WO2013001642A1 - Mirror - Google Patents

Mirror Download PDF

Info

Publication number
WO2013001642A1
WO2013001642A1 PCT/JP2011/065071 JP2011065071W WO2013001642A1 WO 2013001642 A1 WO2013001642 A1 WO 2013001642A1 JP 2011065071 W JP2011065071 W JP 2011065071W WO 2013001642 A1 WO2013001642 A1 WO 2013001642A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
elastic
voltage
unit
image display
Prior art date
Application number
PCT/JP2011/065071
Other languages
French (fr)
Japanese (ja)
Inventor
猶原 真一
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/065071 priority Critical patent/WO2013001642A1/en
Publication of WO2013001642A1 publication Critical patent/WO2013001642A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors

Definitions

  • the present invention relates to a mirror used in an image display device.
  • Patent Document 1 in an optical apparatus using a scanner having a scanning mirror that scans laser light from a laser light source, the angle of the scanning mirror of the scanner is detected by an angle sensor, and the scanning mirror operates in a safe normal state. There has been proposed a technique for determining whether or not it is.
  • Examples of the problem to be solved by the present invention include the above. It is an object of the present invention to provide a mirror that can appropriately detect an abnormal state and can realize downsizing and cost reduction of an image display device.
  • the mirror is configured to support the mirror unit with respect to the frame unit, the mirror unit rotatable with respect to the frame unit, and rotate the mirror unit.
  • an elastic part having a sufficient elasticity and the elastic part is composed of a piezoelectric element that generates a voltage corresponding to a twist generated by the rotation of the mirror part.
  • the mirror includes a frame part, a mirror part rotatable with respect to the frame part, a magnetic body provided in the mirror part, and the magnetic material generated by rotation of the mirror part.
  • Detecting means for detecting a change in the magnetic field according to a change in the position of the body.
  • FIG. 1 shows a configuration of an image display apparatus according to a first embodiment.
  • the structure of the MEMS mirror which concerns on 1st Example is shown.
  • the specific example of the voltage waveform obtained from an elastic part is shown.
  • the structure of the image display apparatus which concerns on 2nd Example is shown.
  • the structure of the MEMS mirror which concerns on 2nd Example is shown.
  • the mirror includes a frame part, a mirror part rotatable with respect to the frame part, and supports the mirror part with respect to the frame part and rotates the mirror part.
  • An elastic portion having elasticity, and the elastic portion is formed of a piezoelectric element that generates a voltage corresponding to torsion caused by rotation of the mirror portion.
  • the above mirror is applied to an image display device that displays an image by scanning (scanning) a laser beam, for example.
  • the elastic part itself that supports the mirror part is configured as a piezoelectric element.
  • the elastic portion itself is configured as a piezoelectric element to perform abnormality determination, it is not necessary to separately add an angle sensor as described in Patent Document 1 described above. In comparison, it is possible to reduce the size and cost of the apparatus to which the mirror is applied.
  • the mirror further includes a driving unit that rotates the mirror portion by a magnetic force.
  • the mirror unit is driven by a magnetic force, and the operation of the mirror unit is detected by an elastic unit as a piezoelectric element. That is, magnetic force is used for the drive system, and voltage is used for the detection system. Therefore, crosstalk and noise between the drive system signal and the detection system signal can be appropriately reduced.
  • the mirror further includes detection means for detecting a rotation angle of the mirror unit based on the voltage. Thereby, abnormality determination can be performed appropriately based on the detected rotation angle.
  • the mirror is applied to an image display device that displays an image by scanning light from a light source, and the elastic portion has a natural frequency that is in a resonance relationship with a scanning operation frequency. Yes. Thereby, energy required for the scanning operation can be reduced.
  • the mirror is applied to an image display device that displays an image by scanning light from a light source, and the elastic portion has a peak output voltage at a frequency corresponding to a scanning operation frequency. It has the following characteristics. As a result, the output voltage of the elastic portion generated by the operation of the mirror portion can be increased, and subsequent detection and determination can be easily performed.
  • the elastic portion has elasticity so as to rotate the mirror portion around an axis along one direction as a central axis.
  • the mirror includes a frame portion, a mirror portion rotatable with respect to the frame portion, a magnetic body provided on the mirror portion, and the magnetic body generated by rotation of the mirror portion.
  • the detecting means detects a change in the magnetic field according to a change in the position of the magnetic body due to the rotation of the mirror section. Abnormality determination can be appropriately performed based on such a magnetic field change. In addition, since the abnormality determination is performed using the magnetic body and the detection means, it is not necessary to separately add an angle sensor as described in Patent Document 1 described above, so compared with the configuration described in Patent Document 1. Thus, it is possible to reduce the size and cost of the apparatus to which the mirror is applied.
  • the detection unit detects a rotation angle of the mirror unit based on a change in the magnetic field. Thereby, abnormality determination can be performed appropriately based on the detected rotation angle.
  • the mirror further includes a driving unit that rotates the mirror unit with a voltage.
  • the mirror unit is driven by a voltage, and the operation of the mirror unit is detected from a magnetic field change. That is, a voltage is used for the drive system, and a magnetic field change is used for the detection system. Therefore, crosstalk and noise between the drive system signal and the detection system signal can be appropriately reduced.
  • FIG. 1 shows a configuration of an image display apparatus 1 according to the first embodiment.
  • the image display device 1 mainly includes an image signal input unit 2, a video ASIC 3, a frame memory 4, a ROM 5, a RAM 6, a laser driver ASIC 7, a MEMS mirror control unit 8, A laser light source unit 9 and an abnormality detection circuit 60 are provided.
  • the image display device 1 is configured to be attachable to a head-up display that visually recognizes an image as a virtual image from the position (eye point) of the user's eyes, a user's head, and the like, and draws an image on the user's retina. Applies to head mounted displays.
  • the image display device 1 can be applied to a projector using laser light, for example.
  • the image signal input unit 2 receives an image signal input from the outside and outputs it to the video ASIC 3.
  • the video ASIC 3 is a block that controls the laser driver ASIC 7 and the MEMS mirror control unit 8 based on the image signal input from the image signal input unit 2 and the scanning position information input from the MEMS mirror 10, and is ASIC (Application Specific Integrated). Circuit).
  • the video ASIC 3 includes a synchronization / image separation unit 31, a bit data conversion unit 32, a light emission pattern conversion unit 33, and a timing controller 34.
  • the synchronization / image separation unit 31 separates the image data displayed on the image display unit and the synchronization signal from the image signal input from the image signal input unit 2 and writes the image data to the frame memory 4.
  • the bit data converter 32 reads the image data written in the frame memory 4 and converts it into bit data.
  • the light emission pattern conversion unit 33 converts the bit data converted by the bit data conversion unit 32 into a signal representing the light emission pattern of each laser.
  • the timing controller 34 controls the operation timing of the synchronization / image separation unit 31 and the bit data conversion unit 32.
  • the timing controller 34 also controls the operation timing of the MEMS mirror control unit 8 described later.
  • the image data separated by the synchronization / image separation unit 31 is written.
  • the ROM 5 stores a control program and data for operating the video ASIC 3. Various data are sequentially read from and written into the RAM 6 as a work memory when the video ASIC 3 operates.
  • the laser driver ASIC 7 is a block that generates a signal for driving a laser diode (LD) provided in a laser light source unit 9 described later, and is configured as an ASIC.
  • the laser driver ASIC 7 includes a red laser driving circuit 71, a blue laser driving circuit 72, and a green laser driving circuit 73.
  • the red laser driving circuit 71 drives the red laser LD1 based on the signal output from the light emission pattern conversion unit 33.
  • the blue laser drive circuit 72 drives the blue laser LD2 based on the signal output from the light emission pattern conversion unit 33.
  • the green laser drive circuit 73 drives the green laser LD3 based on the signal output from the light emission pattern conversion unit 33.
  • a MEMS (Micro Electro Mechanical Systems) mirror control unit 8 controls the MEMS mirror 10 based on a signal output from the timing controller 34.
  • the MEMS mirror control unit 8 includes a servo circuit 81 and a driver circuit 82.
  • the servo circuit 81 controls the operation of the MEMS mirror 10 based on a signal from the timing controller.
  • the driver circuit 82 amplifies the control signal of the MEMS mirror 10 output from the servo circuit 81 to a predetermined level and outputs the amplified signal.
  • the laser light source unit 9 mainly functions to emit laser light based on a drive signal output from the laser driver ASIC 7. Specifically, the laser light source unit 9 includes a red laser LD1, a blue laser LD2, a green laser LD3, dichroic mirrors 91a and 91b, a collimator lens 92, and a MEMS mirror 10.
  • the red laser LD1 emits red laser light
  • the blue laser LD2 emits blue laser light
  • the green laser LD3 emits green laser light.
  • the dichroic mirror 91a reflects the red laser light and transmits the green laser light, thereby emitting the red laser light and the green laser light to the dichroic mirror 91b.
  • the dichroic mirror 91 b transmits the red laser light and the green laser light and reflects the blue laser light, thereby emitting the red laser light, the blue laser light, and the green laser light to the collimator lens 92.
  • the collimator lens 92 converts red laser light, blue laser light, and green laser light into parallel light and emits the parallel light to the MEMS mirror 10.
  • the red laser LD1, the blue laser LD2, and the green laser LD3 are used without being distinguished from each other, they are simply referred to as “laser LD”, and the red laser light, the blue laser light, and the green laser light are used without being distinguished from each other. In this case, it is simply expressed as “laser light”.
  • the MEMS mirror 10 includes a mirror part 10a, an elastic part 10b, a frame part 10c, and an electromagnetic actuator 10d.
  • the MEMS mirror 10 reflects the laser light incident from the collimator lens 92 toward the screen 11 under the control of the MEMS mirror control unit 8 in order to display the image input to the image signal input unit 2.
  • the electromagnetic actuator 10d uses the magnetic force to rotate the mirror unit 10a under the control of the MEMS mirror control unit 8 (specifically, the mirror unit 10a is swung at a predetermined cycle. The angle of the mirror unit 10a is changed at a period of (1) to scan the screen 11 with laser light. At that time, the electromagnetic actuator 10 d outputs the scanning position information to the video ASIC 3.
  • the MEMS mirror 10 corresponds to an example of a “mirror” in the present invention
  • the electromagnetic actuator 10d corresponds to an example of a “drive unit” in the present invention.
  • FIG. 2 is a diagram illustrating a configuration of the MEMS mirror 10 according to the first embodiment.
  • the mirror part 10a is supported by the elastic part 10b, and is configured to be rotatable in the direction indicated by the arrow with respect to the frame part 10c.
  • the elastic part 10b has elasticity that connects the mirror part 10a and the frame part 10c and rotates the mirror part 10a.
  • the elastic part 10b has such elasticity that the mirror part 10a is rotated about an axis along one direction as a central axis.
  • the elastic portion 10b corresponds to a so-called torsion bar.
  • the elastic portion 10b is composed of a piezoelectric element that generates a voltage corresponding to the twist generated by the rotation of the mirror portion 10a.
  • the elastic part 10b supplies the voltage generated according to the twist to the abnormality detection circuit 60 as a signal S10.
  • the abnormality detection circuit 60 performs abnormality determination on the scanning operation state of the MEMS mirror 10 based on the signal S10 supplied from the elastic portion 10b of the MEMS mirror 10. Specifically, the abnormality detection circuit 60 determines whether or not an abnormality has occurred in the operation of the mirror unit 10a based on the rotation angle of the mirror unit 10a corresponding to the signal S10 (details of abnormality determination). Will be described later). In this case, the abnormality detection circuit 60 detects the rotation angle of the mirror unit 10a by, for example, amplifying the signal S10 supplied from the elastic unit 10b.
  • the abnormality detection circuit 60 performs control to stop the irradiation of the laser beam when an abnormality is detected in the operation of the mirror unit 10a. Specifically, the abnormality detection circuit 60 stops the light emission of the laser LD by supplying the control signal S7 to the laser driver ASIC7.
  • the abnormality detection circuit 60 corresponds to an example of “detection means” in the present invention.
  • the abnormality determination method is performed on the scanning operation state of the MEMS mirror 10. That is, the abnormality detection circuit 60 treats the voltage change (corresponding to the above-described signal S10) generated by the elastic portion 10b as the operation state of the mirror portion 10a, thereby causing an abnormality in the scanning operation by the mirror portion 10a. Judge whether or not there is.
  • the abnormality detection circuit 60 uses a voltage waveform generated by the elastic portion 10b during normal operation of the mirror portion 10a (hereinafter referred to as a “normal operation waveform”) as a reference, and a voltage obtained from the elastic portion 10b. Abnormality judgment is performed by comparing the waveform with the waveform during normal operation. In this case, when the voltage waveform obtained from the elastic portion 10b substantially matches the waveform during normal operation, the abnormality detection circuit 60 determines that the operation of the mirror portion 10a is normal and is obtained from the elastic portion 10b. When the measured voltage waveform is different from the normal operation waveform, it is determined that the operation of the mirror unit 10a is abnormal.
  • a normal operation waveform a voltage waveform generated by the elastic portion 10b during normal operation of the mirror portion 10a
  • the abnormality detection circuit 60 is configured using an LPF filter circuit or an HPF filter circuit, and the abnormality determination as described above is performed by processing the voltage waveform of the elastic portion 10b with the LPF filter circuit or the HPF filter circuit. Can be realized.
  • the abnormality detection circuit 60 determines that the operation of the mirror unit 10a is abnormal, the abnormality detection circuit 60 controls the laser driver ASIC 7 to stop the irradiation of the laser light.
