の左上に示される例の領域A乃至領域Dを周辺領域とする。また、例えば、図1の右上の例のインデックス1の予測ユニットは、図2の右上に示される例の領域A乃至領域Dを周辺領域とする。さらに、例えば、図1の左下の例のインデックス1の予測ユニットは、図2の左下に示される例の領域A乃至領域Dを周辺領域とする。また、例えば、図1の右下の例のインデックス3の予測ユニットは、図2の右下に示される例の領域A乃至領域Dを周辺領域とする。
 また、参照画像インデックスは、図3に示されるように、処理対象である注目領域(Current Block)に対して左に隣接する周辺領域A、上に隣接する周辺領域B、および右上に隣接する周辺領域Cの参照画像インデックスに基づいて図4に示される表のように決定される。
 図4に示される表において、左から2番目乃至4番目の列は、それぞれ、周辺領域A乃至周辺領域Cの参照画像インデックスの状態を表している。左から1列目は、決定された参照画像インデックスである。「x」、「y」、および「z」は、それぞれ、任意の自然数を示し、「-1」は、参照不可であることを示している。
 周辺領域A乃至周辺領域Cのうち、参照可能な領域が1つしかない場合、そのブロックの参照画像インデックスを使う。また、周辺領域A乃至周辺領域Cのうち、参照可能な領域が2つある場合、最小の参照画像インデックスを使う。さらに、周辺領域A乃至周辺領域Cの全てが参照不可の場合、参照画像インデックスを0とする。
 処理対象である注目領域に対して時間的な周辺に位置する時間相関領域は、図5に示されるように決定される。図5において、左が処理対象である注目ピクチャ(CurrPic)の一部の領域を示し、その中の左上の四角が注目領域(CurrPU)を示す。また、図5の右が注目ピクチャの時間的に周辺に位置する時間相関ピクチャ(colPic)の一部の領域を示している。この時間相関ピクチャにおいて、注目領域の右下の画素と同じ位置の画素を含む領域を時間相関領域(colPU)とする。この領域が参照不可の場合、復号領域の中央の画素と同じ位置の画素を含む領域を時間相関領域(colPU)とする。
 また、時間相関ピクチャは、図6に示されるように決定される。例えば、注目ピクチャがBピクチャで、collocated_from_l0_flagが0の場合、リストL1の参照画像インデックス0のピクチャが時間相関ピクチャとされる。また、注目ピクチャが、Pピクチャ若しくはBピクチャで、collocated_from_l0_flagが1の場合、リストL0の参照画像インデックス0のピクチャが時間相関ピクチャとされる。
 さらに、注目ピクチャと時間相関ピクチャとの位置関係によって、図7に示されるように、飛び越しフラグが設定される。例えば、図7の上に示されるように、時間相関ピクチャの参照画像の時間的位置が注目ピクチャを飛び越す(時間相関ピクチャと参照画像の間に注目ピクチャが存在する)場合、飛び越しフラグが1に設定される。
 また、時間相関ピクチャの参照画像の時間的位置が注目ピクチャを飛び越さない(時間相関ピクチャと参照画像の間に注目ピクチャが存在しない)場合、飛び越しフラグが0に設定される。飛び越しフラグが1の場合、注目領域が、時間相関領域と時間相関領域の参照画像の内挿となるため、予測ベクトルの信頼度が高い。
 また、予測ベクトルpmv生成の際には、時間相関領域の動きベクトルmvColが利用される場合があるが、その場合、図8に示される例のように、時間相関領域の動きベクトルのスケーリングが行われる。すなわち、注目領域と注目領域の参照画像の時間的距離Aと、時間相関領域と時間相関領域の参照画像の時間的距離Bに基づき、以下の式(1)および式(2)のようにスケーリングが行われる。
 AとBが等しい場合、pmv = mvCol ・・・(1)
 AとBが等しくない場合、pmv = mvCol×A/B ・・・(2)
 ところで、マージモード以外の空間相関領域の周辺領域は、図9に示される例のようになる。すなわち、領域A0、領域A1、領域B0、領域B1、および領域B2が周辺領域の候補とされる。
また、予測ベクトルpmv生成の際には、空間相関領域の動きベクトルmvArrが利用される場合があるが、その場合、図10に示される例のように、空間相関領域の動きベクトルのスケーリングが行われる。すなわち、注目領域と注目領域の参照画像の時間的距離Aと、空間相関領域と空間相関領域の参照画像の時間的距離Bに基づき、以下の式(3)および式(4)のようにスケーリングが行われる。
 AとBが等しい場合、pmv = mvArr ・・・(3)
 AとBが等しくない場合、pmv = mvArr×A/B ・・・(4)
 ところで、多視点画像の場合、画像は複数のビューよりなり、このビュー間(視差方向)の相関性を利用した視差予測も行われる。図11に3視点画像の参照関係の例を示す。
 図11に示される3視点画像は、ビュー0、ビュー1、およびビュー2の3つのビューよりなる。図11において、POCは、時刻のインデックスを示す。またPicNumは、復号順序のインデックスを示す。
 ビュー0は、ベースビューと呼ばれ、時間相関を利用して予測を行う時間予測を使って符号化されている。ビュー1は、ノンベースビューと呼ばれ、時間予測と視差予測を使って符号化される。視差予測では、符号化済みのビュー0とビュー2を参照することができる。ビュー2は、ノンベースビューと呼ばれ、時間予測と視差予測を使って符号化される。視差予測では、符号化済みのビュー0を参照することができる。
 しかしながら、上述したように従来の予測ベクトルは動きベクトルに関するもののみであり、このような視点(ビュー)間を跨ぐ視差予測において生成される、ビュー間の、同一若しくは最も近似する部分画像の位置関係を示す視差ベクトルについての符号化(予測)は考えられていなかった。この視差ベクトルは、時間予測の動きベクトルに相当する情報であり、同一時刻の異なるビューの画像を用いて注目領域の予測画像を生成する時間予測に用いられる。そのため、視差ベクトルの予測を適切に行うことができず、符号化効率が低減する恐れがあった。
 そこで、本技術においては、多視点画像において、効率よく予測ベクトルを生成し、さらに符号化効率を向上させるために、以下のように予測ベクトルの候補を制限する。
 より具体的に説明する。まず時間相関領域に対する制限方法について説明する。図12にその例を示す。処理対象である注目領域において時間予測しか行われず、時間相関領域において視差予測しか行われない場合、時間相関領域を使った処理を行い、予測ベクトルを求めたとしても、符号化ベクトルと特性が異なるので、予測精度が悪い。そこで、時間相関領域使用制限フラグを1に設定する。これにより、時間相関領域が予測ベクトルの候補から外される。これにより、処理時間、蓄積メモリ、符号化効率の観点においてメリットを得ることができる。
 例えば、時間相関領域を使った予測ベクトルの算出処理を省略することで、処理時間を低減させることができる。また、例えば、時間相関領域の情報を保持する必要がなくなるので、メモリ使用量を低減させることができる。さらに、例えば、予測ベクトルの候補が減るため、予測ベクトルインデックスフラグに割り当てる符号量を低減させることができ、符号化効率を向上させることができる。
 また、同様に、注目領域において視差予測しか行われず、時間相関領域において時間予測しか行われない場合も時間相関領域使用制限フラグを1とする。時間相関領域において視差予測と時間予測が行われる場合も、時間相関領域使用制限フラグを1にする。なぜなら、時間相関領域が同一時刻の視差予測を行っている場合、従来手法に従った予測ベクトルのスケーリングができないからである。つまり、時間相関領域と時間相関領域の参照画像の時間的距離が0となるため、スケーリングに必要な除算ができない。
 これに対して、注目領域において時間予測と視差予測が行われており、時間相関領域において時間予測のみ行われている場合、時間相関領域使用制限フラグを0とし、時間相関領域の動きベクトルを予測ベクトルの候補とする。このとき、従来手法のスケーリング方法でも問題ない。例えば、注目領域において時間予測が行われる場合、従来手法と同様の効果が得られる。また、例えば、注目領域において視差予測が行われる場合、注目領域とその参照画像の時間的距離が0となるため、スケーリングされた時間相関領域の予測ベクトルは0となる。
 次に空間相関領域に対する制限方法について説明する。図13にその例を示す。注目領域において時間予測と視差予測が行われる場合、参照画像インデックスが異なる周辺領域は、異なる特性となるので、空間相関領域使用フラグを1に設定する。これにより、参照画像インデックスが異なる空間相関領域が予測ベクトルの候補から外される。これにより、処理時間および符号化効率の観点においてメリットを得ることができる。
 例えば、参照画像インデックスが異なる空間相関領域を使った予測ベクトルの算出処理を省略することで、処理時間を低減させることができる。また、例えば、予測ベクトルの候補が減るため、予測ベクトルインデックスフラグに割り当てる符号量を低減させることができ、符号化効率を向上させることができる。
 さらに、例えば、注目領域において、時間予測のみ行われる場合、若しくは、視差予測のみ行われる場合、空間相関領域使用制限フラグを0とし、参照画像インデックスが異なる空間相関領域の動きベクトルを予測ベクトルの候補とする。このとき、従来手法のスケーリング方法でも問題がない。例えば、注目領域において時間予測が行われる場合、従来手法と同様の効果が得られる。また、例えば、注目領域において視差予測が行われる場合、注目領域とその参照画像の時間的距離が0となるため、スケーリングされた空間相関領域の予測ベクトルは0となる。
 [画像符号化装置]
 図14は、画像処理装置である画像符号化装置の主な構成例を示すブロック図である。
 図14に示される画像符号化装置100は、例えばAVCやHEVC等の符号化方式のように、予測処理を用いて画像データを符号化する。ただし、画像符号化装置100は、複数のビューからなる多視点画像を符号化する。以下においては、多視点画像の一例として、3つのビューからなる3視点画像を処理する場合について説明する。ただし、実際には、画像符号化装置100は、任意の視点数(ビュー数)の多視点画像を符号化することができる。
 図14に示されるように画像符号化装置100は、A/D変換部101、画面並べ替えバッファ102、演算部103、直交変換部104、量子化部105、可逆符号化部106、および蓄積バッファ107を有する。また、画像符号化装置100は、逆量子化部108、逆直交変換部109、演算部110、ループフィルタ111、デコードピクチャバッファ112、選択部113、イントラ予測部114、動き視差予測・補償部115、予測画像選択部116、多視点デコードピクチャバッファ121、および相関領域判定部122を有する。
 A/D変換部101は、入力された画像データをA/D変換し、変換後の画像データ(デジタルデータ)を、画面並べ替えバッファ102に供給し、記憶させる。画面並べ替えバッファ102は、記憶した表示の順番のフレームの画像を、GOP(Group Of Picture)に応じて、符号化のためのフレームの順番に並べ替え、フレームの順番を並び替えた画像を、その画像のビューIDおよびPOCとともに、演算部103に供給する。
 また、画面並べ替えバッファ102は、フレームの順番を並び替えた画像を、その画像のビューIDおよびPOCとともに、イントラ予測部114および動き視差予測・補償部115にも供給する。なお、ビューIDは、視点を識別するための情報であり、POCは、時刻を識別するための情報である。
 演算部103は、画面並べ替えバッファ102から読み出された画像から、予測画像選択部116を介してイントラ予測部114若しくは動き視差予測・補償部115から供給される予測画像を減算し、その差分情報を直交変換部104に出力する。
 例えば、イントラ符号化が行われる画像の場合、演算部103は、画面並べ替えバッファ102から読み出された画像から、イントラ予測部114から供給される予測画像を減算する。また、例えば、インター符号化が行われる画像の場合、演算部103は、画面並べ替えバッファ102から読み出された画像から、動き視差予測・補償部115から供給される予測画像を減算する。
 直交変換部104は、演算部103から供給される差分情報に対して、離散コサイン変換やカルーネン・レーベ変換等の直交変換を施す。なお、この直交変換の方法は任意である。直交変換部104は、その変換係数を量子化部105に供給する。
 量子化部105は、直交変換部104から供給される変換係数を量子化する。量子化部105は、符号量の目標値に関する情報に基づいて量子化パラメータを設定し、その量子化を行う。なお、この量子化の方法は任意である。量子化部105は、量子化された変換係数を可逆符号化部106に供給する。
 可逆符号化部106は、量子化部105において量子化された変換係数を、任意の符号化方式で符号化する。また、可逆符号化部106は、イントラ予測のモードを示す情報等を含むイントラ予測情報をイントラ予測部114から取得し、インター予測のモードを示す情報や動き視差ベクトル情報などを含むインター予測情報を動き視差予測・補償部115から取得する。さらに、可逆符号化部106は、ループフィルタ111において使用されたフィルタ係数等を取得する。
 可逆符号化部106は、これらの各種情報を任意の符号化方式で符号化し、符号化データのヘッダ情報の一部とする(多重化する)。可逆符号化部106は、符号化して得られた符号化データを蓄積バッファ107に供給して蓄積させる。
 可逆符号化部106の符号化方式としては、例えば、可変長符号化または算術符号化等が挙げられる。可変長符号化としては、例えば、H.264/AVC方式で定められているCAVLC(Context-Adaptive Variable Length Coding)などが挙げられる。算術符号化としては、例えば、CABAC(Context-Adaptive Binary Arithmetic Coding)などが挙げられる。
 蓄積バッファ107は、可逆符号化部106から供給された符号化データを、一時的に保持する。蓄積バッファ107は、所定のタイミングにおいて、保持している符号化データを、ビットストリームとして、例えば、後段の図示せぬ記録装置(記録媒体)や伝送路などに出力する。つまり、符号化された各種情報が復号側に供給される。
 また、量子化部105において量子化された変換係数は、逆量子化部108にも供給される。逆量子化部108は、その量子化された変換係数を、量子化部105による量子化に対応する方法で逆量子化する。この逆量子化の方法は、量子化部105による量子化処理に対応する方法であればどのような方法であってもよい。逆量子化部108は、得られた変換係数を、逆直交変換部109に供給する。
 逆直交変換部109は、逆量子化部108から供給された変換係数を、直交変換部104による直交変換処理に対応する方法で逆直交変換する。この逆直交変換の方法は、直交変換部104による直交変換処理に対応する方法であればどのようなものであってもよい。逆直交変換された出力(局所的に復元された差分情報)は、演算部110に供給される。
 演算部110は、逆直交変換部109から供給された逆直交変換結果、すなわち、局所的に復元された差分情報に、予測画像選択部116を介してイントラ予測部114若しくは動き視差予測・補償部115から供給される予測画像を加算し、局所的に再構成された画像(以下、再構成画像と称する)を得る。その再構成画像は、ループフィルタ111またはデコードピクチャバッファ112に供給される。
 ループフィルタ111は、デブロックフィルタや適応ループフィルタ等を含み、演算部110から供給される復号画像に対して適宜フィルタ処理を行う。例えば、ループフィルタ111は、復号画像に対してデブロックフィルタ処理を行うことにより復号画像のブロック歪を除去する。また、例えば、ループフィルタ111は、そのデブロックフィルタ処理結果(ブロック歪みの除去が行われた復号画像)に対して、ウィナーフィルタ(Wiener Filter)を用いてループフィルタ処理を行うことにより画質改善を行う。
 なお、ループフィルタ111が、復号画像に対して任意のフィルタ処理を行うようにしてもよい。また、ループフィルタ111は、必要に応じて、フィルタ処理に用いたフィルタ係数等の情報を可逆符号化部106に供給し、それを符号化させるようにすることもできる。
 ループフィルタ111は、フィルタ処理結果(以下、復号画像と称する)をデコードピクチャバッファ112に供給する。
 デコードピクチャバッファ112は、演算部110から供給される再構成画像と、ループフィルタ111から供給される復号画像とをそれぞれ記憶する。また、デコードピクチャバッファ112は、その画像のビューIDおよびPOCを記憶する。
 デコードピクチャバッファ112は、所定のタイミングにおいて、若しくは、イントラ予測部114等の外部からの要求に基づいて、記憶している再構成画像(並びに、その画像のビューIDおよびPOC)を、選択部113を介して、イントラ予測部114に供給する。また、デコードピクチャバッファ112は、所定のタイミングにおいて、若しくは、動き視差予測・補償部115等の外部からの要求に基づいて、記憶している復号画像(並びに、その画像のビューIDおよびPOC)を、選択部113を介して、動き視差予測・補償部115に供給する。
 選択部113は、デコードピクチャバッファ112から出力される画像の供給先を示す。例えば、イントラ予測の場合、選択部113は、デコードピクチャバッファ112からフィルタ処理されていない画像(再構成画像)を読み出し、周辺画素として、イントラ予測部114に供給する。
 また、例えば、インター予測の場合、選択部113は、デコードピクチャバッファ112からフィルタ処理された画像(復号画像)を読み出し、参照画像として、それを動き視差予測・補償部115に供給する。
 イントラ予測部114は、デコードピクチャバッファ112から、処理対象領域の周辺に位置する周辺領域の画像(周辺画像)を取得すると、その周辺画像の画素値を用いて、基本的にプレディクションユニット(PU)を処理単位として予測画像を生成するイントラ予測(画面内予測)を行う。イントラ予測部114は、予め用意された複数のモード(イントラ予測モード)でこのイントラ予測を行う。
 イントラ予測部114は、候補となる全てのイントラ予測モードで予測画像を生成し、画面並べ替えバッファ102から供給される入力画像を用いて各予測画像のコスト関数値を評価し、最適なモードを選択する。イントラ予測部114は、最適なイントラ予測モードを選択すると、その最適なモードで生成された予測画像を、予測画像選択部116に供給する。
 また、イントラ予測部114は、最適なイントラ予測モード等、イントラ予測に関する情報を含むイントラ予測情報を、適宜可逆符号化部106に供給し、符号化させる。
 動き視差予測・補償部115は、画面並べ替えバッファ102から供給される入力画像と、デコードピクチャバッファ112から供給される参照画像とを用いて、基本的にPUを処理単位として、動き予測や視差予測(インター予測)を行い、検出された動き視差ベクトルに応じて補償処理を行い、予測画像(インター予測画像情報)を生成する。動き視差予測・補償部115は、予め用意された複数のモード(インター予測モード)でこのようなインター予測(画面間予測)を行う。
 動き視差予測・補償部115は、候補となる全てのインター予測モードで予測画像を生成し、各予測画像のコスト関数値を評価し、最適なモードを選択する。動き視差予測・補償部115は、最適なインター予測モードを選択すると、その最適なモードで生成された予測画像を、予測画像選択部116に供給する。
