WO2013001663A1 - Device for evaluating catalytic performance in purifying exhaust gas - Google Patents

Device for evaluating catalytic performance in purifying exhaust gas Download PDF

Info

Publication number
WO2013001663A1
WO2013001663A1 PCT/JP2011/073111 JP2011073111W WO2013001663A1 WO 2013001663 A1 WO2013001663 A1 WO 2013001663A1 JP 2011073111 W JP2011073111 W JP 2011073111W WO 2013001663 A1 WO2013001663 A1 WO 2013001663A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
exhaust gas
temperature
gas
introduction pipe
Prior art date
Application number
PCT/JP2011/073111
Other languages
French (fr)
Japanese (ja)
Inventor
明豊 高宮
幸太郎 高橋
Original Assignee
株式会社ベスト測器
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ベスト測器 filed Critical 株式会社ベスト測器
Publication of WO2013001663A1 publication Critical patent/WO2013001663A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/10Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using catalysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an apparatus for evaluating the performance of an exhaust gas purification catalyst provided in an exhaust system of an internal combustion engine such as an automobile.
  • test modes are defined, and for example, test modes such as JC08C mode and JC08H mode in Japan and LA4 mode in the United States are well known.
  • the vehicle is set on the chassis dynamometer and traveled in the specified test mode, and the amount of air pollutants in the exhaust gas during the test period is determined by the specified measurement method. It is executed by measuring on the basis of.
  • the exhaust system of an automobile internal combustion engine is equipped with an exhaust gas purification device equipped with an exhaust gas purification catalyst.
  • an exhaust gas purification device equipped with an exhaust gas purification catalyst.
  • it is essential to improve the performance of the exhaust gas purification catalyst. For this reason, research and development of exhaust gas purification catalysts are actively conducted.
  • An exhaust gas purification catalyst performance evaluation device is used for research and development of exhaust gas purification catalysts.
  • a simulated exhaust gas containing the same components as the exhaust gas from the internal combustion engine is usually used.
  • the simulated exhaust gas is a mixture of various components contained in the exhaust gas of the internal combustion engine, such as NO X , CO 2 , HC, H 2 O, etc., with nitrogen gas so as to have a concentration similar to the concentration in the exhaust gas. It is.
  • the simulated exhaust gas is brought into a temperature state similar to the exhaust gas immediately before the catalyst in the exhaust gas purification device of the vehicle while traveling in the test mode, and is introduced into the gas cell containing the catalyst, and before and after the catalyst.
  • the performance of the catalyst is evaluated by measuring the gas concentration.
  • the temperature of the simulated exhaust gas immediately before the catalyst in the gas cell can be changed to the temperature change of the exhaust gas immediately before the catalyst in the exhaust gas purification device of the vehicle running in the test mode as much as possible. It is important to change it so that it can be accurately reproduced. To do so, it is necessary to raise and lower the temperature of the simulated exhaust gas immediately before the catalyst in the gas cell at high speed, in other words, the simulation just before the catalyst.
  • the temperature gradient when raising and lowering the temperature of exhaust gas must be increased.
  • a first heating unit and a second heating unit are sequentially provided along a gas cell in which simulated exhaust gas supplied from a simulated exhaust gas supply path flows, and the simulated exhaust gas is provided by the first heating unit.
  • the catalyst disposed in the gas cell is heated by the second heating unit, the branch channel is connected to the simulated exhaust gas supply channel, and the downstream end of the branch channel is connected to the first heating unit and the second heating unit.
  • each of the first and second heating units is controlled so as to always be on and generate a predetermined amount of heat.
  • simulated exhaust gas at room temperature is supplied to the simulated exhaust gas supply path, and is divided into a hot line (simulated exhaust gas supply path after the branch point) and a cool line (branch path) at the branch point. Then, the simulated exhaust gas flowing through the hot line is supplied into the gas cell from the upstream end of the gas cell, is heated by passing through the first heating unit, and is quite high immediately before the catalyst.
  • the simulated exhaust gas flowing through the cool line is supplied directly before the catalyst without passing through the first heating unit, and thus is about room temperature immediately before the catalyst.
  • the flow rate to Q 1 simulated exhaust gas flowing through the hot line so that the flow rate Q 2 of the simulated exhaust gas flowing through the cool lines, the flow rate ratio Q 1 / Q 2 becomes large in the heating process, the flow rate ratio Q 1 is in the cooling process / Q 2 are controlled so as to become smaller, thereby, the temperature elevation of the simulated exhaust gas immediately before the catalyst are controlled.
  • the temperature rise and fall of the simulated exhaust gas immediately before the catalyst is controlled by controlling the mixing ratio of the high temperature simulated exhaust gas and the simulated exhaust gas at room temperature.
  • the temperature change of the exhaust gas immediately before the catalyst in the exhaust gas purification apparatus of the vehicle running in the test mode cannot be accurately reproduced.
  • an object of the present invention is to make it possible to raise and lower the temperature of the simulated exhaust gas immediately before the exhaust gas purification catalyst at high speed.
  • an apparatus for evaluating the performance of an exhaust gas purification catalyst which is connected to a gas introduction pipe into which simulated exhaust gas is introduced from one end side and the other end of the gas introduction pipe.
  • a light shielding plate extending downstream from the vicinity of the downstream end of the region to be cooled, and the exhaust gas purification catalyst is cooled by the cooling unit in the gas cell.
  • the apparatus is further downstream and is accommodated in a region where infrared rays are shielded by the light shielding plate, and the apparatus further has a space upstream from the exhaust gas purification catalyst in the region where the infrared rays are shielded in the gas cell.
  • the cooling unit is controlled according to a temperature sensor arranged in an open position and a simulated exhaust gas temperature setting value at a predetermined position of the temperature sensor, and the infrared heating unit is controlled based on a detection signal from the temperature sensor.
  • a control unit that performs cooling by the cooling unit at all times, and the cooling output of the cooling unit and the heating output of the infrared heating unit are controlled by the control unit, whereby the exhaust gas purification catalyst
  • An apparatus is provided wherein the temperature of the simulated exhaust gas immediately before is controlled so as to coincide with the simulated exhaust gas temperature set value.
  • the cooling unit is fixed to the gas introduction pipe, or the gas cell and the gas introduction pipe over the predetermined length, and the outer space of the gas introduction pipe, or the gas cell.
  • a refrigerant reservoir surrounding the outer space of the gas introduction pipe in a sealed state, wherein the refrigerant reservoir is formed with at least one refrigerant inlet and a refrigerant outlet, and the cooling unit further includes a refrigerant supply source, One end connected to the refrigerant supply source, the other end connected to the refrigerant inlet of the refrigerant reservoir, a refrigerant discharge line connected to the refrigerant outlet of the refrigerant reservoir, and the refrigerant supply pipeline And a flow rate control unit that controls the flow rate of the refrigerant, and the cooling output of the cooling unit is determined by the flow rate of the refrigerant supplied from the refrigerant supply source to the refrigerant supply line, The medium is constantly injected from the refrigerant inlet of
  • the refrigerant is discharged from the refrigerant outlet of the refrigerant reservoir, and the flow rate of the refrigerant is controlled by the control unit according to the simulated exhaust gas temperature set value, and at the same time based on the detection value of the temperature sensor.
  • the heating output of the infrared heating unit is controlled by the control unit.
  • the control of the flow rate of the refrigerant by the control unit divides the possible range of the simulated exhaust gas temperature setting value into a plurality of temperature zones, and cools the temperature for each temperature zone.
  • the necessary flow rate of the refrigerant is set in advance, it is determined each time the temperature range to which the simulated exhaust gas temperature set value belongs, and the flow rate of the refrigerant corresponding to the temperature range is determined from the refrigerant supply source. This is done by supplying the refrigerant supply pipe.
  • the infrared heating unit is configured so that the heating output is not required to be soft-started by the infrared heating unit except when the apparatus is activated. Control is performed so as not to fall below a preset minimum value.
  • the control for preventing the heating output of the infrared heating unit from being equal to or lower than the minimum value is performed by setting a predetermined range of detection values of the temperature sensor to a plurality of temperatures. The temperature is divided into bands, the minimum value of the heating output is set in advance for each temperature band, the temperature sensor detection value is determined each time, and the infrared heating unit The heating output does not fall below the minimum value corresponding to the temperature range.
  • the refrigerant reservoir is fixed to the outer periphery of the other end of the gas introduction pipe or the outer periphery of the gas cell in a sealed state, A second annular flange fixed in a sealed state on the outer periphery of the gas introduction pipe at a position away from the first annular flange upstream by the predetermined length; and the first and second annular members A cylindrical side wall extending between the flanges and connecting the outer peripheral edges of the first and second annular flanges.
  • the refrigerant comprises a liquid refrigerant, a gaseous refrigerant or a mixture thereof.
  • the refrigerant consists of pure water mixed with air or nitrogen.
  • the flow rate control unit comprises a flow rate control valve disposed in the middle of the refrigerant supply line.
  • the flow rate control unit is connected to the refrigerant supply source, and is arranged in the middle of the main pipe line for circulating the refrigerant, and from the main pipe line to the refrigerant. And at least one branch valve or branch valve for branching the supply line.
  • the refrigerant discharge line is connected to the refrigerant supply source via a heat exchanger, and the refrigerant discharged from the refrigerant reservoir is predetermined by the heat exchanger. Then, it is returned to the refrigerant supply source.
  • the gas introduction pipe and the gas cell are heated by the infrared heating unit, and the vicinity of the simulated exhaust gas inlet of the gas cell is always cooled by the cooling unit, so that the simulated exhaust gas temperature setting at a predetermined temperature sensor position is set.
  • the cooling output of the cooling unit is controlled according to the value, and the heating output of the infrared heating unit is controlled based on the detection value of the temperature sensor placed immediately before the exhaust gas purification catalyst, so the infrared heating unit is always operated at high output
  • the cooling output of the cooling unit is set to a high output, and when it is in the high temperature range, the cooling output of the cooling unit is set to a low output to reduce the temperature of the simulated exhaust gas.
  • the temperature of the simulated exhaust gas immediately before the exhaust gas purification catalyst is changed in all temperature ranges from the low temperature range to the high temperature range. It can be raised and lowered at a rate.
  • the exhaust gas emission just before the catalyst in the exhaust gas purification device of the vehicle running in the LA4 cold start test mode gasoline engine vehicle with a displacement of 2400 cc
  • FIG. 1 is a longitudinal sectional view showing the configuration of an exhaust gas purification catalyst performance evaluation apparatus according to one embodiment of the present invention.
  • an exhaust gas purification catalyst performance evaluation apparatus according to the present invention is connected to a gas introduction pipe 1 into which simulated exhaust gas is introduced from one end 1a side, and the other end 1b of the gas introduction pipe 1, and exhaust gas purification is provided inside.
  • a gas cell 2 in which the catalyst 3 is accommodated, and an infrared heating unit 4 disposed at intervals outside the gas introduction pipe 1 and the gas cell 2 are provided.
  • the gas cell 2 includes a catalyst housing tube 2a having a larger diameter than the gas introduction tube 1, a tapered tube 2b connecting the gas introduction tube 1 and the catalyst housing tube 2a, and an infrared heating unit.
  • 4 includes a cylindrical infrared furnace surrounding the gas introduction pipe 1 and the gas cell 2, but the configurations of the gas cell 2 and the infrared heating unit 4 are not limited thereto.
  • the exhaust gas purifying catalyst performance evaluation apparatus also includes cooling units 6a and 6b for cooling a region extending over a certain length from the gas cell 2 side to the gas introduction pipe 1 side.
  • the cooling units 6a and 6b may be configured to cool the region extending from the other end 1b of the gas introduction pipe 1 over the predetermined length on the upstream side.
  • the cooling units 6a and 6b are fixed to the outside of the gas cell 2 and the gas introduction pipe 1 over the predetermined length, and surround the outer space of the gas cell 2 and the gas introduction pipe 1 in a sealed state. It has.
