WO2013001650A1 - Wireless communication system, mobile station, base station, and wireless communication method - Google Patents

Wireless communication system, mobile station, base station, and wireless communication method Download PDF

Info

Publication number
WO2013001650A1
WO2013001650A1 PCT/JP2011/065105 JP2011065105W WO2013001650A1 WO 2013001650 A1 WO2013001650 A1 WO 2013001650A1 JP 2011065105 W JP2011065105 W JP 2011065105W WO 2013001650 A1 WO2013001650 A1 WO 2013001650A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
mobile station
base station
signal
control information
Prior art date
Application number
PCT/JP2011/065105
Other languages
French (fr)
Japanese (ja)
Inventor
田中 良紀
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2013522604A priority Critical patent/JP5605509B2/en
Priority to PCT/JP2011/065105 priority patent/WO2013001650A1/en
Publication of WO2013001650A1 publication Critical patent/WO2013001650A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to a wireless communication system, a mobile station, a base station, and a wireless communication method.
  • wireless communication systems such as mobile phone systems and wireless LANs (Local Area Networks) are widely used.
  • active discussions are ongoing on next-generation wireless communication technology in order to further increase the speed and bandwidth of wireless communication.
  • 3GPP 3rd Generation Partnership Project
  • W-CDMA Wideband-CDMA
  • CDMA code division multiple access
  • OFDMA orthogonal frequency division multiple access
  • LTE-A LTE-Advanced
  • a wireless communication system may include a pico cell or a femto cell having a cell radius smaller than that of the macro cell (ie, transmission power of the base station is small).
  • a radio access network including a plurality of types of cells having different cell radii may be referred to as a heterogeneous network.
  • a pico cell or a femto cell may be formed such that all or part of the area overlaps with the macro cell.
  • the second carrier is transmitted to the mobile station having a large interference with the other cellular system.
  • a method of using a frequency has been proposed.
  • a system has been proposed in which a plurality of arbitration stations belonging to different service sets mutually mediate interference between service sets by transmitting and receiving beacons on a common channel in a predetermined frequency band.
  • the signal strength of each usable radio channel is measured to calculate the influence level of interference from other channels, and communication is selected as the radio channel that uses the candidate channel with the minimum influence level of interference.
  • a device has been proposed.
  • a base station of a certain cell for example, a macro cell
  • a base station of another cell for example, a pico cell or a femto cell in which the macro cell and the area overlap
  • a sensitivity suppression effect may occur.
  • the sensitivity suppression effect is that a small desired signal is buried in noise or quantization noise in the analog receiver when the reception level of other cell signals with a frequency different from that of the desired signal is very high. This is a phenomenon in which reception characteristics deteriorate. For example, consider a case where the reception level of a macro cell signal having a desired frequency is relatively very small and the reception level of a femto cell signal having a frequency close to the desired frequency is relatively very high. In such a case, a signal of another frequency close to a desired frequency cannot be completely removed by the reception filter, and a reception signal (femtocell signal) having a large level from another cell passes through the reception filter. As a result, the detection accuracy of a received signal (macrocell signal) having a desired frequency is lowered, and a sensitivity suppression effect may occur.
  • the reception quality such as SINR (Signal-to-Interference-and-Noise-Ration) may decrease due to the sensitivity suppression effect, so it is desirable to reduce this.
  • SINR Signal-to-Interference-and-Noise-Ration
  • the conventional technique has a problem that the sensitivity suppression effect cannot be reduced.
  • the present invention has been made in view of these points, and an object of the present invention is to provide a radio communication system, a mobile station, a base station, and a radio communication method that can reduce the sensitivity suppression effect that occurs in received signal processing. To do.
  • a wireless communication system having a mobile station and a base station is provided.
  • the mobile station detects the sensitivity suppression effect generated in the received signal processing based on the received signal level of the other frequency different from the frequency used by the mobile station, and requests to change the frequency according to the detection status of the sensitivity suppression effect.
  • the control information indicating is transmitted.
  • the base station receives control information from the mobile station, and changes allocation of frequencies used by the mobile station for communication based on the received control information.
  • a wireless communication method performed by a system including a mobile station and a base station.
  • the sensitivity suppression effect generated in the received signal processing of the mobile station is detected based on the received signal level of another frequency different from the frequency used by the mobile station for communication.
  • Control information indicating a frequency change request is transmitted from the mobile station to the base station according to the detection state of the sensitivity suppression effect. Based on the control information, allocation of frequencies used by the mobile station for communication is changed.
  • FIG. 1 is a diagram illustrating a wireless communication system according to the first embodiment.
  • the wireless communication system according to the first embodiment includes a mobile station 10 and a base station 20 that perform wireless communication.
  • the mobile station 10 may communicate directly with the base station 20 or may communicate with the base station 20 via a relay station.
  • the mobile station 10 includes a detection unit 11 and a transmission unit 12.
  • the detection unit 11 detects the sensitivity suppression effect generated in the reception signal processing based on the reception signal level (for example, reception power) of another frequency different from the frequency used by the mobile station 10 for communication.
  • the detection unit 11 may determine whether the sensitivity suppression effect is large from the received signal level of the frequency # 1 used for communication and the received signal level of the frequency # 2 not used for communication. For example, when the difference or ratio of the received signal level of frequency # 2 with respect to the received signal level of frequency # 1 exceeds the threshold, the detection unit 11 determines that the sensitivity suppression effect is large. Alternatively, the detection unit 11 determines that the sensitivity suppression effect is large when the received signal level of the frequency # 2 exceeds the threshold value.
  • the mobile station 10 measures received signal levels of frequencies # 1 and # 2, for example.
  • a signal after passing through a reception filter used for reception signal processing such as a band pass filter (BPF: BandBPass Filter) may be used.
  • BPF BandBPass Filter
  • the detection of the sensitivity suppression effect may be realized using a memory that stores a program such as a RAM (Random Access Memory) and a processor that executes a program such as a CPU (Central Processing Unit). Further, it may be realized using an electronic circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the transmission unit 12 transmits, to the base station 20, control information 13 indicating a request for changing the frequency used by the mobile station 10 for communication in accordance with the detection status of the sensitivity suppression effect by the detection unit 11. For example, the transmission unit 12 transmits the control information 13 when it is determined that the sensitivity suppression effect is large. Alternatively, the transmission unit 12 determines that the sensitivity suppression effect is large, and the sensitivity suppression effect cannot be sufficiently reduced by changing the pass band of the reception filter (for example, shifting the pass band). When it is determined, the control information 13 is transmitted.
  • Whether or not the sensitivity suppression effect can be sufficiently reduced can be determined in consideration of the filter characteristics of the reception filter. For example, when the frequency # 1 cannot be excluded from the passband while the frequency # 1 is included in the passband of the reception filter because the difference between the frequency # 1 and the frequency # 2 is less than a predetermined width, It is determined that the sensitivity suppression effect cannot be reduced by the change. On the other hand, when it is determined that the sensitivity suppression effect can be sufficiently reduced by changing the pass band, the mobile station 10 does not transmit the control information 13 to the base station 20 and the frequency # 2 is excluded from the pass band. The pass band of the reception filter may be changed.
  • the base station 20 includes a receiving unit 21 and a control unit 22.
  • the receiving unit 21 receives control information 13 indicating a frequency change request from the mobile station 10.
  • the control unit 22 changes the allocation of frequencies used by the mobile station 10 for communication based on the control information 13.
  • the control unit 22 changes the frequency used by the mobile station 10 for communication to a frequency separated from the frequency # 2 (frequency not used for communication) causing the sensitivity suppression effect by a predetermined width or more.
  • the control unit 22 may notify the mobile station 10 of the changed frequency.
  • the frequency allocation change may be realized using a memory that stores a program such as a RAM and a processor that executes a program such as a CPU. Moreover, you may implement
  • the base station 20 may acquire cell information indicating the frequency used by each peripheral base station for communication from the peripheral base station.
  • the control unit 22 can refer to the cell information, specify the frequency at which the mobile station 10 can receive the signal of the neighboring base station, and determine the changed frequency so as to avoid the specified frequency.
  • the mobile station 10 may transmit the control information 13 by including information on a frequency whose reception signal level is high and which is desired to be excluded from the pass band of the reception filter.
  • the control unit 22 can determine the changed frequency so as to avoid the excluded frequency indicated by the control information 13.
  • the mobile station 10 may calculate a frequency candidate after the change, and may transmit the frequency candidate information included in the control information 13. In that case, the control unit 22 can select the changed frequency from the frequency candidates indicated by the control information 13.
  • the sensitivity suppression effect generated in the received signal processing of the mobile station 10 is detected based on the received signal level of another frequency different from the frequency used by the mobile station 10 for communication.
  • Control information 13 indicating a frequency change request is transmitted from the mobile station 10 to the base station 20 according to the detection state of the sensitivity suppression effect. Based on the control information 13, the allocation of frequencies used by the mobile station 10 for communication is changed. Thereby, the sensitivity suppression effect produced by the received signal processing of the mobile station 10 can be reduced, and the reception quality of the mobile station 10 can be improved.
  • the mobile station has a higher level than the signal (desired signal) to be extracted if another base station is present near the connected base station.
  • a signal that does not need to be extracted may be received at a frequency that the local station does not use for communication.
  • the mobile station may not be able to completely remove a signal having a frequency that is not used for communication and that is close to the frequency used for communication by the reception filter.
  • the received signal after passing through the reception filter contains an unnecessary signal with a level greater than the desired signal, and the level of the desired signal is relatively suppressed through subsequent automatic gain control, thermal noise application, quantization processing, etc. Therefore, the detection accuracy of the desired signal may be lowered.
  • the mobile station 10 requests the base station 20 to change the frequency according to the detection state of the sensitivity suppression effect, it becomes easy for the mobile station 10 to remove unnecessary signals with the reception filter.
  • the mobile station 10 does not need to request the base station 20 to change the frequency when the unnecessary signal can be removed by changing the pass band of the reception filter.
  • the LTE technical specification (TS36.101) states that if the reception power of an unnecessary signal at a frequency 15 to 60 MHz away from the frequency of the desired signal is ⁇ 44 dBm or less, the throughput is lower than when no unnecessary signal is present. Is required to be kept within 5%. However, the received power from the base station at the mobile station 5 m away from the base station having a transmission power of 20 dBm is ⁇ 32 dBm, which exceeds the above-mentioned reference value of ⁇ 44 dBm. For this reason, even if the mobile station complies with the LTE specification, the reception quality of the desired signal may be greatly reduced due to the sensitivity suppression effect near the pico cell or the femto cell.
  • FIG. 2 is a diagram illustrating a wireless communication system according to the second embodiment.
  • the wireless communication system according to the second embodiment includes a mobile station 100 and base stations 200 and 200a.
  • the mobile station 100 is a wireless terminal device that connects to the base stations 200 and 200a to perform wireless communication.
  • the mobile station 100 may be a mobile phone or a mobile information terminal.
  • the base stations 200 and 200a are communication devices having a wireless interface and a wired interface.
  • Base stations 200 and 200a each form a cell.
  • the area of the cell of the base station 200a overlaps with at least a part of the cell of the base station 200.
  • the cell of the base station 200 may be a macro cell, and the cell of the base station 200a may be a femto cell.
  • the base stations 200 and 200a are connected to a wired network 30 (for example, a core network).
  • the base stations 200 and 200a communicate with the mobile station 100 via a wireless interface.
  • a relay station may be interposed between the base stations 200 and 200a and the mobile station 100.
  • the base station 200 and the base station 200a use frequency bands that do not overlap each other for wireless communication.
  • the base station 200 can perform wireless communication using a plurality of frequency bands called component carriers (CC: Component Carrier).
  • CC Component Carrier
  • the base stations 200 and 200a can communicate with each other via the wired network 30.
  • FIG. 3 is a diagram illustrating an example of carrier aggregation.
  • the base station 200 can aggregate two or more CCs among a plurality of CCs set in advance and use them for communication with the mobile station 100.
  • CC aggregation is sometimes referred to as carrier aggregation.
  • CCs # 1 to # 5 are provided at continuous or discontinuous frequencies.
  • CCs # 1 to # 5 may be a set of bands belonging to the same frequency band (for example, 800 MHz band, 2.5 GHz band, 3.5 GHz band, etc.), or may belong to a plurality of different frequency bands. It may be a set.
  • TDD Time Division Duplex
  • DL downlink
  • UL Uplink
  • FDD frequency division duplex
  • a frequency band for DL and a frequency band for UL are secured for each CC.
  • the base station 200 transmits a radio frame for each CC, and controls allocation of radio frame resources (for example, radio resources subdivided by a time axis and a frequency axis).
  • the base station 200 can use a bandwidth wider than the bandwidth of one CC for communication with the mobile station 100 by allocating radio resources of two or more CCs to the mobile station 100 in parallel.
  • the bandwidth of each CC can be set to 5 MHz, 10 MHz, 15 MHz, 20 MHz, etc., for example.
  • the bandwidths of the plurality of CCs may not be the same.
  • FIG. 4 is a block diagram illustrating a mobile station according to the second embodiment.
  • the mobile station 100 includes an antenna 111, a duplexer 112, oscillators 113, 125 and 145, radio frequency (RF) filters 121 and 149, mixers 122, 126, 146 and 148, and an intermediate frequency (IF) filter 123.
  • RF radio frequency
  • a radio resource control unit 131 a measurement unit 132, a control unit 133, a multiplexing unit 141, a modulation unit 142, and a digital-to-analog converter (DAC) 143 are included.
  • a radio resource control unit 131 a measurement unit 132, a control unit 133, a multiplexing unit 141, a modulation unit 142, and a digital-to-analog converter (DAC) 143 are included.
  • a radio resource control unit 131 a measurement unit 132, a control unit 133, a multiplexing unit 141, a modulation unit 142, and a digital-to-analog converter (DAC) 143 are included.
  • a radio resource control unit 131 a measurement unit 132, a control unit 133, a multiplexing unit 141, a modulation unit 142, and a digital-to-analog converter (DAC) 143 are included.
  • a radio resource control unit 131 a measurement unit 132, a control unit
  • the antenna 111 outputs a radio frequency reception signal to the duplexer 112.
  • the radio frequency transmission signal acquired from the duplexer 112 is transmitted.
  • the mobile station 100 may include a plurality of antennas, and may separate the transmitting antenna and the receiving antenna.
  • the duplexer 112 isolates the transmission signal and the reception signal by using a filter or the like, so that the antenna 111 can be used as an antenna for both transmission and reception.
  • the duplexer 112 is sometimes called an antenna duplexer.
  • the duplexer 112 outputs a radio frequency reception signal acquired from the antenna 111 to the RF filter 121.
  • the radio frequency transmission signal acquired from the RF filter 149 is output to the antenna 111.
  • the oscillator 113 generates a reference signal used for signal conversion (down-conversion and up-conversion) between a radio frequency and an intermediate frequency lower than the radio frequency.
  • the oscillator 113 supplies the generated reference signal to the mixers 122 and 148.
  • the RF filter 121 is a band pass filter that acquires a radio frequency reception signal from the duplexer 112 and passes only a signal in a predetermined frequency band.
  • the pass band of the RF filter 121 is set to a desired frequency band (800 MHz band, 2.5 GHz band, 3.5 GHz band, etc.) wider than the pass band of the IF filter 123 and the BB filter 127 in the subsequent stage.
  • the mixer 122 superimposes the reference signal generated by the oscillator 113 on the radio frequency reception signal that has passed through the RF filter 121, and down-converts the radio frequency reception signal into an intermediate frequency reception signal. Then, the intermediate frequency reception signal is output to the IF filter 123.
  • the IF filter 123 is a band pass filter that acquires an intermediate frequency received signal from the mixer 122 and passes only a signal in a frequency band according to an instruction from the control unit 133.
  • the IF filter 123 fixes the passband bandwidth and shifts the passband according to an instruction from the control unit 133.
  • the pass band of the IF filter 123 is wider than the pass band of the BB filter 127 at the subsequent stage, and includes a desired CC frequency and its peripheral frequencies.
  • the AGC 124 performs automatic gain control on the intermediate frequency received signal that has passed through the IF filter 123, and outputs the received signal after level adjustment to the mixer 126. For example, the AGC 124 decreases the gain when the received signal is strong and increases the gain when the received signal is weak so that the received signal level fluctuates in an appropriate range with respect to the average level.
  • the oscillator 125 generates a reference signal used for signal conversion (down conversion) from an intermediate frequency to a baseband frequency lower than the intermediate frequency.
  • the frequency of the reference signal is instructed from the control unit 133 according to the CC used by the mobile station 100 for communication.
  • the oscillator 125 supplies the generated reference signal to the mixer 126.
  • the mixer 126 superimposes the reference signal generated by the oscillator 125 on the intermediate frequency reception signal that has passed through the AGC 124, and down-converts the intermediate frequency reception signal into an analog baseband signal. Then, the analog baseband signal is output to the BB filter 127.
  • the BB filter 127 is a band-pass filter that acquires an analog baseband signal from the mixer 126 and passes a signal in a desired CC frequency band. However, the BB filter 127 may not completely remove a signal having a frequency close to a desired CC frequency band. Further, when the received signal passes through the AGC 124, the mixer 126, and the BB filter 127, element thermal noise may be applied to the received signal.
  • the AGC 128 performs automatic gain control on the analog baseband signal that has passed through the BB filter 127, and outputs the level-adjusted signal to the ADC 129.
  • the ADC 129 converts the analog baseband signal into a digital baseband signal and outputs the digital baseband signal to the demodulation unit 130. In analog-digital conversion, quantization distortion may occur in quantization in which the received signal level is represented by discrete values.
  • the demodulator 130 digitally demodulates the digital baseband signal acquired from the ADC 129.
  • the received signal is subjected to multilevel modulation such as QPSK (Quadrature Phase Keying) and 16QAM (Quadrature Amplitude Modulation).
  • QPSK Quadrature Phase Keying
  • 16QAM Quadrature Amplitude Modulation
  • the RRC processing unit 131 performs RRC layer protocol processing on the demodulated received signal, and extracts the RRC control information transmitted by the base station 200. Then, at least a part of the extracted RRC control information is output to the control unit 133.
  • the extracted RRC control information includes control information indicating a change in CC used by the mobile station 100.
  • the measuring unit 132 measures the received signal level (for example, received power) of the desired signal and the unnecessary signal based on the analog baseband signal before passing through the BB filter 127 and input to the AGC 128. For example, the measurement unit 132 measures the reception signal level of a specific frequency of CC used by the mobile station 100 for communication or the average or maximum of reception signal levels of a plurality of frequencies as the reception signal level of the desired signal. Further, the reception signal level of each frequency outside the CC frequency band is measured as the reception signal level of the unnecessary signal. Then, the measurement unit 132 notifies the control unit 133 of the measurement result of the received signal level. Note that the received signal level may be measured using an analog baseband signal before passing through the BB filter 127.
  • the control unit 133 Based on the RRC control information acquired from the RRC processing unit 131 and the measurement result of the received signal level notified from the measuring unit 132, the control unit 133 detects the sensitivity suppression effect generated in the reception signal processing and reduces the sensitivity suppression effect. Control.
  • the sensitivity suppression effect may occur, for example, when an unnecessary signal having a large level passes through the IF filter 123, the gain of the AGC 124 is suppressed, and element thermal noise is applied to the received signal. Moreover, it may occur due to the influence of quantization distortion generated in the ADC 129.
  • the control unit 133 determines whether there is a possibility that a large sensitivity suppression effect may occur based on the desired signal and the received signal level of the unnecessary signal measured by the measurement unit 132. Further, it is determined whether or not the sensitivity suppression effect can be sufficiently reduced by shifting the pass band of the IF filter 123 from the frequency at which the unnecessary signal has a large level and the filter characteristics of the IF filter 123. When it is determined that the sensitivity suppression effect cannot be sufficiently reduced, the control unit 133 generates RRC control information indicating a request for changing the CC used for communication, and outputs the RRC control information to the multiplexing unit 141.
  • control unit 133 controls the pass band of the IF filter 123 so that a desired signal passes and an unnecessary signal having a large level does not pass as much as possible from the CC used for communication and the filter characteristics of the IF filter 123. Further, the control unit 133 controls the oscillation frequency of the oscillator 125.
  • control unit 133 includes, for example, a processor 134 and a memory 135 in order to detect the sensitivity suppression effect and perform control to reduce the sensitivity suppression effect.
  • the processor 134 executes a program and may be a CPU.
  • the memory 135 stores a program at least temporarily, and may be a volatile storage medium such as a RAM.
  • the processor 134 may read a program from a nonvolatile storage medium such as a ROM (Read Only Memory) or a flash memory and store the program in the memory 135.
  • the control unit 133 can be realized using an electronic circuit such as an ASIC or FPGA.
  • the multiplexing unit 141 multiplexes the user data that has been subjected to error correction coding and the control information generated by the control unit 133 (mapped to radio resources), and outputs the multiplexed data to the modulation unit 142.
  • the modulation unit 142 acquires a digital baseband signal including user data and control information from the multiplexing unit 141, and performs digital modulation such as QPSK or 16QAM. Then, the modulation unit 142 outputs the modulated digital baseband signal to the DAC 143.
  • the DAC 143 converts the digital baseband signal into an analog baseband signal and outputs the analog baseband signal to the BB filter 144.
  • the BB filter 144 is a band pass filter that acquires an analog baseband signal from the DAC 143 and passes a signal in a CC frequency band used for communication.
