WO2013001679A1 - Optical disk medium, recording method therefor, and recording device - Google Patents

Optical disk medium, recording method therefor, and recording device Download PDF

Info

Publication number
WO2013001679A1
WO2013001679A1 PCT/JP2012/001485 JP2012001485W WO2013001679A1 WO 2013001679 A1 WO2013001679 A1 WO 2013001679A1 JP 2012001485 W JP2012001485 W JP 2012001485W WO 2013001679 A1 WO2013001679 A1 WO 2013001679A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
signal
optical disc
land
groove
Prior art date
Application number
PCT/JP2012/001485
Other languages
French (fr)
Japanese (ja)
Inventor
純也 飯塚
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Publication of WO2013001679A1 publication Critical patent/WO2013001679A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/24Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by sensing features on the record carrier other than the transducing track ; sensing signals or marks recorded by another method than the main recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • G11B7/0053Reproducing non-user data, e.g. wobbled address, prepits, BCA
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00745Sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2541Blu-ray discs; Blue laser DVR discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24047Substrates
    • G11B7/2405Substrates being also used as track layers of pre-formatted layers

Definitions

  • the present invention relates to an optical disc apparatus, an optical disc recording method, or an optical disc medium for recording information on an optical disc using a laser.
  • Non-Patent Document 1 a layer having a physical groove structure (hereinafter referred to as a guide layer) for performing tracking servo control is provided, and a layer for recording / reproduction (recording layer) does not have a land / groove structure.
  • An optical disc (grooveless disc) is shown, which is easy to manufacture even when a large number of recording layers are stacked.
  • address information and information serving as a reference for a recording clock are superimposed on the land / groove structure. Controls the recording position and recording clock.
  • Japanese Patent Application Laid-Open No. H10-260260 which deals with grooveless discs, states that “the reproduction signal processing circuit 2 is based on the output signal (a plurality of photoelectric conversion signals) of the light receiver PD1 and addresses information, synchronization information, focus error signal and track error. Signal, etc. "(paragraph 0068).
  • PD1 is indicated as “a photodetector that receives light reflected from the guide layer” (paragraph 0123).
  • the guide track layer S has been described as having a groove for guiding, but the present invention is not limited thereto, and for example, a guide pit (pre-pit) may be formed. Both grooves and prepits may be formed "(paragraph 0118).
  • Patent Document 2 describes that address information, synchronization information, and the like are acquired based on an output signal of reflected light from a guide layer as described above.
  • Patent Document 2 there is no specific description of what address information is arranged on the optical disc and how the address information is detected.
  • a laser for the recording layer is used with a wavelength as small as possible so that the recording density can be increased by reducing the light spot diameter, but the laser for the guide layer mainly for the purpose of servo processing is used for recording.
  • a laser having a long wavelength and a large spot diameter is used as compared with the layer laser.
  • the track pitch becomes smaller than the light spot diameter for the guide layer, so that crosstalk from the guide groove adjacent to the guide groove at the radial position being tracked occurs. growing.
  • an object of the present invention is to provide an optical disc medium, an optical disc apparatus, and an optical disc recording method capable of realizing improvement in recording position accuracy and recording density when recording / reproducing a grooveless disc.
  • the above-mentioned problem is solved, for example, by having an area in which an optical disk medium is provided with a pit structure representing address information in either a land or a groove of a guide layer.
  • an optical disc medium an optical disc apparatus, and an optical disc recording method capable of realizing improvement in recording position accuracy and recording density when recording / reproducing a grooveless disc.
  • controller 201 Block configuration showing one embodiment of an optical disc apparatus according to the present invention Structure of optical disk 102 Processing flow of optical disc device 101 when optical disc 102 is inserted Track placement on the guide layer Outline of track structure of guide layer Schematic diagram of a track extracted from only one wobble cycle Sequence of recording processing method An example of wobble detection means 616
  • Example of PLL617 configuration An example of pit detection means 606
  • An example of data detection means Outline of operation of sum signal data detection means 1104 Outline of operation of difference signal data detecting means 1103 Another example of the pit detection means 606
  • FIG. 2 is a block diagram showing an embodiment of the optical disc apparatus according to the present invention.
  • the optical disc device 101 records or reproduces information by irradiating an optical disc 102 mounted on the device with laser light, and communicates with a host 103 such as a PC (Personal Computer) via an interface such as SATA (Serial Advanced Technology Attachment). Do.
  • a host 103 such as a PC (Personal Computer) via an interface such as SATA (Serial Advanced Technology Attachment).
  • the structure of the optical disk 102 is illustrated in FIG.
  • the optical disk 102 has a guide layer having a track (guide groove) structure and N recording layers (N ⁇ 1, N is a natural number) not having a track structure.
  • the optical disc apparatus 101 can generate laser spots on the recording layer and the guide layer by the objective lens 311.
  • the optical disc apparatus 101 includes a controller 201, a signal processing unit 202, an optical pickup 203, a slider motor 204 that moves the optical pickup 203 in the radial direction of the optical disc 102, slider driving means 205 that drives the slider motor 204, Aberration correction driving means 206 for driving the spherical aberration correction element 309 provided in the pickup 203, a spindle motor 207 for rotating the optical disk 102, and a rotation signal for generating a signal synchronized with the rotation of the spindle motor 207 A generating unit 208; a spindle control unit 209 that generates a rotation signal for rotating the spindle motor 207; a spindle driving unit 210 that drives the spindle motor 207 in accordance with the rotation signal generated by the spindle control unit 209; Focus error indicating the amount of laser spot misalignment focused on the recording layer A focus error signal generating means 211 for generating a signal, a focus control means 212 for generating a focus drive signal in accord
  • the optical pickup 203 includes two optical systems having different wavelengths such as 405 nm and 650 nm. First, the operation during reproduction of the 405 nm optical system will be described.
  • the laser driver 301 is controlled by the controller 201 and outputs a current for driving the laser diode 302. This drive current is applied with high frequency superposition of several hundred MHz in order to suppress laser noise.
  • the laser diode 302 emits a laser beam having a wavelength of 405 nm with a waveform corresponding to the drive current.
  • the emitted laser light becomes parallel light by the collimator lens 303, a part of the light is reflected by the beam splitter 304, and is condensed on the power monitor 306 by the condenser lens 305.
  • the power monitor 306 feeds back a current or voltage corresponding to the intensity of the laser light to the controller 201.
  • the intensity of the laser beam condensed on the recording layer of the optical disc 102 is maintained at a desired value such as 2 mW.
  • the laser light transmitted through the beam splitter 304 is reflected by the polarization beam splitter 307 and transmitted through the dichroic mirror 308.
  • the dichroic mirror 308 is an optical element that reflects light of a specific wavelength and transmits light of other wavelengths. Here, it is assumed that light having a wavelength of 405 nm is transmitted and light having a wavelength of 650 nm is reflected.
  • Convergence / divergence of the laser light transmitted through the dichroic mirror 308 is controlled by the spherical aberration correction element 309 driven by the aberration correction drive means 206, becomes circularly polarized by the quarter wavelength plate 310, and is optical disc by the objective lens 311. Concentrate on 102 recording layers.
  • the position of the objective lens 311 is controlled by the actuator 312.
  • the intensity of the laser light reflected by the optical disk 102 is modulated according to the information recorded on the optical disk 102.
  • the light is linearly polarized by the quarter-wave plate 310, passes through the dichroic mirror 308 and the spherical aberration correction element 309, and passes through the polarization beam splitter 307.
  • the transmitted laser light is condensed on the detector 314 by the condenser lens 313.
  • the detector 314 detects the intensity of the laser beam and outputs a signal corresponding to the intensity to the signal processing unit 202.
  • the signal processing unit 202 performs processing such as amplification, equalization, and decoding on the reproduction signal output from the detector 314, and outputs the decoded data to the controller 201.
  • the controller 201 outputs data to the host 103.
  • the focus error signal generation unit 211 generates a focus error signal for the recording layer from the signal output from the detector 314.
  • the focus control unit 212 outputs a focus drive signal corresponding to the focus error signal to the focus drive unit 213 in response to a command signal from the controller 201.
  • the focus drive unit 213 drives the actuator 312 in a direction perpendicular to the disk surface in accordance with the focus drive signal.
  • the focus control unit 212 and the focus drive unit 213 operate, so that the focus control is performed so that the laser spot irradiated on the recording layer of the optical disc 102 is always focused on the recording layer.
  • recording data is input from the host 103 to the controller 201.
  • the controller 201 outputs a recording waveform corresponding to the input data to the laser driver 301.
  • the laser driver 301 outputs a drive current corresponding to the recording waveform to the laser diode 302, and the laser diode 302 emits laser light with a waveform corresponding to the recording, whereby recording is performed on the recording layer of the optical disc 102.
  • the laser driver 301 drives the laser diode 315, and the laser diode 315 emits laser light having a wavelength of 650 nm.
  • a part of the laser light passes through a collimator lens 316, a beam splitter 317, and a condenser lens 318, and the power is monitored by a power monitor 319.
  • the intensity of the laser light focused on the guide layer of the optical disc 102 is maintained at a desired power, such as 3 mW.
  • the laser light that has passed through the beam splitter 317 passes through the polarization beam splitter 320 and is controlled by the relay lens 321 to converge and diverge.
  • the laser light that has passed through the relay lens 321 is reflected by the dichroic mirror 308, passes through the quarter-wave plate 310, and is condensed on the guide layer of the optical disk 102 by the objective lens 311.
  • the laser beam reflected by the optical disk 102 is reflected by the polarization beam splitter 320 and condensed on the detector 323 by the condenser lens 322.
  • the tracking error signal generation unit 214 generates a tracking error signal for the guide layer of the optical disc 102 from the signal output from the detector 323.
  • the tracking control means 215 generates a tracking drive signal corresponding to the tracking error signal in response to a command signal from the controller 201.
  • the tracking drive means 216 drives the actuator 312 in the radial direction of the disk according to the tracking drive signal. As described above, the tracking control unit 215 and the tracking driving unit 216 operate, so that the tracking control is performed so that the laser spot irradiated on the guide layer of the optical disc 102 always follows the track on the guide layer.
  • the relay lens error signal generation means 217 generates a relay lens error signal that is an error signal in the focus direction with respect to the guide layer of the optical disc 102 from the signal output from the detector 323.
  • the relay lens control means 218 generates a relay lens driving signal corresponding to the relay lens error signal in response to a command signal from the controller 201.
  • the relay lens driving means 219 drives the relay lens 321 according to the relay lens driving signal. By driving the relay lens 321, the focus position of the laser spot focused on the guide layer changes, and the difference in position between the recording layer and the guide layer can be compensated.
  • the relay lens control unit 218 and the relay lens driving unit 219 operate, so that the relay lens control is performed so that the laser spot irradiated on the guide layer of the optical disc 102 is always focused on the guide layer.
  • the slider driving means 205, the aberration correction driving means 206, and the spindle control means 209 are also operated by a command signal from the controller 201.
  • each laser diode may be provided with a laser driver specific to it.
  • the spherical aberration correction element 309 may be disposed at a position that affects both the 405 nm optical system and the 650 nm optical system, and may be disposed between the quarter wavelength plate 310 and the dichroic mirror 308, for example. .
  • FIG. 4 shows a processing flow of the optical disc apparatus 101 when the optical disc 102 is inserted into the optical disc apparatus 101.
  • the optical disk apparatus 101 confirms the presence / absence of a disk and the disk type in S402. At this time, for example, the optical disc apparatus 101 can irradiate the optical disc 102 with laser light and perform recognition by reflected light.
  • adjustment processing is performed on the inserted optical disc 102 to make various parameters in the optical disc apparatus 101 suitable.
  • the various parameters include adjusting the amplification factor of the amplifier included in the focus control unit 212 and the tracking control unit 215 in accordance with the reflectance of the optical disc 102.
  • the management information of the optical disk 102 is read in S404.
  • recording or playback is possible, and recording or playback can be performed in response to a command from the host 103.
  • the timing of the adjustment process S403 is not limited to this, and part of the adjustment process may be performed after the management information read S404.
  • FIG. 5 shows an outline of the track arrangement on the guide layer of the optical disc 102 of the present embodiment.
  • the track is spirally formed with respect to the center of the disk, and is composed of lands (concave portions as viewed from the laser beam incident side) and grooves (convex portions as viewed from the laser beam incident side). At the corner position, the land and the groove are interchanged.
  • the optical disk 102 is a medium having a guide groove structure for tracking land and groove. The land and the groove have substantially the same width in the radial direction.
  • the tracking position is switched between the land and the groove every rotation of the disc.
  • this invention is not restricted to this, It is good also as the arrangement
  • FIG. 6 shows an outline of an example of the track structure of the guide layer of the optical disc 102 in this embodiment.
  • the tracks meander slightly in the radial direction.
  • this meander structure is referred to as wobble.
  • the wobble period is constant with respect to the rotation angle of the disk, and all adjacent grooves and lands meander in the same phase.
  • the wobble period can be regarded as approximately constant with respect to the tangential direction in the adjacent tracks.
  • the wobble cycle is set to a short length that the tracking servo process cannot follow at the rotational speed during the recording / reproducing process of the disk.
  • the recording clock is generated with reference to the wobble period of the track of the guide layer.
  • the wobble component can be detected as a push-pull signal (difference signal) during tracking.
  • the push-pull signal is a signal that is also used as an error signal in tracking servo, and is used with the amplitude polarity inverted between when tracking on the land side and when tracking on the groove side. For this reason, the polarity control of the tracking error signal and the switching control of the pit detection method are performed in conjunction with each other depending on whether the polarity of the guide groove at the tracking position is a land or a groove.
  • FIG. 6 shows an example of arrangement on a land.
  • the guide layer uses a guide layer laser having a long wavelength and a large spot diameter to scan a narrow track having a substantially same interval as the recording layer, a larger crosstalk occurs than the recording layer or the conventional optical disc.
  • pits are arranged only in one of the groove and the land.
  • the pit is a microstructure whose height is changed by a certain minute amount compared to the position before and after the track.
  • address information is detected by determining the presence or absence of this pit string. That is, when tracking to the land, the address information is determined from the pit of the track, and when tracking to the groove, the address information is determined from the pit of the track adjacent to the inner periphery or the outer periphery.
  • distance information to the next track polarity switching position may be added so that it can be referred to when controlling the timing of switching each process according to the tracking polarity.
  • address information it is collectively referred to as address information.
  • Changes in the return light due to the presence or absence of pits can be detected by changes in the intensity distribution of the light spot on the detector, but there are pits on the track being tracked and pits on adjacent tracks. Apply different detection methods.
  • the direction of change of the light intensity mainly depends on the wavelength of the guide laser beam and the groove depth, the pit height, the optical constant of the medium, etc., but if matched to the groove height, the diffracted light from the adjacent groove Since the phases of the reflected light from the position are aligned, the return light intensity is increased. In the following, it is assumed that the intensity of the return light is larger at the pit position than before and after.
  • the light spot intensity distribution on the detector corresponding to the radial direction of the disk 102 becomes asymmetric at the place where the pit exists in the adjacent land. For this reason, it can be detected as a push-pull signal.
  • address information is detected from the pit of the track detected from the sum signal, and when tracking is performed on the side where the pit is arranged, a push-pull signal ( Address information can be obtained from the pits of adjacent tracks detected from the difference signal.
  • the wobble period is constant with respect to the rotation angle on the entire circumference of the optical disk 102, the circumferential length per period on the inner circumference side and the outer circumference side is greatly different in proportion to the radial position, and the outer circumference The recording density at lowers. For this reason, it is good to divide into several areas in the radial direction, and to make the meander cycle constant in the area with respect to the rotation angle.
  • the track polarity on the side where the pits are arranged may be changed depending on each region. In this way, at the timing when the tracking position passes the boundary of the region, the amplitudes of the pit detection signals of both the difference signal and the sum signal are in the opposite directions without being linked with the polarity of the tracking error signal. Since the change greatly occurs, the change of the recording area can be determined by detecting this change even if the address information cannot be detected.
  • Fig. 7 is a schematic diagram of a track extracted from one wobble cycle.
  • the length of the pits to be arranged should be sufficiently smaller than the meandering cycle.
  • positioned within a meandering period is predetermined. This is to prevent a signal generated due to a defect or noise at another timing from being erroneously determined as a pit by prescribing the timing for determining whether or not there is a pit. Also, for example, if the pit arrangement phase within the same lap is kept constant and the pit arrangement phase is different between the odd-numbered lands and the even-numbered lands in the radial direction as shown in FIG. It is possible to arrange so that the pits in both lands sandwiching the track are not at the same position in the circumferential direction of the track.
  • the ratio between the circumferential length of one wobble period and the circumferential length per bit of the recording mark on the recording layer needs to be determined in advance.
  • this ratio is set to Nch (integer). That is, an Nch bit mark is recorded during the track length of one cycle of wobble.
  • land and groove address information can be detected by arranging pits on either the groove or the land of the guide layer.
  • the recording density while reducing the influence of the crosstalk.
  • the pits in both lands (or grooves) sandwiching the groove (or land) so as not to be in the same position with respect to the circumferential direction of the track, the influence of crosstalk can be further reduced. it can.
  • FIG. 1 shows an example of a controller 201 that enables recording / reproduction of the optical disc 102 described above.
  • the controller 201 includes host interface means 601, buffer memory control means 602, buffer memory 603, microprocessor 604, tracking polarity signal generation means 605, pit detection means 606, address discrimination means 607, recording timing signal generation means 608, reproduction data demodulation Means 613, recording data modulation means 614, emission signal generation means 615, wobble detection means 616, and PLL617 are provided.
  • 611 is a recording layer output light
  • 612 is a return light from the recording layer
  • 609 is a guide layer output light
  • 610 is a return light from the guide layer
  • 618 is a tracking polarity control signal
  • 619 is a pit detection processing control signal ing.
  • the host interface unit 601 receives a write command from the host 103, stores the recording data in the buffer memory 603 via the buffer memory control unit 602, and outputs a signal indicating that the write command has been issued to the microprocessor 604. introduce.
  • the recording data modulation means 614 adds the error correction code and the modulation processing to the recording data stored in the buffer memory 603, and generates recording data converted into a format for recording on the optical disc 102. .
  • the microprocessor 604 controls the entire optical disc device 101 based on a sequence stored in a program memory (not shown). During the recording process, the slider drive means 205 is set so that the light spot on the disk moves to the vicinity of the recording position where writing is performed upon receipt of the write command. Set to start. On the other hand, the recording timing signal generating means 608 is given address information for starting recording.