  • the refrigerant reservoir 7 has a first annular flange 7a fixed in a sealed state on the outer periphery of the gas cell 2, and the gas introduction pipe 1 at a position away from the first annular flange 7a by the predetermined length upstream.
  • the outer peripheral edges of the first and second annular flanges 7a and 7b extend between the second annular flange 7b and the first and second annular flanges 7a and 7b.
  • a cylindrical side wall 7c for connecting the two.
  • at least one refrigerant inlet 7d and a refrigerant outlet 7e are formed in the refrigerant reservoir 7.
  • the cooling units 6 a and 6 b further include a refrigerant supply source 8, a refrigerant supply line 9 having one end connected to the refrigerant supply source 8 and the other end connected to the refrigerant inlet 7 d of the refrigerant reservoir 7, A refrigerant discharge line 10 connected to the refrigerant outlet 7e and a flow rate control unit 11 arranged in the middle of the refrigerant supply line 9 and controlling the flow rate of the refrigerant are provided.
  • the refrigerant discharge pipe 10 is connected to the refrigerant supply source 8 via a heat exchanger, and the refrigerant discharged from the refrigerant reservoir 7 is cooled to a predetermined temperature by the heat exchanger, and then the refrigerant supply source 8 is supplied. You may make it return.
  • the refrigerant is composed of pure water mixed with air
  • the refrigerant supply source 8 includes a water tank 8 a, a pump 8 b, and an air supply branched and connected in the middle of the refrigerant supply pipe 8. It consists of a conduit 15.
  • pure water mixed with nitrogen instead of air may be used as the refrigerant.
  • the flow rate control unit 11 connects the water tank 8a and the pump 8b, and is disposed in the middle of the main pipeline 11a for circulating pure water and the main pipeline 11a, and at least branches the refrigerant supply pipeline 9 from the main pipeline 11a. It consists of one branch valve (or branch valve) 11b.
  • FIG. 2 is a longitudinal sectional view showing a schematic configuration of an example of the diversion valve.
  • the diversion valve 11b includes a base 28, and a cylindrical housing 20 that is fixed on the base 28 and includes a columnar cavity 21 inside, with both end openings closed. is doing.
  • an inlet pipe line 22 having one end opened to the cavity 21 and the other end connected to the main pipe line 11 a, and one end part of the side wall of the housing 20 has one end.
  • a first outlet pipe 23 that opens to the cavity 21 and has the other end connected to the main pipe 11a is provided.
  • One end opens to the cavity 21 at the other end of the side wall of the housing 20, and the other end is a refrigerant.
  • a second outlet line 24 connected to the supply line 9 is provided.
  • a valve body 25 having a circular cross section and gradually tapered from both ends toward the center is disposed, and the first valve seat 20a on the first outlet conduit 23 side, Between the 2nd valve seat 20b by the side of 2 outlet pipeline 24, it arrange
  • rods 26 extending in the axial direction are projected. Each rod 26 protrudes outside through the end face of the housing 20 and is supported in a sealed state by a bearing provided in the housing 20 so as to be capable of reciprocating in the axial direction.
  • a linear actuator 27 is mounted on the base 28 and connected to the tip of one rod 26.
  • the linear actuator 27 causes the valve body 25 to reciprocate in the axial direction between the first valve seat 20a and the second valve seat 20b, and supply refrigerant according to the position of the valve body 25 relative to the valve seats 20a and 20b.
  • the valve opening on the side of the pipe 9 and the valve opening on the side of the main pipe 11a change (when the end of the valve body 25 is located at the position of the valve seats 20a, 20b, the opening becomes the minimum, and the valve seats 20a, 20b When the center of the valve body 25 is located at the position of (2), the opening degree is maximized).
  • the configuration of the flow rate control unit 11 is not limited to this embodiment, and the flow rate control unit 11 may be constituted by a flow rate control valve such as a mass flow controller disposed in the middle of the refrigerant supply line 9, for example. .
  • the configuration of the refrigerant is not limited to this example, and any known appropriate liquid refrigerant, gaseous refrigerant, or a mixture thereof can be used as the refrigerant.
  • the configuration of the cooling units 6a and 6b is not limited to this example, and any configuration is possible as long as the cooling output can be appropriately controlled and is suitable for cooling near the inlet of the gas cell 2. You may do it.
  • a light shielding plate 12 that shields infrared rays from the infrared heating unit 4 is disposed, and is located at the downstream end of the region cooled by the cooling units 6 a and 6 b (in this embodiment, the refrigerant reservoir 7. It extends from the vicinity of the downstream end) to the downstream side.
  • the light shielding plate 12 has a cylindrical shape that surrounds the outside of the gas cell 2 with a space therebetween.
  • the exhaust gas purification catalyst 3 is accommodated in a region downstream of the region cooled by the cooling units 6 a and 6 b in the gas cell 2 and where infrared rays are blocked by the light shielding plate 12.
  • the exhaust gas purifying catalyst performance evaluation apparatus further includes a temperature sensor 13 disposed at an upstream side from the exhaust gas purifying catalyst 3 in a region where infrared rays in the gas cell 2 are blocked, and a predetermined temperature.
  • the cooling unit 6 a, 6 b is controlled according to the simulated exhaust gas temperature set value at the position of the sensor 13, and the control unit 14 that controls the infrared heating unit 4 based on a detection signal from the temperature sensor 13 is provided.
  • the cooling outputs of the cooling units 6a and 6b are determined by the flow rate of the refrigerant supplied from the refrigerant supply source 8 to the refrigerant supply line 9, and the flow rate of the refrigerant is determined by the opening of the diversion valve 11b (diversion valve). It is controlled by adjusting the opening of the refrigerant supply pipe 9 side in 11b.
  • the flow rate of the refrigerant is controlled by the control unit 14 according to the simulated exhaust gas temperature set value, and at the same time, the heating output of the infrared heating unit 4 is controlled by the control unit 14 based on the detection value of the temperature sensor 13. Thereby, the temperature of the simulated exhaust gas immediately before the exhaust gas purification catalyst 3 is controlled so as to coincide with the simulated exhaust gas temperature set value.
  • the gas introduction pipe 1 and the gas cell 2 are heated by the infrared heating unit 4, and the vicinity of the simulated exhaust gas inlet of the gas cell 2 is constantly cooled by the cooling units 6a and 6b.
  • the cooling output of the cooling units 6a and 6b is controlled according to the simulated exhaust gas temperature setting value at the position of the temperature sensor 13 determined in advance, and at the same time, the heating output of the infrared heating unit is controlled based on the detection value of the temperature sensor 13
  • the cooling output of the cooling units 6a and 6b is set to a high output, and when in the high temperature region, the cooling unit 6a.
  • the temperature of the simulated exhaust gas can be raised and lowered.
  • the simulated exhaust gas immediately before the exhaust gas purification catalyst 3 can be increased.
  • the temperature can be raised or lowered at high speed at all temperatures region from low temperature region to high temperature region.
  • the control of the refrigerant flow rate by the control unit 14 divides the possible range of the simulated exhaust gas temperature set value into a plurality of temperature zones, and the refrigerant flow rate required for cooling for each temperature zone (of the shunt valve 11b). Opening degree) is set in advance, it is determined each time the simulated exhaust gas temperature set value belongs, and the opening degree of the diverter valve 11b is adjusted to a value corresponding to the temperature range to supply the refrigerant.
  • the amount of refrigerant corresponding to the refrigerant supply line 9 is supplied from the source 8.
  • the infrared heating unit 4 causes the control unit 14 to reduce the heating output below a preset minimum value so as not to require the soft start of the infrared heating unit 4 except when the exhaust gas purification catalyst performance evaluation device is activated. It is controlled not to become.
  • the range of detection values of the temperature sensor 13 determined in advance is divided into a plurality of temperature zones, the minimum value of the heating output is set in advance for each temperature zone, and the detection of the temperature sensor 13 is performed.
  • the temperature range to which the value belongs is determined each time so that the heating output of the infrared heating unit 4 does not fall below the minimum value corresponding to the temperature range.
  • the control by the control unit 14 is executed as follows. First, the range that the simulated exhaust gas temperature set value can take is set in advance as 0 to 1000 ° C. Regarding the control of the flow rate of the refrigerant, as shown in Table 1, the range of the temperature set value is 0 to 200 ° C. (temperature zone No. 1), 201 to 300 ° C. (temperature zone No. 2), 301 -350 ° C. (temperature zone No. 3), 351-400 ° C. (temperature zone No. 4), 401-450 ° C. (temperature zone No. 5), 451-500 ° C. (temperature zone No. 6), 501-550 10 temperature zones: °C (temperature zone No. 7), 551 to 600 ° C.
  • the opening degree of the diversion valve 11b (the opening degree on the refrigerant supply line 9 side in the diversion valve 11b) is 95% (temperature zone No. 1), 85% (temperature zone No. 2), 75% (temperature zone No. 3), 65% (temperature zone No. 4), 55% (temperature zone No. 5), 45% (temperature zone No. 6), 35% (temperature zone No. 7), It is preset such as 25% (temperature zone No. 8), 15% (temperature zone No. 9), 5% (temperature zone No. 10).
  • the range of the detected value of the temperature sensor 13 determined in advance is 0 to 1000 ° C., as shown in Table 2, below 0 to 35 ° C. (temperature zone No. 1), 35 ° C. to less than 100 ° C. (temperature zone No. 2), 100 ° C. to less than 150 ° C. (temperature value No. 3), 150 ° C. to less than 200 ° C. (temperature zone No. 4), 200 ° C. to 1000 ° C. It is divided into five temperature zones of ° C. (temperature zone No. 5). For each temperature zone, the minimum heating output value is 0% of the maximum heating output value (temperature zone No.
  • the infrared heating unit 4 In 1 (corresponding to the start of the exhaust gas purification catalyst performance evaluation apparatus of the present invention), the infrared heating unit 4 must be soft-started.
  • FIG. 3 is a graph showing an example of a temperature change when the temperature of the simulated exhaust gas immediately before and after the exhaust gas purification catalyst is repeatedly raised and lowered in this specific example.
  • the vertical axis represents temperature (° C.)
  • the horizontal axis represents elapsed time (sec)
  • the curve C represents temperature change.
  • the opening degree of the diversion valve 11b in each temperature zone is shown on the right side of the graph.
  • the simulated exhaust gas temperature set value is raised to around 300 ° C. (0 to 40 seconds).
  • the infrared heating unit 4 is soft-started until the simulated exhaust gas temperature set value reaches 35 ° C., and during that time, the shunt valve 11b is opened. The degree is set to 95%.
  • the simulated exhaust gas temperature set value is in the range of 35 ° C.
  • the infrared heating unit 4 is operated at a high output (above the minimum heating output), while the opening of the diversion valve 11b is the simulated exhaust gas temperature set value. Is set to 95% up to 200 ° C., and is set to 85% when the simulated exhaust gas temperature set value is in the range of 201 to 300 ° C.
  • the simulated exhaust gas temperature set value is lowered from about 300 ° C. to about 250 ° C. (40 to 50 seconds).
  • the heating output of the infrared heating unit 4 is maintained at the minimum heating output (20% of the maximum heating output), and the opening degree of the flow dividing valve 11b is set to 85%.
  • the simulated exhaust gas temperature set value is raised from around 250 ° C. to around 350 ° C. (50 to 55 seconds).
  • the infrared heating unit 4 is again operated at a high output (more than the minimum heating output), while the opening of the diverter valve 11b is 85 when the simulated exhaust gas temperature set value is in the range of 250 to 300 ° C. %, In the range of 301 to 350 ° C., it is set to 75%.
  • the infrared heating unit 4 does not need to be soft-started, and thus can raise the temperature at a high speed.
  • the temperature of the simulated exhaust gas immediately before the exhaust gas purification catalyst is raised and lowered at a high speed.
  • FIG. 4 shows a state immediately before the catalyst in the exhaust gas purification apparatus of a vehicle (gasoline engine vehicle with a displacement of 2400 cc) running in the LA4 cold start test mode using the same apparatus that acquired the data of the graph of FIG. It is the graph which plotted the experimental data at the time of experimenting to what extent the temperature change of the exhaust gas in can be reproduced.
  • the vertical axis represents temperature (° C.) and vehicle speed (km / h), and the horizontal axis represents elapsed time (sec).
  • a curve C1 drawn with a solid line represents a temperature change of the simulated exhaust gas in the apparatus of the present invention
  • a curve C2 drawn with a broken line represents a temperature change of the exhaust gas of the actual vehicle
  • a curve C3 represents a speed change of the actual vehicle.
  • FIG. 6 shows the exhaust gas purification when the simulated exhaust gas temperature set value is maintained at 30 ° C., 50 ° C., and 80 ° C. for a certain period of time using the same apparatus that acquired the data of the graph of FIG. It is the graph which showed the temperature change of the simulation exhaust gas just before a catalyst. From the graph of FIG. 6, it can be seen that according to the exhaust gas purifying catalyst performance evaluation apparatus of the present invention, the temperature of the simulated exhaust gas can be raised and lowered stably even in a low temperature region of 100 ° C. or lower.