  • FIG. 3 a specific example of a voltage waveform obtained from the elastic portion 10b is shown.
  • the horizontal axis represents time
  • the vertical axis represents the voltage generated by the elastic portion 10 b (that is, the voltage corresponding to the twist of the elastic portion 10 b).
  • FIG. 3A shows an example of a voltage waveform (a waveform during normal operation) obtained from the elastic portion 10b when the mirror unit 10a operates normally.
  • FIG. 3B shows an example of a voltage waveform obtained from the elastic portion 10b when the mirror portion 10a operates abnormally. From FIG. 3B, it can be seen that the magnitude of the voltage is considerably small as compared with the normal operation waveform of FIG.
  • the abnormality detection circuit 60 determines that the operation of the mirror unit 10a is abnormal by performing the abnormality determination as described above.
  • FIG. 4 is a flowchart showing the abnormality determination process according to the first embodiment. The flow is repeatedly executed at a predetermined cycle when the image display apparatus 1 is operated.
  • step S101 the MEMS mirror control unit 8 drives the electromagnetic actuator 10d of the MEMS mirror 10. Then, the process proceeds to step S102.
  • the electromagnetic actuator 10d is driven in this way, the elastic portion 10b is twisted by the rotation of the mirror portion 10a, and the elastic portion 10b as a piezoelectric element generates a voltage corresponding to the twist.
  • the elastic portion 10b supplies the voltage generated according to the twist to the abnormality detection circuit 60 as a signal S10.
  • step S102 the abnormality detection circuit 60 acquires a signal S10 corresponding to the voltage generated by the elastic portion 10b. That is, the abnormality detection circuit 60 acquires the voltage waveform generated by the elastic portion 10b. Then, the process proceeds to step S103.
  • step S103 the abnormality detection circuit 60 determines whether or not the voltage waveform acquired in step S102 matches the waveform during normal operation. If the acquired voltage waveform substantially matches the waveform during normal operation (step S103: Yes), the process ends. In this case, the operation of the image display device 1 is continued. On the other hand, when the acquired voltage waveform does not match the waveform during normal operation (step S103: No), the process proceeds to step S104. In step S104, the abnormality detection circuit 60 controls the laser driver ASIC 7 so that the irradiation of the laser light is stopped. Then, the process ends.
  • the elastic portion 10b itself supporting the mirror portion 10a as a piezoelectric element, based on the voltage change due to the twist of the elastic portion 10b caused by the rotation of the mirror portion 10a, Abnormality determination of the scan operation state can be performed appropriately.
  • the elastic portion 10b itself is configured as a piezoelectric element to perform abnormality determination, it is not necessary to separately add an angle sensor as described in Patent Document 1 described above. Compared with the configuration described in Patent Document 1, the image display device 1 can be reduced in size and cost.
  • the mirror portion 10a is driven by the electromagnetic actuator 10d, and the operation of the mirror portion 10a is detected by the elastic portion 10b as a piezoelectric element. That is, magnetic force is used for the drive system, and voltage is used for the detection system. Therefore, crosstalk and noise between the drive system signal and the detection system signal can be appropriately reduced.
  • the elastic portion 10b preferably has a natural frequency that is in a resonance relationship with a frequency in a scanning operation for drawing an image (hereinafter, referred to as “scanning operation frequency” as appropriate). By doing so, the energy required for the scanning operation can be reduced.
  • the piezoelectric element since the piezoelectric element generally has a non-flat frequency characteristic having a voltage peak at a specific frequency, the elastic portion 10b as a piezoelectric element has an output voltage at a frequency that matches the scanning operation frequency. It is preferable that it has the characteristic which becomes a peak. By doing so, the output voltage of the elastic portion 10b generated by the operation of the mirror portion 10a can be increased, and the scan operation state can be easily detected. In addition, the process of amplifying the output voltage of the elastic part 10b can be omitted.
  • the laser beam irradiation is stopped when an abnormality is detected as described above, for example, it may be displayed that the laser beam irradiation is stopped due to an abnormality or that the scanning operation state is abnormal. .
  • the mirror portion 10a is driven by the electromagnetic actuator 10d, and the operation of the mirror portion 10a is detected by the elastic portion 10b as a piezoelectric element. That is, magnetic force is used for the drive system, and voltage is used for the detection system. In contrast, in the second embodiment, a voltage is used for the drive system and a magnetic force is used for the detection system. Specifically, in the second embodiment, the mirror unit is driven by a voltage, and the operation of the mirror unit is detected based on a magnetic field change.
  • FIG. 5 shows a configuration of an image display device 1x according to the second embodiment.
  • the same components as those of the image display device 1 shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. Further, components and processes not particularly described here are the same as those in the first embodiment.
  • the image display device 1x according to the second embodiment is different from the image display device 1 according to the first embodiment in that it includes a MEMS mirror 10x instead of the MEMS mirror 10.
  • the MEMS mirror 10x includes a mirror part 10xa, an elastic part 10xb, a frame part 10xc, a piezoelectric actuator 10xd, a magnetic body 10xe, and a Hall element 10xf.
  • the MEMS mirror 10 x reflects the laser light incident from the collimator lens 92 toward the screen 11 under the control of the MEMS mirror control unit 8 in order to display an image input to the image signal input unit 2.
  • the piezoelectric actuator 10xd uses the voltage to rotate the mirror unit 10xa under the control of the MEMS mirror control unit 8 (specifically, the mirror unit 10xa is swung at a predetermined cycle. The angle of the mirror unit 10xa is changed at a period of (1) to scan the screen 11 with laser light.
  • the MEMS mirror 10x corresponds to an example of a “mirror” in the present invention
  • the piezoelectric actuator 10xd corresponds to an example of a “driving unit” in the present invention.
  • FIG. 6 is a diagram illustrating a configuration of the MEMS mirror 10x according to the second embodiment.
  • the mirror portion 10xa is supported by the elastic portion 10xb and is configured to be rotatable in the direction indicated by the arrow with respect to the frame portion 10xc.
  • the elastic part 10xb has elasticity that connects the mirror part 10xa and the frame part 10xc and rotates the mirror part 10xa.
  • the elastic part 10xb has such elasticity that the mirror part 10xa is rotated about an axis along one direction as a central axis.
  • the elastic portion 10xb corresponds to a so-called torsion bar.
  • the elastic portion 10xb is not composed of a piezoelectric element.
  • the magnetic body 10xe is attached to a surface opposite to the surface irradiated with the laser light in the mirror portion 10xa. Therefore, the magnetic body 10xe moves with the mirror part 10xa. That is, the position of the magnetic body 10xe changes with the rotation of the mirror unit 10xa.
  • the Hall element 10xf is provided at a position where the position is not changed by the rotation of the mirror portion 10xa and the magnetic field generated by the magnetic body 10xe can be detected.
  • the hall element 10xf is provided in the frame portion 10xc.
  • the Hall element 10xf is an element that detects a magnetic field using the Hall effect, and supplies a voltage corresponding to the detected magnetic field to the abnormality detection circuit 60 as a signal S10x.
  • the Hall element 10xf corresponds to an example of “detecting means” in the present invention.
  • the position of the magnetic body 10xe changes with the rotation of the mirror portion 10xa, and the Hall element 10xf is provided according to the position change of the magnetic body 10xe. Magnetic field changes occur at different positions.
  • the Hall element 10xf detects such a magnetic field change and supplies a voltage waveform corresponding to the detected magnetic field change to the abnormality detection circuit 60 as a signal S10x.
  • the abnormality detection circuit 60 performs abnormality determination on the scanning operation state of the MEMS mirror 10x based on the signal S10x supplied from the Hall element 10xf. Specifically, the abnormality detection circuit 60 determines whether or not an abnormality has occurred in the scanning operation by the mirror unit 10xa by treating the magnetic field change detected by the Hall element 10xf as the operation state of the mirror unit 10xa. To do.
  • the abnormality detection circuit 60 uses the voltage waveform output by the Hall element 10xf during normal operation of the mirror unit 10xa (hereinafter also referred to as “waveform during normal operation”) as a reference, and from the Hall element 10xf. Abnormality judgment is performed by comparing the obtained voltage waveform with the waveform during normal operation. In this case, when the voltage waveform obtained from the Hall element 10xf substantially matches the waveform during normal operation, the abnormality detection circuit 60 determines that the operation of the mirror unit 10xa is normal and is obtained from the Hall element 10xf. When the measured voltage waveform is different from the waveform during normal operation, it is determined that the operation of the mirror unit 10xa is abnormal. When the abnormality detection circuit 60 determines that the operation of the mirror unit 10xa is abnormal, the abnormality detection circuit 60 supplies the control signal S7 to the laser driver ASIC 7 to stop the emission of the laser LD.
  • waveform during normal operation the voltage waveform output by the Hall element 10xf during normal operation of the mirror unit 10xa
  • FIG. 7 is a flowchart showing the abnormality determination process according to the second embodiment. This flow is repeatedly executed at a predetermined cycle during the operation of the image display device 1x.
  • step S201 the MEMS mirror control unit 8 drives the piezoelectric actuator 10xd of the MEMS mirror 10x. Then, the process proceeds to step S202.
  • the piezoelectric actuator 10xd is driven in this way, the position of the magnetic body 10xe is changed by the rotation of the mirror portion 10xa, and the Hall element 10xf detects a magnetic field change corresponding to the position change of the magnetic body 10xe. Then, the Hall element 10xf supplies a voltage corresponding to the detected magnetic field change to the abnormality detection circuit 60 as a signal S10x.
  • step S202 the abnormality detection circuit 60 acquires a signal S10x corresponding to the voltage output from the hall element 10xf. That is, the abnormality detection circuit 60 acquires the voltage waveform output from the Hall element 10xf. Then, the process proceeds to step S203.
  • step S203 the abnormality detection circuit 60 determines whether or not the voltage waveform acquired in step S202 matches the waveform during normal operation. If the acquired voltage waveform substantially matches the waveform during normal operation (step S203: Yes), the process ends. In this case, the operation of the image display device 1x is continued. On the other hand, when the acquired voltage waveform does not match the waveform during normal operation (step S203: No), the process proceeds to step S204. In step S204, the abnormality detection circuit 60 controls the laser driver ASIC 7 so that the laser beam irradiation is stopped. Then, the process ends.
  • the abnormality determination of the scanning operation state can be appropriately performed by detecting the magnetic field change according to the position change of the magnetic body 10xe due to the rotation of the mirror portion 10xa by the Hall element 10xf. it can. Further, according to the second embodiment, since the abnormality determination is performed using the magnetic body 10xe and the Hall element 10xf, it is not necessary to add an additional angle sensor as described in Patent Document 1 above. Compared with the configuration described in Document 1, it is possible to reduce the size and cost of the image display device 1x.
  • the mirror unit 10xa is driven by the piezoelectric actuator 10xd, and the operation of the mirror unit 10xa is detected by the Hall element 10xf. That is, a voltage is used for the drive system, and a magnetic field change is used for the detection system. Therefore, crosstalk and noise between the drive system signal and the detection system signal can be appropriately reduced.
  • the magnetic body 10xe it is not limited to attaching the magnetic body 10xe to the surface opposite to the surface irradiated with the laser light in the mirror portion 10xa (see FIG. 6). As long as the laser beam is not irradiated when the image is drawn, the mirror portion 10xa may be attached to such a location. Further, the magnetic body 10xe may be attached to the side surface of the mirror portion 10xa.
  • the magnetic field generated by the magnetic body 10xe is detected by the Hall element 10xf, but a coil is used instead of the Hall element 10xf to detect the magnetic field generated by the magnetic body 10xe. good.
  • the coil functions as the “detecting means” in the present invention.
  • the abnormality determination is performed by the abnormality detection circuit 60 as hardware, but abnormality determination may be performed by software instead.
  • a microcomputer or a DSP (Digital Signal Processor) in the image display device 1 or 1x can perform the abnormality determination as described above.
  • the microcomputer or the DSP acquires the signal S10 corresponding to the output voltage of the elastic portion 10b or the signal S10x corresponding to the output voltage of the Hall element 10xf, and predetermined for the voltage waveform corresponding to the signal S10 or the signal S10x. By performing this arithmetic processing, the abnormality determination of the scanning operation state is performed. Then, the microcomputer and the DSP control the laser driver ASIC 7 so that the irradiation of the laser beam is stopped when an abnormality is detected.
  • DSP Digital Signal Processor
  • the present invention is applied to a configuration for performing one-dimensional scanning (that is, a configuration in which the mirror units 10a and 10xa are rotated around only one axis as a central axis) has been described.
  • the present invention can also be applied to a configuration that performs dimension scanning. That is, the present invention can be applied to a configuration in which the mirror unit is rotated in two directions defined by the two axes with the two axes as the central axes. In this configuration, two elastic parts are used so as to support the mirror part in the directions of the two axes.
  • the first embodiment described above can also be applied when using two such elastic portions. That is, the two elastic portions can be configured by piezoelectric elements that generate a voltage corresponding to the twist generated by the rotation of the mirror portion. Also in this case, it is preferable that each of the two elastic portions is configured to have a natural frequency that is in a resonance relationship with the scanning operation frequency.
  • the elastic part used for scanning in the horizontal direction (X-axis direction) is preferably configured with a relatively high natural frequency
  • the elastic part used for scanning in the vertical direction (Y-axis direction) It is preferable to use a relatively low natural frequency corresponding to the frame frequency (for example, about 50 to 60 Hz).
  • the present invention can be used for image display devices such as projectors, head-up displays, and head-mounted displays.