 また、動き視差予測・補償部115は、最適なインター予測モード等、インター予測に関する情報を含むインター予測情報を可逆符号化部106に供給し、符号化させる。
 予測画像選択部116は、演算部103や演算部110に供給する予測画像の供給元を選択する。例えば、イントラ符号化の場合、予測画像選択部116は、予測画像の供給元としてイントラ予測部114を選択し、そのイントラ予測部114から供給される予測画像を演算部103や演算部110に供給する。また、例えば、インター符号化の場合、予測画像選択部116は、予測画像の供給元として動き視差予測・補償部115を選択し、その動き視差予測・補償部115から供給される予測画像を演算部103や演算部110に供給する。
 デコードピクチャバッファ112は、処理対象のビューの画像(並びに、その画像のビューIDおよびPOC)のみを記憶するが、多視点デコードピクチャバッファ121は、各視点(ビュー)の画像(並びに、その画像のビューIDおよびPOC)を記憶する。つまり、多視点デコードピクチャバッファ121は、デコードピクチャバッファ112に供給された復号画像(並びに、その画像のビューIDおよびPOC)を取得し、デコードピクチャバッファ112とともにその復号画像(並びに、その画像のビューIDおよびPOC)を記憶する。
 デコードピクチャバッファ112は、処理対象のビューが変わると、その復号画像を消去するが、多視点デコードピクチャバッファ121は、そのまま保持する。そして、デコードピクチャバッファ112などの要求に従って、記憶している復号画像(並びに、その画像のビューIDおよびPOC)を、「処理対象ではないビューの復号画像」として、デコードピクチャバッファ112に供給する。デコードピクチャバッファ112は、多視点デコードピクチャバッファ121から読み出した「処理対象ではないビューの復号画像(並びに、その画像のビューIDおよびPOC)」を、選択部113を介して動き視差予測・補償部115に供給する。
 相関領域判定部122は、注目領域や相関領域において行われる予測の種類(空間予測・時間予測・視差予測等)に応じて、時間相関領域使用制限フラグおよび空間相関領域使用制限フラグの値を設定する。相関領域判定部122は、値を設定した時間相関領域使用制限フラグおよび空間相関領域使用制限フラグを動き視差予測・補償部115に供給する。動き視差予測・補償部115は、それらのフラグによる制限の下、予測ベクトルの生成を行う。
 また、相関領域判定部122は、値を設定した時間相関領域使用制限フラグおよび空間相関領域使用制限フラグを可逆符号化部106に供給し、符号化させる。すなわち、これらのフラグ情報は、可逆符号化部106において符号化され、例えばスライスヘッダ等に付加されて、復号側に伝送される。つまり、復号時の動き視差補償処理における予測ベクトルの再構築も、これらのフラグによる制限の下で行われる。
 [動き視差予測・補償部]
 図15は、図1の動き視差予測・補償部の主な構成例を示すブロック図である。
 図15に示されるように、動き視差予測・補償部115は、動き視差ベクトル探索部131、予測画像生成部132、符号化情報蓄積バッファ133、および選択部134を有する。また、動き視差予測・補償部115は、空間相関予測ベクトル生成部135、時間視差相関予測ベクトル生成部136、選択部137、符号化コスト算出部138、およびモード判定部139を有する。
 動き視差ベクトル探索部131は、デコードピクチャバッファ112から復号画像画素値を取得し、画面並べ替えバッファ102から原画像画素値を取得する。動き視差ベクトル探索部131は、それらを用いて、処理対象である注目領域の参照画像インデックスを決定し、時間方向および視差方向の動き探索を行い、動きベクトルおよび視差ベクトルを生成する。
 なお、以下において、時間方向、すなわち、フレーム(ピクチャ)間の動きを示す動きベクトルと、視差方向、すなわち、ビュー間の動きを示す視差ベクトルとを互いに区別する必要が無い場合、若しくは、その両方を指す場合、動き視差ベクトルと称する。
 動き視差ベクトル探索部131は、参照画像インデックスと動き視差ベクトルとを予測画像生成部132および符号化コスト算出部138に供給する。
 予測画像生成部132は、動き視差ベクトル探索部131から参照画像インデックスと動き視差ベクトルとを取得するとともに、デコードピクチャバッファ112から復号画像画素値を取得する。予測画像生成部132は、それらを用いて注目領域の予測画像を生成する。予測画像生成部132は、予測画像画素値を符号化コスト算出部138に供給する。
 符号化情報蓄積バッファ133は、モード判定部139において最適モードに選択されたモードを示すモード情報、並びに、そのモードの参照画像インデックスおよび動き視差ベクトルを記憶する。符号化情報蓄積バッファ133は、所定のタイミングにおいて、若しくは、外部からの要求に従って、記憶しているそれらの情報を、選択部134に供給する。
 選択部134は、符号化情報蓄積バッファ133から供給されたモード情報、参照画像インデックス、および動き視差ベクトルを空間相関予測ベクトル生成部135若しくは時間視差相関予測ベクトル生成部136に供給する。
 空間相関予測ベクトル生成部135および時間視差相関予測ベクトル生成部136は、処理対象である注目領域の動きベクトルの予測値(予測ベクトル)を生成する。
 空間相関予測ベクトル生成部135は、空間的な相関を利用して予測ベクトル(空間相関予測ベクトル)を生成する。より具体的には、空間相関予測ベクトル生成部135は、選択部134を介して符号化情報蓄積バッファ133から、注目領域と同一のフレーム(注目フレーム)の、注目領域の空間的な周辺に位置する周辺領域(空間周辺領域)の動き情報に関する情報(モード情報、参照画像インデックス、および動き視差ベクトル等)を取得する。
空間相関予測ベクトル生成部135は、例えば、複数の空間周辺領域の動きベクトル(空間周辺動きベクトル)を用いてメジアン演算を行い、空間相関予測ベクトルを生成する。空間相関予測ベクトル生成部135は、生成した空間相関予測ベクトルを選択部137に供給する。
 なお、空間相関予測ベクトル生成部135は、以上のような処理を、相関領域判定部122の制御に従って行う。すなわち、空間相関領域使用制限フラグの値が1の場合、空間相関予測ベクトル生成部135は、空間相関予測ベクトルの生成を行わない。また、空間相関領域使用制限フラグの値が0の場合、空間相関予測ベクトル生成部135は、空間相関予測ベクトルを生成する。
 時間視差相関予測ベクトル生成部136は、時間的な相関若しくは視差的な相関を利用して予測ベクトル(時間視差相関予測ベクトル(時間相関予測ベクトル若しくは視差相関予測ベクトル))を生成する。より具体的には、時間視差相関予測ベクトル生成部136は、例えば、選択部134を介して符号化情報蓄積バッファ133から、注目領域の時間的な周辺に位置する周辺領域(時間周辺領域)の動き情報に関する情報を取得する。時間周辺領域とは、注目領域と同一ビュー(注目ビュー)の、注目フレームと異なるフレーム(ピクチャ)の注目領域に相当する位置の領域、若しくはその近傍の領域のことを示す。
 また、例えば、時間視差相関予測ベクトル生成部136は、選択部134を介して符号化情報蓄積バッファ133から、注目領域の視差的な周辺に位置する周辺領域(視差周辺領域)の動き情報に関する情報を取得する。視差周辺領域とは、注目領域のビュー(注目ビュー)と異なるビューの、注目フレームと同時刻のフレーム(ピクチャ)の注目領域に相当する位置の領域、若しくはその近傍の領域のことを示す。
 時間視差相関予測ベクトル生成部136は、例えば、複数の時間周辺領域の動きベクトル(時間周辺動きベクトル)を用いてメジアン演算を行い、時間相関予測ベクトルを生成する。また、例えば、時間視差相関予測ベクトル生成部136は、例えば、複数の視差周辺領域の動きベクトル(視差周辺動きベクトル)を用いてメジアン演算を行い、視差相関予測ベクトルを生成する。
 時間視差相関予測ベクトル生成部136は、このように生成した時間視差相関予測ベクトルを選択部137に供給する。
 なお、時間視差相関予測ベクトル生成部136は、以上のような処理を、相関領域判定部122の制御に従って行う。すなわち、時間相関領域使用制限フラグの値が1の場合、時間視差相関予測ベクトル生成部136は、時間視差相関予測ベクトルの生成を行わない。また、時間相関領域使用制限フラグの値が0の場合、時間視差相関予測ベクトル生成部136は、時間視差相関予測ベクトルを生成する。
 空間相関予測ベクトル生成部135および時間視差相関予測ベクトル生成部136は、それぞれ予測ベクトルを、インター予測モード毎に生成する。
 選択部137は、空間相関予測ベクトル生成部135から供給される空間相関予測ベクトル、および、時間視差相関予測ベクトル生成部136から供給される時間視差相関予測ベクトルを、符号化コスト算出部138に供給する。
 符号化コスト算出部138は、予測画像生成部132から供給される予測画像画素値と、画面並べ替えバッファ102から供給される原画像画素値とを用いて、予測画像と原画像の差分値(差分画像)を、インター予測モード毎に算出する。また、符号化コスト算出部138は、その差分画像画素値を用いて、インター予測モード毎にコスト関数値(符号化コスト値とも称する)を算出する。
 さらに、符号化コスト算出部138は、選択部137から供給された空間相関予測ベクトルと時間視差相関予測ベクトルとの内、動き視差ベクトル探索部131から供給された注目領域の動き視差ベクトルにより近いほうを、注目領域の予測ベクトルとして選択する。また、符号化コスト算出部138は、その予測ベクトルと注目領域の動き視差ベクトルとの差分値である差分動き視差ベクトルを生成する。符号化コスト算出部138は、インター予測モード毎に差分動き視差ベクトルを生成する。
 符号化コスト算出部138は、各インター予測モードの、符号化コスト値、予測画像画素値、差分動き視差ベクトルを含む差分動き視差情報、および、予測ベクトルや参照画像インデックスを含む予測情報をモード判定部139に供給する。
 モード判定部139は、符号化コスト値が最小となるインター予測モードを最適なモードとして選択する。モード判定部139は、最適なモードに選択したインター予測モードの予測画像画素値を、予測画像選択部116に供給する。
 予測画像選択部116により、インター予測が選択された場合、モード判定部139は、最適なモードに選択したインター予測モードに関する情報であるモード情報、並びに、そのインター予測モードの差分動き視差情報および予測情報を、可逆符号化部106に供給し、符号化させる。これらの情報は、符号化され、復号側に伝送される。
 また、モード判定部139は、最適なモードに選択したインター予測モードの、モード情報、差分動き視差情報、および予測情報を、符号化情報蓄積バッファ133に供給し、記憶させる。これらの情報は、注目領域より時間的に後に処理される他の領域に対する処理おいて、周辺領域の情報として利用される。
 このようにすることにより、時間視差相関予測ベクトル生成部136は、動き相関予測ベクトルだけでなく、視差相関予測ベクトルも生成することができる。したがって、動き視差予測・補償部115は、注目領域のベクトルが視差ベクトルの場合であっても、予測精度の高い予測ベクトルを生成することができる。これにより、画像符号化装置100は、符号化効率の低減を抑制することができる。
 また、相関領域判定部122が、予測方向の関係に基づいて、相関領域の使用を制御することにより、空間相関予測ベクトル生成部135および時間視差相関予測ベクトル生成部136は、予測ベクトルの生成において、予測精度の低い予測ベクトルを生成したり、処理を破綻させたりする等の不要な負荷の発生を抑制することができ、処理時間やメモリ使用量を低減することができる。また、この制限により、空間相関予測ベクトル生成部135および時間視差相関予測ベクトル生成部136は、予測精度の高い予測ベクトルを適切に生成することができるようになるので、符号化効率を向上させることができる。なお、本技術の場合、ベースビューの予測方式に制限を加えるので、従来の方式からの拡張が容易である。
 さらに、相関領域の使用制限フラグを復号側に伝送することにより、復号側においても画像符号化装置100と同様のベクトルの予測を行うことができる。つまり、画像符号化装置100が生成した符号化データを正しく復号することができるだけでなく、復号の際も、処理時間やメモリ使用量を低減することができる。
 [使用制限の例]
 空間相関領域使用制限フラグおよび時間相関領域使用制限フラグの設定例を図16に示す。
 図16に示されるように、時間相関領域において視差予測が行われている場合、時間相関領域の使用が禁止される。つまり、時間相関領域使用制限フラグの値が1に設定される。
 また、時間相関領域において時間予測が行われ、かつ、注目領域において時間予測のみが行われる場合、時間相関領域の使用が禁止される。つまり、時間相関領域使用制限フラグの値が1に設定される。
 それ以外の場合、時間相関領域の使用が許可される。つまり、時間相関領域使用制限フラグの値が0に設定される。
 また、空間相関領域において視差予測が行われている場合、空間相関領域の使用が禁止される。つまり、空間相関領域使用制限フラグの値が1に設定される。
 それ以外の場合、空間相関領域の使用が許可される。つまり、空間相関領域使用制限フラグの値が0に設定される。
 [シンタックス]
 図17にこの場合のシーケンスパラメータセットのシンタックスの例を示す。図17に示されるように、下から12行目乃至下から3行目のように、ビューの合計数、ビューを区別するためのID、リストL0における視差予測の枚数、リストL0における視差予測で参照するビューのID、リストL1における視差予測の枚数、および、リストL1における視差予測で参照するビューのID等の情報がシーケンスパラメータセットに含められる。これらの情報は、多視点画像に必要な情報である。換言するに、本技術は、シーケンスパラメータセットに新たなシンタックスを追加することなく適用することができる。
 図18にこの場合のスライスヘッダのシンタックスの例を示す。図18に示されるように、スライスヘッダでは、下から9行目および10行目において、時間相関領域使用制限フラグが設定される。また、下から5行目において、空間相関領域使用制限フラグが設定される。
 [符号化処理の流れ]
 次に、以上のような画像符号化装置100により実行される各処理の流れについて説明する。最初に、図19のフローチャートを参照して、符号化処理の流れの例を説明する。
 ステップS101において、A/D変換部101は入力された画像をA/D変換する。ステップS102において、画面並べ替えバッファ102は、A/D変換された画像を記憶し、各ピクチャの表示する順番から符号化する順番への並べ替えを行う。
 ステップS103において、イントラ予測部114は、イントラ予測処理を行う。ステップS104において、動き視差予測・補償部115は、インター動き予測処理を行う。ステップS105において、予測画像選択部116は、イントラ予測により生成された予測画像、および、インター予測により生成された予測画像の内、いずれか一方を選択する。
 ステップS106において、演算部103は、ステップS102の処理により並び替えられた画像と、ステップS105の処理により選択された予測画像との差分を演算する(差分画像を生成する)。生成された差分画像は元の画像に較べてデータ量が低減される。したがって、画像をそのまま符号化する場合に比べて、データ量を圧縮することができる。
 ステップS107において、直交変換部104は、ステップS106の処理により生成された差分画像を直交変換する。具体的には、離散コサイン変換、カルーネン・レーベ変換等の直交変換が行われ、直交変換係数が出力される。ステップS108において、量子化部105は、ステップS107の処理により得られた直交変換係数を量子化する。
 ステップS108の処理により量子化された差分画像は、次のようにして局部的に復号される。すなわち、ステップS109において、逆量子化部108は、ステップS108の処理により生成された量子化された直交変換係数(量子化係数とも称する)を量子化部105の特性に対応する特性で逆量子化する。ステップS110において、逆直交変換部109は、ステップS109の処理により得られた直交変換係数を、直交変換部104の特性に対応する特性で逆直交変換する。これにより差分画像が復元される。
 ステップS111において、演算部110は、ステップS105において選択された予測画像を、ステップS110において生成された差分画像に加算し、局部的に復号された復号画像(再構成画像)を生成する。ステップS112において、ループフィルタ111は、ステップS111の処理により得られた再構成画像に対して、デブロックフィルタ処理や適応ループフィルタ処理等を含むループフィルタ処理を適宜行い、復号画像を生成する。
 ステップS113において、デコードピクチャバッファ112や多視点デコードピクチャバッファ121は、ステップS112の処理により生成された復号画像、若しくは、ステップS111の処理により生成された再構成画像を記憶する。
 ステップS114において、可逆符号化部106は、ステップS108の処理により量子化された直交変換係数を符号化する。すなわち、差分画像に対して、可変長符号化や算術符号化等の可逆符号化が行われる。なお、可逆符号化部106は、予測に関する情報や、量子化に関する情報や、フィルタ処理に関する情報等を符号化し、ビットストリームに付加する。
 ステップS115において、蓄積バッファ107は、ステップS114の処理により得られたビットストリームを蓄積する。蓄積バッファ107に蓄積された符号化データは、適宜読み出され、伝送路や記録媒体を介して復号側に伝送される。
 ステップS116において量子化部105は、ステップS115の処理により蓄積バッファ107に蓄積された符号化データの符号量(発生符号量)に基づいて、オーバーフローあるいはアンダーフローが発生しないように、量子化動作のレートを制御する。
 ステップS116の処理が終了すると、符号化処理が終了される。
 [インター動き予測処理の流れ]
 次に、図20のフローチャートを参照して、図19のステップS104において実行されるインター動き予測処理の流れの例を説明する。
 ステップS121において、相関領域判定部122は、相関領域制限フラグの値を設定する制限判定処理を行う。ステップS122において、動き視差ベクトル探索部131は、処理対象のインター予測モードについて、動き探索を行い、処理対象である注目領域の動き視差ベクトル(動きベクトルまたは視差ベクトル)を生成する。ステップS123において、予測画像生成部132は、ステップS122において生成された動き視差ベクトルを用いて補償処理を行って予測画像を生成する。ステップS124において、符号化コスト算出部138は、ステップS123において生成された予測画像と、原画像(入力画像)との差分画像を生成する。
 ステップS125において、符号化コスト算出部138は、空間相関予測ベクトル生成部135や時間視差相関予測ベクトル生成部136等を用いてマージモード処理を行う。
 ステップS126において、符号化コスト算出部138は、ステップS122において生成された注目領域の動き視差ベクトルと、ステップS125の処理により生成された注目領域の予測ベクトルとを比較し、注目領域においてマージモードが適用されるか否かを判定する。
 両者が一致せず、マージモードが適用されないと判定した場合、符号化コスト算出部138は、処理をステップS127に進め、空間相関予測ベクトル生成部135や時間視差相関予測ベクトル生成部136等を用いて動き視差ベクトル予測処理を行う。ステップS127の処理が終了すると、符号化コスト算出部138は、処理をステップS128に進める。