  • the oscillator 145 generates a reference signal used for signal conversion (up-conversion) from a baseband frequency to an intermediate frequency, and supplies the generated reference signal to the mixer 146.
  • the mixer 146 superimposes the reference signal generated by the oscillator 145 on the analog baseband signal that has passed through the BB filter 144 and upconverts the signal to an intermediate frequency transmission signal. Then, the intermediate frequency transmission signal is output to IF filter 147.
  • the IF filter 147 is a band-pass filter that acquires an intermediate-frequency transmission signal from the mixer 146 and passes a signal in the CC frequency band used for communication.
  • the mixer 148 superimposes the reference signal generated by the oscillator 113 on the intermediate frequency transmission signal that has passed through the IF filter 147 and up-converts the signal to a radio frequency transmission signal. Then, a radio frequency transmission signal is output to the RF filter 149.
  • the RF filter 149 is a band-pass filter that acquires a radio frequency transmission signal from the mixer 148 and passes only a signal in a desired frequency band to the duplexer 112.
  • the control unit 133 is an example of the detection unit 11 described above.
  • Multiplexer 141, modulator 142, DAC 143, BB filter 144, oscillator 145, mixer 146, IF filter 147, mixer 148, and RF filter 149 are examples of transmitter 12 described above.
  • FIG. 5 is a block diagram illustrating a base station according to the second embodiment.
  • the base station 200 includes antennas 211 and 238, a radio reception unit 212, a fast Fourier transform (FFT) unit 213, a demodulation unit 214, a decoding unit 215, a MAC (Medium Access Control) / RLC (Radio Link Control) process.
  • Unit 216 wired interface 221, RRC processing unit 222, table storage unit 223, control unit 224, packet generation unit 231, scheduler 232, encoding unit 233, modulation unit 234, multiplexing unit 235, inverse fast Fourier transform (IFFT: Inverse Fast Fourier Transform) unit 236 and wireless transmission unit 237.
  • FFT fast Fourier transform
  • IFFT Inverse Fast Fourier Transform
  • the antenna 211 receives a radio signal from the mobile station 100 and outputs it to the radio reception unit 212.
  • the radio reception unit 212 acquires a radio frequency reception signal from the antenna 211, down-converts the radio frequency to the baseband frequency, and outputs the reception signal converted into the digital baseband signal to the FFT unit 213.
  • the wireless reception unit 212 includes circuits such as a band pass filter, an oscillator, a mixer, and an ADC for wireless signal processing.
  • the FFT unit 213 acquires a reception signal from the radio reception unit 212, converts a time component into a frequency component by FFT, and outputs the converted reception signal to the demodulation unit 214.
  • the base station 200 may perform conversion from a time component to a frequency component by a method other than FFT.
  • the demodulator 214 digitally demodulates the received signal acquired from the FFT unit 213.
  • the received signal is subjected to multilevel modulation such as QPSK or 16QAM.
  • the decoding unit 215 acquires the demodulated reception signal from the demodulation unit 214, performs error correction decoding, and outputs the decoded reception signal to the MAC / RLC processing unit 216.
  • the received signal is error-correction-encoded, for example, by a convolutional code, a convolutional turbo code, a low density parity check (LDPC) code, or the like.
  • LDPC low density parity check
  • the MAC / RLC processing unit 216 acquires the received signal decoded from the decoding unit 215, and performs protocol processing of the MAC layer and the RLC layer.
  • the user data extracted from the received signal is output to the wired interface 221, for example.
  • the wired interface 221 is an interface that is connected to the wired network 30 and performs packet communication.
  • the wired interface 221 transfers user data transmitted from the mobile station 100 to the wired network 30, receives user data addressed to the mobile station 100 from the wired network 30, and outputs the user data to the packet generator 231.
  • the wired interface 221 acquires control information indicating the frequency band used for communication by the base station 200 a from the base station 200 a via the wired network 30 and outputs the control information to the control unit 224.
  • the RRC processing unit 222 performs RRC layer protocol processing on the demodulated received signal, extracts the RRC control information transmitted by the mobile station 100, and outputs the RRC control information to the control unit 224.
  • the extracted RRC control information includes control information indicating a CC change request.
  • the table storage unit 223 is a volatile storage medium such as a RAM or a non-volatile storage medium such as a flash memory.
  • the table storage unit 223 stores the peripheral cell table.
  • the neighboring cell table includes information on frequency bands used by the base station 200a.
  • the control unit 224 performs control to reduce the sensitivity suppression effect of the mobile station 100 based on the RRC control information acquired from the RRC processing unit 222 and the peripheral cell table stored in the table storage unit 223. For example, when receiving the RRC control information indicating the CC change request from the mobile station 100, the control unit 224 changes the CC assignment to the mobile station 100 so that the sensitivity suppression effect is reduced. Then, the control unit 224 notifies the CC change to the scheduler 232, generates RRC control information indicating the CC change, and outputs the RRC control information to the packet generation unit 231.
  • control unit 224 includes, for example, a processor 225 and a memory 226 for control to reduce the sensitivity suppression effect.
  • the processor 225 executes a program and may be a CPU.
  • the memory 226 stores the program at least temporarily, and may be a volatile storage medium such as a RAM.
  • the processor 225 may read a program from a nonvolatile storage medium such as a ROM or a flash memory and store the program in the memory 226.
  • the table storage unit 223 and the memory 226 may be the same storage device.
  • the control unit 224 can also be realized using an electronic circuit such as an ASIC or FPGA.
  • the packet generation unit 231 converts the user data acquired from the wired interface 221 and the RRC control information acquired from the control unit 224 into a wireless section packet format.
  • the scheduler 232 acquires user data and RRC control information from the packet generation unit 231, performs scheduling according to the CC allocation status notified from the control unit 224, and sequentially outputs the user data and RRC control information to the encoding unit 233.
  • the encoding unit 233 acquires a transmission signal including user data and RRC control information from the scheduler 232, performs error correction encoding, and outputs the transmission signal to the modulation unit 234.
  • a convolutional code For example, a convolutional code, a convolutional turbo code, an LDPC code, or the like is used as the error correction code.
  • the modulation unit 234 acquires the transmission signal encoded from the encoding unit 233, performs digital modulation such as QPSK or 16QAM, and outputs the modulated transmission signal to the multiplexing unit 235.
  • the multiplexing unit 235 obtains a transmission signal including user data and RRC control information from the modulation unit 234, multiplexes it with a control signal of a physical layer and a predetermined pilot signal (mapped to a radio resource), and converts the transmission signal into an IFFT To the unit 236.
  • the IFFT unit 236 acquires the transmission signal from the multiplexing unit 235, converts the frequency component into a time component by IFFT, and outputs the transmission signal to the wireless transmission unit 237.
  • the base station 200 may perform conversion from a frequency component to a time component by a method other than IFFT.
  • the wireless transmission unit 237 acquires a digital baseband signal as a transmission signal from the wireless transmission unit 237, performs up-conversion from a baseband frequency to a radio frequency, and outputs a radio frequency transmission signal to the antenna 238.
  • the wireless transmission unit 237 includes circuits such as a band pass filter, an oscillator, a mixer, and a DAC for wireless signal processing.
  • the antenna 238 outputs the transmission signal acquired from the wireless transmission unit 237.
  • the base station 200 may not separate the transmitting antenna and the receiving antenna.
  • the wireless reception unit 212, the FFT unit 213, the demodulation unit 214, the decoding unit 215, the MAC / RLC processing unit 216, and the RRC processing unit 222 are examples of the above-described reception unit 21.
  • the control unit 224 is an example of the control unit 22 described above.
  • the base station 200a can also be implemented using the same hardware as the base station 200.
  • FIG. 6 is a diagram illustrating an example of a situation where the sensitivity suppression effect occurs.
  • a pass band as shown in FIG. 6 is set in the IF filter 123.
  • the pass band of the IF filter 123 can be shifted.
  • At the boundary between the passband and other frequencies there is an attenuation region where the attenuation of the received signal level changes. If an unnecessary signal having a large level exists in at least one of the pass band and the attenuation band, a sensitivity suppression effect may occur.
  • an unnecessary signal having a level greater than that of the desired signal exists in the pass band of the IF filter 123.
  • the desired signal is a signal (desired CC signal) received by the mobile station 100 from the base station 200, and the unnecessary signal is a signal transmitted by the base station 200a.
  • FIG. 7 is a diagram illustrating an example of a neighboring cell table included in the base station.
  • the peripheral cell table 227 is stored in the table storage unit 223.
  • the control unit 224 updates the neighboring cell table 227 based on the control information received from the base station 200a.
  • the peripheral cell table 227 includes cell ID and frequency list items.
  • the cell ID is identification information for identifying neighboring cells of the base station 200.
  • the frequency list includes one or more frequency bands used in the base station (peripheral base station) of the peripheral cell indicated by the cell ID.
  • the frequency band may be expressed using a center frequency and a bandwidth, or may be expressed using a lower limit frequency and an upper limit frequency.
  • the identification information (for example, CC ID) may be used.
  • FIG. 8 is a diagram illustrating an example of a message from the mobile station to the base station.
  • a message as shown in FIG. 8 is transmitted from the mobile station 100 to the base station 200 as RRC control information indicating a CC change request.
  • the mobile station 100 can use any of the following three methods as a method for requesting the base station 200 to change the CC.
  • the mobile station 100 simply notifies the base station 200 that the CC should be changed.
  • the mobile station 100 transmits RRC control information including its own identification information (mobile station ID) and a message type indicating a CC change request.
  • the mobile station 100 notifies the base station 200 of a frequency to be excluded from the pass band and the attenuation band of the IF filter 123 because an unnecessary signal having a large level is detected.
  • the mobile station 100 transmits RRC control information including a list of excluded frequencies in addition to the mobile station ID and the message type.
  • the mobile station 100 notifies the base station 200 of frequency candidates that the local station preferably uses for communication in order to reduce the sensitivity suppression effect.
  • the mobile station 100 transmits RCC control information including a list of frequency candidates in addition to the mobile station ID and the message type.
  • the range of frequency candidates may be expressed using a lower limit frequency or an upper limit frequency, may be expressed using a center frequency and a bandwidth, or may be expressed using a CC ID.
  • FIG. 9 is a flowchart showing the first mobile station processing.
  • the mobile station processing in FIG. 9 corresponds to a case where a CC change request is made by the first method described above.
  • the process shown in FIG. 9 is executed continuously (for example, periodically) by the mobile station 100.
  • Step S11 The measuring unit 132 acquires an analog baseband signal after passing through the IF filter 123 and the BB filter 127. However, the measurement unit 132 may acquire an analog baseband signal before passing through the BB filter 127.
  • the measuring unit 132 measures the received signal level of the desired signal and the received signal level of the unnecessary signal remaining after the filter from the acquired analog baseband signal.
  • the former for example, the average or maximum of the reception signal level of a specific frequency belonging to the CC used for communication or the reception signal level of a plurality of frequencies belonging to the CC is measured.
  • the latter for example, the received signal level of each frequency not belonging to the CC used for communication is measured.
  • Step S13 The control unit 133 determines whether there is an unnecessary signal whose level is higher than the desired signal and whose difference or ratio with the desired signal exceeds the threshold value. If it exists, it is determined that a large sensitivity suppression effect is generated, and the process proceeds to step S14. On the other hand, if it does not exist, it is determined that a large sensitivity suppression effect does not occur, and the process ends. Note that the control unit 133 may determine that a large sensitivity suppression effect occurs when the reception signal level of the unnecessary signal exceeds the threshold value.
  • Step S14 The control unit 133 determines the pass band from the filter characteristics of the IF filter 123 (including the pass band and the width of the attenuation band) and the frequency at which there is an unnecessary signal whose difference or ratio exceeds the threshold. It is determined whether or not the unnecessary signal can be excluded by shifting. If it can be excluded, the process proceeds to step S17. If it cannot be excluded, the process proceeds to step S15.
  • control unit 133 confirms whether or not the frequency where the detected unnecessary signal exists is included between the lower limit frequency and the upper limit frequency used for communication, and determines that it is not excluded. This can occur when the mobile station 100 uses more than one CC. Further, the control unit 133 calculates the distance (frequency difference between edges) between the frequency band of the CC used for communication and the frequency where the detected unnecessary signal exists, and cannot be excluded when the distance is less than a predetermined threshold. Judge. The distance threshold is set in advance in consideration of the filter characteristics of the IF filter 123.
  • Step S15 The control unit 133 generates RRC control information (corresponding to the message (A) in FIG. 8) indicating a CC change request.
  • the RRC control information is converted into a radio signal and transmitted from the antenna 111 to the base station 200.
  • Step S16 The RRC processing unit 131 extracts RRC control information indicating a CC change instruction from the received signal from the base station 200.
  • the control unit 133 instructs the oscillator 125 to change the oscillation frequency and changes the CC to be received. Note that the frequency band of each CC used by the base station 200 is described in broadcast information transmitted by the base station 200, for example.
  • Step S17 The control unit 133 sets the pass band of the IF filter 123 so that the frequency band of the CC used for communication is included in the pass band and the attenuation band, and the frequency where the detected unnecessary signal exists is not included. Shift. For example, the control unit 133 determines the shift direction from the current pass band and the CC frequency band used for communication so that the distance between the pass band and the frequency where the detected unnecessary signal is present is equal to or greater than the threshold. Determine the shift amount.
  • FIG. 10 is a flowchart showing the second mobile station process.
  • the mobile station processing of FIG. 10 corresponds to a case where a CC change request is made by the second method described above.
  • the process shown in FIG. 10 is executed continuously (for example, periodically) by the mobile station 100.
  • Step S ⁇ b> 25 The control unit 133 lists the frequencies at which there are unnecessary signals whose difference or ratio from the desired signal exceeds the threshold as exclusion frequencies.
  • Step S26 The control unit 133 indicates a CC change request and generates RRC control information (corresponding to the message (B) in FIG. 8) including an excluded frequency list.
  • the RRC control information is converted into a radio signal and transmitted from the antenna 111 to the base station 200.
  • FIG. 11 is a flowchart showing the third mobile station process.
  • the mobile station processing in FIG. 11 corresponds to a case where a CC change request is made by the third method described above.
  • the process shown in FIG. 11 is executed continuously (for example, periodically) by the mobile station 100.
  • Step S ⁇ b> 35 The control unit 133 calculates frequency candidates for reducing the sensitivity suppression effect from the filter characteristics of the IF filter 123 and the frequency at which there is an unnecessary signal whose difference or ratio between the desired signal exceeds the threshold. .
  • the control unit 133 calculates a frequency range in which the distance from the frequency at which the detected unnecessary signal exists is equal to or greater than a threshold value.
  • Step S36 The control unit 133 indicates a CC change request and generates RRC control information (corresponding to the message (C) in FIG. 8) including the frequency candidate list.
  • the RRC control information is converted into a radio signal and transmitted from the antenna 111 to the base station 200.
  • FIG. 12 is a flowchart showing the base station processing.
  • the RRC processing unit 222 extracts RRC control information indicating a CC change request from the received signal from the mobile station 100.
  • Step S42 The control unit 224 determines whether the extracted RRC control information specifies a frequency candidate (for example, corresponds to the format of the message (C) in FIG. 8). If a frequency candidate is designated, the process proceeds to step S44. If no frequency candidate is designated, the process proceeds to step S43.
  • a frequency candidate for example, corresponds to the format of the message (C) in FIG. 8
  • Step S43 The control unit 224 determines whether the extracted RRC control information specifies an excluded frequency (for example, corresponds to the format of the message (B) in FIG. 8). If an excluded frequency is designated, the process proceeds to step S45. If neither a frequency candidate nor an excluded frequency is designated, the process proceeds to step S46.
  • an excluded frequency for example, corresponds to the format of the message (B) in FIG. 8
  • Step S44 The control unit 224 selects the CC within the designated frequency candidate as the CC after change. When two or more CCs are used (when carrier aggregation is performed), the CCs are selected so that the two or more CCs do not straddle the frequency where the unnecessary signal exists. Then, the process proceeds to step S48.
  • Step S45 The control unit 224 adjusts the pass band of the IF filter 123 to select the changed CC so that the specified excluded frequency can be excluded from the pass band and the attenuation band. For example, the control unit 224 calculates a frequency range in which the distance from the excluded frequency is equal to or greater than a threshold, and selects a CC within the calculated range. In addition, when performing carrier aggregation, CC is selected so that two or more CC may not straddle the frequency in which an unnecessary signal exists. Then, the process proceeds to step S48.
  • Step S46 The control unit 224 searches the neighboring cell table 227 stored in the table storage unit 223, and confirms the frequency band used by the neighboring base station.
  • Step S47 The control unit 224 selects the changed CC so that the frequency band of the neighboring base station can be excluded from the pass band and the attenuation band by adjusting the pass band of the IF filter 123. For example, the control unit 224 selects a CC by calculating a frequency range in which the distance from the frequency band of the surrounding base station is equal to or greater than a threshold value. In addition, when performing carrier aggregation, CC is selected so that two or more CC may not straddle the frequency band of a periphery base station.
  • Step S48 The control unit 224 generates RRC control information that includes information on one or more selected CCs (for example, CC IDs) and indicates a CC change instruction.
  • the RRC control information is converted into a radio signal and transmitted from the antenna 238 to the mobile station 100.
  • FIG. 13 is a diagram illustrating a first shift example of the passband of the filter.
  • an unnecessary signal having a high level for example, a transmission signal from the base station 200a
  • the desired signal received from the base station 200 is more than the threshold value away from the unnecessary signal on the frequency axis.
  • the mobile station 100 does not request the base station 200 to change the CC, so that the frequency of the desired signal is included in the pass band and the frequency of the unnecessary signal is excluded from the pass band and the attenuation band. Shift the passband.
  • the mobile station 100 shifts the passband so that the edge of the attenuation region and the edge of the unnecessary signal are adjacent to each other so that the shift amount is minimized. In the state after the shift, the sensitivity suppression effect is sufficiently suppressed.
  • FIG. 14 is a diagram illustrating a second shift example of the passband of the filter.
  • an unnecessary signal with a high level for example, a transmission signal of the base station 200 a
  • the desired signal received from the base station 200 is more than the threshold value away from the unnecessary signal on the frequency axis.
  • the mobile station 100 does not request the base station 200 to change the CC, so that the frequency of the desired signal is included in the pass band and the frequency of the unnecessary signal is excluded from the pass band and the attenuation band. Shift the passband.
  • the mobile station 100 shifts the passband so that the edge of the attenuation region and the edge of the unnecessary signal are adjacent to each other so that the shift amount is minimized. In the state after the shift, the sensitivity suppression effect is sufficiently suppressed.
  • FIG. 15 is a diagram illustrating a third shift example of the passband of the filter.
  • the pass band of the IF filter 123 includes an unnecessary signal having a high level (for example, a transmission signal of the base station 200a). In this state, a large sensitivity suppression effect can occur. Further, the desired signal received from the base station 200 is not separated from the unnecessary signal by more than a threshold on the frequency axis. For this reason, the pass band of the IF filter 123 cannot be shifted so that the frequency of the desired signal is included in the pass band and the frequency of the unnecessary signal is excluded from the pass band and the attenuation band.
  • the mobile station 100 requests the base station 200 to change the CC.
  • the base station 200 changes the CC used for communication so that the desired signal is separated from the unnecessary signal by a threshold value or more on the frequency axis.
  • the mobile station 100 shifts the pass band of the IF filter 123 so that the frequency of the desired signal is included in the pass band and the frequency of the unnecessary signal is excluded from the pass band and the attenuation band.
  • the mobile station 100 shifts the passband so that the edge of the attenuation band and the edge of the unnecessary signal are adjacent to each other so that the shift amount is minimized. In the state after the shift, the sensitivity suppression effect is sufficiently suppressed.
  • FIG. 16 is a diagram illustrating a fourth shift example of the passband of the filter.
  • the pass band of the IF filter 123 includes an unnecessary signal having a high level (for example, a transmission signal of the base station 200a). In this state, a large sensitivity suppression effect can occur. Further, two CCs used for communication sandwich an unnecessary signal on the frequency axis. For this reason, the pass band of the IF filter 123 cannot be shifted so that the frequency of the desired signal is included in the pass band and the frequency of the unnecessary signal is excluded from the pass band and the attenuation band.
  • the mobile station 100 requests the base station 200 to change the CC.
  • the base station 200 changes the CC used for communication so that the two CCs do not sandwich the unnecessary signal on the frequency axis and the desired signal is separated from the unnecessary signal by a threshold value or more.
  • the mobile station 100 shifts the pass band of the IF filter 123 so that the frequency of the desired signal is included in the pass band and the frequency of the unnecessary signal is excluded from the pass band and the attenuation band.
  • the mobile station 100 shifts the passband so that the edge of the attenuation band and the edge of the unnecessary signal are adjacent to each other so that the shift amount is minimized. In the state after the shift, the sensitivity suppression effect is sufficiently suppressed.
  • the wireless communication system measures the received signal level of unnecessary signals to detect the sensitivity suppression effect, and determines whether the sensitivity suppression effect can be reduced by shifting the pass band of the IF filter 123.
  • the mobile station 100 requests the base station 200 to change the CC used for communication. For this reason, the sensitivity suppression effect produced by the received signal processing of the mobile station 100 can be efficiently reduced, and the reception quality of the mobile station 100 can be improved.
  • the mobile station 100 can select any one of the three methods as the CC change request method.
  • the first method the mobile station 100 only needs to request a CC change, and the load on the mobile station 100 is reduced.
  • the base station 200 can easily identify the actual frequency causing the sensitivity suppression effect, and can select the changed CC more appropriately.
  • frequency candidates can be calculated in consideration of the actual filter characteristics of the mobile station 100, so that the changed CC can be selected more appropriately.