Abstract

This mirror is applied to, for instance, an image display device that displays images by performing scanning using a laser beam. The mirror has: a frame section; a mirror section, which can rotate with respect to the frame section; and an elastic section, which supports the mirror section with respect to the frame section, and rotates the mirror section. Specifically, the elastic section is configured of a piezoelectric element that generates a voltage corresponding to distortion generated due to the rotation of the mirror section. Consequently, abnormal states can be suitably detected, and size reduction and cost reduction of the image display device and the like are made possible.

Description

ミラーmirror
 本発明は、画像表示装置に用いられるミラーに関する。 The present invention relates to a mirror used in an image display device.
 従来から、レーザ光をスキャン(走査)することで画像を表示する画像表示装置が知られている。例えば特許文献1には、レーザ光源からのレーザ光を走査させる走査ミラーを有するスキャナを用いる光学装置において、スキャナの走査ミラーの角度を角度センサで検出し、走査ミラーが安全な正常状態で動作しているか否かを判定する技術が提案されている。 Conventionally, an image display device that displays an image by scanning a laser beam is known. For example, in Patent Document 1, in an optical apparatus using a scanner having a scanning mirror that scans laser light from a laser light source, the angle of the scanning mirror of the scanner is detected by an angle sensor, and the scanning mirror operates in a safe normal state. There has been proposed a technique for determining whether or not it is.
特開2005-31266号公報Japanese Patent Laid-Open No. 2005-31266
 しかしながら、上記の特許文献1に記載された技術では、角度センサを用いるため、画像表示装置の小型化や低コスト化を実現することが困難であった。 However, in the technique described in Patent Document 1 described above, since an angle sensor is used, it is difficult to reduce the size and cost of the image display device.
 本発明が解決しようとする課題は上記のようなものが例として挙げられる。本発明は、異常状態を適切に検出することができると共に、画像表示装置の小型化及び低コスト化を実現することが可能なミラーを提供することを課題とする。 Examples of the problem to be solved by the present invention include the above. It is an object of the present invention to provide a mirror that can appropriately detect an abnormal state and can realize downsizing and cost reduction of an image display device.
 請求項1に記載の発明では、ミラーは、フレーム部と、前記フレーム部に対して回転可能なミラー部と、前記フレーム部に対して前記ミラー部を支持し、且つ前記ミラー部を回転させるような弾性を有する弾性部と、を有し、前記弾性部は、前記ミラー部の回転によって生じるねじれに応じた電圧を発生させる圧電素子から成る。 In the first aspect of the invention, the mirror is configured to support the mirror unit with respect to the frame unit, the mirror unit rotatable with respect to the frame unit, and rotate the mirror unit. And an elastic part having a sufficient elasticity, and the elastic part is composed of a piezoelectric element that generates a voltage corresponding to a twist generated by the rotation of the mirror part.
 請求項7に記載の発明では、ミラーは、フレーム部と、前記フレーム部に対して回転可能なミラー部と、前記ミラー部に設けられた磁性体と、前記ミラー部の回転によって生じる、前記磁性体の位置変化に応じた磁界の変化を検出する検出手段と、を有する。 In a seventh aspect of the invention, the mirror includes a frame part, a mirror part rotatable with respect to the frame part, a magnetic body provided in the mirror part, and the magnetic material generated by rotation of the mirror part. Detecting means for detecting a change in the magnetic field according to a change in the position of the body.
第1実施例に係る画像表示装置の構成を示す。1 shows a configuration of an image display apparatus according to a first embodiment. 第1実施例に係るMEMSミラーの構成を示す。The structure of the MEMS mirror which concerns on 1st Example is shown. 弾性部より得られる電圧波形の具体例を示す。The specific example of the voltage waveform obtained from an elastic part is shown. 第1実施例に係る異常判定処理を示すフローチャートである。It is a flowchart which shows the abnormality determination process which concerns on 1st Example. 第2実施例に係る画像表示装置の構成を示す。The structure of the image display apparatus which concerns on 2nd Example is shown. 第2実施例に係るMEMSミラーの構成を示す。The structure of the MEMS mirror which concerns on 2nd Example is shown. 第2実施例に係る異常判定処理を示すフローチャートである。It is a flowchart which shows the abnormality determination process which concerns on 2nd Example.
 本発明の1つの観点では、ミラーは、フレーム部と、前記フレーム部に対して回転可能なミラー部と、前記フレーム部に対して前記ミラー部を支持し、且つ前記ミラー部を回転させるような弾性を有する弾性部と、を有し、前記弾性部は、前記ミラー部の回転によって生じるねじれに応じた電圧を発生させる圧電素子から成る。 In one aspect of the present invention, the mirror includes a frame part, a mirror part rotatable with respect to the frame part, and supports the mirror part with respect to the frame part and rotates the mirror part. An elastic portion having elasticity, and the elastic portion is formed of a piezoelectric element that generates a voltage corresponding to torsion caused by rotation of the mirror portion.
 上記のミラーは、例えばレーザ光をスキャン(走査)することで画像を表示する画像表示装置に適用される。当該ミラーでは、ミラー部を支持する弾性部そのものを圧電素子として構成する。これにより、ミラー部の回転に起因する弾性部のねじれによる電圧変化に基づいて、異常判定を適切に行うことができる。また、弾性部そのものを圧電素子として構成して異常判定を行うため、上記した特許文献1に記載されたような角度センサを別途追加しなくても良いので、特許文献1に記載された構成と比較して、ミラーを適用する装置の小型化及び低コスト化を実現することが可能となる。 The above mirror is applied to an image display device that displays an image by scanning (scanning) a laser beam, for example. In the mirror, the elastic part itself that supports the mirror part is configured as a piezoelectric element. Thereby, based on the voltage change by the twist of the elastic part resulting from rotation of a mirror part, abnormality determination can be performed appropriately. In addition, since the elastic portion itself is configured as a piezoelectric element to perform abnormality determination, it is not necessary to separately add an angle sensor as described in Patent Document 1 described above. In comparison, it is possible to reduce the size and cost of the apparatus to which the mirror is applied.
 上記のミラーの一態様では、磁力によって前記ミラー部を回転させる駆動手段を更に備える。この態様では、ミラー部を磁力によって駆動し、ミラー部の動作を圧電素子としての弾性部で検出している。つまり、駆動系については磁力を利用し、検出系については電圧を利用している。そのため、駆動系信号と検出系信号との間のクロストークやノイズを適切に低減することができる。 In one aspect of the mirror described above, the mirror further includes a driving unit that rotates the mirror portion by a magnetic force. In this aspect, the mirror unit is driven by a magnetic force, and the operation of the mirror unit is detected by an elastic unit as a piezoelectric element. That is, magnetic force is used for the drive system, and voltage is used for the detection system. Therefore, crosstalk and noise between the drive system signal and the detection system signal can be appropriately reduced.
 上記のミラーの他の一態様では、前記電圧に基づいて、前記ミラー部の回転角度を検出する検出手段を更に備える。これにより、検出された回転角度に基づいて異常判定を適切に行うことができる。 In another aspect of the mirror described above, the mirror further includes detection means for detecting a rotation angle of the mirror unit based on the voltage. Thereby, abnormality determination can be performed appropriately based on the detected rotation angle.
 上記のミラーの他の一態様では、光源からの光をスキャンすることで画像を表示する画像表示装置に適用され、前記弾性部は、スキャン動作周波数と共振関係にある固有振動数を有している。これにより、スキャン動作に必要なエネルギーを低減することができる。 In another aspect of the mirror described above, the mirror is applied to an image display device that displays an image by scanning light from a light source, and the elastic portion has a natural frequency that is in a resonance relationship with a scanning operation frequency. Yes. Thereby, energy required for the scanning operation can be reduced.
 上記のミラーの他の一態様では、光源からの光をスキャンすることで画像を表示する画像表示装置に適用され、前記弾性部は、スキャン動作周波数に応じた周波数において、出力電圧がピークとなるような特性を有している。これにより、ミラー部の動作によって発生する弾性部の出力電圧を高めることができ、その後の検出や判定を容易に行うことが可能となる。 In another aspect of the above mirror, the mirror is applied to an image display device that displays an image by scanning light from a light source, and the elastic portion has a peak output voltage at a frequency corresponding to a scanning operation frequency. It has the following characteristics. As a result, the output voltage of the elastic portion generated by the operation of the mirror portion can be increased, and subsequent detection and determination can be easily performed.
 上記のミラーにおいて好適には、前記弾性部は、前記ミラー部を一の方向に沿った軸を中心軸として回転させるような弾性を有する。 Preferably, in the mirror described above, the elastic portion has elasticity so as to rotate the mirror portion around an axis along one direction as a central axis.
 本発明の他の観点では、ミラーは、フレーム部と、前記フレーム部に対して回転可能なミラー部と、前記ミラー部に設けられた磁性体と、前記ミラー部の回転によって生じる、前記磁性体の位置変化に応じた磁界の変化を検出する検出手段と、を有する。 In another aspect of the present invention, the mirror includes a frame portion, a mirror portion rotatable with respect to the frame portion, a magnetic body provided on the mirror portion, and the magnetic body generated by rotation of the mirror portion. Detecting means for detecting a change in the magnetic field in accordance with a change in the position.
 上記のミラーでは、検出手段は、ミラー部の回転による磁性体の位置変化に応じた磁界変化を検出する。このような磁界変化に基づいて、異常判定を適切に行うことができる。また、磁性体及び検出手段を用いて異常判定を行うため、上記した特許文献1に記載されたような角度センサを別途追加しなくても良いので、特許文献1に記載された構成と比較して、ミラーを適用する装置の小型化及び低コスト化を実現することが可能となる。 In the above mirror, the detecting means detects a change in the magnetic field according to a change in the position of the magnetic body due to the rotation of the mirror section. Abnormality determination can be appropriately performed based on such a magnetic field change. In addition, since the abnormality determination is performed using the magnetic body and the detection means, it is not necessary to separately add an angle sensor as described in Patent Document 1 described above, so compared with the configuration described in Patent Document 1. Thus, it is possible to reduce the size and cost of the apparatus to which the mirror is applied.
 上記のミラーの他の一態様では、前記検出手段は、前記磁界の変化に基づいて、前記ミラー部の回転角度を検出する。これにより、検出された回転角度に基づいて異常判定を適切に行うことができる。 In another aspect of the mirror described above, the detection unit detects a rotation angle of the mirror unit based on a change in the magnetic field. Thereby, abnormality determination can be performed appropriately based on the detected rotation angle.
 上記のミラーの他の一態様では、電圧によって前記ミラー部を回転させる駆動手段を更に備える。この態様では、ミラー部を電圧によって駆動し、ミラー部の動作を磁界変化より検出している。つまり、駆動系については電圧を利用し、検出系については磁界変化を利用している。そのため、駆動系信号と検出系信号との間のクロストークやノイズを適切に低減することができる。 In another aspect of the above-described mirror, the mirror further includes a driving unit that rotates the mirror unit with a voltage. In this aspect, the mirror unit is driven by a voltage, and the operation of the mirror unit is detected from a magnetic field change. That is, a voltage is used for the drive system, and a magnetic field change is used for the detection system. Therefore, crosstalk and noise between the drive system signal and the detection system signal can be appropriately reduced.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [第1実施例]
 まず、本発明の第1実施例について説明する。
[First embodiment]
First, a first embodiment of the present invention will be described.
 (全体構成)
 図1は、第1実施例に係る画像表示装置1の構成を示す。図1に示すように、画像表示装置1は、主に、画像信号入力部2と、ビデオASIC3と、フレームメモリ4と、ROM5と、RAM6と、レーザドライバASIC7と、MEMSミラー制御部8と、レーザ光源ユニット9と、異常検出回路60と、を備える。例えば、画像表示装置1は、ユーザの目の位置(アイポイント)から虚像として画像を視認させるヘッドアップディスプレイや、ユーザの頭部などに装着可能に構成され、ユーザの網膜上に画像を描画するヘッドマウントディスプレイに適用される。この他にも、画像表示装置1は、例えばレーザ光を用いたプロジェクタに適用することができる。
(overall structure)
FIG. 1 shows a configuration of an image display apparatus 1 according to the first embodiment. As shown in FIG. 1, the image display device 1 mainly includes an image signal input unit 2, a video ASIC 3, a frame memory 4, a ROM 5, a RAM 6, a laser driver ASIC 7, a MEMS mirror control unit 8, A laser light source unit 9 and an abnormality detection circuit 60 are provided. For example, the image display device 1 is configured to be attachable to a head-up display that visually recognizes an image as a virtual image from the position (eye point) of the user's eyes, a user's head, and the like, and draws an image on the user's retina. Applies to head mounted displays. In addition, the image display device 1 can be applied to a projector using laser light, for example.
 画像信号入力部2は、外部から入力される画像信号を受信してビデオASIC3に出力する。ビデオASIC3は、画像信号入力部2から入力される画像信号及びMEMSミラー10から入力される走査位置情報に基づいてレーザドライバASIC7やMEMSミラー制御部8を制御するブロックであり、ASIC(Application Specific Integrated Circuit)として構成されている。ビデオASIC3は、同期/画像分離部31と、ビットデータ変換部32と、発光パターン変換部33と、タイミングコントローラ34と、を備える。 The image signal input unit 2 receives an image signal input from the outside and outputs it to the video ASIC 3. The video ASIC 3 is a block that controls the laser driver ASIC 7 and the MEMS mirror control unit 8 based on the image signal input from the image signal input unit 2 and the scanning position information input from the MEMS mirror 10, and is ASIC (Application Specific Integrated). Circuit). The video ASIC 3 includes a synchronization / image separation unit 31, a bit data conversion unit 32, a light emission pattern conversion unit 33, and a timing controller 34.
