WO2012175691A1 - Anti-axl antibodies and uses thereof - Google Patents
Anti-axl antibodies and uses thereof Download PDFInfo
- Publication number
- WO2012175691A1 WO2012175691A1 PCT/EP2012/062114 EP2012062114W WO2012175691A1 WO 2012175691 A1 WO2012175691 A1 WO 2012175691A1 EP 2012062114 W EP2012062114 W EP 2012062114W WO 2012175691 A1 WO2012175691 A1 WO 2012175691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- axl
- seq
- region
- antibodies
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2863—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57492—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/33—Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- the present invention relates to anti-Axl antibodies and uses thereof in diagnostic and therapeutic methods.
- Axl belongs to the TAM subfamily of receptor tyrosine kinases (RTKs) that also includes Tyro3 and Mer.
- the TAM receptors are characterized by a combination of two immunoglobin-like domains and dual fibronectin type III repeats in the extracellular region and a cytoplasmic kinase domain.
- the ligands for TAM receptors are Gas6 (growth-arrest- specific 6) and protein S, two vitamin-K dependent proteins that show 43% amino acid sequence identity and share similar domain structures.
- Each protein has an N-terminal Gla domain containing 11 g-carboxyglutamic acid residues, followed by four epidermal growth factor (EGF)-like modules, and a C-terminal sex hormone-binding globlin (SHBG)-like structure consisting of two tandem laminin G domains.
- the SHBG domain is both necessary and sufficient for TAM receptor binding and activation, whereas the Gla domain binds the negatively charged membrane phospholipids and plays an important role in TAM-mediated phagocytosis of apoptotic cells.
- TAM activation and signalling has been implicated in multiple cellular responses including cell survival, proliferation, migration and adhesion.
- Dysregulation of Axl or its ligand Gas6 is implicated in the pathogenesis of a variety of human cancers.
- Overexpression of Axl has been reported in a wide array of human cancers (lung, prostate, breast, gastric, pancreatic, ovarian, thyroid, blood cancers, renal cell carcinoma as well as glioblastoma%) and is associated with invasiveness, metastasis a nd negative prognosis.
- Axl may be involved in the regulation of multiple aspects of tumorigenesis including tumor growth, invasion and angiogenesis and thus represents a target for therapeutic intervention in cancer especially for the development of anti-metastatic cancer therapy and for other multiple cancer treatment including treatment of drug resistance.
- anti-Axl monoclonal antibodies have been described for use in the treatment of cancers.
- publications relating to anti-Axl antibodies include WO2009/063965, WO2009/062690, and WO2011/014457.
- Other roles of Axl dependent or not of its ligands such as inhibition of immune functions, activation of platelet aggregation and viral infection inducer (as an example, Ebola and Lassa virus uptake is promoted by Axl) highlight the potential of Axl as therapeutic target for other applications than oncology.
- the present invention relates to a monoclonal antibody having specificity for Axl, comprising an heavy chain variable region comprising SEQ ID NO:2 in the H-CDR1 region, SEQ ID NO:3 in the H-CDR2 region and SEQ ID NO:4 in the H-CDR3 region ; and a light chain variable region comprising SEQ ID NO:6 in the L-CDR1 region, SEQ ID NO:7 in the L-CDR2 region and SEQ ID NO: 8 in the L-CDR3 region.
- Said monoclonal antibody binds to the extracellular domain of Axl via, SEQ ID NO:9, SEQ ID NO: 10 and SEQ ID NO: l 1.
- Axl has its general meaning in the art and refers to the human Axl. Axl is also known as "Ark”, “Tyro-7", “ufo”, or "jtkl 1".
- anti-Axl antibody refers to an antibody directed against Axl.
- antibody or “immunoglobulin” have the same meaning, and will be used equally in the present invention.
- the term “antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds an antigen.
- the term antibody encompasses not only whole antibody molecules, but also antibody fragments as well as variants (including derivatives) of antibodies and antibody fragments.
- two heavy chains are linked to each other by disulfide bonds and each heavy chain is linked to a light chain by a disulfide bond. There are two types of light chain, lambda (1) and kappa (k).
- the heavy chain includes two domains, a variable domain (VL) and a constant domain (CL).
- the heavy chain includes four domains, a variable domain (VH) and three constant domains (CHI, CH2 and CH3, collectively referred to as CH).
- VL variable domain
- VH variable domain
- CH constant domain
- the constant region domains of the light (CL) and heavy (CH) chains confer important biological properties such as antibody chain association, secretion, trans-placental mobility, complement binding, and binding to Fc receptors (FcR).
- the Fv fragment is the N-terminal part of the Fab fragment of an immunoglobulin and consists of the variable portions of one light chain and one heavy chain.
- the specificity of the antibody resides in the structural complementarity between the antibody combining site and the antigenic determinant.
- Antibody combining sites are made up of residues that are primarily from the hypervariable or complementarity determining regions (CDRs). Occasionally, residues from nonhypervariable or framework regions (FR) influence the overall domain structure and hence the combining site.
- Complementarity Determining Regions or CDRs refer to amino acid sequences which together define the binding affinity and specificity of the natural Fv region of a native immunoglobulin binding site.
- the light and heavy chains of an immunoglobulin each have three CDRs, designated L-CDR1, L-CDR2, L- CDR3 and H-CDR1, H-CDR2, H-CDR3, respectively.
- An antigen-binding site therefore, includes six CDRs, comprising the CDR set from each of a heavy and a light chain V region.
- Framework Regions (FRs) refer to amino acid sequences interposed between CDRs.
- chimeric antibody refers to an antibody which comprises a VH domain and a VL domain of an antibody derived the 20G7-D9 antibody, and a CH domain and a CL domain of a human antibody.
- humanized antibody refers to an antibody having variable region framework and constant regions from a human antibody but retains the CDRs of the 20G7-D9 antibody.
- Fab denotes an antibody fragment having a molecular weight of about 50,000 and antigen binding activity, in which about a half of the N-terminal side of H chain and the entire L chain, among fragments obtained by treating IgG with a protease, papaine, are bound together through a disulfide bond.
- F(ab')2 refers to an antibody fragment having a molecular weight of about 100,000 and antigen binding activity, which is slightly larger than the Fab bound via a disulfide bond of the hinge region, among fragments obtained by treating IgG with a protease, pepsin.
- Fab' refers to an antibody fragment having a molecular weight of about 50,000 and antigen binding activity, which is obtained by cutting a disulfide bond of the hinge region of the F(ab')2.
- a single chain Fv (“scFv”) polypeptide is a covalently linked VH::VL heterodimer which is usually expressed from a gene fusion including VH and VL encoding genes linked by a peptide-encoding linker.
- dsFv is a VH::VL heterodimer stabilised by a disulfide bond.
- Divalent and multivalent antibody fragments can form either spontaneously by association of monovalent scFvs, or can be generated by coupling monovalent scFvs by a peptide linker, such as divalent sc(Fv)2.
- diabodies refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (VH) connected to a light- chain variable domain (VL) in the same polypeptide chain (VH-VL).
- VH heavy-chain variable domain
- VL light- chain variable domain
- linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites.
- purified and “isolated” it is meant, when referring to an antibody according to the invention or to a nucleotide sequence, that the indicated molecule is present in the substantial absence of other biological macromolecules of the same type.
- purified as used herein preferably means at least 75% by weight, more preferably at least 85% by weight, more preferably still at least 95% by weight, and most preferably at least 98% by weight, of biological macromolecules of the same type are present.
- nucleic acid molecule which encodes a particular polypeptide refers to a nucleic acid molecule which is substantially free of other nucleic acid molecules that do not encode the polypeptide; however, the molecule may include some additional bases or moieties which do not deleteriously affect the basic characteristics of the composition.
- the present invention provides for isolated anti-Axl antibodies or fragments thereof.
- the inventors have raised a murine anti-Axl antibody (20G7-D9) producing hybridoma.
- the inventors have cloned and characterized the variable domain of the light and heavy chains of said mAb 20G7-D9, and thus determined the complementary determining regions (CDRs) domain of said antibody as described in Table 1 : mAb 20G7D9 Sequence
- the invention relates to a monoclonal antibody having specificity for Axl, comprising a heavy chain wherein the variable domain comprises at least one CDR having a sequence selected from the group consisting of SEQ ID NO:2 for H-CDRl, SEQ ID NO:3 for H-CDR2 and SEQ ID NO:4 for H-CDR3.
- the invention also relates to a monoclonal antibody having specificity for Axl, comprising a light chain wherein the variable domain comprises at least one CDR having a sequence selected from the group consisting of SEQ ID NO:6 for L-CDRl, SEQ ID NO:7 for L-CDR2 and SEQ ID NO : 8 for L-CDR3.
- the monoclonal antibody of the invention may comprise a heavy chain wherein the variable domain comprises at least one CDR having a sequence selected from the group consisting of SEQ ID NO:2 for H-CDRl, SEQ ID NO:3 for H-CDR2 and SEQ ID NO:4 for H-CDR3 and a light chain wherein the variable domain comprises at least one CDR having a sequence selected from the group consisting of SEQ ID NO:6 for L-CDRl, SEQ ID NO:7 for L-CDR2 and SEQ ID NO: 8 for L-CDR3.
- the invention provides an anti-Axl monoclonal antibody comprising: an heavy chain variable region comprising SEQ ID NO:2 in the H-CDR1 region, SEQ ID NO:3 in the H-CDR2 region and SEQ ID NO:4 in the H- CDR3 region ; and
- a light chain variable region comprising SEQ ID NO: 6 in the L-CDR1 region, SEQ ID NO: 7 in the L-CDR2 region and SEQ ID NO: 8 in the L- CDR3 region.
- the heavy chain variable region of said antibody has the amino acid sequence set forth as SEQ ID NO: 1 and/or the light chain variable region has the amino acid sequence set forth as SEQ ID NO: 5.
- the monoclonal antibody of the invention is a chimeric antibody, preferably a chimeric mouse/human antibody.
- said mouse/human chimeric antibody may comprise the variable domains of 20G7-D9 antibody as defined above.
- the monoclonal of the invention is a humanized antibody.
- the variable domain comprises human acceptor frameworks regions, and optionally human constant domain where present, and non-human donor CDRs, such as mouse CDRs as defined above.
- the invention further provides anti-Axl fragments directed against Axl of said antibodies which include but are not limited to Fv, Fab, F(ab')2, Fab', dsFv, scFv, sc(Fv)2 and diabodies.
- the invention further provides anti-Axl antibody or fragments that bind to amino acid sequences SEQ ID NO:9, SEQ ID NO: 10 and SEQ ID NO: 11 in the extracellular part of Axl.
- the invention relates to a polypeptide which has a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5; SEQ ID NO: 6; SEQ ID NO:7 and SEQ ID NO:8.
- Anti-Axl antibodies of the invention may be produced by any technique known in the art, such as, without limitation, any chemical, biological, genetic or enzymatic technique, either alone or in combination.
- antibodies of the desired sequence can readily produce said antibodies, by standard techniques for production of polypeptides. For instance, they can be synthesized using well-known solid phase method, preferably using a commercially available peptide synthesis apparatus (such as that made by Applied Biosystems, Foster City, California) and following the manufacturer' s instructions.
- antibodies of the invention can be synthesized by recombinant DNA techniques well-known in the art. For example, antibodies can be obtained as DNA expression products after incorporation of DNA sequences encoding the antibodies into expression vectors and introduction of such vectors into suitable eukaryotic or prokaryotic hosts that will express the desired antibodies, from which they can be later isolated using well-known techniques.
- a further object of the invention relates to a nucleic acid sequence encoding an antibody according to the invention. More particularly the nucleic acid sequence encodes an heavy chain or a light chain of an antibody of the invention.
- said nucleic acid is a DNA or RNA molecule, which may be included in any suitable vector, such as a plasmid, cosmid, episome, artificial chromosome, phage or a viral vector.
- vector means the vehicle by which a DNA or RNA sequence (e.g. a foreign gene) can be introduced into a host cell, so as to transform the host and promote expression (e.g. transcription and translation) of the introduced sequence.
- a DNA or RNA sequence e.g. a foreign gene
- a further object of the invention relates to a vector comprising a nucleic acid of the invention.
- Such vectors may comprise regulatory elements, such as a promoter, enhancer, terminator and the like, to cause or direct expression of said antibody upon administration to a subject.
- promoters and enhancers used in the expression vector for animal cell include early promoter and enhancer of SV40 (Mizukami T. et al. 1987), LTR promoter and enhancer of Moloney mouse leukemia virus (Kuwana Y et al. 1987), promoter (Mason JO et al. 1985) and enhancer (Gillies SD et al. 1983) of immunoglobulin H chain and the like.
- Any expression vector for animal cell can be used, so long as a gene encoding the human antibody C region can be inserted and expressed.
- suitable vectors include pAGE107 (Miyaji H et al. 1990), pAGE103 (Mizukami T et al. 1987), pHSG274 (Brady G et al. 1984), pKCR (O'Hare K et al. 1981), pSGl beta d2-4-(Miyaji H et al. 1990) and the like.
- Plasmids include replicating plasmids comprising an origin of replication, or integrative plasmids, such as for instance pUC, pcDNA, pBR, and the like.
- viral vector examples include adenoviral, retroviral, herpes virus and AAV vectors.
- recombinant viruses may be produced by techniques known in the art, such as by transfecting packaging cells or by transient transfection with helper plasmids or viruses.
- virus packaging cells include PA317 cells, PsiCRIP cells, GPenv+ cells, 293 cells, etc.
- Detailed protocols for producing such replication-defective recombinant viruses may be found for instance in WO 95/14785, WO 96/22378, US 5,882,877, US 6,013,516, US 4,861,719, US 5,278,056 and WO 94/19478.
- a further object of the present invention relates to a host cell which has been transfected, infected or transformed by a nucleic acid and/or a vector according to the invention.