Abstract

Provided is a gas-introduction pipe (1), a gas cell (2), an infrared heater (4), coolers (6a, 6b) for cooling a region extending over a given length to the gas-introduction pipe side from the gas cell side, and a light-blocking plate (12) extending to the downstream side of the cooled region. An exhaust-gas purification catalyst (3) is accommodated in a region in which infrared rays are blocked, on the downstream side of the cooled region inside the gas cell. A temperature sensor (13) is arranged just before the exhaust-gas purification catalyst in the region in which the infrared rays inside the gas cell are blocked. A controller (14) controls the coolers according to a set value for a simulated exhaust-gas temperature for the position of the temperature sensor, and controls the infrared heater on the basis of a detection signal sent from the temperature sensor. Cooling is at all times performed by the cooler, and the cooling output from the cooler and the heating output from the infrared heater are controlled so that the temperature of the simulated exhaust gas immediately upstream of the exhaust-gas purification catalyst corresponds with the set value for the simulated exhaust-gas temperature.

Description

排ガス浄化触媒性能評価装置Exhaust gas purification catalyst performance evaluation device
 本発明は、自動車等の内燃機関の排気系に備えられる排ガス浄化触媒の性能を評価する装置に関するものである。 The present invention relates to an apparatus for evaluating the performance of an exhaust gas purification catalyst provided in an exhaust system of an internal combustion engine such as an automobile.
 自動車の排出ガスによる大気汚染を軽減するため、日米欧を中心に排出ガス規制が行われており、この排出ガス規制は段階的に強化される傾向にある。自動車排出ガス規制は、自動車の内燃機関から排出される、窒素酸化物(NO)、一酸化炭素(CO)、炭化水素(HC)、非メタン炭化水素(NMHC)、粒子状物質(PM)等の大気汚染物質の上限量を定めた規制であり、この規制をクリアしなければ、新車登録が拒絶される等の措置がとられるようになっている。 In order to reduce air pollution caused by automobile exhaust gas, exhaust gas regulations have been implemented mainly in Japan, the United States and Europe, and this exhaust gas regulation tends to be strengthened in stages. Automobile exhaust gas regulations are discharged from the internal combustion engine of a motor vehicle, nitrogen oxides (NO X), carbon monoxide (CO), hydrocarbons (HC), non-methane hydrocarbons (NMHC), particulate matter (PM) Regulations stipulating the upper limit amount of air pollutants, etc., and if this regulation is not cleared, measures such as refusing new car registration are taken.
 自動車排出ガス規制においては、試験モードが定められており、例えば、日本のJC08CモードおよびJC08Hモードや、米国のLA4モード等の試験モードが良く知られている。
 そして、排出ガスの測定試験は、車両をシャシ・ダイナモメータ上にセットして、規定の試験モードで走行させ、その試験期間中の排出ガス中の大気汚染物質の量を定められた測定法に基づいて測定することによって実行される。
In automobile exhaust gas regulations, test modes are defined, and for example, test modes such as JC08C mode and JC08H mode in Japan and LA4 mode in the United States are well known.
In the exhaust gas measurement test, the vehicle is set on the chassis dynamometer and traveled in the specified test mode, and the amount of air pollutants in the exhaust gas during the test period is determined by the specified measurement method. It is executed by measuring on the basis of.
 また、自動車の内燃機関の排気系には排ガス浄化触媒を備えた排ガス浄化装置が搭載されており、年々強化される排出ガス規制をクリアするためには、排ガス浄化触媒の性能の向上が不可欠であり、そのため、排ガス浄化触媒の研究・開発が盛んに行われている。 In addition, the exhaust system of an automobile internal combustion engine is equipped with an exhaust gas purification device equipped with an exhaust gas purification catalyst. In order to clear exhaust gas regulations that are tightened year by year, it is essential to improve the performance of the exhaust gas purification catalyst. For this reason, research and development of exhaust gas purification catalysts are actively conducted.
 排ガス浄化触媒の研究・開発には、排ガス浄化触媒性能評価装置が用いられる。排ガス浄化触媒性能評価装置においては、通常、内燃機関からの排出ガスと同様の成分を含む模擬排ガスが使用される。模擬排ガスは、例えば、NO、CO、HC、HO等の、内燃機関の排出ガスに含まれる各種の成分を排出ガスにおける濃度と同様の濃度になるように窒素ガスと混合したものである。 An exhaust gas purification catalyst performance evaluation device is used for research and development of exhaust gas purification catalysts. In the exhaust gas purification catalyst performance evaluation apparatus, a simulated exhaust gas containing the same components as the exhaust gas from the internal combustion engine is usually used. The simulated exhaust gas is a mixture of various components contained in the exhaust gas of the internal combustion engine, such as NO X , CO 2 , HC, H 2 O, etc., with nitrogen gas so as to have a concentration similar to the concentration in the exhaust gas. It is.
 そして、模擬排ガスが、試験モードで走行する間の車両の排ガス浄化装置内の触媒の直前における排出ガスと同様の温度状態にされて、触媒の収容されたガスセル内に導入されるとともに、触媒前後のガス濃度が計測されることによって触媒の性能が評価されるようになっている。 The simulated exhaust gas is brought into a temperature state similar to the exhaust gas immediately before the catalyst in the exhaust gas purification device of the vehicle while traveling in the test mode, and is introduced into the gas cell containing the catalyst, and before and after the catalyst. The performance of the catalyst is evaluated by measuring the gas concentration.
 この場合、性能評価の精度を上げるためには、ガスセル内における触媒の直前の模擬排ガスの温度を、試験モードで走行中の車両の排ガス浄化装置内の触媒の直前における排出ガスの温度変化ができるだけ正確に再現されるように、変化させることが重要であり、そのためには、ガスセル内における触媒の直前の模擬排ガスを高速で温度昇降させることが必要であり、言い換えれば、触媒の直前での模擬排ガスの温度昇降時の温度勾配を大きくしなければならない。 In this case, in order to improve the accuracy of performance evaluation, the temperature of the simulated exhaust gas immediately before the catalyst in the gas cell can be changed to the temperature change of the exhaust gas immediately before the catalyst in the exhaust gas purification device of the vehicle running in the test mode as much as possible. It is important to change it so that it can be accurately reproduced. To do so, it is necessary to raise and lower the temperature of the simulated exhaust gas immediately before the catalyst in the gas cell at high speed, in other words, the simulation just before the catalyst. The temperature gradient when raising and lowering the temperature of exhaust gas must be increased.
 これを達成する従来の触媒性能評価装置として、例えば、模擬排ガス供給路から供給される模擬排ガスが流れるガスセルに沿って第1加熱部および第2加熱部を順次設け、第1加熱部によって模擬排ガスを加熱し、第2加熱部によってガスセル内に配置された触媒を加熱するようにし、模擬排ガス供給路に分岐流路を接続し、分岐流路の下流端を第1加熱部と第2加熱部との間においてガスセルに接続するとともに、模擬排ガス供給路および分岐流路のそれぞれに模擬排ガスの流量を調節する流量調節弁を設け、触媒入口近傍の温度を検出し、検出値に基づいて流量調節弁の開度を調節し、触媒入口近傍の温度が所定の温度になるように制御する触媒性能評価装置が知られている(例えば、特許文献1参照)。 As a conventional catalyst performance evaluation apparatus that achieves this, for example, a first heating unit and a second heating unit are sequentially provided along a gas cell in which simulated exhaust gas supplied from a simulated exhaust gas supply path flows, and the simulated exhaust gas is provided by the first heating unit. The catalyst disposed in the gas cell is heated by the second heating unit, the branch channel is connected to the simulated exhaust gas supply channel, and the downstream end of the branch channel is connected to the first heating unit and the second heating unit. Connected to the gas cell, and provided with flow control valves that adjust the flow rate of the simulated exhaust gas in each of the simulated exhaust gas supply channel and the branch flow channel, detect the temperature near the catalyst inlet, and adjust the flow rate based on the detected value There is known a catalyst performance evaluation apparatus that adjusts the opening of a valve so that the temperature in the vicinity of the catalyst inlet becomes a predetermined temperature (see, for example, Patent Document 1).
 この装置においては、第1および第2加熱部はそれぞれ、常時オン動作して、所定の熱量を発生するように制御される。また、室温程度の模擬排ガスが模擬排ガス供給路に供給され、分岐点において、ホットライン(分岐点以降の模擬排ガス供給路)とクールライン(分岐流路)とに分流される。そして、ホットラインを流れる模擬排ガスはガスセルの上流端からガスセル内に供給され、第1加熱部を通過して加熱され、触媒の直前ではかなり高温になっている。一方、クールラインを流れる模擬排ガスは、第1加熱部を通過せずに直接触媒の直前に供給されるので、触媒の直前では室温程度である。 In this apparatus, each of the first and second heating units is controlled so as to always be on and generate a predetermined amount of heat. Also, simulated exhaust gas at room temperature is supplied to the simulated exhaust gas supply path, and is divided into a hot line (simulated exhaust gas supply path after the branch point) and a cool line (branch path) at the branch point. Then, the simulated exhaust gas flowing through the hot line is supplied into the gas cell from the upstream end of the gas cell, is heated by passing through the first heating unit, and is quite high immediately before the catalyst. On the other hand, the simulated exhaust gas flowing through the cool line is supplied directly before the catalyst without passing through the first heating unit, and thus is about room temperature immediately before the catalyst.
 こうして、ホットラインを流れる模擬排ガスの流量Qと、クールラインを流れる模擬排ガスの流量Qが、昇温過程では流量比Q/Qが大きくなるように、降温過程では流量比Q/Qが小さくなるように制御され、それによって、触媒の直前の模擬排ガスの温度昇降が制御されるようになっている。 Thus, the flow rate to Q 1 simulated exhaust gas flowing through the hot line, so that the flow rate Q 2 of the simulated exhaust gas flowing through the cool lines, the flow rate ratio Q 1 / Q 2 becomes large in the heating process, the flow rate ratio Q 1 is in the cooling process / Q 2 are controlled so as to become smaller, thereby, the temperature elevation of the simulated exhaust gas immediately before the catalyst are controlled.
 しかし、この装置では、高温の模擬排ガスと室温程度の模擬排ガスとの混合の割合を制御することによって、触媒の直前の模擬排ガスの温度昇降を制御するので、温度昇降の制御がせいぜい分単位でしかできず、そのため、試験モードで走行中の車両の排ガス浄化装置内の触媒の直前における排出ガスの温度変化を正確に再現することはできなかった。 However, in this device, the temperature rise and fall of the simulated exhaust gas immediately before the catalyst is controlled by controlling the mixing ratio of the high temperature simulated exhaust gas and the simulated exhaust gas at room temperature. However, the temperature change of the exhaust gas immediately before the catalyst in the exhaust gas purification apparatus of the vehicle running in the test mode cannot be accurately reproduced.
特許第3927399号公報Japanese Patent No. 3927399
 したがって、本発明の課題は、排ガス浄化触媒の直前の模擬排ガスを高速で温度昇降させることができるようにすることにある。 Therefore, an object of the present invention is to make it possible to raise and lower the temperature of the simulated exhaust gas immediately before the exhaust gas purification catalyst at high speed.
 上記課題を解決するため、本発明によれば、排ガス浄化触媒の性能を評価する装置であって、一端側から模擬排ガスが導入されるガス導入管と、前記ガス導入管の他端に接続され、内部に前記排ガス浄化触媒が収容されるガスセルと、前記ガス導入管および前記ガスセルの外側に間隔をあけて配置された赤外線加熱部と、前記ガス導入管の前記他端から上流側の一定の長さ、または前記ガスセル側から前記ガス導入管側に至る一定の長さにわたってのびる領域を冷却する冷却部と、前記ガスセルおよび前記赤外線加熱部間のスペース内に配置されるとともに、前記冷却部によって冷却される前記領域の下流側の端の近傍から下流側にのびる遮光板と、を備え、前記排ガス浄化触媒は、前記ガスセル内の前記冷却部によって冷却される前記領域より下流側であって、前記遮光板によって赤外線が遮られた領域に収容され、前記装置は、さらに、前記ガスセル内の前記赤外線が遮られた領域に、前記排ガス浄化触媒から上流側に間隔をあけて配置された温度センサーと、予め決定された前記温度センサーの位置の模擬排ガス温度設定値に従って前記冷却部を制御し、かつ、前記温度センサーからの検出信号に基づいて前記赤外線加熱部を制御する制御部と、を備えており、前記冷却部による冷却が常時行われるとともに、前記冷却部の冷却出力と前記赤外線加熱部の加熱出力が前記制御部によって制御され、それによって、前記排ガス浄化触媒の直前の前記模擬排ガスの温度が前記模擬排ガス温度設定値に一致するように制御されるものであることを特徴とする装置が提供される。 In order to solve the above problems, according to the present invention, an apparatus for evaluating the performance of an exhaust gas purification catalyst, which is connected to a gas introduction pipe into which simulated exhaust gas is introduced from one end side and the other end of the gas introduction pipe. A gas cell in which the exhaust gas purifying catalyst is accommodated, an infrared heating unit disposed at intervals outside the gas introduction pipe and the gas cell, and a constant upstream side from the other end of the gas introduction pipe A cooling unit that cools the length or a region extending from the gas cell side to the gas introduction pipe side over a certain length, and a space between the gas cell and the infrared heating unit, and the cooling unit A light shielding plate extending downstream from the vicinity of the downstream end of the region to be cooled, and the exhaust gas purification catalyst is cooled by the cooling unit in the gas cell. The apparatus is further downstream and is accommodated in a region where infrared rays are shielded by the light shielding plate, and the apparatus further has a space upstream from the exhaust gas purification catalyst in the region where the infrared rays are shielded in the gas cell. The cooling unit is controlled according to a temperature sensor arranged in an open position and a simulated exhaust gas temperature setting value at a predetermined position of the temperature sensor, and the infrared heating unit is controlled based on a detection signal from the temperature sensor. A control unit that performs cooling by the cooling unit at all times, and the cooling output of the cooling unit and the heating output of the infrared heating unit are controlled by the control unit, whereby the exhaust gas purification catalyst An apparatus is provided wherein the temperature of the simulated exhaust gas immediately before is controlled so as to coincide with the simulated exhaust gas temperature set value.