 同期/画像分離部31は、画像信号入力部2から入力された画像信号から、画像表示部に表示される画像データと同期信号とを分離し、画像データをフレームメモリ4へ書き込む。ビットデータ変換部32は、フレームメモリ4に書き込まれた画像データを読み出してビットデータに変換する。発光パターン変換部33は、ビットデータ変換部32で変換されたビットデータを、各レーザの発光パターンを表す信号に変換する。タイミングコントローラ34は、同期/画像分離部31、ビットデータ変換部32の動作タイミングを制御する。また、タイミングコントローラ34は、後述するMEMSミラー制御部8の動作タイミングも制御する。 The synchronization / image separation unit 31 separates the image data displayed on the image display unit and the synchronization signal from the image signal input from the image signal input unit 2 and writes the image data to the frame memory 4. The bit data converter 32 reads the image data written in the frame memory 4 and converts it into bit data. The light emission pattern conversion unit 33 converts the bit data converted by the bit data conversion unit 32 into a signal representing the light emission pattern of each laser. The timing controller 34 controls the operation timing of the synchronization / image separation unit 31 and the bit data conversion unit 32. The timing controller 34 also controls the operation timing of the MEMS mirror control unit 8 described later.
 フレームメモリ4には、同期/画像分離部31により分離された画像データが書き込まれる。ROM5は、ビデオASIC3が動作するための制御プログラムやデータなどを記憶している。RAM6には、ビデオASIC3が動作する際のワークメモリとして、各種データが逐次読み書きされる。 In the frame memory 4, the image data separated by the synchronization / image separation unit 31 is written. The ROM 5 stores a control program and data for operating the video ASIC 3. Various data are sequentially read from and written into the RAM 6 as a work memory when the video ASIC 3 operates.
 レーザドライバASIC7は、後述するレーザ光源ユニット9に設けられるレーザダイオード(LD)を駆動する信号を生成するブロックであり、ASICとして構成されている。レーザドライバASIC7は、赤色レーザ駆動回路71と、青色レーザ駆動回路72と、緑色レーザ駆動回路73と、を備える。赤色レーザ駆動回路71は、発光パターン変換部33が出力する信号に基づき、赤色レーザLD1を駆動する。青色レーザ駆動回路72は、発光パターン変換部33が出力する信号に基づき、青色レーザLD2を駆動する。緑色レーザ駆動回路73は、発光パターン変換部33が出力する信号に基づき、緑色レーザLD3を駆動する。 The laser driver ASIC 7 is a block that generates a signal for driving a laser diode (LD) provided in a laser light source unit 9 described later, and is configured as an ASIC. The laser driver ASIC 7 includes a red laser driving circuit 71, a blue laser driving circuit 72, and a green laser driving circuit 73. The red laser driving circuit 71 drives the red laser LD1 based on the signal output from the light emission pattern conversion unit 33. The blue laser drive circuit 72 drives the blue laser LD2 based on the signal output from the light emission pattern conversion unit 33. The green laser drive circuit 73 drives the green laser LD3 based on the signal output from the light emission pattern conversion unit 33.
 MEMS(Micro Electro Mechanical Systems)ミラー制御部8は、タイミングコントローラ34が出力する信号に基づきMEMSミラー10を制御する。MEMSミラー制御部8は、サーボ回路81と、ドライバ回路82と、を備える。サーボ回路81は、タイミングコントローラからの信号に基づき、MEMSミラー10の動作を制御する。ドライバ回路82は、サーボ回路81が出力するMEMSミラー10の制御信号を所定レベルに増幅して出力する。 A MEMS (Micro Electro Mechanical Systems) mirror control unit 8 controls the MEMS mirror 10 based on a signal output from the timing controller 34. The MEMS mirror control unit 8 includes a servo circuit 81 and a driver circuit 82. The servo circuit 81 controls the operation of the MEMS mirror 10 based on a signal from the timing controller. The driver circuit 82 amplifies the control signal of the MEMS mirror 10 output from the servo circuit 81 to a predetermined level and outputs the amplified signal.
 レーザ光源ユニット9は、主に、レーザドライバASIC7から出力される駆動信号に基づいて、レーザ光を出射するように機能する。具体的には、レーザ光源ユニット9は、赤色レーザLD1と、青色レーザLD2と、緑色レーザLD3と、ダイクロイックミラー91a、91bと、コリメータレンズ92と、MEMSミラー10と、を備える。 The laser light source unit 9 mainly functions to emit laser light based on a drive signal output from the laser driver ASIC 7. Specifically, the laser light source unit 9 includes a red laser LD1, a blue laser LD2, a green laser LD3, dichroic mirrors 91a and 91b, a collimator lens 92, and a MEMS mirror 10.
 赤色レーザLD1は赤色レーザ光を出射し、青色レーザLD2は青色レーザ光を出射し、緑色レーザLD3は緑色レーザ光を出射する。ダイクロイックミラー91aは、赤色レーザ光を反射させると共に、緑色レーザ光を透過させることで、赤色レーザ光及び緑色レーザ光をダイクロイックミラー91bに出射する。ダイクロイックミラー91bは、赤色レーザ光及び緑色レーザ光を透過させると共に、青色レーザ光を反射させることで、赤色レーザ光、青色レーザ光及び緑色レーザ光をコリメータレンズ92に出射する。コリメータレンズ92は、赤色レーザ光、青色レーザ光及び緑色レーザ光を平行光にして、MEMSミラー10に出射する。なお、以下では、赤色レーザLD1、青色レーザLD2及び緑色レーザLD3を区別しないで用いる場合には、単に「レーザLD」と表記し、赤色レーザ光、青色レーザ光及び緑色レーザ光を区別しないで用いる場合には、単に「レーザ光」と表記する。 The red laser LD1 emits red laser light, the blue laser LD2 emits blue laser light, and the green laser LD3 emits green laser light. The dichroic mirror 91a reflects the red laser light and transmits the green laser light, thereby emitting the red laser light and the green laser light to the dichroic mirror 91b. The dichroic mirror 91 b transmits the red laser light and the green laser light and reflects the blue laser light, thereby emitting the red laser light, the blue laser light, and the green laser light to the collimator lens 92. The collimator lens 92 converts red laser light, blue laser light, and green laser light into parallel light and emits the parallel light to the MEMS mirror 10. Hereinafter, when the red laser LD1, the blue laser LD2, and the green laser LD3 are used without being distinguished from each other, they are simply referred to as “laser LD”, and the red laser light, the blue laser light, and the green laser light are used without being distinguished from each other. In this case, it is simply expressed as “laser light”.
 MEMSミラー10は、ミラー部10aと、弾性部10bと、フレーム部10cと、電磁アクチュエータ10dと、を有する。MEMSミラー10は、画像信号入力部2に入力された画像を表示するために、MEMSミラー制御部8の制御により、コリメータレンズ92から入射されたレーザ光をスクリーン11に向けて反射する。具体的には、電磁アクチュエータ10dが、MEMSミラー制御部8の制御により、磁力を利用してミラー部10aを回転させる(具体的には所定の周期でミラー部10aを揺動させる。言い換えると所定の周期でミラー部10aの角度を変化させる)ことで、レーザ光によってスクリーン11上を走査させる。その際に、電磁アクチュエータ10dは、走査位置情報をビデオASIC3へ出力する。なお、MEMSミラー10は、本発明における「ミラー」の一例に相当し、電磁アクチュエータ10dは本発明における「駆動手段」の一例に相当する。 The MEMS mirror 10 includes a mirror part 10a, an elastic part 10b, a frame part 10c, and an electromagnetic actuator 10d. The MEMS mirror 10 reflects the laser light incident from the collimator lens 92 toward the screen 11 under the control of the MEMS mirror control unit 8 in order to display the image input to the image signal input unit 2. Specifically, the electromagnetic actuator 10d uses the magnetic force to rotate the mirror unit 10a under the control of the MEMS mirror control unit 8 (specifically, the mirror unit 10a is swung at a predetermined cycle. The angle of the mirror unit 10a is changed at a period of (1) to scan the screen 11 with laser light. At that time, the electromagnetic actuator 10 d outputs the scanning position information to the video ASIC 3. The MEMS mirror 10 corresponds to an example of a “mirror” in the present invention, and the electromagnetic actuator 10d corresponds to an example of a “drive unit” in the present invention.
 ここで、図2を参照して、MEMSミラー10について具体的に説明する。図2は、第1実施例に係るMEMSミラー10の構成を示す図である。図2に示すように、ミラー部10aは、弾性部10bによって支持されており、フレーム部10cに対して矢印で示す方向に回転可能に構成されている。弾性部10bは、ミラー部10aとフレーム部10cとを接続し、ミラー部10aを回転させるような弾性を有する。具体的には、弾性部10bは、ミラー部10aを一の方向に沿った軸を中心軸として回転させるような弾性を有する。このように、弾性部10bは、所謂トーションバーに相当する。また、第1実施例では、弾性部10bは、ミラー部10aの回転によって生じるねじれに応じた電圧を発生させる圧電素子によって構成されている。弾性部10bは、ねじれに応じて発生した電圧を信号S10として異常検出回路60に供給する。 Here, the MEMS mirror 10 will be specifically described with reference to FIG. FIG. 2 is a diagram illustrating a configuration of the MEMS mirror 10 according to the first embodiment. As shown in FIG. 2, the mirror part 10a is supported by the elastic part 10b, and is configured to be rotatable in the direction indicated by the arrow with respect to the frame part 10c. The elastic part 10b has elasticity that connects the mirror part 10a and the frame part 10c and rotates the mirror part 10a. Specifically, the elastic part 10b has such elasticity that the mirror part 10a is rotated about an axis along one direction as a central axis. Thus, the elastic portion 10b corresponds to a so-called torsion bar. In the first embodiment, the elastic portion 10b is composed of a piezoelectric element that generates a voltage corresponding to the twist generated by the rotation of the mirror portion 10a. The elastic part 10b supplies the voltage generated according to the twist to the abnormality detection circuit 60 as a signal S10.
 図1に戻って、異常検出回路60について説明する。異常検出回路60は、MEMSミラー10の弾性部10bから供給された信号S10に基づいて、MEMSミラー10のスキャン動作状態に対する異常判定を行う。具体的には、異常検出回路60は、信号S10に対応するミラー部10aの回転角度に基づいて、ミラー部10aの動作に異常が発生していないか否かを判定する(異常判定の詳細については後述する)。この場合、異常検出回路60は、例えば、弾性部10bから供給された信号S10を増幅することで、ミラー部10aの回転角度を検出する。 Referring back to FIG. 1, the abnormality detection circuit 60 will be described. The abnormality detection circuit 60 performs abnormality determination on the scanning operation state of the MEMS mirror 10 based on the signal S10 supplied from the elastic portion 10b of the MEMS mirror 10. Specifically, the abnormality detection circuit 60 determines whether or not an abnormality has occurred in the operation of the mirror unit 10a based on the rotation angle of the mirror unit 10a corresponding to the signal S10 (details of abnormality determination). Will be described later). In this case, the abnormality detection circuit 60 detects the rotation angle of the mirror unit 10a by, for example, amplifying the signal S10 supplied from the elastic unit 10b.
 そして、異常検出回路60は、ミラー部10aの動作について異常が検出された場合に、レーザ光の照射を停止させる制御を行う。具体的には、異常検出回路60は、レーザドライバASIC7に制御信号S7を供給することで、レーザLDの発光を停止させる。なお、異常検出回路60は、本発明における「検出手段」の一例に相当する。 Then, the abnormality detection circuit 60 performs control to stop the irradiation of the laser beam when an abnormality is detected in the operation of the mirror unit 10a. Specifically, the abnormality detection circuit 60 stops the light emission of the laser LD by supplying the control signal S7 to the laser driver ASIC7. The abnormality detection circuit 60 corresponds to an example of “detection means” in the present invention.
 (異常判定方法)
 次に、第1実施例に係る異常判定方法について説明する。本実施例では、ミラー部10aを支持する弾性部10bを圧電素子で構成し、ミラー部10aの回転によって弾性部10bが発生する、ねじれ(言い換えるとバネのひずみ)に応じた電圧に基づいて、MEMSミラー10のスキャン動作状態について異常判定を行う。つまり、異常検出回路60は、弾性部10bが発生する電圧変化(上記した信号S10に対応する)を、ミラー部10aの動作状態として扱うことで、ミラー部10aによるスキャン動作に異常が発生していないか否かを判定する。
(Abnormality judgment method)
Next, the abnormality determination method according to the first embodiment will be described. In the present embodiment, the elastic portion 10b that supports the mirror portion 10a is composed of a piezoelectric element, and the elastic portion 10b is generated by the rotation of the mirror portion 10a. Based on the voltage corresponding to the twist (in other words, the strain of the spring), Abnormality determination is performed on the scanning operation state of the MEMS mirror 10. That is, the abnormality detection circuit 60 treats the voltage change (corresponding to the above-described signal S10) generated by the elastic portion 10b as the operation state of the mirror portion 10a, thereby causing an abnormality in the scanning operation by the mirror portion 10a. Judge whether or not there is.
 詳しくは、異常検出回路60は、ミラー部10aの正常動作時に弾性部10bが発生する電圧波形(以下、「正常動作時波形」と呼ぶ。)を基準として用い、弾性部10bより得られた電圧波形と正常動作時波形とを比較することで異常判定を行う。この場合、異常検出回路60は、弾性部10bより得られた電圧波形が正常動作時波形に概ね一致する場合には、ミラー部10aの動作が正常であると判定し、弾性部10bより得られた電圧波形が正常動作時波形と異なる場合には、ミラー部10aの動作が異常であると判定する。1つの例では、LPFフィルタ回路やHPFフィルタ回路を用いて異常検出回路60を構成し、弾性部10bの電圧波形をLPFフィルタ回路やHPFフィルタ回路で処理することで、上記のような異常判定を実現することができる。異常検出回路60は、ミラー部10aの動作が異常であると判定した場合には、レーザ光の照射を停止させるべく、レーザドライバASIC7に対する制御を行う。 Specifically, the abnormality detection circuit 60 uses a voltage waveform generated by the elastic portion 10b during normal operation of the mirror portion 10a (hereinafter referred to as a “normal operation waveform”) as a reference, and a voltage obtained from the elastic portion 10b. Abnormality judgment is performed by comparing the waveform with the waveform during normal operation. In this case, when the voltage waveform obtained from the elastic portion 10b substantially matches the waveform during normal operation, the abnormality detection circuit 60 determines that the operation of the mirror portion 10a is normal and is obtained from the elastic portion 10b. When the measured voltage waveform is different from the normal operation waveform, it is determined that the operation of the mirror unit 10a is abnormal. In one example, the abnormality detection circuit 60 is configured using an LPF filter circuit or an HPF filter circuit, and the abnormality determination as described above is performed by processing the voltage waveform of the elastic portion 10b with the LPF filter circuit or the HPF filter circuit. Can be realized. When the abnormality detection circuit 60 determines that the operation of the mirror unit 10a is abnormal, the abnormality detection circuit 60 controls the laser driver ASIC 7 to stop the irradiation of the laser light.