Abstract

The present invention reduces a sensitivity-inhibiting effect produced by received signal processing of a mobile station. The wireless communication system has a mobile station (10) and a base station (20). The mobile station (10) detects the sensitivity-inhibiting effect produced by received signal processing on the basis of the received signal level of another frequency that is different from the frequency that the mobile station uses for communication, and transmits control information (13) indicating a request for a frequency change in accordance with the detection conditions of the sensitivity-inhibiting effect. The base station (20) receives control information (13) from the mobile station (10), and changes, on the basis of the control information (13), the assigned frequency that the mobile station (10) uses for communication.

Description

無線通信システム、移動局、基地局および無線通信方法Wireless communication system, mobile station, base station, and wireless communication method
 本発明は無線通信システム、移動局、基地局および無線通信方法に関する。 The present invention relates to a wireless communication system, a mobile station, a base station, and a wireless communication method.
 現在、携帯電話システムや無線LAN(Local Area Network)などの無線通信システムが広く利用されている。また、無線通信の更なる高速化や広帯域化を図るべく、次世代の無線通信技術について継続的に活発な議論が行われている。 Currently, wireless communication systems such as mobile phone systems and wireless LANs (Local Area Networks) are widely used. In addition, active discussions are ongoing on next-generation wireless communication technology in order to further increase the speed and bandwidth of wireless communication.
 例えば、国際標準化団体の1つである3GPP(3rd Generation Partnership Project)では、符号分割多元接続(CDMA:Code Division Multiple Access)を採用したW-CDMA(Wideband - CDMA)や、直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)を採用したLTE(Long Term Evolution)などの通信方式が提案されている。また、3GPPでは、LTEを発展させたLTE-A(LTE - Advanced)と呼ばれる通信方式が議論されている。 For example, 3GPP (3rd Generation Partnership Project), one of the international standardization organizations, uses W-CDMA (Wideband-CDMA), which employs code division multiple access (CDMA), or orthogonal frequency division multiple access ( Communication systems such as LTE (Long Term Evolution) using OFDMA: Orthogonal Frequency Division Multiple Multiple Access have been proposed. In 3GPP, a communication method called LTE-A (LTE--Advanced), which is an extension of LTE, is discussed.
 多くの無線通信システムは、サービスエリア内に複数の基地局を設置して複数のセルを形成するセルラ方式を採用している。無線通信システムは、広範囲のエリアをカバーするマクロセルに加えて、マクロセルよりもセル半径の小さい(基地局の送信電力の小さい)ピコセルやフェムトセルを有することがある。セル半径の異なる複数の種類のセルを含む無線アクセス網は、ヘテロジニアスネットワークと呼ばれることがある。ピコセルやフェムトセルは、そのエリアの全部または一部がマクロセルと重なるように形成され得る。 Many wireless communication systems employ a cellular system in which a plurality of base stations are installed in a service area to form a plurality of cells. In addition to a macro cell that covers a wide area, a wireless communication system may include a pico cell or a femto cell having a cell radius smaller than that of the macro cell (ie, transmission power of the base station is small). A radio access network including a plurality of types of cells having different cell radii may be referred to as a heterogeneous network. A pico cell or a femto cell may be formed such that all or part of the area overlaps with the macro cell.
 なお、セルラシステムが、他のセルラシステムのキャリア周波数と隣接する第1のキャリア周波数および隣接しない第2のキャリア周波数を使用できるとき、他のセルラシステムとの干渉が大きい移動局に第2のキャリア周波数を使用させる方法が提案されている。また、異なるサービスセットに属する複数の調停局が、所定の周波数帯域の共通チャネル上で互いにビーコンを送受信することで、サービスセット間の干渉を調停するシステムが提案されている。また、使用可能な無線チャネル(候補チャネル)それぞれの信号強度を測定して他チャネルからの干渉の影響度を算出し、干渉の影響度が最小となる候補チャネルを使用する無線チャネルとして選択する通信装置が提案されている。 When the cellular system can use the first carrier frequency adjacent to the carrier frequency of the other cellular system and the second carrier frequency not adjacent to the other carrier system, the second carrier is transmitted to the mobile station having a large interference with the other cellular system. A method of using a frequency has been proposed. In addition, a system has been proposed in which a plurality of arbitration stations belonging to different service sets mutually mediate interference between service sets by transmitting and receiving beacons on a common channel in a predetermined frequency band. In addition, the signal strength of each usable radio channel (candidate channel) is measured to calculate the influence level of interference from other channels, and communication is selected as the radio channel that uses the candidate channel with the minimum influence level of interference. A device has been proposed.
特開平11-341555号公報Japanese Patent Laid-Open No. 11-341555 特開2006-254398号公報JP 2006-254398 A 特開2008-78698号公報JP 2008-78698 A
 セル間の干渉を低減するために、あるセル(例えば、マクロセル)の基地局と他のセル(例えば、当該マクロセルとエリアが重なるピコセルやフェムトセル)の基地局が、互いに異なる周波数を使用する方法が考えられる。しかし、移動局では、自局が通信に用いる所望の周波数と他のセルの周波数とが異なっていても、他のセルからの受信信号レベルが大きい場合には、感度抑圧効果が生ずることがある。 In order to reduce interference between cells, a base station of a certain cell (for example, a macro cell) and a base station of another cell (for example, a pico cell or a femto cell in which the macro cell and the area overlap) use different frequencies. Can be considered. However, in the mobile station, even if the desired frequency used for communication by the mobile station is different from the frequency of other cells, if the received signal level from other cells is high, a sensitivity suppression effect may occur. .
 ここで、感度抑圧効果とは、希望波信号とは異なる周波数の他セル信号の受信レベルが非常に大きい場合に、アナログ受信部において、小さな希望波信号が雑音や量子化雑音に埋もれてしまうことにより、受信特性が劣化する現象である。例えば、所望の周波数であるマクロセル信号の受信レベルが相対的に非常に小さく、所望の周波数に近い周波数であるフェムトセル信号の受信レベルが相対的に非常に大きい場合を考える。このような場合に、所望の周波数に近い他の周波数の信号を受信フィルタで完全には除去できず、他のセルからのレベルの大きな受信信号(フェムトセル信号)が受信フィルタを通過してしまうと、所望の周波数の受信信号(マクロセル信号)の検出精度が低下することにより、感度抑圧効果が生ずることがある。 Here, the sensitivity suppression effect is that a small desired signal is buried in noise or quantization noise in the analog receiver when the reception level of other cell signals with a frequency different from that of the desired signal is very high. This is a phenomenon in which reception characteristics deteriorate. For example, consider a case where the reception level of a macro cell signal having a desired frequency is relatively very small and the reception level of a femto cell signal having a frequency close to the desired frequency is relatively very high. In such a case, a signal of another frequency close to a desired frequency cannot be completely removed by the reception filter, and a reception signal (femtocell signal) having a large level from another cell passes through the reception filter. As a result, the detection accuracy of a received signal (macrocell signal) having a desired frequency is lowered, and a sensitivity suppression effect may occur.
 無線通信システムにおいては、感度抑圧効果が生ずるとことによってSINR(Signal to Interference and Noise Ration)などの受信品質が低下することがあるため、これを低減させることが望ましい。しかし、従来技術では感度抑圧効果を低減することができないという課題がある。 In a wireless communication system, the reception quality such as SINR (Signal-to-Interference-and-Noise-Ration) may decrease due to the sensitivity suppression effect, so it is desirable to reduce this. However, the conventional technique has a problem that the sensitivity suppression effect cannot be reduced.
 本発明はこのような点に鑑みてなされたものであり、受信信号処理で生じる感度抑圧効果を低減することができる無線通信システム、移動局、基地局および無線通信方法を提供することを目的とする。 The present invention has been made in view of these points, and an object of the present invention is to provide a radio communication system, a mobile station, a base station, and a radio communication method that can reduce the sensitivity suppression effect that occurs in received signal processing. To do.
 移動局と基地局とを有する無線通信システムが提供される。移動局は、自局が通信に用いる周波数と異なる他の周波数の受信信号レベルに基づいて、受信信号処理で生じる感度抑圧効果を検出し、感度抑圧効果の検出状況に応じて、周波数の変更要求を示す制御情報を送信する。基地局は、移動局から制御情報を受信し、受信した制御情報に基づいて、移動局が通信に用いる周波数の割り当てを変更する。 A wireless communication system having a mobile station and a base station is provided. The mobile station detects the sensitivity suppression effect generated in the received signal processing based on the received signal level of the other frequency different from the frequency used by the mobile station, and requests to change the frequency according to the detection status of the sensitivity suppression effect. The control information indicating is transmitted. The base station receives control information from the mobile station, and changes allocation of frequencies used by the mobile station for communication based on the received control information.
 また、移動局と基地局とを含むシステムが行う無線通信方法が提供される。無線通信方法では、移動局が通信に用いる周波数と異なる他の周波数の受信信号レベルに基づいて、移動局の受信信号処理で生じる感度抑圧効果を検出する。感度抑圧効果の検出状況に応じて、移動局から基地局に、周波数の変更要求を示す制御情報を送信する。制御情報に基づいて、移動局が通信に用いる周波数の割り当てを変更する。 Also provided is a wireless communication method performed by a system including a mobile station and a base station. In the wireless communication method, the sensitivity suppression effect generated in the received signal processing of the mobile station is detected based on the received signal level of another frequency different from the frequency used by the mobile station for communication. Control information indicating a frequency change request is transmitted from the mobile station to the base station according to the detection state of the sensitivity suppression effect. Based on the control information, allocation of frequencies used by the mobile station for communication is changed.
 移動局の受信信号処理で生じる感度抑圧効果を低減することができる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
It is possible to reduce the sensitivity suppression effect generated in the received signal processing of the mobile station.
These and other objects, features and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings which illustrate preferred embodiments by way of example of the present invention.
第1の実施の形態の無線通信システムを示す図である。It is a figure which shows the radio | wireless communications system of 1st Embodiment. 第2の実施の形態の無線通信システムを示す図である。It is a figure which shows the radio | wireless communications system of 2nd Embodiment. キャリアアグリゲーションの例を示す図である。It is a figure which shows the example of a carrier aggregation. 第2の実施の形態の移動局を示すブロック図である。It is a block diagram which shows the mobile station of 2nd Embodiment. 第2の実施の形態の基地局を示すブロック図である。It is a block diagram which shows the base station of 2nd Embodiment. 感度抑圧効果の発生状況の例を示す図である。It is a figure which shows the example of the generation condition of a sensitivity suppression effect. 基地局が有する周辺セルテーブルの例を示す図である。It is a figure which shows the example of the periphery cell table which a base station has. 移動局から基地局へのメッセージの例を示す図である。It is a figure which shows the example of the message from a mobile station to a base station. 第1の移動局処理を示すフローチャートである。It is a flowchart which shows a 1st mobile station process. 第2の移動局処理を示すフローチャートである。It is a flowchart which shows a 2nd mobile station process. 第3の移動局処理を示すフローチャートである。It is a flowchart which shows a 3rd mobile station process. 基地局処理を示すフローチャートである。It is a flowchart which shows a base station process. フィルタの通過帯域の第1のシフト例を示す図である。It is a figure which shows the 1st example of a shift of the pass band of a filter. フィルタの通過帯域の第2のシフト例を示す図である。It is a figure which shows the 2nd example of a shift of the pass band of a filter. フィルタの通過帯域の第3のシフト例を示す図である。It is a figure which shows the 3rd example of a shift of the pass band of a filter. フィルタの通過帯域の第4のシフト例を示す図である。It is a figure which shows the 4th example of a shift of the pass band of a filter.
 以下、本実施の形態を図面を参照して説明する。
 [第1の実施の形態]
 図1は、第1の実施の形態の無線通信システムを示す図である。第1の実施の形態の無線通信システムは、無線通信を行う移動局10と基地局20を有する。移動局10は、基地局20と直接通信してもよいし、中継局を介して基地局20と通信してもよい。
Hereinafter, the present embodiment will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a diagram illustrating a wireless communication system according to the first embodiment. The wireless communication system according to the first embodiment includes a mobile station 10 and a base station 20 that perform wireless communication. The mobile station 10 may communicate directly with the base station 20 or may communicate with the base station 20 via a relay station.
 移動局10は、検出部11および送信部12を有する。
 検出部11は、移動局10が通信に用いる周波数と異なる他の周波数の受信信号レベル(例えば、受信電力)に基づいて、受信信号処理で生じる感度抑圧効果を検出する。検出部11は、通信に用いる周波数#1の受信信号レベルと通信に用いない周波数#2の受信信号レベルから、感度抑圧効果が大きいか判定してもよい。例えば、検出部11は、周波数#1の受信信号レベルに対する周波数#2の受信信号レベルの差または比が閾値を超えるとき、感度抑圧効果が大きいと判定する。または、検出部11は、周波数#2の受信信号レベルが閾値を超えるとき、感度抑圧効果が大きいと判定する。
The mobile station 10 includes a detection unit 11 and a transmission unit 12.
The detection unit 11 detects the sensitivity suppression effect generated in the reception signal processing based on the reception signal level (for example, reception power) of another frequency different from the frequency used by the mobile station 10 for communication. The detection unit 11 may determine whether the sensitivity suppression effect is large from the received signal level of the frequency # 1 used for communication and the received signal level of the frequency # 2 not used for communication. For example, when the difference or ratio of the received signal level of frequency # 2 with respect to the received signal level of frequency # 1 exceeds the threshold, the detection unit 11 determines that the sensitivity suppression effect is large. Alternatively, the detection unit 11 determines that the sensitivity suppression effect is large when the received signal level of the frequency # 2 exceeds the threshold value.
 なお、移動局10は、例えば、周波数#1,#2の受信信号レベルを測定する。受信信号レベルの測定には、帯域通過フィルタ(BPF:Band Pass Filter)など、受信信号処理に用いる受信フィルタを通過した後の信号を用いてもよい。感度抑圧効果の検出は、RAM(Random Access Memory)などのプログラムを記憶するメモリと、CPU(Central Processing Unit)などのプログラムを実行するプロセッサを用いて実現してもよい。また、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などの電子回路を用いて実現してもよい。 Note that the mobile station 10 measures received signal levels of frequencies # 1 and # 2, for example. For the measurement of the reception signal level, a signal after passing through a reception filter used for reception signal processing such as a band pass filter (BPF: BandBPass Filter) may be used. The detection of the sensitivity suppression effect may be realized using a memory that stores a program such as a RAM (Random Access Memory) and a processor that executes a program such as a CPU (Central Processing Unit). Further, it may be realized using an electronic circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
 送信部12は、検出部11による感度抑圧効果の検出状況に応じて、移動局10が通信に用いる周波数の変更要求を示す制御情報13を基地局20に送信する。例えば、送信部12は、感度抑圧効果が大きいと判定されたとき、制御情報13を送信する。または、送信部12は、感度抑圧効果が大きいと判定され、且つ、受信フィルタの通過帯域を変更する(例えば、通過帯域をシフトする)ことによっては感度抑圧効果を十分に低減することができないと判定されるとき、制御情報13を送信する。 The transmission unit 12 transmits, to the base station 20, control information 13 indicating a request for changing the frequency used by the mobile station 10 for communication in accordance with the detection status of the sensitivity suppression effect by the detection unit 11. For example, the transmission unit 12 transmits the control information 13 when it is determined that the sensitivity suppression effect is large. Alternatively, the transmission unit 12 determines that the sensitivity suppression effect is large, and the sensitivity suppression effect cannot be sufficiently reduced by changing the pass band of the reception filter (for example, shifting the pass band). When it is determined, the control information 13 is transmitted.
 感度抑圧効果を十分に低減できるか否かは、受信フィルタのフィルタ特性が考慮されて判定され得る。例えば、周波数#1と周波数#2の差が所定幅未満であるために、周波数#1を受信フィルタの通過帯域に含めつつ、周波数#2を通過帯域から除外することができないとき、通過帯域の変更によって感度抑圧効果を低減できないと判定される。一方、通過帯域の変更によって感度抑圧効果を十分に低減できると判定されるときは、移動局10は、制御情報13を基地局20に送信せず、周波数#2が通過帯域から除外されるように受信フィルタの通過帯域を変更してもよい。 Whether or not the sensitivity suppression effect can be sufficiently reduced can be determined in consideration of the filter characteristics of the reception filter. For example, when the frequency # 1 cannot be excluded from the passband while the frequency # 1 is included in the passband of the reception filter because the difference between the frequency # 1 and the frequency # 2 is less than a predetermined width, It is determined that the sensitivity suppression effect cannot be reduced by the change. On the other hand, when it is determined that the sensitivity suppression effect can be sufficiently reduced by changing the pass band, the mobile station 10 does not transmit the control information 13 to the base station 20 and the frequency # 2 is excluded from the pass band. The pass band of the reception filter may be changed.
 基地局20は、受信部21および制御部22を有する。
 受信部21は、周波数の変更要求を示す制御情報13を移動局10から受信する。
 制御部22は、受信部21が制御情報13を受信すると、制御情報13に基づいて、移動局10が通信に用いる周波数の割り当てを変更する。例えば、制御部22は、移動局10が通信に用いる周波数を、感度抑圧効果の原因となる周波数#2(通信に用いない周波数)から所定幅以上離れた周波数に変更する。制御部22は、変更後の周波数を移動局10に通知してもよい。周波数の割り当て変更は、RAMなどのプログラムを記憶するメモリと、CPUなどのプログラムを実行するプロセッサを用いて実現してもよい。また、ASICやFPGAなどの電子回路を用いて実現してもよい。
The base station 20 includes a receiving unit 21 and a control unit 22.
The receiving unit 21 receives control information 13 indicating a frequency change request from the mobile station 10.
When the receiving unit 21 receives the control information 13, the control unit 22 changes the allocation of frequencies used by the mobile station 10 for communication based on the control information 13. For example, the control unit 22 changes the frequency used by the mobile station 10 for communication to a frequency separated from the frequency # 2 (frequency not used for communication) causing the sensitivity suppression effect by a predetermined width or more. The control unit 22 may notify the mobile station 10 of the changed frequency. The frequency allocation change may be realized using a memory that stores a program such as a RAM and a processor that executes a program such as a CPU. Moreover, you may implement | achieve using electronic circuits, such as ASIC and FPGA.
 ここで、基地局20は、周辺基地局から各周辺基地局が通信に用いる周波数を示すセル情報を取得してもよい。その場合、制御部22は、セル情報を参照して、移動局10が周辺基地局の信号を受信し得る周波数を特定し、特定した周波数を避けるように変更後の周波数を決定することができる。また、移動局10は、受信信号レベルが大きく受信フィルタの通過帯域から除外したい周波数の情報を、制御情報13に含めて送信してもよい。その場合、制御部22は、制御情報13が示す除外周波数を避けるように、変更後の周波数を決定することができる。また、移動局10は、変更後の周波数の候補を算出し、周波数候補の情報を制御情報13に含めて送信してもよい。その場合、制御部22は、制御情報13が示す周波数候補の中から、変更後の周波数を選択することができる。 Here, the base station 20 may acquire cell information indicating the frequency used by each peripheral base station for communication from the peripheral base station. In that case, the control unit 22 can refer to the cell information, specify the frequency at which the mobile station 10 can receive the signal of the neighboring base station, and determine the changed frequency so as to avoid the specified frequency. . In addition, the mobile station 10 may transmit the control information 13 by including information on a frequency whose reception signal level is high and which is desired to be excluded from the pass band of the reception filter. In that case, the control unit 22 can determine the changed frequency so as to avoid the excluded frequency indicated by the control information 13. Further, the mobile station 10 may calculate a frequency candidate after the change, and may transmit the frequency candidate information included in the control information 13. In that case, the control unit 22 can select the changed frequency from the frequency candidates indicated by the control information 13.
 第1の実施の形態の無線通信システムによれば、移動局10が通信に用いる周波数と異なる他の周波数の受信信号レベルに基づいて、移動局10の受信信号処理で生じる感度抑圧効果を検出する。感度抑圧効果の検出状況に応じて、移動局10から基地局20に、周波数の変更要求を示す制御情報13を送信する。制御情報13に基づいて、移動局10が通信に用いる周波数の割り当てを変更する。これにより、移動局10の受信信号処理で生じる感度抑圧効果を低減することができ、移動局10の受信品質を改善できる。 According to the wireless communication system of the first embodiment, the sensitivity suppression effect generated in the received signal processing of the mobile station 10 is detected based on the received signal level of another frequency different from the frequency used by the mobile station 10 for communication. . Control information 13 indicating a frequency change request is transmitted from the mobile station 10 to the base station 20 according to the detection state of the sensitivity suppression effect. Based on the control information 13, the allocation of frequencies used by the mobile station 10 for communication is changed. Thereby, the sensitivity suppression effect produced by the received signal processing of the mobile station 10 can be reduced, and the reception quality of the mobile station 10 can be improved.