 本発明の好ましい実施例によれば、前記冷却部は、前記一定の長さにわたり、前記ガス導入管、または前記ガスセルおよび前記ガス導入管に固定され、前記ガス導入管の外側空間、または前記ガスセルおよび前記ガス導入管の外側空間を密閉状態に取り囲む冷媒溜を備え、前記冷媒溜には、少なくとも1つの冷媒入口および冷媒出口が形成されており、前記冷却部は、さらに、冷媒供給源と、一端が前記冷媒供給源に接続され、他端が前記冷媒溜の冷媒入口に接続された冷媒供給管路と、前記冷媒溜の冷媒出口に接続された冷媒排出管路と、前記冷媒供給管路の途中に配置され、冷媒の流量を制御する流量制御ユニットと、を備え、前記冷却部の冷却出力は前記冷媒供給源から前記冷媒供給管路に供給される冷媒の流量によって決定され、冷媒が、常時、前記冷媒溜の冷媒入口から前記ガス導入管、または前記ガス導入管および前記ガスセルに向けて噴射され、前記ガス導入管の外周面、または前記ガス導入管および前記ガスセルの外周面を伝って流れた後、前記冷媒溜の冷媒出口から排出されるとともに、前記模擬排ガス温度設定値に従って前記冷媒の流量が前記制御部によって制御され、同時に、前記温度センサーの検出値に基づいて前記赤外線加熱部の加熱出力が前記制御部によって制御される。 According to a preferred embodiment of the present invention, the cooling unit is fixed to the gas introduction pipe, or the gas cell and the gas introduction pipe over the predetermined length, and the outer space of the gas introduction pipe, or the gas cell. And a refrigerant reservoir surrounding the outer space of the gas introduction pipe in a sealed state, wherein the refrigerant reservoir is formed with at least one refrigerant inlet and a refrigerant outlet, and the cooling unit further includes a refrigerant supply source, One end connected to the refrigerant supply source, the other end connected to the refrigerant inlet of the refrigerant reservoir, a refrigerant discharge line connected to the refrigerant outlet of the refrigerant reservoir, and the refrigerant supply pipeline And a flow rate control unit that controls the flow rate of the refrigerant, and the cooling output of the cooling unit is determined by the flow rate of the refrigerant supplied from the refrigerant supply source to the refrigerant supply line, The medium is constantly injected from the refrigerant inlet of the refrigerant reservoir toward the gas introduction pipe, or the gas introduction pipe and the gas cell, and the outer peripheral surface of the gas introduction pipe or the outer peripheral surface of the gas introduction pipe and the gas cell. Then, the refrigerant is discharged from the refrigerant outlet of the refrigerant reservoir, and the flow rate of the refrigerant is controlled by the control unit according to the simulated exhaust gas temperature set value, and at the same time based on the detection value of the temperature sensor. The heating output of the infrared heating unit is controlled by the control unit.
 本発明の別の好ましい実施例によれば、前記制御部による前記冷媒の流量の制御は、前記模擬排ガス温度設定値が取り得る範囲を複数の温度帯に区分し、前記温度帯毎に冷却に必要な前記冷媒の流量を予め設定しておき、前記模擬排ガス温度設定値がどの前記温度帯に属するのかをその都度判定して、当該温度帯に対応する流量の冷媒を前記冷媒供給源から前記冷媒供給管路に供給することによってなされる。 According to another preferred embodiment of the present invention, the control of the flow rate of the refrigerant by the control unit divides the possible range of the simulated exhaust gas temperature setting value into a plurality of temperature zones, and cools the temperature for each temperature zone. The necessary flow rate of the refrigerant is set in advance, it is determined each time the temperature range to which the simulated exhaust gas temperature set value belongs, and the flow rate of the refrigerant corresponding to the temperature range is determined from the refrigerant supply source. This is done by supplying the refrigerant supply pipe.
 本発明のさらに別の好ましい実施例によれば、前記赤外線加熱部は、前記制御部によって、前記加熱出力が、前記装置の起動時を除いては前記赤外線加熱部のソフトスタートを不要とすべく予め設定された最低値以下にならないよう制御される。
 本発明のさらに別の好ましい実施例によれば、前記赤外線加熱部の前記加熱出力が前記最低値以下にならないようにする制御は、予め決定された前記温度センサーの検出値の範囲を複数の温度帯に区分し、前記温度帯毎に前記加熱出力の前記最低値を予め設定しておき、前記温度センサーの検出値がどの前記温度帯に属するのかをその都度判定して、前記赤外線加熱部の加熱出力が当該温度帯に対応する前記最低値以下にならないようにすることからなっている。
According to still another preferred embodiment of the present invention, the infrared heating unit is configured so that the heating output is not required to be soft-started by the infrared heating unit except when the apparatus is activated. Control is performed so as not to fall below a preset minimum value.
According to still another preferred embodiment of the present invention, the control for preventing the heating output of the infrared heating unit from being equal to or lower than the minimum value is performed by setting a predetermined range of detection values of the temperature sensor to a plurality of temperatures. The temperature is divided into bands, the minimum value of the heating output is set in advance for each temperature band, the temperature sensor detection value is determined each time, and the infrared heating unit The heating output does not fall below the minimum value corresponding to the temperature range.
 本発明のさらに別の好ましい実施例によれば、前記冷媒溜は、前記ガス導入管の前記他端の外周、または前記ガスセルの外周にシールされた状態で固定された第1の環状フランジと、前記第1の環状フランジから上流側に前記一定の長さ離れた位置において、前記ガス導入管の外周にシールされた状態で固定された第2の環状フランジと、前記第1および第2の環状フランジの間にのび、前記第1および第2の環状フランジの外周縁同士を接続する筒状の側壁と、を備えている。 According to still another preferred embodiment of the present invention, the refrigerant reservoir is fixed to the outer periphery of the other end of the gas introduction pipe or the outer periphery of the gas cell in a sealed state, A second annular flange fixed in a sealed state on the outer periphery of the gas introduction pipe at a position away from the first annular flange upstream by the predetermined length; and the first and second annular members A cylindrical side wall extending between the flanges and connecting the outer peripheral edges of the first and second annular flanges.
 本発明のさらに別の好ましい実施例によれば、前記冷媒は、液体状冷媒または気体状冷媒またはそれらの混合物からなっている。
 本発明のさらに別の好ましい実施例によれば、前記冷媒は、純水に空気または窒素を混合したものからなっている。
According to still another preferred embodiment of the present invention, the refrigerant comprises a liquid refrigerant, a gaseous refrigerant or a mixture thereof.
According to still another preferred embodiment of the present invention, the refrigerant consists of pure water mixed with air or nitrogen.
 本発明のさらに別の好ましい実施例によれば、前記流量制御ユニットは、前記冷媒供給管路の途中に配置された流量調節弁からなっている。
 本発明のさらに別の好ましい実施例によれば、前記流量制御ユニットは、前記冷媒供給源に接続され、冷媒を循環させる主管路と、前記主管路の途中に配置され、前記主管路から前記冷媒供給管路を分岐させる少なくとも1つの分流弁または分岐弁と、からなっている。
According to still another preferred embodiment of the present invention, the flow rate control unit comprises a flow rate control valve disposed in the middle of the refrigerant supply line.
According to still another preferred embodiment of the present invention, the flow rate control unit is connected to the refrigerant supply source, and is arranged in the middle of the main pipe line for circulating the refrigerant, and from the main pipe line to the refrigerant. And at least one branch valve or branch valve for branching the supply line.
 本発明のさらに別の好ましい実施例によれば、前記冷媒排出管路は熱交換器を介して前記冷媒供給源に接続されており、前記冷媒溜から排出された冷媒が前記熱交換器によって所定の温度まで冷却された後、前記冷媒供給源に戻されるようになっている。 According to still another preferred embodiment of the present invention, the refrigerant discharge line is connected to the refrigerant supply source via a heat exchanger, and the refrigerant discharged from the refrigerant reservoir is predetermined by the heat exchanger. Then, it is returned to the refrigerant supply source.
 本発明によれば、ガス導入管およびガスセルを赤外線加熱部によって加熱するとともに、ガスセルの模擬排ガス入口の近傍を冷却部によって常時冷却するようにし、予め決定された温度センサーの位置の模擬排ガス温度設定値に従って冷却部の冷却出力を制御し、かつ、排ガス浄化触媒の直前に配置した温度センサーの検出値に基づいて、赤外線加熱部の加熱出力を制御するので、赤外線加熱部を常時高出力で作動させたままで、模擬排ガス温度設定値が低温領域にあるときは、冷却部の冷却出力を高出力にし、高温領域にあるときは冷却部の冷却出力を低出力にすることによって、模擬排ガスの温度を昇降させることができ、その結果、排ガス浄化触媒の直前の模擬排ガスの温度を、低温領域から高温領域に至る全ての温度領域において高速で昇降させることができる。 According to the present invention, the gas introduction pipe and the gas cell are heated by the infrared heating unit, and the vicinity of the simulated exhaust gas inlet of the gas cell is always cooled by the cooling unit, so that the simulated exhaust gas temperature setting at a predetermined temperature sensor position is set. The cooling output of the cooling unit is controlled according to the value, and the heating output of the infrared heating unit is controlled based on the detection value of the temperature sensor placed immediately before the exhaust gas purification catalyst, so the infrared heating unit is always operated at high output When the simulated exhaust gas temperature set value is in the low temperature range, the cooling output of the cooling unit is set to a high output, and when it is in the high temperature range, the cooling output of the cooling unit is set to a low output to reduce the temperature of the simulated exhaust gas. As a result, the temperature of the simulated exhaust gas immediately before the exhaust gas purification catalyst is changed in all temperature ranges from the low temperature range to the high temperature range. It can be raised and lowered at a rate.
本発明の1実施例による排ガス浄化触媒性能評価装置の縦断面図である。It is a longitudinal cross-sectional view of the exhaust gas purification catalyst performance evaluation apparatus by one Example of this invention. 図1の装置の流量制御ユニットの分流弁の1例の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of one example of the shunt valve of the flow control unit of the apparatus of FIG. 本発明の1実施例による排ガス浄化触媒性能評価装置において、模擬排ガス温度設定値の昇降を繰り返した場合の排ガス浄化触媒の直前の模擬排ガスの温度変化の一例を示したグラフである。6 is a graph showing an example of a temperature change of the simulated exhaust gas immediately before the exhaust gas purification catalyst when the raising and lowering of the simulated exhaust gas temperature set value is repeated in the exhaust gas purification catalyst performance evaluation apparatus according to one embodiment of the present invention. 図3のグラフのデータを取得したのと同じ装置を使用して、LA4コールドスタート試験モードで走行中の車両(排気量2400ccのガソリンエンジン車)の排ガス浄化装置内の触媒の直前における排出ガスの温度変化をどの程度まで再現できるかを実験した場合の実験データをプロットしたグラフである。Using the same device that acquired the data in the graph of FIG. 3, the exhaust gas emission just before the catalyst in the exhaust gas purification device of the vehicle running in the LA4 cold start test mode (gasoline engine vehicle with a displacement of 2400 cc) is used. It is the graph which plotted the experimental data at the time of experimenting to what extent temperature change can be reproduced. 図3のグラフのデータを取得したのと同じ装置を使用して、模擬排ガス温度設定値を、300~600℃の範囲において、一定の周期で昇降させた場合(昇温時の温度勾配=60℃/sec、降温時の温度勾配=25℃/sec)の、排ガス浄化触媒の直前の模擬排ガスの温度変化を示したグラフである。When the simulated exhaust gas temperature set value is raised and lowered at a constant cycle in the range of 300 to 600 ° C. using the same apparatus that acquired the data of the graph of FIG. 3 (temperature gradient at the time of temperature increase = 60 It is the graph which showed the temperature change of the simulation exhaust gas just before an exhaust gas purification catalyst of (degreeC / sec, temperature gradient at the time of temperature fall = 25 degreeC / sec). 図3のグラフのデータを取得したのと同じ装置を使用して、模擬排ガス温度設定値を、30℃、50℃、80℃のそれぞれにおいて、一定時間維持した場合の、排ガス浄化触媒の直前の模擬排ガスの温度変化を示したグラフである。Using the same apparatus that acquired the data of the graph of FIG. 3, the simulated exhaust gas temperature set value is maintained immediately before the exhaust gas purification catalyst when maintained for a certain time at 30 ° C., 50 ° C., and 80 ° C., respectively. It is the graph which showed the temperature change of the simulation exhaust gas.
 以下、添付図面を参照して本発明の好ましい実施例を説明する。図1は、本発明の1実施例による排ガス浄化触媒性能評価装置の構成を示す縦断面図である。
 図1を参照して、本発明による排ガス浄化触媒性能評価装置は、一端1a側から模擬排ガスが導入されるガス導入管1と、ガス導入管1の他端1bに接続され、内部に排ガス浄化触媒3が収容されるガスセル2と、ガス導入管1およびガスセル2の外側に間隔をあけて配置された赤外線加熱部4を備えている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view showing the configuration of an exhaust gas purification catalyst performance evaluation apparatus according to one embodiment of the present invention.
Referring to FIG. 1, an exhaust gas purification catalyst performance evaluation apparatus according to the present invention is connected to a gas introduction pipe 1 into which simulated exhaust gas is introduced from one end 1a side, and the other end 1b of the gas introduction pipe 1, and exhaust gas purification is provided inside. A gas cell 2 in which the catalyst 3 is accommodated, and an infrared heating unit 4 disposed at intervals outside the gas introduction pipe 1 and the gas cell 2 are provided.
 この実施例では、ガスセル2は、ガス導入管1よりも大きい径を有する触媒収容管2aと、ガス導入管1と触媒収容管2aを接続するテーパ管2bとから構成され、また、赤外線加熱部4は、ガス導入管1およびガスセル2を取り囲む円筒状の赤外線炉からなっているが、ガスセル2および赤外線加熱部4の構成は、これに限定されるものではない。 In this embodiment, the gas cell 2 includes a catalyst housing tube 2a having a larger diameter than the gas introduction tube 1, a tapered tube 2b connecting the gas introduction tube 1 and the catalyst housing tube 2a, and an infrared heating unit. 4 includes a cylindrical infrared furnace surrounding the gas introduction pipe 1 and the gas cell 2, but the configurations of the gas cell 2 and the infrared heating unit 4 are not limited thereto.
 本発明による排ガス浄化触媒性能評価装置は、また、ガスセル2側からガス導入管1側に至る一定の長さにわたってのびる領域を冷却する冷却部6a、6bを備えている。この場合、冷却部6a、6bは、ガス導入管1の他端1bから上流側の前記一定の長さにわたってのびる領域を冷却するようになっていてもよい。 The exhaust gas purifying catalyst performance evaluation apparatus according to the present invention also includes cooling units 6a and 6b for cooling a region extending over a certain length from the gas cell 2 side to the gas introduction pipe 1 side. In this case, the cooling units 6a and 6b may be configured to cool the region extending from the other end 1b of the gas introduction pipe 1 over the predetermined length on the upstream side.