  • the tracking polarity signal generation means 605 gives an instruction signal indicating the polarity of the tracking position (either land or groove) to the pit detection means 606 and the tracking control means 215. This is because the tracking error signal using a push-pull signal, which is generally used in tracking servo processing of an optical disk device, needs to reverse the polarity of the signal when tracking to a land or tracking to a groove. is there. If tracking is successful and the address information can be detected, an instruction signal is generated with reference to the address information. Immediately after the start of tracking, the polarity is unknown until the address information is detected. During this period, a signal representing the same polarity is given to the pit detection means 606 and the tracking control means 215 as an initial value. As a result, tracking can be started from a position having the polarity given as the initial value among the tracks at the tracking start position or adjacent tracks, and then the address information can be detected.
  • the wobble detection means 616 detects the wobble signal from the output of the detector 323 that detects the return light 610 from the guide layer.
  • the PLL 617 generates a multiplied clock that is phase-synchronized with the wobble signal and outputs it as a recording clock.
  • the pit detection means 606 detects pits arranged on the land of the guide layer from the output of the detector 323 that detects the return light 610 from the guide layer. As described above, the method used for detecting the pit differs depending on the polarity of the tracking position. For this reason, upon receiving an instruction signal indicating the polarity (either land or groove) of the tracking position from the tracking polarity signal generation means 605, a detection method suitable for the polarity of the tracking position is selected and applied.
  • the address discriminating means 607 discriminates the address information of the tracking position based on the pit detected by the pit detecting means 606.
  • the recording timing signal generation means 608 receives the address information for starting recording from the microprocessor 604 and the address information from the address determination means 607, and the light spot on the guide layer passes the recording start position and the recording start timing. The signal is output to the light emission signal generating means 615.
  • the light emission signal generating means 615 transmits a recording waveform corresponding to the data pattern recorded on the optical disc 102 to the LDD 301.
  • a recording waveform corresponding to the data pattern to be recorded is generated from the recording data generated by the recording data modulation unit 614, and transmission to the LDD 301 is started at the timing when the recording start timing signal is obtained from the recording timing signal generation unit 608. To do.
  • the transmission rate to be transmitted follows the frequency of the recording clock from the PLL 617.
  • FIG. 8 is a flowchart of an example of a recording processing sequence of the optical disc apparatus 101 that enables recording and reproduction of the optical disc 102 described above.
  • S801 is a step of focusing the light spot from the laser for the guide layer on the guide layer.
  • S802 is a step of focusing the recording layer laser to the target layer.
  • S803 is a step of initializing tracking polarity information given to the tracking control means 215 and the pit detection means 606.
  • S804 is a step of driving the sled so that the light spot is positioned in the vicinity of the radial position where recording on the optical disk 102 is performed.
  • S805 is a step of starting tracking in the guide groove on the guide layer.
  • S816 is a step of starting the tracking to the guide groove on the guide layer and starting the wobble detection of the guide layer and the generation of the recording clock from the wobble detection signal.
  • S806 is a step of detecting the address of the guide layer.
  • S807 is a step of starting automatic switching of tracking polarity based on address information obtained from the guide layer.
  • S808 is a step of determining from the address information obtained in S806 whether or not it has moved within the radius position range as the movement target. If it is determined that the target radial position has not been reached, the process returns to the previous stage of step S803 to move the radial position again.
  • S809 is a step of giving a recording start address to the recording timing signal generating means 608. Although illustration is omitted, it is necessary that the recording data modulation process be completed after the reception of the write command until S809 starts. If not, insert an appropriate amount of wait processing.
  • S810 is a step of detecting address information from the guide layer in order to determine the recording start position.
  • S811 is a step of determining whether or not the recording start position is based on the address information obtained in step S810. The process returns to step S810 until the recording start position is reached, and the process proceeds to step S812 while reaching the recording start position. Although not shown, when it is determined that the position is after the recording start position, the process proceeds to step S803.
  • S812 is a step of controlling the recording layer laser so as to start the light emission with the light emission waveform / output according to the recording data while reaching the recording start position.
  • S813 is a step of detecting address information of the guide layer in order to confirm that it is being tracked at a desired position during recording.
  • S814 is a step of determining whether or not the desired position is tracked based on the continuity of the address information obtained in step S813. If it is determined that the continuity has been lost, it is considered that the recording has been unexpectedly moved to another track for some reason. Therefore, the recording process is stopped, and the amount of light emitted from the recording layer laser is changed to that for reproduction. Switch to things.
  • S815 is a step to confirm that all data to be recorded is completed. If it is determined that the process has not been completed, the process returns to step S813. When it is determined that the recording is completed, the amount of light emitted from the recording layer laser is switched to that for reproduction, and the recording process is terminated.
  • the optical disc apparatus and the optical disc recording method of the present embodiment it is possible to detect the address information even when tracking is performed on both the land and the groove of the guide layer. Thereby, it is possible to improve the accuracy of the recording position and the recording density.
  • FIG. 9 shows an example of the wobble detection means 616.
  • Reference numeral 901 denotes a light spot on the detector 323.
  • Reference numeral 902 denotes a difference signal calculation circuit.
  • Reference numerals 903, 904, and 907 are multipliers. 911 is an original wobble signal.
  • Reference numeral 912 denotes a wobble phase synchronization signal.
  • Reference numeral 913 denotes an inverted wobble phase synchronization signal.
  • Reference numeral 914 denotes a comparator.
  • 915 is a selector.
  • 916 is a wobble carrier signal.
  • the detector 323 is for detecting the return light from the guide layer, and is used that is divided at least in the direction corresponding to the radial direction of the optical disk 102. In the figure, a four-divided configuration is also obtained, which is also divided into two in the tangential direction. In addition, this invention is not restricted to this, For example, it is good also as a 16 division structure.
  • the difference signal calculation circuit 902 performs a calculation for obtaining a push-pull signal from the detection signal of each element of the detector 323. Specifically, the (A + D)-(B + C) calculation is performed on the detection signals of the elements A, B, C, and D of the quadrant detector in the figure, and the result is output. . Since the frequency component of the wobble signal to be detected is limited to a single frequency or a frequency in the vicinity thereof, a band pass filter or the like may be provided at the output of the difference signal calculation circuit 902.
  • the original wobble signal 911 is a signal having a variation similar to the wobble meandering amount on the guide layer. However, generally, since the amount of meandering of the track is very small, the quality cannot often be obtained sufficiently, and further carrier extraction processing is added.
  • Each element of each multiplier (903, 904, 907), each low-pass filter (905, 906), loop filter 908, VCO909, ⁇ / 2 phase shifter 910 forms a carrier demodulation circuit called a so-called Costas loop.
  • the output wobble phase synchronization signal 912 has the same frequency as the wobble original signal 911.
  • the outputs of the multipliers 903 and 904 are signal outputs obtained by adding a cosine component cos ⁇ of the phase error amount ⁇ of the wobble phase synchronization signal 912 relative to the wobble original signal 911 and a component having a frequency twice the wobble frequency to the sine component sin ⁇ , respectively. Is done.
  • the low-pass filter (905, 906) has a cut-off characteristic that can sufficiently suppress a component having a frequency twice the wobble frequency. From the output of the multiplier 907, a sine component (sin (2 ⁇ ) / 2) having a phase amount twice the phase error amount is detected and used as a phase error signal.
  • the loop filter 908 is a compensator for stabilizing the loop characteristics.
  • the VCO 909 is a voltage controlled oscillator and outputs a signal having a frequency based on the magnitude of the input signal. From the VCO 909, a signal having the same frequency as the wobble original signal 911 is obtained as the wobble phase synchronization signal 912.
  • the sensitivity characteristic of the phase error signal (sin (2 ⁇ ) / 2) has a period of ⁇ with respect to the phase error amount, a signal having the same phase as the wobble original signal 911 can be obtained as the wobble phase synchronization signal 912.
  • an inverted phase signal is obtained.
  • the comparator 914 and the selector 915 are for selecting signals having the same frequency and the same phase as the wobble original signal 911.
  • the selector 915 receives a wobble phase synchronization signal 912 and an inverted wobble phase synchronization signal 913 which is an inverted signal thereof, and selects and outputs one of them.
  • a signal for controlling the selection is supplied from the comparator 914.
  • the comparator 914 is for determining the phase relationship between the wobble phase synchronization signal 912 and the wobble original signal 911.
  • the wobble carrier signal 916 can be obtained as a signal having the same frequency and the same phase as the wobble original signal 911.
  • FIG. 10 shows an example of the configuration of the PLL 617, which internally includes a phase error detection means 1001, a loop filter 1002, a VCO (voltage controlled oscillator) 1003, and a frequency divider 1004. Also, 916 is a wobble carrier signal, 1005 is a wobble synchronization clock, and 1005 is a wobble multiplication clock.
  • the main input signal of the PLL 617 is a wobble carrier signal 916, which is a signal that is phase-synchronized with the wobble of the guide layer of the optical disc 102.
  • the main output is a wobble multiplication clock 1005 output from the VCO 1003.
  • the phase error detection means 1001 compares the phase of the wobble synchronization clock 1005 obtained by dividing the wobble multiplication clock 1005 by the frequency divider 1004 with the wobble carrier signal 916, and has a magnitude corresponding to the amount of the phase difference.
  • the phase error signal is output to the loop filter 1002.
  • the loop filter 1002 is a frequency characteristic compensation unit provided for the purpose of stabilizing the feedback loop formed by the PLL 617, and provides a control signal to the VCO 1003 so that the phase error between the wobble synchronization clock 1005 and the wobble carrier signal 916 becomes small.
  • the wobble carrier signal 916 matches the frequency and phase of the wobble synchronization clock 1005 that is the output of the frequency dividing means 1004.
  • the frequency of the wobble multiplication clock 1005 that is input to the frequency divider 1004 is multiplied by the reciprocal of the frequency division ratio of the frequency divider 1004 with respect to the wobble synchronization clock 1005.
  • the frequency dividing ratio of the frequency divider 1004 is 1 / N
  • a clock having a frequency N times that of the wobble synchronous clock 1005 is obtained as the wobble multiplied clock 1005.
  • N Nch
  • a clock equivalent to one clock can be generated while passing the 1-bit recording mark length
  • the divider ratio of the divider 1004 is 1 / Nch or 1 / nNch (n is a natural number) , Just an integer number of clocks are generated within the passing time of 1-bit recording mark length.
  • the wobble multiplication clock 1005 obtained in this way is supplied to the light emission signal generating means 615 as a recording clock.
  • FIG. 11 shows an embodiment of the pit detection means 606.
  • 1101 is a difference signal calculation circuit
  • 1102 is a sum signal calculation circuit
  • 1103 is a difference signal data detection means
  • 1104 is a sum signal data detection means
  • 1105 is a switching means
  • 1106 is an address data signal
  • a pit detection means 606 is Have these inside.
  • Reference numeral 323 denotes a detector for detecting return light from the guide layer
  • reference numeral 901 denotes a light spot formed on the detector 323.
  • the difference signal calculation circuit 1101 obtains a signal for detecting a pit existing in the adjacent land when tracking to the groove, and performs an operation for obtaining a push-pull signal from the detection signal of each element of the detector 323. I do. It may be shared with the difference signal arithmetic circuit 902.
  • the sum signal calculation circuit 1102 obtains a signal for detecting a pit existing on the track when tracking to the land, and obtains a sum signal of detection signals of each element of the detector 323.
  • the difference signal data detection means 1103 detects a pit existing in the adjacent track from the signal obtained by the difference signal calculation circuit 1101 and outputs a data signal according to the detected pit to the switching means 1105.
  • the sum signal data detection means 1104 detects pits existing in the adjacent track from the signal obtained by the sum signal calculation circuit 1102, and outputs a data signal according to the detected pit to the switching means 1105. .
  • the switching means 1105 selects the data from the difference signal data detection means 1103 while tracking to the groove in accordance with the pit detection processing control signal 619 from the tracking polarity signal generation means 605, and the subsequent stage as the address data signal 1106 During the tracking to the land, the data from the sum signal data detection means 1104 is selected and output as the address data signal 1106 to the subsequent stage.
  • sum signal data detecting means 1104 and difference signal data detecting means 1103 An example of the sum signal data detection means 1104 and the difference signal data detection means 1103 will be described with reference to FIG. 12, FIG. 13, and FIG.
  • Both the sum signal data detection means 1104 and the difference signal data detection means 1103 can be realized by the configuration shown in FIG.
  • FIG. 13 shows an outline of the operation of the sum signal data detection means 1104.
  • FIG. 14 shows an outline of the operation of the difference signal data detection means 1103.
  • 1204 is a comparator. 1205 is a threshold signal generation means. Reference numeral 1206 denotes a threshold signal. Reference numeral 1207 denotes a pit detection gate signal. 1208 is an AND gate. Reference numeral 1209 denotes a pit detection signal. Reference numeral 1213 denotes a base level signal. 1214 is a peak level signal. 1215 is a count value. Reference numeral 1216 denotes a wobble reference phase signal.
  • the sum signal calculation circuit 1102 includes a low-pass filter 1202, a peak level detection circuit 1214, a comparator 1204, a threshold signal generation unit 1205, an AND gate 1208, a reference phase timing signal generation unit 1210, a counter circuit 1211, Pit detection gate signal generation means 1212.
  • a processing unit for obtaining a pulse signal corresponding to a pit from the sum signal 1201 and a processing unit for generating a gate signal for preventing erroneous detection at a position where there is no pit due to noise or the like.
  • the low-pass filter 1202, the peak level detection circuit 1214, the comparator 1204, and the threshold signal generation means 1205 form a processing unit that obtains a pulse signal corresponding to the pit from the sum signal 1201.
  • each element of the reference phase timing signal generation means 1210, the counter circuit 1211, the pit detection gate signal generation means 1211, and the AND gate 1208 has a gate signal for preventing erroneous detection at a position where there is no pit due to noise or the like.
  • a processing unit for generation is formed.
  • the low-pass filter 1202 smoothes a pulse-like intensity change component with respect to the signal from the sum signal data detection means 1104, thereby having a base level signal having a signal level substantially equivalent to a signal at a portion having no pit. 1213 is generated and supplied to the threshold signal generation means 1205.
  • the peak level detection circuit 1214 performs peak hold processing on the sum signal, and supplies the peak level signal 1214 corresponding to the pulse height to the threshold signal generation means 1205.
  • the threshold signal generation unit 1205 supplies the comparator 1204 with a threshold signal 1206 having a substantially intermediate level between the base level signal 1213 from the low-pass filter 1202 and the peak level signal 1214 from the peak level detection circuit 1203.
  • the comparator 1204 compares the sum signal 1201 and the threshold signal 1206, and outputs to the AND gate 1208 a rectangular wave pulse signal that has a higher signal level when the sum signal 1201 is larger.
  • the reference phase timing signal generation means 1210 generates a wobble reference phase signal 1216 indicating a specific phase in the meandering cycle of the wobble carrier signal 916. For example, a pulse signal having a constant width is generated at the zero cross timing when the negative level changes to the positive level, and is supplied to the counter circuit 1211.
  • the counter circuit 1211 is a counter that increments the value at the timing of the wobble multiplication clock 1006 and resets the value at the timing of the pulse signal representing the reference phase.
  • the phase of the wobble carrier signal 916 is represented by the count value 1215.
  • the pit detection gate signal generation means 1212 receives the count value 1215 of the counter circuit 1211 and generates a pit detection gate signal 1207 that is active before and after the phase where the pits are arranged.
  • the AND gate 1208 generates an AND signal of the rectangular wave pulse from the comparator 1204 and the pit detection gate signal 1207. In this way, a pulse signal corresponding to the pit is obtained using the sum signal data detection means 1104.
  • one of the difference signal data detection means 1103 is the same except that the direction of the pulse component appearing in the input arithmetic output signal appears on both the large amplitude side and the small amplitude side.
  • the direction of the pulse component is determined by the adjacent direction (inner side or outer side) of the land where the pit exists with respect to the tracking groove, so either one (the amplitude increases in FIG. 14). Pits existing in adjacent lands can be detected. In this way, a pulse signal corresponding to the pit is obtained from the difference signal data detection means 1103.
  • the recording density can be improved while alleviating the influence of crosstalk.
  • a recording clock by further multiplying the detected signal according to the amount of meandering from the meandering track of the guide layer at a substantially constant period.
  • the recording position on the recording layer is determined with reference to the address information on the guide layer during the recording process. It becomes possible.
  • Example 2 shows another example of the pit detection means 606. Since parts other than the pit detection means 606 are the same as those in the first embodiment, the description thereof is omitted.
  • FIG. 15 is a configuration example different from that of FIG. 11 of the pit detection means 606.
  • sum signal data detection means 1104 and difference signal data detection means 1103 provided separately in the configuration of FIG. 11 are integrated into the data detection means 1501.
  • the switching means 1506 is provided between the tracking position signal 1501 and the output corresponding to the tracking position is selected according to the pit detection processing control signal 619 from the tracking polarity signal generation means 605 and is output to the data detection means 1501 and the address data signal 1106 is generated.
  • processing parameters such as appropriate signal levels of the peak level signal 1214, the base level signal 1213, and the threshold signal 1206 differ depending on whether the input signal is switched depending on whether the tracking position is a land or a groove. Therefore, a sum signal parameter storage unit 1502 and a difference signal parameter storage unit 1503 are provided, and a processing parameter to be given to the data detection unit 1501 is switched by a switching unit 1504 controlled by a pit detection processing control signal 619.
  • the sum signal parameter storage means 1502 and the difference signal parameter storage means 1503 may be formed of a register or a memory.
  • the same effects as those of the first embodiment can be obtained.
  • processing equivalent to the configuration of FIG. 11 can be performed with a smaller apparatus than the first embodiment. Is possible.
  • Examples 1 and 2 described above an example in which a method of tracking both the land and the groove on the guide layer is applied as a method capable of realizing a higher recording density has been described. Needless to say, the optical disk recording apparatus and optical disk recording method described in (1) can be applied to the case of tracking only one of a land and a groove, which is simpler.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • each of the above-described configurations may be configured such that some or all of them are configured by hardware, or are realized by executing a program by a processor.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • the optical disk recording apparatus has been described as an example.
  • an optical disk recording / reproducing apparatus may be used, and the present invention can be applied to recording processing of a data recording / reproducing apparatus such as an optical disk drive apparatus. it can.
  • Optical disk device 102 optical disc 103 hosts 201 controller 202 Signal processor 203 Optical pickup 204 Slider motor 205 Slider drive means 206 Aberration correction drive means 207 Spindle motor 208 Rotation signal generation means 209 Spindle control means 210 Spindle drive means 211 Focus error signal generator 212 Focus control means 213 Focus drive means 214 Tracking error signal generation means 215 Tracking control means 216 Tracking drive means 217 Relay lens error signal generation means 218 Relay lens control means 219 Relay lens drive means 301 Laser driver 302 Laser diode 303 collimator lens 304 Beam splitter 305 condenser lens 306 Power monitor 307 Polarizing beam splitter 308 Dichroic Mirror 309 Spherical aberration correction element 310 1/4 wave plate 311 Objective lens 312 Actuator 313 condenser lens 314 Detector 315 laser diode 316 collimator lens 317 beam splitter 318 condenser lens 319 Power monitor 320 Polarizing beam splitter 321 Relay lens 322 Conden

Abstract

The purpose of the present invention is to provide an optical disk medium, an optical disk device, and an optical disk recording method capable of improving the accuracy of a recording position and increasing the recording density when recording and reproducing information to and from a grooveless disk. A pit structure representing address information is provided on either a land or a groove in a guide layer and the pit structure is detected when recording information so that the recording start position is determined.