 例えば、セル半径の異なる複数の種類のセルを含むヘテロジニアスネットワークでは、移動局は、接続中の基地局よりも近くに他の基地局が存在すると、抽出したい信号(希望信号)よりレベルの大きな抽出しなくてよい信号(不要信号)を、自局が通信に用いない周波数で受信することがある。一方で、移動局は、通信に用いない周波数であって通信に用いる周波数から近い周波数の信号を、受信フィルタで完全に除去できないことがある。そのため、受信フィルタを通過後の受信信号に希望信号より大きなレベルの不要信号が含まれてしまい、その後の自動利得制御、熱雑音の印加、量子化処理などを通じて希望信号のレベルが相対的に抑えられ、希望信号の検出精度が低下することがある。 For example, in a heterogeneous network including a plurality of types of cells having different cell radii, the mobile station has a higher level than the signal (desired signal) to be extracted if another base station is present near the connected base station. A signal that does not need to be extracted (unnecessary signal) may be received at a frequency that the local station does not use for communication. On the other hand, the mobile station may not be able to completely remove a signal having a frequency that is not used for communication and that is close to the frequency used for communication by the reception filter. As a result, the received signal after passing through the reception filter contains an unnecessary signal with a level greater than the desired signal, and the level of the desired signal is relatively suppressed through subsequent automatic gain control, thermal noise application, quantization processing, etc. Therefore, the detection accuracy of the desired signal may be lowered.
 これに対し、感度抑圧効果の検出状況に応じて、移動局10が基地局20に周波数の変更を要求することで、移動局10において不要信号を受信フィルタで除去することが容易となる。ただし、移動局10は、受信フィルタの通過帯域を変更することで不要信号を除去できるようになる場合には、基地局20に周波数の変更を要求しなくてもよい。 In contrast, when the mobile station 10 requests the base station 20 to change the frequency according to the detection state of the sensitivity suppression effect, it becomes easy for the mobile station 10 to remove unnecessary signals with the reception filter. However, the mobile station 10 does not need to request the base station 20 to change the frequency when the unnecessary signal can be removed by changing the pass band of the reception filter.
 なお、LTEの技術仕様(TS36.101)は、希望信号の周波数から15~60MHz離れた周波数における不要信号の受信電力が-44dBm以下であれば、不要信号が存在しない場合と比べたスループットの低下を5%以内に抑えることを要求している。しかし、送信電力が20dBmの基地局から5m離れた移動局における当該基地局からの受信電力は、-32dBmであり、上記の規準値-44dBmを上回る。このため、LTEの仕様に準拠した移動局であっても、ピコセルやフェムトセルの近くでは、感度抑圧効果によって希望信号の受信品質が大きく低下するおそれがある。 Note that the LTE technical specification (TS36.101) states that if the reception power of an unnecessary signal at a frequency 15 to 60 MHz away from the frequency of the desired signal is −44 dBm or less, the throughput is lower than when no unnecessary signal is present. Is required to be kept within 5%. However, the received power from the base station at the mobile station 5 m away from the base station having a transmission power of 20 dBm is −32 dBm, which exceeds the above-mentioned reference value of −44 dBm. For this reason, even if the mobile station complies with the LTE specification, the reception quality of the desired signal may be greatly reduced due to the sensitivity suppression effect near the pico cell or the femto cell.
 以下に説明する第2の実施の形態では、LTE-Aを想定した無線通信システムの例を挙げる。ただし、第1の実施の形態で説明した無線通信方法は、もちろん、LTE-A以外の通信方式を採用した無線通信システムにも適用することができる。 In the second embodiment described below, an example of a wireless communication system assuming LTE-A is given. However, the wireless communication method described in the first embodiment can of course be applied to a wireless communication system employing a communication method other than LTE-A.
 [第2の実施の形態]
 図2は、第2の実施の形態の無線通信システムを示す図である。第2の実施の形態の無線通信システムは、移動局100および基地局200,200aを有する。
[Second Embodiment]
FIG. 2 is a diagram illustrating a wireless communication system according to the second embodiment. The wireless communication system according to the second embodiment includes a mobile station 100 and base stations 200 and 200a.
 移動局100は、基地局200,200aに接続して無線通信を行う無線端末装置である。移動局100は、携帯電話機や携帯情報端末であってもよい。
 基地局200,200aは、無線インタフェースと有線インタフェースとを有する通信装置である。基地局200,200aはそれぞれセルを形成する。基地局200aのセルは、基地局200のセルの少なくとも一部とエリアが重複する。基地局200のセルがマクロセル、基地局200aのセルがフェムトセルであってもよい。基地局200,200aは、有線ネットワーク30(例えば、コアネットワーク)に接続されている。
The mobile station 100 is a wireless terminal device that connects to the base stations 200 and 200a to perform wireless communication. The mobile station 100 may be a mobile phone or a mobile information terminal.
The base stations 200 and 200a are communication devices having a wireless interface and a wired interface. Base stations 200 and 200a each form a cell. The area of the cell of the base station 200a overlaps with at least a part of the cell of the base station 200. The cell of the base station 200 may be a macro cell, and the cell of the base station 200a may be a femto cell. The base stations 200 and 200a are connected to a wired network 30 (for example, a core network).
 ここで、基地局200,200aは、無線インタフェースを介して移動局100と通信する。基地局200,200aと移動局100の間には、中継局が介在してもよい。ただし、第2の実施の形態では、移動局100が基地局200に接続する場合を考える。基地局200と基地局200aとは、無線通信に、互いに重複しない周波数帯域を使用する。基地局200は、コンポーネントキャリア(CC:Component Carrier)と呼ばれる周波数帯域を複数用いて、無線通信を行うことができる。また、基地局200,200aは、有線ネットワーク30を介して互いに通信することができる。 Here, the base stations 200 and 200a communicate with the mobile station 100 via a wireless interface. A relay station may be interposed between the base stations 200 and 200a and the mobile station 100. However, in the second embodiment, a case where the mobile station 100 connects to the base station 200 is considered. The base station 200 and the base station 200a use frequency bands that do not overlap each other for wireless communication. The base station 200 can perform wireless communication using a plurality of frequency bands called component carriers (CC: Component Carrier). The base stations 200 and 200a can communicate with each other via the wired network 30.
 図3は、キャリアアグリゲーションの例を示す図である。基地局200は、予め設定された複数のCCのうち2以上のCCを集約して、移動局100との通信に使用できる。CCの集約は、キャリアアグリゲーションと呼ばれることがある。 FIG. 3 is a diagram illustrating an example of carrier aggregation. The base station 200 can aggregate two or more CCs among a plurality of CCs set in advance and use them for communication with the mobile station 100. CC aggregation is sometimes referred to as carrier aggregation.
 例えば、5つのCC(CC#1~#5)が、連続または不連続な周波数に設けられる。CC#1~#5は、同一の周波数バンド(例えば、800MHz帯,2.5GHz帯,3.5GHz帯など)に属する帯域の集合であってもよいし、複数の異なる周波数バンドに属する帯域の集合であってもよい。時分割複信(TDD:Time Division Duplex)を採用する場合、CC毎に、下りリンク(DL:Downlink)と上りリンク(UL:Uplink)兼用の帯域が確保される。周波数分割複信(FDD:Frequency Division Duplex)を採用する場合、CC毎に、DL用の周波数帯域とUL用の周波数帯域とが確保される。 For example, five CCs (CC # 1 to # 5) are provided at continuous or discontinuous frequencies. CCs # 1 to # 5 may be a set of bands belonging to the same frequency band (for example, 800 MHz band, 2.5 GHz band, 3.5 GHz band, etc.), or may belong to a plurality of different frequency bands. It may be a set. When adopting time division duplex (TDD: Time Division Duplex), a band for downlink (DL) and uplink (UL: Uplink) is secured for each CC. When employing frequency division duplex (FDD), a frequency band for DL and a frequency band for UL are secured for each CC.
 基地局200は、CC毎に無線フレームを送信し、無線フレームのリソース(例えば、時間軸と周波数軸とで細分化された無線リソース)の割り当てを制御する。基地局200は、2以上のCCの無線リソースを並行して移動局100に割り当てることで、1つのCCの帯域幅よりも広い帯域幅を、移動局100との通信に用いることができる。なお、各CCの帯域幅は、例えば、5MHz,10MHz,15MHz,20MHzなどに設定できる。複数のCCの帯域幅は、同一でなくてもよい。 The base station 200 transmits a radio frame for each CC, and controls allocation of radio frame resources (for example, radio resources subdivided by a time axis and a frequency axis). The base station 200 can use a bandwidth wider than the bandwidth of one CC for communication with the mobile station 100 by allocating radio resources of two or more CCs to the mobile station 100 in parallel. In addition, the bandwidth of each CC can be set to 5 MHz, 10 MHz, 15 MHz, 20 MHz, etc., for example. The bandwidths of the plurality of CCs may not be the same.
 図4は、第2の実施の形態の移動局を示すブロック図である。移動局100は、アンテナ111、デュプレクサ112、発振器113,125,145、無線周波(RF:Radio Frequency)フィルタ121,149、ミキサ122,126,146,148、中間周波(IF:Intermediate Frequency)フィルタ123,147、自動利得制御部(AGC:Auto Gain Controller)124,128、ベースバンド(BB:Baseband)フィルタ127,144、アナログデジタル変換器(ADC:Analog to Digital Converter)129、復調部130、RRC(Radio Resource Control)処理部131、測定部132、制御部133、多重化部141、変調部142およびデジタルアナログ変換器(DAC:Digital to Analog Converter)143を有する。 FIG. 4 is a block diagram illustrating a mobile station according to the second embodiment. The mobile station 100 includes an antenna 111, a duplexer 112, oscillators 113, 125 and 145, radio frequency (RF) filters 121 and 149, mixers 122, 126, 146 and 148, and an intermediate frequency (IF) filter 123. 147, automatic gain controller (AGC: Auto Gain Controller) 124, 128, baseband (BB) filters 127, 144, analog-to-digital converter (ADC: 129), demodulator 130, RRC ( A radio resource control unit 131, a measurement unit 132, a control unit 133, a multiplexing unit 141, a modulation unit 142, and a digital-to-analog converter (DAC) 143 are included.
 アンテナ111は、無線周波の受信信号を、デュプレクサ112に出力する。また、デュプレクサ112から取得した無線周波の送信信号を送信する。なお、移動局100は、複数のアンテナを備えてもよく、送信用アンテナと受信用アンテナとを分けてもよい。 The antenna 111 outputs a radio frequency reception signal to the duplexer 112. The radio frequency transmission signal acquired from the duplexer 112 is transmitted. Note that the mobile station 100 may include a plurality of antennas, and may separate the transmitting antenna and the receiving antenna.
 デュプレクサ112は、フィルタなどを用いて送信信号と受信信号とを隔離して、アンテナ111を送信受信兼用のアンテナとして使用できるようにする。デュプレクサ112は、アンテナ共用器と呼ばれることもある。デュプレクサ112は、アンテナ111から取得した無線周波の受信信号を、RFフィルタ121に出力する。また、RFフィルタ149から取得した無線周波の送信信号を、アンテナ111に出力する。 The duplexer 112 isolates the transmission signal and the reception signal by using a filter or the like, so that the antenna 111 can be used as an antenna for both transmission and reception. The duplexer 112 is sometimes called an antenna duplexer. The duplexer 112 outputs a radio frequency reception signal acquired from the antenna 111 to the RF filter 121. The radio frequency transmission signal acquired from the RF filter 149 is output to the antenna 111.
 発振器113は、無線周波と無線周波より周波数の低い中間周波との間の信号変換(ダウンコンバートおよびアップコンバート)に用いられる基準信号を生成する。発振器113は、生成した基準信号をミキサ122,148に供給する。 The oscillator 113 generates a reference signal used for signal conversion (down-conversion and up-conversion) between a radio frequency and an intermediate frequency lower than the radio frequency. The oscillator 113 supplies the generated reference signal to the mixers 122 and 148.
 RFフィルタ121は、デュプレクサ112から無線周波の受信信号を取得し、所定の周波数帯域の信号のみ通過させる帯域通過フィルタである。RFフィルタ121の通過帯域は、後段のIFフィルタ123やBBフィルタ127の通過帯域よりも広く、所望の周波数バンド(800MHz帯,2.5GHz帯,3.5GHz帯など)に設定される。 The RF filter 121 is a band pass filter that acquires a radio frequency reception signal from the duplexer 112 and passes only a signal in a predetermined frequency band. The pass band of the RF filter 121 is set to a desired frequency band (800 MHz band, 2.5 GHz band, 3.5 GHz band, etc.) wider than the pass band of the IF filter 123 and the BB filter 127 in the subsequent stage.
 ミキサ122は、RFフィルタ121を通過した無線周波の受信信号に、発振器113で生成された基準信号を重ねて、無線周波の受信信号を中間周波の受信信号にダウンコンバートする。そして、中間周波の受信信号を、IFフィルタ123に出力する。 The mixer 122 superimposes the reference signal generated by the oscillator 113 on the radio frequency reception signal that has passed through the RF filter 121, and down-converts the radio frequency reception signal into an intermediate frequency reception signal. Then, the intermediate frequency reception signal is output to the IF filter 123.
 IFフィルタ123は、ミキサ122から中間周波の受信信号を取得し、制御部133からの指示に応じた周波数帯域の信号のみ通過させる帯域通過フィルタである。例えば、IFフィルタ123は、通過帯域の帯域幅を固定とし、制御部133からの指示に応じて通過帯域をシフトさせる。IFフィルタ123の通過帯域は、後段のBBフィルタ127の通過帯域よりも広く、所望のCCの周波数とその周辺周波数とを含む。 The IF filter 123 is a band pass filter that acquires an intermediate frequency received signal from the mixer 122 and passes only a signal in a frequency band according to an instruction from the control unit 133. For example, the IF filter 123 fixes the passband bandwidth and shifts the passband according to an instruction from the control unit 133. The pass band of the IF filter 123 is wider than the pass band of the BB filter 127 at the subsequent stage, and includes a desired CC frequency and its peripheral frequencies.
 AGC124は、IFフィルタ123を通過した中間周波の受信信号に対して自動利得制御を行い、レベル調整後の受信信号をミキサ126に出力する。例えば、AGC124は、受信信号レベルがその平均レベルに対して適切な範囲で変動するように、受信信号が強いときは利得を下げ、受信信号が弱いときは利得を上げる。 The AGC 124 performs automatic gain control on the intermediate frequency received signal that has passed through the IF filter 123, and outputs the received signal after level adjustment to the mixer 126. For example, the AGC 124 decreases the gain when the received signal is strong and increases the gain when the received signal is weak so that the received signal level fluctuates in an appropriate range with respect to the average level.
 発振器125は、中間周波から中間周波より周波数の低いベースバンド周波への信号変換(ダウンコンバート)に用いられる基準信号を生成する。基準信号の周波数は、移動局100が通信に用いるCCに応じて、制御部133から指示される。発振器125は、生成した基準信号をミキサ126に供給する。 The oscillator 125 generates a reference signal used for signal conversion (down conversion) from an intermediate frequency to a baseband frequency lower than the intermediate frequency. The frequency of the reference signal is instructed from the control unit 133 according to the CC used by the mobile station 100 for communication. The oscillator 125 supplies the generated reference signal to the mixer 126.
 ミキサ126は、AGC124を通過した中間周波の受信信号に、発振器125で生成された基準信号を重ねて、中間周波の受信信号をアナログベースバンド信号にダウンコンバートする。そして、アナログベースバンド信号をBBフィルタ127に出力する。 The mixer 126 superimposes the reference signal generated by the oscillator 125 on the intermediate frequency reception signal that has passed through the AGC 124, and down-converts the intermediate frequency reception signal into an analog baseband signal. Then, the analog baseband signal is output to the BB filter 127.
 BBフィルタ127は、ミキサ126からアナログベースバンド信号を取得し、所望のCCの周波数帯域の信号を通過させる帯域通過フィルタである。ただし、BBフィルタ127は、所望のCCの周波数帯域に近い周波数の信号を、完全には除去できないことがある。また、受信信号がAGC124、ミキサ126およびBBフィルタ127を通過するとき、受信信号に素子熱雑音が印加されることがある。 The BB filter 127 is a band-pass filter that acquires an analog baseband signal from the mixer 126 and passes a signal in a desired CC frequency band. However, the BB filter 127 may not completely remove a signal having a frequency close to a desired CC frequency band. Further, when the received signal passes through the AGC 124, the mixer 126, and the BB filter 127, element thermal noise may be applied to the received signal.
 AGC128は、BBフィルタ127を通過したアナログベースバンド信号に対して自動利得制御を行い、レベル調整後の信号をADC129に出力する。
 ADC129は、アナログベースバンド信号をデジタルベースバンド信号に変換し、デジタルベースバンド信号を復調部130に出力する。アナログデジタル変換では、受信信号レベルを離散値で表す量子化において、量子化歪みが発生することがある。
The AGC 128 performs automatic gain control on the analog baseband signal that has passed through the BB filter 127, and outputs the level-adjusted signal to the ADC 129.
The ADC 129 converts the analog baseband signal into a digital baseband signal and outputs the digital baseband signal to the demodulation unit 130. In analog-digital conversion, quantization distortion may occur in quantization in which the received signal level is represented by discrete values.
 復調部130は、ADC129から取得したデジタルベースバンド信号をデジタル復調する。受信信号は、例えば、QPSK(Quadrature Phase Shift Keying)や16QAM(Quadrature Amplitude Modulation)などの多値変調が行われている。 The demodulator 130 digitally demodulates the digital baseband signal acquired from the ADC 129. The received signal is subjected to multilevel modulation such as QPSK (Quadrature Phase Keying) and 16QAM (Quadrature Amplitude Modulation).
 RRC処理部131は、復調後の受信信号に対してRRCレイヤのプロトコル処理を行い、基地局200が送信したRRC制御情報を抽出する。そして、抽出したRRC制御情報の少なくとも一部を制御部133に出力する。抽出されるRRC制御情報には、移動局100が使用するCCの変更を示す制御情報が含まれる。 The RRC processing unit 131 performs RRC layer protocol processing on the demodulated received signal, and extracts the RRC control information transmitted by the base station 200. Then, at least a part of the extracted RRC control information is output to the control unit 133. The extracted RRC control information includes control information indicating a change in CC used by the mobile station 100.
 測定部132は、BBフィルタ127を通過してAGC128に入力される前のアナログベースバンド信号に基づいて、希望信号と不要信号の受信信号レベル(例えば、受信電力)を測定する。例えば、測定部132は、移動局100が通信に用いるCCの特定の周波数の受信信号レベル、または、複数の周波数の受信信号レベルの平均または最大を、希望信号の受信信号レベルとして測定する。また、当該CCの周波数帯域外の各周波数の受信信号レベルを、不要信号の受信信号レベルとして測定する。そして、測定部132は、受信信号レベルの測定結果を制御部133に通知する。なお、BBフィルタ127を通過する前のアナログベースバンド信号を用いて、受信信号レベルを測定してもよい。 The measuring unit 132 measures the received signal level (for example, received power) of the desired signal and the unnecessary signal based on the analog baseband signal before passing through the BB filter 127 and input to the AGC 128. For example, the measurement unit 132 measures the reception signal level of a specific frequency of CC used by the mobile station 100 for communication or the average or maximum of reception signal levels of a plurality of frequencies as the reception signal level of the desired signal. Further, the reception signal level of each frequency outside the CC frequency band is measured as the reception signal level of the unnecessary signal. Then, the measurement unit 132 notifies the control unit 133 of the measurement result of the received signal level. Note that the received signal level may be measured using an analog baseband signal before passing through the BB filter 127.
 制御部133は、RRC処理部131から取得するRRC制御情報と、測定部132から通知される受信信号レベルの測定結果に基づいて、受信信号処理で生じる感度抑圧効果の検出および感度抑圧効果を低減する制御を行う。感度抑圧効果は、例えば、IFフィルタ123をレベルの大きな不要信号が通過してしまい、AGC124の利得が抑制され、受信信号に素子熱雑音が印加されることで発生することがある。また、ADC129で生じる量子化歪みの影響により発生することがある。 Based on the RRC control information acquired from the RRC processing unit 131 and the measurement result of the received signal level notified from the measuring unit 132, the control unit 133 detects the sensitivity suppression effect generated in the reception signal processing and reduces the sensitivity suppression effect. Control. The sensitivity suppression effect may occur, for example, when an unnecessary signal having a large level passes through the IF filter 123, the gain of the AGC 124 is suppressed, and element thermal noise is applied to the received signal. Moreover, it may occur due to the influence of quantization distortion generated in the ADC 129.
 例えば、制御部133は、測定部132で測定された希望信号および不要信号の受信信号レベルに基づいて、大きな感度抑圧効果が生じる可能性があるか判定する。また、レベルの大きな不要信号のある周波数とIFフィルタ123のフィルタ特性から、IFフィルタ123の通過帯域をシフトすることで感度抑圧効果を十分に低減可能か判定する。感度抑圧効果を十分に低減できないと判定される場合、制御部133は、通信に用いるCCの変更要求を示すRRC制御情報を生成し、多重化部141に出力する。また、制御部133は、通信に用いるCCとIFフィルタ123のフィルタ特性とから、希望信号が通過しレベルの大きな不要信号ができる限り通過しないようにIFフィルタ123の通過帯域を制御する。また、制御部133は、発振器125の発振周波数を制御する。 For example, the control unit 133 determines whether there is a possibility that a large sensitivity suppression effect may occur based on the desired signal and the received signal level of the unnecessary signal measured by the measurement unit 132. Further, it is determined whether or not the sensitivity suppression effect can be sufficiently reduced by shifting the pass band of the IF filter 123 from the frequency at which the unnecessary signal has a large level and the filter characteristics of the IF filter 123. When it is determined that the sensitivity suppression effect cannot be sufficiently reduced, the control unit 133 generates RRC control information indicating a request for changing the CC used for communication, and outputs the RRC control information to the multiplexing unit 141. Further, the control unit 133 controls the pass band of the IF filter 123 so that a desired signal passes and an unnecessary signal having a large level does not pass as much as possible from the CC used for communication and the filter characteristics of the IF filter 123. Further, the control unit 133 controls the oscillation frequency of the oscillator 125.
 ここで、制御部133は、感度抑圧効果の検出および感度抑圧効果を低減する制御を行うため、例えば、プロセッサ134およびメモリ135を有する。プロセッサ134は、プログラムを実行し、CPUであってもよい。メモリ135は、プログラムを少なくとも一時的に記憶し、RAMなどの揮発性の記憶媒体であってもよい。プロセッサ134は、ROM(Read Only Memory)やフラッシュメモリなどの不揮発性の記憶媒体からプログラムを読み出して、メモリ135に格納してもよい。ただし、制御部133は、ASICやFPGAなどの電子回路を用いて実現することも可能である。 Here, the control unit 133 includes, for example, a processor 134 and a memory 135 in order to detect the sensitivity suppression effect and perform control to reduce the sensitivity suppression effect. The processor 134 executes a program and may be a CPU. The memory 135 stores a program at least temporarily, and may be a volatile storage medium such as a RAM. The processor 134 may read a program from a nonvolatile storage medium such as a ROM (Read Only Memory) or a flash memory and store the program in the memory 135. However, the control unit 133 can be realized using an electronic circuit such as an ASIC or FPGA.
 多重化部141は、誤り訂正符号化されたユーザデータと制御部133が生成する制御情報とを多重化し(無線リソースにマッピングして)、変調部142に出力する。
 変調部142は、多重化部141からユーザデータと制御情報とを含むデジタルベースバンド信号を取得し、QPSKや16QAMなどのデジタル変調を行う。そして、変調部142は、変調されたデジタルベースバンド信号をDAC143に出力する。