 ここで、図3を参照して、弾性部10bより得られる電圧波形の具体例を示す。図3は、横軸に時間を示し、縦軸に弾性部10bが発生する電圧(つまり弾性部10bのねじれに応じた電圧)を示している。図3(a)は、ミラー部10aの正常動作時に弾性部10bより得られる電圧波形(正常動作時波形)の一例を示している。一方、図3(b)は、ミラー部10aの異常動作時に弾性部10bより得られる電圧波形の一例を示している。図3(b)より、図3(a)の正常動作時波形と比較すると、電圧の大きさがかなり小さいことがわかる。これは、正常動作時と比較して、ミラー部10aの動作(回転角度)がかなり小さくなっていることを示している。図3(b)に示すような電圧波形が得られた場合には、異常検出回路60は、上記したような異常判定を行うことで、ミラー部10aの動作が異常であると判定する。 Here, with reference to FIG. 3, a specific example of a voltage waveform obtained from the elastic portion 10b is shown. In FIG. 3, the horizontal axis represents time, and the vertical axis represents the voltage generated by the elastic portion 10 b (that is, the voltage corresponding to the twist of the elastic portion 10 b). FIG. 3A shows an example of a voltage waveform (a waveform during normal operation) obtained from the elastic portion 10b when the mirror unit 10a operates normally. On the other hand, FIG. 3B shows an example of a voltage waveform obtained from the elastic portion 10b when the mirror portion 10a operates abnormally. From FIG. 3B, it can be seen that the magnitude of the voltage is considerably small as compared with the normal operation waveform of FIG. This indicates that the operation (rotation angle) of the mirror unit 10a is considerably smaller than that during normal operation. When the voltage waveform as shown in FIG. 3B is obtained, the abnormality detection circuit 60 determines that the operation of the mirror unit 10a is abnormal by performing the abnormality determination as described above.
 次に、図4を参照して、第1実施例に係る異常判定処理について説明する。図4は、第1実施例に係る異常判定処理を示すフローチャートである。当該フローは、画像表示装置1の動作時に所定の周期で繰り返し実行される。 Next, the abnormality determination process according to the first embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing the abnormality determination process according to the first embodiment. The flow is repeatedly executed at a predetermined cycle when the image display apparatus 1 is operated.
 まず、ステップS101では、MEMSミラー制御部8が、MEMSミラー10の電磁アクチュエータ10dを駆動する。そして、処理はステップS102に進む。このように電磁アクチュエータ10dが駆動されると、ミラー部10aが回転することで弾性部10bにねじれが発生し、圧電素子としての弾性部10bは、当該ねじれに応じた電圧を発生させる。そして、弾性部10bは、ねじれに応じて発生した電圧を信号S10として異常検出回路60に供給する。 First, in step S101, the MEMS mirror control unit 8 drives the electromagnetic actuator 10d of the MEMS mirror 10. Then, the process proceeds to step S102. When the electromagnetic actuator 10d is driven in this way, the elastic portion 10b is twisted by the rotation of the mirror portion 10a, and the elastic portion 10b as a piezoelectric element generates a voltage corresponding to the twist. The elastic portion 10b supplies the voltage generated according to the twist to the abnormality detection circuit 60 as a signal S10.
 ステップS102では、異常検出回路60が、弾性部10bが発生した電圧に対応する信号S10を取得する。つまり、異常検出回路60は、弾性部10bが発生した電圧波形を取得する。そして、処理はステップS103に進む。 In step S102, the abnormality detection circuit 60 acquires a signal S10 corresponding to the voltage generated by the elastic portion 10b. That is, the abnormality detection circuit 60 acquires the voltage waveform generated by the elastic portion 10b. Then, the process proceeds to step S103.
 ステップS103では、異常検出回路60が、ステップS102で取得した電圧波形が正常動作時波形と一致するか否かを判定する。取得した電圧波形が正常動作時波形と概ね一致する場合(ステップS103:Yes)、処理は終了する。この場合には、画像表示装置1の動作が継続される。一方、取得した電圧波形が正常動作時波形に一致しない場合(ステップS103:No)、処理はステップS104に進む。ステップS104では、異常検出回路60が、レーザ光の照射が停止されるように、レーザドライバASIC7に対する制御を行う。そして、処理は終了する。 In step S103, the abnormality detection circuit 60 determines whether or not the voltage waveform acquired in step S102 matches the waveform during normal operation. If the acquired voltage waveform substantially matches the waveform during normal operation (step S103: Yes), the process ends. In this case, the operation of the image display device 1 is continued. On the other hand, when the acquired voltage waveform does not match the waveform during normal operation (step S103: No), the process proceeds to step S104. In step S104, the abnormality detection circuit 60 controls the laser driver ASIC 7 so that the irradiation of the laser light is stopped. Then, the process ends.
 以上説明した第1実施例によれば、ミラー部10aを支持する弾性部10bそのものを圧電素子として構成することで、ミラー部10aの回転に起因する弾性部10bのねじれによる電圧変化に基づいて、スキャン動作状態の異常判定を適切に行うことができる。また、第1実施例によれば、弾性部10bそのものを圧電素子として構成して異常判定を行うため、上記した特許文献1に記載されたような角度センサを別途追加しなくても良いので、特許文献1に記載された構成と比較して、画像表示装置1の小型化及び低コスト化を実現することが可能となる。 According to the first embodiment described above, by configuring the elastic portion 10b itself supporting the mirror portion 10a as a piezoelectric element, based on the voltage change due to the twist of the elastic portion 10b caused by the rotation of the mirror portion 10a, Abnormality determination of the scan operation state can be performed appropriately. In addition, according to the first embodiment, since the elastic portion 10b itself is configured as a piezoelectric element to perform abnormality determination, it is not necessary to separately add an angle sensor as described in Patent Document 1 described above. Compared with the configuration described in Patent Document 1, the image display device 1 can be reduced in size and cost.
 他方で、第1実施例では、ミラー部10aを電磁アクチュエータ10dで駆動し、ミラー部10aの動作を圧電素子としての弾性部10bで検出している。つまり、駆動系については磁力を利用し、検出系については電圧を利用している。そのため、駆動系信号と検出系信号との間のクロストークやノイズを適切に低減することができる。 On the other hand, in the first embodiment, the mirror portion 10a is driven by the electromagnetic actuator 10d, and the operation of the mirror portion 10a is detected by the elastic portion 10b as a piezoelectric element. That is, magnetic force is used for the drive system, and voltage is used for the detection system. Therefore, crosstalk and noise between the drive system signal and the detection system signal can be appropriately reduced.
 なお、弾性部10bは、画像を描画するためのスキャン動作における周波数(以下、適宜「スキャン動作周波数」と呼ぶ。)と共振関係にあるような固有振動数を具備していることが好ましい。こうすることで、スキャン動作に必要なエネルギーを低減することができる。 The elastic portion 10b preferably has a natural frequency that is in a resonance relationship with a frequency in a scanning operation for drawing an image (hereinafter, referred to as “scanning operation frequency” as appropriate). By doing so, the energy required for the scanning operation can be reduced.
 また、圧電素子は、一般的に、特定の周波数に電圧ピークを持つフラットではない周波数特性を有しているため、圧電素子としての弾性部10bは、スキャン動作周波数に合わせた周波数において出力電圧がピークとなるような特性を具備していることが好ましい。こうすることで、ミラー部10aの動作によって発生する弾性部10bの出力電圧を高めることができ、スキャン動作状態を容易に検出することが可能となる。加えて、弾性部10bの出力電圧を増幅させるといった処理を省くことが可能となる。 In addition, since the piezoelectric element generally has a non-flat frequency characteristic having a voltage peak at a specific frequency, the elastic portion 10b as a piezoelectric element has an output voltage at a frequency that matches the scanning operation frequency. It is preferable that it has the characteristic which becomes a peak. By doing so, the output voltage of the elastic portion 10b generated by the operation of the mirror portion 10a can be increased, and the scan operation state can be easily detected. In addition, the process of amplifying the output voltage of the elastic part 10b can be omitted.
 なお、上記のように異常検出時にレーザ光の照射を停止する際に、例えば、異常のためにレーザ光の照射を停止することや、スキャン動作状態に異常があることなどを表示させても良い。 Note that when the laser beam irradiation is stopped when an abnormality is detected as described above, for example, it may be displayed that the laser beam irradiation is stopped due to an abnormality or that the scanning operation state is abnormal. .
 [第2実施例]
 次に、本発明の第2実施例について説明する。上記した第1実施例では、ミラー部10aを電磁アクチュエータ10dで駆動し、ミラー部10aの動作を圧電素子としての弾性部10bで検出していた。つまり、駆動系については磁力を利用し、検出系については電圧を利用していた。これに対して、第2実施例では、駆動系については電圧を利用し、検出系については磁力を利用する。具体的には、第2実施例では、ミラー部を電圧によって駆動し、ミラー部の動作を磁界変化に基づいて検出する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the first embodiment described above, the mirror portion 10a is driven by the electromagnetic actuator 10d, and the operation of the mirror portion 10a is detected by the elastic portion 10b as a piezoelectric element. That is, magnetic force is used for the drive system, and voltage is used for the detection system. In contrast, in the second embodiment, a voltage is used for the drive system and a magnetic force is used for the detection system. Specifically, in the second embodiment, the mirror unit is driven by a voltage, and the operation of the mirror unit is detected based on a magnetic field change.
 図5は、第2実施例に係る画像表示装置1xの構成を示す。なお、図1に示した画像表示装置1と同様の構成要素については、同一の符号を付し、その説明を省略するものとする。また、ここで特に説明しない構成要素や処理などについては、第1実施例と同様であるものとする。 FIG. 5 shows a configuration of an image display device 1x according to the second embodiment. The same components as those of the image display device 1 shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. Further, components and processes not particularly described here are the same as those in the first embodiment.
 第2実施例に係る画像表示装置1xは、MEMSミラー10の代わりにMEMSミラー10xを有する点で、第1実施例に係る画像表示装置1と異なる。MEMSミラー10xは、ミラー部10xaと、弾性部10xbと、フレーム部10xcと、圧電アクチュエータ10xdと、磁性体10xeと、ホール素子10xfと、を有する。 The image display device 1x according to the second embodiment is different from the image display device 1 according to the first embodiment in that it includes a MEMS mirror 10x instead of the MEMS mirror 10. The MEMS mirror 10x includes a mirror part 10xa, an elastic part 10xb, a frame part 10xc, a piezoelectric actuator 10xd, a magnetic body 10xe, and a Hall element 10xf.
 MEMSミラー10xは、画像信号入力部2に入力された画像を表示するために、MEMSミラー制御部8の制御により、コリメータレンズ92から入射されたレーザ光をスクリーン11に向けて反射する。具体的には、圧電アクチュエータ10xdが、MEMSミラー制御部8の制御により、電圧を利用してミラー部10xaを回転させる(具体的には所定の周期でミラー部10xaを揺動させる。言い換えると所定の周期でミラー部10xaの角度を変化させる)ことで、レーザ光によってスクリーン11上を走査させる。なお、MEMSミラー10xは、本発明における「ミラー」の一例に相当し、圧電アクチュエータ10xdは本発明における「駆動手段」の一例に相当する。 The MEMS mirror 10 x reflects the laser light incident from the collimator lens 92 toward the screen 11 under the control of the MEMS mirror control unit 8 in order to display an image input to the image signal input unit 2. Specifically, the piezoelectric actuator 10xd uses the voltage to rotate the mirror unit 10xa under the control of the MEMS mirror control unit 8 (specifically, the mirror unit 10xa is swung at a predetermined cycle. The angle of the mirror unit 10xa is changed at a period of (1) to scan the screen 11 with laser light. The MEMS mirror 10x corresponds to an example of a “mirror” in the present invention, and the piezoelectric actuator 10xd corresponds to an example of a “driving unit” in the present invention.
 ここで、図6を参照して、MEMSミラー10xについて具体的に説明する。図6は、第2実施例に係るMEMSミラー10xの構成を示す図である。図6に示すように、ミラー部10xaは、弾性部10xbによって支持されており、フレーム部10xcに対して矢印で示す方向に回転可能に構成されている。弾性部10xbは、ミラー部10xaとフレーム部10xcとを接続し、ミラー部10xaを回転させるような弾性を有する。具体的には、弾性部10xbは、ミラー部10xaを一の方向に沿った軸を中心軸として回転させるような弾性を有する。このように、弾性部10xbは、所謂トーションバーに相当する。なお、第2実施例では、第1実施例と異なり、弾性部10xbは圧電素子で構成されていない。 Here, the MEMS mirror 10x will be described in detail with reference to FIG. FIG. 6 is a diagram illustrating a configuration of the MEMS mirror 10x according to the second embodiment. As shown in FIG. 6, the mirror portion 10xa is supported by the elastic portion 10xb and is configured to be rotatable in the direction indicated by the arrow with respect to the frame portion 10xc. The elastic part 10xb has elasticity that connects the mirror part 10xa and the frame part 10xc and rotates the mirror part 10xa. Specifically, the elastic part 10xb has such elasticity that the mirror part 10xa is rotated about an axis along one direction as a central axis. Thus, the elastic portion 10xb corresponds to a so-called torsion bar. In the second embodiment, unlike the first embodiment, the elastic portion 10xb is not composed of a piezoelectric element.
 磁性体10xeは、ミラー部10xaにおけるレーザ光が照射される面と反対側の面に取り付けられている。そのため、磁性体10xeは、ミラー部10xaとともに移動する。つまり、磁性体10xeは、ミラー部10xaの回転に伴って位置が変化する。ホール素子10xfは、ミラー部10xaの回転によって位置が変化せず、且つ磁性体10xeによって発生される磁界を検出可能な位置に設けられている。例えば、ホール素子10xfは、フレーム部10xcに設けられる。ホール素子10xfは、ホール効果を利用して磁界を検出する素子であり、検出した磁界に対応する電圧を信号S10xとして異常検出回路60に供給する。なお、ホール素子10xfは、本発明における「検出手段」の一例に相当する。 The magnetic body 10xe is attached to a surface opposite to the surface irradiated with the laser light in the mirror portion 10xa. Therefore, the magnetic body 10xe moves with the mirror part 10xa. That is, the position of the magnetic body 10xe changes with the rotation of the mirror unit 10xa. The Hall element 10xf is provided at a position where the position is not changed by the rotation of the mirror portion 10xa and the magnetic field generated by the magnetic body 10xe can be detected. For example, the hall element 10xf is provided in the frame portion 10xc. The Hall element 10xf is an element that detects a magnetic field using the Hall effect, and supplies a voltage corresponding to the detected magnetic field to the abnormality detection circuit 60 as a signal S10x. The Hall element 10xf corresponds to an example of “detecting means” in the present invention.