 また、ステップS126において、注目領域の動き視差ベクトルと予測ベクトルが一致し、注目領域においてマージモードが適用されると判定した場合、符号化コスト算出部138は、ステップS127の処理を省略し、ステップS128に進める。
 ステップS128において、符号化コスト算出部138は、全てのインター予測モードで、以上の処理を行ったか否かを判定し、未処理のインター予測モードが存在すると判定された場合、処理をステップS121に戻し、その未処理のインター予測モードについて、それ以降の処理が繰り返されるように制御する。つまり、ステップS121乃至ステップS128の各処理が、各インター予測モードについて実行される。
 ステップS128において、全てのインター予測モードについて処理を行ったと判定された場合、符号化コスト算出部138は、処理をステップS129に進める。ステップS129において、符号化コスト算出部138は、各インター予測モードのコスト関数値を算出する。
 ステップS130において、モード判定部139は、ステップS129において算出されたコスト関数値(符号化コスト値)が最も小さいインター予測モードを最適なモード(最適インター予測モード)に決定する。
 ステップS131において、予測画像生成部132は、その最適インター予測モードで予測画像を生成する。この予測画像は、予測画像選択部116に供給される。
 ステップS132において、符号化情報蓄積バッファ133は、図19のステップS105においてインター予測が選択された場合、最適インター予測モードのモード情報や動き情報(動き視差ベクトルや参照画像インデックス等)を記憶する。イントラ予測モードが選択された場合、動き視差ベクトルとしてゼロベクトルが記憶される。なお、これらの情報は、図19のステップS105においてインター予測が選択された場合、可逆符号化部106にも供給され、符号化されて、復号側に伝送される。
 ステップS132の処理が終了すると、符号化情報蓄積バッファ133は、インター動き予測処理を終了し、処理を図19に戻す。
 [制限判定処理の流れ]
 次に、図21のフローチャートを参照して、図20のステップS121において実行される制限判定処理の流れの例を説明する。制限判定処理が開始されると、ステップS141において、相関領域判定部122は、符号化情報蓄積バッファ133より取得した参照画像インデックスを用いて、注目領域の参照画像をデコードピクチャバッファ112から取得する。
 ステップS142において、相関領域判定部122は、符号化情報蓄積バッファ133より取得した参照画像インデックスを用いて、時間相関領域の参照画像をデコードピクチャバッファ112から取得する。
 ステップS143において、相関領域判定部122は、それらの情報を用いて、時間相関領域において視差予測が行なわれるか否かを判定する。時間相関領域において視差予測が行なわれると判定した場合、相関領域判定部122は、処理をステップS144に進め、時間相関領域使用制限フラグを1に設定する。ステップS144の処理が終了すると、相関領域判定部122は、処理をステップS147に進める。
 また、ステップS143において、時間相関領域において視差予測が行なわれないと判定した場合、相関領域判定部122は、処理をステップS145に進める。ステップS145において、相関領域判定部122は、注目領域において視差予測のみ行なわれるか否かを判定する。注目領域において視差予測のみ行なわれると判定された場合、相関領域判定部122は、処理をステップS144に戻す。つまり、時間相関領域使用制限フラグが1に設定される。
 また、ステップS145において、注目領域において視差予測以外も行なわれると判定された場合、相関領域判定部122は、処理をステップS146に進める。ステップS146において、相関領域判定部122は、時間相関領域使用制限フラグを0に設定する。ステップS146の処理が終了すると、相関領域判定部122は、処理をステップS147に進める。
 ステップS147において、相関領域判定部122は、注目領域において、視差予測が行なわれるか否かを判定する。注目領域において視差予測が行なわれないと判定した場合、相関領域判定部122は、処理をステップS148に進め、空間相関領域使用制限フラグの値を0に設定し、制限判定処理を終了し、処理を図20に戻す。
 また、ステップS147において、注目領域において視差予測が行なわれると判定した場合、相関領域判定部122は、処理をステップS149に進め、空間相関領域使用制限フラグを1に設定し、制限判定処理を終了し、処理を図20に戻す。
 [マージモード処理の流れ]
 次に、図22のフローチャートを参照して、図20のステップS125において実行されるマージモード処理の流れの例を説明する。
 マージモード処理が開始されると、ステップS161において、空間相関予測ベクトル生成部135は、空間周辺領域との相関性を利用して空間相関予測ベクトルを生成する空間相関予測処理を行う。ステップS162において、時間視差相関予測ベクトル生成部136は、時間周辺領域や視差周辺領域との相関性を利用して時間視差相関予測ベクトルを生成する時間相関予測処理を行う。
 ステップS163において、符号化コスト算出部138は、ステップS161において生成された空間相関予測ベクトルと、ステップS162において生成された時間視差予測ベクトルとで、重複するベクトルを削除する。
 ステップS164において、符号化コスト算出部138は、ベクトルが存在するか否かを判定する。空間相関予測ベクトル若しくは時間視差相関予測ベクトルが1つでも存在すると判定された場合、符号化コスト算出部138は、処理をステップS165に進める。
 ステップS165において、符号化コスト算出部138は、ベクトルが複数存在するか否かを判定する。複数存在すると判定された場合、符号化コスト算出部138は、処理をステップS166に進め、マージインデックスを取得する。複数存在しないと判定された場合、符号化コスト算出部138は、ステップS166の処理を省略する。
 注目領域の動きベクトルと一致する空間相関予測ベクトル若しくは時間視差相関予測ベクトルが存在する場合、符号化コスト算出部138は、ステップS167において、その一致するベクトルを予測ベクトルとして取得し、ステップS168において、参照画像インデックスを取得する。
 ステップS168の処理を終了すると、符号化コスト算出部138は、マージモード処理を終了し、処理を図20に戻す。
 また、ステップS164において、空間相関予測ベクトル若しくは時間視差相関予測ベクトルが1つも存在しないと判定された場合、符号化コスト算出部138は、処理をステップS169に進める。
 ステップS169において、符号化コスト算出部138は、予測ベクトルに初期値(例えばゼロベクトル)を与える。また、ステップS170において、符号化コスト算出部138は、参照画像インデックスに初期値(例えば0)を与える。
 ステップS170の処理を終了すると、符号化コスト算出部138は、マージモード処理を終了し、処理を図20に戻す。
 [空間相関予測処理の流れ]
 次に、図23のフローチャートを参照して、図22のステップS161において実行される空間相関予測処理の流れの例を説明する。
 空間相関予測処理が開始されると、空間相関予測ベクトル生成部135は、ステップS181において、空間相関領域の使用制限フラグが0であるか否かを判定する。空間相関領域使用制限フラグが1であると判定された場合、空間相関予測ベクトル生成部135は、空間相関予測処理を終了し、処理を図22に戻す。
 また、ステップS181において、空間相関領域使用制限フラグが0であると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS182に進め、周辺領域A乃至D(図2)を順次1つずつ選択する。選択された周辺領域を注目周辺領域と称する。
 ステップS183において、空間相関予測ベクトル生成部135は、ステップS182において選択された注目周辺領域(すなわち周辺領域A乃至Dのいずれか)の予測モードがインター予測であるか否かを判定する。インター予測で無いと判定された場合、空間相関予測ベクトル生成部135は、処理をステップS184に進める。ステップS184において、空間相関予測ベクトル生成部135は、注目周辺領域の動きベクトルを予測ベクトルの候補から外す。
 ステップS185において、空間相関予測ベクトル生成部135は、注目周辺領域が周辺領域Dであるか否かを判定し、注目周辺領域が周辺領域Dであると判定された場合、空間相関予測処理を終了し、処理を図22に戻す。
 また、ステップS185において、注目周辺領域が周辺領域Dでないと判定された場合、空間相関予測ベクトル生成部135は、処理をステップS182に戻し、それ以降の処理を繰り返す。すなわち、注目周辺領域が更新され、同様の処理が繰り返される。
 また、ステップS183において、注目周辺領域の予測モードがインター予測であると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS186に進める。
 ステップS186において、空間相関予測ベクトル生成部135は、予測ユニットのパートモードが2N×N(図1の右上の例)であり、注目領域(処理対象の予測ユニット)のインデックスが1であるか否かを判定する。予測ユニットのパートモードが2N×Nであり、注目領域のインデックスが1であると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS187に進める。
 ステップS187において、空間相関予測ベクトル生成部135は、注目領域が周辺領域Bと同じ動き情報を持つか否かを判定する。同じ動き情報を持つと判定された場合、空間相関予測ベクトル生成部135は、処理をステップS184に戻す。
 また、ステップS187において、注目領域の動き情報が周辺領域Bと異なると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS188に進める。また、ステップS186において、予測ユニットのパートモードが2N×Nでないと判定されるか、若しくは、予測ユニットのパートモードが2N×Nであるが注目領域のインデックスが1でないと判定された場合、空間相関予測ベクトル生成部135は、処理をステップS188に進める。
 ステップS188において、空間相関予測ベクトル生成部135は、予測ユニットのパートモードがN×2N(図1の左下の例)であり、注目領域(処理対象の予測ユニット)のインデックスが1であるか否かを判定する。予測ユニットのパートモードがN×2Nであり、注目領域のインデックスが1であると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS189に進める。
 ステップS189において、空間相関予測ベクトル生成部135は、注目領域が周辺領域Aと同じ動き情報を持つか否かを判定する。同じ動き情報を持つと判定された場合、空間相関予測ベクトル生成部135は、処理をステップS184に戻す。
 また、ステップS189において、注目領域の動き情報が周辺領域Aと異なると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS190に進める。また、ステップS188において、予測ユニットのパートモードがN×2Nでないと判定されるか、若しくは、予測ユニットのパートモードがN×2Nであるが注目領域のインデックスが1でないと判定された場合、空間相関予測ベクトル生成部135は、処理をステップS190に進める。
 ステップS190において、空間相関予測ベクトル生成部135は、予測ユニットのパートモードがN×N(図1の右下の例)であり、注目領域(処理対象の予測ユニット)のインデックスが3であるか否かを判定する。予測ユニットのパートモードがN×Nであり、注目領域のインデックスが3であると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS191に進める。
 ステップS191において、空間相関予測ベクトル生成部135は、周辺領域Xと周辺領域Aが同じ動き情報を持ち、かつ、注目領域が周辺領域Bと同じ動き情報を持つか否かを判定する。周辺領域Xと周辺領域Aが同じ動き情報を持ち、かつ、注目領域が周辺領域Bと同じ動き情報を持つと判定された場合、空間相関予測ベクトル生成部135は、処理をステップS184に戻す。
 また、ステップS191において、周辺領域Xの動き情報が周辺領域Aと同じでないと判定されるか、若しくは、注目領域の動き情報が周辺領域Bと異なると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS192に進める。
 ステップS192において、空間相関予測ベクトル生成部135は、周辺領域Xと周辺領域Bが同じ動き情報を持ち、かつ、注目領域が周辺領域Aと同じ動き情報を持つか否かを判定する。周辺領域Xと周辺領域Bが同じ動き情報を持ち、かつ、注目領域が周辺領域Aと同じ動き情報を持つと判定された場合、空間相関予測ベクトル生成部135は、処理をステップS184に戻す。
 また、ステップS192において、周辺領域Xの動き情報が周辺領域Bと同じでないと判定されるか、若しくは、注目領域の動き情報が周辺領域Aと異なると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS193に進める。
 また、ステップS190において、予測ユニットのパートモードがN×Nでないと判定されるか、若しくは、予測ユニットのパートモードがN×Nであるが注目領域のインデックスが3でないと判定された場合、空間相関予測ベクトル生成部135は、処理をステップS193に進める。
 空間相関予測ベクトル生成部135は、ステップS193において、注目周辺領域の動きベクトルを保持し、ステップS194において、注目周辺領域の参照画像インデックスを保持する。ステップS194の処理が終了すると、空間相関予測ベクトル生成部135は、処理をステップS185に戻す。
 空間相関予測ベクトル生成部135は、以上のようにして予測ベクトルの候補(空間相関予測ベクトル)の絞り込みを行う。
 [時間視差相関予測処理の流れ]
 次に、図24および図25のフローチャートを参照して、図22のステップS162において行われる時間視差相関予測処理の流れの例を説明する。
 時間視差相関予測処理が開始されると、時間視差相関予測ベクトル生成部136は、ステップS201において、時間相関領域使用制限フラグが0であるか否かを判定する。時間視差相関領域使用制限フラグが1であると判定された場合、時間視差相関予測ベクトル生成部136は、時間視差相関予測処理を終了し、処理を図22に戻す。
 また、ステップS201において、時間視差相関領域使用制限フラグが0であると判定された場合、時間視差相関予測ベクトル生成部136は、処理をステップS202に進め、注目領域の参照画像インデックスを決定する。また、ステップS203において、時間視差相関予測ベクトル生成部136は、動き情報を予測するピクチャを決定する。さらに、ステップS204において、時間視差相関予測ベクトル生成部136は、動き情報を予測する領域(注目相関領域)を決定する。
 ステップS205において、時間視差相関予測ベクトル生成部136は、注目相関領域がイントラ予測された領域であるか、若しくは、参照不可であるか否かを判定する。注目相関領域がイントラ予測された領域であると判定されるか、若しくは、注目相関領域が参照不可であると判定された場合、時間視差相関予測ベクトル生成部136は、処理をステップS206に進める。
 ステップS206において、時間視差相関予測ベクトル生成部136は、注目相関領域の動きベクトルを予測ベクトルの候補から外し、時間視差相関予測処理を終了し、処理を図22に戻す。
 また、ステップS205において、注目相関領域が参照可能なインター予測された領域であると判定された場合、時間視差相関予測ベクトル生成部136は、処理をステップS207に進める。
 ステップS207において、時間視差相関予測ベクトル生成部136は、注目相関領域がL1参照の領域であるか否かを判定する。注目相関領域がL1参照の領域であると判定された場合、時間視差相関予測ベクトル生成部136は、処理をステップS208に進める。
 時間視差相関予測ベクトル生成部136は、ステップS208において、注目相関領域の動きベクトルを取得し、ステップS209において、参照画像インデックスを取得し、ステップS210において、参照画像の飛び越しフラグを決定し、処理をステップS211に進める。また、ステップS207において、注目相関領域がL1参照の領域でないと判定された場合、時間視差相関予測ベクトル生成部136は、処理をステップS211に進める。
 ステップS211において、時間視差相関予測ベクトル生成部136は、注目相関領域がL0参照の領域であるか否かを判定する。注目相関領域がL0参照の領域であると判定された場合、時間視差相関予測ベクトル生成部136は、処理をステップS212に進める。
 時間視差相関予測ベクトル生成部136は、ステップS212において、注目相関領域の動きベクトルを取得し、ステップS213において、参照画像インデックスを取得し、ステップS214において、参照画像の飛び越しフラグを決定し、処理を図25のステップS221に進める。また、図24のステップS211において、注目相関領域がL0参照の領域でないと判定された場合、時間視差相関予測ベクトル生成部136は、処理を図25のステップS221に進める。
 図25のステップS221において、時間視差相関予測ベクトル生成部136は、L1の飛び越しフラグのみ1であるか、若しくは、L0/L1の飛び越しフラグの値が等しく、L1の参照があるか否かを判定する。
 L1の飛び越しフラグのみが1であると判定された場合、若しくは、L0/L1の飛び越しフラグの値が等しく、かつ、L1の参照があると判定された場合、時間視差相関予測ベクトル生成部136は、処理をステップS222に進める。
 ステップS222において、時間視差相関予測ベクトル生成部136は、L1参照のベクトルを取得する。ステップS223において、時間視差相関予測ベクトル生成部136は、L1参照の参照画像インデックスを取得し、処理をステップS226に進める。
 また、ステップS221において、L1の飛び越しフラグが1ではない、若しくは、L0の飛び越しフラグも0であると判定され、かつ、L0/L1の飛び越しフラグの値が等しくない、若しくは、L1の参照がないと判定された場合、時間視差相関予測ベクトル生成部136は、処理をステップS224に進める。
 ステップS224において、時間視差相関予測ベクトル生成部136は、L0参照のベクトルを取得する。ステップS225において、時間視差相関予測ベクトル生成部136は、L0参照の参照画像インデックスを取得し、処理をステップS226に進める。
 ステップS226において、時間視差相関予測ベクトル生成部136は、取得したL1参照のベクトルもしくはL0参照のベクトルを予測ベクトルとする。その際、時間視差相関予測ベクトル生成部136は、注目領域や相関領域における参照画像との距離を用いてベクトルのスケーリングを行い、スケーリング結果を予測ベクトルとする。
 ステップS226の処理が終了すると、時間視差相関予測ベクトル生成部136は、処理を図24に戻し、時間視差相関予測処理を終了し、処理を図22に戻す。
 [動き視差ベクトル予測処理の流れ]
 次に、図26のフローチャートを参照して、図20のステップS127において実行される動き視差ベクトル予測処理の流れの例を説明する。
