WO2013000412A1 - 一种实现多机监控的直流电源系统及方法 - Google Patents

一种实现多机监控的直流电源系统及方法 Download PDF

Info

Publication number
WO2013000412A1
WO2013000412A1 PCT/CN2012/077643 CN2012077643W WO2013000412A1 WO 2013000412 A1 WO2013000412 A1 WO 2013000412A1 CN 2012077643 W CN2012077643 W CN 2012077643W WO 2013000412 A1 WO2013000412 A1 WO 2013000412A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring unit
monitoring
slave
main
units
Prior art date
Application number
PCT/CN2012/077643
Other languages
English (en)
French (fr)
Inventor
闫从才
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013000412A1 publication Critical patent/WO2013000412A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel

Definitions

  • the invention relates to the field of DC communication power supply monitoring, and in particular to a DC power supply system and method for implementing multi-machine monitoring.
  • the output of the rectifier uses N+ 1 redundancy backup technology.
  • N+ 1 redundancy backup technology In terms of system monitoring, at present, only one monitoring unit is designed for the communication power system. This monitoring unit acts as the core of the system monitoring. When a failure or failure occurs, the communication between the system and the background is disconnected, and important system data is also lost, for example, some The power system shared by the operator, the user charges according to the output side DC power consumption, DC power consumption and other important data are stored in the monitoring unit. If the monitoring unit fails or fails, it will cause corresponding losses to the user. Meet the data security and reliability requirements of important equipment rooms and applications.
  • each monitoring unit operates independently, on the one hand, due to the serious influence caused by the unsynchronized important functions in each refusal, such as the battery management function, the rectification refuses the battery to be charged or the test start time is inconsistent, resulting in the rectifier starting current after startup. .
  • the independent operation of a single monitoring module does not improve the reliability of monitoring. It will occupy more communication resources when it is connected to the monitoring center.
  • the technical problem to be solved by the embodiments of the present invention is to provide a DC power supply system and method for implementing multi-machine monitoring, and provide a solution for ensuring the security of power data in the DC power system.
  • a DC power supply system for implementing multi-machine monitoring includes a main monitoring unit configured to separately manage rectification rejection and one or more slave monitoring units, the main monitoring unit being connected to each slave monitoring unit, any slave monitoring unit and others Connected from the monitoring unit, where:
  • the main monitoring unit is configured to: perform a main monitoring function and manage and control each of the slave monitoring units;
  • Each of the slave monitoring units is configured to: acquire data from the master monitoring unit and other slave monitoring units and back up; when the master monitoring unit is in an inactive state and the slave monitoring unit has a condition to switch to the master monitoring unit , Switch to the main monitoring unit.
  • the slave monitoring unit is further configured to:
  • the main monitoring function is run according to the backup main monitoring unit and other data from the monitoring unit.
  • condition that the switch is the primary monitoring unit means that the address number of the slave monitoring unit is the smallest among the slave monitoring unit address numbers.
  • the system further includes a monitoring center connected to the main monitoring unit and each of the monitoring units, where: the monitoring center is configured to: manage and configure the main monitoring unit and each of the slave monitoring units .
  • the primary monitoring unit and each of the secondary monitoring units are connected to the monitoring center by a network switch configured to perform network data exchange or a protocol converter configured to perform protocol conversion on network data.
  • a method for implementing multi-machine monitoring includes: The main monitoring unit performs a main monitoring function and manages and controls each slave monitoring unit; each of the slave monitoring units acquires data from the master monitoring unit and other slave monitoring units and backs up, and the master monitoring unit is in a non-working state. When the slave monitoring unit has the condition of switching to the master monitoring unit, it switches to the master monitoring unit.
  • the method further includes:
  • the primary monitoring function is executed according to the data of the backup primary monitoring unit and other secondary monitoring units.
  • condition that the switch is the primary monitoring unit means that the address number of the slave monitoring unit is the smallest among the slave monitoring unit address numbers.
  • the method further includes:
  • the address number is lowered by a preset interval, and the updated address number is switched from the monitoring unit to the primary monitoring unit with the same address number as the original main monitoring unit.
  • the method further includes:
  • the monitoring center manages and configures the main monitoring unit and each of the slave monitoring units.
  • the above technical solution is used to solve the hot backup problem of the communication power system monitoring unit, and improve the reliability of the system monitoring.
  • multiple monitoring units are used for master-slave hot backup.
  • the monitoring system uses fieldbus for data exchange and task scheduling. Each monitoring unit performs different tasks. When the main monitoring unit fails.
  • the unit can automatically switch to the main monitoring unit, responsible for the processing of important tasks of the whole system, system scheduling, important data backup and background communication, etc., replacing serious problems with minor faults (from the lack of local monitoring function of the monitoring unit) (main monitoring)
  • main monitoring The unit globally monitors the loss of important functions), avoids the serious failure of the system due to the failure of the main monitoring unit or the system monitoring after the failure, so that the important processes and data of the system can be continued; the N+1 backup of the monitoring unit is realized, and the DC communication power is solved.
  • the reliability bottleneck of the system monitoring unit avoids the loss to the user caused by the failure of the large-capacity communication power monitoring unit.
  • the above technical solution can also be used in it It communicates with devices and refuses to connect and is used in multi-machine monitoring.
  • Figure 1 is a structural diagram of a DC power supply system for implementing multi-machine monitoring
  • FIG. 2 is a schematic diagram of an execution scheme of a slave monitoring unit
  • FIG. 3 is a schematic diagram of an execution plan of a main monitoring unit
  • Embodiment 4 is a structural diagram of a DC power supply system in Embodiment 1;
  • Figure 5 is a structural diagram of a DC power supply system in Embodiment 2.
  • Figure 6 is a structural diagram of a DC power supply system in the third embodiment. Preferred embodiment of the invention
  • the DC power supply system for implementing multi-machine monitoring includes a main monitoring unit configured to separately manage rectification rejection and one or more slave monitoring units, the main monitoring unit being connected to each slave monitoring unit, and the monitoring unit and the monitoring unit are Other slave monitoring units are connected.
  • the monitoring unit can use RS485, RS232, CAN, WLAN and other fieldbus methods to form a communication hardware connection. among them:
  • the main monitoring unit is configured to: perform a main monitoring function and manage and control each slave monitoring unit.
  • Each slave monitoring unit is configured to: acquire data from the master monitoring unit and other slave monitoring units and back up; and also switch when the master monitoring unit is in an inactive state and the slave monitoring unit has a condition to switch to the master monitoring unit.