Description

光ディスク媒体とその記録方法、記録装置Optical disc medium, recording method thereof, and recording apparatus
本発明は、レーザを用いて光ディスクに情報を記録する光ディスク装置、光ディスク記録方法、または光ディスク媒体に関する。 The present invention relates to an optical disc apparatus, an optical disc recording method, or an optical disc medium for recording information on an optical disc using a laser.
 近年、Blu-ray Disc(TM)規格の光ディスクにおいて、記録容量を増加させるために3層や4層の記録層を有する光ディスクが開発され、規格化が行われた。今後更なる大容量化を目的として、より多数の記録層を有する光ディスクの開発が行われると予想されている。たとえば非特許文献1では、トラッキングサーボ制御を行うための物理的な溝構造を持つ層(以下、ガイド層)をもうけ、記録再生を行う層(記録層)にはランド/グルーブ構造を有さない光ディスク(グルーブレスディスク)が示されており、記録層を多数積層する場合でも製造が容易であるとされている。一方で、例えば特許文献1に記載されているように、ランド/グルーブ構造を有する従来の光ディスクではランド/グルーブ構造にアドレス情報や記録クロックの基準となる情報が重畳されており、これを基準として記録位置や記録クロックの制御を行っている。 Recently, in order to increase the recording capacity of the Blu-ray Disc (TM) standard optical disc, an optical disc having three or four recording layers has been developed and standardized. In the future, it is expected that an optical disc having a larger number of recording layers will be developed for the purpose of further increasing the capacity. For example, in Non-Patent Document 1, a layer having a physical groove structure (hereinafter referred to as a guide layer) for performing tracking servo control is provided, and a layer for recording / reproduction (recording layer) does not have a land / groove structure. An optical disc (grooveless disc) is shown, which is easy to manufacture even when a large number of recording layers are stacked. On the other hand, as described in Patent Document 1, for example, in a conventional optical disc having a land / groove structure, address information and information serving as a reference for a recording clock are superimposed on the land / groove structure. Controls the recording position and recording clock.
 グルーブレスディスクを対象とする特許文献2には「再生信号処理回路2は、前記受光器PD1の出力信号(複数の光電変換号)に基づいて、アドレス情報、同期情報、フォーカスエラー信号及びトラックエラー信号などを取得する。」と記載されている(段落0068)。ここで、「PD1」とは「ガイド層からの反射光を受光する光検出器」として示されている(段落0123)。また、「前記ガイドトラック層Sには、案内用として溝が形成されている場合について説明したが、これに限らず、例えば、案内用のピット(プリピット)が形成されていても良い。また、溝とプリピットの両方が形成されていても良い。」と記載されている(段落0118)。 Japanese Patent Application Laid-Open No. H10-260260, which deals with grooveless discs, states that “the reproduction signal processing circuit 2 is based on the output signal (a plurality of photoelectric conversion signals) of the light receiver PD1 and addresses information, synchronization information, focus error signal and track error. Signal, etc. "(paragraph 0068). Here, “PD1” is indicated as “a photodetector that receives light reflected from the guide layer” (paragraph 0123). Further, “The guide track layer S has been described as having a groove for guiding, but the present invention is not limited thereto, and for example, a guide pit (pre-pit) may be formed. Both grooves and prepits may be formed "(paragraph 0118).
特開2006-236574号公報JP 2006-236574 A 特開2007-200427号公報JP 2007-200427
 上記のようなグルーブレスディスクを記録再生する際の課題のひとつとして、ディスクの記録層にランド/グルーブ構造が存在しないため、従来の光ディスクの方法では記録層からは記録位置や記録クロックの基準となる信号を得られないことが挙げられる。 As one of the problems when recording and reproducing such a grooveless disk as described above, since there is no land / groove structure in the recording layer of the disk, in the conventional optical disk method, the recording layer and the reference of the recording clock are used. It is mentioned that the signal which becomes is not obtained.
 特許文献2には、上述のようにガイド層からの反射光の出力信号に基づいて、アドレス情報、同期情報などを取得する、ということが記載されている。 Patent Document 2 describes that address information, synchronization information, and the like are acquired based on an output signal of reflected light from a guide layer as described above.
 しかし、特許文献2には、光ディスクにどのようなアドレス情報を配置するか、そしてそのアドレス情報をどのように検出するかなどの具体的な記載はない。 However, in Patent Document 2, there is no specific description of what address information is arranged on the optical disc and how the address information is detected.
 ところで、記録層用のレーザは、光スポット径を小さくして記録密度を大きくできるように、なるべく波長の小さいものが適用されるが、主としてサーボ処理を目的とするガイド層用のレーザは、記録層用のレーザと比較して波長が長くスポット径が大きいものが用いられる。このため、ガイド層のトラック構造に関して、従来の多くの光ディスク媒体と同様にランド(レーザ光の入射方向からみて凹となる側)とグルーブ(レーザ光の入射方向からみて凸となる側)のいずれかのみにトラッキングを行う方式とすると、従来の記録層上に案内溝が存在する方式の光ディスクと比較して記録層上のトラックピッチが大きくなり、一層あたりの記録データ量が低下する。 By the way, a laser for the recording layer is used with a wavelength as small as possible so that the recording density can be increased by reducing the light spot diameter, but the laser for the guide layer mainly for the purpose of servo processing is used for recording. A laser having a long wavelength and a large spot diameter is used as compared with the layer laser. For this reason, with respect to the track structure of the guide layer, as with many conventional optical disc media, either the land (the side that is concave when viewed from the laser beam incident direction) or the groove (the side that is convex when viewed from the laser beam incident direction) If only the tracking method is used, the track pitch on the recording layer becomes larger than that of a conventional optical disk having a guide groove on the recording layer, and the recording data amount per layer decreases.
 一方で、このような案内溝構造を適用すると、ガイド層用の光スポット径と比してトラックピッチが小さくなるので、トラッキングしている半径位置の案内溝に隣接する案内溝からのクロストークが大きくなる。 On the other hand, when such a guide groove structure is applied, the track pitch becomes smaller than the light spot diameter for the guide layer, so that crosstalk from the guide groove adjacent to the guide groove at the radial position being tracked occurs. growing.
 そこで、本発明の目的は、グルーブレスディスクを記録再生する際に、記録位置の精度向上と、記録密度の向上が実現できる光ディスク媒体、光ディスク装置、光ディスク記録方法を提供することである。 Therefore, an object of the present invention is to provide an optical disc medium, an optical disc apparatus, and an optical disc recording method capable of realizing improvement in recording position accuracy and recording density when recording / reproducing a grooveless disc.
 上記課題は、例えば、光ディスク媒体がガイド層のランドもしくはグルーブのいずれかにアドレス情報を表すピット構造を設ける領域を有することにより解決される。 The above-mentioned problem is solved, for example, by having an area in which an optical disk medium is provided with a pit structure representing address information in either a land or a groove of a guide layer.
 本発明によれば、グルーブレスディスクを記録再生する際に、記録位置の精度向上と、記録密度の向上が実現できる光ディスク媒体、光ディスク装置、光ディスク記録方法を提供することができる。 According to the present invention, it is possible to provide an optical disc medium, an optical disc apparatus, and an optical disc recording method capable of realizing improvement in recording position accuracy and recording density when recording / reproducing a grooveless disc.
コントローラ201の構成Configuration of controller 201 本発明に従う光ディスク装置の一実施例を示すブロック構成Block configuration showing one embodiment of an optical disc apparatus according to the present invention 光ディスク102の構造Structure of optical disk 102 光ディスク102を挿入時の光ディスク装置101の処理フローProcessing flow of optical disc device 101 when optical disc 102 is inserted ガイド層上のトラック配置Track placement on the guide layer ガイド層のトラック構造の概略Outline of track structure of guide layer 1ウォブル周期だけ抜粋したトラックの概略図Schematic diagram of a track extracted from only one wobble cycle 記録処理方法のシーケンスSequence of recording processing method ウォブル検出手段616の一例An example of wobble detection means 616 PLL617の構成の一例Example of PLL617 configuration ピット検出手段606の一例An example of pit detection means 606 データ検出手段の一例An example of data detection means 和信号用データ検出手段1104の動作の概略Outline of operation of sum signal data detection means 1104 差信号用データ検出手段1103の動作の概略Outline of operation of difference signal data detecting means 1103 ピット検出手段606の別の一例Another example of the pit detection means 606
 以下では、本発明の実施の形態の詳細を図面に基づいて説明する。 Hereinafter, details of embodiments of the present invention will be described with reference to the drawings.
(本発明の実施の形態の詳細)
 図2は、本発明に従う光ディスク装置の一実施例を示すブロック構成図である。
(Details of the embodiment of the present invention)
FIG. 2 is a block diagram showing an embodiment of the optical disc apparatus according to the present invention.
 光ディスク装置101は装置に装着された光ディスク102にレーザ光を照射することで情報の記録または再生を行い、SATA(Serial Advanced Technology Attachment)などのインターフェースを通じてPC(Personal Computer)などのホスト103と通信を行う。 The optical disc device 101 records or reproduces information by irradiating an optical disc 102 mounted on the device with laser light, and communicates with a host 103 such as a PC (Personal Computer) via an interface such as SATA (Serial Advanced Technology Attachment). Do.
 光ディスク102の構造を図3に例示する。光ディスク102はトラック(ガイド溝)の構造を持つガイド層と、トラックの構造を持たないN個の記録層(N≧1、Nは自然数)を有する。光ディスク装置101は対物レンズ311によって、記録層とガイド層にレーザスポットを生じることができる。 The structure of the optical disk 102 is illustrated in FIG. The optical disk 102 has a guide layer having a track (guide groove) structure and N recording layers (N ≧ 1, N is a natural number) not having a track structure. The optical disc apparatus 101 can generate laser spots on the recording layer and the guide layer by the objective lens 311.
 本光ディスク装置101は、コントローラ201と信号処理部202と、光ピックアップ203と、光ピックアップ203を光ディスク102の半径方向に移動するスライダモータ204と、スライダモータ204を駆動するスライダ駆動手段205と、光ピックアップ203中に備えられた球面収差補正素子309を駆動するための収差補正駆動手段206と、光ディスク102を回転するためのスピンドルモータ207と、スピンドルモータ207の回転に同期した信号を生成する回転信号生成手段208と、スピンドルモータ207を回転させるための回転信号を生成するスピンドル制御手段209と、スピンドル制御手段209が生成する回転信号に応じてスピンドルモータ207を駆動するスピンドル駆動手段210と、光ディスク102の記録層と記録層に対して合焦するレーザスポットの位置ずれ量を示すフォーカス誤差信号を生成するフォーカス誤差信号生成手段211と、フォーカス誤差信号に応じてフォーカス駆動信号を生成するフォーカス制御手段212と、フォーカス駆動信号に応じて光ピックアップ203中に備えられたアクチュエータ312を駆動するフォーカス駆動手段213と、光ディスク102のガイド層上のトラックとレーザスポットとの位置ずれ量を示すトラッキング誤差信号を生成するトラッキング誤差信号生成手段214と、トラッキング誤差信号に応じてトラッキング駆動信号を生成するトラッキング制御手段215と、トラッキング駆動信号に応じてアクチュエータ312を駆動するトラッキング駆動手段216と、光ディスク102のガイド層とガイド層に対して合焦するレーザスポットの位置ずれ量を示すリレーレンズ誤差信号を生成するリレーレンズ誤差信号生成手段217と、リレーレンズ誤差信号に応じたリレーレンズ駆動信号を生成するリレーレンズ制御手段218と、リレーレンズ駆動信号に応じてリレーレンズ321を駆動するリレーレンズ駆動手段219を備えている。 The optical disc apparatus 101 includes a controller 201, a signal processing unit 202, an optical pickup 203, a slider motor 204 that moves the optical pickup 203 in the radial direction of the optical disc 102, slider driving means 205 that drives the slider motor 204, Aberration correction driving means 206 for driving the spherical aberration correction element 309 provided in the pickup 203, a spindle motor 207 for rotating the optical disk 102, and a rotation signal for generating a signal synchronized with the rotation of the spindle motor 207 A generating unit 208; a spindle control unit 209 that generates a rotation signal for rotating the spindle motor 207; a spindle driving unit 210 that drives the spindle motor 207 in accordance with the rotation signal generated by the spindle control unit 209; Focus error indicating the amount of laser spot misalignment focused on the recording layer A focus error signal generating means 211 for generating a signal, a focus control means 212 for generating a focus drive signal in accordance with the focus error signal, and a focus for driving an actuator 312 provided in the optical pickup 203 in accordance with the focus drive signal Driving means 213, tracking error signal generating means 214 for generating a tracking error signal indicating the amount of positional deviation between the track on the guide layer of the optical disc 102 and the laser spot, and tracking for generating a tracking drive signal in accordance with the tracking error signal Control unit 215, tracking drive unit 216 that drives the actuator 312 in response to the tracking drive signal, and a relay lens error signal indicating the amount of displacement of the laser spot focused on the guide layer and the guide layer of the optical disc 102 Relay lens error signal generating means 21 7, a relay lens control unit 218 that generates a relay lens driving signal according to the relay lens error signal, and a relay lens driving unit 219 that drives the relay lens 321 according to the relay lens driving signal.
 光ピックアップ203は、たとえば405nmと650nmなど波長の異なる2つの光学系を備えている。まず、405nmの光学系について再生時の動作を説明する。レーザドライバ301は、コントローラ201によって制御されており、レーザダイオード302を駆動する電流を出力する。この駆動電流は、レーザノイズを抑制するために数百MHzの高周波重畳が印加されている。レーザダイオード302は、駆動電流に応じた波形で波長405nmのレーザ光を出射する。出射されたレーザ光はコリメータレンズ303にて平行光となり、ビームスプリッタ304で一部が反射し、集光レンズ305によってパワーモニタ306に集光する。パワーモニタ306は、レーザ光の強度に応じた電流または電圧をコントローラ201にフィードバックする。これによって光ディスク102の記録層に集光するレーザ光の強度が、たとえば2mWなど所望の値に保持される。一方、ビームスプリッタ304を透過したレーザ光は偏光ビームスプリッタ307にて反射し、ダイクロイックミラー308を透過する。ダイクロイックミラー308は特定の波長の光を反射し、その他の波長の光を透過する光学素子である。ここでは波長405nmの光を透過し、650nmの光を反射するものとする。ダイクロイックミラー308を透過したレーザ光は、収差補正駆動手段206にて駆動される球面収差補正素子309によって収束・発散が制御され、1/4波長板310にて円偏光となり、対物レンズ311によって光ディスク102の記録層に集光する。対物レンズ311は、アクチュエータ312によって位置制御される。光ディスク102によって反射したレーザ光は、光ディスク102に記録された情報に応じて強度が変調される。1/4波長板310にて直線偏光となり、ダイクロイックミラー308および球面収差補正素子309を経て、偏光ビームスプリッタ307を透過する。透過したレーザ光は、集光レンズ313によってディテクタ314に集光する。ディテクタ314はレーザ光の強度を検出し、これに応じた信号を信号処理部202に出力する。信号処理部202は、ディテクタ314から出力された再生信号に対し増幅、等化、復号などの処理を行い、復号したデータをコントローラ201に出力する。コントローラ201はデータをホスト103に出力する。 The optical pickup 203 includes two optical systems having different wavelengths such as 405 nm and 650 nm. First, the operation during reproduction of the 405 nm optical system will be described. The laser driver 301 is controlled by the controller 201 and outputs a current for driving the laser diode 302. This drive current is applied with high frequency superposition of several hundred MHz in order to suppress laser noise. The laser diode 302 emits a laser beam having a wavelength of 405 nm with a waveform corresponding to the drive current. The emitted laser light becomes parallel light by the collimator lens 303, a part of the light is reflected by the beam splitter 304, and is condensed on the power monitor 306 by the condenser lens 305. The power monitor 306 feeds back a current or voltage corresponding to the intensity of the laser light to the controller 201. As a result, the intensity of the laser beam condensed on the recording layer of the optical disc 102 is maintained at a desired value such as 2 mW. On the other hand, the laser light transmitted through the beam splitter 304 is reflected by the polarization beam splitter 307 and transmitted through the dichroic mirror 308. The dichroic mirror 308 is an optical element that reflects light of a specific wavelength and transmits light of other wavelengths. Here, it is assumed that light having a wavelength of 405 nm is transmitted and light having a wavelength of 650 nm is reflected. Convergence / divergence of the laser light transmitted through the dichroic mirror 308 is controlled by the spherical aberration correction element 309 driven by the aberration correction drive means 206, becomes circularly polarized by the quarter wavelength plate 310, and is optical disc by the objective lens 311. Concentrate on 102 recording layers. The position of the objective lens 311 is controlled by the actuator 312. The intensity of the laser light reflected by the optical disk 102 is modulated according to the information recorded on the optical disk 102. The light is linearly polarized by the quarter-wave plate 310, passes through the dichroic mirror 308 and the spherical aberration correction element 309, and passes through the polarization beam splitter 307. The transmitted laser light is condensed on the detector 314 by the condenser lens 313. The detector 314 detects the intensity of the laser beam and outputs a signal corresponding to the intensity to the signal processing unit 202. The signal processing unit 202 performs processing such as amplification, equalization, and decoding on the reproduction signal output from the detector 314, and outputs the decoded data to the controller 201. The controller 201 outputs data to the host 103.
 またフォーカス誤差信号生成手段211は、ディテクタ314から出力された信号から、記録層に対するフォーカス誤差信号を生成する。フォーカス制御手段212はコントローラ201からの指令信号により、フォーカス誤差信号に対応したフォーカス駆動信号をフォーカス駆動手段213に出力する。フォーカス駆動手段213はフォーカス駆動信号に応じて、アクチュエータ312をディスク面に垂直な方向に駆動する。上述したようにフォーカス制御手段212とフォーカス駆動手段213が動作することで、光ディスク102の記録層に照射されたレーザスポットが常に記録層で合焦するようにフォーカス制御が行われる。 Also, the focus error signal generation unit 211 generates a focus error signal for the recording layer from the signal output from the detector 314. The focus control unit 212 outputs a focus drive signal corresponding to the focus error signal to the focus drive unit 213 in response to a command signal from the controller 201. The focus drive unit 213 drives the actuator 312 in a direction perpendicular to the disk surface in accordance with the focus drive signal. As described above, the focus control unit 212 and the focus drive unit 213 operate, so that the focus control is performed so that the laser spot irradiated on the recording layer of the optical disc 102 is always focused on the recording layer.
 記録を行う際には、ホスト103からコントローラ201へと記録データが入力される。コントローラ201は、入力されたデータに対応した記録波形をレーザドライバ301へ出力する。レーザドライバ301は、記録波形に応じた駆動電流をレーザダイオード302に出力し、レーザダイオード302が対応した波形でレーザ光を出射することで光ディスク102の記録層に記録が行われる。 When recording, recording data is input from the host 103 to the controller 201. The controller 201 outputs a recording waveform corresponding to the input data to the laser driver 301. The laser driver 301 outputs a drive current corresponding to the recording waveform to the laser diode 302, and the laser diode 302 emits laser light with a waveform corresponding to the recording, whereby recording is performed on the recording layer of the optical disc 102.
 次に、650nmの光学系について説明する。本光学系については、記録時と再生時での動作の差異はない。405nmの光学系と同様に、レーザドライバ301がレーザダイオード315を駆動し、レーザダイオード315は波長650nmのレーザ光を出射する。レーザ光の一部は、コリメータレンズ316、ビームスプリッタ317、集光レンズ318を経て、パワーモニタ319にてパワーがモニタされる。モニタしたパワーをコントローラ201にフィードバックすることで、光ディスク102のガイド層に集光するレーザ光の強度が、たとえば3mWなど所望のパワーに保持される。ビームスプリッタ317を透過したレーザ光は、偏光ビームスプリッタ320を透過し、リレーレンズ321にて収束・発散の制御が行われる。リレーレンズ321を経たレーザ光は、ダイクロイックミラー308にて反射し、1/4波長板310を経て、対物レンズ311により光ディスク102のガイド層に集光する。光ディスク102にて反射したレーザ光を偏光ビームスプリッタ320にて反射し、集光レンズ322にてディテクタ323に集光する。 Next, the 650 nm optical system will be described. In this optical system, there is no difference in operation between recording and reproduction. Similar to the 405 nm optical system, the laser driver 301 drives the laser diode 315, and the laser diode 315 emits laser light having a wavelength of 650 nm. A part of the laser light passes through a collimator lens 316, a beam splitter 317, and a condenser lens 318, and the power is monitored by a power monitor 319. By feeding back the monitored power to the controller 201, the intensity of the laser light focused on the guide layer of the optical disc 102 is maintained at a desired power, such as 3 mW. The laser light that has passed through the beam splitter 317 passes through the polarization beam splitter 320 and is controlled by the relay lens 321 to converge and diverge. The laser light that has passed through the relay lens 321 is reflected by the dichroic mirror 308, passes through the quarter-wave plate 310, and is condensed on the guide layer of the optical disk 102 by the objective lens 311. The laser beam reflected by the optical disk 102 is reflected by the polarization beam splitter 320 and condensed on the detector 323 by the condenser lens 322.
 トラッキング誤差信号生成手段214は、ディテクタ323から出力された信号から、光ディスク102のガイド層に対するトラッキング誤差信号を生成する。トラッキング制御手段215はコントローラ201からの指令信号により、トラッキング誤差信号に応じたトラッキング駆動信号を生成する。トラッキング駆動手段216はトラッキング駆動信号に応じてアクチュエータ312をディスクの半径方向に駆動する。上述したようにトラッキング制御手段215とトラッキング駆動手段216が動作することで、光ディスク102のガイド層に照射されたレーザスポットが常にガイド層上のトラックを追従するようにトラッキング制御が行われる。 The tracking error signal generation unit 214 generates a tracking error signal for the guide layer of the optical disc 102 from the signal output from the detector 323. The tracking control means 215 generates a tracking drive signal corresponding to the tracking error signal in response to a command signal from the controller 201. The tracking drive means 216 drives the actuator 312 in the radial direction of the disk according to the tracking drive signal. As described above, the tracking control unit 215 and the tracking driving unit 216 operate, so that the tracking control is performed so that the laser spot irradiated on the guide layer of the optical disc 102 always follows the track on the guide layer.