- transformation means the introduction of a "foreign” (i.e. extrinsic or extracellular) gene, DNA or RNA sequence to a host cell, so that the host cell will express the introduced gene or sequence to produce a desired substance, typically a protein or enzyme coded by the introduced gene or sequence.
- a host cell that receives and expresses introduced DNA or RNA bas been "transformed”.
- the nucleic acids of the invention may be used to produce an antibody of the invention in a suitable expression system.
- expression system means a host cell and compatible vector under suitable conditions, e.g. for the expression of a protein coded for by foreign DNA carried by the vector and introduced to the host cell.
- Common expression systems include E. coli host cells and plasmid vectors, insect host cells and Baculovirus vectors, and mammalian host cells and vectors.
- Other examples of host cells include, without limitation, prokaryotic cells (such as bacteria) and eukaryotic cells (such as yeast cells, mammalian cells, insect cells, plant cells, etc.).
- E.coli Escherreocoli
- Kluyveromyces or Saccharomyces yeasts mammalian cell lines (e.g., Vero cells, CHO cells, 3T3 cells, COS cells, etc.) as well as primary or established mammalian cell cultures (e.g., produced from lymphoblasts, fibroblasts, embryonic cells, epithelial cells, nervous cells, adipocytes, etc.).
- mammalian cell lines e.g., Vero cells, CHO cells, 3T3 cells, COS cells, etc.
- primary or established mammalian cell cultures e.g., produced from lymphoblasts, fibroblasts, embryonic cells, epithelial cells, nervous cells, adipocytes, etc.
- Examples also include mouse SP2/0-Agl4 cell (ATCC CRL1581), mouse P3X63-Ag8.653 cell (ATCC CRL1580), CHO cell in which a dihydrofolate reductase gene (hereinafter referred to as "DHFR gene") is defective (Urlaub G et al; 1980), rat YB2/3HL.P2.G11.16Ag.20 cell (ATCC CRL1662, hereinafter referred to as "YB2/0 cell”), and the like.
- DHFR gene dihydrofolate reductase gene
- the present invention also relates to a method of producing a recombinant host cell expressing an antibody according to the invention, said method comprising the steps of: (i) introducing in vitro or ex vivo a recombinant nucleic acid or a vector as described above into a competent host cell, (ii) culturing in vitro or ex vivo the recombinant host cell obtained and (iii), optionally, selecting the cells which express and/or secrete said antibody.
- recombinant host cells can be used for the production of antibodies of the invention.
- the method comprises the steps of:
- Antibodies of the invention are suitably separated from the culture medium by conventional immunoglobulin purification procedures such as, for example, protein A- Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
- the human chimeric antibody of the present invention can be produced by obtaining nucleic sequences encoding VL and VH domains as previously described, constructing a human chimeric antibody expression vector by inserting them into an expression vector for animal cell having genes encoding human antibody CH and human antibody CL, and expressing the coding sequence by introducing the expression vector into an animal cell.
- CH domain of a human chimeric antibody it may be any region which belongs to human immunoglobulin, but those of IgG class are suitable and any one of subclasses belonging to IgG class, such as IgGl, IgG2, IgG3 and IgG4, can also be used.
- CL of a human chimeric antibody it may be any region which belongs to Ig, and those of kappa class or lambda class can be used.
- the humanized antibody of the present invention may be produced by obtaining nucleic acid sequences encoding CDR domains, as previously described, constructing a humanized antibody expression vector by inserting them into an expression vector for animal cell having genes encoding (i) a heavy chain constant region identical to that of a human antibody and (ii) a light chain constant region identical to that of a human antibody, and expressing the genes by introducing the expression vector into an animal cell.
- the humanized antibody expression vector may be either of a type in which a gene encoding an antibody heavy chain and a gene encoding an antibody light chain exists on separate vectors or of a type in which both genes exist on the same vector (tandem type).
- tandem type humanized antibody expression vector include pKA TEX93 (WO 97/10354), pEE 18 and the like.
- Antibodies can be humanized using a variety of techniques known in the art including, for example, CDR-grafting (EP 239,400; PCT publication WO91/09967; U.S. Pat. Nos. 5,225,539; 5,530,101; and 5,585,089), veneering or resurfacing (EP 592,106; EP 519,596; Padlan EA (1991); Studnicka GM et al. (1994); Roguska MA. et al. (1994)), and chain shuffling (U.S. Pat. No.5,565,332).
- the general recombinant DNA technology for preparation of such antibodies is also known (see European Patent Application EP 125023 and International Patent Application WO 96/02576).
- the Fab of the present invention can be obtained by treating an antibody which specifically reacts with Axl with a protease, papaine. Also, the Fab can be produced by inserting DNA encoding Fab of the antibody into a vector for prokaryotic expression system, or for eukaryotic expression system, and introducing the vector into a procaryote or eucaryote (as appropriate) to express the Fab.
- the F(ab')2 of the present invention can be obtained treating an antibody which specifically reacts with Axl with a protease, pepsin. Also, the F(ab')2 can be produced by binding Fab' described below via a thioether bond or a disulfide bond.
- the Fab' of the present invention can be obtained treating F(ab')2 which specifically reacts with Axl with a reducing agent, dithiothreitol.
- the Fab' can be produced by inserting DNA encoding Fab' fragment of the antibody into an expression vector for prokaryote, or an expression vector for eukaryote, and introducing the vector into a prokaryote or eukaryote (as appropriate) to perform its expression.
- the scFv of the present invention can be produced by obtaining cDNA encoding the VH and VL domains as previously described, constructing DNA encoding scFv, inserting the DNA into an expression vector for prokaryote, or an expression vector for eukaryote, and then introducing the expression vector into a prokaryote or eukaryote (as appropriate) to express the scFv.
- CDR grafting involves selecting the complementary determining regions (CDRs) from a donor scFv fragment, and grafting them onto a human scFv fragment framework of known three dimensional structure (see, e. g., W098/45322; WO 87/02671 ; US5,859,205; US5,585,089; US4,816,567; EP0173494).
- Amino acid sequence modification(s) of the antibodies described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. It is known that when a humanized antibody is produced by simply grafting only CDRs in VH and VL of an antibody derived from a non-human animal in FRs of the VH and VL of a human antibody, the antigen binding activity is reduced in comparison with that of the original antibody derived from a non-human animal. It is considered that several amino acid residues of the VH and VL of the non-human antibody, not only in CDRs but also in FRs, are directly or indirectly associated with the antigen binding activity.
- substitution of these amino acid residues with different amino acid residues derived from FRs of the VH and VL of the human antibody would reduce of the binding activity.
- attempts have to be made to identify, among amino acid sequences of the FR of the VH and VL of human antibodies, an amino acid residue which is directly associated with binding to the antibody, or which interacts with an amino acid residue of CDR, or which maintains the three-dimensional structure of the antibody and which is directly associated with binding to the antigen.
- the reduced antigen binding activity could be increased by replacing the identified amino acids with amino acid residues of the original antibody derived from a non- human animal.
- the hydropathic index of amino acids may be considered.
- the importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art. It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.
- Each amino acid has been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8) ; phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (- 0.4); threonine (-0.7); serine (-0.8); tryptophane (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).
- a further object of the present invention also encompasses function-conservative variants of the antibodies of the present invention.
- “Function-conservative variants” are those in which a given amino acid residue in a protein or enzyme has been changed without altering the overall conformation and function of the polypeptide, including, but not limited to, replacement of an amino acid with one having similar properties (such as, for example, polarity, hydrogen bonding potential, acidic, basic, hydrophobic, aromatic, and the like). Amino acids other than those indicated as conserved may differ in a protein so that the percent protein or amino acid sequence similarity between any two proteins of similar function may vary and may be, for example, from 70 % to 99 % as determined according to an alignment scheme such as by the Cluster Method, wherein similarity is based on the MEG ALIGN algorithm.
- a “function-conservative variant” also includes a polypeptide which has at least 60 % amino acid identity as determined by BLAST or FASTA algorithms, preferably at least 75 %, more preferably at least 85%, still preferably at least 90 %, and even more preferably at least 95%, and which has the same or substantially similar properties or functions as the native or parent protein to which it is compared.
- Two amino acid sequences are "substantially homologous” or “substantially similar” when greater than 80 %, preferably greater than 85 %, preferably greater than 90 % of the amino acids are identical, or greater than about 90 %, preferably greater than 95 %, are similar (functionally identical) over the whole length of the shorter sequence.
- the similar or homologous sequences are identified by alignment using, for example, the GCG (Genetics Computer Group, Program Manual for the GCG Package, Version 7, Madison, Wisconsin) pileup program, or any of sequence comparison algorithms such as BLAST, FASTA, etc.
- amino acids may be substituted by other amino acids in a protein structure without appreciable loss of activity. Since the interactive capacity and nature of a protein define the protein's biological functional activity, certain amino acid substitutions can be made in a protein sequence, and, of course, in its DNA encoding sequence, while nevertheless obtaining a protein with like properties. It is thus contemplated that various changes may be made in the antibodies sequences of the invention, or corresponding DNA sequences which encode said antibodies, without appreciable loss of their biological activity.
- amino acid substitutions are generally therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like.
- Exemplary substitutions which take various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.
- variable domain comprises:
- H-CDR1 having at least 90% or 95% identity with sequence set forth as SEQ ID NO: 1
- H-CDR2 having at least 90% or 95% identity with sequence set forth as SEQ ID NO: 1
- H-CDR3 having at least 90% or 95% identity with sequence set forth as SEQ ID NO: 4,
- variable domain comprises SEQ ID NO: 2 for H- CDR1, SEQ ID NO: 3 for H-CDR2 and SEQ ID NO: 4 for H-CDR3 and a light chain wherein the variable domain comprises SEQ ID NO: 6 for L-CDRl, SEQ ID NO: 7 for L-CDR2 and SEQ ID NO: 8 for L-CDR3, and more preferably with substantially the same affinity as the murine anti-Axl antibody 20G7-D9.
- the invention also provides an antibody which binds to Immunoglobulin like domain 2, FN3 domain 1 and FN3 domain 2 of the extracellular part of Axl (epitope amino acid sequences of Axl SEQ ID NO:9, SEQ ID NO: 10 and SEQ ID NO: l 1). Said antibodies may be assayed for specific binding by any method known in the art.
- the immunoassays which can be used include, but are not limited to, competitive assay systems using techniques such western blots, radioimmunoassays, ELISA, "sandwich” immunoassays, immunoprecipitation assays, precipitin assays, gel diffusion precipitin assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays, and complement-fixation assays.
- Such assays are routine and well known in the art (see, e.g., Ausubel et al, eds, 1994 Current Protocols in Molecular Biology, Vol.
- BIACORE® GE Healthcare, Piscaataway, NJ
- surface plasmon resonance assay formats that are routinely used to epitope bin panels of monoclonal antibodies.
- routine cross-blocking assays such as those described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane, 1988, can be performed.
- Engineered antibodies of the invention include those in which modifications have been made to framework residues within VH and/or VL, e.g. to improve the properties of the antibody. Typically such framework modifications are made to decrease the immunogenicity of the antibody. For example, one approach is to "backmutate" one or more framework residues to the corresponding germline sequence. More specifically, an antibody that has undergone somatic mutation may contain framework residues that differ from the germline sequence from which the antibody is derived. Such residues can be identified by comparing the antibody framework sequences to the germline sequences from which the antibody is derived.
- the somatic mutations can be "backmutated” to the germline sequence by, for example, site- directed mutagenesis or PCR-mediated mutagenesis.
- Such "backmutated” antibodies are also intended to be encompassed by the invention.
- Another type of framework modification involves mutating one or more residues within the framework region, or even within one or more CDR regions, to remove T cell -epitopes to thereby reduce the potential immunogenicity of the antibody. This approach is also referred to as "deimmunization" and is described in further detail in U.S. Patent Publication No. 20030153043 by Carr et al.
- antibodies of the invention may be engineered to include modifications within the Fc region, typically to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding, and/or antigen-dependent cellular cytotoxicity.
- an antibody of the invention may be chemically modified (e.g., one or more chemical moieties can be attached to the antibody) or be modified to alter its glycosylation, again to alter one or more functional properties of the antibody.
- the hinge region of CHI is modified such that the number of cysteine residues in the hinge region is altered, e.g., increased or decreased.
- This approach is described further in U.S. Patent No. 5,677,425 by Bodmer et al.
- the number of cysteine residues in the hinge region of CHI is altered to, for example, facilitate assembly of the light and heavy chains or to increase or decrease the stability of the antibody.
- the Fc hinge region of an antibody is mutated to decrease the biological half-life of the antibody. More specifically, one or more amino acid mutations are introduced into the CH2-CH3 domain interface region of the Fc-hinge fragment such that the antibody has impaired Staphylococcyl protein A (SpA) binding relative to native Fc-hinge domain SpA binding.
- SpA Staphylococcyl protein A
- the antibody is modified to increase its biological half-life.
- Various approaches are possible. For example, one or more of the following mutations can be introduced: T252L, T254S, T256F, as described in U.S. Patent No. 6,277,375 by Ward.
- the antibody can be altered within the CHI or CL region to contain a salvage receptor binding epitope taken from two loops of a CH2 domain of an Fc region of an IgG, as described in U.S. Patent Nos. 5,869,046 and 6,121 ,022 by Presta et al.
- the Fc region is altered by replacing at least one amino acid residue with a different amino acid residue to alter the effector functions of the antibody.
- one or more amino acids can be replaced with a different amino acid residue such that the antibody has an altered affinity for an effector ligand but retains the antigen-binding ability of the parent antibody.
- the effector ligand to which affinity is altered can be, for example, an Fc receptor or the CI component of complement. This approach is described in further detail in U.S. Patent Nos. 5,624,821 and 5,648,260, both by Winter et al.
- one or more amino acids selected from amino acid residues can be replaced with a different amino acid residue such that the antibody has altered Clq binding and/or reduced or abolished complement dependent cytotoxicity (CDC).
- CDC complement dependent cytotoxicity
- one or more amino acid residues are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in PCT Publication WO 94/29351 by Bodmer et al.
- the Fc region is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or to increase the affinity of the antibody for an Fc receptor by modifying one or more amino acids.
- ADCC antibody dependent cellular cytotoxicity
- This approach is described further in PCT Publication WO 00/42072 by Presta.
- the binding sites on human IgGI for FcyRI, FcyRII, FcyRIII and FcRn have been mapped and variants with improved binding have been described (see Shields, R. L. et al., 2001 J. Biol. Chen. 276:6591-6604, WO2010106180).
- the glycosylation of an antibody is modified.
- an aglycoslated antibody can be made (i.e., the antibody lacks glycosylation).
- Glycosylation can be altered to, for example, increase the affinity of the antibody for the antigen.
- carbohydrate modifications can be accomplished by, for example, altering one or more sites of glycosylation within the antibody sequence.
- one or more amino acid substitutions can be made that result in elimination of one or more variable region framework glycosylation sites to thereby eliminate glycosylation at that site.
- Such aglycosylation may increase the affinity of the antibody for antigen.
- an antibody can be made that has an altered type of glycosylation, such as a hypofucosylated or non-fucosylated antibody having reduced amounts of or no fucosyl residues or an antibody having increased bisecting GlcNac structures.
- Such altered glycosylation patterns have been demonstrated to increase the ADCC ability of antibodies.
- carbohydrate modifications can be accomplished by, for example, expressing the antibody in a host cell with altered glycosylation machinery. Cells with altered glycosylation machinery have been described in the art and can be used as host cells in which to express recombinant antibodies of the invention to thereby produce an antibody with altered glycosylation.
- the antibodies of the invention may be produced by recombinant expression in a cell line which exhibit hypofucosylation or non-fucosylation pattern, for example, a mammalian cell line with deficient expression of the FUT8 gene encoding fucosyltransferase.
- PCT Publication WO 03/035835 by Presta describes a variant CHO cell line, LecB cells, with reduced ability to attach fucose to Asn(297)-linked carbohydrates, also resulting in hypofucosylation of antibodies expressed in that host cell (see also Shields, R.L. et al, 2002 J. Biol. Chem. 277:26733-26740).
- PCT Publication WO 99/54342 by Umana et al.
- glycoprotein-modifying glycosyl transferases e.g., beta(l,4)-N acetylglucosaminyltransferase III (GnTIII)
- GnTIII glycoprotein-modifying glycosyl transferases
- Eureka Therapeutics further describes genetically engineered CHO mammalian cells capable of producing antibodies with altered mammalian glycosylation pattern devoid of fucosyl residues (http://www.eurekainc.com/a&boutus/companyoverview.html).
- the antibodies of the invention can be produced in yeasts or filamentous fungi engineered for mammalian- like glycosylation pattern and capable of producing antibodies lacking fucose as glycosylation pattern (see for example EP1297172B1 ).
- An antibody can be pegylated to, for example, increase the biological (e.g., serum) half-life of the antibody.
- the antibody, or fragment thereof typically is reacted with polyethylene glycol (PEG), such as a reactive ester or aldehyde derivative of PEG, under conditions in which one or more PEG groups become attached to the antibody or antibody fragment.
- PEG polyethylene glycol
- the pegylation can be carried out by an acylation reaction or an alkylation reaction with a reactive PEG molecule (or an analogous reactive water-soluble polymer).
- polyethylene glycol is intended to encompass any of the forms of PEG that have been used to derivatize other proteins, such as mono (CI- CIO) alkoxy- or aryloxy-poly ethylene glycol or polyethylene glycol-maleimide.
- the antibody to be pegylated is an aglycosylated antibody. Methods for pegylating proteins are known in the art and can be applied to the antibodies of the invention. See for example, EP O 154 316 by Nishimura et al. and EP 0 401 384 by Ishikawa et al.
- Another modification of the antibodies that is contemplated by the invention is a conjugate or a protein fusion of at least the antigen-binding region of the antibody of the invention to serum protein, such as human serum albumin or a fragment thereof to increase half-life of the resulting molecule.
- serum protein such as human serum albumin or a fragment thereof to increase half-life of the resulting molecule.
- Another possibility is a fusion of at least the antigen-binding region of the antibody of the invention to proteins capable of binding to serum proteins, such human serum albumin to increase half life of the resulting molecule.
- proteins capable of binding to serum proteins such human serum albumin to increase half life of the resulting molecule.
- An antibody of the invention can be conjugated with a detectable label to form an anti- Axl immunoconjugate.
- Suitable detectable labels include, for example, a radioisotope, a fluorescent label, a chemiluminescent label, an enzyme label, a bio luminescent label or colloidal gold. Methods of making and detecting such detectably-labeled immunoconjugates are well-known to those of ordinary skill in the art, and are described in more detail below.
- the detectable label can be a radioisotope that is detected by autoradiography.
- Isotopes that are particularly useful for the purpose of the present invention are H, I, I, 35 S and 14 C.
- Anti-Axl immunoconjugates can also be labeled with a fluorescent compound.
- the presence of a fluorescently-labeled antibody is determined by exposing the immunoconjugate to light of the proper wavelength and detecting the resultant fluorescence.
- Fluorescent labeling compounds include fluorescein isothiocyanate, rhodamine, phycoerytherin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine.
- anti-Axl immunoconjugates can be detectably labeled by coupling an antibody to a chemiluminescent compound.
- the presence of the chemiluminescent-tagged immunoconjugate is determined by detecting the presence of luminescence that arises during the course of a chemical reaction.
- chemiluminescent labeling compounds include luminol, isoluminol, an aromatic acridinium ester, an imidazole, an acridinium salt and an oxalate ester.
- Bio luminescent compound can be used to label anti-Axl immunoconjugates of the present invention.
- Bio luminescence is a type of chemiluminescence found in biological systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bio luminescent protein is determined by detecting the presence of luminescence.
- Bio luminescent compounds that are useful for labeling include luciferin, luciferase and aequorin.
- anti-Axl immuno conjugates can be detectably labeled by linking an anti-Axl monoclonal antibody to an enzyme.
- the enzyme moiety reacts with the substrate to produce a chemical moiety which can be detected, for example, by spectrophotometric, fluorometric or visual means.
- enzymes that can be used to detectably label polyspecific immunoconjugates include ⁇ -galactosidase, glucose oxidase, peroxidase and alkaline phosphatase.
- the present invention provides an anti-Axl monoclonal antibody- drug conjugate.
- An "anti-Axl monoclonal antibody-drug conjugate” as used herein refers to an anti-Axl monoclonal antibody according to the invention conjugated to a therapeutic agent.
- Such anti-Axl monoclonal antibody-drug conjugates produce clinically beneficial effects on Axl-expressing cells when administered to a subject, such as, for example, a subject with a Axl-expressing cancer, typically when administered alone but also in combination with other therapeutic agents.
- an anti-Axl monoclonal antibody is conjugated to a cytotoxic agent, such that the resulting antibody-drug conjugate exerts a cytotoxic or cytostatic effect on a Axl-expressing cell (e.g., a Axl- expressing cancer cell) when taken up or internalized by the cell.
- a cytotoxic agent such that the resulting antibody-drug conjugate exerts a cytotoxic or cytostatic effect on a Axl-expressing cell (e.g., a Axl- expressing cancer cell) when taken up or internalized by the cell.
- chemotherapeutic agents chemotherapeutic agents, prodrug converting enzymes, radioactive isotopes or compounds, or toxins.
- an anti-Axl monoclonal antibody can be conjugated to a cytotoxic agent such as a chemotherapeutic agent or a toxin (e.g., a cytostatic or cytocidal agent such as, for example, abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin).
- a cytotoxic agent such as a chemotherapeutic agent or a toxin (e.g., a cytostatic or cytocidal agent such as, for example, abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin).
- cytotoxic agents include, for example, antitubulin agents, auristatins, DNA minor groove binders, DNA replication inhibitors, alkylating agents (e.g., platinum complexes such as cis-platin, mono(platinum), bis(platinum) and tri-nuclear platinum complexes and-carboplatin), anthracyclines, antibiotics, antifolates, antimetabolites, chemotherapy sensitizers, duocarmycins, etoposides, fluorinated pyrimidines, ionophores, lexitropsins, nitrosoureas, platinols, pre-forming compounds, purine antimetabolites, puromycins, radiation sensitizers, steroids, taxanes, topoisomerase inhibitors, vinca alkaloids, or the like.
- alkylating agents e.g., platinum complexes such as cis-platin, mono(platinum), bis(platinum) and tri-nu
- cytotoxic agents include, for example, an androgen, anthramycin (AMC), asparaginase, 5-azacytidine, azathioprine, bleomycin, busulfan, buthionine sulfoximine, camptothecin, carboplatin, carmustine (BSNU), CC-1065 (Li et al, Cancer Res.
- chlorambucil chlorambucil, cisplatin, colchicine, cyclophosphamide, cytarabine, cytidine arabinoside, cytochalasin B, dacarbazine, dactinomycin (formerly actinomycin), daunorubicin, decarbazine, docetaxel, doxorubicin, an estrogen, 5-fluordeoxyuridine, etopside phosphate (VP- 16), 5-fluoro uracil, gramicidin D, hydroxyurea, idarubicin, ifosfamide, irinotecan, lomustine (CCNU), mechlorethamine, melphalan, 6-mercaptopurine, methotrexate, mithramycin, mitomycin C, mitoxantrone, nitroimidazole, paclitaxel, plicamycin, procarbizine, streptozotocin, tenoposide (VM-
- cytotoxic agents include, for example, dolastatins (e.g., auristatin E, AFP, MMAF, MMAE), DNA minor groove binders (e.g., enediynes and lexitropsins), duocarmycins, taxanes (e.g., paclitaxel and docetaxel), puromycins, vinca alkaloids, CC- 1065, SN-38 (7-ethyl-lO-hydroxy-camptothein), topotecan, morpholino-doxorubicin, rhizoxin, cyanomorpholino-doxorubicin, echinomycin, combretastatin, netropsin, epothilone A and B, estramustine, cryptophysins, cemadotin, maytansinoids, disco dermolide, eleutherobin, and mitoxantrone.
- dolastatins e.g., auristat
- a cytotoxic agent is a conventional chemotherapeutic such as, for example, doxorubicin, paclitaxel, melphalan, vinca alkaloids, methotrexate, mitomycin C or etoposide.
- doxorubicin doxorubicin
- paclitaxel paclitaxel
- melphalan vinca alkaloids
- methotrexate mitomycin C or etoposide
- potent agents such as CC-1065 analogues, calicheamicin, maytansine, analogues of dolastatin 10, rhizoxin, and palytoxin can be linked to an anti-Axl- expressing antibody.
- the cytotoxic or cytostatic agent is auristatin E (also known in the art as dolastatin- 10) or a derivative thereof.
- the auristatin E derivative is, e.g., an ester formed between auristatin E and a keto acid.
- auristatin E can be reacted with paraacetyl benzoic acid or benzoylvaleric acid to produce AEB and AEVB, respectively.
- auristatin derivatives include AFP (dimethylvaline-valine-dolaisoleuine- dolaproine-phenylalanine-p-phenylenediamine), MMAF (dovaline-valine-dolaisoleunine- dolaproine-phenylalanine), and MAE (monomethyl auristatin E).
- AFP dimethylvaline-valine-dolaisoleuine- dolaproine-phenylalanine-p-phenylenediamine
- MMAF dovaline-valine-dolaisoleunine- dolaproine-phenylalanine
- MAE monomethyl auristatin E
- the cytotoxic agent is a DNA minor groove binding agent.
- the minor groove binding agent is a CBI compound.
- the minor groove binding agent is an enediyne (e.g., calicheamicin).
- an antibody-drug conjugate comprises an anti-tubulin agent.
- anti-tubulin agents include, for example, taxanes (e.g., Taxol® (paclitaxel), Taxotere® (docetaxel)), T67 (Tularik), vinca alkyloids (e.g., vincristine, vinblastine, vindesine, and vinorelbine), and dolastatins (e.g., auristatin E, AFP, MMAF, MMAE, AEB, AEVB).
- taxanes e.g., Taxol® (paclitaxel), Taxotere® (docetaxel)
- T67 Tularik
- vinca alkyloids e.g., vincristine, vinblastine, vindesine, and vinorelbine
- dolastatins e.g., auristatin E, AFP, MMAF, MMAE, AEB, AEVB
- antitubulin agents include, for example, baccatin derivatives, taxane analogs (e.g., epothilone A and B), nocodazole, colchicine and colcimid, estramustine, cryptophysins, cemadotin, maytansinoids, combretastatins, discodermolide, and eleutherobin.
- the cytotoxic agent is a maytansinoid, another group of anti-tubulin agents.
- the maytansinoid is maytansine or DM-1 (ImmunoGen, Inc.; see also Chari et ah, Cancer Res. 52: 127-131, 1992).
- the cytotoxic agent is an antimetabolite.
- the antimetabolite can be, for example, a purine antagonist (e.g., azothioprine or mycophenolate mofetil), a dihydro folate reductase inhibitor (e.g., methotrexate), acyclovir, gangcyclovir, zidovudine, vidarabine, ribavarin, azido thymidine, cytidine arabinoside, amantadine, dideoxyuridine, iododeoxyuridine, poscarnet, or trifluridine.
- a purine antagonist e.g., azothioprine or mycophenolate mofetil
- a dihydro folate reductase inhibitor e.g., methotrexate
- acyclovir gangcyclovir
- zidovudine vidarabine
- ribavarin azido thymidine
- an anti-Axl monoclonal antibody is conjugated to a pro-drug converting enzyme.
- the pro-drug converting enzyme can be recombinantly fused to the antibody or chemically conjugated thereto using known methods.
- Exemplary pro-drug converting enzymes are carboxypeptidase G2, ⁇ -glucuronidase, penicillin- V-amidase, penicillin-G-amidase, ⁇ -lactamase, ⁇ -glucosidase, nitroreductase and carboxypeptidase A.
- a further object of the invention relates to an anti-Axl antibody of the invention for diagnosing and/or monitoring a cancer disease and other diseases in which Axl levels are modified (increase or decrease).
- antibodies of the invention may be labelled with a detectable molecule or substance, such as a fluorescent molecule, a radioactive molecule or any others labels known in the art as above described.
- a detectable molecule or substance such as a fluorescent molecule, a radioactive molecule or any others labels known in the art as above described.
- an antibody of the invention may be labelled with a radioactive molecule by any method known to the art.
- radioactive molecules include but are not limited radioactive atom for scintigraphic studies such as 1123, 1124, Inl l l, Rel86, Rel88.
- Antibodies of the invention may be also labelled with a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, mri), such as iodine- 123, iodine-131, indium-Ill, fluorine- 19, carbon- 13, nitrogen- 15, oxygen- 17, gadolinium, manganese or iron.
- NMR nuclear magnetic resonance
- mri magnetic resonance imaging
- Antibodies of the invention may be useful for diagnosing and staging of cancer diseases associated with Axl overexpression (e.g., in radio imaging).
- Cancer diseases associated with Axl overexpression typically include but are not limited to squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, gastric cancer, pancreatic cancer, glial cell tumors such as glioblastoma and neurofibromatosis, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, melanoma, colorectal cancer, endometrial carcinoma, salivary gland carcinoma, kidney cancer, renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, sarcomas, hematological cancers (leukemias), astrocytomas, and various types of head and neck cancer or other Axl expressing or overexpressing hyperproliferative diseases.
- Antibodies of the invention may be useful for diagnosing diseases other than cancers for which Axl expression is increased or decreased (soluble or cellular Axl form).
- biological sample encompasses a variety of sample types obtained from a subject and can be used in a diagnostic or monitoring assay.
- biological samples include but are not limited to blood and other liquid samples of biological origin, solid tissue samples such as a biopsy specimen or tissue cultures or cells derived therefrom, and the progeny thereof.
- biological samples include cells obtained from a tissue sample collected from an individual suspected of having a cancer disease associated with Axl overexpression, and in a preferred embodiment from glioma, gastric, lung, pancreatic, breast, prostate, renal, hepatic and endometrial. Therefore, biological samples encompass clinical samples, cells in culture, cell supernatants, cell lysates, serum, plasma, biological fluid, and tissue samples.
- the invention is a method of diagnosing a cancer disease associated with Axl overexpression in a subject by detecting Axl on cells from the subject using the antibody of the invention.
- said method of diagnosing may comprise the steps consisting of: (a) contacting a biological sample of a subject likely to suffer from a cancer disease associated with Axl overexpression with an antibody according to the invention in conditions sufficient for the antibody to form complexes with cells of the biological sample that express Axl ;
- the method of diagnosing according to the invention may be repeated at different intervals of time, in order to determine if antibody binding to the samples increases or decreases, whereby it is determined if the cancer disease progresses or regresses.
- the invention is a method of diagnosing a disease associated with the expression or the overexpression of Axl or the decrease or increase of the soluble form of Axl, such as human immune disorders, thrombotic diseases (thrombosis and atherothrombosis), and cardiovascular diseases can be also diagnosed by the anti-Axl antibody of the invention.
- Antibodies, fragments or immunoconjugates of the invention may be useful for treating any disease associated with Axlexpression preferentially cancers.
- the antibodies of the invention may be used alone or in combination with any suitable agent.
- anti-Axl antibody of the invention may be used as treatment of hyperproliferative diseases associated with Axl and or Gas6 expression, overexpression or activation.
- tumor tissues include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, gastric cancer, pancreatic cancer, glial cell tumors such as glioblastoma and neurofibromatosis, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, melanoma, colorectal cancer, endometrial carcinoma, salivary gland carcinoma, kidney cancer, renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, sarcomas, hematological cancers (leukemias), astrocytomas, and various types of head and neck cancer.
- anti-Axl antibody of the invention are potential activators of the innate immune response and may be used in the treatment of human immune disorders, such as sepsis, may be used as adjuvants for immunization such as for vaccine and may be used as anti-infectious agents (against bacteria, virus, parasites)3) anti-Axl antibody of the invention may protect or treat thrombotic diseases such as venous and arterial thrombosis and athero thrombosis
- anti-Axl antibody of the invention may protect, prevent or treat cardiovascular diseases
- anti-Axl antibody of the invention may prevent or inhibit the entry of viruses such as Lassa and Ebola viruses and may be used to treat viral infections
- the anti-Axl monoclonal antibody or anti-Axl monoclonal antibody-drug conjugate is delivered in a manner consistent with conventional methodologies associated with management of the disease or disorder for which treatment is sought.
- an effective amount of the antibody or antibody-drug conjugate is administered to a subject in need of such treatment for a time and under conditions sufficient to prevent or treat the disease or disorder.
- an object of the invention relates to a method for treating a disease associated with the expression of Axl comprising administering a subject in need thereof with a therapeutically effective amount of an antibody, fragment or immunoconjugate of the invention.
- treating means reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such disorder or condition.
- the term "patient” or “patient in need thereof is intended for a human affected or likely to be affected with disease associated with overexpression of Axl.
- a “therapeutically effective amount” of the antibody of the invention is meant a sufficient amount of the antibody to treat said cancer, at a reasonable benefit/risk ratio applicable to any medical treatment. It will be understood, however, that the total daily usage of the antibodies and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment.
- the specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific antibody employed; the specific composition employed, the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific antibody employed; the duration of the treatment; drugs used in combination or coincidental with the specific antibody employed; and like factors well known in the medical arts. For example, it is well known within the skill of the art to start doses of the compound at levels lower than those required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
- an anti-Axl monoclonal antibody or antibody-drug conjugate is used in combination with a second agent for treatment of a disease or disorder.
- an anti-Axl monoclonal antibody or antibody-drug conjugate of the present invention may be used in combination with conventional cancer therapies such as, e.g., surgery, radiotherapy, chemotherapy, or combinations thereof.
- other therapeutic agents useful for combination cancer therapy with an anti-Axl antibody or antibody-drug conjugate in accordance with the present invention include anti-angiogenic agents.
- an antibody or antibody-drug conjugate in accordance with the present invention is co-administered with a cytokine (e.g., a cytokine that stimulates an immune response against a tumor).
- a cytokine e.g., a cytokine that stimulates an immune response against a tumor.
- an anti-Axl monoclonal antibody or antibody-drug conjugate as described herein is used in combination with a tyrosine kinase inhibitor (TKI).
- TKI tyrosine kinase inhibitor
- an anti-Axl monoclonal antibody or antibody-drug conjugate as described herein is used in combination with another therapeutic monoclonal antibody (mAb).
- mAb therapeutic monoclonal antibody
- mAb include, but are not limited to: Infliximab (Remicade, Johnson&Johnson), Rituximab (Rituxan, Roche), Adalimumab (Humira, Abbott) and Natalizumab (Tysabri, Biogen).
- the anti-Axl monoclonal antibody or antibody-drug conjugate is formulated as a pharmaceutical composition.
- a pharmaceutical composition comprising an anti-Axl monoclonal antibody or antibody-drug conjugate can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby the therapeutic molecule is combined in a mixture with a pharmaceutically acceptable carrier.
- a composition is said to be a "pharmaceutically acceptable carrier” if its administration can be tolerated by a recipient patient.
- Sterile phosphate-buffered saline is one example of a pharmaceutically acceptable carrier.
- Other suitable carriers are well-known to those in the art. (See, e.g., Gennaro (ed.), Remington's Pharmaceutical Sciences (Mack Publishing Company, 19th ed. 1995))
- Formulations may further include one or more excipients, preservatives, solubilizers, buffering agents, albumin to prevent protein loss on vial surfaces, etc.
- compositions for example, the route of administration, the dosage and the regimen naturally depend upon the condition to be treated, the severity of the illness, the age, weight, and sex of the patient, etc.
- compositions of the invention can be formulated for a topical, oral, parenteral, intranasal, intravenous, intramuscular, subcutaneous or intraocular administration and the like.
- the pharmaceutical compositions contain vehicles which are pharmaceutically acceptable for a formulation capable of being injected.
- vehicles which are pharmaceutically acceptable for a formulation capable of being injected.
- These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and the like or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions.
- the doses used for the administration can be adapted as a function of various parameters, and in particular as a function of the mode of administration used, of the relevant pathology, or alternatively of the desired duration of treatment.
- an effective amount of the antibody may be dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium.
- the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil or aqueous propylene glycol ; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
- Solutions of the active compounds as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- An antibody of the invention can be formulated into a composition in a neutral or salt form.
- Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.
- the carrier can also be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetables oils.
- the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars or sodium chloride.
- Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile- filtered solution thereof.
- the preparation of more, or highly concentrated solutions for direct injection is also contemplated, where the use of DMSO as solvent is envisioned to result in extremely rapid penetration, delivering high concentrations of the active agents to a small tumor area.
- solutions Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective.
- the formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but drug release capsules and the like can also be employed.
- aqueous solutions For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose.
- aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration.
- sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure.
- one dosage could be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical Sciences" 15th Edition, pages 1035-1038 and 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject.
- the antibodies of the invention may be formulated within a therapeutic mixture to comprise about 0.0001 to 1.0 milligrams, or about 0.001 to 0.1 milligrams, or about 0.1 to 1.0 or even about 10 milligrams per dose or so. Multiple doses can also be administered.
- other pharmaceutically acceptable forms include, e.g. tablets or other solids for oral administration; time release capsules; and any other form currently used.
- liposomes and/or nanoparticles are contemplated for the introduction of antibodies into host cells.
- the formation and use of liposomes and/or nanoparticles are known to those of skill in the art.
- Nanocapsules can generally entrap compounds in a stable and reproducible way. To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 ⁇ ) are generally designed using polymers able to be degraded in vivo. Biodegradable polyalkyl-cyanoacrylate nanoparticles that meet these requirements are contemplated for use in the present invention, and such particles may be are easily made.
- Liposomes are formed from phospholipids that are dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles (also termed multilamellar vesicles (MLVs)). MLVs generally have diameters of from 25 nm to 4 ⁇ .
- Sonication of MLVs results in the formation of small unilamellar vesicles (SUVs) with diameters in the range of 200 to 500 A, containing an aqueous solution in the core.
- SUVs small unilamellar vesicles
- the physical characteristics of liposomes depend on pH, ionic strength and the presence of divalent cations.
- kits comprising at least one antibody of the invention.
- Kits containing antibodies of the invention find use in detecting Axl expression (increase or decrease), or in therapeutic or diagnostic assays.
- Kits of the invention can contain an antibody coupled to a solid support, e.g., a tissue culture plate or beads (e.g., sepharose beads).
- Kits can be provided which contain antibodies for detection and quantification of Axl in vitro, e.g. in an ELISA or a Western blot.
- Such antibody useful for detection may be provided with a label such as a fluorescent or radio label.
- FIGURE LEGENDS
- Figure 1 ELISA experiments to investigate the affinity and the specificity of mouse monoclonal antibodies against hAxl. Platescoated with human Axl-Fc (h-Axl), mouse Axl- Fc (m-Axl) or human Mer-Fc (h-Mer), Tyro-3-Fc (h-Tyro-3) were incubated with monoclonal anti-Axl antibodies (mAbl, mAb2, mAb3, mAb4 or 20G7-D9). After washing, HRP- conjugated anti-mouse IgG was added.20G7-D9 doesn't cross-react with h-Tyro-3 or h-Mer or m-Axl.
- Figure 2 Flow cytometry analysis of cell surface Axl in A549.
- A549 were stained with monoclonal anti-Axl antibodies (mAbl, mAb2, mAb3, mAb4 or 20G7-D9) and fluorescein- conjugated anti-mouse IgG. Staining with 20G7-D9 results in a shift by one order of magnitude and demonstrates Axl overexpression on the surface of these cells.
- Figure 3 Affinity measurement of 20G7-D9 in the presence or not of Gas6 using BIAcore.
- the equilibrium dissociation constant (K D ) was derived as the k a /kd ratio.
- 20G7-D9 binds to human Axl with high affinity, with a K D of about 53 nM.
- 20G7-D9 doesn't block the binding of ligand Gas6 to Axl.
- FIG. 4 ELISA experiments to investigate the effects of 20G7-D9 mAb on Axl receptor phosphorylation.
- BXPC3, Capan-1, PANCl and MIAPaCa-2 pancreatic cancer cells were serum-starved, pre-incubated with mouse anti-Axl antibodies and treated with Gas6 ligand.
- Cell lysates were transferred to PathScan® Phospho-Axl (PanTyr) Sandwich ELISA plates (RD Systems, Minneapolis, MN).
- 20G7-D9 was able to block or significantly reduce Gas6-mediated Axl activation in the four cell lines as indicated by decreased Axl phosphorylation levels in Gas6-stimulated cells.
- Figure 5 Wound healing/scratch assay to investigate the effects of mouse anti-Axl antibodies on cell migration and proliferation. After grown to confluency, A549 cells were starved and wounded with a pipette tip. 20G7-D9 mouse anti-Axl reduced the repopulation of the cleared area more significantly than the mAbl, even though the cells were treated with Gas6.
- Figure 6 Cell viability assay to investigate the anti-proliferative efficacy of anti-Axl 20G7-D9.
- Capan-1, PANCl and MIAPaCa-2 pancreatic cancer cells were grown in medium and treated at the indicated concentrations of mAbl or 20G7-D9 for 5 days. Cell viability was measured by MTS. 20G7-D9 inhibits more the growth of all tested cell lines than mAbl and the percentage of inhibition is concentration-dependent.
- Figure 7 monoclonal anti-Axl 20G7-D9antibody induces a rapid down-regulation of Axl receptor and inhibits Akt pathway.
- Panel-cells were incubated with 100 ⁇ g/ml of mAb 20G7-D9 for different time. Cells were lyzed and total protein were used to detect by western- blot.
- mAb 20G7-D9 rapidly down-regulates the expression of Axl receptor in Panel cells.
- mAb 20G7-D9 After one hour incubation with mAb 20G7-D9, cells were incubated 30 minutes with Gas6 and the presence of Axl receptor phosphorylation on tyrosine 702 (Axl activation) and phosphorylation of Akt on serine 473 (Akt activation)was analyzed by western blot. As shown in Figure 7B, mAb 20G7-D9 incubation leads to a decrease in the Gas6- induced phosphorylation of Axl and Akt proteins.
- Figure 8 Xenograft models to investigate the effects of mouse anti-Axl antibodies on human triple negative breast cancer and human pancreatic cancer in nude mice.
- MDA- MB-231 triple negative breast cancer cells
- MIAPaca-2 pancreatic cancer cells
- BXPC3 pancreatic cancer cells
- the epitope of anti-Axl antibody 20G7-D9 was identified by limited proteolysis assays using either Trypsine or GluC proteases and MALDI mass spectrometry analysis.
- the figure shows the composition of the antigen (hAxl-hFc) used in this experiment which is composed of amino acids 33 to 440 of the extracellular domain of Axl fused to the Fc part of human IgGl and histidine Tag. Each immunoglobuline like domains and fibronectine 3 domains of the Axl protein is indicated on the sequence.
- mAb20G7-D9 binds to threepeptides (conformational epitope) localized in the Immunoglobulin kike domain 2 and in the first and the second fibronectin domains (sequences are framed in the sequence of the protein and detailed in the table).
- Figure 10 Representation of a model of the ectodomain of human Axl and localization of the epitope of anti-Axl mouse monoclonal antibody 20G7-D9 and Gas6 binding domain.
- Figure 10A displays a cartoon-type representation of the model of the wholeextracellular domain of human Axl with all four domains labeled.
- figure 10B fragment from amino acid 305 to 315 of Gas6 was added as a light-grey ⁇ sheet, illustrating the Gas6 binding domain within the Immunoglobulin-like domain 1 of Axl.
- figure IOC exhibits the 20G7-D9 epitope within the immunoglobulin like domain 2 and the fibronectin type III domains 1 and 2 as grey surfaces. It confirms first that the three parts of the epitope are localized on the outside surface of each domain. Secondly, the figure IOC illustrates also that the interaction site of Gas6 and the epitope are situated far from each other on the human Axl ectodomain.
- EXAMPLE EXAMPLE:
- EXAMPLE 1 GENERATION OF MOUSE ANTI-AXL MONOCLONAL ANTIBODY
- mice Monoclonal antibodies against Axl were developed by sequential immunization of Balb/c mice.
- Balb/c mice were hyperimmunized with human Axl extracellular domain (hAxlECD) fused to human Fc domain (hAxl-hFc protein; R&D system).
- Balb/c mice were subcutaneously injected with 10 ⁇ g of soluble hAxl-hFc on days 0, 14 and 28 in the presence of adjuvant, Freund's complete (first injection) or incomplete (second and third injections).
- Spleen cells from mice were fused with mouse myeloma cells (PX63.Ag8.653; ATCC, Rockville, MD) using a previously described protocol (Salhi et al. Biochem. J.
- EXAMPLE 2 MOUSE ANTI-AXL MONOCLONAL ANTIBODIES DO NOT CROSS REACT WITH MOUSE AXL OR OTHER MEMBERS OF THE HUMAN TAM RECEPTOR FAMILY
- Example 2.1 Mouse anti-Axl monoclonal antibodies do not cross react with mouse Axl or other members of the human TAM receptor family as determined by ELISA
- hAxl-hFc coated plates were saturatedwith 1% bovine serum albumin (BSA) PBS, 0.1% Tween 20 (PBST).
- BSA bovine serum albumin
- PBST Tween 20
- coated plates were incubated with human Axl-Fc (h-Axl), mouse Axl-Fc (m-Axl) or human Mer-Fc (h-Mer), Tyro-3-Fc (h-Tyro-3) for 1 hour at 37°C and washed four times in PBST. Plates were incubated with anti-Axl mAbs (2 hours at 37°C) and washed four times in PBST. Plates were incubated with HRP-conjugated anti-mouse IgG (Sigma) at a 1 :2000 dilution in PB ST, 1 % BSA (1 hour at 37°C). Finally, an ortho- phenylenediamine solution (Sigma) was added for 30 min at room temperature in the dark and the absorbance was measured at 450 nm.
- Example 2.2 Mouse anti-Axl monoclonal antibody binds specifically Axl- expressing cells as determined by FACS
- mouse anti-Axl monoclonal antibodies of the invention to specifically recognize Axl expressing cells was determined by FACS using standard techniques. Briefly, A549 cells (ATCC number: CCL-185) were harvested, stained with purified mouse anti-Axl monoclonal antibodies of the invention at 4°C for 1 hour, washed three times in PBS-BSA 0.1%, and then stained with fluorescein-conjugated anti-mouse IgG (1 :50) (Sigma) at 4°C in the dark for 45 min. Samples were analyzed on EPICS flow cytometer (Beckman-Coulter, Fullerton, CA).As shown in Figure 2, mouse anti-Axl monoclonal antibodies of the invention bound specifically Axl expressing- A549 cells.
- Example 2.3 Affinity measurement of mouse anti-Axl monoclonal antibody evaluated by BIACore
- BIAcore-3000 Resonance measurement with a BIAcore-3000 instrument was used (BIACORE AB, Uppsala, Sweden). Experiments were performed at the facilities from the platform of Proteomic Imaging and Molecular Interactions (M. Pugniere) located in the laboratory. To measure the affinity between anti-Axl antibodies and the hAxl-hFc, mouse anti-Axl monoclonal antibodies were captured by CM5 biosensor chips coated with hAxl-hFc (using an amine coupling kit (BIAcore AB)).
- EXAMPLE 4 MOUSE ANTI-AXL MONOCLONAL ANTIBODY OF THE INVENTION INHIBITS LIGAND INDUCED AXL PHOSPHORYLATION IN VITRO
- BXPC3 (ATCC number: CRL-1687), Capan-1 (ATCC number: HTB-79), PANC1 (ATCC number: CRL-1469) and MIAPaCa-2 (ATCC number: CRL-1420) cells were seeded in normal growth medium in flat-bottom 6 well plates. The next day, growth medium was replaced by serum-free medium to starve cells over night for 24 hours.
- Cells were pre-incubated with 100 ⁇ g/mL of purified mouse monoclonal anti-Axl of the invention, and then treated with or without 250 ng/mL Gas6 incubated with Gas6 for 30 min at 37°C. Afterwards, medium was removed, cells were lysed in 50 of lysis buffer (20 mM Tris pH 7.5, 150 mM NaCl, 1.5 mM MgCl 2 , 1 mM EDTA, 1% Triton X-100 (v/v), 10% glycerol (v/v), 100 mM sodium fluoride, 0.1 mM phenylmethylsulfonyl fluoride, 1 mM sodium orthovanadate (Sigma)) supplemented with phosphatase and protease inhibitors (Roche Diagnostics, Meylan, France) for 30 min.
- lysis buffer 20 mM Tris pH 7.5, 150 mM NaCl, 1.5 mM MgCl 2 , 1 m
- a wound healing assay was performed observing the healing process in which the cells on the edges of the artificial wound migrate toward the wound area.
- A549 cells were cultured to confluence or near confluence (>90%) in 24 well plates.
- a wound field was created at the center of the well using a sterile pipette tip.
- Migratory cells are able to extend protrusions and ultimately invade and close the wound field.
- the cells were rinsed very gently with PBS and incubated with purified mouse anti-Axl monoclonal antibodies of the invention (100 ⁇ g/mL) with or without 100 ⁇ g/mL of Gas6. Cell migration rate was determined 24 hours after treatment using microscopic imaging.
- MIAPaca-2, Capan-1 and PANC1 pancreatic cancer cells were seeded at 4000 cells/well in 96-well plates and treated with mouse anti-Axl monoclonal antibodies (25, 50 or 100 ⁇ g/mL) for 5 days.
- Cell proliferation assays were carried out using the MTS assay (3- (4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium).
- MTS is reduced by cells into a formazan product that is soluble in tissue culture medium.
- the absorbance of the formazan at 490 nm was measured using a spectrophotometer.
- mAb 20G7-D9 strongly inhibited the proliferation of pancreatic cells while a slight inhibition was observed with the other Axl-specific antibody (mAbl).
- EXAMPLE 7 THE MOUSE ANTI-HUMAN AXL MONOCLONAL ANTIBODY OF THE INVENTION DOWN-REGULATES AXL EXPRESSION AND INHIBITS AKT PATHWAY
- Pancreatic cancer cell line Panc-1 cells
- Panc-1 cells were plated in 6 wells plate (lxlO 6 cells per well) and incubated with 100 ug/ml 20G7-D9 at 37°C.
- Cell lines harvested at different time point were lysed with buffer (150 mMNaCl, 10 mM TRIS pH7.4, lmM EDTA, 1%TRITONX100) containing 2 mM phenylmethylsulfonyl fluoride, 100 mM sodium fluorure, 10 mM sodium ortho vanadate, and one tablet of complete protease inhibitor mixture (Sigma, St Louis, MO).
- EXAMPLE 8 THE MOUSE ANTI-HUMAN AXL MONOCLONAL ANTIBODY OF THE INVENTION REDUCES HUMAN TRIPLE NEGATIVE BREAST CANCER AND PANCREATIC CANCER GROWTH IN
- mice were treated by intraperitoneal injections with vehicle (0.9% NaCl) or mouse anti-Axl monoclonal antibodies of the invention alone at 300 ⁇ / ⁇ ] ⁇ (twice a week for 4 consecutive weeks) or with gemcitabine (GEMZAR). Tumor volume was measured weekly with a caliper. The results for BXPC3 were also expressed by a modified Kaplan-Meier survival curve, using the time taken for the tumor to reach a pre-defined volume of 2,000 mm 3 . A median delay was defined as the time at which 50% of the mice had a tumor reaching the volume of 2,000 mm 3 .
- MIAPaca-2 xenografts treated withmAb 20G7-D9 or irrelevant murine IgGl isotype mAb (Px) were explanted after two mAb treatment injections, and used for western-blot detection of Axl receptors (anti-Axl mAb, R&D systems) or GAPDH control protein (anti-GAPDH , Millipore).
- mAb20G7-D9 treatment induced a marked decrease of Axl expression in tumors ( Figure 8E).
- EXAMPLE 9 THE EPITOPE OF THE MOUSE ANTI-HUMAN AXL MONOCLONAL ANTIBODY IS A CONFORMATIONAL EPITOPE COMPOSED OF 3 PEPTIDES, ONE LOCALIZED IN THE IMMUNOGLOBULIN LIKE DOMAIN 2, ONE IN THE FIBRONECTINE 3 DOMAIN 1 AND ONE IN THE FIBRONECTINE 3 DOMAIN 2 OF HUMAN AXL
- the protected residues i.e., the 20G7-D9 epitope
- the protected residues were identified based on their molecular weights, as determined by MALDI-MS analysis of the peptides that were affinity bound to the immobilized antibody.
- the 20G7-D9 monoclonal antibody (250 ⁇ g) was coupled to ProMag Magnetics
- Microsphere PMC3N (Bangs Laboratories) 1 hour at room temperature according to the supplier's procedures. 50 ⁇ g of 20G7-D9 microbeads complex were incubated with 50 ⁇ g of the antigen hAxl-hFc (R&D system) and allowed to bind for 90 minutesat 4°C. Free antigen was removed by three washes with buffer. The immune complexe of 20G7-D9 and hAxl-hFc was digested at 37°C with 0.35 ⁇ g of Trypsin or GluC during 2hl5. The supernatant was separated by centrifugation (2000g, 4°C, 3 min) and discard.
- microbeads associated with 20G7-D9 and hAxl-hFc protected residues were washed three times with buffer. Dissociation was allowed to proceed for 40 min at room temperature using TFA (trifluoroacetic acid) 0.1%. Spectra were obtained by MALDI mass spectrometry (ABSCIEX MALDI 4800 with a Laser Nd/YAG at 355nm, 200Hz, 20kV for the source of tension, extraction time of 250 ns) with the sum of 1500 laser shots.
- the matrix used for the sample was a-cyano-4- hydroxycinnaminic acid (CHCA) at 5mg/mL.
- the sequence composition of the antigen hAxl- hFc (R&D system) and the epitope sequence of the 20G7-D9 identified are shown in the Figure 9.
- the mouse monoclonal 20G7-D9 antibody binds to a conformational 3D epitope composed of 3peptides one positioned in the immunoglobulin like 2 domain (sequence: "TS SFS CEAHNAK”) , one in the fibronectine type III domain 1 (sequence : "GMGIQAGEPDPPEE”) and one positioned in the fibronectine type III domain 2 (sequence : ' 'TPE VLMDIGLRQE”) .
- EXAMPLE 10 THE EPITOPE OF THE MOUSE ANTI-HUMAN AXL MONOCLONAL ANTIBODY IS EXPOSED TO THE ACCESSIBLE SOLVENT SURFACE AREA AND IS STRUCTURALLY LOCALIZED FAR FROM THE INTERACTION SITE OF GAS6
- the extracellular domain model of the human Axl protein was constructed in 2 steps. First, the Immunoglobulin-like domains (domain 1 and 2) were extracted from the crystallographic structure available in the Protein Data Bank under the code 2C5D. This structure represents an Axl/Gas6 complex in which the two immunoglobulin-like domains of the Axl ectodomain are crosslinked by the first laminin G-like domain of Gas6. Unfortunately, the two fibronectin type III (FN3) domains of Axl have not been crystallized yet, and therefore needed to be modelized. The model was built by homology modeling using the 3D structure of FN3 tandem A77-A78 from the A chain of the human titin protein (PDB id: 3LPW) as template.
- PDB id human titin protein
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- Cell Biology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Communicable Diseases (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- General Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Hospice & Palliative Care (AREA)
- Microbiology (AREA)
- Vascular Medicine (AREA)
- Transplantation (AREA)
- Virology (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014516371A JP6033293B2 (en) | 2011-06-22 | 2012-06-22 | Anti-Axl antibody and use thereof |
US14/127,415 US9249228B2 (en) | 2011-06-22 | 2012-06-22 | Anti-Axl antibodies and uses thereof |
AU2012273954A AU2012273954A1 (en) | 2011-06-22 | 2012-06-22 | Anti-Axl antibodies and uses thereof |
KR1020147001805A KR20140104944A (en) | 2011-06-22 | 2012-06-22 | Anti-axl antibodies and uses thereof |
EP12729603.6A EP2723376B1 (en) | 2011-06-22 | 2012-06-22 | Anti-axl antibodies and uses thereof |
CA2839508A CA2839508A1 (en) | 2011-06-22 | 2012-06-22 | Anti-axl antibodies and uses thereof |
ES12729603T ES2712736T3 (en) | 2011-06-22 | 2012-06-22 | Anti-Axl antibodies and their uses |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11305793.9 | 2011-06-22 | ||
EP11305793 | 2011-06-22 | ||
US201161504258P | 2011-07-04 | 2011-07-04 | |
US61/504,258 | 2011-07-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012175691A1 true WO2012175691A1 (en) | 2012-12-27 |
Family
ID=47422056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/062114 WO2012175691A1 (en) | 2011-06-22 | 2012-06-22 | Anti-axl antibodies and uses thereof |
Country Status (7)
Country | Link |
---|---|
US (1) | US9249228B2 (en) |
EP (1) | EP2723376B1 (en) |
JP (1) | JP6033293B2 (en) |
KR (1) | KR20140104944A (en) |
AU (1) | AU2012273954A1 (en) |
CA (1) | CA2839508A1 (en) |
WO (1) | WO2012175691A1 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150183884A1 (en) * | 2013-12-27 | 2015-07-02 | National Health Research Institutes | Alpha-enolase specific antibodies and methods of uses in cancer therapy |
US20150252370A1 (en) * | 2014-03-04 | 2015-09-10 | Academia Sinica | Use of atx inhibitors for treatment or prevention of influenza virus a infections |
WO2015193430A1 (en) * | 2014-06-18 | 2015-12-23 | Bergenbio As | Anti-axl antibodies |
WO2015193428A1 (en) * | 2014-06-18 | 2015-12-23 | Bergenbio As | Anti-axl antibodies |
WO2016005593A1 (en) | 2014-07-11 | 2016-01-14 | Genmab A/S | Antibodies binding axl |
WO2016091891A1 (en) | 2014-12-09 | 2016-06-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Human monoclonal antibodies against axl |
WO2016108894A1 (en) * | 2014-12-31 | 2016-07-07 | Develpment Center For Biotechnology | Humanized alpha-enolase specific antibodies and methods of uses in cancer therapy |
WO2016097370A3 (en) * | 2014-12-18 | 2016-08-11 | Bergen Teknologioverføring As | Anti-axl antagonistic antibodies |
WO2016166302A1 (en) * | 2015-04-15 | 2016-10-20 | Van Berkel Patricius Hendrikus Cornelis | Humanized anti-axl antibodies and their conjugates |
US9527922B2 (en) | 2014-12-31 | 2016-12-27 | Development Center For Biotechnology | Humanized alpha-enolase specific antibodies and methods of uses in cancer therapy |
WO2017009258A1 (en) | 2015-07-10 | 2017-01-19 | Genmab A/S | Axl-specific antibody-drug conjugates for cancer treatment |
WO2017121867A1 (en) | 2016-01-13 | 2017-07-20 | Genmab A/S | Formulation for antibody and drug conjugate thereof |
WO2017160587A1 (en) * | 2016-03-16 | 2017-09-21 | Abeome Corporation | Neutralizing monoclonal antibodies to il-25 and uses thereof |
WO2019197506A1 (en) | 2018-04-10 | 2019-10-17 | Genmab A/S | Axl-specific antibodies for cancer treatment |
US10544223B2 (en) | 2017-04-20 | 2020-01-28 | Adc Therapeutics Sa | Combination therapy with an anti-axl antibody-drug conjugate |
US10781266B2 (en) | 2018-03-16 | 2020-09-22 | Development Center For Biotechnology | Antibodies specific to alpha-enolase and uses thereof |
WO2021013746A1 (en) | 2019-07-19 | 2021-01-28 | Genmab A/S | Axl antibody-drug conjugates for use in treating cancer |
WO2021032883A1 (en) | 2019-08-22 | 2021-02-25 | Bergenbio Asa | Combination therapy of a patient subgroup |
EP3804723A1 (en) | 2015-05-29 | 2021-04-14 | BerGenBio ASA | Combination therapy |
US11059893B2 (en) | 2015-04-15 | 2021-07-13 | Bergenbio Asa | Humanized anti-AXL antibodies |
WO2021191197A1 (en) | 2020-03-23 | 2021-09-30 | Bergenbio Asa | Combination therapy comprising an axl inhibitor |
WO2021204713A1 (en) | 2020-04-08 | 2021-10-14 | Bergenbio Asa | Axl inhibitors for antiviral therapy |
WO2021214492A1 (en) | 2020-04-24 | 2021-10-28 | Bergenbio Asa | Method of selecting patients for treatment with a combination of an axl inhibitor and an immune checkpoint modulator |
US11198734B2 (en) | 2016-06-22 | 2021-12-14 | Bergen Teknologioverføring As | Anti-Axl antagonistic antibodies |
WO2022200463A1 (en) | 2021-03-23 | 2022-09-29 | Bergenbio Asa | Combination of axl antibodies and ace inhibitors in the treatment of fibrosis |
US11739154B2 (en) * | 2017-09-13 | 2023-08-29 | National Research Council Of Canada | AXL-specific antibodies and uses thereof |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112013032899A2 (en) * | 2011-06-22 | 2017-01-24 | Inserm Inst Nat De La Santé Et De La Rech Médicale | anti-axl antibodies and uses thereof |
EP2589609A1 (en) * | 2011-11-03 | 2013-05-08 | Pierre Fabre Medicament | Antigen binding protein and its use as addressing product for the treatment of cancer |
EP3297663A4 (en) | 2015-05-18 | 2018-12-19 | Agensys, Inc. | Antibodies that bind to axl proteins |
EP3297662A4 (en) | 2015-05-18 | 2019-03-13 | Agensys, Inc. | Antibodies that bind to axl proteins |
US11091559B2 (en) | 2015-08-27 | 2021-08-17 | Celldex Therapeutics, Inc. | Anti-ALK antibodies and methods for use thereof |
WO2021056025A2 (en) * | 2019-09-20 | 2021-03-25 | Board Of Regents, The University Of Texas System | Anti-epha10 antibodies and methods of use thereof |
CN114075548B (en) * | 2020-08-13 | 2023-11-21 | 广州医科大学附属第二医院 | AXL-targeted CAR-T cell, and preparation method and application thereof |
Citations (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0125023A1 (en) | 1983-04-08 | 1984-11-14 | Genentech, Inc. | Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor |
US4486414A (en) | 1983-03-21 | 1984-12-04 | Arizona Board Of Reagents | Dolastatins A and B cell growth inhibitory substances |
EP0154316A2 (en) | 1984-03-06 | 1985-09-11 | Takeda Chemical Industries, Ltd. | Chemically modified lymphokine and production thereof |
EP0173494A2 (en) | 1984-08-27 | 1986-03-05 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric receptors by DNA splicing and expression |
WO1987002671A1 (en) | 1985-11-01 | 1987-05-07 | International Genetic Engineering, Inc. | Modular assembly of antibody genes, antibodies prepared thereby and use |
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
US4816444A (en) | 1987-07-10 | 1989-03-28 | Arizona Board Of Regents, Arizona State University | Cell growth inhibitory substance |
EP0322094A1 (en) | 1987-10-30 | 1989-06-28 | Delta Biotechnology Limited | N-terminal fragments of human serum albumin |
US4861719A (en) | 1986-04-25 | 1989-08-29 | Fred Hutchinson Cancer Research Center | DNA constructs for retrovirus packaging cell lines |
US4879278A (en) | 1989-05-16 | 1989-11-07 | Arizona Board Of Regents | Isolation and structural elucidation of the cytostatic linear depsipeptide dolastatin 15 |
WO1989012624A2 (en) | 1988-06-14 | 1989-12-28 | Cetus Corporation | Coupling agents and sterically hindered disulfide linked conjugates prepared therefrom |
EP0401384A1 (en) | 1988-12-22 | 1990-12-12 | Kirin-Amgen, Inc. | Chemically modified granulocyte colony stimulating factor |
US4978744A (en) | 1989-01-27 | 1990-12-18 | Arizona Board Of Regents | Synthesis of dolastatin 10 |
US4986988A (en) | 1989-05-18 | 1991-01-22 | Arizona Board Of Regents | Isolation and structural elucidation of the cytostatic linear depsipeptides dolastatin 13 and dehydrodolastatin 13 |
WO1991009967A1 (en) | 1989-12-21 | 1991-07-11 | Celltech Limited | Humanised antibodies |
US5076973A (en) | 1988-10-24 | 1991-12-31 | Arizona Board Of Regents | Synthesis of dolastatin 3 |
EP0486525A1 (en) | 1989-08-01 | 1992-05-27 | Cemu Bioteknik Ab | Stabilized protein or peptide conjugates. |
US5138036A (en) | 1989-11-13 | 1992-08-11 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Isolation and structural elucidation of the cytostatic cyclodepsipeptide dolastatin 14 |
EP0519596A1 (en) | 1991-05-17 | 1992-12-23 | Merck & Co. Inc. | A method for reducing the immunogenicity of antibody variable domains |
US5202238A (en) | 1987-10-27 | 1993-04-13 | Oncogen | Production of chimeric antibodies by homologous recombination |
US5204244A (en) | 1987-10-27 | 1993-04-20 | Oncogen | Production of chimeric antibodies by homologous recombination |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
US5278056A (en) | 1988-02-05 | 1994-01-11 | The Trustees Of Columbia University In The City Of New York | Retroviral packaging cell lines and process of using same |
EP0592106A1 (en) | 1992-09-09 | 1994-04-13 | Immunogen Inc | Resurfacing of rodent antibodies |
WO1994019478A1 (en) | 1993-02-22 | 1994-09-01 | The Rockefeller University | Production of high titer helper-free retroviruses by transient transfection |
WO1994029351A2 (en) | 1993-06-16 | 1994-12-22 | Celltech Limited | Antibodies |
US5410024A (en) | 1993-01-21 | 1995-04-25 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Human cancer inhibitory pentapeptide amides |
WO1995014785A1 (en) | 1993-11-23 | 1995-06-01 | Rhone-Poulenc Rorer S.A. | Composition for the in vivo production of therapeutic products |
WO1996002576A1 (en) | 1994-07-13 | 1996-02-01 | Chugai Seiyaku Kabushiki Kaisha | Reconstituted human antibody against human interleukin-8 |
US5504191A (en) | 1994-08-01 | 1996-04-02 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Human cancer inhibitory pentapeptide methyl esters |
US5521284A (en) | 1994-08-01 | 1996-05-28 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Human cancer inhibitory pentapeptide amides and esters |
US5530097A (en) | 1994-08-01 | 1996-06-25 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Human cancer inhibitory peptide amides |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
WO1996022378A1 (en) | 1995-01-20 | 1996-07-25 | Rhone-Poulenc Rorer S.A. | Cells for the production of recombinant adenoviruses |
US5554725A (en) | 1994-09-14 | 1996-09-10 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Synthesis of dolastatin 15 |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US5599902A (en) | 1994-11-10 | 1997-02-04 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Cancer inhibitory peptides |
WO1997010354A1 (en) | 1995-09-11 | 1997-03-20 | Kyowa Hakko Kogyo Co., Ltd. | ANTIBODY AGAINTS α-CHAIN OF HUMAN INTERLEUKIN 5 RECEPTOR |
US5624821A (en) | 1987-03-18 | 1997-04-29 | Scotgen Biopharmaceuticals Incorporated | Antibodies with altered effector functions |
US5635483A (en) | 1992-12-03 | 1997-06-03 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Tumor inhibiting tetrapeptide bearing modified phenethyl amides |
US5663149A (en) | 1994-12-13 | 1997-09-02 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Human cancer inhibitory pentapeptide heterocyclic and halophenyl amides |
US5677425A (en) | 1987-09-04 | 1997-10-14 | Celltech Therapeutics Limited | Recombinant antibody |
US5714350A (en) | 1992-03-09 | 1998-02-03 | Protein Design Labs, Inc. | Increasing antibody affinity by altering glycosylation in the immunoglobulin variable region |
US5780588A (en) | 1993-01-26 | 1998-07-14 | Arizona Board Of Regents | Elucidation and synthesis of selected pentapeptides |
WO1998045322A2 (en) | 1997-04-10 | 1998-10-15 | Royal Netherlands Academy Of Arts And Sciences | Diagnosis method and reagents |
US5859205A (en) | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
US5869046A (en) | 1995-04-14 | 1999-02-09 | Genentech, Inc. | Altered polypeptides with increased half-life |
US5882877A (en) | 1992-12-03 | 1999-03-16 | Genzyme Corporation | Adenoviral vectors for gene therapy containing deletions in the adenoviral genome |
WO1999054342A1 (en) | 1998-04-20 | 1999-10-28 | Pablo Umana | Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity |
US6013516A (en) | 1995-10-06 | 2000-01-11 | The Salk Institute For Biological Studies | Vector and method of use for nucleic acid delivery to non-dividing cells |
US6034065A (en) | 1992-12-03 | 2000-03-07 | Arizona Board Of Regents | Elucidation and synthesis of antineoplastic tetrapeptide phenethylamides of dolastatin 10 |
WO2000042072A2 (en) | 1999-01-15 | 2000-07-20 | Genentech, Inc. | Polypeptide variants with altered effector function |
US6121022A (en) | 1995-04-14 | 2000-09-19 | Genentech, Inc. | Altered polypeptides with increased half-life |
US6130237A (en) | 1996-09-12 | 2000-10-10 | Cancer Research Campaign Technology Limited | Condensed N-aclyindoles as antitumor agents |
US6165745A (en) | 1992-04-24 | 2000-12-26 | Board Of Regents, The University Of Texas System | Recombinant production of immunoglobulin-like domains in prokaryotic cells |
US6194551B1 (en) | 1998-04-02 | 2001-02-27 | Genentech, Inc. | Polypeptide variants |
US6239104B1 (en) | 1997-02-25 | 2001-05-29 | Arizona Board Of Regents | Isolation and structural elucidation of the cytostatic linear and cyclo-depsipeptides dolastatin 16, dolastatin 17, and dolastatin 18 |
US6277375B1 (en) | 1997-03-03 | 2001-08-21 | Board Of Regents, The University Of Texas System | Immunoglobulin-like domains with increased half-lives |
US6323315B1 (en) | 1999-09-10 | 2001-11-27 | Basf Aktiengesellschaft | Dolastatin peptides |
EP1176195A1 (en) | 1999-04-09 | 2002-01-30 | Kyowa Hakko Kogyo Co., Ltd. | Method for controlling the activity of immunologically functional molecule |
WO2002088172A2 (en) | 2001-04-30 | 2002-11-07 | Seattle Genetics, Inc. | Pentapeptide compounds and uses related thereto |
US20030083263A1 (en) | 2001-04-30 | 2003-05-01 | Svetlana Doronina | Pentapeptide compounds and uses related thereto |
WO2003035835A2 (en) | 2001-10-25 | 2003-05-01 | Genentech, Inc. | Glycoprotein compositions |
US20030153043A1 (en) | 1997-05-21 | 2003-08-14 | Biovation Limited | Method for the production of non-immunogenic proteins |
EP1382969A1 (en) * | 2002-07-17 | 2004-01-21 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Diagnosis and prevention of cancer cell invasion |
WO2004010957A2 (en) | 2002-07-31 | 2004-02-05 | Seattle Genetics, Inc. | Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease |
EP1297172B1 (en) | 2000-06-28 | 2005-11-09 | Glycofi, Inc. | Methods for producing modified glycoproteins |
WO2009063965A1 (en) | 2007-11-15 | 2009-05-22 | Chugai Seiyaku Kabushiki Kaisha | Monoclonal antibody capable of binding to anexelekto, and use thereof |
WO2009062690A1 (en) | 2007-11-12 | 2009-05-22 | U3 Pharma Gmbh | Axl antibodies |
WO2010106180A2 (en) | 2009-03-20 | 2010-09-23 | Lfb Biotechnologies | Optimized fc variants |
WO2010131733A1 (en) * | 2009-05-15 | 2010-11-18 | 中外製薬株式会社 | Anti-axl antibody |
EP2270053A1 (en) * | 2009-05-11 | 2011-01-05 | U3 Pharma GmbH | Humanized AXL antibodies |
WO2011014457A1 (en) | 2009-07-27 | 2011-02-03 | Genentech, Inc. | Combination treatments |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100650384B1 (en) * | 2005-09-12 | 2006-11-30 | 전남대학교산학협력단 | A composition for differntiation and a method for production of mature natural killer cell |
CA2759836A1 (en) * | 2009-05-11 | 2010-11-18 | U3 Pharma Gmbh | Humanized axl antibodies |
AR082017A1 (en) * | 2010-06-18 | 2012-11-07 | Genentech Inc | ANTI-AXL ANTIBODIES (THYROSINE KINASE RECEPTOR) AND METHODS OF USE |
BR112013032899A2 (en) * | 2011-06-22 | 2017-01-24 | Inserm Inst Nat De La Santé Et De La Rech Médicale | anti-axl antibodies and uses thereof |
-
2012
- 2012-06-22 EP EP12729603.6A patent/EP2723376B1/en not_active Not-in-force
- 2012-06-22 WO PCT/EP2012/062114 patent/WO2012175691A1/en active Application Filing
- 2012-06-22 CA CA2839508A patent/CA2839508A1/en not_active Abandoned
- 2012-06-22 US US14/127,415 patent/US9249228B2/en not_active Expired - Fee Related
- 2012-06-22 KR KR1020147001805A patent/KR20140104944A/en not_active Application Discontinuation
- 2012-06-22 AU AU2012273954A patent/AU2012273954A1/en not_active Abandoned
- 2012-06-22 JP JP2014516371A patent/JP6033293B2/en not_active Expired - Fee Related
Patent Citations (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4486414A (en) | 1983-03-21 | 1984-12-04 | Arizona Board Of Reagents | Dolastatins A and B cell growth inhibitory substances |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
EP0125023A1 (en) | 1983-04-08 | 1984-11-14 | Genentech, Inc. | Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor |
EP0154316A2 (en) | 1984-03-06 | 1985-09-11 | Takeda Chemical Industries, Ltd. | Chemically modified lymphokine and production thereof |
EP0173494A2 (en) | 1984-08-27 | 1986-03-05 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric receptors by DNA splicing and expression |
WO1987002671A1 (en) | 1985-11-01 | 1987-05-07 | International Genetic Engineering, Inc. | Modular assembly of antibody genes, antibodies prepared thereby and use |
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
US4861719A (en) | 1986-04-25 | 1989-08-29 | Fred Hutchinson Cancer Research Center | DNA constructs for retrovirus packaging cell lines |
US5624821A (en) | 1987-03-18 | 1997-04-29 | Scotgen Biopharmaceuticals Incorporated | Antibodies with altered effector functions |
US5648260A (en) | 1987-03-18 | 1997-07-15 | Scotgen Biopharmaceuticals Incorporated | DNA encoding antibodies with altered effector functions |
US4816444A (en) | 1987-07-10 | 1989-03-28 | Arizona Board Of Regents, Arizona State University | Cell growth inhibitory substance |
US5677425A (en) | 1987-09-04 | 1997-10-14 | Celltech Therapeutics Limited | Recombinant antibody |
US5202238A (en) | 1987-10-27 | 1993-04-13 | Oncogen | Production of chimeric antibodies by homologous recombination |
US5204244A (en) | 1987-10-27 | 1993-04-20 | Oncogen | Production of chimeric antibodies by homologous recombination |
EP0322094A1 (en) | 1987-10-30 | 1989-06-28 | Delta Biotechnology Limited | N-terminal fragments of human serum albumin |
US5278056A (en) | 1988-02-05 | 1994-01-11 | The Trustees Of Columbia University In The City Of New York | Retroviral packaging cell lines and process of using same |
WO1989012624A2 (en) | 1988-06-14 | 1989-12-28 | Cetus Corporation | Coupling agents and sterically hindered disulfide linked conjugates prepared therefrom |
US5076973A (en) | 1988-10-24 | 1991-12-31 | Arizona Board Of Regents | Synthesis of dolastatin 3 |
EP0401384A1 (en) | 1988-12-22 | 1990-12-12 | Kirin-Amgen, Inc. | Chemically modified granulocyte colony stimulating factor |
US5585089A (en) | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US4978744A (en) | 1989-01-27 | 1990-12-18 | Arizona Board Of Regents | Synthesis of dolastatin 10 |
US4879278A (en) | 1989-05-16 | 1989-11-07 | Arizona Board Of Regents | Isolation and structural elucidation of the cytostatic linear depsipeptide dolastatin 15 |
US4986988A (en) | 1989-05-18 | 1991-01-22 | Arizona Board Of Regents | Isolation and structural elucidation of the cytostatic linear depsipeptides dolastatin 13 and dehydrodolastatin 13 |
EP0486525A1 (en) | 1989-08-01 | 1992-05-27 | Cemu Bioteknik Ab | Stabilized protein or peptide conjugates. |
US5138036A (en) | 1989-11-13 | 1992-08-11 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Isolation and structural elucidation of the cytostatic cyclodepsipeptide dolastatin 14 |
WO1991009967A1 (en) | 1989-12-21 | 1991-07-11 | Celltech Limited | Humanised antibodies |
US5859205A (en) | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
EP0519596A1 (en) | 1991-05-17 | 1992-12-23 | Merck & Co. Inc. | A method for reducing the immunogenicity of antibody variable domains |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US5714350A (en) | 1992-03-09 | 1998-02-03 | Protein Design Labs, Inc. | Increasing antibody affinity by altering glycosylation in the immunoglobulin variable region |
US6350861B1 (en) | 1992-03-09 | 2002-02-26 | Protein Design Labs, Inc. | Antibodies with increased binding affinity |
US6165745A (en) | 1992-04-24 | 2000-12-26 | Board Of Regents, The University Of Texas System | Recombinant production of immunoglobulin-like domains in prokaryotic cells |
EP0592106A1 (en) | 1992-09-09 | 1994-04-13 | Immunogen Inc | Resurfacing of rodent antibodies |
US5635483A (en) | 1992-12-03 | 1997-06-03 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Tumor inhibiting tetrapeptide bearing modified phenethyl amides |
US6034065A (en) | 1992-12-03 | 2000-03-07 | Arizona Board Of Regents | Elucidation and synthesis of antineoplastic tetrapeptide phenethylamides of dolastatin 10 |
US5882877A (en) | 1992-12-03 | 1999-03-16 | Genzyme Corporation | Adenoviral vectors for gene therapy containing deletions in the adenoviral genome |
US5410024A (en) | 1993-01-21 | 1995-04-25 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Human cancer inhibitory pentapeptide amides |
US5780588A (en) | 1993-01-26 | 1998-07-14 | Arizona Board Of Regents | Elucidation and synthesis of selected pentapeptides |
WO1994019478A1 (en) | 1993-02-22 | 1994-09-01 | The Rockefeller University | Production of high titer helper-free retroviruses by transient transfection |
WO1994029351A2 (en) | 1993-06-16 | 1994-12-22 | Celltech Limited | Antibodies |
WO1995014785A1 (en) | 1993-11-23 | 1995-06-01 | Rhone-Poulenc Rorer S.A. | Composition for the in vivo production of therapeutic products |
WO1996002576A1 (en) | 1994-07-13 | 1996-02-01 | Chugai Seiyaku Kabushiki Kaisha | Reconstituted human antibody against human interleukin-8 |
US5504191A (en) | 1994-08-01 | 1996-04-02 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Human cancer inhibitory pentapeptide methyl esters |
US5665860A (en) | 1994-08-01 | 1997-09-09 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Human cancer inhibitory peptide amides |
US5521284A (en) | 1994-08-01 | 1996-05-28 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Human cancer inhibitory pentapeptide amides and esters |
US5530097A (en) | 1994-08-01 | 1996-06-25 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Human cancer inhibitory peptide amides |
US5554725A (en) | 1994-09-14 | 1996-09-10 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Synthesis of dolastatin 15 |
US5599902A (en) | 1994-11-10 | 1997-02-04 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Cancer inhibitory peptides |
US5663149A (en) | 1994-12-13 | 1997-09-02 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Human cancer inhibitory pentapeptide heterocyclic and halophenyl amides |
WO1996022378A1 (en) | 1995-01-20 | 1996-07-25 | Rhone-Poulenc Rorer S.A. | Cells for the production of recombinant adenoviruses |
US5869046A (en) | 1995-04-14 | 1999-02-09 | Genentech, Inc. | Altered polypeptides with increased half-life |
US6121022A (en) | 1995-04-14 | 2000-09-19 | Genentech, Inc. | Altered polypeptides with increased half-life |
WO1997010354A1 (en) | 1995-09-11 | 1997-03-20 | Kyowa Hakko Kogyo Co., Ltd. | ANTIBODY AGAINTS α-CHAIN OF HUMAN INTERLEUKIN 5 RECEPTOR |
US6013516A (en) | 1995-10-06 | 2000-01-11 | The Salk Institute For Biological Studies | Vector and method of use for nucleic acid delivery to non-dividing cells |
US6130237A (en) | 1996-09-12 | 2000-10-10 | Cancer Research Campaign Technology Limited | Condensed N-aclyindoles as antitumor agents |
US6239104B1 (en) | 1997-02-25 | 2001-05-29 | Arizona Board Of Regents | Isolation and structural elucidation of the cytostatic linear and cyclo-depsipeptides dolastatin 16, dolastatin 17, and dolastatin 18 |
US6277375B1 (en) | 1997-03-03 | 2001-08-21 | Board Of Regents, The University Of Texas System | Immunoglobulin-like domains with increased half-lives |
WO1998045322A2 (en) | 1997-04-10 | 1998-10-15 | Royal Netherlands Academy Of Arts And Sciences | Diagnosis method and reagents |
US20030153043A1 (en) | 1997-05-21 | 2003-08-14 | Biovation Limited | Method for the production of non-immunogenic proteins |
US6194551B1 (en) | 1998-04-02 | 2001-02-27 | Genentech, Inc. | Polypeptide variants |
WO1999054342A1 (en) | 1998-04-20 | 1999-10-28 | Pablo Umana | Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity |
WO2000042072A2 (en) | 1999-01-15 | 2000-07-20 | Genentech, Inc. | Polypeptide variants with altered effector function |
EP1176195A1 (en) | 1999-04-09 | 2002-01-30 | Kyowa Hakko Kogyo Co., Ltd. | Method for controlling the activity of immunologically functional molecule |
US6323315B1 (en) | 1999-09-10 | 2001-11-27 | Basf Aktiengesellschaft | Dolastatin peptides |
EP1297172B1 (en) | 2000-06-28 | 2005-11-09 | Glycofi, Inc. | Methods for producing modified glycoproteins |
US6884869B2 (en) | 2001-04-30 | 2005-04-26 | Seattle Genetics, Inc. | Pentapeptide compounds and uses related thereto |
WO2002088172A2 (en) | 2001-04-30 | 2002-11-07 | Seattle Genetics, Inc. | Pentapeptide compounds and uses related thereto |
US20030083263A1 (en) | 2001-04-30 | 2003-05-01 | Svetlana Doronina | Pentapeptide compounds and uses related thereto |
WO2003035835A2 (en) | 2001-10-25 | 2003-05-01 | Genentech, Inc. | Glycoprotein compositions |
EP1382969A1 (en) * | 2002-07-17 | 2004-01-21 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Diagnosis and prevention of cancer cell invasion |
WO2004010957A2 (en) | 2002-07-31 | 2004-02-05 | Seattle Genetics, Inc. | Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease |
WO2009062690A1 (en) | 2007-11-12 | 2009-05-22 | U3 Pharma Gmbh | Axl antibodies |
WO2009063965A1 (en) | 2007-11-15 | 2009-05-22 | Chugai Seiyaku Kabushiki Kaisha | Monoclonal antibody capable of binding to anexelekto, and use thereof |
EP2228392A1 (en) * | 2007-11-15 | 2010-09-15 | Chugai Seiyaku Kabushiki Kaisha | Monoclonal antibody capable of binding to anexelekto, and use thereof |
WO2010106180A2 (en) | 2009-03-20 | 2010-09-23 | Lfb Biotechnologies | Optimized fc variants |
EP2270053A1 (en) * | 2009-05-11 | 2011-01-05 | U3 Pharma GmbH | Humanized AXL antibodies |
WO2010131733A1 (en) * | 2009-05-15 | 2010-11-18 | 中外製薬株式会社 | Anti-axl antibody |
WO2011014457A1 (en) | 2009-07-27 | 2011-02-03 | Genentech, Inc. | Combination treatments |
Non-Patent Citations (24)
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9382331B2 (en) * | 2013-12-27 | 2016-07-05 | Development Center For Biotechnology | Alpha-enolase specific antibodies and methods of uses in cancer therapy |
US20150183884A1 (en) * | 2013-12-27 | 2015-07-02 | National Health Research Institutes | Alpha-enolase specific antibodies and methods of uses in cancer therapy |
US20150252370A1 (en) * | 2014-03-04 | 2015-09-10 | Academia Sinica | Use of atx inhibitors for treatment or prevention of influenza virus a infections |
CN106573980B (en) * | 2014-06-18 | 2021-05-04 | 卑尔根生物股份公司 | anti-AXL antibodies |
AU2015276155B2 (en) * | 2014-06-18 | 2020-11-19 | Bergenbio Asa | Anti-axl antibodies |
US11186643B2 (en) | 2014-06-18 | 2021-11-30 | Bergenbio Asa | Anti-Axl antibodies |
WO2015193428A1 (en) * | 2014-06-18 | 2015-12-23 | Bergenbio As | Anti-axl antibodies |
CN106573979B (en) * | 2014-06-18 | 2021-07-06 | 卑尔根生物股份公司 | anti-AXL antibodies |
JP2017519501A (en) * | 2014-06-18 | 2017-07-20 | ベルゲンビオ アーエス | Anti-Axl antibody |
AU2015276153B2 (en) * | 2014-06-18 | 2021-02-18 | Bergenbio Asa | Anti-axl antibodies |
KR102408356B1 (en) | 2014-06-18 | 2022-06-13 | 베르겐바이오 에이에스에이 | Anti-axl antibodies |
WO2015193430A1 (en) * | 2014-06-18 | 2015-12-23 | Bergenbio As | Anti-axl antibodies |
KR20170020874A (en) * | 2014-06-18 | 2017-02-24 | 베르겐바이오 에이에스 | Anti-axl antibodies |
US9975954B2 (en) | 2014-06-18 | 2018-05-22 | Bergenbio Asa | Anti-Axl antibodies |
CN106573979A (en) * | 2014-06-18 | 2017-04-19 | 卑尔根生物股份公司 | Anti-axl antibodies |
CN106573980A (en) * | 2014-06-18 | 2017-04-19 | 卑尔根生物股份公司 | Anti-axl antibodies |
US9975953B2 (en) | 2014-06-18 | 2018-05-22 | Bergenbio Asa | Anti-Axl antibodies |
JP2017526339A (en) * | 2014-06-18 | 2017-09-14 | ベルゲンビオ アーエスアー | Anti-Axl antibody |
US10765743B2 (en) | 2014-07-11 | 2020-09-08 | Genmab A/S | Antibodies binding AXL |
JP2020141682A (en) * | 2014-07-11 | 2020-09-10 | ゲンマブ エー/エス | Antibodies that bind to AXL |
JP2017522871A (en) * | 2014-07-11 | 2017-08-17 | ゲンマブ エー/エス | Antibody binding to AXL |
KR102586656B1 (en) | 2014-07-11 | 2023-10-11 | 젠맵 에이/에스 | Antibodies binding axl |
IL249512B2 (en) * | 2014-07-11 | 2023-02-01 | Genmab As | Antibodies binding axl |
US20170157250A1 (en) * | 2014-07-11 | 2017-06-08 | Genmab A/S | Antibodies binding axl |
KR20170030585A (en) * | 2014-07-11 | 2017-03-17 | 젠맵 에이/에스 | Antibodies binding axl |
IL249512B (en) * | 2014-07-11 | 2022-10-01 | Genmab As | Antibodies binding axl |
US10201607B2 (en) * | 2014-07-11 | 2019-02-12 | Genmab A/S | Antibodies binding AXL |
WO2016005593A1 (en) | 2014-07-11 | 2016-01-14 | Genmab A/S | Antibodies binding axl |
US20190275149A1 (en) * | 2014-07-11 | 2019-09-12 | Genmab A/S | Antibodies binding axl |
AU2015286569B2 (en) * | 2014-07-11 | 2021-04-15 | Genmab A/S | Antibodies binding AXL |
US10500276B2 (en) | 2014-07-11 | 2019-12-10 | Genmab A/S | Antibodies binding AXL |
US10512688B2 (en) | 2014-07-11 | 2019-12-24 | Genmab A/S | Antibodies binding AXL |
EP3763738A1 (en) | 2014-07-11 | 2021-01-13 | Genmab A/S | Antibodies binding axl |
WO2016091891A1 (en) | 2014-12-09 | 2016-06-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Human monoclonal antibodies against axl |
WO2016097370A3 (en) * | 2014-12-18 | 2016-08-11 | Bergen Teknologioverføring As | Anti-axl antagonistic antibodies |
US10208121B2 (en) | 2014-12-18 | 2019-02-19 | Bergen Teknologioverforing As | Anti-Axl antagonistic antibodies |
AU2015366213B2 (en) * | 2014-12-18 | 2021-10-07 | Bergenbio Asa | Anti-Axl antagonistic antibodies |
US11584796B2 (en) | 2014-12-18 | 2023-02-21 | Bergenbio Asa | Anti-Axl antagonistic antibodies |
RU2761662C2 (en) * | 2014-12-31 | 2021-12-13 | Девелопмент Сентер Фор Байотекнолоджи | Humanized antibodies specific to alpha-enolase and methods for use in antitumor therapy |
US9527922B2 (en) | 2014-12-31 | 2016-12-27 | Development Center For Biotechnology | Humanized alpha-enolase specific antibodies and methods of uses in cancer therapy |
WO2016108894A1 (en) * | 2014-12-31 | 2016-07-07 | Develpment Center For Biotechnology | Humanized alpha-enolase specific antibodies and methods of uses in cancer therapy |
WO2016166302A1 (en) * | 2015-04-15 | 2016-10-20 | Van Berkel Patricius Hendrikus Cornelis | Humanized anti-axl antibodies and their conjugates |
US11059893B2 (en) | 2015-04-15 | 2021-07-13 | Bergenbio Asa | Humanized anti-AXL antibodies |
EP3804723A1 (en) | 2015-05-29 | 2021-04-14 | BerGenBio ASA | Combination therapy |
US11534440B2 (en) | 2015-05-29 | 2022-12-27 | Bergenbio Asa | Combination therapy with Axl inhibitor and immune checkpoint modulator or oncolytic virus |
WO2017009258A1 (en) | 2015-07-10 | 2017-01-19 | Genmab A/S | Axl-specific antibody-drug conjugates for cancer treatment |
JP2021138727A (en) * | 2015-07-10 | 2021-09-16 | ゲンマブ エー/エス | Axl-specific antibody-drug conjugates for cancer treatment |
JP2018525354A (en) * | 2015-07-10 | 2018-09-06 | ゲンマブ エー/エス | AXL-specific antibody-drug conjugates for cancer treatment |
EP3730520A1 (en) | 2015-07-10 | 2020-10-28 | Genmab A/S | Axl-specific antibody-drug conjugates for cancer treatment |
JP7428680B2 (en) | 2015-07-10 | 2024-02-06 | ジェンマブ エー/エス | AXL-specific antibody-drug conjugate for cancer treatment |
WO2017121877A1 (en) | 2016-01-13 | 2017-07-20 | Genmab A/S | Axl-specific antibody-drug conjugates for cancer treatment |
WO2017121867A1 (en) | 2016-01-13 | 2017-07-20 | Genmab A/S | Formulation for antibody and drug conjugate thereof |
US11492397B2 (en) | 2016-03-16 | 2022-11-08 | Abeome Corporation | Neutralizing monoclonal antibodies to IL-25 and uses thereof |
WO2017160587A1 (en) * | 2016-03-16 | 2017-09-21 | Abeome Corporation | Neutralizing monoclonal antibodies to il-25 and uses thereof |
US11198734B2 (en) | 2016-06-22 | 2021-12-14 | Bergen Teknologioverføring As | Anti-Axl antagonistic antibodies |
US11732048B2 (en) | 2016-06-22 | 2023-08-22 | Bergen Teknologioverføring As | Anti-axl antagonistic antibodies |
US10544223B2 (en) | 2017-04-20 | 2020-01-28 | Adc Therapeutics Sa | Combination therapy with an anti-axl antibody-drug conjugate |
US11739154B2 (en) * | 2017-09-13 | 2023-08-29 | National Research Council Of Canada | AXL-specific antibodies and uses thereof |
US10781266B2 (en) | 2018-03-16 | 2020-09-22 | Development Center For Biotechnology | Antibodies specific to alpha-enolase and uses thereof |
WO2019197506A1 (en) | 2018-04-10 | 2019-10-17 | Genmab A/S | Axl-specific antibodies for cancer treatment |
WO2021013746A1 (en) | 2019-07-19 | 2021-01-28 | Genmab A/S | Axl antibody-drug conjugates for use in treating cancer |
WO2021032883A1 (en) | 2019-08-22 | 2021-02-25 | Bergenbio Asa | Combination therapy of a patient subgroup |
WO2021191197A1 (en) | 2020-03-23 | 2021-09-30 | Bergenbio Asa | Combination therapy comprising an axl inhibitor |
WO2021204713A1 (en) | 2020-04-08 | 2021-10-14 | Bergenbio Asa | Axl inhibitors for antiviral therapy |
WO2021214492A1 (en) | 2020-04-24 | 2021-10-28 | Bergenbio Asa | Method of selecting patients for treatment with a combination of an axl inhibitor and an immune checkpoint modulator |
WO2022200463A1 (en) | 2021-03-23 | 2022-09-29 | Bergenbio Asa | Combination of axl antibodies and ace inhibitors in the treatment of fibrosis |
Also Published As
Publication number | Publication date |
---|---|
EP2723376A1 (en) | 2014-04-30 |
JP2014522638A (en) | 2014-09-08 |
US9249228B2 (en) | 2016-02-02 |
JP6033293B2 (en) | 2016-11-30 |
EP2723376B1 (en) | 2018-12-05 |
KR20140104944A (en) | 2014-08-29 |
AU2012273954A1 (en) | 2014-01-09 |
CA2839508A1 (en) | 2012-12-27 |
US20140302041A1 (en) | 2014-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2723377B1 (en) | Anti-axl antibodies and uses thereof | |
EP2723376B1 (en) | Anti-axl antibodies and uses thereof | |
US9127065B2 (en) | Anti-human HER3 antibodies and uses thereof | |
JP6449876B2 (en) | Anti-human HER3 antibody that is non-competitive and allosteric for neuregulin and uses thereof | |
US10526415B2 (en) | Human monoclonal antibodies fragments inhibiting both the Cath-D catalytic activity and its binding to the LRP1 receptor | |
US20180291098A1 (en) | Anti-nrg1 (heregulin) antibodies and uses thereof | |
JP6655673B2 (en) | Non-competitive and allosteric anti-human HER3 antibodies against neuregulin and uses thereof | |
ES2712736T3 (en) | Anti-Axl antibodies and their uses | |
NZ618740B2 (en) | Anti-axl antibodies and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12729603 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2839508 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014516371 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2012273954 Country of ref document: AU Date of ref document: 20120622 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147001805 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14127415 Country of ref document: US |