  • Main monitoring unit is configured to: acquire data from the master monitoring unit and other slave monitoring units and back up; and also switch when the master monitoring unit is in an inactive state and the slave monitoring unit has a condition to switch to the master monitoring unit.
  • each rectification and rejection outputs are connected in parallel, and each rectification refuses to install one monitoring module to manage 20 ⁇ 30 rectifier modules.
  • the system can generally be connected by 4 ⁇ 8 rectifications in parallel, according to each rectifier 50A. Calculated, it can provide a maximum DC output capacity of 12000A.
  • Each monitoring unit is installed with a monitoring unit to monitor the local rejection. Each monitoring unit independently manages the rectifier module and various parameters rejected by the rectifier, and completes the collection and processing of various parameters within the machine.
  • the main monitoring unit and the slave monitoring unit each collect various operating parameters of the rectifier machine to reject various internal operating parameters including, for example, rectifier current voltage, local rejection output current, local rejection battery current, Battery temperature, and various switching alarms and other data.
  • the monitoring units communicate with each other via the fieldbus.
  • the main monitoring unit is responsible for system scheduling, performing important tasks, and handling the important data of the entire system, and is responsible for communicating with the background monitoring center. At the same time, it is also responsible for the collection and processing of the monitoring object in the rectifier.
  • the main supervisory unit also periodically sends a master broadcast unit in-position broadcast command to the slave monitoring unit (in this example, the data backup command is used as the master monitor unit in-position command).
  • the slave monitoring unit that is running online fails, the main monitoring unit reports the corresponding alarm directly to the background.
  • the monitoring unit is responsible for the monitoring of the local machine's refusal operation status, as well as receiving the data sent by the main monitoring unit and backing up, and receiving the online signal of the main monitoring unit.
  • the monitoring unit responds to the system operation data request of the main monitoring unit, and transmits the relevant parameters collected by the monitoring object to the main monitoring unit through the field bus. At the same time, there is a timing and clearing mechanism from the monitoring unit. If the main monitoring unit in-position command or data backup command is not received within the specified time, it will switch to the main monitoring unit.
  • the hardware resources of each monitoring unit can be configured consistently to ensure the consistency of functions when switching from the monitoring unit to the main monitoring unit.
  • the objects monitored by each monitoring unit are basically the same, and there may be some differences (such as the number of battery packs, the number of rectifiers, and environmental monitoring content).
  • the condition for switching to the primary monitoring unit may be that the address number of the secondary monitoring unit is the smallest among the secondary monitoring unit address numbers.
  • Each slave monitoring unit is further configured to: after switching to the primary monitoring unit, run the primary monitoring function according to the backup primary monitoring unit and other data from the monitoring unit.
  • the system further includes a monitoring center connected to the main monitoring unit and each monitoring unit, wherein: the monitoring center is configured to: manage and configure the main monitoring unit and each slave monitoring unit.
  • the main monitoring unit and the slave monitoring unit can be directly connected to the monitoring center.
  • the main monitoring unit and the slave monitoring unit can also communicate with the monitoring center through a network switch configured to exchange network data, and the system configures a network switch to complete the monitoring cascade.
  • One-to-many two-way data transparent transmission, the system monitoring unit and the switch use RS232, RS485, CAN, LAN and wireless connection to form a communication hardware connection.
  • the switch implements one-to-many bidirectional transparent transmission of data. Exchange The machine format can be selected according to the physical interface format used in the actual design. You can select an Ethernet switch or a one-to-many serial switch (such as a MOXA serial switch).
  • the main monitoring unit and the slave monitoring unit may also communicate with the monitoring center through a protocol converter configured to perform protocol conversion on the network data, or the network switch communicates with the monitoring center through the protocol converter to complete the remote background network management and the communication power system. Data transfer and protocol conversion. Network switches and protocol converters are optional devices.
  • the protocol converter can process the data, integrate the data of each monitoring unit, and realize the communication between the background and the system.
  • the method for implementing multi-machine monitoring corresponding to the above DC power supply system includes:
  • the main monitoring unit performs a main monitoring function and manages and controls each slave monitoring unit; the data is acquired from the monitoring unit from the main monitoring unit and other slave monitoring units and backed up, and the master monitoring unit is in a non-working state and the slave When the monitoring unit has the condition to switch to the main monitoring unit, it switches to the main monitoring unit.
  • the above method further includes: after switching from the monitoring unit to the main monitoring unit, running the main monitoring function according to the data of the backup main monitoring unit and other slave monitoring units.
  • the above method further includes: the monitoring center manages and configures the main monitoring unit and the respective slave monitoring units.
  • the condition for switching to the primary monitoring unit may be that the address number of the secondary monitoring unit is the smallest among the secondary monitoring unit address numbers. For example, the addresses of the main monitoring unit and the slave monitoring units are different, and the address number of the main monitoring unit is the smallest; after the monitoring unit determines that the main monitoring unit is in the non-working state, the address number is lowered by the preset interval, and the updated address is The number from the monitoring unit is the same as the original monitoring unit's address number.
  • An example is as follows: An address allocation mechanism is designed between each monitoring unit to ensure that the address of each module is not repeated.
  • the main monitoring unit address is 0, and the monitoring unit is 1, 2, ... N in order.
  • Design a timer from the monitoring unit to receive the in-position signal or data backup command of the main monitoring unit within the specified time then judge the main monitoring unit to be inactive or fail, and reduce the local address by 1, each slave monitoring
  • the unit loop executes, and the slave monitoring unit with the smallest address number (that is, the slave unit whose address is updated to 0) is automatically switched to the master monitoring unit, and the control rights of each slave monitoring unit are obtained, and the alarm is reported to the background. And receiving the new main monitoring unit from the monitoring units 2, 3, 4, ...
  • the original The main monitoring unit sent from the monitoring unit 1 clears the timer after the bit signal or data backup command, and maintains the original slave monitoring unit mode. The address of the largest number from the monitoring unit is therefore vacant. After the failed monitoring unit is repaired or replaced, the main monitoring unit assigns the missing maximum address to the repaired or replaced main monitoring unit. When the system is expanded, the newly added slave monitoring unit is assigned an address of N+1. After replacing the new monitoring unit, the original main monitoring unit actively reports the in-position signal to the main monitoring unit. The main monitoring unit calculates the missing minimum address number from the monitoring unit and assigns it to the newly replaced slave monitoring unit to realize the re-stable operation of the system.
  • the execution plan of the slave monitoring unit includes:
  • SS1-Initialization After the monitoring unit is powered on, it is initialized to the slave monitoring unit mode. If the in-position signal or data request command of the main monitoring unit is not received within the timeout, and the main monitoring unit is judged to be in the non-working state (ie, fault), it will automatically switch to Main monitoring unit mode.
  • the monitoring unit can also manually set the main monitoring unit or monitor the single address through menus or switches.
  • a non-working state ie, fault
  • 553-Processing the machine to reject internal tasks including the completion of the rejection of each rectifier data, battery data, and related operating parameters detection and calculation, packaging processing.
  • SS4-Processing the commands issued by the main monitoring unit Receive and process the commands sent by the main monitoring unit, and clear the main monitoring unit not in the bit timer, complete the data reporting, complete the data backup, and execute the operation mode from the monitoring unit.
  • the local address number is reduced by 1.
  • the unit immediately switches to the main monitoring unit, and sends the main monitoring unit in-position command to the field bus to load the backup data. Enter the main monitoring unit working mode.
  • the main monitoring unit monitors the working state of the main monitoring unit, and if the in-position information sent by the main monitoring unit is not received after the timeout, the main monitoring unit is switched to enter the working mode of the main monitoring unit; Upon receiving the new master monitoring unit in-position command, it returns to the slave monitoring Unit work mode.
  • SS7 & SS8- enter the main monitoring unit working mode, responsible for the operation scheduling of the entire system and the execution of important functions.
  • the execution plan of the main monitoring unit includes:
  • SM1-Initialization Initialized to the slave monitoring unit mode after power-on, the in-position signal or data request command of the main monitoring unit cannot be received within the timeout, and is set to the master monitoring unit mode.
  • the monitoring unit can also manually set the main monitoring unit or monitor the single address by means of menus or switches.
  • SM2-Processing This machine rejects internal tasks: It includes the completion of the detection and calculation of each rectifier data, each battery data, and related operating parameters, packing processing, etc.
  • SM3-system global task processing Coordinating the operation and management of each slave monitoring unit, issuing the master monitoring unit in-position command to each slave monitoring unit, and issuing important data (such as battery capacity, battery charging status, load power consumption, etc.) ).
  • SM4-Processing background communication task Decompose and execute the command or data request issued in the background, report the alarm, report the configuration of the main monitoring unit and the slave monitoring unit.
  • SM5-Processing Field Communication Task Read the real-time data and running status of each slave monitoring unit and the rejected status through the fieldbus, issue execution commands (such as battery management, etc.), and complete the data processing and then send it to the slave monitoring unit for backup.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a foreign operator requires the output of the 4800A central room power supply, which consists of four 1200A rectifiers and an AC power distribution panel. Each rectification refuses to install 24 50A single-phase rectifier modules and a monitoring unit. . RS485 is used as the field bus between the monitoring units to complete the exchange of data between the monitoring units.
  • Each monitoring unit communicates with the upper serial port HUB board through RS232 (the serial port HUB board is a serial port switch similar to the network switch, which realizes transparent transmission of 1 to 4), and realizes four monitoring units and the upper computer SNMP processing unit. Communication transmission, SNMP processing unit with WEB SERVER function and support SNMP protocol, responsible for the department Communication with the background monitoring center.
  • the example sets the monitoring of the first S122 rectifier to be the main monitoring unit through software, completes the core functions of battery management, alarm management, parameter management and background communication of the whole system, and completes the scheduling and processing of the entire system task.
  • the important parameters and data of the system are transmitted to the slave monitoring units for data backup via the RS485 field bus.
  • the main monitoring unit also performs the collection and processing of the internal state quantity, the switch quantity and various operating data of the rectifier, and also transfers the processing and the result to the slave monitoring units for data backup.
  • the monitoring unit of the three S122 rectifiers is rejected by the software as the slave monitoring unit, which realizes the collection and processing of the internal state quantity, the switch quantity and various operational data of the rectifier, and transmits the processing result to the main monitoring unit.
  • the commands sent by the main monitoring unit are received and executed synchronously.
  • the monitoring unit also backs up the parameters transmitted by the main monitoring unit to monitor the working status of the main monitoring unit.
  • the No. 1 S122 automatically switches from the monitoring unit to the main monitoring unit, loads the data of the backup area, performs the function of the main monitoring unit, and simultaneously “up” the old main monitoring unit fails or Invalid.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the example shown in Figure 5 is an evolutionary backup monitoring networking mode. Through the parallel connection of two monitoring units and one upper-level switch, the main monitoring unit is immediately put into operation from the monitoring unit to take over the monitoring task of the system.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the system architecture is further simplified.
  • the monitored object and the monitoring object the background communication mode and physics
  • the two monitoring units can be configured as backups of each other, and can also be used in other communication equipment systems.
  • This program mainly shows a monitoring system in which multiple monitoring units are backed up by each other.
  • the same hardware structure and software function programs are used between the monitoring units, but the main monitoring unit and the monitoring unit run different software modules, when the main monitoring Unit failure or failure, automatically switch from the monitoring unit to the main monitoring unit operation, load the backup data, continue the various management tasks of the entire system, improve the communication power Reliability and availability of monitoring in the source system.
  • the above technical solution realizes multiple slave monitoring units on the basis of multi-machine rejection system parallel connection, and the data exchange and task scheduling are performed by the fieldbus between the monitoring units of the system, and each monitoring unit performs different tasks, when the main monitoring After the unit fails, the monitoring unit can automatically switch to the main monitoring unit, responsible for the processing of important tasks of the whole system, system scheduling, important data backup and background communication, etc., replacing the serious problem with glitch (from the lack of local monitoring function of the monitoring unit) (The main monitoring unit monitors the loss of important functions globally), avoids the serious failure of the system due to the failure of the main monitoring unit or the system monitoring after the failure, so that the important processes and data of the system can be continued; the N+1 backup of the monitoring unit is realized, and the solution is solved.
  • the reliability bottleneck problem of the DC communication power system monitoring unit avoids the loss to the user caused by the failure of the large-capacity communication power supply monitoring unit. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Telephonic Communication Services (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

一种实现多机监控的直流电源系统及方法。该系统包括设置成单独管理整流柜的主监控单元和一个或多个从监控单元。主监控单元与各从监控单元相连,从监控单元与其他从监控单元相连。主监控单元设置成执行主监控功能并对各从监控单元进行管理和控制。从监控单元设置成从主监控单元和其他从监控单元获取数据并备份,还在主监控单元为非工作状态并且本从监控单元具备切换为主监控单元的条件时,切换为主监控单元。该系统及方法能够避免大容量通信电源监控单元失效对用户造成的损失。

Description

一种实现多机监控的直流电源系统及方法
技术领域
本发明涉及直流通讯电源监控领域, 尤其涉及一种实现多机监控的直流 电源系统及方法。
背景技术
在通信电源领域中,为了提高设备供电的可靠性,整流器的输出釆用 N+ 1 冗余备份技术。但在系统监控方面,目前通讯电源系统只设计一个监控单元, 此监控单元作为系统监控核心, 发生故障或者失效时, 系统与后台的通讯断 开, 系统重要数据也会因此丟失, 例如一些多家运营商共用的电源系统, 用 户按照输出侧直流用电量收费, 直流用电量等这些重要数据保存在监控单元 里面, 如果监控单元故障或者失效, 会给用户造成相应的损失, 此种方式不 能满足重要的机房和应用场合对数据安全性和可靠性的要求。
随着通讯技术的发展, 电信运营商对通讯电源的质量、 可靠性、 容量等 方面提出了更高的要求, 尤其在 2G/3G/4G三网同时 /同站运营的情况下, 对 通讯电源的容量要求将会越来越大,其容量要求一般大于 1000安,单机拒容 量很难满足这样的大容量需求, 通常釆用并列式多机拒系统供电。 一些厂家 设计了多机拒并联输出的大容量通讯电源系统, 每个整流拒釆用独立的监控 单元需要占用更多的通讯组网资源和配电空间。 另一方面, 由于三相输入开 关整流器模块存在效率难以提高等方面的技术壁垒, 目前的大容量通讯电源 发展趋势是用中小容量单相整流模块构建大容量系统, 这样就要求整流器的 个数可能多达 100— 200个。在整流模块数量较多的情况下, 由于各类检测控 制信号线繁多, 一个监控单元管理数十个甚至上百个整流器模块, 布线工艺 复杂, 生产维护难度大, 也存在总线驱动能力不足以及从监控单元过多而产 生的监控实时性差等方面的技术难题, 并且此种方式也不能有效保证某监控 单元故障时的数据安全。
发明内容 相关技术中, 各监控单元独立运行, 一方面是由于各个拒内的重要功能 不同步造成的严重影响, 如电池管理功能, 各整流拒电池均充或测试开始时 刻不一致导致后启动的整流器限流。 另一方面, 单个监控模块独立运行并不 能提高监控的可靠性, 在与监控中心组网时会占用更多的通讯资源。
本发明实施例要解决的技术问题是提供一种实现多机监控的直流电源系 统及方法, 为保障直流电源系统中电力数据的安全性提供解决方案。
为了解决上述技术问题, 本发明实施例釆用如下技术方案:
一种实现多机监控的直流电源系统, 包括设置成单独管理整流拒的主监 控单元和一个或多个从监控单元, 所述主监控单元与各从监控单元相连, 任 一从监控单元与其它从监控单元均相连, 其中:
所述主监控单元设置成: 执行主监控功能并对各所述从监控单元进行管 理和控制;
各所述从监控单元设置成: 从所述主监控单元和其它从监控单元获取数 据并备份; 还在所述主监控单元为非工作状态并且本从监控单元具备切换为 主监控单元的条件时, 切换为主监控单元。
可选地, 所述从监控单元还设置成:
在切换为主监控单元后, 根据备份的主监控单元和其它从监控单元的数 据运行主监控功能。
可选地, 具备切换为主监控单元的条件是指本从监控单元的地址号在各 所述从监控单元地址号中最小。
可选地, 该系统还包括与所述主监控单元和各所述监控单元均相连的监 控中心, 其中: 所述监控中心设置成:管理和配置所述主监控单元和各所述从监控单元。 可选地, 所述主监控单元和各所述从监控单元通过设置成进行网络数据 交换的网络交换机或设置成对网络数据进行协议转换的协议转换器与所述监 控中心相连。
一种实现多机监控的方法, 包括: 主监控单元执行主监控功能并对各从监控单元进行管理和控制; 各所述从监控单元从所述主监控单元和其它从监控单元获取数据并备份, 在所述主监控单元为非工作状态并且本从监控单元具备切换为主监控单元的 条件时, 切换为主监控单元。
可选地, 该方法还包括:
各所述从监控单元在切换为主监控单元后, 根据备份的主监控单元和其 它从监控单元的数据运行主监控功能。
可选地, 具备切换为主监控单元的条件是指本从监控单元的地址号在各 所述从监控单元地址号中最小。
可选地, 该方法还包括:
设置所述主监控单元和各所述从监控单元的地址各不相同并且所述主监 控单元的地址号最小;
各所述从监控单元判断所述主监控单元为非工作状态后, 以预设间隔降 低地址号, 更新后的地址号与原主监控单元的地址号相同的从监控单元切换 为主监控单元。
可选地, 该方法还包括:
监控中心管理和配置所述主监控单元和各所述从监控单元。
上述技术方案用于解决通讯电源系统监控单元的热备份问题, 提高系统 监控的可靠性。在多机拒系统并联基础上实现多个监控单元互为主从热备份, 该系统各监控单元间釆用现场总线进行数据交换和任务调度, 各监控单元执 行不同的任务, 当主监控单元失效后, 从监控单元能够自动切换为主监控单 元, 负责整个系统重要任务的处理、 系统调度、 重要数据备份以及后台通讯 等, 用小故障 (从监控单元局部监控功能的缺失)取代严重问题(主监控单 元全局监控重要功能的丧失) , 避免出现因为主监控单元失效或者故障后系 统监控瘫痪的严重故障, 使得系统重要进程和数据得以延续; 实现了监控单 元的 N+1备份, 解决了直流通讯电源系统监控单元的可靠性瓶颈问题, 避免 大容量通讯电源监控单元失效对用户造成的损失。 上述技术方案也可以在其 它通讯设备并拒连接以及多机监控中釆用。 附图概述
图 1是实现多机监控的直流电源系统结构图;
图 2是从监控单元的执行方案示意图;
图 3是主监控单元的执行方案示意图;
图 4是实施例一中直流电源系统结构图;
图 5是实施例二中直流电源系统结构图;
图 6是实施例三中直流电源系统结构图。 本发明的较佳实施方式
如图 1所示, 实现多机监控的直流电源系统包括设置成单独管理整流拒 的主监控单元和一个或多个从监控单元, 所述主监控单元与各从监控单元相 连,从监控单元与其它从监控单元均相连。例如,监控单元之间可釆用 RS485、 RS232、 CAN, WLAN等现场总线方式构成通讯硬件连接。 其中:
所述主监控单元设置成: 执行主监控功能并对各从监控单元进行管理和 控制。
各从监控单元设置成: 从所述主监控单元和其它从监控单元获取数据并 备份; 还在所述主监控单元为非工作状态并且本从监控单元具备切换为主监 控单元的条件时, 切换为主监控单元。
例如, 系统设计时釆用多个整流拒输出并联, 每个整流拒安装 1个监控 模块, 管理 20~30个整流器模块, 系统一般可以由 4~8个整流拒并联输出, 按照每个整流器 50A计算, 最大可以提供 12000A的直流输出容量。 每个整 流拒内安装一个监控单元监控本机拒, 每个监控单元独立管理本整流器拒内 的整流模块和各项参数, 完成本机拒内各种参数的釆集和处理。
主监控单元和从监控单元各自釆集本整流器机拒内部的各种运行参数各 种运行参数包括例如整流器电流电压、 本机拒输出电流、 本机拒电池电流、 电池温度、 以及各种开关量告警量等数据。 各监控单元通过现场总线互相通 讯。
主监控单元负责系统调度, 执行重要的任务, 以及负责整个系统重要数 据的处理, 负责跟后台监控中心通讯。 同时也负责本整流器拒内监控对象釆 集和处理。 当整个系统的重要数据打包完成后发至各从监控单元备份。 主监 控单元还定时向从监控单元发送主监控单元在位广播命令(在本实例中, 数 据备份命令即作为主监控单元在位命令使用) 。 当在线运行的从监控单元故 障时, 主监控单元直接向后台上报相应的告警。
从监控单元负责本机拒运行状态的监控, 以及接收主监控单元下发的数 据并进行备份, 并接收主监控单元在线信号。 从监控单元响应主监控单元的 系统运行数据请求, 将本拒内监控对象釆集到的相关参数通过现场总线传递 给主监控单元。 同时从监控单元还有一套定时及清除机制, 在规定的时间内 接收不到主监控单元在位命令或者数据备份命令, 就会自己切换为主监控单 元。
可以设置各监控单元的硬件资源配置一致, 保证从监控单元切换为主监 控单元时功能的一致性。 每个监控单元监控的对象基本相同, 可以存在一定 的差异(比如电池组数、 整流器个数、 环境监控内容等不同) 。
系统中, 具备切换为主监控单元的条件可以是此从监控单元的地址号在 各从监控单元地址号中最小。
各从监控单元还设置成: 在切换为主监控单元后, 根据备份的主监控单 元和其它从监控单元的数据运行主监控功能。
本系统还包括与主监控单元和各监控单元均相连的监控中心, 其中: 所述监控中心设置成: 管理和配置所述主监控单元和各从监控单元。 主监控单元和从监控单元可以直接与监控中心相连, 主监控单元和从监 控单元也可以通过设置成进行网络数据交换的网络交换机与监控中心通信, 系统配置一网络交换机完成监控的级连, 实现一对多的双向数据透明传输, 系统各个监控单元与交换机之间用 RS232、 RS485、 CAN, LAN以及无线连 接等方式构成通讯硬件连接。 交换机实现数据的一对多双向透明传输。 交换 机形式可以根据实际设计时釆用的物理接口形式选择, 可以选择以太网交换 机或者一对多的串口交换机(例如 MOXA串口交换机等) 。
主监控单元和从监控单元也可以通过设置成对网络数据进行协议转换的 协议转换器与监控中心通信, 或者, 网络交换机通过此协议转换器与监控中 心通信, 完成远程后台网管与通讯电源系统之间的数据传输和协议转换。 网 络交换机和协议转换器为可选器件。 协议转换器可以进行数据的处理, 整合 各个监控单元的数据, 实现后台与系统的通讯。
与上述直流电源系统对应的实现多机监控的方法包括:
主监控单元执行主监控功能并对各从监控单元进行管理和控制; 从监控单元从所述主监控单元和其它从监控单元获取数据并备份, 在所 述主监控单元为非工作状态并且本从监控单元具备切换为主监控单元的条件 时, 切换为主监控单元。
上述方法还包括: 从监控单元在切换为主监控单元后, 根据备份的主监 控单元和其它从监控单元的数据运行主监控功能。
上述方法还包括:监控中心管理和配置所述主监控单元和各从监控单元。 具备切换为主监控单元的条件可以是此从监控单元的地址号在各从监控 单元地址号中最小。 例如, 设置主监控单元和各从监控单元的地址各不相同 并且主监控单元的地址号最小;从监控单元判断主监控单元为非工作状态后, 以预设间隔降低地址号, 更新后的地址号与原主监控单元的地址号相同的从 监控单元切换为主监控单元。
举例如下: 各监控单元之间设计了一种地址分配机制, 保证各模块地址 不会重复。 主监控单元地址为 0 , 从监控单元依次为 1、 2... ... N。 从监控单 元设计一个定时器, 在规定时间内接收不到主监控单元在位信号或者数据备 份命令, 则判断主监控单元处于非工作状态即失效或者故障, 将本机地址减 1 , 各从监控单元循环执行, 地址号最小的从监控单元(即地址更新为 0的 1 号从监控单元) 自动切换为主监控单元, 获得各从监控单元的控制权, 并且 向后台上报告警。 而从监控单元 2、 3、 4... ...等收到新主监控单元(原来的 从监控单元 1 )发来的主监控单元在位信号或数据备份命令以后, 清除定时 器, 保持原来的从监控单元模式。 最大号从监控单元的地址因此空缺。 当失 效的监控单元修复或者更换以后, 主监控单元将缺失的最大地址分配给修复 或者更换的主监控单元。 当系统扩容时, 新加入的从监控单元则按 N+1的地 址分配。 原来的主监控单元更换新的监控单元后主动上报在位信号给主监控 单元, 主监控单元计算缺失从监控单元的最小地址号并分配给新更换的从监 控单元, 实现系统的重新稳定运行。
如图 2所示, 从监控单元的执行方案包括:
SS1-初始化: 从监控单元上电后初始化为从监控单元模式, 超时接收不 到主监控单元的在位信号或者数据请求命令, 判断主监控单元处于非工作状 态 (即故障) , 则自动切换为主监控单元模式。 监控单元也可以通过菜单或 者开关等方式人工设置主监控单元或者从监控单地址。
552-接收主监控单元命令并判断:从监控单元监听主监控单元工作状态, 如果超时未接收到主监控单元发来的在位信息 /数据请求命令 /数据备份命令 / 功能执行命令, 则判断主监控单元处于非工作状态 (即故障) , 通过软件去 抖动后, 进入本机地址计算与竟争程序。
553-处理本机拒内部任务: 包括完成本机拒内各个整流器数据、 各电池 数据、 以及相关运行参数的检测和计算, 打包处理等。
SS4-处理主监控单元下发的命令: 接收并处理主监控单元下发的命令, 并清除主监控单元不在位定时器, 完成数据上报, 完成数据备份, 循环执行 从监控单元工作模式。
555-本机地址计算和竟争: 本机地址号减 1 , 当地址号减小到 0时, 本 机立即切换为主监控单元, 向现场总线发送主监控单元在位命令, 加载备份 数据, 进入主监控单元工作模式。
556-接收主监控单元命令并判断:从监控单元监听主监控单元工作状态, 如果超时未接收到主监控单元发来的在位信息, 则切换为主监控单元, 进入 主监控单元工作模式; 如果接收到新的主监控单元在位命令, 则回到从监控 单元工作模式。
SS7 & SS8-进入主监控单元工作模式, 负责整个系统的运行调度及重要 功能的执行。
如图 3所示, 主监控单元的执行方案包括:
SM1-初始化: 上电后初始化为从监控单元模式, 超时接收不到主监控单 元的在位信号或者数据请求命令, 设置为主监控单元模式。 监控单元也可以 通过菜单或者开关等方式人工设置主监控单元或者从监控单地址。
SM2-处理本机拒内部任务: 包括完成本机拒内各个整流器数据、 各电池 数据、 以及相关运行参数的检测和计算, 打包处理等。
SM3-系统全局任务的处理: 协调各从监控单元的运行和管理、 向各从监 控单元下发主监控单元在位命令以及下发重要数据(如电池容量、 电池充电 状态、 负载用电量等) 。
SM4-处理后台通讯任务: 分解并执行后台下发的命令或者数据请求, 上 报告警, 上报主监控单元和从监控单元配置情况。
SM5-处理现场通讯任务:通过现场总线读取各从监控单元和分拒的实时 数据和运行状态、 下发执行命令(如电池管理等) 、 完成数据处理后下发给 从监控单元备份。
本节描述的系统结构和具体实施方式, 在应用时可根据实际情况进行简 化。 下面通过具体实施例进行说明。
实施例一:
如图 4所示, 某国外运营商要求输出 4800A的中心机房电源, 由 4个 1200A的整流器拒和一个交流配电屏构成, 每个整流拒安装 24个 50A的单 相整流器模块和一个监控单元。 监控单元之间用 RS485作为现场总线, 完成 监控单元之间的数据的互相交换。各监控单元通过 RS232和上位的串口 HUB 单板进行通讯(串口 HUB板是一种类似于网络交换机的串口交换机, 其实 现 1对 4的透明传输 ) , 实现四个监控单元与上位机 SNMP处理单元的通讯 传输, SNMP处理单元具备 WEB SERVER功能和支持 SNMP协议, 负责系 统与后台监控中心的通讯。
实例通过软件设定第一个 S122 整流器拒内的监控为主监控单元, 完成 整个系统的电池管理、 告警管理、 参数管理以及和后台通讯等核心功能, 并 完成整个系统任务的调度和处理, 当执行这些功能时, 通过 RS485现场总线 将系统重要参数和数据传递给各从监控单元进行数据备份。 同时主监控单元 也进行本整流器拒内状态量、 开关量和各种运行数据的釆集和处理, 同时将 处理和结果也传递给各从监控单元进行数据备份。
实例中三个 S122 整流器拒内的监控单元通过软件为从监控单元, 实现 本整流器拒内状态量、 开关量和各种运行数据的釆集和处理, 同时将处理结 果传递给主监控单元, 责接收主监控单元下发的命令并同步执行, 从监控单 元还对主监控单元传递的各参数进行备份, 监控主监控单元工作状态。
当主监控单元拔出或者故障时, 1号 S122从监控单元自动切换为主监控 单元, 加载备份区的数据, 执行主监控单元的功能, 同时向上后台管理系统 上 "^旧的主监控单元故障或失效。
实施例二:
如图 5所示的实例是一种演进的后备监控组网方式, 通过两个监控单元 的并联和一个上位交换机, 主监控单元失效后从监控单元立即投入运行承担 系统的监控任务。
实施例三:
图 6中描述的实例中, 釆用智能整流器模块, 监控单元与整流器模块之 间釆用 CANBUS 等通讯方式时, 系统架构进一步简化, 当被监控对象与监 控对象, 后台之间的通讯方式和物理链路相同的时候, 可以构成两个监控单 元的互为备份, 在其它通讯设备系统中也可以釆用。
本方案主要表明的是一种多个监控单元互为备份的监控系统, 监控单元 之间釆用同样的硬件结构和软件功能程序, 但主监控单元和从监控单元运行 不同的软件模块, 当主监控单元故障或失效, 从监控单元自动切换为主监控 单元运行, 加载备份的数据, 延续整个系统的各个管理任务, 提高了通讯电 源系统中监控的可靠性和可用性。
需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互任意组合。 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用 4生
上述技术方案在多机拒系统并联基础上实现多个监控单元互为主从热备 份, 该系统各监控单元间釆用现场总线进行数据交换和任务调度, 各监控单 元执行不同的任务, 当主监控单元失效后, 从监控单元能够自动切换为主监 控单元, 负责整个系统重要任务的处理、 系统调度、 重要数据备份以及后台 通讯等, 用小故障 (从监控单元局部监控功能的缺失)取代严重问题(主监 控单元全局监控重要功能的丧失) , 避免出现因为主监控单元失效或者故障 后系统监控瘫痪的严重故障, 使得系统重要进程和数据得以延续; 实现了监 控单元的 N+1备份, 解决了直流通讯电源系统监控单元的可靠性瓶颈问题, 避免大容量通讯电源监控单元失效对用户造成的损失。 因此本发明具有很强 的工业实用性。