 動き視差ベクトル予測処理が開始されると、ステップS231において、空間相関予測ベクトル生成部135は、空間相関予測処理を行い、空間相関予測ベクトルを生成する。ステップS232において、時間視差相関予測ベクトル生成部136は、時間視差相関予測処理を行い、時間視差相関予測ベクトルを生成する。なお、この場合の、時間視差相関予測処理は、図24および図25のフローチャートを参照して説明した場合と同様に実行される。
 ステップS233において、符号化コスト算出部138は、テップS231において生成された空間相関予測ベクトルと、ステップS232において生成された時間視差予測ベクトルとで、重複するベクトルを削除する。
 符号化コスト算出部138は、残ったベクトルの内、注目領域の動きベクトルに最も近いベクトルを選択し、ステップS234においてそのベクトルを示す予測ベクトルインデックスを作成し、ステップS235において、そのベクトルを予測ベクトルとする。ステップS235の処理が終了すると、符号化コスト算出部138は、動き視差ベクトル予測処理を終了し、処理を図20に戻す。
 [空間相関予測処理の流れ]
 次に、図27のフローチャートを参照して、図26のステップS231において実行される空間相関予測処理の流れの例を説明する。
 空間相関予測処理が開始されると、空間相関予測ベクトル生成部135は、図27のステップS241において、周辺領域A(図9のA0およびA1)についての動きベクトル予測処理である周辺領域A動きベクトル予測処理を行う。
 また、ステップS242において、空間相関予測ベクトル生成部135は、周辺領域B(図9のB0乃至B2)についての動きベクトル予測処理である周辺領域B動きベクトル予測処理を行う。
 ステップS242の処理が終了すると、空間相関予測ベクトル生成部135は、空間相関予測処理を終了し、処理を図26に戻す。
 [周辺領域A動きベクトル予測処理の流れ]
 次に、図28のフローチャートを参照して、周辺領域A動きベクトル予測処理の流れの例を説明する。
 周辺領域A動きベクトル予測処理が開始されると、空間相関予測ベクトル生成部135は、ステップS251において、周辺領域A0、A1(図9)を順次1つずつ選択する。
選択された周辺領域を注目周辺領域と称する。
 ステップS252において、空間相関予測ベクトル生成部135は、注目周辺領域が参照可能であり、非イントラであり、参照リストと参照画像インデックスが注目領域と等しいか否かを判定する。
 注目周辺領域が参照可能なインター予測された領域であり、かつ、注目周辺領域の参照リストと参照画像インデックスが注目領域と等しいと判定された場合、空間相関予測ベクトル生成部135は、処理をステップS253に進める。
 ステップS253において、空間相関予測ベクトル生成部135は、注目周辺領域の動きベクトルを予測ベクトルとして取得する。ステップS254において、空間相関予測ベクトル生成部135は、注目周辺領域の参照インデックスを取得する。ステップS255において、空間相関予測ベクトル生成部135は、注目領域とその参照画像との距離や空間相関領域とその参照画像との距離等を用いて、スケーリングを行って予測ベクトルを算出する。ステップS255の処理が終了すると、空間相関予測ベクトル生成部135は、周辺領域A動きベクトル予測処理を終了し、処理を図27に戻す。
 また、ステップS252において、注目周辺領域が参照可能なインター予測された領域でないと判定されるか、若しくは、注目周辺領域の参照リストと参照画像インデックスが注目領域と異なると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS256に進める。
 ステップS256において、空間相関予測ベクトル生成部135は、注目周辺領域が周辺領域A1であるか否かを判定し、周辺領域A1でないと判定された場合、処理をステップS251に戻す。
 また、ステップS256において、注目周辺領域が周辺領域A1であると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS257に進める。
 ステップS257において、空間相関予測ベクトル生成部135は、周辺領域A0、A1(図9)を順次1つずつ選択する。
 ステップS258において、空間相関予測ベクトル生成部135は、注目周辺領域が参照可能であり、非イントラであり、参照リストが注目領域と異なり、参照画像インデックスが注目領域と等しく、かつ、空間相関領域使用制限フラグが0であるか否かを判定する。
 注目周辺領域が参照可能であり、非イントラであり、参照リストが注目領域と異なり、参照画像インデックスが注目領域と等しく、かつ、空間相関領域使用制限フラグが0であると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS253に戻す。
 また、ステップS258において、注目周辺領域が参照可能なインター予測された領域でないと判定されるか、参照リストが注目領域と等しいと判定されるか、参照画像インデックスが注目領域と異なると判定されるか、若しくは、空間相関領域使用制限フラグが1であると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS259に進める。
 ステップS259において、空間相関予測ベクトル生成部135は、注目周辺領域が参照可能であり、非イントラであり、参照リストが注目領域と等しく、かつ、空間相関領域使用制限フラグが0であるか否かを判定する。
 注目周辺領域が参照可能であり、非イントラであり、参照リストが注目領域と等しく、かつ、空間相関領域使用制限フラグが0であると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS253に戻す。
 また、ステップS259において、注目周辺領域が参照可能なインター予測された領域でないと判定されるか、参照リストが注目領域と異なると判定されるか、若しくは、空間相関領域使用制限フラグが1であると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS260に進める。
 ステップS260において、空間相関予測ベクトル生成部135は、注目周辺領域が参照可能であり、非イントラであり、参照リストが注目領域と異なり、かつ、空間相関領域使用制限フラグが0であるか否かを判定する。
 注目周辺領域が参照可能であり、非イントラであり、参照リストが注目領域と異なり、かつ、空間相関領域使用制限フラグが0であると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS253に戻す。
 また、ステップS260において、注目周辺領域が参照可能なインター予測された領域でないと判定されるか、参照リストが注目領域と等しいと判定されるか、若しくは、空間相関領域使用制限フラグが1であると判定された場合、空間相関予測ベクトル生成部135は、処理をステップS261に進める。
 ステップS261において、空間相関予測ベクトル生成部135は、注目周辺領域がA1であるか否かを判定し、注目周辺領域がA1でないと判定された場合、処理をステップS257に戻す。
 また、ステップS261において、注目周辺領域がA1であると判定された場合、空間相関予測ベクトル生成部135は、周辺領域A動きベクトル予測処理を終了し、処理を図27に戻す。
 [周辺領域B動きベクトル予測処理の流れ]
 図29のフローチャートを参照して、周辺領域B動きベクトル予測処理の流れの例を説明する。
 この周辺領域B動きベクトル予測処理は、処理対象とする周辺領域がB0乃至B2となること以外、図28のフローチャートを参照して説明した周辺領域A動きベクトル予測処理と同様に行われる。すなわち、図29のステップS271乃至ステップS281の各処理は、図28のステップS251乃至ステップS261の各処理と同様に行われる。
 周辺領域B動きベクトル予測処理が終了すると、空間相関予測ベクトル生成部135は、処理を図27に戻す。
 以上のように各処理を実行することにより、時間視差相関予測ベクトル生成部136は、動き相関予測ベクトルだけでなく、視差相関予測ベクトルも生成することができる。したがって、動き視差予測・補償部115は、注目領域のベクトルが視差ベクトルの場合であっても、予測精度の高い予測ベクトルを生成することができる。これにより、画像符号化装置100は、符号化効率の低減を抑制することができる。
 また、相関領域判定部122が、予測方向の関係に基づいて、相関領域の使用を制御することにより、空間相関予測ベクトル生成部135および時間視差相関予測ベクトル生成部136は、予測ベクトルの生成において、予測精度の低い予測ベクトルを生成したり、処理を破綻させたりする等の不要な負荷の発生を抑制することができ、処理時間やメモリ使用量を低減することができる。また、この制限により、空間相関予測ベクトル生成部135および時間視差相関予測ベクトル生成部136は、予測精度の高い予測ベクトルを適切に生成することができるようになるので、符号化効率を向上させることができる。なお、本技術の場合、ベースビューの予測方式に制限を加えるので、従来の方式からの拡張が容易である。
 さらに、相関領域の使用制限フラグを復号側に伝送することにより、復号側においても画像符号化装置100と同様のベクトルの予測を行うことができる。つまり、画像符号化装置100が生成した符号化データを正しく復号することができるだけでなく、復号の際も、処理時間やメモリ使用量を低減することができる。
 <2.第2の実施の形態>
 [画像復号装置]
 図30は、画像処理装置である画像復号装置の主な構成例を示すブロック図である。図30に示される画像復号装置300は、図14の画像符号化装置100に対応する装置である。つまり、画像復号装置300は、画像符号化装置100が多視点画像を符号化して生成した符号化データ(ビットストリーム)を、画像符号化装置100の符号化方法に対応する復号方法で復号し、多視点の復号画像を得る。
 図30に示されるように、画像復号装置300は、蓄積バッファ301、可逆復号部302、逆量子化部303、逆直交変換部304、演算部305、ループフィルタ306、画面並べ替えバッファ307、およびD/A変換部308を有する。また、画像復号装置300は、デコードピクチャバッファ309、選択部310、イントラ予測部311、動き視差補償部312、および選択部313を有する。
 さらに、画像復号装置300は、多視点デコードピクチャバッファ321を有する。
 蓄積バッファ301は、伝送されてきた符号化データを蓄積し、所定のタイミングにおいてその符号化データを可逆復号部302に供給する。可逆復号部302は、蓄積バッファ301より供給された、図14の可逆符号化部106により符号化された情報を、可逆符号化部106の符号化方式に対応する方式で復号する。可逆復号部302は、復号して得られた差分画像の量子化された係数データを、逆量子化部303に供給する。
 また、可逆復号部302は、符号化データを復号して得られた最適な予測モードに関する情報を参照し、最適な予測モードにイントラ予測モードが選択されたかインター予測モードが選択されたかを判定する。可逆復号部302は、その判定結果に基づいて、その最適な予測モードに関する情報を、イントラ予測部311若しくは動き視差補償部312に供給する。つまり、例えば、画像符号化装置100において最適な予測モードとしてイントラ予測モードが選択された場合、その最適な予測モードに関する情報であるイントラ予測情報等がイントラ予測部311に供給される。また、例えば、画像符号化装置100において最適な予測モードとしてインター予測モードが選択された場合、その最適な予測モードに関する情報であるインター予測情報等が動き視差補償部312に供給される。
 さらに、可逆復号部302は、空間相関使用制限フラグや時間相関使用制限フラグを動き視差補償部312に供給する。
 逆量子化部303は、可逆復号部302により復号されて得られた量子化された係数データを、図14の量子化部105の量子化方式に対応する方式で逆量子化し、得られた係数データを逆直交変換部304に供給する。逆直交変換部304は、図14の直交変換部104の直交変換方式に対応する方式で逆量子化部303から供給される係数データを逆直交変換する。逆直交変換部304は、この逆直交変換処理により、画像符号化装置100において直交変換される前の差分画像に対応する差分画像を得る。
 逆直交変換されて得られた差分画像は、演算部305に供給される。また、演算部305には、選択部313を介して、イントラ予測部311若しくは動き視差補償部312から予測画像が供給される。
 演算部305は、差分画像と予測画像とを加算し、画像符号化装置100の演算部103により予測画像が減算される前の画像に対応する再構成画像を得る。演算部305は、その再構成画像をループフィルタ306に供給する。
 ループフィルタ306は、供給された再構成画像に対して、デブロックフィルタ処理や適応ループフィルタ処理等を含むループフィルタ処理を適宜施して復号画像を生成する。例えば、ループフィルタ306は、再構成画像に対してデブロックフィルタ処理を行うことにより、ブロック歪を除去する。また、例えば、ループフィルタ306は、そのデブロックフィルタ処理結果(ブロック歪みの除去が行われた再構成画像)に対して、ウィナーフィルタ(Wiener Filter)を用いてループフィルタ処理を行うことにより画質改善を行う。
 なお、ループフィルタ306が行うフィルタ処理の種類は任意であり、上述した以外のフィルタ処理を行ってもよい。また、ループフィルタ306が、図14の画像符号化装置100から供給されたフィルタ係数を用いてフィルタ処理を行うようにしてもよい。
 ループフィルタ306は、フィルタ処理結果である復号画像を画面並べ替えバッファ307およびデコードピクチャバッファ309に供給する。なお、このループフィルタ306によるフィルタ処理は省略することもできる。つまり、演算部305の出力が、フィルタ処理されずに、デコードピクチャバッファ309に格納されるようにすることもできる。例えば、イントラ予測部311は、この画像に含まれる画素の画素値を周辺画素の画素値として利用する。
 画面並べ替えバッファ307は、供給された復号画像の並べ替えを行う。すなわち、図14の画面並べ替えバッファ102により符号化の順番のために並べ替えられたフレームの順番が、元の表示の順番に並べ替えられる。D/A変換部308は、画面並べ替えバッファ307から供給された復号画像をD/A変換し、図示せぬディスプレイに出力し、表示させる。
 デコードピクチャバッファ309は、供給される再構成画像(並びに、その画像のビューIDおよびPOC)や復号画像(並びに、その画像のビューIDおよびPOC)を記憶する。また、デコードピクチャバッファ309は、所定のタイミングにおいて、若しくは、イントラ予測部311や動き視差補償部312等の外部の要求に基づいて、記憶している再構成画像(並びに、その画像のビューIDおよびPOC)や復号画像(並びに、その画像のビューIDおよびPOC)を、選択部310を介してイントラ予測部311や動き視差補償部312に供給する。
 イントラ予測部311は、図14のイントラ予測部114と基本的に同様の処理を行う。ただし、イントラ予測部311は、符号化の際にイントラ予測により予測画像が生成された領域に対してのみ、イントラ予測を行う。
 動き視差補償部312は、可逆復号部302から供給されるインター予測情報に基づいて動き視差補償を行い、予測画像を生成する。なお、動き視差補償部312は、可逆復号部302から供給されるインター予測情報に基づいて、符号化の際にインター予測が行われた領域に対してのみ、動き視差補償を行う。
 動き視差補償部312は、予測処理単位の領域毎に、生成した予測画像を、選択部313を介して演算部305に供給する。
 選択部313は、イントラ予測部311から供給される予測画像、若しくは、動き視差補償部312から供給される予測画像を演算部305に供給する。
 デコードピクチャバッファ309は、処理対象のビューの画像(並びに、その画像のビューIDおよびPOC)のみを記憶するが、多視点デコードピクチャバッファ321は、各視点(ビュー)の画像(並びに、その画像のビューIDおよびPOC)を記憶する。つまり、多視点デコードピクチャバッファ321は、デコードピクチャバッファ309に供給された復号画像(並びに、その画像のビューIDおよびPOC)を取得し、デコードピクチャバッファ309とともにその復号画像(並びに、その画像のビューIDおよびPOC)を記憶する。
 デコードピクチャバッファ309は、処理対象のビューが変わると、その復号画像を消去するが、多視点デコードピクチャバッファ321は、そのまま保持する。そして、デコードピクチャバッファ309などの要求に従って、記憶している復号画像(並びに、その画像のビューIDおよびPOC)を、「処理対象ではないビューの復号画像」として、デコードピクチャバッファ309に供給する。デコードピクチャバッファ309は、多視点デコードピクチャバッファ321から読み出した「処理対象ではないビューの復号画像(並びに、その画像のビューIDおよびPOC)」を、選択部310を介して動き視差補償部312に供給する。
 [動き視差補償部]
 図31は、動き視差補償部312の主な構成例を示すブロック図である。
 図30に示されるように、動き視差補償部312は、符号化情報蓄積バッファ331、選択部332、空間相関予測ベクトル生成部333、時間視差相関予測ベクトル生成部334、選択部335、演算部336、および予測画像生成部337を有する。
 符号化情報蓄積バッファ331は、可逆復号部302において得られた、モード情報、差分動き視差情報、および予測情報を取得する。また、符号化情報蓄積バッファ331は、予測画像生成部337において使用された復号済みの動き視差ベクトルを記憶する。この動き視差ベクトルは、他の領域に対する処理において周辺領域の動き視差ベクトルとして使用される。
 符号化情報蓄積バッファ331は、モード情報を、選択部332を介して、空間相関予測ベクトル生成部333、若しくは、時間視差相関予測ベクトル生成部334の、予測情報において指定される予測ベクトルの種類(空間相関予測ベクトル若しくは時間視差相関予測ベクトル)に対応する方に供給する。
 また、符号化情報蓄積バッファ331は、復号済みの周辺領域の動き視差ベクトルを、空間相関予測ベクトル生成部333および時間視差相関予測ベクトル生成部334に供給する。
 さらに、符号化情報蓄積バッファ331は、差分動き視差情報に含まれる差分動き視差ベクトルを演算部336に供給する。また、符号化情報蓄積バッファ331は、予測情報に含まれる参照画像インデックスを予測画像生成部337に供給する。
 空間相関予測ベクトル生成部333は、可逆復号部302において符号化データより抽出された空間相関領域使用制限フラグを取得する。また、空間相関予測ベクトル生成部333は、その空間相関領域使用制限フラグに従って、符号化情報蓄積バッファ331からモード情報や復号済み動き視差ベクトル等を取得し、それらの情報基づいて、空間相関予測ベクトルを生成する。この生成方法は、空間相関予測ベクトル生成部135の場合と同様である。ただし、空間相関予測ベクトル生成部333の場合、最適なインター予測モードは予め決められているので、そのモードについてのみ空間相関予測ベクトルを生成すればよい。空間相関予測ベクトル生成部333は、生成した空間相関予測ベクトルを、選択部335を介して演算部336に供給する。