The multiplexing unit 141 multiplexes the user data that has been subjected to error correction coding and the control information generated by the control unit 133 (mapped to radio resources), and outputs the multiplexed data to the modulation unit 142.
The modulation unit 142 acquires a digital baseband signal including user data and control information from the multiplexing unit 141, and performs digital modulation such as QPSK or 16QAM. Then, the modulation unit 142 outputs the modulated digital baseband signal to the DAC 143.
 DAC143は、デジタルベースバンド信号をアナログベースバンド信号に変換し、アナログベースバンド信号をBBフィルタ144に出力する。
 BBフィルタ144は、DAC143からアナログベースバンド信号を取得し、通信に用いるCCの周波数帯域の信号を通過させる帯域通過フィルタである。
The DAC 143 converts the digital baseband signal into an analog baseband signal and outputs the analog baseband signal to the BB filter 144.
The BB filter 144 is a band pass filter that acquires an analog baseband signal from the DAC 143 and passes a signal in a CC frequency band used for communication.
 発振器145は、ベースバンド周波から中間周波への信号変換(アップコンバート)に用いられる基準信号を生成し、生成した基準信号をミキサ146に供給する。
 ミキサ146は、BBフィルタ144を通過したアナログベースバンド信号に、発振器145で生成された基準信号を重ねて、中間周波の送信信号へアップコンバートする。そして、中間周波の送信信号をIFフィルタ147に出力する。
The oscillator 145 generates a reference signal used for signal conversion (up-conversion) from a baseband frequency to an intermediate frequency, and supplies the generated reference signal to the mixer 146.
The mixer 146 superimposes the reference signal generated by the oscillator 145 on the analog baseband signal that has passed through the BB filter 144 and upconverts the signal to an intermediate frequency transmission signal. Then, the intermediate frequency transmission signal is output to IF filter 147.
 IFフィルタ147は、ミキサ146から中間周波の送信信号を取得し、通信に用いるCCの周波数帯域の信号を通過させる帯域通過フィルタである。
 ミキサ148は、IFフィルタ147を通過した中間周波の送信信号に、発振器113で生成された基準信号を重ねて、無線周波の送信信号へアップコンバートする。そして、無線周波の送信信号を、RFフィルタ149に出力する。
The IF filter 147 is a band-pass filter that acquires an intermediate-frequency transmission signal from the mixer 146 and passes a signal in the CC frequency band used for communication.
The mixer 148 superimposes the reference signal generated by the oscillator 113 on the intermediate frequency transmission signal that has passed through the IF filter 147 and up-converts the signal to a radio frequency transmission signal. Then, a radio frequency transmission signal is output to the RF filter 149.
 RFフィルタ149は、ミキサ148から無線周波の送信信号を取得し、所望の周波数バンドの信号のみデュプレクサ112へ通過させる帯域通過フィルタである。
 なお、制御部133は、前述の検出部11の一例である。多重化部141、変調部142、DAC143、BBフィルタ144、発振器145、ミキサ146、IFフィルタ147、ミキサ148およびRFフィルタ149は、前述の送信部12の一例である。
The RF filter 149 is a band-pass filter that acquires a radio frequency transmission signal from the mixer 148 and passes only a signal in a desired frequency band to the duplexer 112.
The control unit 133 is an example of the detection unit 11 described above. Multiplexer 141, modulator 142, DAC 143, BB filter 144, oscillator 145, mixer 146, IF filter 147, mixer 148, and RF filter 149 are examples of transmitter 12 described above.
 図5は、第2の実施の形態の基地局を示すブロック図である。基地局200は、アンテナ211,238、無線受信部212、高速フーリエ変換(FFT:Fast Fourier Transform)部213、復調部214、復号部215、MAC(Medium Access Control)/RLC(Radio Link Control)処理部216、有線インタフェース221、RRC処理部222、テーブル記憶部223、制御部224、パケット生成部231、スケジューラ232、符号化部233、変調部234、多重化部235、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)部236および無線送信部237を有する。 FIG. 5 is a block diagram illustrating a base station according to the second embodiment. The base station 200 includes antennas 211 and 238, a radio reception unit 212, a fast Fourier transform (FFT) unit 213, a demodulation unit 214, a decoding unit 215, a MAC (Medium Access Control) / RLC (Radio Link Control) process. Unit 216, wired interface 221, RRC processing unit 222, table storage unit 223, control unit 224, packet generation unit 231, scheduler 232, encoding unit 233, modulation unit 234, multiplexing unit 235, inverse fast Fourier transform (IFFT: Inverse Fast Fourier Transform) unit 236 and wireless transmission unit 237.
 アンテナ211は、移動局100から無線信号を受信し無線受信部212に出力する。
 無線受信部212は、アンテナ211から無線周波の受信信号を取得し、無線周波からベースバンド周波へのダウンコンバートを行い、デジタルベースバンド信号に変換された受信信号をFFT部213に出力する。無線受信部212は、無線信号処理のため、例えば、帯域通過フィルタ、発振器、ミキサ、ADCなどの回路を備える。
The antenna 211 receives a radio signal from the mobile station 100 and outputs it to the radio reception unit 212.
The radio reception unit 212 acquires a radio frequency reception signal from the antenna 211, down-converts the radio frequency to the baseband frequency, and outputs the reception signal converted into the digital baseband signal to the FFT unit 213. The wireless reception unit 212 includes circuits such as a band pass filter, an oscillator, a mixer, and an ADC for wireless signal processing.
 FFT部213は、無線受信部212から受信信号を取得し、FFTによって時間成分を周波数成分に変換して、変換後の受信信号を復調部214に出力する。ただし、基地局200は、FFT以外の方法によって時間成分から周波数成分への変換を行ってもよい。 The FFT unit 213 acquires a reception signal from the radio reception unit 212, converts a time component into a frequency component by FFT, and outputs the converted reception signal to the demodulation unit 214. However, the base station 200 may perform conversion from a time component to a frequency component by a method other than FFT.
 復調部214は、FFT部213から取得した受信信号をデジタル復調する。なお、受信信号は、例えば、QPSKや16QAMなどの多値変調が行われている。
 復号部215は、復調部214から復調された受信信号を取得して、誤り訂正復号し、復号された受信信号をMAC/RLC処理部216に出力する。なお、受信信号は、例えば、畳み込み符号や畳み込みターボ符号、低密度パリティ検査(LDPC:Low Density Parity Check)符号などに誤り訂正符号化されている。
The demodulator 214 digitally demodulates the received signal acquired from the FFT unit 213. The received signal is subjected to multilevel modulation such as QPSK or 16QAM.
The decoding unit 215 acquires the demodulated reception signal from the demodulation unit 214, performs error correction decoding, and outputs the decoded reception signal to the MAC / RLC processing unit 216. The received signal is error-correction-encoded, for example, by a convolutional code, a convolutional turbo code, a low density parity check (LDPC) code, or the like.
 MAC/RLC処理部216は、復号部215から復号された受信信号を取得し、MACレイヤおよびRLCレイヤのプロトコル処理を行う。受信信号から抽出されたユーザデータは、例えば、有線インタフェース221に出力される。 The MAC / RLC processing unit 216 acquires the received signal decoded from the decoding unit 215, and performs protocol processing of the MAC layer and the RLC layer. The user data extracted from the received signal is output to the wired interface 221, for example.
 有線インタフェース221は、有線ネットワーク30に接続され、パケット通信を行うインタフェースである。有線インタフェース221は、移動局100が送信したユーザデータを有線ネットワーク30に転送し、また、有線ネットワーク30から移動局100宛てのユーザデータを受信してパケット生成部231に出力する。また、有線インタフェース221は、有線ネットワーク30を介して基地局200aから、基地局200aが通信に用いる周波数帯域を示す制御情報を取得し、制御部224に出力する。 The wired interface 221 is an interface that is connected to the wired network 30 and performs packet communication. The wired interface 221 transfers user data transmitted from the mobile station 100 to the wired network 30, receives user data addressed to the mobile station 100 from the wired network 30, and outputs the user data to the packet generator 231. Also, the wired interface 221 acquires control information indicating the frequency band used for communication by the base station 200 a from the base station 200 a via the wired network 30 and outputs the control information to the control unit 224.
 RRC処理部222は、復調後の受信信号に対してRRCレイヤのプロトコル処理を行い、移動局100が送信したRRC制御情報を抽出し、RRC制御情報を制御部224に出力する。抽出されるRRC制御情報には、CCの変更要求を示す制御情報が含まれる。 The RRC processing unit 222 performs RRC layer protocol processing on the demodulated received signal, extracts the RRC control information transmitted by the mobile station 100, and outputs the RRC control information to the control unit 224. The extracted RRC control information includes control information indicating a CC change request.
 テーブル記憶部223は、RAMなどの揮発性の記憶媒体またはフラッシュメモリなどの不揮発性の記憶媒体である。テーブル記憶部223は、周辺セルテーブルを記憶する。周辺セルテーブルには、基地局200aが用いる周波数帯域の情報が含まれる。 The table storage unit 223 is a volatile storage medium such as a RAM or a non-volatile storage medium such as a flash memory. The table storage unit 223 stores the peripheral cell table. The neighboring cell table includes information on frequency bands used by the base station 200a.
 制御部224は、RRC処理部222から取得するRRC制御情報と、テーブル記憶部223に記憶された周辺セルテーブルとに基づいて、移動局100の感度抑圧効果を低減する制御を行う。例えば、制御部224は、CCの変更要求を示すRRC制御情報を移動局100から受信すると、感度抑圧効果が低減するように、移動局100に対するCCの割り当てを変更する。そして、制御部224は、CCの変更をスケジューラ232に通知し、CCの変更を示すRRC制御情報を生成してパケット生成部231に出力する。 The control unit 224 performs control to reduce the sensitivity suppression effect of the mobile station 100 based on the RRC control information acquired from the RRC processing unit 222 and the peripheral cell table stored in the table storage unit 223. For example, when receiving the RRC control information indicating the CC change request from the mobile station 100, the control unit 224 changes the CC assignment to the mobile station 100 so that the sensitivity suppression effect is reduced. Then, the control unit 224 notifies the CC change to the scheduler 232, generates RRC control information indicating the CC change, and outputs the RRC control information to the packet generation unit 231.
 ここで、制御部224は、感度抑圧効果を低減する制御のため、例えば、プロセッサ225およびメモリ226を有する。プロセッサ225は、プログラムを実行し、CPUであってもよい。メモリ226は、プログラムを少なくとも一時的に記憶し、RAMなどの揮発性の記憶媒体であってもよい。プロセッサ225は、ROMやフラッシュメモリなどの不揮発性の記憶媒体からプログラムを読み出して、メモリ226に格納してもよい。また、テーブル記憶部223とメモリ226は、同一の記憶装置でもよい。ただし、制御部224は、ASICやFPGAなどの電子回路を用いて実現することも可能である。 Here, the control unit 224 includes, for example, a processor 225 and a memory 226 for control to reduce the sensitivity suppression effect. The processor 225 executes a program and may be a CPU. The memory 226 stores the program at least temporarily, and may be a volatile storage medium such as a RAM. The processor 225 may read a program from a nonvolatile storage medium such as a ROM or a flash memory and store the program in the memory 226. Further, the table storage unit 223 and the memory 226 may be the same storage device. However, the control unit 224 can also be realized using an electronic circuit such as an ASIC or FPGA.
 パケット生成部231は、有線インタフェース221から取得したユーザデータや制御部224から取得したRRC制御情報を、無線区間のパケット形式に変換する。
 スケジューラ232は、パケット生成部231からユーザデータやRRC制御情報を取得し、制御部224から通知されるCCの割り当て状況に従ってスケジューリングし、ユーザデータやRRC制御情報を符号化部233に順次出力する。
The packet generation unit 231 converts the user data acquired from the wired interface 221 and the RRC control information acquired from the control unit 224 into a wireless section packet format.
The scheduler 232 acquires user data and RRC control information from the packet generation unit 231, performs scheduling according to the CC allocation status notified from the control unit 224, and sequentially outputs the user data and RRC control information to the encoding unit 233.
 符号化部233は、スケジューラ232からユーザデータやRRC制御情報を含む送信信号を取得し、誤り訂正符号化して変調部234に出力する。例えば、誤り訂正符号に、畳み込み符号や畳み込みターボ符号、LDPC符号などが用いられる。 The encoding unit 233 acquires a transmission signal including user data and RRC control information from the scheduler 232, performs error correction encoding, and outputs the transmission signal to the modulation unit 234. For example, a convolutional code, a convolutional turbo code, an LDPC code, or the like is used as the error correction code.
 変調部234は、符号化部233から符号化された送信信号を取得し、QPSKや16QAMなどのデジタル変調を行い、変調された送信信号を多重化部235に出力する。
 多重化部235は、変調部234からユーザデータやRRC制御情報を含む送信信号を取得し、物理レイヤの制御信号や所定のパイロット信号と多重化し(無線リソースにマッピングして)、送信信号をIFFT部236に出力する。
The modulation unit 234 acquires the transmission signal encoded from the encoding unit 233, performs digital modulation such as QPSK or 16QAM, and outputs the modulated transmission signal to the multiplexing unit 235.
The multiplexing unit 235 obtains a transmission signal including user data and RRC control information from the modulation unit 234, multiplexes it with a control signal of a physical layer and a predetermined pilot signal (mapped to a radio resource), and converts the transmission signal into an IFFT To the unit 236.
 IFFT部236は、多重化部235から送信信号を取得し、IFFTによって周波数成分を時間成分に変換し、送信信号を無線送信部237に出力する。ただし、基地局200は、IFFT以外の方法によって周波数成分から時間成分への変換を行ってもよい。 The IFFT unit 236 acquires the transmission signal from the multiplexing unit 235, converts the frequency component into a time component by IFFT, and outputs the transmission signal to the wireless transmission unit 237. However, the base station 200 may perform conversion from a frequency component to a time component by a method other than IFFT.
 無線送信部237は、無線送信部237から送信信号としてのデジタルベースバンド信号を取得し、ベースバンド周波から無線周波へのアップコンバートを行って、無線周波の送信信号をアンテナ238に出力する。無線送信部237は、無線信号処理のため、例えば、帯域通過フィルタ、発振器、ミキサ、DACなどの回路を備える。 The wireless transmission unit 237 acquires a digital baseband signal as a transmission signal from the wireless transmission unit 237, performs up-conversion from a baseband frequency to a radio frequency, and outputs a radio frequency transmission signal to the antenna 238. The wireless transmission unit 237 includes circuits such as a band pass filter, an oscillator, a mixer, and a DAC for wireless signal processing.
 アンテナ238は、無線送信部237から取得した送信信号を出力する。ただし、基地局200は、送信用アンテナと受信用アンテナとを分けなくてもよい。
 なお、無線受信部212、FFT部213、復調部214、復号部215、MAC/RLC処理部216およびRRC処理部222は、前述の受信部21の一例である。制御部224は、前述の制御部22の一例である。また、基地局200aも、基地局200と同様のハードウェアを用いて実装することができる。
The antenna 238 outputs the transmission signal acquired from the wireless transmission unit 237. However, the base station 200 may not separate the transmitting antenna and the receiving antenna.
The wireless reception unit 212, the FFT unit 213, the demodulation unit 214, the decoding unit 215, the MAC / RLC processing unit 216, and the RRC processing unit 222 are examples of the above-described reception unit 21. The control unit 224 is an example of the control unit 22 described above. The base station 200a can also be implemented using the same hardware as the base station 200.
 図6は、感度抑圧効果の発生状況の例を示す図である。IFフィルタ123には、図6に示すような通過帯域が設定される。IFフィルタ123の通過帯域は、シフトすることができる。通過帯域とその外の周波数との境界には、受信信号レベルの減衰量が変化する減衰域が存在する。通過帯域と減衰域の少なくとも一方にレベルの大きな不要信号が存在すると、感度抑圧効果が生じる可能性がある。図6の例では、希望信号に加え、希望信号よりレベルの大きな不要信号が、IFフィルタ123の通過帯域に存在する。例えば、希望信号は、移動局100が基地局200から受信する信号(所望のCCの信号)であり、不要信号は、基地局200aが送信している信号である。 FIG. 6 is a diagram illustrating an example of a situation where the sensitivity suppression effect occurs. A pass band as shown in FIG. 6 is set in the IF filter 123. The pass band of the IF filter 123 can be shifted. At the boundary between the passband and other frequencies, there is an attenuation region where the attenuation of the received signal level changes. If an unnecessary signal having a large level exists in at least one of the pass band and the attenuation band, a sensitivity suppression effect may occur. In the example of FIG. 6, in addition to the desired signal, an unnecessary signal having a level greater than that of the desired signal exists in the pass band of the IF filter 123. For example, the desired signal is a signal (desired CC signal) received by the mobile station 100 from the base station 200, and the unnecessary signal is a signal transmitted by the base station 200a.
 図7は、基地局が有する周辺セルテーブルの例を示す図である。周辺セルテーブル227は、テーブル記憶部223に記憶されている。制御部224は、基地局200aから受信する制御情報に基づいて、周辺セルテーブル227を更新する。 FIG. 7 is a diagram illustrating an example of a neighboring cell table included in the base station. The peripheral cell table 227 is stored in the table storage unit 223. The control unit 224 updates the neighboring cell table 227 based on the control information received from the base station 200a.
 周辺セルテーブル227は、セルIDおよび周波数リストの項目を含む。セルIDは、基地局200の周辺セルを識別するための識別情報である。周波数リストは、セルIDが示す周辺セルの基地局(周辺基地局)で使用されている1以上の周波数帯域を含む。周波数帯域は、中心周波数と帯域幅を用いて表してもよいし、下限周波数と上限周波数を用いて表してもよい。また、無線通信システムで使用され得る周波数帯域に予め識別情報が付与されている場合には、当該識別情報(例えば、CCのID)を用いてもよい。 The peripheral cell table 227 includes cell ID and frequency list items. The cell ID is identification information for identifying neighboring cells of the base station 200. The frequency list includes one or more frequency bands used in the base station (peripheral base station) of the peripheral cell indicated by the cell ID. The frequency band may be expressed using a center frequency and a bandwidth, or may be expressed using a lower limit frequency and an upper limit frequency. In addition, when identification information is given in advance to a frequency band that can be used in a wireless communication system, the identification information (for example, CC ID) may be used.
 図8は、移動局から基地局へのメッセージの例を示す図である。CCの変更要求を示すRRC制御情報として、図8に示すようなメッセージが、移動局100から基地局200に送信される。ここで、移動局100は、基地局200にCCの変更を要求する方法として、後述する3種類の方法の何れの方法を用いることもできる。 FIG. 8 is a diagram illustrating an example of a message from the mobile station to the base station. A message as shown in FIG. 8 is transmitted from the mobile station 100 to the base station 200 as RRC control information indicating a CC change request. Here, the mobile station 100 can use any of the following three methods as a method for requesting the base station 200 to change the CC.
 (A)第1の方法では、移動局100は、単にCCを変更すべき旨を基地局200に通知する。この方法では、移動局100は、自局の識別情報(移動局ID)とCCの変更要求であることを示すメッセージタイプとを含むRRC制御情報を送信する。 (A) In the first method, the mobile station 100 simply notifies the base station 200 that the CC should be changed. In this method, the mobile station 100 transmits RRC control information including its own identification information (mobile station ID) and a message type indicating a CC change request.
 (B)第2の方法では、移動局100は、レベルの大きな不要信号が検出されたためにIFフィルタ123の通過帯域および減衰域から外したい周波数を、基地局200に通知する。この方法では、移動局100は、移動局IDとメッセージタイプとに加えて、除外周波数のリストを含むRRC制御情報を送信する。 (B) In the second method, the mobile station 100 notifies the base station 200 of a frequency to be excluded from the pass band and the attenuation band of the IF filter 123 because an unnecessary signal having a large level is detected. In this method, the mobile station 100 transmits RRC control information including a list of excluded frequencies in addition to the mobile station ID and the message type.
 (C)第3の方法では、移動局100は、感度抑圧効果を低減するために自局が通信に用いることが好ましい周波数の候補を、基地局200に通知する。この方法では、移動局100は、移動局IDとメッセージタイプとに加えて、周波数候補のリストを含むRCC制御情報を送信する。周波数候補の範囲は、下限周波数や上限周波数を用いて表してもよいし、中心周波数と帯域幅を用いて表してもよいし、CCのIDを用いて表してもよい。 (C) In the third method, the mobile station 100 notifies the base station 200 of frequency candidates that the local station preferably uses for communication in order to reduce the sensitivity suppression effect. In this method, the mobile station 100 transmits RCC control information including a list of frequency candidates in addition to the mobile station ID and the message type. The range of frequency candidates may be expressed using a lower limit frequency or an upper limit frequency, may be expressed using a center frequency and a bandwidth, or may be expressed using a CC ID.
 図9は、第1の移動局処理を示すフローチャートである。図9の移動局処理は、上記の第1の方法によってCCの変更要求を行う場合に相当する。図9に示す処理は、移動局100によって継続的(例えば、定期的)に実行される。 FIG. 9 is a flowchart showing the first mobile station processing. The mobile station processing in FIG. 9 corresponds to a case where a CC change request is made by the first method described above. The process shown in FIG. 9 is executed continuously (for example, periodically) by the mobile station 100.
 (ステップS11)測定部132は、IFフィルタ123およびBBフィルタ127を通過した後のアナログベースバンド信号を取得する。ただし、測定部132は、BBフィルタ127を通過する前のアナログベースバンド信号を取得してもよい。 (Step S11) The measuring unit 132 acquires an analog baseband signal after passing through the IF filter 123 and the BB filter 127. However, the measurement unit 132 may acquire an analog baseband signal before passing through the BB filter 127.
 (ステップS12)測定部132は、取得したアナログベースバンド信号から、希望信号の受信信号レベルとフィルタ通過後に残った不要信号の受信信号レベルとを測定する。前者としては、例えば、通信に用いるCCに属する特定の周波数の受信信号レベルや、CCに属する複数の周波数の受信信号レベルの平均や最大を測定する。後者としては、例えば、通信に用いるCCに属さない各周波数の受信信号レベルを測定する。 (Step S12) The measuring unit 132 measures the received signal level of the desired signal and the received signal level of the unnecessary signal remaining after the filter from the acquired analog baseband signal. As the former, for example, the average or maximum of the reception signal level of a specific frequency belonging to the CC used for communication or the reception signal level of a plurality of frequencies belonging to the CC is measured. As the latter, for example, the received signal level of each frequency not belonging to the CC used for communication is measured.
 (ステップS13)制御部133は、希望信号よりもレベルが大きく、希望信号との差または比が閾値を超える不要信号が存在するか判断する。存在する場合、大きな感度抑圧効果が生じると判断し、処理をステップS14に進める。一方、存在しない場合、大きな感度抑圧効果は生じないと判断し、処理を終了する。なお、制御部133は、不要信号の受信信号レベルが閾値を超えるとき、大きな感度抑圧効果が生じると判断してもよい。 (Step S13) The control unit 133 determines whether there is an unnecessary signal whose level is higher than the desired signal and whose difference or ratio with the desired signal exceeds the threshold value. If it exists, it is determined that a large sensitivity suppression effect is generated, and the process proceeds to step S14. On the other hand, if it does not exist, it is determined that a large sensitivity suppression effect does not occur, and the process ends. Note that the control unit 133 may determine that a large sensitivity suppression effect occurs when the reception signal level of the unnecessary signal exceeds the threshold value.