Claims

权 利 要 求 书
1、一种实现多机监控的直流电源系统, 包括设置成单独管理整流拒的主 监控单元和一个或多个从监控单元, 所述主监控单元与各从监控单元相连, 任一从监控单元与其它从监控单元均相连, 其中:
所述主监控单元设置成: 执行主监控功能并对各所述从监控单元进行管 理和控制;
各所述从监控单元设置成: 从所述主监控单元和其它从监控单元获取数 据并备份; 还在所述主监控单元为非工作状态并且本从监控单元具备切换为 主监控单元的条件时, 切换为主监控单元。
2、如权利要求 1所述的直流电源系统,其中,所述从监控单元还设置成: 在切换为主监控单元后, 根据备份的主监控单元和其它从监控单元的数 据运行主监控功能。
3、 如权利要求 1所述的直流电源系统, 其中,
具备切换为主监控单元的条件是指本从监控单元的地址号在各所述从监 控单元地址号中最小。
4、如权利要求 1-3中任一项所述的直流电源系统, 该系统还包括与所述 主监控单元和各所述监控单元均相连的监控中心, 其中:
所述监控中心设置成:管理和配置所述主监控单元和各所述从监控单元。
5、 如权利要求 4所述的直流电源系统, 其中:
所述主监控单元和各所述从监控单元通过设置成进行网络数据交换的网 络交换机或设置成对网络数据进行协议转换的协议转换器与所述监控中心相 连。
6、 一种实现多机监控的方法, 包括:
主监控单元执行主监控功能并对各从监控单元进行管理和控制; 各所述从监控单元从所述主监控单元和其它从监控单元获取数据并备份, 在所述主监控单元为非工作状态并且本从监控单元具备切换为主监控单元的 条件时, 切换为主监控单元。
7、 如权利要求 6所述的方法, 该方法还包括:
各所述从监控单元在切换为主监控单元后, 根据备份的主监控单元和其 它从监控单元的数据运行主监控功能。
8、 如权利要求 6所述的方法, 其中:
具备切换为主监控单元的条件是指本从监控单元的地址号在各所述从监 控单元地址号中最小。
9、 如权利要求 8所述的方法, 该方法还包括:
设置所述主监控单元和各所述从监控单元的地址各不相同并且所述主监 控单元的地址号最小;
各所述从监控单元判断所述主监控单元为非工作状态后, 以预设间隔降 低地址号, 更新后的地址号与原主监控单元的地址号相同的从监控单元切换 为主监控单元。
10、 如权利要求 6-9中任一项所述的方法, 该方法还包括:
监控中心管理和配置所述主监控单元和各所述从监控单元。
PCT/CN2012/077643 2011-06-28 2012-06-27 一种实现多机监控的直流电源系统及方法 WO2013000412A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110177517.4A CN102856971B (zh) 2011-06-28 2011-06-28 一种实现多机监控的直流电源系统及方法
CN201110177517.4 2011-06-28