 冷却部6a、6bは、この実施例では、前記一定の長さにわたり、ガスセル2およびガス導入管1の外側に固定され、ガスセル2およびガス導入管1の外側空間を密閉状態に取り囲む冷媒溜7を備えている。
 冷媒溜7は、ガスセル2の外周にシールされた状態で固定された第1の環状フランジ7aと、第1の環状フランジ7aから上流側に前記一定の長さ離れた位置に、ガス導入管1の外周にシールされた状態で固定された第2の環状フランジ7bと、第1および第2の環状フランジ7a、7bの間にのび、第1および第2の環状フランジ7a、7bの外周縁同士を接続する筒状の側壁7cと、を備えている。冷媒溜7には、少なくとも1つの冷媒入口7dおよび冷媒出口7eが形成される。
In this embodiment, the cooling units 6a and 6b are fixed to the outside of the gas cell 2 and the gas introduction pipe 1 over the predetermined length, and surround the outer space of the gas cell 2 and the gas introduction pipe 1 in a sealed state. It has.
The refrigerant reservoir 7 has a first annular flange 7a fixed in a sealed state on the outer periphery of the gas cell 2, and the gas introduction pipe 1 at a position away from the first annular flange 7a by the predetermined length upstream. The outer peripheral edges of the first and second annular flanges 7a and 7b extend between the second annular flange 7b and the first and second annular flanges 7a and 7b. And a cylindrical side wall 7c for connecting the two. In the refrigerant reservoir 7, at least one refrigerant inlet 7d and a refrigerant outlet 7e are formed.
 冷却部6a、6bは、さらに、冷媒供給源8と、一端が冷媒供給源8に接続され、他端が冷媒溜7の冷媒入口7dに接続された冷媒供給管路9と、冷媒溜7の冷媒出口7eに接続された冷媒排出管路10と、冷媒供給管路9の途中に配置され、冷媒の流量を制御する流量制御ユニット11を備えている。
 この場合、冷媒排出管路10を、熱交換器を介して冷媒供給源8に接続し、冷媒溜7から排出された冷媒を熱交換器によって所定の温度まで冷却した後、冷媒供給源8に戻すようにしてもよい。
The cooling units 6 a and 6 b further include a refrigerant supply source 8, a refrigerant supply line 9 having one end connected to the refrigerant supply source 8 and the other end connected to the refrigerant inlet 7 d of the refrigerant reservoir 7, A refrigerant discharge line 10 connected to the refrigerant outlet 7e and a flow rate control unit 11 arranged in the middle of the refrigerant supply line 9 and controlling the flow rate of the refrigerant are provided.
In this case, the refrigerant discharge pipe 10 is connected to the refrigerant supply source 8 via a heat exchanger, and the refrigerant discharged from the refrigerant reservoir 7 is cooled to a predetermined temperature by the heat exchanger, and then the refrigerant supply source 8 is supplied. You may make it return.
 この実施例では、冷媒は、純水に空気を混合したものからなっており、冷媒供給源8は、水タンク8aと、ポンプ8bと、冷媒供給管路8の途中に分岐接続された空気供給管路15からなっている。この場合、純水に、空気の代わりに窒素を混合したものを冷媒として使用してもよい。
 また、流量制御ユニット11は、水タンク8aおよびポンプ8bを接続し、純水を循環させる主管路11aと、主管路11aの途中に配置され、主管路11aから冷媒供給管路9を分岐させる少なくとも1つの分流弁(または分岐弁)11bとからなっている。
In this embodiment, the refrigerant is composed of pure water mixed with air, and the refrigerant supply source 8 includes a water tank 8 a, a pump 8 b, and an air supply branched and connected in the middle of the refrigerant supply pipe 8. It consists of a conduit 15. In this case, pure water mixed with nitrogen instead of air may be used as the refrigerant.
The flow rate control unit 11 connects the water tank 8a and the pump 8b, and is disposed in the middle of the main pipeline 11a for circulating pure water and the main pipeline 11a, and at least branches the refrigerant supply pipeline 9 from the main pipeline 11a. It consists of one branch valve (or branch valve) 11b.
 図2は、分流弁の一例の概略構成を示す縦断面図である。図2を参照して、分流弁11bは、基台28と、基台28上に固定され、内部に円柱状のキャビティ21を備えた、両端開口が閉じられた円筒状のハウジング20とを有している。ハウジング20の側壁の中央部には、一端がキャビティ21に開口し、他端が主管路11aに接続される入口管路22が設けられ、ハウジング20の側壁の一方の端部には、一端がキャビティ21に開口し、他端が主管路11aに接続される第1出口管路23が設けられ、ハウジング20の側壁の他方の端部には、一端がキャビティ21に開口し、他端が冷媒供給管路9に接続される第2出口管路24が設けられる。 FIG. 2 is a longitudinal sectional view showing a schematic configuration of an example of the diversion valve. Referring to FIG. 2, the diversion valve 11b includes a base 28, and a cylindrical housing 20 that is fixed on the base 28 and includes a columnar cavity 21 inside, with both end openings closed. is doing. In the central part of the side wall of the housing 20, there is provided an inlet pipe line 22 having one end opened to the cavity 21 and the other end connected to the main pipe line 11 a, and one end part of the side wall of the housing 20 has one end. A first outlet pipe 23 that opens to the cavity 21 and has the other end connected to the main pipe 11a is provided. One end opens to the cavity 21 at the other end of the side wall of the housing 20, and the other end is a refrigerant. A second outlet line 24 connected to the supply line 9 is provided.
 また、キャビティ21内には、円形断面を有し、両端から中央に向けて次第に先細り状に形成された弁体25が配置され、第1出口管路23側の第1弁座20aと、第2出口管路24側の第2弁座20bとの間において、軸方向に往復運動可能に配置される。弁体25の両端面には、それぞれ軸方向にのびるロッド26が突設される。各ロッド26は、ハウジハウジング20の端面を貫通して外部に突出するとともに、ハウジング20に備えられた軸受にシールされた状態で支持され、軸方向に往復運動可能になっている。さらに、基台28上には、リニアアクチュエータ27が取付けられ、一方のロッド26の先端に連結されている。 Further, in the cavity 21, a valve body 25 having a circular cross section and gradually tapered from both ends toward the center is disposed, and the first valve seat 20a on the first outlet conduit 23 side, Between the 2nd valve seat 20b by the side of 2 outlet pipeline 24, it arrange | positions so that a reciprocating motion is possible to an axial direction. On both end surfaces of the valve body 25, rods 26 extending in the axial direction are projected. Each rod 26 protrudes outside through the end face of the housing 20 and is supported in a sealed state by a bearing provided in the housing 20 so as to be capable of reciprocating in the axial direction. Further, a linear actuator 27 is mounted on the base 28 and connected to the tip of one rod 26.
 そして、リニアアクチュエータ27によって、弁体25が第1弁座20aおよび第2弁座20bの間において軸方向に往復運動し、弁体25の各弁座20a、20bに対する位置に応じて、冷媒供給管路9側の弁開度および主管路11a側の弁開度が変化する(弁座20a、20bの位置に弁体25の端が位置するとき、開度が最小となり、弁座20a、20bの位置に弁体25の中央が位置するとき、開度が最大になる)。 The linear actuator 27 causes the valve body 25 to reciprocate in the axial direction between the first valve seat 20a and the second valve seat 20b, and supply refrigerant according to the position of the valve body 25 relative to the valve seats 20a and 20b. The valve opening on the side of the pipe 9 and the valve opening on the side of the main pipe 11a change (when the end of the valve body 25 is located at the position of the valve seats 20a, 20b, the opening becomes the minimum, and the valve seats 20a, 20b When the center of the valve body 25 is located at the position of (2), the opening degree is maximized).
 流量制御ユニット11の構成はこの実施例に限定されず、流量制御ユニット11を、例えば、冷媒供給管路9の途中に配置された、マスフローコントローラ等のような流量調節弁から構成してもよい。
 また、冷媒の構成もこの実施例に限定されず、公知の適当な液体状冷媒または気体状冷媒またはそれらの混合物を冷媒として使用することができる。
 また、冷却部6a、6bの構成もこの実施例に限定されず、冷却出力を適当に制御することができ、ガスセル2の入口付近の冷却に適したものであれば、どのような構成を有していてもよい。
The configuration of the flow rate control unit 11 is not limited to this embodiment, and the flow rate control unit 11 may be constituted by a flow rate control valve such as a mass flow controller disposed in the middle of the refrigerant supply line 9, for example. .
Further, the configuration of the refrigerant is not limited to this example, and any known appropriate liquid refrigerant, gaseous refrigerant, or a mixture thereof can be used as the refrigerant.
Further, the configuration of the cooling units 6a and 6b is not limited to this example, and any configuration is possible as long as the cooling output can be appropriately controlled and is suitable for cooling near the inlet of the gas cell 2. You may do it.
 スペース5内には、また、赤外線加熱部4からの赤外線を遮光する遮光板12が配置され、冷却部6a、6bによって冷却される領域の下流側の端(この実施例では、冷媒溜7の下流側の端)の近傍から下流側にのびている。この実施例では、遮光板12は、ガスセル2の外側を、これから間隔をあけて取り囲む円筒形状を有している。
 排ガス浄化触媒3は、ガスセル2内の冷却部6a、6bによって冷却される領域より下流側であって、遮光板12によって赤外線が遮られた領域に収容される。
In the space 5, a light shielding plate 12 that shields infrared rays from the infrared heating unit 4 is disposed, and is located at the downstream end of the region cooled by the cooling units 6 a and 6 b (in this embodiment, the refrigerant reservoir 7. It extends from the vicinity of the downstream end) to the downstream side. In this embodiment, the light shielding plate 12 has a cylindrical shape that surrounds the outside of the gas cell 2 with a space therebetween.
The exhaust gas purification catalyst 3 is accommodated in a region downstream of the region cooled by the cooling units 6 a and 6 b in the gas cell 2 and where infrared rays are blocked by the light shielding plate 12.
 本発明による排ガス浄化触媒性能評価装置は、さらに、ガスセル2内の赤外線が遮られた領域において、排ガス浄化触媒3から上流側に間隔をあけて配置された温度センサー13と、予め決定された温度センサー13の位置の模擬排ガス温度設定値に従って冷却部6a、6bを制御するとともに、温度センサー13からの検出信号に基づいて赤外線加熱部4を制御する制御部14を備えている。 The exhaust gas purifying catalyst performance evaluation apparatus according to the present invention further includes a temperature sensor 13 disposed at an upstream side from the exhaust gas purifying catalyst 3 in a region where infrared rays in the gas cell 2 are blocked, and a predetermined temperature. The cooling unit 6 a, 6 b is controlled according to the simulated exhaust gas temperature set value at the position of the sensor 13, and the control unit 14 that controls the infrared heating unit 4 based on a detection signal from the temperature sensor 13 is provided.
 この実施例では、冷却部6a、6bの冷却出力が、冷媒供給源8から冷媒供給管路9に供給される冷媒の流量よって決定され、冷媒の流量は、分流弁11bの開度(分流弁11bにおける冷媒供給管路9側の開度)を調節することによって制御される。
 そして、冷媒が、常時、冷媒溜7の冷媒入口7dからガス導入管1およびガスセル2に向けて噴射され、ガス導入管1およびガスセル2の外周面を伝って流れた後、冷媒溜7の冷媒出口7eから排出されるとともに、模擬排ガス温度設定値に従って冷媒の流量が制御部14によって制御され、同時に、温度センサー13の検出値に基づいて赤外線加熱部4の加熱出力が制御部14によって制御され、それによって、排ガス浄化触媒3の直前の模擬排ガスの温度が模擬排ガス温度設定値に一致するように制御される。
In this embodiment, the cooling outputs of the cooling units 6a and 6b are determined by the flow rate of the refrigerant supplied from the refrigerant supply source 8 to the refrigerant supply line 9, and the flow rate of the refrigerant is determined by the opening of the diversion valve 11b (diversion valve). It is controlled by adjusting the opening of the refrigerant supply pipe 9 side in 11b.
And after a refrigerant | coolant is always injected toward the gas introduction pipe 1 and the gas cell 2 from the refrigerant inlet 7d of the refrigerant reservoir 7, and flows along the outer peripheral surface of the gas introduction pipe 1 and the gas cell 2, the refrigerant of the refrigerant reservoir 7 While being discharged from the outlet 7e, the flow rate of the refrigerant is controlled by the control unit 14 according to the simulated exhaust gas temperature set value, and at the same time, the heating output of the infrared heating unit 4 is controlled by the control unit 14 based on the detection value of the temperature sensor 13. Thereby, the temperature of the simulated exhaust gas immediately before the exhaust gas purification catalyst 3 is controlled so as to coincide with the simulated exhaust gas temperature set value.
 こうして、本発明の排ガス浄化触媒性能評価装置によれば、ガス導入管1およびガスセル2を赤外線加熱部4によって加熱するとともに、ガスセル2の模擬排ガス入口の近傍を冷却部6a、6bによって常時冷却し、予め決定された温度センサー13の位置の模擬排ガス温度設定値に従って冷却部6a、6bの冷却出力を制御し、同時に、温度センサー13の検出値に基づいて赤外線加熱部の加熱出力を制御するので、赤外線加熱部4を常時高出力で作動させたままで、模擬排ガス温度設定値が低温領域にあるときは、冷却部6a、6bの冷却出力を高出力にし、高温領域にあるときは冷却部6a、6bの冷却出力を低出力にすることによって、模擬排ガスの温度を昇降させることができ、その結果、排ガス浄化触媒3の直前の模擬排ガスの温度を、低温領域から高温領域に至る全ての温度領域において高速で昇降させることができる。 Thus, according to the exhaust gas purification catalyst performance evaluation apparatus of the present invention, the gas introduction pipe 1 and the gas cell 2 are heated by the infrared heating unit 4, and the vicinity of the simulated exhaust gas inlet of the gas cell 2 is constantly cooled by the cooling units 6a and 6b. Since the cooling output of the cooling units 6a and 6b is controlled according to the simulated exhaust gas temperature setting value at the position of the temperature sensor 13 determined in advance, and at the same time, the heating output of the infrared heating unit is controlled based on the detection value of the temperature sensor 13 When the simulated exhaust gas temperature set value is in the low temperature region while the infrared heating unit 4 is always operated at a high output, the cooling output of the cooling units 6a and 6b is set to a high output, and when in the high temperature region, the cooling unit 6a. By reducing the cooling output of 6b, the temperature of the simulated exhaust gas can be raised and lowered. As a result, the simulated exhaust gas immediately before the exhaust gas purification catalyst 3 can be increased. The temperature can be raised or lowered at high speed at all temperatures region from low temperature region to high temperature region.
 この実施例では、制御部14による冷媒の流量の制御は、模擬排ガス温度設定値が取り得る範囲を複数の温度帯に区分し、温度帯毎に冷却に必要な冷媒の流量(分流弁11bの開度)を予め設定しておき、模擬排ガス温度設定値がどの温度帯に属するのかをその都度判定して、分流弁11bの開度を、当該温度帯に対応する値に調節し、冷媒供給源8から冷媒供給管路9に対応する量の冷媒を供給することからなっている。 In this embodiment, the control of the refrigerant flow rate by the control unit 14 divides the possible range of the simulated exhaust gas temperature set value into a plurality of temperature zones, and the refrigerant flow rate required for cooling for each temperature zone (of the shunt valve 11b). Opening degree) is set in advance, it is determined each time the simulated exhaust gas temperature set value belongs, and the opening degree of the diverter valve 11b is adjusted to a value corresponding to the temperature range to supply the refrigerant. The amount of refrigerant corresponding to the refrigerant supply line 9 is supplied from the source 8.