 (ステップS14)制御部133は、IFフィルタ123のフィルタ特性(通過帯域や減衰域の幅を含む)と、希望信号との差または比が閾値を超える不要信号が存在する周波数とから、通過帯域のシフトによって当該不要信号を除外可能か判断する。除外可能な場合、処理をステップS17に進める。除外不可の場合、処理をステップS15に進める。 (Step S14) The control unit 133 determines the pass band from the filter characteristics of the IF filter 123 (including the pass band and the width of the attenuation band) and the frequency at which there is an unnecessary signal whose difference or ratio exceeds the threshold. It is determined whether or not the unnecessary signal can be excluded by shifting. If it can be excluded, the process proceeds to step S17. If it cannot be excluded, the process proceeds to step S15.
 例えば、制御部133は、通信に用いる下限周波数と上限周波数の間に、検出された不要信号が存在する周波数が含まれるか確認し、含まれる場合は除外不可と判断する。これは、移動局100が2以上のCCを用いる場合に生じ得る。また、制御部133は、通信に用いるCCの周波数帯域と検出された不要信号が存在する周波数との距離(エッジ間の周波数の差)を算出し、距離が所定の閾値未満の場合は除外不可と判断する。距離の閾値は、IFフィルタ123のフィルタ特性を考慮して予め設定される。 For example, the control unit 133 confirms whether or not the frequency where the detected unnecessary signal exists is included between the lower limit frequency and the upper limit frequency used for communication, and determines that it is not excluded. This can occur when the mobile station 100 uses more than one CC. Further, the control unit 133 calculates the distance (frequency difference between edges) between the frequency band of the CC used for communication and the frequency where the detected unnecessary signal exists, and cannot be excluded when the distance is less than a predetermined threshold. Judge. The distance threshold is set in advance in consideration of the filter characteristics of the IF filter 123.
 (ステップS15)制御部133は、CCの変更要求を示すRRC制御情報(図8のメッセージ(A)に相当)を生成する。RRC制御情報は、無線信号に変換されてアンテナ111から基地局200に送信される。 (Step S15) The control unit 133 generates RRC control information (corresponding to the message (A) in FIG. 8) indicating a CC change request. The RRC control information is converted into a radio signal and transmitted from the antenna 111 to the base station 200.
 (ステップS16)RRC処理部131は、基地局200からの受信信号から、CCの変更指示を示すRRC制御情報を抽出する。制御部133は、発振器125に発振周波数の変更を指示し、受信するCCを変更する。なお、基地局200が使用する各CCの周波数帯域は、例えば、基地局200が送信する報知情報に記載されている。 (Step S16) The RRC processing unit 131 extracts RRC control information indicating a CC change instruction from the received signal from the base station 200. The control unit 133 instructs the oscillator 125 to change the oscillation frequency and changes the CC to be received. Note that the frequency band of each CC used by the base station 200 is described in broadcast information transmitted by the base station 200, for example.
 (ステップS17)制御部133は、通過帯域および減衰域内に、通信に用いるCCの周波数帯域が含まれ、検出された不要信号が存在する周波数が含まれないように、IFフィルタ123の通過帯域をシフトさせる。例えば、制御部133は、現在の通過帯域と通信に用いるCCの周波数帯域とから、シフト方向を決定し、通過帯域と検出された不要信号が存在する周波数との距離が閾値以上になるように、シフト量を決定する。 (Step S17) The control unit 133 sets the pass band of the IF filter 123 so that the frequency band of the CC used for communication is included in the pass band and the attenuation band, and the frequency where the detected unnecessary signal exists is not included. Shift. For example, the control unit 133 determines the shift direction from the current pass band and the CC frequency band used for communication so that the distance between the pass band and the frequency where the detected unnecessary signal is present is equal to or greater than the threshold. Determine the shift amount.
 図10は、第2の移動局処理を示すフローチャートである。図10の移動局処理は、上記の第2の方法によってCCの変更要求を行う場合に相当する。図10に示す処理は、移動局100によって継続的(例えば、定期的)に実行される。 FIG. 10 is a flowchart showing the second mobile station process. The mobile station processing of FIG. 10 corresponds to a case where a CC change request is made by the second method described above. The process shown in FIG. 10 is executed continuously (for example, periodically) by the mobile station 100.
 ステップS21~S24,S27,S28の処理は、上記のステップS11~S14,S16,S17と同様であるため、説明を省略する。
 (ステップS25)制御部133は、希望信号との差または比が閾値を超える不要信号が存在する周波数を、除外周波数として列挙する。
Since the processes of steps S21 to S24, S27, and S28 are the same as those of steps S11 to S14, S16, and S17, the description thereof is omitted.
(Step S <b> 25) The control unit 133 lists the frequencies at which there are unnecessary signals whose difference or ratio from the desired signal exceeds the threshold as exclusion frequencies.
 (ステップS26)制御部133は、CCの変更要求を示し、除外周波数リストを含むRRC制御情報(図8のメッセージ(B)に相当)を生成する。RRC制御情報は、無線信号に変換されてアンテナ111から基地局200に送信される。 (Step S26) The control unit 133 indicates a CC change request and generates RRC control information (corresponding to the message (B) in FIG. 8) including an excluded frequency list. The RRC control information is converted into a radio signal and transmitted from the antenna 111 to the base station 200.
 図11は、第3の移動局処理を示すフローチャートである。図11の移動局処理は、上記の第3の方法によってCCの変更要求を行う場合に相当する。図11に示す処理は、移動局100によって継続的(例えば、定期的)に実行される。 FIG. 11 is a flowchart showing the third mobile station process. The mobile station processing in FIG. 11 corresponds to a case where a CC change request is made by the third method described above. The process shown in FIG. 11 is executed continuously (for example, periodically) by the mobile station 100.
 ステップS31~S34,S37,S38の処理は、上記のステップS11~S14,S16,S17と同様であるため、説明を省略する。
 (ステップS35)制御部133は、IFフィルタ123のフィルタ特性と、希望信号との差または比が閾値を超える不要信号が存在する周波数とから、感度抑圧効果を低減するための周波数候補を算出する。例えば、制御部133は、検出された不要信号が存在する周波数との距離が閾値以上になる周波数の範囲を算出する。
Since the processes of steps S31 to S34, S37, and S38 are the same as those of steps S11 to S14, S16, and S17, the description thereof is omitted.
(Step S <b> 35) The control unit 133 calculates frequency candidates for reducing the sensitivity suppression effect from the filter characteristics of the IF filter 123 and the frequency at which there is an unnecessary signal whose difference or ratio between the desired signal exceeds the threshold. . For example, the control unit 133 calculates a frequency range in which the distance from the frequency at which the detected unnecessary signal exists is equal to or greater than a threshold value.
 (ステップS36)制御部133は、CCの変更要求を示し、周波数候補リストを含むRRC制御情報(図8のメッセージ(C)に相当)を生成する。RRC制御情報は、無線信号に変換されてアンテナ111から基地局200に送信される。 (Step S36) The control unit 133 indicates a CC change request and generates RRC control information (corresponding to the message (C) in FIG. 8) including the frequency candidate list. The RRC control information is converted into a radio signal and transmitted from the antenna 111 to the base station 200.
 図12は、基地局処理を示すフローチャートである。
 (ステップS41)RRC処理部222は、移動局100からの受信信号から、CCの変更要求を示すRRC制御情報を抽出する。
FIG. 12 is a flowchart showing the base station processing.
(Step S41) The RRC processing unit 222 extracts RRC control information indicating a CC change request from the received signal from the mobile station 100.
 (ステップS42)制御部224は、抽出されたRRC制御情報が、周波数候補を指定しているか(例えば、図8のメッセージ(C)の形式に相当するか)判断する。周波数候補を指定している場合、処理をステップS44に進める。周波数候補を指定していない場合、処理をステップS43に進める。 (Step S42) The control unit 224 determines whether the extracted RRC control information specifies a frequency candidate (for example, corresponds to the format of the message (C) in FIG. 8). If a frequency candidate is designated, the process proceeds to step S44. If no frequency candidate is designated, the process proceeds to step S43.
 (ステップS43)制御部224は、抽出されたRRC制御情報が、除外周波数を指定しているか(例えば、図8のメッセージ(B)の形式に相当するか)判断する。除外周波数を指定している場合、処理をステップS45に進める。周波数候補も除外周波数も指定していない場合、処理をステップS46に進める。 (Step S43) The control unit 224 determines whether the extracted RRC control information specifies an excluded frequency (for example, corresponds to the format of the message (B) in FIG. 8). If an excluded frequency is designated, the process proceeds to step S45. If neither a frequency candidate nor an excluded frequency is designated, the process proceeds to step S46.
 (ステップS44)制御部224は、指定された周波数候補内にあるCCを、変更後のCCとして選択する。なお、2以上のCCが用いられる場合(キャリアアグリゲーションを行う場合)は、2以上のCCが不要信号の存在する周波数を跨がないようにCCを選択する。そして、処理をステップS48に進める。 (Step S44) The control unit 224 selects the CC within the designated frequency candidate as the CC after change. When two or more CCs are used (when carrier aggregation is performed), the CCs are selected so that the two or more CCs do not straddle the frequency where the unnecessary signal exists. Then, the process proceeds to step S48.
 (ステップS45)制御部224は、IFフィルタ123の通過帯域を調整することにより、指定された除外周波数を通過帯域および減衰域から除外できるように、変更後のCCを選択する。例えば、制御部224は、除外周波数との距離が閾値以上になる周波数の範囲を算出し、算出した範囲内にあるCCを選択する。なお、キャリアアグリゲーションを行う場合は、2以上のCCが不要信号の存在する周波数を跨がないようにCCを選択する。そして、処理をステップS48に進める。 (Step S45) The control unit 224 adjusts the pass band of the IF filter 123 to select the changed CC so that the specified excluded frequency can be excluded from the pass band and the attenuation band. For example, the control unit 224 calculates a frequency range in which the distance from the excluded frequency is equal to or greater than a threshold, and selects a CC within the calculated range. In addition, when performing carrier aggregation, CC is selected so that two or more CC may not straddle the frequency in which an unnecessary signal exists. Then, the process proceeds to step S48.
 (ステップS46)制御部224は、テーブル記憶部223に記憶された周辺セルテーブル227を検索し、周辺基地局が使用する周波数帯を確認する。
 (ステップS47)制御部224は、IFフィルタ123の通過帯域を調整することにより、周辺基地局の周波数帯域を通過帯域および減衰域から除外できるように、変更後のCCを選択する。例えば、制御部224は、周辺基地局の周波数帯域との距離が閾値以上になる周波数の範囲を算出してCCを選択する。なお、キャリアアグリゲーションを行う場合は、2以上のCCが周辺基地局の周波数帯域を跨がないようにCCを選択する。
(Step S46) The control unit 224 searches the neighboring cell table 227 stored in the table storage unit 223, and confirms the frequency band used by the neighboring base station.
(Step S47) The control unit 224 selects the changed CC so that the frequency band of the neighboring base station can be excluded from the pass band and the attenuation band by adjusting the pass band of the IF filter 123. For example, the control unit 224 selects a CC by calculating a frequency range in which the distance from the frequency band of the surrounding base station is equal to or greater than a threshold value. In addition, when performing carrier aggregation, CC is selected so that two or more CC may not straddle the frequency band of a periphery base station.
 (ステップS48)制御部224は、選択された1またはそれ以上のCCの情報(例えば、CCのID)を含み、CCの変更指示を示すRRC制御情報を生成する。RRC制御情報は、無線信号に変換されてアンテナ238から移動局100に送信される。 (Step S48) The control unit 224 generates RRC control information that includes information on one or more selected CCs (for example, CC IDs) and indicates a CC change instruction. The RRC control information is converted into a radio signal and transmitted from the antenna 238 to the mobile station 100.
 図13は、フィルタの通過帯域の第1のシフト例を示す図である。図13の例では、IFフィルタ123の通過帯域に、レベルの大きな不要信号(例えば、基地局200aの送信信号)が含まれている。この状態では、大きな感度抑圧効果が生じ得る。ただし、基地局200から受信する希望信号は、周波数軸上で不要信号から閾値以上離れている。 FIG. 13 is a diagram illustrating a first shift example of the passband of the filter. In the example of FIG. 13, an unnecessary signal having a high level (for example, a transmission signal from the base station 200a) is included in the passband of the IF filter 123. In this state, a large sensitivity suppression effect can occur. However, the desired signal received from the base station 200 is more than the threshold value away from the unnecessary signal on the frequency axis.
 そこで、移動局100は、基地局200にCC変更を要求せずに、希望信号の周波数が通過帯域に含まれ不要信号の周波数が通過帯域および減衰域から除外されるように、IFフィルタ123の通過帯域をシフトする。図13の例では、移動局100は、シフト量が最小となるよう、減衰域のエッジと不要信号のエッジとが隣接するように通過帯域をシフトしている。シフト後の状態では、感度抑圧効果が十分に抑制される。 Therefore, the mobile station 100 does not request the base station 200 to change the CC, so that the frequency of the desired signal is included in the pass band and the frequency of the unnecessary signal is excluded from the pass band and the attenuation band. Shift the passband. In the example of FIG. 13, the mobile station 100 shifts the passband so that the edge of the attenuation region and the edge of the unnecessary signal are adjacent to each other so that the shift amount is minimized. In the state after the shift, the sensitivity suppression effect is sufficiently suppressed.
 図14は、フィルタの通過帯域の第2のシフト例を示す図である。図14の例では、IFフィルタ123の減衰域に、レベルの大きな不要信号(例えば、基地局200aの送信信号)が含まれている。この状態においても、大きな感度抑圧効果が生じ得る。ただし、基地局200から受信する希望信号は、周波数軸上で不要信号から閾値以上離れている。 FIG. 14 is a diagram illustrating a second shift example of the passband of the filter. In the example of FIG. 14, an unnecessary signal with a high level (for example, a transmission signal of the base station 200 a) is included in the attenuation region of the IF filter 123. Even in this state, a large sensitivity suppression effect can occur. However, the desired signal received from the base station 200 is more than the threshold value away from the unnecessary signal on the frequency axis.
 そこで、移動局100は、基地局200にCC変更を要求せずに、希望信号の周波数が通過帯域に含まれ不要信号の周波数が通過帯域および減衰域から除外されるように、IFフィルタ123の通過帯域をシフトする。図14の例では、移動局100は、シフト量が最小となるよう、減衰域のエッジと不要信号のエッジとが隣接するように通過帯域をシフトしている。シフト後の状態では、感度抑圧効果が十分に抑制される。 Therefore, the mobile station 100 does not request the base station 200 to change the CC, so that the frequency of the desired signal is included in the pass band and the frequency of the unnecessary signal is excluded from the pass band and the attenuation band. Shift the passband. In the example of FIG. 14, the mobile station 100 shifts the passband so that the edge of the attenuation region and the edge of the unnecessary signal are adjacent to each other so that the shift amount is minimized. In the state after the shift, the sensitivity suppression effect is sufficiently suppressed.
 図15は、フィルタの通過帯域の第3のシフト例を示す図である。図15の例では、IFフィルタ123の通過帯域に、レベルの大きな不要信号(例えば、基地局200aの送信信号)が含まれている。この状態では、大きな感度抑圧効果が生じ得る。また、基地局200から受信する希望信号は、周波数軸上で不要信号から閾値以上離れていない。このため、希望信号の周波数が通過帯域に含まれ不要信号の周波数が通過帯域および減衰域から除外されるように、IFフィルタ123の通過帯域をシフトすることができない。 FIG. 15 is a diagram illustrating a third shift example of the passband of the filter. In the example of FIG. 15, the pass band of the IF filter 123 includes an unnecessary signal having a high level (for example, a transmission signal of the base station 200a). In this state, a large sensitivity suppression effect can occur. Further, the desired signal received from the base station 200 is not separated from the unnecessary signal by more than a threshold on the frequency axis. For this reason, the pass band of the IF filter 123 cannot be shifted so that the frequency of the desired signal is included in the pass band and the frequency of the unnecessary signal is excluded from the pass band and the attenuation band.
 そこで、移動局100は、基地局200にCC変更を要求する。基地局200は、周波数軸上で希望信号が不要信号から閾値以上離れるように、通信に用いるCCを変更する。CCが変更されると、移動局100は、希望信号の周波数が通過帯域に含まれ不要信号の周波数が通過帯域および減衰域から除外されるように、IFフィルタ123の通過帯域をシフトする。図15の例では、移動局100は、シフト量が最小となるよう、減衰域のエッジと不要信号のエッジとが隣接するように通過帯域をシフトしている。シフト後の状態では、感度抑圧効果が十分に抑制される。 Therefore, the mobile station 100 requests the base station 200 to change the CC. The base station 200 changes the CC used for communication so that the desired signal is separated from the unnecessary signal by a threshold value or more on the frequency axis. When the CC is changed, the mobile station 100 shifts the pass band of the IF filter 123 so that the frequency of the desired signal is included in the pass band and the frequency of the unnecessary signal is excluded from the pass band and the attenuation band. In the example of FIG. 15, the mobile station 100 shifts the passband so that the edge of the attenuation band and the edge of the unnecessary signal are adjacent to each other so that the shift amount is minimized. In the state after the shift, the sensitivity suppression effect is sufficiently suppressed.
 図16は、フィルタの通過帯域の第4のシフト例を示す図である。図16の例では、IFフィルタ123の通過帯域に、レベルの大きな不要信号(例えば、基地局200aの送信信号)が含まれている。この状態では、大きな感度抑圧効果が生じ得る。また、周波数軸上で、通信に用いる2つのCCが不要信号を挟んでいる。このため、希望信号の周波数が通過帯域に含まれ不要信号の周波数が通過帯域および減衰域から除外されるように、IFフィルタ123の通過帯域をシフトすることができない。 FIG. 16 is a diagram illustrating a fourth shift example of the passband of the filter. In the example of FIG. 16, the pass band of the IF filter 123 includes an unnecessary signal having a high level (for example, a transmission signal of the base station 200a). In this state, a large sensitivity suppression effect can occur. Further, two CCs used for communication sandwich an unnecessary signal on the frequency axis. For this reason, the pass band of the IF filter 123 cannot be shifted so that the frequency of the desired signal is included in the pass band and the frequency of the unnecessary signal is excluded from the pass band and the attenuation band.
 そこで、移動局100は、基地局200にCC変更を要求する。基地局200は、周波数軸上で2つのCCが不要信号を挟まず、且つ、希望信号が不要信号から閾値以上離れるように、通信に用いるCCを変更する。CCが変更されると、移動局100は、希望信号の周波数が通過帯域に含まれ不要信号の周波数が通過帯域および減衰域から除外されるように、IFフィルタ123の通過帯域をシフトする。図16の例では、移動局100は、シフト量が最小となるよう、減衰域のエッジと不要信号のエッジとが隣接するように通過帯域をシフトしている。シフト後の状態では、感度抑圧効果が十分に抑制される。 Therefore, the mobile station 100 requests the base station 200 to change the CC. The base station 200 changes the CC used for communication so that the two CCs do not sandwich the unnecessary signal on the frequency axis and the desired signal is separated from the unnecessary signal by a threshold value or more. When the CC is changed, the mobile station 100 shifts the pass band of the IF filter 123 so that the frequency of the desired signal is included in the pass band and the frequency of the unnecessary signal is excluded from the pass band and the attenuation band. In the example of FIG. 16, the mobile station 100 shifts the passband so that the edge of the attenuation band and the edge of the unnecessary signal are adjacent to each other so that the shift amount is minimized. In the state after the shift, the sensitivity suppression effect is sufficiently suppressed.
 第2の実施の形態の無線通信システムは、不要信号の受信信号レベルを測定して感度抑圧効果を検出し、IFフィルタ123の通過帯域をシフトすることで感度抑圧効果を低減できるか判定する。通過帯域のシフトのみでは感度抑圧効果の低減が難しいと判定したときは、通信に用いるCCの変更を移動局100から基地局200に要求する。このため、移動局100の受信信号処理で生じる感度抑圧効果を効率的に低減することができ、移動局100の受信品質を改善できる。 The wireless communication system according to the second embodiment measures the received signal level of unnecessary signals to detect the sensitivity suppression effect, and determines whether the sensitivity suppression effect can be reduced by shifting the pass band of the IF filter 123. When it is determined that it is difficult to reduce the sensitivity suppression effect only by shifting the passband, the mobile station 100 requests the base station 200 to change the CC used for communication. For this reason, the sensitivity suppression effect produced by the received signal processing of the mobile station 100 can be efficiently reduced, and the reception quality of the mobile station 100 can be improved.
 また、移動局100は、CC変更の要求方法として3つの方法の何れかを選択することができる。第1の方法によれば、移動局100は単にCC変更を要求するだけでよく、移動局100の負荷が軽減される。第2の方法によれば、基地局200が感度抑圧効果の原因となっている実際の周波数を容易に特定することができ、変更後のCCをより適切に選択できるようになる。第3の方法によれば、移動局100の実際のフィルタ特性が考慮されて周波数候補が算出され得るため、変更後のCCをより適切に選択できるようになる。 Also, the mobile station 100 can select any one of the three methods as the CC change request method. According to the first method, the mobile station 100 only needs to request a CC change, and the load on the mobile station 100 is reduced. According to the second method, the base station 200 can easily identify the actual frequency causing the sensitivity suppression effect, and can select the changed CC more appropriately. According to the third method, frequency candidates can be calculated in consideration of the actual filter characteristics of the mobile station 100, so that the changed CC can be selected more appropriately.
 上記については単に本発明の原理を示すものである。更に、多数の変形や変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応する全ての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。 The above merely shows the principle of the present invention. In addition, many modifications and variations will be apparent to practitioners skilled in this art and the present invention is not limited to the exact configuration and application shown and described above, and all corresponding modifications and equivalents may be And the equivalents thereof are considered to be within the scope of the invention.
 10 移動局
 11 検出部
 12 送信部
 13 制御情報
 20 基地局
 21 受信部
 22 制御部
DESCRIPTION OF SYMBOLS 10 Mobile station 11 Detection part 12 Transmission part 13 Control information 20 Base station 21 Reception part 22 Control part