 また、リレーレンズ誤差信号生成手段217は、ディテクタ323から出力された信号から、光ディスク102のガイド層に対するフォーカス方向の誤差信号であるリレーレンズ誤差信号を生成する。リレーレンズ制御手段218はコントローラ201からの指令信号により、リレーレンズ誤差信号に応じたリレーレンズ駆動信号を生成する。リレーレンズ駆動手段219はリレーレンズ駆動信号に応じてリレーレンズ321を駆動する。リレーレンズ321を駆動することで、ガイド層に対して合焦するレーザスポットの合焦位置が変化し、記録層とガイド層の位置の差異を補償することができる。上述したようにリレーレンズ制御手段218とリレーレンズ駆動手段219が動作することで、光ディスク102のガイド層に照射されたレーザスポットが常にガイド層で合焦するようにリレーレンズ制御が行われる。 Also, the relay lens error signal generation means 217 generates a relay lens error signal that is an error signal in the focus direction with respect to the guide layer of the optical disc 102 from the signal output from the detector 323. The relay lens control means 218 generates a relay lens driving signal corresponding to the relay lens error signal in response to a command signal from the controller 201. The relay lens driving means 219 drives the relay lens 321 according to the relay lens driving signal. By driving the relay lens 321, the focus position of the laser spot focused on the guide layer changes, and the difference in position between the recording layer and the guide layer can be compensated. As described above, the relay lens control unit 218 and the relay lens driving unit 219 operate, so that the relay lens control is performed so that the laser spot irradiated on the guide layer of the optical disc 102 is always focused on the guide layer.
 またスライダ駆動手段205、収差補正駆動手段206、スピンドル制御手段209に関しても、コントローラ201からの指令信号により動作する。 Also, the slider driving means 205, the aberration correction driving means 206, and the spindle control means 209 are also operated by a command signal from the controller 201.
 なお、ここではレーザダイオード302とレーザダイオード315を駆動するために同一のレーザドライバ301を用いたが、それぞれのレーザダイオードに固有のレーザドライバを備えても良い。また、球面収差補正素子309は、405nmの光学系および650nmの光学系の両方に影響する位置に配置されてもよく、たとえば1/4波長板310とダイクロイックミラー308の間に設置しても良い。 Although the same laser driver 301 is used here to drive the laser diode 302 and the laser diode 315, each laser diode may be provided with a laser driver specific to it. Further, the spherical aberration correction element 309 may be disposed at a position that affects both the 405 nm optical system and the 650 nm optical system, and may be disposed between the quarter wavelength plate 310 and the dichroic mirror 308, for example. .
 図4に光ディスク装置101に光ディスク102を挿入時の光ディスク装置101の処理フローを示した。 FIG. 4 shows a processing flow of the optical disc apparatus 101 when the optical disc 102 is inserted into the optical disc apparatus 101.
 S401で光ディスク102を光ディスク装置101に挿入すると、S402で光ディスク装置101はディスクの有無の確認やディスク種別の確認を行う。このとき、たとえば光ディスク装置101は光ディスク102にレーザ光を照射して、反射光によって認識を行うことができる。 When the optical disk 102 is inserted into the optical disk apparatus 101 in S401, the optical disk apparatus 101 confirms the presence / absence of a disk and the disk type in S402. At this time, for example, the optical disc apparatus 101 can irradiate the optical disc 102 with laser light and perform recognition by reflected light.
 次にS403では、挿入された光ディスク102に対して、光ディスク装置101内の各種パラメータを好適するための調整処理を行う。各種パラメータとは、たとえばフォーカス制御手段212やトラッキング制御手段215内に含まれる増幅器の増幅率を光ディスク102の反射率にあわせて調節することなどが挙げられる。 Next, in S403, adjustment processing is performed on the inserted optical disc 102 to make various parameters in the optical disc apparatus 101 suitable. Examples of the various parameters include adjusting the amplification factor of the amplifier included in the focus control unit 212 and the tracking control unit 215 in accordance with the reflectance of the optical disc 102.
 各種調整を行った後、S404で光ディスク102の管理情報を読み出す。 S405まで処理が進むと、記録または再生可能な状態となり、ホスト103からのコマンドに応じて記録または再生を行うことができる。 After performing various adjustments, the management information of the optical disk 102 is read in S404. When the process proceeds to S405, recording or playback is possible, and recording or playback can be performed in response to a command from the host 103.
 調整処理S403のタイミングはこれに限るものではなく、一部の調整処理を管理情報読み出しS404の後などに行ってもよい。 The timing of the adjustment process S403 is not limited to this, and part of the adjustment process may be performed after the management information read S404.
 次に、本実施例の光ディスク102におけるガイド層の構造を、図5、図6、図7を用いて説明する。
(本実施例の光ディスク102のガイド層の概要)
 図5は、本実施例の光ディスク102のガイド層上のトラック配置の概略を表している。トラックはディスク中心に対して螺旋状に設けられた、ランド(レーザ光の入射する側からみて凹部)とグルーブ(レーザ光の入射する側からみて凸部)からなり、周回内の一箇所の回転角の位置において、ランドとグルーブが入れ替わる配置となっている。本実施例では、光ディスク102はランド及びグルーブにトラッキングを行う案内溝構造の媒体とする。ランドとグルーブは、半径方向に対して概ね同一の幅を有する。これにより、光ディスク装置101での記録再生時は、ディスク1回転ごとにトラッキング位置がランドとグルーブの間で切り替わる構造となる。なお、本発明はこれに限られず、複数箇所の回転角の位置において、ランドとグルーブが入れ替わる配置としてもよい。このようなガイド層にトラッキングしながら記録層上に記録を行えば、記録層上のマーク列は、ガイド層のランド中心-グルーブ中心間の距離と略同一のトラックピッチを有し、従来の多くの光ディスク製品と同様のらせん状のトラックが得られる。
Next, the structure of the guide layer in the optical disc 102 of the present embodiment will be described with reference to FIGS.
(Outline of the guide layer of the optical disk 102 of this embodiment)
FIG. 5 shows an outline of the track arrangement on the guide layer of the optical disc 102 of the present embodiment. The track is spirally formed with respect to the center of the disk, and is composed of lands (concave portions as viewed from the laser beam incident side) and grooves (convex portions as viewed from the laser beam incident side). At the corner position, the land and the groove are interchanged. In this embodiment, the optical disk 102 is a medium having a guide groove structure for tracking land and groove. The land and the groove have substantially the same width in the radial direction. Thus, at the time of recording / reproducing on the optical disc apparatus 101, the tracking position is switched between the land and the groove every rotation of the disc. In addition, this invention is not restricted to this, It is good also as the arrangement | positioning which a land and a groove interchange in the position of several rotation angles. If recording is performed on the recording layer while tracking such a guide layer, the mark row on the recording layer has a track pitch substantially the same as the distance between the land center and the groove center of the guide layer. A spiral track similar to that of the optical disc product can be obtained.
 図6は本実施例における光ディスク102のガイド層のトラック構造の一例の概略を表す。トラックは半径方向に微小に蛇行している。以下ではこの蛇行構造をウォブルと表記する。ウォブル周期はディスクの回転角度に対して一定であり、隣接するグルーブおよびランド全てが同位相で蛇行させる。一方で、トラック幅は極めて小さいので、近傍のトラックにおいては、ウォブル周期は接線方向に対して近似的に一定とみなせる。またウォブル周期は、ディスクの記録再生処理時の回転速度において、トラッキングサーボ処理が追従できない程度に短い長さとなるようにする。本実施例では、このガイド層のトラックのウォブル周期を参照して記録クロックを生成する。なお、ウォブル成分は、トラッキング時においてプッシュプル信号(差信号)として検出可能である。プッシュプル信号は、トラッキングサーボにおける誤差信号としても用いられる信号であり、ランド側にトラッキングする場合とグルーブ側にトラッキングする場合とで、振幅極性を反転させて用いる。このため、トラッキング位置の案内溝の極性がランドかグルーブかによって、トラッキング誤差信号の極性制御と、ピット検出方法の切り替え制御とを連動させて行う。 FIG. 6 shows an outline of an example of the track structure of the guide layer of the optical disc 102 in this embodiment. The tracks meander slightly in the radial direction. Hereinafter, this meander structure is referred to as wobble. The wobble period is constant with respect to the rotation angle of the disk, and all adjacent grooves and lands meander in the same phase. On the other hand, since the track width is extremely small, the wobble period can be regarded as approximately constant with respect to the tangential direction in the adjacent tracks. Further, the wobble cycle is set to a short length that the tracking servo process cannot follow at the rotational speed during the recording / reproducing process of the disk. In this embodiment, the recording clock is generated with reference to the wobble period of the track of the guide layer. The wobble component can be detected as a push-pull signal (difference signal) during tracking. The push-pull signal is a signal that is also used as an error signal in tracking servo, and is used with the amplitude polarity inverted between when tracking on the land side and when tracking on the groove side. For this reason, the polarity control of the tracking error signal and the switching control of the pit detection method are performed in conjunction with each other depending on whether the polarity of the guide groove at the tracking position is a land or a groove.
 また、グルーブとランドのいずれか一方にピットを配置する。図6はランドに配置した例である。以下ではランド側にピットを配置した場合を例に説明するが、グルーブに設けてもよい。ここで、ガイド層では波長が長くスポット径の大きいガイド層用レーザを用いて記録層と略同一間隔の狭いトラックを走査することから、記録層や従来光ディスクよりも大きなクロストークが発生するため、影響を軽減するためにグルーブとランドのいずれか一方のみにピットを配置することとしている。 Also, pits are placed on either the groove or land. FIG. 6 shows an example of arrangement on a land. In the following, a case where pits are arranged on the land side will be described as an example, but it may be provided in the groove. Here, since the guide layer uses a guide layer laser having a long wavelength and a large spot diameter to scan a narrow track having a substantially same interval as the recording layer, a larger crosstalk occurs than the recording layer or the conventional optical disc. In order to reduce the influence, pits are arranged only in one of the groove and the land.
 ピットはトラックの前後の位置と比較して、一定の微小量だけ、高さを変えた微小構造である。本実施例では、このピット列の有無を判別することによりアドレス情報を検出する。すなわち、ランドにトラッキングしているときは、当該トラックのピットからアドレス情報を判別し、グルーブにトラッキングしているときは、内周もしくは外周に隣接するトラックのピットからアドレス情報を判別する。 The pit is a microstructure whose height is changed by a certain minute amount compared to the position before and after the track. In this embodiment, address information is detected by determining the presence or absence of this pit string. That is, when tracking to the land, the address information is determined from the pit of the track, and when tracking to the groove, the address information is determined from the pit of the track adjacent to the inner periphery or the outer periphery.
 また、アドレス情報に加えて、次のトラック極性の切りかえ位置までの距離情報を加え、トラッキング極性に合わせて各処理を切りかえるタイミングの制御時に参照できるようにしてもよい。以下では纏めてアドレス情報と表記する。 Also, in addition to the address information, distance information to the next track polarity switching position may be added so that it can be referred to when controlling the timing of switching each process according to the tracking polarity. Hereinafter, it is collectively referred to as address information.
 ピットの有無による戻り光の変化は、ディテクタ上の光スポットの強度分布の変化により検出可能であるが、トラッキングしているトラックそのものにピットが存在している場合と、隣接トラックにピットが存在している場合とで、異なる検出方法を適用する。 Changes in the return light due to the presence or absence of pits can be detected by changes in the intensity distribution of the light spot on the detector, but there are pits on the track being tracked and pits on adjacent tracks. Apply different detection methods.
 ランドにトラッキングしているときは、ディテクタ上の総光量の変化により検出可能である。光強度の変化方向は主としてガイド用のレーザ光波長と溝深さ、ピットの高さ、媒体の光学定数などに依存するが、グルーブの高さに合わせれば、隣接しているグルーブからの回折光と当該位置からの反射光の位相がそろうことから、戻り光強度が大きくなる。以下では、このようにピット位置においては前後よりも戻り光の強度が大きくなるものとする。 When tracking to the land, it can be detected by the change in the total light quantity on the detector. The direction of change of the light intensity mainly depends on the wavelength of the guide laser beam and the groove depth, the pit height, the optical constant of the medium, etc., but if matched to the groove height, the diffracted light from the adjacent groove Since the phases of the reflected light from the position are aligned, the return light intensity is increased. In the following, it is assumed that the intensity of the return light is larger at the pit position than before and after.
 また、グルーブにトラッキングしているときは、隣接ランドにピットが存在している場所において、ディスク102の半径方向に対応したディテクタ上の光スポット強度分布が非対称となる。このため、プッシュプル信号として検出することが可能である。 Further, when tracking is performed on the groove, the light spot intensity distribution on the detector corresponding to the radial direction of the disk 102 becomes asymmetric at the place where the pit exists in the adjacent land. For this reason, it can be detected as a push-pull signal.
 すなわち、ピットが配置される側にトラッキングを行っているときは和信号から検出する当該トラックのピットからアドレス情報を検出し、ピットが配置される側にトラッキングを行っているときはプッシュプル信号(差信号)から検出した隣接トラックのピットからアドレス情報を得ることが可能となる。 That is, when tracking is performed on the side where the pit is arranged, address information is detected from the pit of the track detected from the sum signal, and when tracking is performed on the side where the pit is arranged, a push-pull signal ( Address information can be obtained from the pits of adjacent tracks detected from the difference signal.
 ただし、グルーブを挟んだ両方のランドに同時にピットが存在すると、ディテクタ上の光スポット強度分布が非対称にならないので、この方法は適用できない。このため、グルーブを挟んだ両方のランドにおけるピットは、トラックの円周方向に対して同一位置にならないように配置する。 However, if pits exist simultaneously on both lands across the groove, the light spot intensity distribution on the detector does not become asymmetric, so this method cannot be applied. For this reason, the pits in both lands sandwiching the groove are arranged so as not to be in the same position with respect to the circumferential direction of the track.
 なお、光ディスク102の全周においてウォブル周期を回転角度に対して一定とすると、内周側と外周側において一周期あたりの円周方向の長さが半径位置に比例して大きな差異が生じ、外周での記録密度が低下する。このため、半径方向にいくつかの領域に分割し、その領域内において蛇行周期を回転角度に対して一定とするとよい。このとき、各領域によってピットを配置する側のトラック極性を替えてもよい。このようにすると、トラッキングを行っている位置が領域の境界を通過するタイミングにおいて、トラッキング誤差信号の極性とは連動せずに差信号と和信号の両方のピット検出信号の振幅がともに逆方向に大きく変化するので、この変化を検出することにより、アドレス情報が検出できなくとも記録領域の切り替わりを判別できる。 If the wobble period is constant with respect to the rotation angle on the entire circumference of the optical disk 102, the circumferential length per period on the inner circumference side and the outer circumference side is greatly different in proportion to the radial position, and the outer circumference The recording density at lowers. For this reason, it is good to divide into several areas in the radial direction, and to make the meander cycle constant in the area with respect to the rotation angle. At this time, the track polarity on the side where the pits are arranged may be changed depending on each region. In this way, at the timing when the tracking position passes the boundary of the region, the amplitudes of the pit detection signals of both the difference signal and the sum signal are in the opposite directions without being linked with the polarity of the tracking error signal. Since the change greatly occurs, the change of the recording area can be determined by detecting this change even if the address information cannot be detected.
 図7は1ウォブル周期だけ抜粋したトラックの概略図である。 Fig. 7 is a schematic diagram of a track extracted from one wobble cycle.
 配置するピットの長さは、蛇行周期よりも十分に小さくする。また、蛇行周期内で配置されるピット配置位相を予め定めておく。これは、あらかじめピット有無の判定を行うタイミングを規定しておくことにより、他のタイミングで欠陥やノイズで発生する信号を誤ってピットと判別するのを防ぐためである。また、たとえば、同一周回内のピット配置位相は一定にしておくとともに、図7のように、半径方向に奇数番目のランドと、偶数番目のランドで異なるピット配置位相とするように定めると、グルーブを挟んだ両方のランドにおけるピットが、トラックの円周方向に対して同一位置にならないように配置することが可能である。 * The length of the pits to be arranged should be sufficiently smaller than the meandering cycle. Moreover, the pit arrangement | positioning phase arrange | positioned within a meandering period is predetermined. This is to prevent a signal generated due to a defect or noise at another timing from being erroneously determined as a pit by prescribing the timing for determining whether or not there is a pit. Also, for example, if the pit arrangement phase within the same lap is kept constant and the pit arrangement phase is different between the odd-numbered lands and the even-numbered lands in the radial direction as shown in FIG. It is possible to arrange so that the pits in both lands sandwiching the track are not at the same position in the circumferential direction of the track.
 また、一ウォブル周期の円周方向の長さと、記録層上の記録マークの1bitあたりの円周方向の長さとの比も、予め定めておく必要がある。以下ではこの比をNch(整数)とおく。すなわち、1周期のウォブルのトラック長さの間にNchビットのマークを記録する。 Also, the ratio between the circumferential length of one wobble period and the circumferential length per bit of the recording mark on the recording layer needs to be determined in advance. Below, this ratio is set to Nch (integer). That is, an Nch bit mark is recorded during the track length of one cycle of wobble.
 以上、本実施例における光ディスクによれば、ガイド層のグルーブとランドのいずれか一方にピットを配置することで、ランド及びグルーブのアドレス情報を検出可能となる。これにより、クロストークの影響を緩和しつつ、記録密度の向上が図れる。さらに、グルーブ(またはランド)を挟んだ両方のランド(またはグルーブ)におけるピットは、トラックの円周方向に対して同一位置にならないように配置することにより、よりクロストークの影響を緩和することができる。 As described above, according to the optical disk of the present embodiment, land and groove address information can be detected by arranging pits on either the groove or the land of the guide layer. Thereby, it is possible to improve the recording density while reducing the influence of the crosstalk. Furthermore, by arranging the pits in both lands (or grooves) sandwiching the groove (or land) so as not to be in the same position with respect to the circumferential direction of the track, the influence of crosstalk can be further reduced. it can.
 次に、本実施例の光ディスク装置101に用いるコントローラ201の構成に関して、図1を用いて説明する。
(コントローラ201の一実施例)
 図1は、以上に述べた光ディスク102の記録再生を行うことを可能とするコントローラ201の一例である。
Next, the configuration of the controller 201 used in the optical disc apparatus 101 of this embodiment will be described with reference to FIG.
(One embodiment of controller 201)
FIG. 1 shows an example of a controller 201 that enables recording / reproduction of the optical disc 102 described above.
 コントローラ201は、ホストインターフェース手段601、バッファメモリ制御手段602、バッファメモリ603、マイクロプロセッサ604、トラッキング極性信号生成手段605、ピット検出手段606、アドレス判別手段607、記録タイミング信号生成手段608、再生データ復調手段613、記録データ変調手段614、発光信号生成手段615、ウォブル検出手段616、PLL617をそれぞれ備える。 The controller 201 includes host interface means 601, buffer memory control means 602, buffer memory 603, microprocessor 604, tracking polarity signal generation means 605, pit detection means 606, address discrimination means 607, recording timing signal generation means 608, reproduction data demodulation Means 613, recording data modulation means 614, emission signal generation means 615, wobble detection means 616, and PLL617 are provided.
 611は記録層用出射光、612は記録層からの戻り光、609はガイド層用出射光、610はガイド層からの戻り光、618はトラッキング極性制御信号、619はピット検出処理制御信号を示している。 611 is a recording layer output light, 612 is a return light from the recording layer, 609 is a guide layer output light, 610 is a return light from the guide layer, 618 is a tracking polarity control signal, 619 is a pit detection processing control signal ing.
 ホストインターフェース手段601は、ホスト103からのライトコマンドを受けて、バッファメモリ制御手段602を介してバッファメモリ603に記録データを格納するとともに、マイクロプロセッサ604にライトコマンドが発行されたことを示す信号を伝達する。 The host interface unit 601 receives a write command from the host 103, stores the recording data in the buffer memory 603 via the buffer memory control unit 602, and outputs a signal indicating that the write command has been issued to the microprocessor 604. introduce.
 記録データ変調手段614は、バッファメモリ603に格納された記録データに対して、誤り訂正符号の付加や変調処理などを行い、光ディスク102上に記録を行うための形式に変換した記録データを生成する。 The recording data modulation means 614 adds the error correction code and the modulation processing to the recording data stored in the buffer memory 603, and generates recording data converted into a format for recording on the optical disc 102. .
 マイクロプロセッサ604は、図示しないプログラムメモリに格納されたシーケンスに基づいて、光ディスク装置101全体の制御を行う。記録処理時はライトコマンドの受信を受けてディスク上の光スポットがライトを行う記録位置近傍に移動するようにスライダ駆動手段205を設定し、さらに移動が完了するとともにトラッキング制御手段に対して、トラッキングを開始するように設定を行う。一方で、記録タイミング信号生成手段608に対しては、記録を開始するアドレス情報を与える。 The microprocessor 604 controls the entire optical disc device 101 based on a sequence stored in a program memory (not shown). During the recording process, the slider drive means 205 is set so that the light spot on the disk moves to the vicinity of the recording position where writing is performed upon receipt of the write command. Set to start. On the other hand, the recording timing signal generating means 608 is given address information for starting recording.