 また、赤外線加熱部4は、制御部14によって、加熱出力が、排ガス浄化触媒性能評価装置の起動時を除いては赤外線加熱部4のソフトスタートを不要とすべく予め設定された最低値以下にならないよう制御される。
 この制御は、好ましくは、予め決定された温度センサー13の検出値の範囲を複数の温度帯に区分し、温度帯毎に加熱出力の前記最低値を予め設定しておき、温度センサー13の検出値がどの温度帯に属するのかをその都度判定して、赤外線加熱部4の加熱出力が当該温度帯に対応する最低値以下にならないようにすることからなっている。
In addition, the infrared heating unit 4 causes the control unit 14 to reduce the heating output below a preset minimum value so as not to require the soft start of the infrared heating unit 4 except when the exhaust gas purification catalyst performance evaluation device is activated. It is controlled not to become.
In this control, preferably, the range of detection values of the temperature sensor 13 determined in advance is divided into a plurality of temperature zones, the minimum value of the heating output is set in advance for each temperature zone, and the detection of the temperature sensor 13 is performed. The temperature range to which the value belongs is determined each time so that the heating output of the infrared heating unit 4 does not fall below the minimum value corresponding to the temperature range.
 この制御部14による制御は次のように実行される。
 まず、模擬排ガス温度設定値の取り得る範囲が0~1000℃と、予め設定される。そして、冷媒の流量の制御に関しては、この温度設定値の範囲が、表1に示すように、0~200℃(温度帯No.1)、201~300℃(温度帯No.2)、301~350℃(温度帯No.3)、351~400℃(温度帯No.4)、401~450℃(温度帯No.5)、451~500℃(温度帯No.6)、501~550℃(温度帯No.7)、551~600℃(温度帯No.8)、601~700℃(温度帯No.9)、701~1000℃(温度帯No.10)の10の温度帯に区分される。そして、温度帯毎に、分流弁11bの開度(分流弁11bにおける冷媒供給管路9側の開度)が、95%(温度帯No.1)、85%(温度帯No.2)、75%(温度帯No.3)、65%(温度帯No.4)、55%(温度帯No.5)、45%(温度帯No.6)、35%(温度帯No.7)、25%(温度帯No.8)、15%(温度帯No.9)、5%(温度帯No.10)のように予め設定される。
The control by the control unit 14 is executed as follows.
First, the range that the simulated exhaust gas temperature set value can take is set in advance as 0 to 1000 ° C. Regarding the control of the flow rate of the refrigerant, as shown in Table 1, the range of the temperature set value is 0 to 200 ° C. (temperature zone No. 1), 201 to 300 ° C. (temperature zone No. 2), 301 -350 ° C. (temperature zone No. 3), 351-400 ° C. (temperature zone No. 4), 401-450 ° C. (temperature zone No. 5), 451-500 ° C. (temperature zone No. 6), 501-550 10 temperature zones: ℃ (temperature zone No. 7), 551 to 600 ° C. (temperature zone No. 8), 601 to 700 ° C. (temperature zone No. 9), 701 to 1000 ° C. (temperature zone No. 10) It is divided. For each temperature zone, the opening degree of the diversion valve 11b (the opening degree on the refrigerant supply line 9 side in the diversion valve 11b) is 95% (temperature zone No. 1), 85% (temperature zone No. 2), 75% (temperature zone No. 3), 65% (temperature zone No. 4), 55% (temperature zone No. 5), 45% (temperature zone No. 6), 35% (temperature zone No. 7), It is preset such as 25% (temperature zone No. 8), 15% (temperature zone No. 9), 5% (temperature zone No. 10).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、赤外線加熱部4の加熱出力については、予め決定された温度センサー13の検出値の範囲0~1000℃が、表2に示すように、0~35℃未満(温度帯No.1)、35℃以上~100℃未満(温度帯No.2)、100℃以上~150℃未満(温度値No.3)、150℃以上~200℃未満(温度帯No.4)、200℃以上~1000℃(温度帯No.5)の5つの温度帯に区分される。そして、温度帯毎に、加熱出力の最低値が、最大加熱出力値の0%(温度帯No.1)、最大加熱出力値の5%(温度帯No.2)、最大加熱出力値の10%(温度帯No.3)、最大加熱出力値の15%(温度帯No.4)、最大加熱出力値の20%(温度帯No.5)のように予め設定される。
 この場合、加熱出力の最低値が最大加熱出力の0%の温度帯No.1(本発明の排ガス浄化触媒性能評価装置の起動時に相当する。)においては、赤外線加熱部4がソフトスタートされなければならない。
As for the heating output of the infrared heating unit 4, the range of the detected value of the temperature sensor 13 determined in advance is 0 to 1000 ° C., as shown in Table 2, below 0 to 35 ° C. (temperature zone No. 1), 35 ° C. to less than 100 ° C. (temperature zone No. 2), 100 ° C. to less than 150 ° C. (temperature value No. 3), 150 ° C. to less than 200 ° C. (temperature zone No. 4), 200 ° C. to 1000 ° C. It is divided into five temperature zones of ° C. (temperature zone No. 5). For each temperature zone, the minimum heating output value is 0% of the maximum heating output value (temperature zone No. 1), 5% of the maximum heating output value (temperature zone No. 2), and 10% of the maximum heating output value. % (Temperature zone No. 3), 15% of the maximum heating output value (temperature zone No. 4), and 20% of the maximum heating output value (temperature zone No. 5).
In this case, the temperature zone No. in which the minimum value of the heating output is 0% of the maximum heating output. In 1 (corresponding to the start of the exhaust gas purification catalyst performance evaluation apparatus of the present invention), the infrared heating unit 4 must be soft-started.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図3は、この具体例において、排ガス浄化触媒の直前の模擬排ガスの温度の昇降を繰り返した場合の温度変化の一例を示したグラフである。図3のグラフ中、縦軸は温度(℃)を、横軸は経過時間(sec)をそれぞれ表し、曲線Cは温度変化を表している。また、グラフの右側に、各温度帯の分流弁11bの開度を示した。 FIG. 3 is a graph showing an example of a temperature change when the temperature of the simulated exhaust gas immediately before and after the exhaust gas purification catalyst is repeatedly raised and lowered in this specific example. In the graph of FIG. 3, the vertical axis represents temperature (° C.), the horizontal axis represents elapsed time (sec), and the curve C represents temperature change. Moreover, the opening degree of the diversion valve 11b in each temperature zone is shown on the right side of the graph.
 図3を参照して、まず、本発明の排ガス浄化触媒性能評価装置の起動後、模擬排ガス温度設定値が300℃付近まで上昇せしめられる(0~40秒)。この昇温過程において、装置の起動後(起動時の温度は室温程度)、模擬排ガス温度設定値が35℃に達するまでは、赤外線加熱部4はソフトスタートせしめられ、その間、分流弁11bの開度は95%に設定される。次いで、模擬排ガス温度設定値が35℃以上~300℃の範囲では、赤外線加熱部4が高出力(最低加熱出力以上)で作動せしめられる一方、分流弁11bの開度が、模擬排ガス温度設定値が200℃までは95%に設定され、模擬排ガス温度設定値が201~300℃の範囲では85%に設定される。 Referring to FIG. 3, first, after the start of the exhaust gas purification catalyst performance evaluation apparatus of the present invention, the simulated exhaust gas temperature set value is raised to around 300 ° C. (0 to 40 seconds). In this temperature raising process, after the apparatus is started up (the temperature at the time of starting is about room temperature), the infrared heating unit 4 is soft-started until the simulated exhaust gas temperature set value reaches 35 ° C., and during that time, the shunt valve 11b is opened. The degree is set to 95%. Next, when the simulated exhaust gas temperature set value is in the range of 35 ° C. or more to 300 ° C., the infrared heating unit 4 is operated at a high output (above the minimum heating output), while the opening of the diversion valve 11b is the simulated exhaust gas temperature set value. Is set to 95% up to 200 ° C., and is set to 85% when the simulated exhaust gas temperature set value is in the range of 201 to 300 ° C.
 その後、模擬排ガス温度設定値が300℃付近から250℃付近まで降下せしめられる(40~50秒)。この降温過程において、赤外線加熱部4の加熱出力が最低加熱出力(最高加熱出力の20%)に維持され、分流弁11bの開度が85%に設定される。
 次に、模擬排ガス温度設定値が250℃付近から350℃付近まで上昇せしめられる(50~55秒)。この昇温過程において、赤外線加熱部4は、再び高出力(最低加熱出力以上)で作動せしめられ、一方、分流弁11bの開度は、模擬排ガス温度設定値が250~300℃の範囲では85%、301~350℃の範囲では75%に設定される。このとき、赤外線加熱部4は、ソフトスタートする必要がなく、よって高速での昇温が可能である。
Thereafter, the simulated exhaust gas temperature set value is lowered from about 300 ° C. to about 250 ° C. (40 to 50 seconds). In the temperature lowering process, the heating output of the infrared heating unit 4 is maintained at the minimum heating output (20% of the maximum heating output), and the opening degree of the flow dividing valve 11b is set to 85%.
Next, the simulated exhaust gas temperature set value is raised from around 250 ° C. to around 350 ° C. (50 to 55 seconds). In this temperature raising process, the infrared heating unit 4 is again operated at a high output (more than the minimum heating output), while the opening of the diverter valve 11b is 85 when the simulated exhaust gas temperature set value is in the range of 250 to 300 ° C. %, In the range of 301 to 350 ° C., it is set to 75%. At this time, the infrared heating unit 4 does not need to be soft-started, and thus can raise the temperature at a high speed.
 このように冷媒の流量(冷却部6a、6bの冷却出力)と赤外線加熱部4の加熱出力が制御されることによって、排ガス浄化触媒の直前の模擬排ガスの温度が高速度で昇降される。 Thus, by controlling the flow rate of the refrigerant (cooling output of the cooling units 6a and 6b) and the heating output of the infrared heating unit 4, the temperature of the simulated exhaust gas immediately before the exhaust gas purification catalyst is raised and lowered at a high speed.
 図4は、図3のグラフのデータを取得したのと同じ装置を使用して、LA4コールドスタート試験モードで走行中の車両(排気量2400ccのガソリンエンジン車)の排ガス浄化装置内の触媒の直前における排出ガスの温度変化をどの程度まで再現できるかを実験した場合の実験データをプロットしたグラフである。
 図4のグラフ中、縦軸は温度(℃)と車速(km/h)を、横軸は時間経過(sec)をそれぞれ表している。また、実線で描いた曲線C1は、本発明の装置における模擬排ガスの温度変化を表し、破線で描いた曲線C2は、実車の排出ガスの温度変化を表し、曲線C3は、実車の速度変化を表している。
 図4のグラフから、本発明の排ガス浄化触媒性能評価装置によれば、試験モードで走行中の車両の排ガス浄化装置内の触媒の直前における排出ガスの温度変化を正確に再現することができることがわかる。
FIG. 4 shows a state immediately before the catalyst in the exhaust gas purification apparatus of a vehicle (gasoline engine vehicle with a displacement of 2400 cc) running in the LA4 cold start test mode using the same apparatus that acquired the data of the graph of FIG. It is the graph which plotted the experimental data at the time of experimenting to what extent the temperature change of the exhaust gas in can be reproduced.
In the graph of FIG. 4, the vertical axis represents temperature (° C.) and vehicle speed (km / h), and the horizontal axis represents elapsed time (sec). A curve C1 drawn with a solid line represents a temperature change of the simulated exhaust gas in the apparatus of the present invention, a curve C2 drawn with a broken line represents a temperature change of the exhaust gas of the actual vehicle, and a curve C3 represents a speed change of the actual vehicle. Represents.
From the graph of FIG. 4, according to the exhaust gas purification catalyst performance evaluation apparatus of the present invention, it is possible to accurately reproduce the temperature change of the exhaust gas immediately before the catalyst in the exhaust gas purification apparatus of the vehicle running in the test mode. Recognize.
 図5は、図3のグラフのデータを取得したのと同じ装置を使用して、模擬排ガス温度設定値を、300~600℃の範囲において、一定の周期で昇降させた場合(昇温時の温度勾配=60℃/sec、降温時の温度勾配=25℃/sec)の、排ガス浄化触媒の直前の模擬排ガスの温度変化を示したグラフである。図5のグラフから、本発明の排ガス浄化触媒性能評価装置によれば、排ガス浄化触媒の直前の模擬排ガスの温度を、1秒単位で昇降させることができることがわかる。 FIG. 5 shows the case where the simulated exhaust gas temperature set value is raised and lowered at a constant cycle in the range of 300 to 600 ° C. using the same apparatus that acquired the data of the graph of FIG. It is the graph which showed the temperature change of the simulation exhaust gas just before an exhaust gas purification catalyst of a temperature gradient = 60 degreeC / sec and the temperature gradient at the time of temperature fall = 25 degreeC / sec). From the graph of FIG. 5, it can be seen that according to the exhaust gas purification catalyst performance evaluation apparatus of the present invention, the temperature of the simulated exhaust gas immediately before the exhaust gas purification catalyst can be raised and lowered in units of 1 second.
 図6は、図3のグラフのデータを取得したのと同じ装置を使用して、模擬排ガス温度設定値を、30℃、50℃、80℃のそれぞれにおいて、一定時間維持した場合の、排ガス浄化触媒の直前の模擬排ガスの温度変化を示したグラフである。図6のグラフから、本発明の排ガス浄化触媒性能評価装置によれば、100℃以下の低温領域においても、模擬排ガスの温度を安定して昇降させ得ることがわかる。 FIG. 6 shows the exhaust gas purification when the simulated exhaust gas temperature set value is maintained at 30 ° C., 50 ° C., and 80 ° C. for a certain period of time using the same apparatus that acquired the data of the graph of FIG. It is the graph which showed the temperature change of the simulation exhaust gas just before a catalyst. From the graph of FIG. 6, it can be seen that according to the exhaust gas purifying catalyst performance evaluation apparatus of the present invention, the temperature of the simulated exhaust gas can be raised and lowered stably even in a low temperature region of 100 ° C. or lower.
1 ガス導入管
1a 一端
1b 他端
2 ガスセル
2a 触媒収容管
2b テーパ管
3 排ガス浄化触媒
4 赤外線加熱部
5 スペース
6a、6b 冷却部
7 冷媒溜
7a 第1の環状フランジ
7b 第2の環状フランジ
7c 側壁
7d 冷媒入口
7e 冷媒出口
8 冷媒供給源
8a 水タンク
8b ポンプ
9 冷媒供給管路
10 冷媒排出管路
11 流量制御ユニット
11a 主管路
11b 分流弁
12 遮光板
13 温度センサー
14 制御部
15 空気供給管路
20 ハウジング
20a 第1弁座
20b 第2弁座
21 キャビティ
22 入口管路
23 第1出口管路
24 第2出口管路
25 弁体
26 ロッド
27 リニアアクチュエータ
28 基台
DESCRIPTION OF SYMBOLS 1 Gas introduction pipe 1a One end 1b Other end 2 Gas cell 2a Catalyst accommodating pipe 2b Taper pipe 3 Exhaust gas purification catalyst 4 Infrared heating part 5 Space 6a, 6b Cooling part 7 Refrigerant reservoir 7a First annular flange 7b Second annular flange 7c Side wall 7d Refrigerant inlet 7e Refrigerant outlet 8 Refrigerant supply source 8a Water tank 8b Pump 9 Refrigerant supply line 10 Refrigerant discharge line 11 Flow rate control unit 11a Main line 11b Flow dividing valve 12 Light shielding plate 13 Temperature sensor 14 Control unit 15 Air supply line 20 Housing 20a First valve seat 20b Second valve seat 21 Cavity 22 Inlet conduit 23 First outlet conduit 24 Second outlet conduit 25 Valve element 26 Rod 27 Linear actuator 28 Base