Publications (1)

Publication Number Publication Date
WO2013000412A1 true WO2013000412A1 (zh) 2013-01-03

Family

ID=47403270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077643 WO2013000412A1 (zh) 2011-06-28 2012-06-27 一种实现多机监控的直流电源系统及方法

Country Status (2)

Country Link
CN (1) CN102856971B (zh)
WO (1) WO2013000412A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103916268A (zh) * 2014-03-17 2014-07-09 烽火通信科技股份有限公司 一种实现冗余通信系统智能节能的装置及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103336203A (zh) * 2013-06-26 2013-10-02 苏州汇川技术有限公司 变流器调试系统及操作器
CN104268114A (zh) * 2014-09-26 2015-01-07 合肥华耀电子工业有限公司 一种电源测控系统及其控制方法
CN105607583A (zh) * 2014-10-29 2016-05-25 中兴通讯股份有限公司 一种监控方法、装置及电源系统中的第一监控单元
CN104538948B (zh) * 2014-12-26 2019-03-26 中达电通股份有限公司 高压直流供电系统及其供电控制方法
CN105261952A (zh) * 2015-10-19 2016-01-20 山东科技大学 组合式隔爆型高压真空配电装置
CN107632517A (zh) * 2017-07-31 2018-01-26 上海蔚来汽车有限公司 充换电站及充换电监控系统、方法
CN110401359B (zh) * 2019-09-02 2024-05-10 大连弘达电气股份有限公司 一种基于冗余切换的整流装置对装置并联控制系统及方法
CN113985935A (zh) * 2021-05-29 2022-01-28 苏州芯默科技有限公司 一种以电流值即时监控快速升温炉制程状态的方法
CN113328637B (zh) * 2021-06-01 2022-05-06 浙江大学 基于工业互联网的群组协同控制的分布式大电流电源系统
CN114070093B (zh) * 2021-12-03 2022-07-15 湖南北顺源智能科技有限公司 基于高压直流变换技术的海底观测网多模块电源系统
CN114421627B (zh) * 2022-03-11 2022-06-28 深圳市首航新能源股份有限公司 一种电源监控系统、控制方法以及中央监控单元
CN115514624B (zh) * 2022-09-21 2024-04-30 中国农业银行股份有限公司 监控方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200419884A (en) * 2003-03-17 2004-10-01 Phoenixtec Ind Co Ltd Control method of UPS module connected in parallel and system thereof
JP2008161006A (ja) * 2006-12-26 2008-07-10 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
CN101494564A (zh) * 2008-01-25 2009-07-29 中兴通讯股份有限公司 一种电源监控装置及单板热备份的实现方法
CN201359700Y (zh) * 2009-02-27 2009-12-09 德阳市伊诗特科技有限公司 配置冗余控制器和冗余网络的海水淡化控制系统
CN101656549A (zh) * 2009-09-01 2010-02-24 中兴通讯股份有限公司 一种并联式基站电源的监控系统及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200419884A (en) * 2003-03-17 2004-10-01 Phoenixtec Ind Co Ltd Control method of UPS module connected in parallel and system thereof
JP2008161006A (ja) * 2006-12-26 2008-07-10 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
CN101494564A (zh) * 2008-01-25 2009-07-29 中兴通讯股份有限公司 一种电源监控装置及单板热备份的实现方法
CN201359700Y (zh) * 2009-02-27 2009-12-09 德阳市伊诗特科技有限公司 配置冗余控制器和冗余网络的海水淡化控制系统
CN101656549A (zh) * 2009-09-01 2010-02-24 中兴通讯股份有限公司 一种并联式基站电源的监控系统及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103916268A (zh) * 2014-03-17 2014-07-09 烽火通信科技股份有限公司 一种实现冗余通信系统智能节能的装置及方法
CN103916268B (zh) * 2014-03-17 2017-03-15 烽火通信科技股份有限公司 一种实现冗余通信系统智能节能的装置及方法

Also Published As

Publication number Publication date
CN102856971B (zh) 2016-02-10
CN102856971A (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
WO2013000412A1 (zh) 一种实现多机监控的直流电源系统及方法
CN100484051C (zh) 一种监控管理的系统、装置、设备及方法
CN105739299A (zh) 基于二乘二取二安全冗余系统的控制装置
CN102495608B (zh) 基于dcs的燃煤电厂一体化控制系统
CN107426756B (zh) 热备份通信系统及其通信接口控制模块
CN102833095A (zh) 一种多专业、大容量实时数据采集方法
CN105045181A (zh) Pas100控制系统的总体冗余构架
CN100428722C (zh) 多生成树协议的分布式处理系统及处理方法
CN206775517U (zh) 一种基于云服务器的垃圾压缩站冗余配置系统
CN102043389B (zh) 多规约数据监控系统
CN103309319A (zh) 分布冗余式飞机自动配电控制系统
CN103455018A (zh) 基于异构网络技术的电阻焊机控制管理系统
CN110021950B (zh) 一种柔直配网紧凑化控制保护主机
CN102760504A (zh) 核电站全厂机组的数字控制系统及非核级控制系统、方法
CN205071015U (zh) 以太网供电装置
CN111064273A (zh) 一种分布式微电网供电系统
CN115765194B (zh) 基于双监控网络的船舶电力监控系统
CN108234623B (zh) 配网主站数据采集链路自动均衡管理方法
CN201535871U (zh) 基于双核cpu和双板热备的智能合并单元
CN206658102U (zh) 一种变电站自动化设备故障自愈系统
CN211405606U (zh) 一种配电终端的重启装置
CN201130325Y (zh) 基于pc104的电站网络监控器
CN204883336U (zh) Pas100控制系统的控制器和通信模块冗余构架
CN112491128B (zh) 双电源供电监控系统及方法
CN204904019U (zh) Pas100控制系统的总体冗余构架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805035

Country of ref document: EP

Kind code of ref document: A1