 トラッキング極性信号生成手段605は、ピット検出手段606とトラッキング制御手段215に対して、トラッキング位置の極性(ランドとグルーブのいずれか)を示す指示信号を与える。これは、光ディスク装置のトラッキングサーボ処理で一般的に用いられる、プッシュプル信号によるトラッキング誤差信号では、ランドにトラッキングしたい場合と、グルーブにトラッキングしたい場合で、信号の極性を反転する必要があるためである。トラッキングが成功し、アドレス情報が検出可能な状態であれば、アドレス情報を参照して指示信号を生成する。トラッキングの開始直後、アドレス情報が検出されるまでは極性が不明であるが、この期間はピット検出手段606とトラッキング制御手段215とに同一極性を表す信号を初期値として与える。これにより、トラッキング開始位置のトラックもしくは近接するトラックのうち、初期値として与えた極性を有する位置からトラッキングを開始し、然る後にアドレス情報の検出を行うことが可能になる。 The tracking polarity signal generation means 605 gives an instruction signal indicating the polarity of the tracking position (either land or groove) to the pit detection means 606 and the tracking control means 215. This is because the tracking error signal using a push-pull signal, which is generally used in tracking servo processing of an optical disk device, needs to reverse the polarity of the signal when tracking to a land or tracking to a groove. is there. If tracking is successful and the address information can be detected, an instruction signal is generated with reference to the address information. Immediately after the start of tracking, the polarity is unknown until the address information is detected. During this period, a signal representing the same polarity is given to the pit detection means 606 and the tracking control means 215 as an initial value. As a result, tracking can be started from a position having the polarity given as the initial value among the tracks at the tracking start position or adjacent tracks, and then the address information can be detected.
 ウォブル検出手段616はガイド層からの戻り光610を検出するディテクタ323の出力から、ウォブル信号を検出する。PLL617は、ウォブル信号に位相同期した逓倍クロックを生成し、記録クロックとして出力する。 The wobble detection means 616 detects the wobble signal from the output of the detector 323 that detects the return light 610 from the guide layer. The PLL 617 generates a multiplied clock that is phase-synchronized with the wobble signal and outputs it as a recording clock.
 ピット検出手段606はガイド層からの戻り光610を検出するディテクタ323の出力から、ガイド層のランドに配置されたピットを検出するものである。前述のように、ピットの検出に用いる手法は、トラッキング位置の極性により異なる。このため、トラッキング極性信号生成手段605からのトラッキング位置の極性(ランドとグルーブのいずれか)を示す指示信号を受けて、トラッキング位置の極性に適合した検出方法を選択して適用する。 The pit detection means 606 detects pits arranged on the land of the guide layer from the output of the detector 323 that detects the return light 610 from the guide layer. As described above, the method used for detecting the pit differs depending on the polarity of the tracking position. For this reason, upon receiving an instruction signal indicating the polarity (either land or groove) of the tracking position from the tracking polarity signal generation means 605, a detection method suitable for the polarity of the tracking position is selected and applied.
 アドレス判別手段607は、ピット検出手段606で検出したピットに基づき、トラッキング位置のアドレス情報を判別する。 The address discriminating means 607 discriminates the address information of the tracking position based on the pit detected by the pit detecting means 606.
 記録タイミング信号生成手段608は、マイクロプロセッサ604からの記録を開始するアドレス情報と、アドレス判別手段607からのアドレス情報を受けて、ガイド層上の光スポットが記録開始位置を通過するとともに記録開始タイミング信号を発光信号生成手段615に出力する。 The recording timing signal generation means 608 receives the address information for starting recording from the microprocessor 604 and the address information from the address determination means 607, and the light spot on the guide layer passes the recording start position and the recording start timing. The signal is output to the light emission signal generating means 615.
 発光信号生成手段615は、光ディスク102に記録するデータパターンに応じた記録波形をLDD301に対して送信する。記録データ変調手段614により生成された記録データから記録するデータパターンに応じた記録波形を生成し、記録タイミング信号生成手段608からの記録開始タイミング信号が得られたタイミングで、LDD301への送信を開始する。送信する転送レートは、PLL617からの記録クロックの周波数に従う。 The light emission signal generating means 615 transmits a recording waveform corresponding to the data pattern recorded on the optical disc 102 to the LDD 301. A recording waveform corresponding to the data pattern to be recorded is generated from the recording data generated by the recording data modulation unit 614, and transmission to the LDD 301 is started at the timing when the recording start timing signal is obtained from the recording timing signal generation unit 608. To do. The transmission rate to be transmitted follows the frequency of the recording clock from the PLL 617.
 次に、本実施例の光ディスク装置101に用いた記録処理方法のシーケンスの概略に関して、図8を用いて説明する。
(光ディスク装置101の記録処理シーケンスの実施例)
 図8は、以上に述べた光ディスク102の記録再生を行うことを可能とする光ディスク装置101の記録処理シーケンスの一例の流れ図である。
Next, an outline of the sequence of the recording processing method used in the optical disc apparatus 101 of the present embodiment will be described with reference to FIG.
(Example of recording processing sequence of optical disc apparatus 101)
FIG. 8 is a flowchart of an example of a recording processing sequence of the optical disc apparatus 101 that enables recording and reproduction of the optical disc 102 described above.
 S801は、ガイド層用レーザからの光スポットをガイド層にフォーカシングするステップである。 S801 is a step of focusing the light spot from the laser for the guide layer on the guide layer.
 S802は記録層レーザを目標層にフォーカシングするステップである。 S802 is a step of focusing the recording layer laser to the target layer.
 S803はトラッキング制御手段215およびピット検出手段606に対して与えるトラッキング極性情報を初期化するステップである。 S803 is a step of initializing tracking polarity information given to the tracking control means 215 and the pit detection means 606.
 S804は光ディスク102上の記録を行う半径位置の近傍に光スポットが位置するようにスレッドを駆動するステップである。 S804 is a step of driving the sled so that the light spot is positioned in the vicinity of the radial position where recording on the optical disk 102 is performed.
 S805はガイド層上の案内溝にトラッキングを開始するステップである。 S805 is a step of starting tracking in the guide groove on the guide layer.
 S816はガイド層上の案内溝へのトラッキングを開始するとともに、ガイド層のウォブルの検出と、ウォブル検出信号からの記録クロック生成を開始するステップである。 S816 is a step of starting the tracking to the guide groove on the guide layer and starting the wobble detection of the guide layer and the generation of the recording clock from the wobble detection signal.
 S806はガイド層のアドレス検出を行うステップである。 S806 is a step of detecting the address of the guide layer.
 S807はガイド層から得られるアドレス情報を基づいたトラッキング極性の自動切換を開始するステップである。 S807 is a step of starting automatic switching of tracking polarity based on address information obtained from the guide layer.
 S808は、S806で得られたアドレス情報から、移動目標とする半径位置範囲内に移動できたか否かを判断するステップである。もし目標とする半径位置に到達していないと判断された場合は、ステップS803の前段に戻り、再度半径位置の移動を行う。 S808 is a step of determining from the address information obtained in S806 whether or not it has moved within the radius position range as the movement target. If it is determined that the target radial position has not been reached, the process returns to the previous stage of step S803 to move the radial position again.
 S809は記録開始アドレスを記録タイミング信号生成手段608に与えるステップである。
なお、図示を省略したが、ライトコマンドを受信後、S809が開始するまでの間で、記録データの変調処理が完了している必要がある。もし完了していない場合は、適当量の待ち処理を挿入する。
S809 is a step of giving a recording start address to the recording timing signal generating means 608.
Although illustration is omitted, it is necessary that the recording data modulation process be completed after the reception of the write command until S809 starts. If not, insert an appropriate amount of wait processing.
 S810は記録開始位置を判別するためにガイド層からアドレス情報を検出するステップである
 S811はステップS810で得られたアドレス情報をもとに記録開始位置か否かを判別するステップである。記録開始位置に到達するまではステップS810に戻り、記録開始位置に到達するとともにステップS812に遷移する。また図示していないが、記録開始位置よりも後の場所に位置すると判断される場合は、ステップS803の前に遷移する。
S810 is a step of detecting address information from the guide layer in order to determine the recording start position. S811 is a step of determining whether or not the recording start position is based on the address information obtained in step S810. The process returns to step S810 until the recording start position is reached, and the process proceeds to step S812 while reaching the recording start position. Although not shown, when it is determined that the position is after the recording start position, the process proceeds to step S803.
 S812は記録開始位置に到達するとともに、記録データに応じた発光波形・出力での発光を開始するように記録層用レーザを制御するステップである。 S812 is a step of controlling the recording layer laser so as to start the light emission with the light emission waveform / output according to the recording data while reaching the recording start position.
 S813は記録中において、所望の位置にトラッキングされていることを確認するためにガイド層のアドレス情報を検出するステップである。 S813 is a step of detecting address information of the guide layer in order to confirm that it is being tracked at a desired position during recording.
 S814は、ステップS813で得られたアドレス情報の連続性をもとに、所望の位置にトラッキングされているかどうかを判断するステップである。もし連続性が損なわれたと判断された場合においては、何らかの要因により別のトラックに不意に移動したものと考えられるので、記録処理を停止し、記録層用レーザの出射光量を、再生時用のものに切り替える。 S814 is a step of determining whether or not the desired position is tracked based on the continuity of the address information obtained in step S813. If it is determined that the continuity has been lost, it is considered that the recording has been unexpectedly moved to another track for some reason. Therefore, the recording process is stopped, and the amount of light emitted from the recording layer laser is changed to that for reproduction. Switch to things.
 S815は記録を行うデータがすべて完了したことを確認するステップである。完了していないと判断された場合は、ステップS813の前にもどる。完了したと判断された場合は記録層用レーザの出射光量を、再生時用のものに切り替えて、記録処理を終了する。 S815 is a step to confirm that all data to be recorded is completed. If it is determined that the process has not been completed, the process returns to step S813. When it is determined that the recording is completed, the amount of light emitted from the recording layer laser is switched to that for reproduction, and the recording process is terminated.
 以上本実施例の光ディスク装置、光ディスク記録方法によれば、ガイド層のランドとグルーブの両方にトラッキングを行う場合であっても、アドレス情報の検出が可能となる。これにより、記録位置の精度向上と、記録密度の向上が実現できる。 As described above, according to the optical disc apparatus and the optical disc recording method of the present embodiment, it is possible to detect the address information even when tracking is performed on both the land and the groove of the guide layer. Thereby, it is possible to improve the accuracy of the recording position and the recording density.
 次に、光ディスク記録装置のコントローラ102の構成要素とその動作に関して、より詳細に説明する。
(ウォブル検出手段616の一例)
 図9はウォブル検出手段616の一例である。
Next, the components of the controller 102 of the optical disk recording apparatus and the operation thereof will be described in more detail.
(Example of wobble detection means 616)
FIG. 9 shows an example of the wobble detection means 616.
 901はディテクタ323上の光スポットである。902は差信号演算回路である。
903、904、907はいずれも乗算器である。911はウォブル原信号である。912はウォブル位相同期信号である。913は反転ウォブル位相同期信号である。914はコンパレータである。915はセレクタである。916はウォブルキャリア信号である。
Reference numeral 901 denotes a light spot on the detector 323. Reference numeral 902 denotes a difference signal calculation circuit.
Reference numerals 903, 904, and 907 are multipliers. 911 is an original wobble signal. Reference numeral 912 denotes a wobble phase synchronization signal. Reference numeral 913 denotes an inverted wobble phase synchronization signal. Reference numeral 914 denotes a comparator. 915 is a selector. 916 is a wobble carrier signal.
 ディテクタ323はガイド層からの戻り光を検出するためのものであり、少なくとも光ディスク102の半径方向に対応した方向に分割されているものを用いる。図中では、接線方向にも2分割された4分割構成としている。なお、本発明はこれに限られず、例えば16分割構成としてもよい。差信号演算回路902はディテクタ323の各エレメントの検出信号からプッシュプル信号を得るための演算を行う。具体的には図中の4分割検出器のエレメントA,B,C,Dの各々の検出信号に対して、(A+D)-(B+C)の演算を行って、結果を出力する。なお、検出対象とするウォブル信号の周波数成分は、単一の周波数もしくはその近傍の周波数に限定されるので、差信号演算回路902の出力にバンドパスフィルタなどを設けてもよい。 The detector 323 is for detecting the return light from the guide layer, and is used that is divided at least in the direction corresponding to the radial direction of the optical disk 102. In the figure, a four-divided configuration is also obtained, which is also divided into two in the tangential direction. In addition, this invention is not restricted to this, For example, it is good also as a 16 division structure. The difference signal calculation circuit 902 performs a calculation for obtaining a push-pull signal from the detection signal of each element of the detector 323. Specifically, the (A + D)-(B + C) calculation is performed on the detection signals of the elements A, B, C, and D of the quadrant detector in the figure, and the result is output. . Since the frequency component of the wobble signal to be detected is limited to a single frequency or a frequency in the vicinity thereof, a band pass filter or the like may be provided at the output of the difference signal calculation circuit 902.
 ウォブル原信号911は、ガイド層上のウォブルの蛇行量と相似な変動をなす信号である。ただし、一般にトラックの蛇行量は微小であるため,品質が十分に得られないことが多いので、更にキャリア抽出処理を加える。 The original wobble signal 911 is a signal having a variation similar to the wobble meandering amount on the guide layer. However, generally, since the amount of meandering of the track is very small, the quality cannot often be obtained sufficiently, and further carrier extraction processing is added.
 各乗算器(903、904、907)と、各ローパスフィルタ(905、906)、ループフィルタ908、VCO909、π/2移相器910の各要素は、いわゆるコスタスループとよばれるキャリア復調回路を成す。その出力であるウォブル位相同期信号912は、ウォブル原信号911と同一周波数となる。 Each element of each multiplier (903, 904, 907), each low-pass filter (905, 906), loop filter 908, VCO909, π / 2 phase shifter 910 forms a carrier demodulation circuit called a so-called Costas loop. . The output wobble phase synchronization signal 912 has the same frequency as the wobble original signal 911.
 乗算器903,904の出力はそれぞれ、ウォブル原信号911に対するウォブル位相同期信号912の位相誤差量θの余弦成分cosθと正弦成分sinθに対してウォブル周波数の2倍の周波数を有する成分が加算された信号出力される。 The outputs of the multipliers 903 and 904 are signal outputs obtained by adding a cosine component cosθ of the phase error amount θ of the wobble phase synchronization signal 912 relative to the wobble original signal 911 and a component having a frequency twice the wobble frequency to the sine component sinθ, respectively. Is done.
 ローパスフィルタ(905、906)はこれらのウォブル周波数の2倍の周波数を有する成分を十分に抑圧できるカットオフ特性とする。乗算器907の出力は位相誤差量の2倍の位相量の正弦成分(sin(2θ)/2)が検出され、位相誤差信号として用いる。ループフィルタ908はループ特性を安定化するための補償器である。VCO909は電圧制御発信器であり、入力信号の大きさに基づいた周波数の信号を出力する。VCO909からはウォブル位相同期信号912は、ウォブル原信号911と同一周波数を有する信号が得られる。ただし、位相誤差信号の感度特性(sin(2θ)/2)が位相誤差量に対してπの周期をことにより、ウォブル位相同期信号912としてウォブル原信号911と同位相の信号が得られる場合に加えて、反転した位相の信号が得られる場合が存在する。 The low-pass filter (905, 906) has a cut-off characteristic that can sufficiently suppress a component having a frequency twice the wobble frequency. From the output of the multiplier 907, a sine component (sin (2θ) / 2) having a phase amount twice the phase error amount is detected and used as a phase error signal. The loop filter 908 is a compensator for stabilizing the loop characteristics. The VCO 909 is a voltage controlled oscillator and outputs a signal having a frequency based on the magnitude of the input signal. From the VCO 909, a signal having the same frequency as the wobble original signal 911 is obtained as the wobble phase synchronization signal 912. However, if the sensitivity characteristic of the phase error signal (sin (2θ) / 2) has a period of π with respect to the phase error amount, a signal having the same phase as the wobble original signal 911 can be obtained as the wobble phase synchronization signal 912. In addition, there is a case where an inverted phase signal is obtained.
 コンパレータ914, セレクタ915は、ウォブル原信号911と同一周波数かつ同一位相の信号を選択するためのものである。セレクタ915にはウォブル位相同期信号912と、その反転信号である反転ウォブル位相同期信号913が入力され、これらの一方を選択して出力する。選択を制御する信号はコンパレータ914から供給される。 The comparator 914 and the selector 915 are for selecting signals having the same frequency and the same phase as the wobble original signal 911. The selector 915 receives a wobble phase synchronization signal 912 and an inverted wobble phase synchronization signal 913 which is an inverted signal thereof, and selects and outputs one of them. A signal for controlling the selection is supplied from the comparator 914.
 コンパレータ914はウォブル位相同期信号912とウォブル原信号911との位相関係を判断するためのものである。たとえば、ローパスフィルタ905の出力信号cosθは位相誤差θ=0のとき正値1、θ=πのとき負値-1となる。これを基準電位(通例0V)と比較して極性を判別した結果を出力し、セレクタ915に供給すると、ウォブル原信号911と同一周波数かつ同一位相の信号としてウォブルキャリア信号916を得ることができる。
(PLL617の構成の一例)
 図10はPLL617の構成の一例であり、内部に位相誤差検出手段1001、ループフィルタ1002、VCO(電圧制御発振器)1003、分周器1004をそれぞれ有する。また、916はウォブルキャリア信号、1005はウォブル同期クロック、1005はウォブル逓倍クロックである。
The comparator 914 is for determining the phase relationship between the wobble phase synchronization signal 912 and the wobble original signal 911. For example, the output signal cos θ of the low-pass filter 905 has a positive value 1 when the phase error θ = 0 and a negative value −1 when θ = π. When this is compared with a reference potential (usually 0V) and the result of determining the polarity is output and supplied to the selector 915, the wobble carrier signal 916 can be obtained as a signal having the same frequency and the same phase as the wobble original signal 911.
(Example of the configuration of PLL617)
FIG. 10 shows an example of the configuration of the PLL 617, which internally includes a phase error detection means 1001, a loop filter 1002, a VCO (voltage controlled oscillator) 1003, and a frequency divider 1004. Also, 916 is a wobble carrier signal, 1005 is a wobble synchronization clock, and 1005 is a wobble multiplication clock.
 PLL617の主とする入力信号はウォブルキャリア信号916であり、光ディスク102のガイド層のウォブルに位相同期した信号である。また、主とする出力はVCO1003から出力されるウォブル逓倍クロック1005である。 The main input signal of the PLL 617 is a wobble carrier signal 916, which is a signal that is phase-synchronized with the wobble of the guide layer of the optical disc 102. The main output is a wobble multiplication clock 1005 output from the VCO 1003.
 位相誤差検出手段1001では、分周器1004によってウォブル逓倍クロック1005を分周して得たウォブル同期クロック1005と、ウォブルキャリア信号916との位相比較を行い、その位相差量に応じた大きさの位相誤差信号をループフィルタ1002へ出力する。ループフィルタ1002はPLL617のなすフィードバックループを安定化させる目的で設けられる周波数特性補償手段であり、ウォブル同期クロック1005とウォブルキャリア信号916との位相誤差が小さくなるようにVCO1003に制御信号を与える。この結果として、分周手段1004の出力となるウォブル同期クロック1005の周波数と位相はウォブルキャリア信号916が一致する。このとき、分周器1004の入力であるウォブル逓倍クロック1005の周波数は、ウォブル同期クロック1005に対して分周器1004の分周比の逆数だけ逓倍したものとなる。具体的には、分周器1004の分周比を1/Nとすると、ウォブル逓倍クロック1005として、ウォブル同期クロック1005のN倍の周波数のクロックが得られる。N = Nchとすれば、1bitの記録マーク長を通過する間に1クロックに相当するクロックを発生できるので、分周器1004の分周比を1/Nchもしくは 1/nNch (nは自然数)として、1bitの記録マーク長の通過時間内にちょうど整数個のクロックを発生させる。 The phase error detection means 1001 compares the phase of the wobble synchronization clock 1005 obtained by dividing the wobble multiplication clock 1005 by the frequency divider 1004 with the wobble carrier signal 916, and has a magnitude corresponding to the amount of the phase difference. The phase error signal is output to the loop filter 1002. The loop filter 1002 is a frequency characteristic compensation unit provided for the purpose of stabilizing the feedback loop formed by the PLL 617, and provides a control signal to the VCO 1003 so that the phase error between the wobble synchronization clock 1005 and the wobble carrier signal 916 becomes small. As a result, the wobble carrier signal 916 matches the frequency and phase of the wobble synchronization clock 1005 that is the output of the frequency dividing means 1004. At this time, the frequency of the wobble multiplication clock 1005 that is input to the frequency divider 1004 is multiplied by the reciprocal of the frequency division ratio of the frequency divider 1004 with respect to the wobble synchronization clock 1005. Specifically, when the frequency dividing ratio of the frequency divider 1004 is 1 / N, a clock having a frequency N times that of the wobble synchronous clock 1005 is obtained as the wobble multiplied clock 1005. If N = Nch, a clock equivalent to one clock can be generated while passing the 1-bit recording mark length, so the divider ratio of the divider 1004 is 1 / Nch or 1 / nNch (n is a natural number) , Just an integer number of clocks are generated within the passing time of 1-bit recording mark length.
 斯様にして得られるウォブル逓倍クロック1005を記録クロックとして発光信号生成手段615に供給する。
(ピット検出手段606の一例)
 図11はピット検出手段606の一実施例である。
The wobble multiplication clock 1005 obtained in this way is supplied to the light emission signal generating means 615 as a recording clock.
(Example of pit detection means 606)
FIG. 11 shows an embodiment of the pit detection means 606.
 1101は差信号演算回路、1102は和信号演算回路、1103は差信号用データ検出手段、1104は和信号用データ検出手段、1105は切替手段、1106はアドレスデータ信号であり、ピット検出手段606は内部にこれらを有する。また、323はガイド層からの戻り光を検出するディテクタ、901はディテクタ323上に形成される光スポットである。 1101 is a difference signal calculation circuit, 1102 is a sum signal calculation circuit, 1103 is a difference signal data detection means, 1104 is a sum signal data detection means, 1105 is a switching means, 1106 is an address data signal, and a pit detection means 606 is Have these inside. Reference numeral 323 denotes a detector for detecting return light from the guide layer, and reference numeral 901 denotes a light spot formed on the detector 323.