Claims (11)

  1.  排ガス浄化触媒の性能を評価する装置であって、
     一端側から模擬排ガスが導入されるガス導入管と、
     前記ガス導入管の他端に接続され、内部に前記排ガス浄化触媒が収容されるガスセルと、
     前記ガス導入管および前記ガスセルの外側に間隔をあけて配置された赤外線加熱部と、
     前記ガス導入管の前記他端から上流側の一定の長さ、または前記ガスセル側から前記ガス導入管側に至る一定の長さにわたってのびる領域を冷却する冷却部と、
     前記ガスセルおよび前記赤外線加熱部間のスペース内に配置されるとともに、前記冷却部によって冷却される前記領域の下流側の端の近傍から下流側にのびる遮光板と、を備え、前記排ガス浄化触媒は、前記ガスセル内の前記冷却部によって冷却される前記領域より下流側であって、前記遮光板によって赤外線が遮られた領域に収容され、
     前記装置は、さらに、
     前記ガスセル内の前記赤外線が遮られた領域に、前記排ガス浄化触媒から上流側に間隔をあけて配置された温度センサーと、
     予め決定された前記温度センサーの位置の模擬排ガス温度設定値に従って前記冷却部を制御し、かつ、前記温度センサーからの検出信号に基づいて前記赤外線加熱部を制御する制御部と、を備えており、前記冷却部による冷却が常時行われるとともに、前記冷却部の冷却出力と前記赤外線加熱部の加熱出力が前記制御部によって制御され、それによって、前記排ガス浄化触媒の直前の前記模擬排ガスの温度が前記模擬排ガス温度設定値に一致するように制御されるものであることを特徴とする装置。
    An apparatus for evaluating the performance of an exhaust gas purification catalyst,
    A gas introduction pipe into which simulated exhaust gas is introduced from one end side;
    A gas cell connected to the other end of the gas introduction pipe and containing the exhaust gas purification catalyst therein;
    An infrared heating unit disposed at intervals outside the gas introduction pipe and the gas cell;
    A cooling section that cools a region extending from the other end of the gas introduction pipe to a certain length upstream, or a certain length extending from the gas cell side to the gas introduction pipe;
    A light-shielding plate disposed in a space between the gas cell and the infrared heating unit and extending from the vicinity of the downstream end of the region cooled by the cooling unit to the downstream side, , In the region downstream of the region cooled by the cooling unit in the gas cell, the infrared ray being blocked by the light shielding plate,
    The apparatus further comprises:
    A temperature sensor disposed at an upstream side from the exhaust gas purification catalyst in a region where the infrared ray is blocked in the gas cell;
    A control unit that controls the cooling unit in accordance with a simulated exhaust gas temperature setting value of the position of the temperature sensor determined in advance, and controls the infrared heating unit based on a detection signal from the temperature sensor. The cooling by the cooling unit is always performed, and the cooling output of the cooling unit and the heating output of the infrared heating unit are controlled by the control unit, whereby the temperature of the simulated exhaust gas immediately before the exhaust gas purification catalyst is controlled. The apparatus is controlled to match the simulated exhaust gas temperature set value.
  2.  前記冷却部は、
     前記一定の長さにわたり、前記ガス導入管、または前記ガスセルおよび前記ガス導入管に固定され、前記ガス導入管の外側空間、または前記ガスセルおよび前記ガス導入管の外側空間を密閉状態に取り囲む冷媒溜を備え、前記冷媒溜には、少なくとも1つの冷媒入口および冷媒出口が形成されており、
     前記冷却部は、さらに、
     冷媒供給源と、
     一端が前記冷媒供給源に接続され、他端が前記冷媒溜の冷媒入口に接続された冷媒供給管路と、
     前記冷媒溜の冷媒出口に接続された冷媒排出管路と、
     前記冷媒供給管路の途中に配置され、冷媒の流量を制御する流量制御ユニットと、を備え、
     前記冷却部の冷却出力は前記冷媒供給源から前記冷媒供給管路に供給される冷媒の流量によって決定され、冷媒が、常時、前記冷媒溜の冷媒入口から前記ガス導入管、または前記ガス導入管および前記ガスセルに向けて噴射され、前記ガス導入管の外周面、または前記ガス導入管および前記ガスセルの外周面を伝って流れた後、前記冷媒溜の冷媒出口から排出されるとともに、前記模擬排ガス温度設定値に従って前記冷媒の流量が前記制御部によって制御され、同時に、前記温度センサーの検出値に基づいて前記赤外線加熱部の加熱出力が前記制御部によって制御されることを特徴とする請求項1に記載の装置。
    The cooling part is
    A refrigerant reservoir fixed to the gas introduction pipe or the gas cell and the gas introduction pipe over the certain length and surrounding the outer space of the gas introduction pipe or the outer space of the gas cell and the gas introduction pipe in a sealed state. The refrigerant reservoir is formed with at least one refrigerant inlet and a refrigerant outlet,
    The cooling unit further includes:
    A refrigerant supply source;
    A refrigerant supply line having one end connected to the refrigerant supply source and the other end connected to a refrigerant inlet of the refrigerant reservoir;
    A refrigerant discharge line connected to a refrigerant outlet of the refrigerant reservoir;
    A flow rate control unit that is disposed in the middle of the refrigerant supply line and controls the flow rate of the refrigerant,
    The cooling output of the cooling unit is determined by the flow rate of the refrigerant supplied from the refrigerant supply source to the refrigerant supply pipe, and the refrigerant is always supplied from the refrigerant inlet of the refrigerant reservoir to the gas introduction pipe or the gas introduction pipe. And is injected toward the gas cell and flows through the outer peripheral surface of the gas introduction pipe or the outer peripheral surface of the gas introduction pipe and the gas cell, and is then discharged from the refrigerant outlet of the refrigerant reservoir, and the simulated exhaust gas The flow rate of the refrigerant is controlled by the control unit according to a temperature set value, and simultaneously, the heating output of the infrared heating unit is controlled by the control unit based on a detection value of the temperature sensor. The device described in 1.
  3.  前記制御部による前記冷媒の流量の制御は、前記模擬排ガス温度設定値が取り得る範囲を複数の温度帯に区分し、前記温度帯毎に冷却に必要な前記冷媒の流量を予め設定しておき、前記模擬排ガス温度設定値がどの前記温度帯に属するのかをその都度判定して、当該温度帯に対応する流量の冷媒を前記冷媒供給源から前記冷媒供給管路に供給することからなっていることを特徴とする請求項2に記載の装置。 The control of the flow rate of the refrigerant by the control unit divides the possible range of the simulated exhaust gas temperature set value into a plurality of temperature zones, and presets the flow rate of the refrigerant necessary for cooling for each temperature zone. , It is determined each time the simulated exhaust gas temperature set value belongs to which temperature range, and a refrigerant having a flow rate corresponding to the temperature range is supplied from the refrigerant supply source to the refrigerant supply line. The apparatus according to claim 2.
  4.  前記赤外線加熱部は、前記制御部によって、前記加熱出力が、前記装置の起動時を除いては前記赤外線加熱部のソフトスタートを不要とすべく予め設定された最低値以下にならないよう制御されることを特徴とする請求項1~請求項3のいずれかに記載の装置。 The infrared heating unit is controlled by the control unit so that the heating output does not become lower than a preset minimum value so as not to require a soft start of the infrared heating unit except when the apparatus is activated. The device according to any one of claims 1 to 3, wherein
  5.  前記赤外線加熱部の前記加熱出力が前記最低値以下にならないようにする制御は、予め決定された前記温度センサーの検出値の範囲を複数の温度帯に区分し、前記温度帯毎に前記加熱出力の前記最低値を予め設定しておき、前記温度センサーの検出値がどの前記温度帯に属するのかをその都度判定して、前記赤外線加熱部の加熱出力が当該温度帯に対応する前記最低値以下にならないようにすることからなっていることを特徴とする請求項4に記載の装置。 The control to prevent the heating output of the infrared heating unit from being equal to or lower than the minimum value is performed by dividing a range of detection values of the temperature sensor determined in advance into a plurality of temperature zones, and the heating output for each temperature zone. Is set in advance, and it is determined each time the temperature sensor detection value belongs, and the heating output of the infrared heating unit is equal to or lower than the minimum value corresponding to the temperature zone. 5. The device according to claim 4, characterized in that it consists of preventing the failure.
  6.  前記冷媒溜は、
     前記ガス導入管の前記他端の外周、または前記ガスセルの外周にシールされた状態で固定された第1の環状フランジと、
     前記第1の環状フランジから上流側に前記一定の長さ離れた位置において、前記ガス導入管の外周にシールされた状態で固定された第2の環状フランジと、
     前記第1および第2の環状フランジの間にのび、前記第1および第2の環状フランジの外周縁同士を接続する筒状の側壁と、を備えていることを特徴とする請求項2~請求項5のいずれかに記載の装置。
    The refrigerant reservoir is
    A first annular flange fixed in a sealed state on the outer periphery of the other end of the gas introduction pipe or on the outer periphery of the gas cell;
    A second annular flange fixed in a state of being sealed to the outer periphery of the gas introduction pipe at a position away from the first annular flange by the predetermined length upstream;
    A cylindrical side wall extending between the first and second annular flanges and connecting outer peripheral edges of the first and second annular flanges is provided. Item 6. The device according to any one of Items 5.
  7.  前記冷媒は、液体状冷媒または気体状冷媒またはそれらの混合物からなっていることを特徴とする請求項2~請求項6のいずれかに記載の装置。 The apparatus according to any one of claims 2 to 6, wherein the refrigerant comprises a liquid refrigerant, a gaseous refrigerant, or a mixture thereof.
  8.  前記冷媒は、純水に空気または窒素を混合したものからなっていることを特徴とする請求項2~請求項6のいずれかに記載の装置。 The apparatus according to any one of claims 2 to 6, wherein the refrigerant is made of pure water mixed with air or nitrogen.
  9.  前記流量制御ユニットは、前記冷媒供給管路の途中に配置された流量調節弁からなっていることを特徴とする請求項2~請求項8のいずれかに記載の装置。 The apparatus according to any one of claims 2 to 8, wherein the flow rate control unit includes a flow rate adjusting valve disposed in the middle of the refrigerant supply pipe.
  10.  前記流量制御ユニットは、
     前記冷媒供給源に接続され、冷媒を循環させる主管路と、
     前記主管路の途中に配置され、前記主管路から前記冷媒供給管路を分岐させる少なくとも1つの分流弁または分岐弁と、からなっていることを特徴とする請求項2~請求項8のいずれかに記載の装置。
    The flow rate control unit includes:
    A main line connected to the refrigerant supply source for circulating the refrigerant;
    9. The apparatus according to claim 2, further comprising at least one branching valve or branching valve that is arranged in the middle of the main pipeline and branches the refrigerant supply pipeline from the main pipeline. The device described in 1.
  11.  前記冷媒排出管路は熱交換器を介して前記冷媒供給源に接続されており、前記冷媒溜から排出された冷媒が前記熱交換器によって所定の温度まで冷却された後、前記冷媒供給源に戻されるようになっていることを特徴とする請求項2~請求項10のいずれかに記載の装置。 The refrigerant discharge line is connected to the refrigerant supply source via a heat exchanger, and after the refrigerant discharged from the refrigerant reservoir is cooled to a predetermined temperature by the heat exchanger, the refrigerant supply source The device according to any one of claims 2 to 10, wherein the device is returned.
PCT/JP2011/073111 2011-06-30 2011-10-06 Device for evaluating catalytic performance in purifying exhaust gas WO2013001663A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-145091 2011-06-30
JP2011145091A JP4813626B1 (en) 2011-06-30 2011-06-30 Exhaust gas purification catalyst performance evaluation device