Claims (10)

  1.  自局が通信に用いる周波数と異なる他の周波数の受信信号レベルに基づいて、受信信号処理で生じる感度抑圧効果を検出し、前記感度抑圧効果の検出状況に応じて、周波数の変更要求を示す制御情報を送信する移動局と、
     前記移動局から前記制御情報を受信し、受信した前記制御情報に基づいて、前記移動局が通信に用いる周波数の割り当てを変更する基地局と、
     を有する無線通信システム。
    Control that detects the sensitivity suppression effect generated in the received signal processing based on the received signal level of the other frequency different from the frequency used for communication by the own station, and indicates a frequency change request according to the detection status of the sensitivity suppression effect A mobile station transmitting information;
    Receiving the control information from the mobile station, and based on the received control information, a base station that changes the allocation of frequencies used by the mobile station for communication;
    A wireless communication system.
  2.  前記移動局は、前記感度抑圧効果の検出状況と前記受信信号処理に用いる受信フィルタのフィルタ特性とに基づいて、前記制御情報を送信するか否か判定する、請求の範囲第1項記載の無線通信システム。 The radio according to claim 1, wherein the mobile station determines whether to transmit the control information based on a detection status of the sensitivity suppression effect and a filter characteristic of a reception filter used for the reception signal processing. Communications system.
  3.  前記移動局は、前記制御情報を送信しないと判定したとき、前記感度抑圧効果が低減されるように前記受信フィルタの通過帯域を変更する、請求の範囲第2項記載の無線通信システム。 The wireless communication system according to claim 2, wherein when the mobile station determines not to transmit the control information, the mobile station changes a pass band of the reception filter so that the sensitivity suppression effect is reduced.
  4.  前記基地局は、他の基地局から当該他の基地局が通信に用いる周波数を示すセル情報を取得し、前記セル情報を参照して、割り当て変更後の前記移動局が通信に用いる周波数を決定する、請求の範囲第1項記載の無線通信システム。 The base station obtains cell information indicating a frequency used for communication by the other base station from another base station, and refers to the cell information to determine a frequency used by the mobile station after the allocation change for communication. The wireless communication system according to claim 1.
  5.  前記移動局は、前記感度抑圧効果の検出状況に基づいて、受信フィルタの通過帯域から外す除外周波数を算出し、前記制御情報に前記除外周波数の情報を含めて送信し、
     前記基地局は、前記除外周波数に基づいて、割り当て変更後の前記移動局が通信に用いる周波数を決定する、請求の範囲第1項記載の無線通信システム。
    The mobile station calculates an excluded frequency to be removed from the pass band of the reception filter based on the detection state of the sensitivity suppression effect, and transmits the control information including the excluded frequency information,
    The radio communication system according to claim 1, wherein the base station determines a frequency used for communication by the mobile station after the allocation change based on the excluded frequency.
  6.  前記移動局は、前記感度抑圧効果の検出状況に基づいて、変更後の周波数の候補を算出し、前記制御情報に前記周波数の候補の情報を含めて送信し、
     前記基地局は、前記周波数の候補に基づいて、割り当て変更後の前記移動局が通信に用いる周波数を決定する、請求の範囲第1項記載の無線通信システム。
    The mobile station calculates a frequency candidate after the change based on the detection state of the sensitivity suppression effect, and transmits the control information including the frequency candidate information,
    The radio communication system according to claim 1, wherein the base station determines a frequency used for communication by the mobile station after the allocation change based on the frequency candidate.
  7.  前記移動局は、受信フィルタを通過した後の受信信号から、前記自局が通信に用いる周波数の受信信号レベルと前記他の周波数の受信信号レベルとを測定し、測定結果に基づいて前記感度抑圧効果を検出する、請求の範囲第1項記載の無線通信システム。 The mobile station measures the received signal level of the frequency used by the local station for communication and the received signal level of the other frequency from the received signal after passing through the receiving filter, and suppresses the sensitivity based on the measurement result. The wireless communication system according to claim 1, wherein an effect is detected.
  8.  自局が通信に用いる周波数と異なる他の周波数の受信信号レベルに基づいて、受信信号処理で生じる感度抑圧効果を検出する検出部と、
     前記感度抑圧効果の検出状況に応じて、前記自局が通信に用いる周波数の変更要求を示す制御情報を、周波数の割り当てを制御する基地局に送信する送信部と、
     を有する移動局。
    Based on the received signal level of the other frequency different from the frequency used by the own station for communication, a detection unit that detects the sensitivity suppression effect generated in the received signal processing;
    In accordance with the detection status of the sensitivity suppression effect, a transmitting unit that transmits control information indicating a frequency change request used by the own station for communication to a base station that controls frequency allocation;
    A mobile station.
  9.  移動局から、前記移動局の受信信号処理で生じる感度抑圧効果の検出状況に応じて送信される、周波数の変更要求を示す制御情報を受信する受信部と、
     受信した前記制御情報に基づいて、前記移動局が通信に用いる周波数の割り当てを変更する制御部と、
     を有する基地局。
    A receiving unit that receives control information indicating a frequency change request transmitted from a mobile station according to a detection status of a sensitivity suppression effect generated in reception signal processing of the mobile station;
    Based on the received control information, a control unit that changes allocation of frequencies used by the mobile station for communication;
    Base station with
  10.  移動局と基地局とを含むシステムが行う無線通信方法であって、
     前記移動局が通信に用いる周波数と異なる他の周波数の受信信号レベルに基づいて、前記移動局の受信信号処理で生じる感度抑圧効果を検出し、
     前記感度抑圧効果の検出状況に応じて、前記移動局から前記基地局に、周波数の変更要求を示す制御情報を送信し、
     前記制御情報に基づいて、前記移動局が通信に用いる周波数の割り当てを変更する、
     無線通信方法。
    A wireless communication method performed by a system including a mobile station and a base station,
    Based on the received signal level of the other frequency different from the frequency used by the mobile station for communication, the sensitivity suppression effect generated in the received signal processing of the mobile station is detected,
    In accordance with the detection status of the sensitivity suppression effect, control information indicating a frequency change request is transmitted from the mobile station to the base station,
    Based on the control information, changing the frequency allocation used by the mobile station for communication,
    Wireless communication method.
PCT/JP2011/065105 2011-06-30 2011-06-30 Wireless communication system, mobile station, base station, and wireless communication method WO2013001650A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013522604A JP5605509B2 (en) 2011-06-30 2011-06-30 Wireless communication system, mobile station, base station, and wireless communication method
PCT/JP2011/065105 WO2013001650A1 (en) 2011-06-30 2011-06-30 Wireless communication system, mobile station, base station, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065105 WO2013001650A1 (en) 2011-06-30 2011-06-30 Wireless communication system, mobile station, base station, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2013001650A1 true WO2013001650A1 (en) 2013-01-03