 時間視差相関予測ベクトル生成部334は、可逆復号部302において符号化データより抽出された時間相関領域使用制限フラグを取得する。また、時間視差相関予測ベクトル生成部334は、その時間相関領域使用制限フラグに従って、符号化情報蓄積バッファ331からモード情報や復号済み動き視差ベクトル等を取得し、それらの情報基づいて、時間視差相関予測ベクトルを生成する。この生成方法は、時間視差相関予測ベクトル生成部136の場合と同様である。ただし、時間視差相関予測ベクトル生成部334の場合、最適なインター予測モードは予め決められているので、そのモードについてのみ時間視差相関予測ベクトルを生成すればよい。時間視差相関予測ベクトル生成部334は、生成した時間視差相関予測ベクトルを、選択部335を介して演算部336に供給する。
 選択部335は、空間相関予測ベクトル生成部333から空間相関予測ベクトルを供給された場合、それを演算部336に供給する。また、選択部335は、時間視差相関予測ベクトル生成部334から時間視差相関予測ベクトルを供給された場合、それを演算部336に供給する。
 演算部336は、選択部335から供給される空間相関予測ベクトル若しくは時間視差相関予測ベクトルに、符号化情報蓄積バッファ331から供給される差分動き視差ベクトルを加算し、注目領域の動き視差ベクトルを再構築する。演算部336は、再構築された注目領域の動き視差ベクトルを予測画像生成部337に供給する。
 予測画像生成部337は、演算部336より供給される、再構築された注目領域の動き視差ベクトルと、符号化情報蓄積バッファ331から供給される参照画像インデックスと、デコードピクチャバッファ309から供給される周辺領域の画像である周辺画像画素値とを用いて、予測画像を生成する。予測画像生成部337は、生成した予測画像画素値を選択部313に供給する。
 このようにすることにより、時間視差相関予測ベクトル生成部334は、動き相関予測ベクトルだけでなく、視差相関予測ベクトルも生成することができる。したがって、動き視差補償部312は、注目領域のベクトルが視差ベクトルの場合であっても、予測精度の高い予測ベクトルを生成することができる。これにより、画像復号装置300は、符号化効率の向上を実現することができる。
 また、相関領域判定部122が生成した相関領域の使用制限フラグを用いて相関領域の使用を制御することにより、空間相関予測ベクトル生成部333および時間視差相関予測ベクトル生成部334は、予測ベクトルの再構築において、予測精度の低い予測ベクトルを再構築したり、処理を破綻させたりする等の不要な負荷の発生を抑制することができ、処理時間やメモリ使用量を低減することができる。また、この制限により、空間相関予測ベクトル生成部333および時間視差相関予測ベクトル生成部334は、予測精度の高い予測ベクトルを適切に生成することができるようになるので、符号化効率を向上させることができる。なお、本技術の場合、ベースビューの予測方式に制限を加えるので、従来の方式からの拡張が容易である。
 [復号処理の流れ]
 次に、以上のような画像復号装置300により実行される各処理の流れについて説明する。最初に、図32のフローチャートを参照して、復号処理の流れの例を説明する。
 復号処理が開始されると、ステップS301において、蓄積バッファ301は、伝送されてきたビットストリームを蓄積する。ステップS302において、可逆復号部302は、蓄積バッファ301から供給されるビットストリーム(符号化された差分画像情報)を復号する。このとき、イントラ予測情報やインター予測情報等、ビットストリームに含められた差分画像情報以外の各種情報も復号される。
 ステップS303において、逆量子化部303は、ステップS302の処理により得られた、量子化された直交変換係数を逆量子化する。ステップS304において逆直交変換部304は、ステップS303において逆量子化された直交変換係数を逆直交変換する。
 ステップS305において、イントラ予測部311若しくは動き視差補償部312は、供給された情報を用いて予測処理を行う。ステップS306において、演算部305は、ステップS304において逆直交変換されて得られた差分画像情報に、ステップS305において生成された予測画像を加算する。これにより再構成画像が生成される。
 ステップS307において、ループフィルタ306は、ステップS306において得られた再構成画像に対して、デブロックフィルタ処理や適応ループフィルタ処理等を含むループフィルタ処理を適宜行う。
 ステップS308において、画面並べ替えバッファ307は、ステップS307においてフィルタ処理されて生成された復号画像の並べ替えを行う。すなわち画像符号化装置100の画面並べ替えバッファ102により符号化のために並べ替えられたフレームの順序が、元の表示の順序に並べ替えられる。
 ステップS309において、D/A変換部308は、フレームの順序が並べ替えられた復号画像をD/A変換する。この復号画像が図示せぬディスプレイに出力され、表示される。
 ステップS310において、デコードピクチャバッファ309は、ステップS307においてフィルタ処理されて得られた復号画像を記憶する。この復号画像は、インター予測処理において参照画像として利用される。
 ステップS310の処理が終了すると、復号処理が終了される。
 [予測処理の流れ]
 次に、図33のフローチャートを参照して、図32のステップS305において実行される予測処理の流れの例を説明する。
 予測処理が開始されると、可逆復号部302は、ステップS331において、処理対象の注目領域が符号化の際にイントラ予測が行われたか否かを判定する。イントラ予測が行われたと判定された場合、可逆復号部302は、処理をステップS332に進める。
 この場合、イントラ予測部311は、ステップS332において、可逆復号部302からイントラ予測モード情報を取得し、ステップS333において、イントラ予測によって予測画像を生成する。予測画像が生成されると、イントラ予測部311は、予測処理を終了し、処理を図32に戻す。
 また、ステップS331において、注目領域がインター予測の行われた領域であると判定した場合、可逆復号部302は、処理をステップS334に進める。ステップS334において、動き視差補償部312は、動き視差補償処理を行う。動き視差補償処理が終了すると、動き視差補償部312は、予測処理を終了し、処理を図32に戻す。
 [動き視差補償処理の流れ]
 次に、図34のフローチャートを参照して、図33のステップS334において実行される動き視差補償処理の流れの例を説明する。
 動き視差補償処理が開始されると、ステップS351において、符号化情報蓄積バッファ331は、ステップS351において復号されたモード情報、動き視差情報、および予測情報等を記憶する。
 ステップS352において、空間相関予測ベクトル生成部333、時間視差相関予測ベクトル生成部334、選択部335、および演算部336は、動き視差ベクトル生成処理を行い、注目領域の動き視差ベクトルを再構築する。
 動き視差ベクトルが再構築されると、ステップS353において、予測画像生成部337は、その動き視差ベクトルを用いて予測画像を生成する。
 予測画像が生成されると、予測画像生成部337は、動き視差補償処理を終了し、処理を図33に戻す。
 [動き視差ベクトル生成処理の流れ]
 次に、図35のフローチャートを参照して、図34のステップS352において実行される動き視差ベクトル生成処理の流れの例を説明する。
 動き視差ベクトル生成処理が開始されると、符号化情報蓄積バッファ331は、ステップS371において、予測情報からスキップモードであるか否かを判定する。スキップモードであると判定された場合、符号化情報蓄積バッファ331は、処理をステップS372に進める。ステップS372において、空間相関予測ベクトル生成部333乃至演算部336は、マージモード処理を行い、マージモードで動き視差ベクトルを再構築する。なお、このマージモード処理においては、図22のフローチャートを参照して説明した各処理と同様の処理が行われる。マージモード処理が終了すると、演算部336は、動き視差ベクトル生成処理を終了し、処理を図34に戻す。
 また、図35のステップS371において、スキップモードではないと判定された場合、符号化情報蓄積バッファ331は、処理をステップS373に進める。ステップS373において、符号化情報蓄積バッファ331は、予測情報からマージモードであるか否かを判定する。マージモードであると判定された場合、符号化情報蓄積バッファ331は、処理をステップS372に戻し、マージモード処理を実行させる。
 また、ステップS373において、マージモードではないと判定された場合、符号化情報蓄積バッファ331は、処理をステップS374に進める。
 ステップS374において、符号化情報蓄積バッファ331は、参照画像のインデックスを取得する。ステップS375において、符号化情報蓄積バッファ331は、差分動き視差ベクトルを取得する。
 ステップS376において、空間相関予測ベクトル生成部333若しくは時間視差相関予測ベクトル生成部334は、動き視差ベクトル予測処理を行う。この動き視差ベクトル予測処理は、図26のフローチャートを参照して説明した場合と同様に行われる。ただし、この場合、予測方法は決められているので、空間相関予測処理と時間視差相関予測処理の内、いずれか一方(予測情報により指定される方)が行われる。
 ステップS377において、演算部336は、ステップS376において再構築された予測ベクトルと、差分動き視差ベクトルとを加算し、動き視差ベクトルを再構築する。
 ステップS377の処理が終了すると、演算部336は、動き視差ベクトル生成処理を終了し、処理を図34に戻す。
 以上のように各処理を実行することにより、時間視差相関予測ベクトル生成部334は、動き相関予測ベクトルだけでなく、視差相関予測ベクトルも生成することができる。したがって、動き視差補償部312は、注目領域のベクトルが視差ベクトルの場合であっても、予測精度の高い予測ベクトルを生成することができる。これにより、画像復号装置300は、符号化効率の向上を実現することができる。
 また、相関領域判定部122が生成した相関領域の使用制限フラグを用いて相関領域の使用を制御することにより、空間相関予測ベクトル生成部333および時間視差相関予測ベクトル生成部334は、予測ベクトルの再構築において、予測精度の低い予測ベクトルを再構築したり、処理を破綻させたりする等の不要な負荷の発生を抑制することができ、処理時間やメモリ使用量を低減することができる。また、この制限により、空間相関予測ベクトル生成部333および時間視差相関予測ベクトル生成部334は、予測精度の高い予測ベクトルを適切に生成することができるようになるので、符号化効率を向上させることができる。なお、本技術の場合、ベースビューの予測方式に制限を加えるので、従来の方式からの拡張が容易である。
 なお、本技術は、例えば、MPEG、H.26x等の様に、離散コサイン変換等の直交変換と動き補償によって圧縮された画像情報(ビットストリーム)を、衛星放送、ケーブルテレビジョン、インターネット、または携帯電話機などのネットワークメディアを介して受信する際に用いられる画像符号化装置および画像復号装置に適用することができる。また、本技術は、光、磁気ディスク、およびフラッシュメモリのような記憶メディア上で処理する際に用いられる画像符号化装置および画像復号装置に適用することができる。さらに、本技術は、それらの画像符号化装置および画像復号装置などに含まれる動き予測補償装置にも適用することができる。
 <3.第3の実施の形態>
 [コンピュータ]
 上述した一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な汎用のパーソナルコンピュータなどが含まれる。
 図37において、パーソナルコンピュータ500のCPU(Central Processing Unit)501は、ROM(Read Only Memory)502に記憶されているプログラム、または記憶部513からRAM(Random Access Memory)503にロードされたプログラムに従って各種の処理を実行する。RAM503にはまた、CPU501が各種の処理を実行する上において必要なデータなども適宜記憶される。
 CPU501、ROM502、およびRAM503は、バス504を介して相互に接続されている。このバス504にはまた、入出力インタフェース510も接続されている。
 入出力インタフェース510には、キーボード、マウスなどよりなる入力部511、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)などよりなるディスプレイ、並びにスピーカなどよりなる出力部512、ハードディスクなどより構成される記憶部513、モデムなどより構成される通信部514が接続されている。通信部514は、インターネットを含むネットワークを介しての通信処理を行う。
 入出力インタフェース510にはまた、必要に応じてドライブ515が接続され、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブルメディア521が適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて記憶部513にインストールされる。
 上述した一連の処理をソフトウエアにより実行させる場合には、そのソフトウエアを構成するプログラムが、ネットワークや記録媒体からインストールされる。
 この記録媒体は、例えば、図37に示されるように、装置本体とは別に、ユーザにプログラムを配信するために配布される、プログラムが記録されている磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc - Read Only Memory),DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、若しくは半導体メモリなどよりなるリムーバブルメディア521により構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに配信される、プログラムが記録されているROM502や、記憶部513に含まれるハードディスクなどで構成される。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
 また、本明細書において、システムとは、複数のデバイス(装置)により構成される装置全体を表すものである。
 また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。つまり、本技術は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 上述した実施形態に係る画像符号化装置及び画像復号装置は、衛星放送、ケーブルTVなどの有線放送、インターネット上での配信、及びセルラー通信による端末への配信などにおける送信機若しくは受信機、光ディスク、磁気ディスク及びフラッシュメモリなどの媒体に画像を記録する記録装置、又は、これら記憶媒体から画像を再生する再生装置などの様々な電子機器に応用され得る。以下、4つの応用例について説明する。
 <4.第4の実施の形態>
 [第1の応用例:テレビジョン受像機]
 図38は、上述した実施形態を適用したテレビジョン装置の概略的な構成の一例を示している。テレビジョン装置900は、アンテナ901、チューナ902、デマルチプレクサ903、デコーダ904、映像信号処理部905、表示部906、音声信号処理部907、スピーカ908、外部インタフェース909、制御部910、ユーザインタフェース911、及びバス912を備える。
 チューナ902は、アンテナ901を介して受信される放送信号から所望のチャンネルの信号を抽出し、抽出した信号を復調する。そして、チューナ902は、復調により得られた符号化ビットストリームをデマルチプレクサ903へ出力する。即ち、チューナ902は、画像が符号化されている符号化ストリームを受信する、テレビジョン装置900における伝送部としての役割を有する。
 デマルチプレクサ903は、符号化ビットストリームから視聴対象の番組の映像ストリーム及び音声ストリームを分離し、分離した各ストリームをデコーダ904へ出力する。また、デマルチプレクサ903は、符号化ビットストリームからEPG(Electronic Program Guide)などの補助的なデータを抽出し、抽出したデータを制御部910に供給する。なお、デマルチプレクサ903は、符号化ビットストリームがスクランブルされている場合には、デスクランブルを行ってもよい。
 デコーダ904は、デマルチプレクサ903から入力される映像ストリーム及び音声ストリームを復号する。そして、デコーダ904は、復号処理により生成される映像データを映像信号処理部905へ出力する。また、デコーダ904は、復号処理により生成される音声データを音声信号処理部907へ出力する。
 映像信号処理部905は、デコーダ904から入力される映像データを再生し、表示部906に映像を表示させる。また、映像信号処理部905は、ネットワークを介して供給されるアプリケーション画面を表示部906に表示させてもよい。また、映像信号処理部905は、映像データについて、設定に応じて、例えばノイズ除去などの追加的な処理を行ってもよい。さらに、映像信号処理部905は、例えばメニュー、ボタン又はカーソルなどのGUI(Graphical User Interface)の画像を生成し、生成した画像を出力画像に重畳してもよい。
 表示部906は、映像信号処理部905から供給される駆動信号により駆動され、表示デバイス(例えば、液晶ディスプレイ、プラズマディスプレイ又はOELD(Organic ElectroLuminescence Display)(有機ELディスプレイ)など)の映像面上に映像又は画像を表示する。
 音声信号処理部907は、デコーダ904から入力される音声データについてD/A変換及び増幅などの再生処理を行い、スピーカ908から音声を出力させる。また、音声信号処理部907は、音声データについてノイズ除去などの追加的な処理を行ってもよい。
 外部インタフェース909は、テレビジョン装置900と外部機器又はネットワークとを接続するためのインタフェースである。例えば、外部インタフェース909を介して受信される映像ストリーム又は音声ストリームが、デコーダ904により復号されてもよい。即ち、外部インタフェース909もまた、画像が符号化されている符号化ストリームを受信する、テレビジョン装置900における伝送部としての役割を有する。
 制御部910は、CPUなどのプロセッサ、並びにRAM及びROMなどのメモリを有する。メモリは、CPUにより実行されるプログラム、プログラムデータ、EPGデータ、及びネットワークを介して取得されるデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、テレビジョン装置900の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース911から入力される操作信号に応じて、テレビジョン装置900の動作を制御する。
 ユーザインタフェース911は、制御部910と接続される。ユーザインタフェース911は、例えば、ユーザがテレビジョン装置900を操作するためのボタン及びスイッチ、並びに遠隔制御信号の受信部などを有する。ユーザインタフェース911は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部910へ出力する。
 バス912は、チューナ902、デマルチプレクサ903、デコーダ904、映像信号処理部905、音声信号処理部907、外部インタフェース909及び制御部910を相互に接続する。
 このように構成されたテレビジョン装置900において、デコーダ904は、上述した実施形態に係る画像復号装置の機能を有する。それにより、テレビジョン装置900での画像の復号に際して、符号化効率の低減の抑制を実現することができる。
 <5.第5の実施の形態>
 [第2の応用例:携帯電話機]
 図39は、上述した実施形態を適用した携帯電話機の概略的な構成の一例を示している。携帯電話機920は、アンテナ921、通信部922、音声コーデック923、スピーカ924、マイクロホン925、カメラ部926、画像処理部927、多重分離部928、記録再生部929、表示部930、制御部931、操作部932、及びバス933を備える。
 アンテナ921は、通信部922に接続される。スピーカ924及びマイクロホン925は、音声コーデック923に接続される。操作部932は、制御部931に接続される。バス933は、通信部922、音声コーデック923、カメラ部926、画像処理部927、多重分離部928、記録再生部929、表示部930、及び制御部931を相互に接続する。
 携帯電話機920は、音声通話モード、データ通信モード、撮影モード及びテレビ電話モードを含む様々な動作モードで、音声信号の送受信、電子メール又は画像データの送受信、画像の撮像、及びデータの記録などの動作を行う。
 音声通話モードにおいて、マイクロホン925により生成されるアナログ音声信号は、音声コーデック923に供給される。音声コーデック923は、アナログ音声信号を音声データへ変換し、変換された音声データをA/D変換し圧縮する。そして、音声コーデック923は、圧縮後の音声データを通信部922へ出力する。通信部922は、音声データを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号を、アンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。そして、通信部922は、受信信号を復調及び復号して音声データを生成し、生成した音声データを音声コーデック923へ出力する。音声コーデック923は、音声データを伸張し及びD/A変換し、アナログ音声信号を生成する。そして、音声コーデック923は、生成した音声信号をスピーカ924に供給して音声を出力させる。
 また、データ通信モードにおいて、例えば、制御部931は、操作部932を介するユーザによる操作に応じて、電子メールを構成する文字データを生成する。また、制御部931は、文字を表示部930に表示させる。また、制御部931は、操作部932を介するユーザからの送信指示に応じて電子メールデータを生成し、生成した電子メールデータを通信部922へ出力する。通信部922は、電子メールデータを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号を、アンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。そして、通信部922は、受信信号を復調及び復号して電子メールデータを復元し、復元した電子メールデータを制御部931へ出力する。制御部931は、表示部930に電子メールの内容を表示させると共に、電子メールデータを記録再生部929の記憶媒体に記憶させる。
 記録再生部929は、読み書き可能な任意の記憶媒体を有する。例えば、記憶媒体は、RAM又はフラッシュメモリなどの内蔵型の記憶媒体であってもよく、ハードディスク、磁気ディスク、光磁気ディスク、光ディスク、USB(Unallocated Space Bitmap)メモリ、又はメモリカードなどの外部装着型の記憶媒体であってもよい。
 また、撮影モードにおいて、例えば、カメラ部926は、被写体を撮像して画像データを生成し、生成した画像データを画像処理部927へ出力する。画像処理部927は、カメラ部926から入力される画像データを符号化し、符号化ストリームを記憶再生部929の記憶媒体に記憶させる。
 また、テレビ電話モードにおいて、例えば、多重分離部928は、画像処理部927により符号化された映像ストリームと、音声コーデック923から入力される音声ストリームとを多重化し、多重化したストリームを通信部922へ出力する。通信部922は、ストリームを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号を、アンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。これら送信信号及び受信信号には、符号化ビットストリームが含まれ得る。そして、通信部922は、受信信号を復調及び復号してストリームを復元し、復元したストリームを多重分離部928へ出力する。多重分離部928は、入力されるストリームから映像ストリーム及び音声ストリームを分離し、映像ストリームを画像処理部927、音声ストリームを音声コーデック923へ出力する。画像処理部927は、映像ストリームを復号し、映像データを生成する。映像データは、表示部930に供給され、表示部930により一連の画像が表示される。音声コーデック923は、音声ストリームを伸張し及びD/A変換し、アナログ音声信号を生成する。そして、音声コーデック923は、生成した音声信号をスピーカ924に供給して音声を出力させる。
 このように構成された携帯電話機920において、画像処理部927は、上述した実施形態に係る画像符号化装置及び画像復号装置の機能を有する。それにより、携帯電話機920での画像の符号化及び復号に際して、符号化効率の低減を抑制することができる。
 <6.第6の実施の形態>
 [第3の応用例:記録再生装置]
 図40は、上述した実施形態を適用した記録再生装置の概略的な構成の一例を示している。記録再生装置940は、例えば、受信した放送番組の音声データ及び映像データを符号化して記録媒体に記録する。また、記録再生装置940は、例えば、他の装置から取得される音声データ及び映像データを符号化して記録媒体に記録してもよい。また、記録再生装置940は、例えば、ユーザの指示に応じて、記録媒体に記録されているデータをモニタ及びスピーカ上で再生する。このとき、記録再生装置940は、音声データ及び映像データを復号する。
 記録再生装置940は、チューナ941、外部インタフェース942、エンコーダ943、HDD(Hard Disk Drive)944、ディスクドライブ945、セレクタ946、デコーダ947、OSD(On-Screen Display)948、制御部949、及びユーザインタフェース950を備える。
 チューナ941は、アンテナ(図示せず)を介して受信される放送信号から所望のチャンネルの信号を抽出し、抽出した信号を復調する。そして、チューナ941は、復調により得られた符号化ビットストリームをセレクタ946へ出力する。即ち、チューナ941は、記録再生装置940における伝送部としての役割を有する。
 外部インタフェース942は、記録再生装置940と外部機器又はネットワークとを接続するためのインタフェースである。外部インタフェース942は、例えば、IEEE1394インタフェース、ネットワークインタフェース、USBインタフェース、又はフラッシュメモリインタフェースなどであってよい。例えば、外部インタフェース942を介して受信される映像データ及び音声データは、エンコーダ943へ入力される。即ち、外部インタフェース942は、記録再生装置940における伝送部としての役割を有する。
 エンコーダ943は、外部インタフェース942から入力される映像データ及び音声データが符号化されていない場合に、映像データ及び音声データを符号化する。そして、エンコーダ943は、符号化ビットストリームをセレクタ946へ出力する。
 HDD944は、映像及び音声などのコンテンツデータが圧縮された符号化ビットストリーム、各種プログラムおよびその他のデータを内部のハードディスクに記録する。また、HDD944は、映像及び音声の再生時に、これらデータをハードディスクから読み出す。
 ディスクドライブ945は、装着されている記録媒体へのデータの記録及び読み出しを行う。ディスクドライブ945に装着される記録媒体は、例えばDVDディスク(DVD-Video、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等)又はBlu-ray(登録商標)ディスクなどであってよい。
 セレクタ946は、映像及び音声の記録時には、チューナ941又はエンコーダ943から入力される符号化ビットストリームを選択し、選択した符号化ビットストリームをHDD944又はディスクドライブ945へ出力する。また、セレクタ946は、映像及び音声の再生時には、HDD944又はディスクドライブ945から入力される符号化ビットストリームをデコーダ947へ出力する。
 デコーダ947は、符号化ビットストリームを復号し、映像データ及び音声データを生成する。そして、デコーダ947は、生成した映像データをOSD948へ出力する。また、デコーダ904は、生成した音声データを外部のスピーカへ出力する。
 OSD948は、デコーダ947から入力される映像データを再生し、映像を表示する。また、OSD948は、表示する映像に、例えばメニュー、ボタン又はカーソルなどのGUIの画像を重畳してもよい。
 制御部949は、CPUなどのプロセッサ、並びにRAM及びROMなどのメモリを有する。メモリは、CPUにより実行されるプログラム、及びプログラムデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、記録再生装置940の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース950から入力される操作信号に応じて、記録再生装置940の動作を制御する。
 ユーザインタフェース950は、制御部949と接続される。ユーザインタフェース950は、例えば、ユーザが記録再生装置940を操作するためのボタン及びスイッチ、並びに遠隔制御信号の受信部などを有する。ユーザインタフェース950は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部949へ出力する。
 このように構成された記録再生装置940において、エンコーダ943は、上述した実施形態に係る画像符号化装置の機能を有する。また、デコーダ947は、上述した実施形態に係る画像復号装置の機能を有する。それにより、記録再生装置940での画像の符号化及び復号に際して、符号化効率の低減を抑制することができる。
 <7.第7の実施の形態>
 [第4の応用例:撮像装置]
 図41は、上述した実施形態を適用した撮像装置の概略的な構成の一例を示している。撮像装置960は、被写体を撮像して画像を生成し、画像データを符号化して記録媒体に記録する。
 撮像装置960は、光学ブロック961、撮像部962、信号処理部963、画像処理部964、表示部965、外部インタフェース966、メモリ967、メディアドライブ968、OSD969、制御部970、ユーザインタフェース971、及びバス972を備える。
 光学ブロック961は、撮像部962に接続される。撮像部962は、信号処理部963に接続される。表示部965は、画像処理部964に接続される。ユーザインタフェース971は、制御部970に接続される。バス972は、画像処理部964、外部インタフェース966、メモリ967、メディアドライブ968、OSD969、及び制御部970を相互に接続する。
 光学ブロック961は、フォーカスレンズ及び絞り機構などを有する。光学ブロック961は、被写体の光学像を撮像部962の撮像面に結像させる。撮像部962は、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などのイメージセンサを有し、撮像面に結像した光学像を光電変換によって電気信号としての画像信号に変換する。そして、撮像部962は、画像信号を信号処理部963へ出力する。
 信号処理部963は、撮像部962から入力される画像信号に対してニー補正、ガンマ補正、色補正などの種々のカメラ信号処理を行う。信号処理部963は、カメラ信号処理後の画像データを画像処理部964へ出力する。
 画像処理部964は、信号処理部963から入力される画像データを符号化し、符号化データを生成する。そして、画像処理部964は、生成した符号化データを外部インタフェース966又はメディアドライブ968へ出力する。また、画像処理部964は、外部インタフェース966又はメディアドライブ968から入力される符号化データを復号し、画像データを生成する。そして、画像処理部964は、生成した画像データを表示部965へ出力する。また、画像処理部964は、信号処理部963から入力される画像データを表示部965へ出力して画像を表示させてもよい。また、画像処理部964は、OSD969から取得される表示用データを、表示部965へ出力する画像に重畳してもよい。
 OSD969は、例えばメニュー、ボタン又はカーソルなどのGUIの画像を生成して、生成した画像を画像処理部964へ出力する。
 外部インタフェース966は、例えばUSB入出力端子として構成される。外部インタフェース966は、例えば、画像の印刷時に、撮像装置960とプリンタとを接続する。また、外部インタフェース966には、必要に応じてドライブが接続される。ドライブには、例えば、磁気ディスク又は光ディスクなどのリムーバブルメディアが装着され、リムーバブルメディアから読み出されるプログラムが、撮像装置960にインストールされ得る。さらに、外部インタフェース966は、LAN又はインターネットなどのネットワークに接続されるネットワークインタフェースとして構成されてもよい。即ち、外部インタフェース966は、撮像装置960における伝送部としての役割を有する。
 メディアドライブ968に装着される記録媒体は、例えば、磁気ディスク、光磁気ディスク、光ディスク、又は半導体メモリなどの、読み書き可能な任意のリムーバブルメディアであってよい。また、メディアドライブ968に記録媒体が固定的に装着され、例えば、内蔵型ハードディスクドライブ又はSSD(Solid State Drive)のような非可搬性の記憶部が構成されてもよい。
 制御部970は、CPUなどのプロセッサ、並びにRAM及びROMなどのメモリを有する。メモリは、CPUにより実行されるプログラム、及びプログラムデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、撮像装置960の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース971から入力される操作信号に応じて、撮像装置960の動作を制御する。
 ユーザインタフェース971は、制御部970と接続される。ユーザインタフェース971は、例えば、ユーザが撮像装置960を操作するためのボタン及びスイッチなどを有する。ユーザインタフェース971は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部970へ出力する。
 このように構成された撮像装置960において、画像処理部964は、上述した実施形態に係る画像符号化装置及び画像復号装置の機能を有する。それにより、撮像装置960での画像の符号化及び復号に際して、符号化効率の低減を抑制することができる。
 なお、本明細書では、閾値などの様々な情報が、符号化ストリームのヘッダに多重化されて、符号化側から復号側へ伝送される例について説明した。しかしながら、これら情報を伝送する手法はかかる例に限定されない。例えば、これら情報は、符号化ビットストリームに多重化されることなく、符号化ビットストリームと関連付けられた別個のデータとして伝送され又は記録されてもよい。ここで、「関連付ける」という用語は、ビットストリームに含まれる画像(スライス若しくはブロックなど、画像の一部であってもよい)と当該画像に対応する情報とを復号時にリンクさせ得るようにすることを意味する。即ち、情報は、画像(又はビットストリーム)とは別の伝送路上で伝送されてもよい。また、情報は、画像(又はビットストリーム)とは別の記録媒体(又は同一の記録媒体の別の記録エリア)に記録されてもよい。さらに、情報と画像(又はビットストリーム)とは、例えば、複数フレーム、1フレーム、又はフレーム内の一部分などの任意の単位で互いに関連付けられてよい。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 なお、本技術は以下のような構成も取ることができる。
 (1) 多視点画像の注目領域の予測方向に応じて、前記注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域の使用を制限する制限部と、
 前記制限部により使用が制限されていない相関領域のベクトルを用いて前記予測ベクトルを生成する予測ベクトル生成部と
 を備える画像処理装置。
 (2) 前記制限部は、視差方向の予測を行う、前記注目領域と同一ビューの異なる時刻の相関領域の使用を禁止する
 前記(1)に記載の画像処理装置。
 (3) 前記制限部は、視差方向のみの予測を行う注目領域の相関領域であって、時間方向の予測を行う、前記注目領域と同一ビューの異なる時刻の相関領域の使用を禁止する
 前記(1)または(2)に記載の画像処理装置。
 (4) 前記制限部は、視差方向の予測を行う、前記注目領域と異なるビューの同一時刻の相関領域の使用を禁止する
 前記(1)乃至(3)のいずれかに記載の画像処理装置。
 (5) 前記制限部は、前記相関領域の制限を示す制限情報を生成する
 前記(1)乃至(4)のいずれかに記載の画像処理装置。
 (6) 前記制限部により生成された制限情報を伝送する伝送部をさらに備える
 前記(5)に記載の画像処理装置。
 (7) 画像処理装置の画像処理方法であって、
 制限部が、多視点画像の注目領域の予測方向に応じて、前記注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域の使用を制限し、
 予測ベクトル生成部が、使用が制限されていない相関領域のベクトルを用いて前記予測ベクトルを生成する
 画像処理方法。
 (8) 多視点画像の注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域を制限する制限情報を受け取る受け取り部と、
 前記受け取り部により受け取られた前記制限情報により使用が禁止されていない相関領域のベクトルを用いて前記予測ベクトルを生成する予測ベクトル生成部と
 を備える画像処理装置。
 (9) 画像処理装置の画像処理方法であって、
 受け取り部が、多視点画像の注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域を制限する制限情報を受け取り、
 予測ベクトル生成部が、受け取られた前記制限情報により使用が禁止されていない相関領域のベクトルを用いて前記予測ベクトルを生成する
 画像処理方法。
 100 画像符号化装置, 115 動き視差予測・補償部, 121 多視点デコードピクチャバッファ, 122 相関領域判定部, 131 動き視差ベクトル探索部, 132 予測画像生成部, 133 符号化情報蓄積バッファ, 134 選択部, 135 空間相関予測ベクトル生成部, 136 時間視差相関予測ベクトル生成部, 137 選択部, 138 符号化コスト算出部, 139 モード判定部, 300 画像復号装置, 312 動き視差補償部, 321 多視点デコードピクチャバッファ, 331 符号化情報蓄積バッファ, 332 選択部, 333 空間相関予測ベクトル生成部, 334 時間視差相関予測ベクトル生成部, 335 選択部, 336 演算部, 337 予測画像生成部

Claims (9)

  1.  多視点画像の注目領域の予測方向に応じて、前記注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域の使用を制限する制限部と、
     前記制限部により使用が制限されていない相関領域のベクトルを用いて前記予測ベクトルを生成する予測ベクトル生成部と
     を備える画像処理装置。
  2.  前記制限部は、視差方向の予測を行う、前記注目領域と同一ビューの異なる時刻の相関領域の使用を禁止する
     請求項1に記載の画像処理装置。
  3.  前記制限部は、視差方向のみの予測を行う注目領域の相関領域であって、時間方向の予測を行う、前記注目領域と同一ビューの異なる時刻の相関領域の使用を禁止する
     請求項1に記載の画像処理装置。
  4.  前記制限部は、視差方向の予測を行う、前記注目領域と異なるビューの同一時刻の相関領域の使用を禁止する
     請求項1に記載の画像処理装置。
  5.  前記制限部は、前記相関領域の制限を示す制限情報を生成する
     請求項1に記載の画像処理装置。
  6.  前記制限部により生成された制限情報を伝送する伝送部をさらに備える
     請求項5に記載の画像処理装置。
  7.  画像処理装置の画像処理方法であって、
     制限部が、多視点画像の注目領域の予測方向に応じて、前記注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域の使用を制限し、
     予測ベクトル生成部が、使用が制限されていない相関領域のベクトルを用いて前記予測ベクトルを生成する
     画像処理方法。
  8.  多視点画像の注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域を制限する制限情報を受け取る受け取り部と、
     前記受け取り部により受け取られた前記制限情報により使用が禁止されていない相関領域のベクトルを用いて前記予測ベクトルを生成する予測ベクトル生成部と
     を備える画像処理装置。
  9.  画像処理装置の画像処理方法であって、
     受け取り部が、多視点画像の注目領域のベクトルの予測値である予測ベクトルの候補を得る相関領域を制限する制限情報を受け取り、
     予測ベクトル生成部が、受け取られた前記制限情報により使用が禁止されていない相関領域のベクトルを用いて前記予測ベクトルを生成する
     画像処理方法。
PCT/JP2012/065818 2011-06-30 2012-06-21 画像処理装置および方法 WO2013002109A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/128,055 US20140126641A1 (en) 2011-06-30 2012-06-21 Image processing device and method
KR20137033496A KR20140046421A (ko) 2011-06-30 2012-06-21 화상 처리 장치 및 방법
CN201280030883.XA CN103621094A (zh) 2011-06-30 2012-06-21 图像处理装置和方法
BR112013033334A BR112013033334A2 (pt) 2011-06-30 2012-06-21 dispositivo e método de processamento de imagem
RU2013157155/08A RU2013157155A (ru) 2011-06-30 2012-06-21 Устройство и способ обработки изображений
EP12805085.3A EP2760204A1 (en) 2011-06-30 2012-06-21 Image processing device and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011145565 2011-06-30
JP2011-145565 2011-06-30
JP2012069184A JP2013034171A (ja) 2011-06-30 2012-03-26 画像処理装置および方法
JP2012-069184 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013002109A1 true WO2013002109A1 (ja) 2013-01-03

Family

ID=47424006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065818 WO2013002109A1 (ja) 2011-06-30 2012-06-21 画像処理装置および方法

Country Status (8)

Country Link
US (1) US20140126641A1 (ja)
EP (1) EP2760204A1 (ja)
JP (1) JP2013034171A (ja)
KR (1) KR20140046421A (ja)
CN (1) CN103621094A (ja)
BR (1) BR112013033334A2 (ja)
RU (1) RU2013157155A (ja)
WO (1) WO2013002109A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514342A (ja) * 2012-03-16 2015-05-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated Hevcおよびその拡張における動きベクトルのコーディングおよび双予測
US10200709B2 (en) 2012-03-16 2019-02-05 Qualcomm Incorporated High-level syntax extensions for high efficiency video coding

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9615079B2 (en) 2011-03-18 2017-04-04 Sony Corporation Image processing apparatus and image processing method
BR122015001002B1 (pt) 2011-06-30 2022-07-26 Sony Corporation Dispositivo e método de processamento de imagem
WO2013031573A1 (ja) 2011-08-31 2013-03-07 ソニー株式会社 符号化装置および符号化方法、復号装置および復号方法
US9491461B2 (en) * 2012-09-27 2016-11-08 Qualcomm Incorporated Scalable extensions to HEVC and temporal motion vector prediction
CN102883163B (zh) * 2012-10-08 2014-05-28 华为技术有限公司 用于运动矢量预测的运动矢量列表建立的方法、装置
CN109564382B (zh) * 2016-08-29 2021-03-23 株式会社日立制作所 拍摄装置以及拍摄方法
US10638130B1 (en) * 2019-04-09 2020-04-28 Google Llc Entropy-inspired directional filtering for image coding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510892A (ja) * 2005-09-29 2009-03-12 サムスン エレクトロニクス カンパニー リミテッド カメラパラメータを利用して視差ベクトルを予測する方法、その方法を利用して多視点映像を符号化及び復号化する装置、及びそれを行うためのプログラムが記録された記録媒体
JP2009522986A (ja) * 2006-01-09 2009-06-11 トムソン ライセンシング マルチビュービデオ符号化の方法および装置
JP2010537484A (ja) * 2007-08-15 2010-12-02 トムソン ライセンシング 多視点符号化ビデオにおける領域視差ベクトルを使用したモーションスキップモードのための方法及び装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140656A2 (en) * 2007-04-03 2008-11-20 Gary Demos Flowfield motion compensation for video compression

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510892A (ja) * 2005-09-29 2009-03-12 サムスン エレクトロニクス カンパニー リミテッド カメラパラメータを利用して視差ベクトルを予測する方法、その方法を利用して多視点映像を符号化及び復号化する装置、及びそれを行うためのプログラムが記録された記録媒体
JP2009522986A (ja) * 2006-01-09 2009-06-11 トムソン ライセンシング マルチビュービデオ符号化の方法および装置
JP2010537484A (ja) * 2007-08-15 2010-12-02 トムソン ライセンシング 多視点符号化ビデオにおける領域視差ベクトルを使用したモーションスキップモードのための方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514342A (ja) * 2012-03-16 2015-05-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated Hevcおよびその拡張における動きベクトルのコーディングおよび双予測
US10200709B2 (en) 2012-03-16 2019-02-05 Qualcomm Incorporated High-level syntax extensions for high efficiency video coding

Also Published As

Publication number Publication date
JP2013034171A (ja) 2013-02-14
KR20140046421A (ko) 2014-04-18
RU2013157155A (ru) 2015-06-27
CN103621094A (zh) 2014-03-05
EP2760204A1 (en) 2014-07-30
BR112013033334A2 (pt) 2017-01-31
US20140126641A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
US11405634B2 (en) High efficiency video coding device and method based on reference picture type
JP5979405B2 (ja) 画像処理装置および方法
KR102136903B1 (ko) 화상 처리 장치 및 방법
WO2013002109A1 (ja) 画像処理装置および方法
US20230247217A1 (en) Image processing apparatus and method
WO2013108689A1 (ja) 画像処理装置および方法
WO2013058363A1 (ja) 画像処理装置および方法
WO2012173022A1 (ja) 画像処理装置および方法
WO2013084775A1 (ja) 画像処理装置および方法
WO2013054751A1 (ja) 画像処理装置および方法
WO2013002105A1 (ja) 画像処理装置および方法
JP2016201831A (ja) 画像処理装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012805085

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137033496

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14128055

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013157155

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013033334

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013033334

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131223