 差信号演算回路1101はグルーブにトラッキングしているときに隣接するランドに存在するピットを検出するための信号を得るものであり、ディテクタ323の各エレメントの検出信号からプッシュプル信号を得るための演算を行う。差信号演算回路902と共用してもよい。 The difference signal calculation circuit 1101 obtains a signal for detecting a pit existing in the adjacent land when tracking to the groove, and performs an operation for obtaining a push-pull signal from the detection signal of each element of the detector 323. I do. It may be shared with the difference signal arithmetic circuit 902.
 和信号演算回路1102は、ランドにトラッキングしているときに当該トラック上に存在するピットを検出するための信号を得るものであり、ディテクタ323の各エレメントの検出信号の和信号を得る。 The sum signal calculation circuit 1102 obtains a signal for detecting a pit existing on the track when tracking to the land, and obtains a sum signal of detection signals of each element of the detector 323.
 差信号用データ検出手段1103は差信号演算回路1101で得られた信号から隣接トラックに存在するピットを検出し、検出されたピットに列に従ったデータ信号を切替手段1105に出力する。一方で、和信号用データ検出手段1104は和信号演算回路1102で得られた信号から隣接トラックに存在するピットを検出し、検出されたピットに列に従ったデータ信号を切替手段1105に出力する。 The difference signal data detection means 1103 detects a pit existing in the adjacent track from the signal obtained by the difference signal calculation circuit 1101 and outputs a data signal according to the detected pit to the switching means 1105. On the other hand, the sum signal data detection means 1104 detects pits existing in the adjacent track from the signal obtained by the sum signal calculation circuit 1102, and outputs a data signal according to the detected pit to the switching means 1105. .
 切替手段1105は、トラッキング極性信号生成手段605からのピット検出処理制御信号619にしたがって、グルーブにトラッキングしている間は差信号用データ検出手段1103からのデータを選択し、アドレスデータ信号1106として後段に出力し、ランドにトラッキングしている間は和信号用データ検出手段1104からのデータを選択し、アドレスデータ信号1106として後段に出力する。
(和信号用データ検出手段1104および差信号用データ検出手段1103の一例)
 図12、図13、図14を用いて和信号用データ検出手段1104および差信号用データ検出手段1103の一例を説明する。
The switching means 1105 selects the data from the difference signal data detection means 1103 while tracking to the groove in accordance with the pit detection processing control signal 619 from the tracking polarity signal generation means 605, and the subsequent stage as the address data signal 1106 During the tracking to the land, the data from the sum signal data detection means 1104 is selected and output as the address data signal 1106 to the subsequent stage.
(One example of sum signal data detecting means 1104 and difference signal data detecting means 1103)
An example of the sum signal data detection means 1104 and the difference signal data detection means 1103 will be described with reference to FIG. 12, FIG. 13, and FIG.
 和信号用データ検出手段1104および差信号用データ検出手段1103は、ともに図12に示す構成で実現することが可能である。 Both the sum signal data detection means 1104 and the difference signal data detection means 1103 can be realized by the configuration shown in FIG.
 図13は、和信号用データ検出手段1104の動作の概略を表している。図14は、差信号用データ検出手段1103の動作の概略を表している。 FIG. 13 shows an outline of the operation of the sum signal data detection means 1104. FIG. 14 shows an outline of the operation of the difference signal data detection means 1103.
 1201は和信号用データ検出手段1104もしくは差信号用データ検出手段1103で処理された演算出力信号である。 1201 is an arithmetic output signal processed by the sum signal data detection means 1104 or the difference signal data detection means 1103.
 1204はコンパレータである。1205は閾値信号生成手段である。1206は閾値信号である。1207はピット検出用ゲート信号である。1208はANDゲートである。1209はピット検出信号である。1213はベースレベル信号である。1214はピークレベル信号である。1215はカウント値である。1216はウォブル基準位相信号である。 1204 is a comparator. 1205 is a threshold signal generation means. Reference numeral 1206 denotes a threshold signal. Reference numeral 1207 denotes a pit detection gate signal. 1208 is an AND gate. Reference numeral 1209 denotes a pit detection signal. Reference numeral 1213 denotes a base level signal. 1214 is a peak level signal. 1215 is a count value. Reference numeral 1216 denotes a wobble reference phase signal.
 まず、図12、図13を用いて和信号用データ検出手段1102の動作を説明する。 First, the operation of the sum signal data detection means 1102 will be described with reference to FIGS.
 和信号演算回路1102は内部にローパスフィルタ1202と、ピークレベル検出回路1214と、コンパレータ1204と、閾値信号生成手段1205と、ANDゲート1208と、基準位相タイミング信号生成手段1210と、カウンタ回路1211と、ピット検出用ゲート信号生成手段1212とを有する。 The sum signal calculation circuit 1102 includes a low-pass filter 1202, a peak level detection circuit 1214, a comparator 1204, a threshold signal generation unit 1205, an AND gate 1208, a reference phase timing signal generation unit 1210, a counter circuit 1211, Pit detection gate signal generation means 1212.
 大別すると、和信号1201からピットに対応したパルス信号を得る処理部と、雑音等によるピットの無い位置での誤検出を防止するためのゲート信号を生成するための処理部に二分される。 Broadly divided, it is divided into a processing unit for obtaining a pulse signal corresponding to a pit from the sum signal 1201 and a processing unit for generating a gate signal for preventing erroneous detection at a position where there is no pit due to noise or the like.
 ローパスフィルタ1202、ピークレベル検出回路1214、コンパレータ1204、閾値信号生成手段1205は、和信号1201からピットに対応したパルス信号を得る処理部を形成する。また、基準位相タイミング信号生成手段1210、カウンタ回路1211、ピット検出用ゲート信号生成手段1211、ANDゲート1208の各要素は、雑音等によるピットの無い位置での誤検出を防止するためのゲート信号を生成するための処理部を形成する。 The low-pass filter 1202, the peak level detection circuit 1214, the comparator 1204, and the threshold signal generation means 1205 form a processing unit that obtains a pulse signal corresponding to the pit from the sum signal 1201. In addition, each element of the reference phase timing signal generation means 1210, the counter circuit 1211, the pit detection gate signal generation means 1211, and the AND gate 1208 has a gate signal for preventing erroneous detection at a position where there is no pit due to noise or the like. A processing unit for generation is formed.
 和信号1201はランドにトラッキング中において、ピット位置を通過するとパルス状に戻り光強度が大きくなる。ローパスフィルタ1202は和信号用データ検出手段1104からの信号に対してパルス状の強度変化成分を平滑化することにより、実質的にピットの無い部位での信号と同等の信号レベルを有するベースレベル信号1213を生成して、閾値信号生成手段1205に供給する。ピークレベル検出回路1214は、和信号に対してピークホールド処理を行い、パルスの高さに相当するピークレベル信号1214を閾値信号生成手段1205に供給する。閾値信号生成手段1205は、ローパスフィルタ1202からのベースレベル信号1213とピークレベル検出回路1203からのピークレベル信号1214の間の概ね中間のレベルの閾値信号1206をコンパレータ1204に供給する。コンパレータ1204は和信号1201と閾値信号1206を比較し、和信号1201のほうが大きいときに高い信号レベルとなる矩形波パルス信号をANDゲート1208に出力する。 When the sum signal 1201 passes through the pit position while tracking to the land, it returns to a pulse shape and the light intensity increases. The low-pass filter 1202 smoothes a pulse-like intensity change component with respect to the signal from the sum signal data detection means 1104, thereby having a base level signal having a signal level substantially equivalent to a signal at a portion having no pit. 1213 is generated and supplied to the threshold signal generation means 1205. The peak level detection circuit 1214 performs peak hold processing on the sum signal, and supplies the peak level signal 1214 corresponding to the pulse height to the threshold signal generation means 1205. The threshold signal generation unit 1205 supplies the comparator 1204 with a threshold signal 1206 having a substantially intermediate level between the base level signal 1213 from the low-pass filter 1202 and the peak level signal 1214 from the peak level detection circuit 1203. The comparator 1204 compares the sum signal 1201 and the threshold signal 1206, and outputs to the AND gate 1208 a rectangular wave pulse signal that has a higher signal level when the sum signal 1201 is larger.
 基準位相タイミング信号生成手段1210はウォブルキャリア信号916の蛇行周期のうち、特定の位相を示すウォブル基準位相信号1216を生成する。例えば負レベルから正レベルに変化するゼロクロスタイミングに一定幅のパルス信号を発生させカウンタ回路1211に供給する。カウンタ回路1211はウォブル逓倍クロック1006のタイミングで値をインクリメントし、前記の基準位相を表すパルス信号のタイミングで値をリセットするカウンタである。これによりウォブルキャリア信号916の位相がカウント値1215で表されることになる。ピット検出用ゲート信号生成手段1212は、カウンタ回路1211のカウント値1215を受けて、ピットが配置される位相の前後においてアクティブとなるピット検出用ゲート信号1207を生成する。ANDゲート1208は、コンパレータ1204からの矩形波パルスとピット検出用ゲート信号1207とのAND信号を生成する。このようにして、和信号用データ検出手段1104を用いてピットに対応したパルス信号が得られる。 The reference phase timing signal generation means 1210 generates a wobble reference phase signal 1216 indicating a specific phase in the meandering cycle of the wobble carrier signal 916. For example, a pulse signal having a constant width is generated at the zero cross timing when the negative level changes to the positive level, and is supplied to the counter circuit 1211. The counter circuit 1211 is a counter that increments the value at the timing of the wobble multiplication clock 1006 and resets the value at the timing of the pulse signal representing the reference phase. Thus, the phase of the wobble carrier signal 916 is represented by the count value 1215. The pit detection gate signal generation means 1212 receives the count value 1215 of the counter circuit 1211 and generates a pit detection gate signal 1207 that is active before and after the phase where the pits are arranged. The AND gate 1208 generates an AND signal of the rectangular wave pulse from the comparator 1204 and the pit detection gate signal 1207. In this way, a pulse signal corresponding to the pit is obtained using the sum signal data detection means 1104.
 一方の差信号用データ検出手段1103の動作も、入力される演算出力信号に現れるパルス成分の方向が、振幅の大きい側と小さい側の両方に現れる点以外は同様である。なお、パルス成分の方向は、トラッキングを行っているグルーブに対する、ピットが存在しているランドの隣接方向(内周側か、外周側)によって決まるので、いずれか一方(図14では振幅が大きくなる側の例を示した)のパルスを検出するようにすれば、隣接するランドに存在するピットを検出可能である。このようにして、差信号用データ検出手段1103からピットに対応したパルス信号が得られる。 The operation of one of the difference signal data detection means 1103 is the same except that the direction of the pulse component appearing in the input arithmetic output signal appears on both the large amplitude side and the small amplitude side. The direction of the pulse component is determined by the adjacent direction (inner side or outer side) of the land where the pit exists with respect to the tracking groove, so either one (the amplitude increases in FIG. 14). Pits existing in adjacent lands can be detected. In this way, a pulse signal corresponding to the pit is obtained from the difference signal data detection means 1103.
 以上に述べた第一の実施例の光ディスク媒体、光ディスク装置ならびに光ディスク記録方法によれば、クロストークの影響を緩和しつつ、記録密度の向上が図れる。 According to the optical disk medium, the optical disk apparatus, and the optical disk recording method of the first embodiment described above, the recording density can be improved while alleviating the influence of crosstalk.
 また、ガイド層の概一定周期で蛇行したトラックから、蛇行量に応じて検出した信号を更に逓倍化することにより記録クロックを得ることが可能になる。また、トラック上に配置したピットによって、ガイド層上の位置を表す、アドレス情報を記録することにより、記録処理時に、このガイド層上のアドレス情報を参照して、記録層上の記録位置を定めることが可能になる。 Further, it is possible to obtain a recording clock by further multiplying the detected signal according to the amount of meandering from the meandering track of the guide layer at a substantially constant period. In addition, by recording address information representing the position on the guide layer by pits arranged on the track, the recording position on the recording layer is determined with reference to the address information on the guide layer during the recording process. It becomes possible.
 実施例2としてピット検出手段606の別の一例を示す。ピット検出手段606以外の部分は、実施例1と同様であるので、説明を省略する。 Example 2 shows another example of the pit detection means 606. Since parts other than the pit detection means 606 are the same as those in the first embodiment, the description thereof is omitted.
 図15はピット検出手段606の図11とは別の構成例である。 FIG. 15 is a configuration example different from that of FIG. 11 of the pit detection means 606.
 図15の構成では、図11の構成で別に設けている和信号用データ検出手段1104、差信号用データ検出手段1103をデータ検出手段1501に統合する。 In the configuration of FIG. 15, sum signal data detection means 1104 and difference signal data detection means 1103 provided separately in the configuration of FIG. 11 are integrated into the data detection means 1501.
 すなわち、図11の構成で和信号用データ検出手段1104、差信号用データ検出手段1103の後段に設けられた切りかえ手段1105に代わりに、和信号演算回路1102および差信号演算回路1101とデータ検出手段1501との間に切替手段1506を設け、トラッキング極性信号生成手段605からのピット検出処理制御信号619にしたがってトラッキング位置に応じた方の出力を選択してデータ検出手段1501に出力し、アドレスデータ信号1106を生成する。 That is, instead of the switching means 1105 provided in the subsequent stage of the sum signal data detection means 1104 and the difference signal data detection means 1103 in the configuration of FIG. 11, the sum signal calculation circuit 1102, the difference signal calculation circuit 1101, and the data detection means The switching means 1506 is provided between the tracking position signal 1501 and the output corresponding to the tracking position is selected according to the pit detection processing control signal 619 from the tracking polarity signal generation means 605 and is output to the data detection means 1501 and the address data signal 1106 is generated.
 ところで、データ検出手段1501ではトラッキング位置がランドかグルーブかによって入力信号が切り替わるのに対応して、ピークレベル信号1214、ベースレベル信号1213、閾値信号1206の適正な信号レベルなどの処理パラメータが異なる。そこで、和信号用パラメータ格納手段1502、差信号用パラメータ格納手段1503を設け、ピット検出処理制御信号619によって制御される切替手段1504により、データ検出手段1501に与える処理パラメータを切り替えるようにする。和信号用パラメータ格納手段1502、差信号用パラメータ格納手段1503は、レジスタで形成してもよいし、メモリーで形成してもよい。 Incidentally, in the data detection means 1501, processing parameters such as appropriate signal levels of the peak level signal 1214, the base level signal 1213, and the threshold signal 1206 differ depending on whether the input signal is switched depending on whether the tracking position is a land or a groove. Therefore, a sum signal parameter storage unit 1502 and a difference signal parameter storage unit 1503 are provided, and a processing parameter to be given to the data detection unit 1501 is switched by a switching unit 1504 controlled by a pit detection processing control signal 619. The sum signal parameter storage means 1502 and the difference signal parameter storage means 1503 may be formed of a register or a memory.
 以上に述べた第二の実施例の光ディスク媒体、光ディスク装置ならびに光ディスク記録方法によれば、実施例1と同様の効果を得ることが出来る。 According to the optical disk medium, the optical disk device, and the optical disk recording method of the second embodiment described above, the same effects as those of the first embodiment can be obtained.
 さらに、和信号用のデータ検出手段1104と差信号用のデータ検出手段1103をデータ検出手段1501にまとめるため、図11の構成と同等の処理を、第一の実施例より小さな装置で行うことが可能である。 Further, in order to combine the data detection means 1104 for sum signal and the data detection means 1103 for difference signal into the data detection means 1501, processing equivalent to the configuration of FIG. 11 can be performed with a smaller apparatus than the first embodiment. Is possible.
 なお、以上に記した実施例1、実施例2では、より大きい記録密度を実現できる方式として、ガイド層上のランドとグルーブの両方にトラッキングする方法を適用した例を説明したが、本実施例に記した光ディスク記録装置および光ディスク記録方法は、より簡単なランドとグルーブの一方のみにトラッキングする場合においても対応可能であることはいうまでもない。 In Examples 1 and 2 described above, an example in which a method of tracking both the land and the groove on the guide layer is applied as a method capable of realizing a higher recording density has been described. Needless to say, the optical disk recording apparatus and optical disk recording method described in (1) can be applied to the case of tracking only one of a land and a groove, which is simpler.
 また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 Further, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
 さらに、上記の各構成は、それらの一部又は全部が、ハードウェアで構成されても、プロセッサでプログラムが実行されることにより実現されるように構成されてもよい。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Furthermore, each of the above-described configurations may be configured such that some or all of them are configured by hardware, or are realized by executing a program by a processor. Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
 また、上記実施の形態では、光ディスク記録装置を例に説明したが、光ディスク記録再生装置であっても良く、光ディスクドライブ装置をはじめとしたデータ記録再生装置の記録処理に本発明を適用することができる。 In the above embodiment, the optical disk recording apparatus has been described as an example. However, an optical disk recording / reproducing apparatus may be used, and the present invention can be applied to recording processing of a data recording / reproducing apparatus such as an optical disk drive apparatus. it can.
101 光ディスク装置
102 光ディスク
103 ホスト
201 コントローラ
202 信号処理部
203 光ピックアップ
204 スライダモータ
205 スライダ駆動手段
206 収差補正駆動手段
207 スピンドルモータ
208 回転信号生成手段
209 スピンドル制御手段
210 スピンドル駆動手段
211 フォーカス誤差信号生成手段
212 フォーカス制御手段
213 フォーカス駆動手段
214 トラッキング誤差信号生成手段
215 トラッキング制御手段
216 トラッキング駆動手段
217 リレーレンズ誤差信号生成手段
218 リレーレンズ制御手段
219 リレーレンズ駆動手段
301 レーザドライバ
302 レーザダイオード
303 コリメータレンズ
304 ビームスプリッタ
305 集光レンズ
306 パワーモニタ
307 偏光ビームスプリッタ
308 ダイクロイックミラー
309 球面収差補正素子
310 1/4波長板
311 対物レンズ
312 アクチュエータ
313 集光レンズ
314 ディテクタ
315 レーザダイオード
316 コリメータレンズ
317 ビームスプリッタ
318 集光レンズ
319 パワーモニタ
320 偏光ビームスプリッタ
321 リレーレンズ
322 集光レンズ
323 ディテクタ
601 ホストインターフェース手段
602 バッファメモリ制御手段
603 バッファメモリ
604 マイクロプロセッサ
605 トラッキング極性信号生成手段
606 ピット検出手段
607 アドレス判別手段
608 記録タイミング信号生成手段
609 ガイド層用出射光
610 ガイド層からの戻り光
611 記録層用出射光
612 記録層からの戻り光
613 再生データ復調手段
614 記録データ変調手段
615 発光信号生成手段
616 ウォブル検出手段
617 PLL
618 トラッキング極性制御信号
619 ピット検出処理制御信号
901 光スポット
902 差信号演算回路
903 乗算器
904 乗算器
905 ローパスフィルタ
906 ローパスフィルタ
907 乗算器
908 ループフィルタ
909 VCO
910 π/2移相器
911 ウォブル原信号
912 ウォブル位相同期信号
913 反転ウォブル位相同期信号
914 コンパレータ
915 セレクタ
916 ウォブルキャリア信号
1001 位相誤差検出手段
1002 ループフィルタ
1003 VCO
1004 分周器
1005 ウォブル同期クロック
1005 ウォブル逓倍クロック
1101 差信号演算回路
1102 和信号演算回路
1103 差信号用データ検出手段
1104 和信号用データ検出手段
1105 切替手段
1106 アドレスデータ信号
1201 演算出力信号
1202 ベースレベル検出回路
1203 ピークレベル検出回路
1204 コンパレータ
1205 閾値信号生成手段
1206 閾値信号
1207 ピット検出用ゲート信号
1208 ANDゲート
1209 ピット検出信号
1210 基準位相タイミング信号生成手段
1211 カウンタ回路
1212 ピット検出用ゲート信号生成手段
1213 ベースレベル信号
1214 ピークレベル信号
1215 カウント値
1216 ウォブル基準位相信号
1501 データ検出手段
1502 和信号用パラメータ格納手段
1503 差信号用パラメータ格納手段
1504 切替手段
1505 切替手段
101 Optical disk device
102 optical disc
103 hosts
201 controller
202 Signal processor
203 Optical pickup
204 Slider motor
205 Slider drive means
206 Aberration correction drive means
207 Spindle motor
208 Rotation signal generation means
209 Spindle control means
210 Spindle drive means
211 Focus error signal generator
212 Focus control means
213 Focus drive means
214 Tracking error signal generation means
215 Tracking control means
216 Tracking drive means
217 Relay lens error signal generation means
218 Relay lens control means
219 Relay lens drive means
301 Laser driver
302 Laser diode
303 collimator lens
304 Beam splitter
305 condenser lens
306 Power monitor
307 Polarizing beam splitter
308 Dichroic Mirror
309 Spherical aberration correction element
310 1/4 wave plate
311 Objective lens
312 Actuator
313 condenser lens
314 Detector
315 laser diode
316 collimator lens
317 beam splitter
318 condenser lens
319 Power monitor
320 Polarizing beam splitter
321 Relay lens
322 Condensing lens
323 detector
601 Host interface means
602 Buffer memory control means
603 buffer memory
604 microprocessor
605 Tracking polarity signal generation means
606 Pit detection means
607 Address discrimination means
608 Recording timing signal generation means
609 Output light for guide layer
610 Return light from the guide layer
611 Emission light for recording layer
612 Return light from the recording layer
613 Reproduction data demodulation means
614 Recording data modulation means
615 Light emission signal generation means
616 Wobble detection means
617 PLL
618 Tracking polarity control signal
619 Pit detection processing control signal
901 Light spot
902 Difference signal calculation circuit
903 multiplier
904 multiplier
905 Low-pass filter
906 Low-pass filter
907 multiplier
908 Loop filter
909 VCO
910 π / 2 phase shifter
911 Wobble source signal
912 Wobble phase synchronization signal
913 Inverted wobble phase synchronization signal
914 Comparator
915 selector
916 wobble carrier signal
1001 Phase error detection means
1002 Loop filter
1003 VCO
1004 divider
1005 wobble sync clock
1005 Wobble multiplication clock
1101 Difference signal calculation circuit
1102 Sum signal arithmetic circuit
1103 Data detection means for difference signal
1104 Sum signal data detection means
1105 Switching means
1106 Address data signal
1201 Computation output signal
1202 Base level detection circuit
1203 Peak level detection circuit
1204 Comparator
1205 Threshold signal generation means
1206 Threshold signal
1207 Gate signal for pit detection
1208 AND gate
1209 Pit detection signal
1210 Reference phase timing signal generation means
1211 Counter circuit
1212 Gate signal generation means for pit detection
1213 Base level signal
1214 Peak level signal
1215 Count value
1216 Wobble reference phase signal
1501 Data detection means
1502 Sum signal parameter storage means
1503 Difference signal parameter storage means
1504 Switching means
1505 Switching means