 上記したような第2実施例におけるMEMSミラー10xの構成においては、ミラー部10xaの回転に伴って磁性体10xeの位置が変化し、磁性体10xeの位置変化に応じて、ホール素子10xfが設けられた位置において磁界変化が生じる。そして、ホール素子10xfは、そのような磁界変化を検出し、検出した磁界変化に対応する電圧波形を信号S10xとして異常検出回路60に供給する。異常検出回路60は、ホール素子10xfから供給された信号S10xに基づいて、MEMSミラー10xのスキャン動作状態に対する異常判定を行う。具体的には、異常検出回路60は、ホール素子10xfが検出した磁界変化を、ミラー部10xaの動作状態として扱うことで、ミラー部10xaによるスキャン動作に異常が発生していないか否かを判定する。 In the configuration of the MEMS mirror 10x in the second embodiment as described above, the position of the magnetic body 10xe changes with the rotation of the mirror portion 10xa, and the Hall element 10xf is provided according to the position change of the magnetic body 10xe. Magnetic field changes occur at different positions. The Hall element 10xf detects such a magnetic field change and supplies a voltage waveform corresponding to the detected magnetic field change to the abnormality detection circuit 60 as a signal S10x. The abnormality detection circuit 60 performs abnormality determination on the scanning operation state of the MEMS mirror 10x based on the signal S10x supplied from the Hall element 10xf. Specifically, the abnormality detection circuit 60 determines whether or not an abnormality has occurred in the scanning operation by the mirror unit 10xa by treating the magnetic field change detected by the Hall element 10xf as the operation state of the mirror unit 10xa. To do.
 詳しくは、異常検出回路60は、ミラー部10xaの正常動作時にホール素子10xfが出力する電圧波形(これについても、以下では「正常動作時波形」と呼ぶ。)を基準として用い、ホール素子10xfより得られた電圧波形と正常動作時波形とを比較することで異常判定を行う。この場合、異常検出回路60は、ホール素子10xfより得られた電圧波形が正常動作時波形に概ね一致する場合には、ミラー部10xaの動作が正常であると判定し、ホール素子10xfより得られた電圧波形が正常動作時波形と異なる場合には、ミラー部10xaの動作が異常であると判定する。そして、異常検出回路60は、ミラー部10xaの動作が異常であると判定した場合には、レーザドライバASIC7に制御信号S7を供給することで、レーザLDの発光を停止させる。 Specifically, the abnormality detection circuit 60 uses the voltage waveform output by the Hall element 10xf during normal operation of the mirror unit 10xa (hereinafter also referred to as “waveform during normal operation”) as a reference, and from the Hall element 10xf. Abnormality judgment is performed by comparing the obtained voltage waveform with the waveform during normal operation. In this case, when the voltage waveform obtained from the Hall element 10xf substantially matches the waveform during normal operation, the abnormality detection circuit 60 determines that the operation of the mirror unit 10xa is normal and is obtained from the Hall element 10xf. When the measured voltage waveform is different from the waveform during normal operation, it is determined that the operation of the mirror unit 10xa is abnormal. When the abnormality detection circuit 60 determines that the operation of the mirror unit 10xa is abnormal, the abnormality detection circuit 60 supplies the control signal S7 to the laser driver ASIC 7 to stop the emission of the laser LD.
 次に、図7を参照して、第2実施例に係る異常判定処理について説明する。図7は、第2実施例に係る異常判定処理を示すフローチャートである。当該フローは、画像表示装置1xの動作時に所定の周期で繰り返し実行される。 Next, the abnormality determination process according to the second embodiment will be described with reference to FIG. FIG. 7 is a flowchart showing the abnormality determination process according to the second embodiment. This flow is repeatedly executed at a predetermined cycle during the operation of the image display device 1x.
 まず、ステップS201では、MEMSミラー制御部8が、MEMSミラー10xの圧電アクチュエータ10xdを駆動する。そして、処理はステップS202に進む。このように圧電アクチュエータ10xdが駆動されると、ミラー部10xaが回転することで磁性体10xeの位置が変化し、ホール素子10xfは、磁性体10xeの位置変化に応じた磁界変化を検出する。そして、ホール素子10xfは、検出した磁界変化に対応する電圧を信号S10xとして異常検出回路60に供給する。 First, in step S201, the MEMS mirror control unit 8 drives the piezoelectric actuator 10xd of the MEMS mirror 10x. Then, the process proceeds to step S202. When the piezoelectric actuator 10xd is driven in this way, the position of the magnetic body 10xe is changed by the rotation of the mirror portion 10xa, and the Hall element 10xf detects a magnetic field change corresponding to the position change of the magnetic body 10xe. Then, the Hall element 10xf supplies a voltage corresponding to the detected magnetic field change to the abnormality detection circuit 60 as a signal S10x.
 ステップS202では、異常検出回路60が、ホール素子10xfが出力した電圧に対応する信号S10xを取得する。つまり、異常検出回路60は、ホール素子10xfが出力した電圧波形を取得する。そして、処理はステップS203に進む。 In step S202, the abnormality detection circuit 60 acquires a signal S10x corresponding to the voltage output from the hall element 10xf. That is, the abnormality detection circuit 60 acquires the voltage waveform output from the Hall element 10xf. Then, the process proceeds to step S203.
 ステップS203では、異常検出回路60が、ステップS202で取得した電圧波形が正常動作時波形と一致するか否かを判定する。取得した電圧波形が正常動作時波形と概ね一致する場合(ステップS203:Yes)、処理は終了する。この場合には、画像表示装置1xの動作が継続される。一方、取得した電圧波形が正常動作時波形に一致しない場合(ステップS203:No)、処理はステップS204に進む。ステップS204では、異常検出回路60が、レーザ光の照射が停止されるように、レーザドライバASIC7に対する制御を行う。そして、処理は終了する。 In step S203, the abnormality detection circuit 60 determines whether or not the voltage waveform acquired in step S202 matches the waveform during normal operation. If the acquired voltage waveform substantially matches the waveform during normal operation (step S203: Yes), the process ends. In this case, the operation of the image display device 1x is continued. On the other hand, when the acquired voltage waveform does not match the waveform during normal operation (step S203: No), the process proceeds to step S204. In step S204, the abnormality detection circuit 60 controls the laser driver ASIC 7 so that the laser beam irradiation is stopped. Then, the process ends.
 以上説明した第2実施例によれば、ミラー部10xaの回転による磁性体10xeの位置変化に応じた磁界変化をホール素子10xfで検出することで、スキャン動作状態の異常判定を適切に行うことができる。また、第2実施例によれば、磁性体10xe及びホール素子10xfを用いて異常判定を行うため、上記した特許文献1に記載されたような角度センサを別途追加しなくても良いので、特許文献1に記載された構成と比較して、画像表示装置1xの小型化及び低コスト化を実現することが可能となる。 According to the second embodiment described above, the abnormality determination of the scanning operation state can be appropriately performed by detecting the magnetic field change according to the position change of the magnetic body 10xe due to the rotation of the mirror portion 10xa by the Hall element 10xf. it can. Further, according to the second embodiment, since the abnormality determination is performed using the magnetic body 10xe and the Hall element 10xf, it is not necessary to add an additional angle sensor as described in Patent Document 1 above. Compared with the configuration described in Document 1, it is possible to reduce the size and cost of the image display device 1x.
 他方で、第2実施例では、ミラー部10xaを圧電アクチュエータ10xdで駆動し、ミラー部10xaの動作をホール素子10xfで検出している。つまり、駆動系については電圧を利用し、検出系については磁界変化を利用している。そのため、駆動系信号と検出系信号との間のクロストークやノイズを適切に低減することができる。 On the other hand, in the second embodiment, the mirror unit 10xa is driven by the piezoelectric actuator 10xd, and the operation of the mirror unit 10xa is detected by the Hall element 10xf. That is, a voltage is used for the drive system, and a magnetic field change is used for the detection system. Therefore, crosstalk and noise between the drive system signal and the detection system signal can be appropriately reduced.
 なお、駆動系から検出系へのクロストークやノイズを更に減らすために、電界、磁界変化がお互い影響がないように電磁シールドで遮断しても良い。また、ミラー部10xa近傍に磁界が存在すると光磁気(MO)におけるカー効果によってレーザ光の偏光方向が回転するため、偏光方向が影響するような装置においては、レーザ光が反射する近傍において磁性体10xeがレーザ光の反射時に影響を与えないように、防磁構造を別途設けても良い。 It should be noted that in order to further reduce crosstalk and noise from the drive system to the detection system, it may be blocked by an electromagnetic shield so that changes in electric and magnetic fields do not affect each other. In addition, when a magnetic field exists in the vicinity of the mirror portion 10xa, the polarization direction of the laser light is rotated by the Kerr effect in magneto-optical (MO). Therefore, in an apparatus in which the polarization direction affects, a magnetic material is present in the vicinity where the laser light is reflected. A magnetic shield structure may be separately provided so that 10xe does not affect the reflection of laser light.
 なお、磁性体10xeを、ミラー部10xaにおけるレーザ光が照射される面と反対側の面に取り付けることに限定はされず(図6参照)、レーザ光が照射される面であっても、通常の画像描画時にレーザ光が照射されないような箇所であれば、そのような箇所にミラー部10xaを取り付けても良い。また、磁性体10xeを、ミラー部10xaの側面などに取り付けても良い。 In addition, it is not limited to attaching the magnetic body 10xe to the surface opposite to the surface irradiated with the laser light in the mirror portion 10xa (see FIG. 6). As long as the laser beam is not irradiated when the image is drawn, the mirror portion 10xa may be attached to such a location. Further, the magnetic body 10xe may be attached to the side surface of the mirror portion 10xa.
 また、上記では、磁性体10xeによって発生される磁界をホール素子10xfで検出する例を示したが、ホール素子10xfの代わりにコイルを用いて、磁性体10xeによって発生される磁界を検出しても良い。この場合、コイルは本発明における「検出手段」として機能する。 In the above example, the magnetic field generated by the magnetic body 10xe is detected by the Hall element 10xf, but a coil is used instead of the Hall element 10xf to detect the magnetic field generated by the magnetic body 10xe. good. In this case, the coil functions as the “detecting means” in the present invention.
 [変形例]
 上記では、ハードウェアとしての異常検出回路60で異常判定を行う実施例を示したが、この代わりに、ソフトウェアにて異常判定を行っても良い。具体的には、画像表示装置1、1x内のマイコンやDSP(Digital Signal Processor)が、上記したような異常判定を行うことができる。この場合、マイコンやDSPは、弾性部10bの出力電圧に対応する信号S10、又はホール素子10xfの出力電圧に対応する信号S10xを取得し、信号S10又は信号S10xに対応する電圧波形に対して所定の演算処理を行うことで、スキャン動作状態の異常判定を行う。そして、マイコンやDSPは、異常が検出された場合に、レーザ光の照射が停止されるようにレーザドライバASIC7に対する制御を行う。
[Modification]
In the above description, the abnormality determination is performed by the abnormality detection circuit 60 as hardware, but abnormality determination may be performed by software instead. Specifically, a microcomputer or a DSP (Digital Signal Processor) in the image display device 1 or 1x can perform the abnormality determination as described above. In this case, the microcomputer or the DSP acquires the signal S10 corresponding to the output voltage of the elastic portion 10b or the signal S10x corresponding to the output voltage of the Hall element 10xf, and predetermined for the voltage waveform corresponding to the signal S10 or the signal S10x. By performing this arithmetic processing, the abnormality determination of the scanning operation state is performed. Then, the microcomputer and the DSP control the laser driver ASIC 7 so that the irradiation of the laser beam is stopped when an abnormality is detected.
 上記では、本発明を、1次元のスキャンを行う構成(つまりミラー部10a、10xaを1つの軸のみを中心軸にして回転させる構成)に適用する実施例を示したが、本発明は、2次元のスキャンを行う構成にも適用することができる。つまり、本発明は、2つの軸を中心軸として、当該2つの軸のそれぞれによって規定される2つの方向にミラー部を回転させる構成に適用することができる。この構成では、2つの軸のそれぞれの方向にてミラー部を支持するように、2つの弾性部が用いられる。 In the above, the embodiment in which the present invention is applied to a configuration for performing one-dimensional scanning (that is, a configuration in which the mirror units 10a and 10xa are rotated around only one axis as a central axis) has been described. The present invention can also be applied to a configuration that performs dimension scanning. That is, the present invention can be applied to a configuration in which the mirror unit is rotated in two directions defined by the two axes with the two axes as the central axes. In this configuration, two elastic parts are used so as to support the mirror part in the directions of the two axes.
 このような2つの弾性部を用いる場合にも、前述した第1実施例を適用することができる。つまり、2つの弾性部を、ミラー部の回転によって生じるねじれに応じた電圧を発生させる圧電素子で構成することができる。この場合にも、2つの弾性部のそれぞれを、スキャン動作周波数と共振関係にあるような固有振動数に構成することが好ましい。例えば、水平方向(X軸方向)のスキャンに用いられる弾性部については、比較的高い固有振動数で構成することが好ましく、垂直方向(Y軸方向)のスキャンに用いられる弾性部については、画面のフレーム周波数(例えば50~60Hz程度)に応じた比較的低い固有振動数で構成することが好ましい。 The first embodiment described above can also be applied when using two such elastic portions. That is, the two elastic portions can be configured by piezoelectric elements that generate a voltage corresponding to the twist generated by the rotation of the mirror portion. Also in this case, it is preferable that each of the two elastic portions is configured to have a natural frequency that is in a resonance relationship with the scanning operation frequency. For example, the elastic part used for scanning in the horizontal direction (X-axis direction) is preferably configured with a relatively high natural frequency, and the elastic part used for scanning in the vertical direction (Y-axis direction) It is preferable to use a relatively low natural frequency corresponding to the frame frequency (for example, about 50 to 60 Hz).
 本発明は、プロジェクタやヘッドアップディスプレイやヘッドマウントディスプレイなどの画像表示装置に利用することができる。 The present invention can be used for image display devices such as projectors, head-up displays, and head-mounted displays.
 1、1x 画像表示装置
 3 ビデオASIC
 7 レーザドライバASIC
 8 MEMSミラー制御部
 9 レーザ光源ユニット
 10、10x MEMSミラー
 10a、10xa ミラー部
 10b、10xb 弾性部
 10c、10xc フレーム部
 10d 電磁アクチュエータ
 10xd 圧電アクチュエータ
 10xe 磁性体
 10xf ホール素子
 60 異常検出回路
1, 1x image display device 3 Video ASIC
7 Laser driver ASIC
8 MEMS mirror control unit 9 Laser light source unit 10, 10x MEMS mirror 10a, 10xa mirror unit 10b, 10xb elastic unit 10c, 10xc frame unit 10d Electromagnetic actuator 10xd Piezoelectric actuator 10xe Magnetic body 10xf Hall element 60 Abnormality detection circuit