Family

ID=47423590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065105 WO2013001650A1 (en) 2011-06-30 2011-06-30 Wireless communication system, mobile station, base station, and wireless communication method

Country Status (2)

Country Link
JP (1) JP5605509B2 (en)
WO (1) WO2013001650A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171112A (en) * 2013-03-04 2014-09-18 Kddi Corp Radio terminal device and radio base station device
WO2014167963A1 (en) * 2013-04-12 2014-10-16 株式会社Nttドコモ Mobile communication device
KR20160096131A (en) * 2013-12-09 2016-08-12 슈레 애쿼지션 홀딩스, 인코포레이티드 Adaptive self-tunable antenna system and method
JP2016174231A (en) * 2015-03-16 2016-09-29 Kddi株式会社 Communication device, communication program, and communication method
JP2019030021A (en) * 2018-10-04 2019-02-21 Kddi株式会社 Communication device, communication program, and communication method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060728A1 (en) * 1998-05-20 1999-11-25 Ntt Mobile Communications Network Inc. Interference-free radio communication system
JP2000013853A (en) * 1998-06-22 2000-01-14 Mitsubishi Electric Corp Radio communication system and radio communication method
JP2000511024A (en) * 1997-02-28 2000-08-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ General-purpose wireless communication system, transmission protocol, wireless communication station and wireless base station
JP2006060701A (en) * 2004-08-23 2006-03-02 Sony Ericsson Mobilecommunications Japan Inc System and terminal for wireless telephone

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130441A (en) * 2003-09-29 2005-05-19 Mitsubishi Materials Corp Wireless interface apparatus
ES2440695T3 (en) * 2008-03-25 2014-01-30 Telefonaktiebolaget L M Ericsson (Publ) Anchorage carrier selection in multi-carrier wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511024A (en) * 1997-02-28 2000-08-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ General-purpose wireless communication system, transmission protocol, wireless communication station and wireless base station
WO1999060728A1 (en) * 1998-05-20 1999-11-25 Ntt Mobile Communications Network Inc. Interference-free radio communication system
JP2000013853A (en) * 1998-06-22 2000-01-14 Mitsubishi Electric Corp Radio communication system and radio communication method
JP2006060701A (en) * 2004-08-23 2006-03-02 Sony Ericsson Mobilecommunications Japan Inc System and terminal for wireless telephone

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171112A (en) * 2013-03-04 2014-09-18 Kddi Corp Radio terminal device and radio base station device
WO2014167963A1 (en) * 2013-04-12 2014-10-16 株式会社Nttドコモ Mobile communication device
JP2014207552A (en) * 2013-04-12 2014-10-30 株式会社Nttドコモ Mobile communication equipment
KR20160096131A (en) * 2013-12-09 2016-08-12 슈레 애쿼지션 홀딩스, 인코포레이티드 Adaptive self-tunable antenna system and method
JP2017506442A (en) * 2013-12-09 2017-03-02 シュアー アクイジッション ホールディングス インコーポレイテッドShure Acquisition Holdings,Inc. Adaptive self-tuning antenna system and method
US10348272B2 (en) 2013-12-09 2019-07-09 Shure Acquisition Holdings, Inc. Adaptive self-tunable antenna system and method
KR102241668B1 (en) * 2013-12-09 2021-04-16 슈어 애쿼지션 홀딩스, 인코포레이티드 Adaptive self-tunable antenna system and method
US11469740B2 (en) 2013-12-09 2022-10-11 Shure Acquisition Holdings, Inc. Adaptive self-tunable antenna system and method
JP2016174231A (en) * 2015-03-16 2016-09-29 Kddi株式会社 Communication device, communication program, and communication method
JP2019030021A (en) * 2018-10-04 2019-02-21 Kddi株式会社 Communication device, communication program, and communication method

Also Published As

Publication number Publication date
JP5605509B2 (en) 2014-10-15
JPWO2013001650A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
US8331254B2 (en) Interference-aware resource assignment in communication systems
KR101715316B1 (en) Method and apparatus for applying signaling of interworking
US10659207B2 (en) Uplink power control in new radio (NR)
CN114503446A (en) SRS antenna switching for multiple receive antennas
WO2018171730A1 (en) Methods and arrangements for wide bandwidth communications
JP2013504951A (en) Method and base station for adjusting MCS level
CN112204896B (en) Transmission of aggregated slots via multiple beamformed channels
JP5605509B2 (en) Wireless communication system, mobile station, base station, and wireless communication method
JP2023501145A (en) Overbooking for multiple DCI-based multiple transmit/receive points
CN114651488B (en) Method and apparatus for spatial relationship scheduling in a wireless communication system
KR101579357B1 (en) Wireless communication system, base station, mobile station, and wireless communication method
KR20130109223A (en) Wireless communication system, base station, mobile station, and wireless communication method
CN115836503A (en) UE behavior under reference signals in full-duplex symbols
CN114830726A (en) Neighbor cell layer 1metric for fast cell change
US20230056886A1 (en) Multiple modulation scheme signalling in a single resource allocation
US9439157B2 (en) Radio base station and method for controlling transmission power in radio base station
JP2022550606A (en) Evaluation period in NR-U network
US20170006623A1 (en) Scheduling for heterogeneous networks
CN114642021A (en) SFN transmission procedure for FR2
KR101858378B1 (en) Prioritized cell identification and measurement method
CN108886790B (en) Base station apparatus, ioT device apparatus, and device that communicates with IoT device
CN117242847A (en) Full duplex sidelink UE indication of selected sidelink resources to overcome self-interference
CN116671166A (en) Congestion control for side link communication based on non-side link activity detection
US11528732B2 (en) Method and network node for handling transmission of LTE or NR signals and NB-IoT signals to wireless communication devices
WO2016043023A1 (en) Base station apparatus, terminal apparatus, processing method, processing apparatus, program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522604

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868451

Country of ref document: EP

Kind code of ref document: A1