Claims (17)

  1.  情報を記録可能な光ディスク媒体であって、
     記録用領域を有する記録層と、
     ガイド層と、を有し、
     前記ガイド層は、交互に配置された複数のランドとグルーブとから成る領域を有し、
     前記領域において、前記ランド及び前記グルーブのいずれか一方にピットが設けられ、該ピットの配置によって、前記ガイド層上の位置を表すアドレス情報が記録されていることを特徴とする光ディスク媒体。
    An optical disc medium capable of recording information,
    A recording layer having a recording area;
    A guide layer,
    The guide layer has a region composed of a plurality of lands and grooves arranged alternately,
    In the area, pits are provided in one of the land and the groove, and address information indicating a position on the guide layer is recorded by arrangement of the pits.
  2.  請求項1に記載の光ディスク媒体であって、
     前記ランドまたは前記グルーブに配置される前記ピットは、トラックの円周方向に対して同一位置にならないように配置されることを特徴とする光ディスク媒体。
    The optical disk medium according to claim 1,
    The optical disk medium, wherein the pits arranged in the land or the groove are arranged so as not to be in the same position with respect to a circumferential direction of a track.
  3.  請求項2に記載の光ディスク媒体であって、
     前記複数のランド、または前記複数のグルーブに配置される前記ピットの配置位相は互いに異なることを特徴とする光ディスク媒体。
    An optical disc medium according to claim 2, wherein
    An optical disc medium characterized in that arrangement phases of the pits arranged in the plurality of lands or the plurality of grooves are different from each other.
  4.  請求項3に記載の光ディスク媒体であって、
     前記ランドと前記グルーブの半径方向の幅が同一であり、
     前記記録層に形成される記録マークは、前記ランドと前記グルーブの両方に沿って記録されることを特徴とする光ディスク媒体。
    An optical disc medium according to claim 3,
    The land and the groove have the same radial width,
    The recording mark formed on the recording layer is recorded along both the land and the groove.
  5.  請求項4に記載の光ディスク媒体であって、
     前記ランドと前記グルーブとが1周ごとに入れ替わることを特徴とする光ディスク媒体。
    An optical disc medium according to claim 4, wherein
    An optical disc medium, wherein the land and the groove are switched every round.
  6.  記録用領域を有する記録層とガイド層とを有する光ディスク媒体に情報の記録を行う光ディスク装置であって、
     前記記録層へ光スポットを照射する第1のレーザと、
     前記記録層からの戻り光を検出する第1のディテクタと、
     前記ガイド層へ光スポットを照射する第2のレーザと、
     前記ガイド層からの戻り光を検出する第2のディテクタと、
     前記第2のディテクタにより検出された信号に基づいて、前記ガイド層の光スポットのトラッキング方向について制御するトラッキング制御部と、
     前記第2のディテクタにより検出された信号に基づいて、前記光ディスク媒体が有するピットを検出するピット検出部と、
     前記ピット検出部が出力する信号に基づいてアドレス情報を得るアドレス情報検出部と、を具備し、
     前記ピットが配置されているランドまたはグルーブにトラッキング制御をしている場合と、前記ピットが配置されていないランドまたはグルーブにトラッキング制御をしている場合とで、前記ピット検出部が出力する信号を異ならせることを特徴とする光ディスク装置。
    An optical disc apparatus for recording information on an optical disc medium having a recording layer having a recording area and a guide layer,
    A first laser for irradiating the recording layer with a light spot;
    A first detector for detecting return light from the recording layer;
    A second laser for irradiating the guide layer with a light spot;
    A second detector for detecting return light from the guide layer;
    A tracking control unit that controls the tracking direction of the light spot of the guide layer based on the signal detected by the second detector;
    A pit detector that detects pits of the optical disc medium based on a signal detected by the second detector;
    An address information detection unit for obtaining address information based on a signal output from the pit detection unit,
    Signals output by the pit detection unit when tracking control is performed on a land or groove where the pit is disposed and when tracking control is performed on a land or groove where the pit is not disposed An optical disc apparatus characterized by being made different.
  7.  請求項6記載の光ディスク装置であって、
     前記第2のディテクタは複数の領域に分割されており、
     前記ピットが配置されていないランドまたはグルーブにトラッキング制御をしている場合、前記ピット検出部が出力する信号は、前記複数の領域の強度の差に対応する信号を出力することを特徴とする光ディスク装置。
    The optical disc apparatus according to claim 6, wherein
    The second detector is divided into a plurality of regions;
    When tracking control is performed on a land or groove in which the pit is not disposed, the signal output from the pit detection unit outputs a signal corresponding to a difference in intensity between the plurality of regions. apparatus.
  8.  請求項7記載の光ディスク装置であって、
     前記ピットが配置されているランドまたはグルーブにトラッキング制御をしている場合、前記複数の領域の強度の和に対応する信号を出力することを特徴とする光ディスク装置。
    The optical disc apparatus according to claim 7, wherein
    An optical disc apparatus that outputs a signal corresponding to a sum of intensities of the plurality of areas when tracking control is performed on a land or a groove in which the pit is arranged.
  9.  請求項8記載の光ディスク装置であって、
     前記ランドまたは前記グルーブの蛇行量に応じた信号を検出するウォブル検出部と、
     前記ウォブル検出部により検出された信号に基づいて記録クロックを生成する記録クロック生成部と、
     前記記録クロックに基づいて前記第1のレーザの発光波形を生成する発行波形生成部と、を備え、
     前記アドレス情報検出部により得られたアドレスに基づく第1の記録層上の位置にて、前記生成された第1のレーザの発光波形を用いて情報が記録されることを特徴とする光ディスク装置。
    The optical disc apparatus according to claim 8, wherein
    A wobble detection unit for detecting a signal corresponding to the meandering amount of the land or the groove;
    A recording clock generation unit that generates a recording clock based on the signal detected by the wobble detection unit;
    An issuance waveform generation unit that generates an emission waveform of the first laser based on the recording clock,
    An optical disc apparatus, wherein information is recorded using a light emission waveform of the generated first laser at a position on a first recording layer based on an address obtained by the address information detection unit.
  10.  請求項9記載の光ディスク装置であって、
     トラキングを行なう位置がランドかグルーブかを示す信号を生成し、出力するトラッキング極性信号生成部を備えることを特徴とする光ディスク装置。
    The optical disk device according to claim 9, wherein
    An optical disc apparatus comprising a tracking polarity signal generation unit that generates and outputs a signal indicating whether a tracking position is a land or a groove.
  11.  請求項10記載の光ディスク装置であって、
     前記ガイド層はランドとグルーブが一周おきに入れ替わる構造を成しており、
     前記アドレス情報には、ランドとグルーブとが入れ替わるまでの間の距離情報をさらに含むものであって、
     前記トラッキング極性信号生成部は、前記アドレス検出部の検出したアドレス情報に基づいて、極性制御信号を制御することを特徴とする光ディスク装置。
    The optical disc apparatus according to claim 10, wherein
    The guide layer has a structure in which lands and grooves are switched every other turn,
    The address information further includes distance information until the land and the groove are switched,
    The optical disc apparatus, wherein the tracking polarity signal generation unit controls a polarity control signal based on address information detected by the address detection unit.
  12.  記録用領域を有する記録層とガイド層とを有する光ディスク媒体に情報の記録を行う光ディスク記録方法であって、
     前記記録層へ光スポットを照射するステップと、
     前記記録層からの戻り光を検出するステップと、
     前記ガイド層へ光スポットを照射するステップと、
     前記ガイド層からの戻り光を検出するステップと、
     前記ガイド層からの戻り光を検出するステップにより検出された信号に基づいて、前記ガイド層の光スポットのトラッキング方向について制御するステップと、
     前記ガイド層からの戻り光を検出するステップにより検出された信号に基づいて、前記光ディスク媒体が有するピットを検出するステップと、
     前記ピットを検出するステップにて出力する信号に基づいてアドレス情報を取得するステップと、
     前記アドレス情報に基づいた前記記録層の位置にて、情報を記録するステップと、を備え、
     前記ピットが配置されているランドまたはグルーブにトラッキング制御をしている場合と、前記ピットが配置されていないランドまたはグルーブにトラッキング制御をしている場合とで、前記ピットを検出するステップにて出力する信号を異ならせることを特徴とする光ディスク記録方法。
    An optical disc recording method for recording information on an optical disc medium having a recording layer having a recording area and a guide layer,
    Irradiating the recording layer with a light spot;
    Detecting return light from the recording layer;
    Irradiating the guide layer with a light spot;
    Detecting return light from the guide layer;
    Controlling the tracking direction of the light spot of the guide layer based on the signal detected by the step of detecting return light from the guide layer;
    Detecting a pit of the optical disk medium based on a signal detected by the step of detecting return light from the guide layer;
    Obtaining address information based on a signal output in the step of detecting the pit;
    Recording information at a position of the recording layer based on the address information,
    When the tracking control is performed on the land or groove where the pit is arranged and when the tracking control is performed on the land or groove where the pit is not arranged, the output is performed in the step of detecting the pit. An optical disc recording method, wherein different signals are used.
  13.  請求項12記載の光ディスク記録方法であって、
     前記ガイド層からの戻り光を検出するステップでは、複数の領域に分割されたディテクタを用いて該検出が行なわれ、
     前記ピットが配置されていないランドまたはグルーブにトラッキング制御をしている場合、前記ピット検出部が出力する信号は、前記複数の領域の強度の差に対応する信号を出力することを特徴とする光ディスク記録方法。
    An optical disc recording method according to claim 12, comprising:
    In the step of detecting the return light from the guide layer, the detection is performed using a detector divided into a plurality of regions,
    When tracking control is performed on a land or groove in which the pit is not disposed, the signal output from the pit detection unit outputs a signal corresponding to a difference in intensity between the plurality of regions. Recording method.
  14.  請求項13記載の光ディスク記録方法であって、
     前記ピットが配置されているランドまたはグルーブにトラッキング制御をしている場合、前記複数の領域の強度の和に対応する信号を出力することを特徴とする光ディスク記録方法。
    An optical disk recording method according to claim 13, wherein
    An optical disk recording method comprising: outputting a signal corresponding to a sum of intensities of the plurality of areas when tracking control is performed on a land or a groove in which the pit is arranged.
  15.  請求項14記載の光ディスク記録方法であって、
     前記ランドまたは前記グルーブの蛇行量に応じた信号を検出するステップと、
     前記ウォブル検出部により検出された信号に基づいて記録クロックを生成するステップと、
     前記記録クロックに基づいて前記第1のレーザの発光波形を生成するステップと、を備え、
     前記アドレス情報に基づく第1の記録層上の位置にて、前記生成された第1のレーザの発光波形を用いて情報が記録されることを特徴とする光ディスク記録方法。
    15. The optical disc recording method according to claim 14, wherein
    Detecting a signal corresponding to the meandering amount of the land or the groove;
    Generating a recording clock based on the signal detected by the wobble detection unit;
    Generating an emission waveform of the first laser based on the recording clock,
    An optical disk recording method, wherein information is recorded using a light emission waveform of the generated first laser at a position on the first recording layer based on the address information.
  16.  請求項15記載の光ディスク記録方法であって、
     トラキングを行なう位置がランドかグルーブかを示す信号を生成し、出力するステップを備えることを特徴とする光ディスク記録方法。
    The optical disk recording method according to claim 15, wherein
    An optical disc recording method comprising: generating and outputting a signal indicating whether a tracking position is a land or a groove.
  17.  請求項16記載の光ディスク記録方法であって、
     前記サーボ層はランドとグルーブが一周おきに入れ替わる構造を成しており、
     前記アドレス情報には、ランドとグルーブとが入れ替わるまでの間の距離情報をさらに含むものであって、
     前記アドレス情報に基づいて、極性制御信号を制御することを特徴とする光ディスク記録方法。
    The optical disk recording method according to claim 16, wherein
    The servo layer has a structure in which lands and grooves are switched every other turn,
    The address information further includes distance information until the land and the groove are switched,
    An optical disk recording method, wherein a polarity control signal is controlled based on the address information.
PCT/JP2012/001485 2011-06-29 2012-03-05 Optical disk medium, recording method therefor, and recording device WO2013001679A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011143676A JP2013012266A (en) 2011-06-29 2011-06-29 Optical disk medium, recording method therefor, and recording device
JP2011-143676 2011-06-29

Publications (1)

Publication Number Publication Date
WO2013001679A1 true WO2013001679A1 (en) 2013-01-03

Family

ID=47423614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001485 WO2013001679A1 (en) 2011-06-29 2012-03-05 Optical disk medium, recording method therefor, and recording device

Country Status (2)

Country Link
JP (1) JP2013012266A (en)
WO (1) WO2013001679A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136272A1 (en) * 2013-03-08 2014-09-12 株式会社 東芝 Information recording medium, recording and playback device and manufacturing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147393A (en) * 1995-11-24 1997-06-06 Mitsubishi Electric Corp Optical disk device and optical disk
JP2004079078A (en) * 2002-08-19 2004-03-11 Nec Corp Optical recording medium and its information recording method, recorder
JP2007004897A (en) * 2005-06-23 2007-01-11 Hitachi Ltd Information recording and reproducing method and information recording and reproducing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147393A (en) * 1995-11-24 1997-06-06 Mitsubishi Electric Corp Optical disk device and optical disk
JP2004079078A (en) * 2002-08-19 2004-03-11 Nec Corp Optical recording medium and its information recording method, recorder
JP2007004897A (en) * 2005-06-23 2007-01-11 Hitachi Ltd Information recording and reproducing method and information recording and reproducing apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAKAZU OGASAWARA ET AL.: "16 layers Write Once Disc with a Separated Guide Layer", TECHNICAL REPORT OF IEICE, March 2011 (2011-03-01), pages 1 - 6 *

Also Published As

Publication number Publication date
JP2013012266A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP3237982B2 (en) Optical information recording / reproducing device and optical information recording medium
JP2007004897A (en) Information recording and reproducing method and information recording and reproducing apparatus
KR100819625B1 (en) Optical pickup apparatus, optical disc apparatus, and track recognition signal detection method
US6970405B2 (en) Optical recording/reproducing apparatus
US8699309B2 (en) Recording apparatus
JP4329364B2 (en) Optical head, recording and / or reproducing device
WO2013001679A1 (en) Optical disk medium, recording method therefor, and recording device
JP2000187860A (en) Optical disk device
US6894955B1 (en) Quick access information read and write devices
US20060023582A1 (en) Optical pickup device and optical disk device
US20110235484A1 (en) Recording device and recording method
JP5623948B2 (en) Recommended recording condition determination method and recording adjustment method
JP2011258272A (en) Recording device and recording method
KR101013765B1 (en) Optical pickup and disc apparatus
JP4267338B2 (en) Optical disk device
WO2013038457A1 (en) Optical disk and optical disk device
JP2013125555A (en) Optical disk drive and recording method for optical disk drive
JP2982431B2 (en) Information recording medium, information processing method and apparatus using the same
JP2001189025A (en) Optical pickup device, optical disk unit and method for detecting track discriminating signal
JP4179201B2 (en) Optical disc apparatus and skew detection method
WO2014046066A1 (en) Optical recording/reproduction device and method
WO2013108400A1 (en) Recording/playback device and method
JP2013062007A (en) Optical disk device and recording method for optical disk device
JP2006209811A (en) Optical disk and optical disk recording and reproducing apparatus
JP2004127348A (en) Optical disk recording device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805111

Country of ref document: EP

Kind code of ref document: A1