Claims (9)

  1.  フレーム部と、
     前記フレーム部に対して回転可能なミラー部と、
     前記フレーム部に対して前記ミラー部を支持し、且つ前記ミラー部を回転させるような弾性を有する弾性部と、を有し、
     前記弾性部は、前記ミラー部の回転によって生じるねじれに応じた電圧を発生させる圧電素子から成ることを特徴とするミラー。
    A frame part;
    A mirror part rotatable with respect to the frame part;
    An elastic part that supports the mirror part with respect to the frame part and has elasticity so as to rotate the mirror part;
    The mirror is characterized in that the elastic part is composed of a piezoelectric element that generates a voltage corresponding to a twist caused by rotation of the mirror part.
  2.  磁力によって前記ミラー部を回転させる駆動手段を更に備えることを特徴とする請求項1に記載のミラー。 The mirror according to claim 1, further comprising driving means for rotating the mirror portion by magnetic force.
  3.  前記電圧に基づいて、前記ミラー部の回転角度を検出する検出手段を更に備えることを特徴とする請求項1又は2に記載のミラー。 The mirror according to claim 1 or 2, further comprising a detecting means for detecting a rotation angle of the mirror unit based on the voltage.
  4.  光源からの光をスキャンすることで画像を表示する画像表示装置に適用され、
     前記弾性部は、スキャン動作周波数と共振関係にある固有振動数を有していることを特徴とする請求項1乃至3のいずれか一項に記載のミラー。
    Applied to image display devices that display images by scanning light from the light source,
    4. The mirror according to claim 1, wherein the elastic portion has a natural frequency that is in a resonance relationship with a scanning operation frequency. 5.
  5.  光源からの光をスキャンすることで画像を表示する画像表示装置に適用され、
     前記弾性部は、スキャン動作周波数に応じた周波数において、出力電圧がピークとなるような特性を有していることを特徴とする請求項1乃至4のいずれか一項に記載のミラー。
    Applied to image display devices that display images by scanning light from the light source,
    5. The mirror according to claim 1, wherein the elastic portion has a characteristic that an output voltage reaches a peak at a frequency corresponding to a scanning operation frequency. 6.
  6.  前記弾性部は、前記ミラー部を一の方向に沿った軸を中心軸として回転させるような弾性を有することを特徴とする請求項1乃至5のいずれか一項に記載のミラー。 The mirror according to any one of claims 1 to 5, wherein the elastic part has elasticity to rotate the mirror part about an axis along one direction as a central axis.
  7.  フレーム部と、
     前記フレーム部に対して回転可能なミラー部と、
     前記ミラー部に設けられた磁性体と、
     前記ミラー部の回転によって生じる、前記磁性体の位置変化に応じた磁界の変化を検出する検出手段と、を有することを特徴とするミラー。
    A frame part;
    A mirror part rotatable with respect to the frame part;
    A magnetic body provided in the mirror portion;
    And a detecting means for detecting a change in a magnetic field according to a change in the position of the magnetic body caused by the rotation of the mirror section.
  8.  前記検出手段は、前記磁界の変化に基づいて、前記ミラー部の回転角度を検出することを特徴とする請求項7に記載のミラー。 The mirror according to claim 7, wherein the detection means detects a rotation angle of the mirror unit based on a change in the magnetic field.
  9.  電圧によって前記ミラー部を回転させる駆動手段を更に備えることを特徴とする請求項7又は8に記載のミラー。 The mirror according to claim 7 or 8, further comprising driving means for rotating the mirror portion by voltage.
PCT/JP2011/065071 2011-06-30 2011-06-30 Mirror WO2013001642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065071 WO2013001642A1 (en) 2011-06-30 2011-06-30 Mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065071 WO2013001642A1 (en) 2011-06-30 2011-06-30 Mirror