Publications (1)

Publication Number Publication Date
WO2013001663A1 true WO2013001663A1 (en) 2013-01-03

Family

ID=45044205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073111 WO2013001663A1 (en) 2011-06-30 2011-10-06 Device for evaluating catalytic performance in purifying exhaust gas

Country Status (2)

Country Link
JP (1) JP4813626B1 (en)
WO (1) WO2013001663A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138830B1 (en) * 2012-09-27 2013-02-06 株式会社ベスト測器 Performance evaluation device for exhaust gas purification catalyst or exhaust gas sensor
CN103018408B (en) * 2012-12-10 2014-10-22 中国船舶重工集团公司第七一八研究所 Device for testing dehydrogenation performance
AT513842B1 (en) * 2013-06-17 2014-08-15 Avl List Gmbh Method for checking the effectiveness of an exhaust aftertreatment device
JP6556588B2 (en) * 2015-10-23 2019-08-07 株式会社ベスト測器 Exhaust gas purification catalyst and exhaust gas sensor performance evaluation device
CN109443785B (en) * 2018-12-05 2024-02-20 西华大学 Test bed for researching condensation of hydrocarbon mixture and test method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222810A (en) * 1990-01-26 1991-10-01 Calsonic Corp Exhaust gas leading out device for vehicle
JPH056347U (en) * 1991-07-09 1993-01-29 三菱自動車エンジニアリング株式会社 Exhaust gas temperature control device
JP2003126658A (en) * 2001-10-26 2003-05-07 Horiba Ltd Catalyst evaluating and testing apparatus
JP2005523396A (en) * 2001-08-06 2005-08-04 サウスウェスト リサーチ インスティテュート Method and apparatus for testing the durability of a catalytic converter
JP2006275027A (en) * 2005-03-30 2006-10-12 Nippon Oil Corp Gas filter structure for test, test device and evaluation method
JP2007085891A (en) * 2005-09-22 2007-04-05 National Traffic Safety & Environment Laboratory Device and method for testing catalyst deterioration by measuring exhaust flow rate in actual travel of automobile
JP2007316060A (en) * 2006-04-24 2007-12-06 Johnson Matthey Plc Particulate matter generator and capturing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222810A (en) * 1990-01-26 1991-10-01 Calsonic Corp Exhaust gas leading out device for vehicle
JPH056347U (en) * 1991-07-09 1993-01-29 三菱自動車エンジニアリング株式会社 Exhaust gas temperature control device
JP2005523396A (en) * 2001-08-06 2005-08-04 サウスウェスト リサーチ インスティテュート Method and apparatus for testing the durability of a catalytic converter
JP2003126658A (en) * 2001-10-26 2003-05-07 Horiba Ltd Catalyst evaluating and testing apparatus
JP2006275027A (en) * 2005-03-30 2006-10-12 Nippon Oil Corp Gas filter structure for test, test device and evaluation method
JP2007085891A (en) * 2005-09-22 2007-04-05 National Traffic Safety & Environment Laboratory Device and method for testing catalyst deterioration by measuring exhaust flow rate in actual travel of automobile
JP2007316060A (en) * 2006-04-24 2007-12-06 Johnson Matthey Plc Particulate matter generator and capturing device

Also Published As

Publication number Publication date
JP2013011238A (en) 2013-01-17
JP4813626B1 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
RU2395752C2 (en) Waste gas heat exchanger, namely waste gas cooler for recirculation of waste gases in automobiles
JP4813626B1 (en) Exhaust gas purification catalyst performance evaluation device
KR100637641B1 (en) Filter for egr system heated by an enclosing catalyst
CN202420925U (en) Exhaust sampler
US9086003B2 (en) Exhaust gas cleaning device for a watercraft, method for operating an exhaust gas cleaning device and watercraft
US6895752B1 (en) Method and apparatus for exhaust gas recirculation cooling using a vortex tube to cool recirculated exhaust gases
US20010054281A1 (en) Non-engine based exhaust component rapid aging system
CN104514598A (en) Exhaust gas treatment device
US9341545B2 (en) Testing catalytic efficiency of an exhaust component
US8678813B2 (en) Method for producing a stream of hot combustion exhaust gases at a settable temperature, apparatus for carrying out the method and use of the combustion exhaust gases for the targeted ageing of catalysts
JP2007154819A (en) Exhaust emission control device and exhaust emission control method using the same
JP5075286B1 (en) Evaluation system for simulated exhaust gas
JP2022526523A (en) Exhaust gas purification device, internal combustion engine equipped with the exhaust gas purification device, and a method for regulating exhaust gas.
KR20200004244A (en) Internal combustion engine and method of measuring a component of exhaust in an exhaust gas
CN110603373B (en) Method for controlling temperature of NOx control component and exhaust aftertreatment system
RU2727122C1 (en) Exhaust gas catalytic converter
ES2276381T3 (en) SYSTEM AND PROCEDURE TO REGULATE THE REGENERATION OF AN INTERNAL COMBUSTION ENGINE PARTICLE FILTER.
JP5705128B2 (en) Method and apparatus for testing catalytic materials
JP5138830B1 (en) Performance evaluation device for exhaust gas purification catalyst or exhaust gas sensor
KR101776255B1 (en) A Diesel Particulate Filter having a heat exchanger inside
KR102566529B1 (en) System for after-treatment of exhaust gas for ghp engine
KR200319842Y1 (en) Water cooler for EGR gas
JP2016527435A (en) A naturally aspirated common rail diesel engine that is compliant with ultra-low PM emission regulations through self-regenerative exhaust gas aftertreatment.
KR101676271B1 (en) Heat Exchanger Having Hollow Structured Housing
JP2022054605A (en) Reducer supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868433

Country of ref document: EP

Kind code of ref document: A1