Publications (1)

Publication Number Publication Date
WO2013001642A1 true WO2013001642A1 (en) 2013-01-03

Family

ID=47423582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065071 WO2013001642A1 (en) 2011-06-30 2011-06-30 Mirror

Country Status (1)

Country Link
WO (1) WO2013001642A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218373A (en) * 1996-02-08 1997-08-19 Brother Ind Ltd Optical scanning device
JP2001500987A (en) * 1996-09-23 2001-01-23 ピーエスシー・スキャニング・インコーポレイテッド Dithering mechanism for barcode scanner
JP2007017648A (en) * 2005-07-07 2007-01-25 Seiko Epson Corp Optical scanner and image display device
JP2007078865A (en) * 2005-09-12 2007-03-29 Fuji Xerox Co Ltd Optical scanner and image recorder
JP2010243746A (en) * 2009-04-06 2010-10-28 Tamagawa Seiki Co Ltd Reflection mirror driving mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218373A (en) * 1996-02-08 1997-08-19 Brother Ind Ltd Optical scanning device
JP2001500987A (en) * 1996-09-23 2001-01-23 ピーエスシー・スキャニング・インコーポレイテッド Dithering mechanism for barcode scanner
JP2007017648A (en) * 2005-07-07 2007-01-25 Seiko Epson Corp Optical scanner and image display device
JP2007078865A (en) * 2005-09-12 2007-03-29 Fuji Xerox Co Ltd Optical scanner and image recorder
JP2010243746A (en) * 2009-04-06 2010-10-28 Tamagawa Seiki Co Ltd Reflection mirror driving mechanism

Similar Documents

Publication Publication Date Title
JP5987510B2 (en) Optical scanning device and optical scanning control device
WO2013140757A1 (en) Scanning mirror and scanning image display device
US10359625B2 (en) Method for setting driving conditions and apparatus for setting driving conditions of optical scanning apparatus
JP5925389B2 (en) Image projection device
JP2012237788A (en) Optical scanner and image projection device equipped with the same
JP2011075956A (en) Head-mounted display
JP2017009986A (en) Image projection device
JP2013250537A5 (en)
JP2009244799A (en) Image projecting apparatus
WO2013001590A1 (en) Head-mounted display, and control method and program used in head-mounted display
JP4888022B2 (en) Image display device and retinal scanning image display device
US7999986B2 (en) Mirror device drive control apparatus and projector
EP3136153B1 (en) Actuator controlling device, drive system, video device, image projection device, and actuator controlling method
WO2011125494A1 (en) Optical scanning device and image display device
JP5245343B2 (en) Image display device
WO2013001642A1 (en) Mirror
JP2011075955A (en) Image display device
CN109613696B (en) Optical fiber scanning projection device and electronic equipment
US10816887B2 (en) Control device, image projection apparatus, and control method
JP2011180450A (en) Optical scanner and image display device including the same
JP7343410B2 (en) Optical deflector, how to control the optical deflector
JP7375471B2 (en) Mobile devices, image projection devices, head-up displays, laser headlamps, head-mounted displays, object recognition devices, and vehicles
JP5666003B2 (en) Light source unit and method for manufacturing light source unit
JP2021071582A (en) Light deflector, image projection device, head-up display, laser head lamp, head-mounted display, object recognition device, and vehicle
WO2013179494A1 (en) Projection device, head-up display, control method, program and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP