WO2012174889A1 - 联合传输中数据传输的方法、网元侧及用户设备 - Google Patents

联合传输中数据传输的方法、网元侧及用户设备 Download PDF

Info

Publication number
WO2012174889A1
WO2012174889A1 PCT/CN2012/072214 CN2012072214W WO2012174889A1 WO 2012174889 A1 WO2012174889 A1 WO 2012174889A1 CN 2012072214 W CN2012072214 W CN 2012072214W WO 2012174889 A1 WO2012174889 A1 WO 2012174889A1
Authority
WO
WIPO (PCT)
Prior art keywords
entity
mac
network element
anchor network
data packet
Prior art date
Application number
PCT/CN2012/072214
Other languages
English (en)
French (fr)
Inventor
邓云
艾建勋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012174889A1 publication Critical patent/WO2012174889A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0867Load balancing or load distribution among entities in the downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations

Definitions

  • the present invention relates to third-generation partner (3GPP) technologies in the field of communications, and in particular, to a method for data transmission in joint transmission, a network element side, and a user equipment.
  • 3GPP third-generation partner
  • the architecture of the existing 3GPP access system includes a radio access network part and a core network part, wherein the radio access network part includes GERAN (GSM EDGE Radio Access Network) and universal mobile communication system (UMTS, Universal). Mobile Telecommunications System) Access network and Long Term Evolution (LTE) access network. Both the GERAN and UMTS access networks are connected to the core network element GPRS Service Support Node (SGSN), the LTE access network and the core network element mobility management entity.
  • GSM EDGE Radio Access Network GSM EDGE Radio Access Network
  • UMTS Universal
  • LTE Long Term Evolution
  • GERAN refers to a Base Station Subsystem (BSS).
  • BSS includes a Base Station Controller (BSC) and a Base Station (BS, Base Station).
  • BSC Base Station Controller
  • BS Base Station
  • the access network element of the UMTS includes a Radio Network Controller (RNC, Radio Network Controller and base station (NodeB); the access network element of LTE is an evolved base station
  • eNB Evolved NodeB
  • UE User Equipment
  • S3 interface is established between the SGSN and the MME, and the interface can implement switching between user equipments in different access systems.
  • 3GPP proposes a carrier aggregation (Carrier Aggregation) technology scheme, which uses multiple carriers to simultaneously serve user equipment.
  • the existing carrier aggregation scheme mainly utilizes multiple carriers in a single system to simultaneously provide services for user equipment. For example, two or more carriers are used in UMTS (each carrier may be an independent cell, or only data transmission may be provided). Resource carrier) to maintain communication with user equipment at the same time, or use 2 or 2 in LTE The above carrier simultaneously maintains communication with the user equipment.
  • Carrier aggregation as shown in Figure 2, the user equipment uses two access technologies at the same time, and establishes two wireless links for transmitting data, one is the wireless link between the user equipment and the evolved base station of LTE, and the other is the user equipment and
  • the wireless link between the base station and the RNC in the UMTS system not only achieves higher throughput, but also achieves better load balancing.
  • the load balancing between the systems can only be implemented by the method of switching and redirection. If the joint transmission scheme is adopted, the network side can dynamically adjust each user equipment according to the load of different access systems. The transmission rate on different links can better achieve load balancing.
  • the user equipment When the user equipment adopts the joint transmission scheme, the user equipment must have the capability of supporting both hardware and software of the access technology. In the joint transmission mode, it is necessary to solve how the data is transmitted through the two systems, how to ensure complete and orderly The problem of transferring data. Summary of the invention
  • the main purpose of the embodiments of the present invention is to provide a method for data transmission in joint transmission, a network element side, and a user equipment, which solves the problem of data transmission when the user equipment accesses two systems at the same time, which is helpful to the network side.
  • Reasonable distribution of data helps to increase the rate of data transfer by user devices.
  • a method for transmitting downlink data in joint transmission includes:
  • the anchor network element and the non-anchor network element participating in joint transmission use the medium access control (MAC) layer a data transfer protocol architecture for distributing data packets;
  • MAC medium access control
  • the MAC layer of the data transmission protocol architecture includes a MAC-1 entity and a MAC-2 entity located at an anchor network element, and a MAC-2 entity located at a non-anchor network element;
  • the MAC-1 entity located in the anchor network element distributes the downlink data packet to each MAC-2 entity, and the MAC-2 entity receiving the downlink data packet sends the received downlink data packet to the user. device.
  • the data transmission protocol architecture of the MAC layer to distribute the data packet further includes: a Packet Data Convergence Protocol (PDCP) layer and a Radio Link Control (RLC) layer;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • the anchor network element passes the downlink data packet through the PDCP entity of the PDCP layer and the RLC entity of the RLC layer to generate an RLC protocol data unit (PDU, Protocol Data Unit); the RLC entity sends the RLC PDU to the MAC-1 entity of the MAC layer.
  • PDU Protocol Data Unit
  • the MAC-1 entity located in the anchor network element distributes the downlink data packet to each MAC-2 entity, as: the MAC-1 entity passes the data interface to each MAC according to a preset distribution policy. 2 entity distributes downlink data packets;
  • the predetermined distribution policy is: a policy of distributing downlink data packets according to a set ratio, or a policy of determining a proportion of downlink data packets according to wireless channel quality.
  • the method further includes:
  • the user equipment has a protocol stack corresponding to the system where the anchor network element is located and a protocol stack corresponding to the system where the non-anchor network element is located, and the user equipment sets the MAC-1 entity and the protocol stack corresponding to the system where the anchor network element is located.
  • the MAC-2 entity sets a MAC-2 entity in a protocol stack corresponding to the system where the non-anchor network element is located, and establishes a data interface between the own MAC-1 entity and the MAC-2 entity.
  • the method further includes: obtaining, by the physical layer of the user equipment, a downlink data packet, by using a MAC-2 entity and/or a non-anchor of a protocol stack corresponding to a system where the internal anchor network element is located The MAC-2 entity of the protocol stack corresponding to the system in which the network element is located, and the obtained downlink data packet is sent to the MAC-1 entity of the protocol stack corresponding to the system where the anchor network element is located in the user equipment;
  • the MAC-1 entity of the protocol stack corresponding to the system in which the anchor network element is located in the user equipment sends the downlink data packet to the application layer through the RLC entity and the PDCP entity of the user equipment.
  • the method further includes: when the user equipment sends the uplink data packet, the uplink data packet is distributed to each MAC-2 entity in the MAC layer by using a MAC-1 entity of the protocol stack corresponding to the system in which the internal anchor network element is located.
  • the MAC-2 entity sends the uplink data packet to the anchor network element and/or the non-anchor network element through the physical layer.
  • the method further includes: obtaining, by the physical layer of the anchor network element and/or the non-anchor network element, an uplink data packet sent by the user equipment, by sending the MAC-2 entity located in itself to the network element located at the anchor point MAC-1 entity;
  • the MAC-1 entity located at the anchor network element sends the uplink data packet to the PDCP entity through the RLC entity of the anchor network element.
  • the anchor network element is an access network element of a system that has established a radio resource control (RRC) connection with the user equipment.
  • RRC radio resource control
  • the anchor network element is the RNC or the base station of the UMTS system; or the system that has established the RRC connection with the user equipment is the LTE system.
  • the anchor network element is an evolved base station of the LTE system.
  • a method for receiving downlink data in joint transmission includes:
  • the user equipment sets the MAC-1 entity and the MAC-2 entity in the protocol stack corresponding to the system where the internal anchor network element is located, and sets the MAC-2 entity in the protocol stack corresponding to the system where the internal non-anchor network element is located, and is in its own MAC.
  • a data interface is established between the 1 entity and the MAC-2 entity; the physical layer of the user equipment obtains the downlink data packet, and the MAC-2 entity and/or the non-anchor network element of the protocol stack corresponding to the system where the internal anchor network element is located
  • the protocol stack corresponding to the system The MAC-2 entity sends the obtained downlink data packet to the MAC-1 entity of the protocol stack corresponding to the system where the anchor network element in the user equipment is located;
  • the MAC-1 entity of the protocol stack corresponding to the system in which the anchor network element is located in the user equipment sends the downlink data packet to the application layer through the RLC entity and the PDCP entity of the user equipment.
  • a method for transmitting uplink data in joint transmission includes:
  • the user equipment sets the MAC-1 entity and the MAC-2 entity in the protocol stack corresponding to the system where the internal anchor network element is located, and sets the MAC-2 entity in the protocol stack corresponding to the system where the internal non-anchor network element is located, and is in its own MAC.
  • the data interface is established between the 1 entity and the MAC-2 entity; when the user equipment sends the uplink data packet, the uplink data packet is distributed to itself through the MAC-1 entity of the protocol stack corresponding to the system in which the internal anchor network element is located.
  • the MAC-2 entity sends the uplink data packet to the anchor network element and/or the non-anchor network element through the physical layer.
  • a method for receiving uplink data in joint transmission includes:
  • the anchor network element and the non-anchor network element participating in the joint transmission use the data layer protocol of the MAC layer to distribute the data packet;
  • the MAC layer of the data transmission protocol architecture includes a MAC-1 entity and a MAC-2 entity located at an anchor network element, and a MAC-2 entity located at a non-anchor network element;
  • the physical layer of the anchor network element and/or the non-anchor network element obtains the uplink data packet sent by the user equipment, and is sent by the MAC-2 entity located in itself to the MAC-1 entity located at the anchor network element;
  • the MAC-1 entity located at the anchor network element sends the uplink data packet to the PDCP entity through the RLC entity of the anchor network element.
  • An embodiment of the present invention provides a network element side for data transmission in joint transmission, where the network element side includes: an anchor network element and a non-anchor network element;
  • the anchor network element and the non-anchor network element use a MAC layer to distribute data packets of a data packet.
  • the MAC layer of the data transmission protocol architecture includes a MAC-1 entity and a MAC-2 entity located at an anchor network element, and a MAC-2 entity located at a non-anchor network element;
  • the anchor network element is configured to distribute downlink data packets to each MAC-2 entity through a MAC-1 entity located in itself when the data is jointly transmitted, and the MAC-2 entity of the own MAC-2 entity distributes the received MAC-1 entity.
  • the downlink data packet is sent to the user equipment;
  • the non-anchor network element is configured to send the downlink data packet of the received MAC-1 entity to the user equipment by using its own MAC-2 entity.
  • the anchor network element is specifically configured to: when the data is jointly transmitted, send the downlink data packet to the MAC-1 entity through the PDCP entity and the RLC entity; and distribute the received downlink data packet by using the MAC-1 entity.
  • a user equipment for data transmission in joint transmission where the user equipment includes: a data packet receiving unit and a protocol layer transmission unit;
  • the user equipment sets a MAC-1 entity and a MAC-2 entity in a protocol stack corresponding to a system in which the internal anchor network element is located, and sets a MAC-2 entity in a protocol stack corresponding to the system in which the internal non-anchor network element is located, and Establishing a data interface between the own MAC-1 entity and the MAC-2 entity;
  • the data packet receiving unit is configured to obtain a downlink data packet at a physical layer
  • the protocol layer transmission unit is configured to pass the MAC-2 entity of the protocol stack corresponding to the system in which the anchor network element is located in the user equipment and/or the MAC-2 entity of the protocol stack corresponding to the system where the non-anchor network element is located, and the obtained downlink
  • the data packet is sent to the MAC-1 entity of the protocol stack corresponding to the system where the anchor network element is located in the user equipment; the downlink data packet is sent by the MAC-1 entity of the protocol stack corresponding to the system where the anchor network element is located in the user equipment.
  • the RLC entity and the PDCP entity of the user equipment are sent to the application layer.
  • a user equipment for data transmission in joint transmission provided by an embodiment of the present invention, the user equipment The device includes: a packet sending unit; wherein
  • the user equipment sets a MAC-1 entity and a MAC-2 entity in a protocol stack corresponding to a system in which the internal anchor network element is located, and sets a MAC-2 entity in a protocol stack corresponding to the system in which the internal non-anchor network element is located, and Establishing a data interface between the own MAC-1 entity and the MAC-2 entity;
  • the data packet sending unit is configured to: when the uplink data packet is sent, distribute the uplink data packet to each MAC-2 entity in the user equipment by using a MAC-1 entity of the protocol stack corresponding to the system where the anchor network element is located in the user equipment, The MAC-2 entity sends the uplink data packet to the anchor network element and/or the non-anchor network element through the physical layer.
  • An embodiment of the present invention provides a network element side for data transmission in joint transmission, where the network element side includes: an anchor network element and a non-anchor network element;
  • the anchor network element and the non-anchor network element use a MAC layer to distribute data packet protocol of the data packet;
  • the MAC layer of the data transmission protocol architecture includes a MAC-1 entity and a MAC-2 entity located at an anchor network element, and a MAC-2 entity located at a non-anchor network element;
  • the anchor network element is configured to send, by the physical layer, an uplink data packet sent by the user equipment to the MAC-1 entity located in itself by the MAC-2 entity located at itself; the MAC-1 entity will receive the The uplink data packet is sent to the PDCP entity through the RLC entity of the anchor network element;
  • the non-anchor network element is configured to send, when the physical layer obtains the uplink data packet sent by the user equipment, to the MAC-1 entity located in the anchor network element by the MAC-2 entity located in itself.
  • the embodiment of the present invention provides a data transmission method, a network element side, and a user equipment in joint transmission, and an anchor transmission network element and a non-anchor network element participating in the joint transmission use a MAC layer to distribute a data packet protocol structure of the data packet;
  • the MAC layer of the data transmission protocol architecture includes a MAC-1 entity and a MAC-2 entity located in the anchor network element, and a MAC-2 entity located in the non-anchor network element;
  • the MAC-1 entity located in the anchor network element distributes the downlink data packet to each MAC-2 entity, and the MAC-2 entity receiving the downlink data packet sends the received downlink data packet to the user equipment.
  • the problem of data transmission in the joint transmission mode is solved, which helps the network side to distribute data reasonably and improve the data transmission rate of the user equipment.
  • Figure 1 is a schematic diagram of the architecture of the existing third-generation partner program access system
  • FIG. 2 is a schematic structural diagram of a user equipment adopting joint transmission in the prior art
  • FIG. 3 is a schematic flowchart of a method for transmitting downlink data in joint transmission according to an embodiment of the present invention
  • FIG. 4 is a schematic flow chart of a method for implementing downlink data transmission in joint transmission according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a data transmission protocol architecture of a MAC layer distribution data packet of an RNC according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic flowchart of a method for implementing downlink data transmission in joint transmission according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of a data transmission protocol architecture of a MAC layer distribution data packet of an evolved base station 3 according to Embodiment 2 of the present invention. detailed description
  • the anchor network element and the non-anchor network element participating in the joint transmission use a MAC layer to distribute the data transmission protocol architecture of the data packet;
  • the MAC layer of the data transmission protocol architecture includes the MAC-1 entity located in the anchor network element and the MAC-2 An entity, and a MAC-2 entity located in the non-anchor network element; when jointly transmitting data, the MAC-1 entity located in the anchor network element distributes the downlink data packet to each MAC-2 entity, and receives the downlink data packet
  • the MAC-2 entity sends the received downlink data packet to the user equipment.
  • Step 101 The data transmission protocol architecture for the anchor network element and the non-anchor network element participating in the joint transmission to use the medium access control (MAC) layer to distribute the data packet;
  • MAC medium access control
  • the data transmission protocol architecture of the MAC layer distribution data packet includes: a PDCP layer, an RLC layer, and a MAC layer; where the MAC layer includes a MAC-1 entity and a MAC-2 entity located in the anchor network element, And a MAC-2 entity located in the non-anchor network element, where the MAC-1 entity communicates with the MAC-2 entity through a data interface;
  • the anchor network element, the non-anchor network element, and the user equipment configuration use a user plane parameter of a data transmission protocol architecture of the MAC layer to distribute the data packet;
  • the anchor network element, the non-anchor network element, and the user equipment are configured to use the user plane parameters of the data transmission protocol architecture of the MAC layer to distribute the data packet, including: After the anchor network element determines to perform joint transmission, the configuration uses the MAC layer to distribute data.
  • User plane parameters of the data transmission protocol architecture of the packet include: PDCP layer PDCP entity, RLC layer RLC entity, MAC layer MAC-1 entity and MAC-2 entity data transmission parameters, storage report parameters (BSR, Buffer Status Report and the like, and send a joint transmission request to the non-anchor network element; after receiving the joint transmission request, the non-anchor network element sets a MAC-2 entity for the user equipment itself; the user equipment is anchored according to the anchor
  • the bearer establishment or reconfiguration signaling sent by the point network element is learned to perform joint transmission, and then configures the user plane parameter of the data transmission protocol architecture of the MAC layer to distribute the data packet.
  • the user equipment configures user plane parameters of the data transmission protocol architecture of the MAC layer to distribute the data packet, including: configuring a PDCP layer PDCP entity, an RLC layer RLC entity, a MAC layer MAC-1 entity, and a MAC-2 entity of the user equipment.
  • the user equipment internally has a protocol stack corresponding to the system where the anchor network element is located and a protocol stack corresponding to the system where the non-anchor network element is located, the user Equipment Setting a MAC-1 entity and a MAC-2 entity in a protocol stack corresponding to the system where the anchor network element is located, setting a MAC-2 entity in the protocol stack corresponding to the system where the non-anchor network element is located, and in the own MAC - Establish a data interface between the 1 entity and the MAC-2 entity.
  • Step 102 When jointly transmitting data, the MAC-1 entity located in the anchor network element distributes the downlink data packet to each MAC-2 entity;
  • the downlink data packet of the anchor network element sequentially passes through the PDCP entity and the RLC entity to generate an RLC PDU, and the RLC entity sends the RLC PDU to the MAC-1 entity; the RLC PDU arrives at the MAC-1 entity. After that, it is a MAC SDU, and the MAC-1 entity distributes the received downlink data packet to each MAC-2 entity located in the anchor network element and the MAC-2 entity located in the non-anchor network element through the data interface.
  • the downlink data packet passes through the PDCP entity and the RLC entity in turn, the functions of encryption, segmentation, etc. have been implemented, and, for the orderly transmission of the downlink data packet, the PDCP entity and the RLC entity add respective serial numbers to the downlink data packet (SN , Sequence Number ).
  • the MAC-1 entity distributes the received downlink data packet to each MAC-2 entity located in the anchor network element and the MAC-2 entity located in the non-anchor network element through the data interface, generally:
  • the MAC-1 entity distributes the downlink data packet to each MAC-2 entity through the data interface according to a preset distribution policy, for example, the system where the anchor network element and the non-anchor network element are located are respectively a UMTS system and an LTE system
  • the pre-set distribution strategy is to distribute the downlink data packets according to the set ratio. When the ratio of the settings is 1 to 1, the MAC-1 entity sends the downlink downlink packets of 50% to the MAC-2 entity of the UMTS system.
  • the predetermined distribution policy is a ratio of distributing the downlink data packet according to the quality of the wireless channel, and the MAC-1 entity is configured according to the user equipment.
  • the measurement report obtains the wireless channel quality of the system where the anchor network element and the non-anchor network element are located, wherein the proportion of the wireless channel with good quality is large, and the proportion of the wireless channel with poor quality is small, for example, MAC - 1 Anchor network element is obtained according to the measurement system where the user equipment reports the quality of the radio channel If the wireless channel quality of the system where the non-anchor network element is located is not suitable, the MAC-1 entity does not distribute the downlink data packet to the MAC-2 entity located in the anchor network element to the MAC located in the non-anchor network element.
  • MAC-1 entity obtains the wireless channel quality of the system where the anchor network element is located according to the measurement report of the user equipment, and the wireless channel quality of the system where the non-anchor network element is located is not suitable for transmitting data
  • MAC - 1 entity distributes downlink data packets to the MAC-2 entity located in the anchor network element, and does not distribute downlink data packets to the MAC-2 entity located in the non-anchor network element
  • the MAC-1 entity obtains the anchor point according to the measurement report of the user equipment
  • the wireless channel quality of the system where the network element is located and the wireless channel quality of the system where the non-anchor network element is located are all suitable for transmitting data, but the quality of the wireless channel of the system where the anchor network element is located is better than the wireless channel quality of the system where the non-anchor network element is located.
  • the proportion of the MAC-1 entity distributing downlink packets to the MAC-2 entity located at the anchor network element is greater than the proportion of downlink packets being distributed to the
  • the anchor network element is an access network element of a system that has established an RRC connection with the user equipment; and when the system that has established an RRC connection with the user equipment is a UMTS system, the anchor network element The RNC or the base station of the UMTS system; or, when the system that has established an RRC connection with the user equipment is an LTE system, the anchor network element is an evolved base station of the LTE system or the like.
  • the uplink is High Speed Uplink Packet Access (HSUPA)
  • the downlink is High Speed Downlink Packet Access (HSDPA, High Speed Downlink Packet Access)
  • the spreading code used by the user equipment, the time slot using the spreading code, etc. are all controlled by the base station, in the UMTS system, the MAC-2 entity is set in the base station of the UMTS system;
  • the MAC-2 entity is placed in the RNC of the UMTS system.
  • Step 103 The MAC-2 entity that receives the downlink data packet sends the received downlink data packet to the user equipment.
  • the MAC-2 entity that receives the downlink data packet multiplexes the received downlink data packet.
  • the MAC-2 entity receiving the downlink data packet may be a MAC-2 entity located in the anchor network element and/or a MAC-2 entity located in the non-anchor network element.
  • the embodiment further includes a method for receiving downlink data in joint transmission, the method comprising:
  • the downlink data packet obtained by the physical layer of the user equipment passes through the MAC-2 entity of the protocol stack corresponding to the system in which the internal anchor network element is located, and/or the MAC-2 entity of the protocol stack corresponding to the system where the non-anchor network element is located, The MAC-1 entity of the protocol stack corresponding to the system where the anchor network element is located in the user equipment, where the MAC-2 entity and/or the non-anchor network element of the protocol stack corresponding to the system where the internal anchor network element is located. The MAC-2 entity of the protocol stack corresponding to the system also demultiplexes the downlink data packet; the MAC-1 entity of the protocol stack corresponding to the system where the anchor network element is located in the user equipment, the downlink data packet
  • the RLC entity and the PDCP entity of the user equipment are sequentially sent to the application layer;
  • the RLC entity sends a complete combination of data packets to the PDCP entity according to the SN of the RLC layer, and the PDCP entity sends the data packet to the application layer in sequence according to the SN of the PDCP layer, so that the user equipment can receive To complete, ordered packets.
  • the embodiment further includes a method for transmitting uplink data in joint transmission, the method comprising:
  • the user equipment When transmitting the uplink data packet, the user equipment distributes the uplink data packet to each MAC-2 entity in the MAC layer by using the MAC-1 entity of the protocol stack corresponding to the system in which the internal anchor network element is located;
  • the MAC-2 entity sends the uplink data packet to the anchor network element and/or the non-anchor network element through the physical layer.
  • the embodiment further includes a method for receiving uplink data in joint transmission, the method comprising:
  • the physical layer of the anchor network element and/or the non-anchor network element obtains the uplink data packet sent by the user equipment, and is sent by the MAC-2 entity located in itself to the MAC-1 entity located at the anchor network element;
  • the MAC-1 entity located in the anchor network element sends the uplink data packet to the PDCP entity in sequence through the RLC entity of the anchor network element.
  • the embodiment of the present invention further provides a network element side for data transmission in joint transmission, where the network element side includes: an anchor network element and a non-anchor network element;
  • the anchor network element and the non-anchor network element use a MAC layer to distribute a data transmission protocol structure of the data packet, where the MAC layer of the data transmission protocol architecture includes a MAC-1 entity and a MAC-2 entity located in the anchor network element. And a MAC-2 entity located in a non-anchor network element;
  • the anchor network element is configured to distribute downlink data packets to each MAC-2 entity through a MAC-1 entity located in itself when the data is jointly transmitted, and the MAC-2 entity of the own MAC-2 entity distributes the received MAC-1 entity.
  • the downlink data packet is sent to the user equipment;
  • the non-anchor network element is configured to send the downlink data packet of the received MAC-1 entity to the user equipment by using its own MAC-2 entity.
  • the anchor network element is specifically configured to: when the data is jointly transmitted, send the downlink data packet to the MAC-1 entity through the PDCP entity and the RLC entity in sequence; and distribute the received downlink data packet to each by the MAC-1 entity.
  • the anchor network element is further configured to distribute downlink data packets to each MAC-2 entity according to a preset distribution policy by using a MAC-1 entity and a data interface.
  • the embodiment of the present invention further provides a user equipment for data transmission in joint transmission, where the user equipment includes: a data packet receiving unit and a protocol layer transmission unit; wherein the user equipment is in its own internal anchor network.
  • the protocol stack corresponding to the system of the meta-location sets the MAC-1 entity and the MAC-2 entity, and sets the MAC-2 entity in the protocol stack corresponding to the system where the non-anchor network element is located, and is in its own MAC-1 entity and MAC-2 entity. Establish a data interface between them;
  • the data packet receiving unit is configured to obtain a downlink data packet at a physical layer;
  • the protocol layer transmission unit is configured to pass the MAC-2 entity of the protocol stack corresponding to the system in which the anchor network element is located in the user equipment and/or the MAC-2 entity of the protocol stack corresponding to the system where the non-anchor network element is located, and the obtained downlink
  • the data packet is sent to the MAC-1 entity of the protocol stack corresponding to the system where the anchor network element is located in the user equipment; the downlink data packet is sent by the MAC-1 entity of the protocol stack corresponding to the system where the anchor network element is located in the user equipment.
  • the RLC entity and the PDCP entity of the user equipment are sequentially sent to the application layer.
  • the embodiment of the present invention further provides a user equipment for data transmission in joint transmission, where the user equipment includes: a data packet sending unit;
  • the user equipment sets a MAC-1 entity and a MAC-2 entity in a protocol stack corresponding to a system in which the internal anchor network element is located, and sets a MAC-2 entity in a protocol stack corresponding to the system in which the internal non-anchor network element is located, and Establishing a data interface between the own MAC-1 entity and the MAC-2 entity;
  • the data packet sending unit is configured to: when the uplink data packet is sent, distribute the uplink data packet to each MAC-2 entity in the user equipment by using a MAC-1 entity of the protocol stack corresponding to the system where the anchor network element is located in the user equipment, The MAC-2 entity sends the uplink data packet to the anchor network element and/or the non-anchor network element through the physical layer.
  • the data packet sending unit is specifically configured to distribute to the MAC-2 entity in the user equipment according to a preset distribution policy by using a MAC-1 entity and a data interface of a protocol stack corresponding to the system where the anchor network element is located in the user equipment.
  • a downlink data packet includes: a policy of distributing a downlink data packet according to a set ratio, or a policy of determining a ratio of distributing a downlink data packet according to a quality of the wireless channel.
  • the embodiment of the present invention further provides a network element side for data transmission in joint transmission, where the network element side includes: an anchor network element and a non-anchor network element;
  • the anchor network element and the non-anchor network element use a data transmission protocol architecture for distributing data packets by using a MAC layer;
  • the MAC layer of the data transmission protocol architecture includes a MAC-1 entity and a MAC-2 entity located at an anchor network element, and a MAC-2 entity located at a non-anchor network element;
  • the anchor network element is configured to send, by the physical layer, an uplink data packet sent by the user equipment to the MAC-1 entity located in itself by the MAC-2 entity located at itself; the MAC-1 entity will receive the The uplink data packet is sent to the PDCP entity in sequence through the RLC entity of the anchor network element;
  • the non-anchor network element is configured to send, when the physical layer obtains the uplink data packet sent by the user equipment, to the MAC-1 entity located in the anchor network element by the MAC-2 entity located in itself. Reason.
  • the user equipment UE1 resides in the cell 1 of the base station 1 in the UMTS system, and is in an idle state, and the base station 1 is under the jurisdiction of the RNC.
  • the cell 2 having the same coverage (or overlapping coverage) as the cell 1 is governed by the evolved base station 2, and the evolved base station 2 belongs to the LTE system.
  • an Iub interface is established between the RNC and the base station 1. Since the RNC may perform joint transmission with the evolved base station 2 in LTE, a new interface is established between the RNC and the evolved base station 2 for transmitting data and control signaling.
  • the interface establishment between the RNC and the evolved base station 2 can be implemented by an Operation & Maintenance server.
  • This embodiment implements a method for downlink data transmission in joint transmission. As shown in FIG. 4, the method includes the following steps:
  • Step 201 The UE1 initiates a random access in the cell 1 and sends an RRC connection request to the RNC.
  • the command includes configuration parameters of a Signaling Radio Bearer (SRB);
  • Step 203 The UE1 applies the configuration parameter of the SRB in the RRC connection setup signaling, and sends an RRC Connection Setup Complete (RRC Connection Setup Complete) signaling to the RNC.
  • the RRC connection setup complete signaling further includes the capability information of the UE1, that is, the capability information of the UE1 supporting the joint transmission.
  • UE1 has established an RRC connection with the RNC.
  • Step 204 The UE1 sends an initial direct transfer (Initial Direct Transfer) signaling to the RNC, where the non-access stratum signaling, that is, the service request is received; after receiving the initial direct signaling, the RNC sends the service request to the core network.
  • Initial Direct Transfer Initial Direct Transfer
  • Step 205 After receiving the service request, the core network returns a radio access bearer assignment request (Radio Access Bearer Assignment Request) to the RNC after the user equipment is successfully authenticated, and includes the data radio bearer (Data Radio Bearer) DRB1 to be established. Quality of service parameters, etc.
  • Radio Access Bearer Assignment Request Radio Access Bearer Assignment Request
  • Data Radio Bearer Data Radio Bearer
  • the bearer of the radio access bearer assignment request corresponds to the DRB1 of the air interface.
  • the data transmission rate required by the DRB1 is high, that is, the data rate included in the quality of service parameter is high.
  • Step 206 The RNC detects that the radio resource of the cell 1 cannot meet the data transmission rate requirement of the DRB1, and the RNC selects the cell 2 as the target cell for the joint transmission, and the RNC configures the user plane parameter of the data transmission protocol architecture of the own MAC layer to distribute the data packet, and Transmitting a joint transmission request to the evolved base station 2 through an interface with the evolved base station 2;
  • the data transmission protocol architecture of the MAC layer distribution data packet of the RNC is as shown in FIG. 5, and includes: a PDCP layer, an RLC layer, and a MAC layer; wherein, the MAC layer includes a MAC-1 entity and a MAC located at the RNC. 2 entity, and a MAC-2 entity located in the evolved base station 2; the user plane parameter of the data transmission protocol architecture of the RNC configuring the MAC layer to distribute the data packet, the RNC configuring the PDCP layer PDCP entity and the RLC layer RLC Data transmission parameters of the entity, MAC layer MAC-1 entity and MAC-2 entity, storage report parameters, etc., wherein the storage report parameter is optional;
  • the joint transmission request includes the quality of service parameter information of the DRB1 and the small size of the cell 2 Area identification information;
  • the RNC determines that the cell 1 cannot meet the DRB1 requirement according to the radio resource used by the cell 1 and the radio resource that the DRB1 needs to occupy.
  • the RNC sends a measurement configuration to the UE1, and selects the cell 2 as the target cell for joint transmission according to the measurement report returned by the UE1.
  • the embodiment does not limit the signaling name used to establish the cross-system joint transmission.
  • the embodiment does not limit the exact name of the MAC layer divided into two parts.
  • the names of the MAC-1 entity and the MAC-2 entity are used.
  • other names may be used, such as a MAC-Share entity and a MAC-Scheduled entity, wherein the MAC-1 entity or the MAC-Share entity has the function of distributing data packets, and the MAC-2 entity or the MAC-Scheduled entity has resources.
  • the scheduling function, the MAC-2 entity or the MAC-Scheduled entity schedules resources to send packets through the physical layer.
  • Step 207 After receiving the joint transmission request, the evolved base station 2 accepts the request, allocates the radio resource of the UE1 in the cell 2, returns the allocated radio resource to the RNC through the joint transmission response, and sets the MAC-2 entity for the UE1 itself. ;
  • the returning the allocated radio resource to the RNC includes at least one of the following: an RNTL scrambling code in the cell 2, a random access parameter, a physical layer configuration parameter, and the like.
  • Step 208 After receiving the joint transmission response returned by the evolved base station 2, the RNC allocates the radio resource of the UE1 in the cell 1, and sends the bearer setup signaling to the UE1 through the RRC signaling, where the bearer setup signaling includes the RNC allocated to the UE1. Radio resources and radio resources allocated by the evolved base station 2 for the UE1;
  • the bearer setup signaling may multiplex existing RRC signaling, such as radio bearer setup, or radio bearer configuration, or RRC connection reconfiguration, or may newly add RRC signaling, which is carried in each joint transmission.
  • RRC signaling such as radio bearer setup, or radio bearer configuration, or RRC connection reconfiguration, or may newly add RRC signaling, which is carried in each joint transmission.
  • Step 209 After receiving the bearer setup signaling, UE1 obtains that the evolved base station 2 is configured for UE1.
  • the radio resource and the radio resource configured by the RNC for the UE1, and the user plane parameters of the data transmission protocol architecture of the MAC layer distribution data packet are configured;
  • UE1 has a protocol stack corresponding to the UMTS system and a protocol stack corresponding to the LTE system.
  • UE1 sets its own MAC-1 entity and MAC-2 entity in the protocol stack corresponding to the UMTS system, and sets itself in the protocol stack corresponding to the LTE system.
  • MAC-2 entity and establishes a data interface between its own MAC-1 entity and MAC-2 entity;
  • UE1 configures its own PDCP layer PDCP entity, RLC layer RLC entity, MAC layer MAC-1 entity and MAC-2 entity data Transmission parameters, storage report parameters, etc., wherein the storage report parameters are optional.
  • the radio resource of the cell 2 received by the UE1 may include a random access resource, and the random access resource is allocated by the evolved base station 2, and is sent to the UE1 via the RNC, and the UE1 performs the random access according to the random access.
  • the incoming resource initiates random access in cell 2 to obtain uplink synchronization.
  • the UMTS system and the LTE system are deployed in a synchronized state, that is, the UE1 automatically obtains the synchronization with the UMTS after acquiring the synchronization with the UMTS. Synchronization, such that UE1 does not need to implement random access in cell 2 to obtain uplink synchronization. At this time, the radio resource allocated by cell 2 for UE1 may not include random access resources.
  • Step 210 When jointly transmitting data, the MAC-1 entity located in the RNC distributes the downlink data packet to the MAC-2 entity located at the RNC and the evolved base station 2;
  • the downlink data packet of the RNC sequentially passes through the PDCP entity and the RLC entity to generate an RLC PDU, and the RLC entity sends the RLC PDU to the MAC-1 entity; after the RLC PDU arrives at the MAC-1 entity, The MAC SDU, the MAC-1 entity distributes the received downlink data packet to each MAC- 2 entity located at the RNC and the MAC-2 entity located at the base station 2 according to a preset distribution policy.
  • the downlink data packet passes through the PDCP entity and the RLC entity in turn, the functions of encryption, segmentation, etc. have been implemented, and, for the orderly transmission of the downlink data packet, the PDCP entity and the RLC entity increase the downlink data packet. Add their respective SNs.
  • Step 211 The MAC-2 entity that receives the downlink data packet sends the received downlink data packet to UE1.
  • the RNC and the MAC-2 entity in the evolved base station 2 respectively multiplex the received downlink data packet and send it to the physical layer of the UE1.
  • Step 212 UE1 combines the obtained data packets to obtain complete data.
  • the downlink data packet to be obtained by the physical layer of the UE1 is sent to the UMTS system in the UE1 through the MAC-2 entity of the protocol stack corresponding to the internal UMTS system and/or the MAC-2 entity of the protocol stack corresponding to the LTE system.
  • the MAC-1 entity of the protocol stack where the MAC-2 entity of the protocol stack corresponding to the internal UMTS system and/or the MAC-2 entity of the protocol stack corresponding to the LTE system also demultiplexes the downlink data packet;
  • the MAC-1 entity of the protocol stack corresponding to the UMTS system in the UE1 sends the downlink data packet to the application layer through the RLC entity and the PDCP entity of the UE1 in sequence;
  • the RLC entity sends the complete combination of the data packets to the PDCP entity according to the SN of the RLC layer, and the PDCP entity sends the data packet to the application layer in sequence according to the SN of the PDCP layer, so that the UE1 can receive the data packet.
  • Complete, ordered packet
  • the RNC is an anchor network element
  • the evolved base station 2 of the LTE system is a non-anchor network element.
  • the user equipment UE2 is connected to the network through the LTE system, and the UE2 accesses the cell 3 under the jurisdiction of the evolved base station 3. That is, the evolved base station 3 has established an RRC connection for the UE2.
  • the base station 4 in the UMTS system is governed by the RNC, and the cell 4 under the base station 4 overlaps with the coverage area of the cell 3.
  • the application scenario of this embodiment is as follows: UE2 has established a Data Radio Bearer (DRB), which is represented by DRB1. If UE2 needs to create a new data radio bearer DRB2, and the evolved base station 3 does not have enough resources to satisfy the service quality of the new DRB2 of UE2.
  • DRB Data Radio Bearer
  • the evolved base station 3 has learned that the UE 2 has the capability of supporting joint transmission when the UE2 accesses the network, and therefore the evolved base station 3 wants to use the joint transmission manner to enable the UE 2 to obtain more radio resources.
  • the evolved base station 3 learns that the signal quality of the cell 4 exceeds a predetermined threshold by the measurement report reported by the UE2, and the evolved base station 3 configures joint transmission for the UE2.
  • the method for jointly transmitting downlink data transmission in this embodiment includes the following steps: Step 301:
  • the evolved base station 3 configures user plane parameters of the data transmission protocol architecture of the MAC layer distribution data packet of the evolved base station, and the RNC
  • the interface between the interface sends a joint transmission request to the RNC.
  • the data transmission protocol architecture of the MAC layer distribution packet of the evolved base station 3 is as shown in FIG. 7, and includes: a PDCP layer, an RLC layer, and a MAC layer;
  • the MAC layer includes a MAC-1 entity and a MAC-2 entity located in the evolved base station 3, and a MAC-2 entity located at the RNC;
  • the evolved base station 3 configures a user plane parameter of a data transmission protocol architecture of the MAC layer distribution data packet of the MAC address layer, specifically: the evolved base station 3 configures a PDCP layer PDCP entity, an RLC layer RLC entity, a MAC layer MAC-1 entity, and a MAC. - 2 entity data transmission parameters, storage report parameters, etc.;
  • the joint transmission request includes the quality of service parameter information of the DRB2 and the cell identification information of the cell 4.
  • Step 302 After receiving the joint transmission request, the RNC accepts the request, allocates the radio resource of the UE2 in the cell 4, returns the allocated radio resource to the evolved base station 3 by using the joint transmission response, and sets the MAC-2 entity for the UE2 by itself. Configure data transmission parameters of MAC-2 entities, store report parameters, etc.
  • the returning the allocated radio resource to the evolved base station 3 includes an RNTL scrambling code, a random access parameter, a physical layer configuration parameter, and the like in the cell 4 or the RNC;
  • the radio resource of the UE2 in the cell 4 is allocated, and the radio resource of the UE2 in the cell 4 is generally allocated according to the quality of service parameter of the DRB2, and the DRB2 of the user equipment is satisfied as much as possible. Data transfer requirements.
  • Step 303 After receiving the joint transmission response returned by the RNC, the evolved base station 3 allocates the radio resource of the UE2 in the cell 3, and sends the bearer setup signaling to the UE2 through the RRC signaling, where the bearer setup signaling includes the evolved base station 3
  • the radio resources in the cell 4 in this step include at least one of the following: RNTL scrambling code, random access parameter, or physical layer configuration parameter in the cell 4.
  • Step 304 After receiving the bearer setup signaling, the UE2 obtains the radio resource configured by the evolved base station 3 for the UE2 and the radio resource configured by the RNC for the UE2, and configures the user plane parameter of the data transmission protocol architecture of the MAC layer to distribute the data packet.
  • the user plane parameters in this step include: PDCP layer PDCP entity of UE2, RLC layer RLC entity, MAC layer MAC-1 entity and MAC-2 entity data transmission parameters, storage report parameters, and the like.
  • Step 305 When jointly transmitting data, the MAC-1 entity located in the evolved base station 3 distributes the downlink data packet to the MAC-2 entity located at the RNC and the evolved base station 3;
  • the downlink data packet of the evolved base station 3 sequentially passes through the PDCP entity and the RLC entity to generate an RLC PDU, and the RLC entity sends the RLC PDU to the MAC-1 entity; after the RLC PDU arrives at the MAC-1 entity That is, the MAC SDU, the MAC-1 entity distributes the received downlink data packet to each MAC-2 entity located in the RNC and the MAC-2 entity located in the base station 3 according to a preset distribution policy.
  • the downlink data packet passes through the PDCP entity and the RLC entity in turn, the functions of encryption, segmentation, etc. have been implemented, and, for the orderly transmission of the downlink data packet, the PDCP entity and the RLC entity add respective SNs to the downlink data packet.
  • Step 306 The MAC-2 entity that receives the downlink data packet sends the received downlink data packet to the UE2. Specifically, when receiving the downlink data packet, the MAC-2 entity in the RNC and the evolved base station 3 separately multiplexes the received downlink data packet and sends the received downlink data packet to the physical layer of the UE2.
  • Step 307 UE2 combines the obtained downlink data packets to obtain complete data.
  • the downlink data packet obtained by the physical layer of the UE2 is sent to the LTE system in the UE2 through the MAC-2 entity of the protocol stack corresponding to the internal UMTS system and/or the MAC-2 entity of the protocol stack corresponding to the LTE system.
  • the MAC-1 entity of the protocol stack where the MAC-2 entity of the protocol stack corresponding to the internal UMTS system and/or the MAC-2 entity of the protocol stack corresponding to the LTE system also demultiplexes the downlink data packet;
  • the MAC-1 entity of the protocol stack corresponding to the LTE system in the UE2 sends the downlink data packet to the application layer through the RLC entity and the PDCP entity of the UE2 in sequence;
  • the RLC entity sends the complete combination of the data packets to the PDCP entity according to the SN of the RLC layer, and the PDCP entity sends the data packet to the application layer in sequence according to the SN of the PDCP layer, so that the UE2 can receive the data packet.
  • Complete, ordered downstream packets
  • the evolved base station 3 is an anchor network element
  • the RNC is a non-anchor network element
  • the MAC-2 entity may be located at the base station 4.
  • the base station 3 may transmit the downlink data packet of the user through the interface with the RNC, and then pass the RNC.
  • the interface between the base station 4 and the base station 4 is transmitted to the base station 4, and the MAC-2 entity in the base station 4 is responsible for resource scheduling, and sends the downlink data packet to the UE2; or the base station 3 establishes a direct interface with the base station 4, and the base station 3 passes the interface.
  • the downlink data packet of the user is transmitted to the base station 4.
  • the MAC-2 entity in the base station 4 is responsible for resource scheduling, and transmits the downlink data packet to the UE2.
  • the MAC-1 entity distributes the received downlink data packet to each MAC-2 entity located in the RNC and the MAC-2 entity located in the base station 3 according to a preset distribution policy through a data interface, generally :
  • the MAC-1 entity distributes the data packets according to the set ratio, or the MAC-1 entity decides the proportion of the downlink data packets to be distributed according to the quality of the wireless channel, such as: MAC - 1
  • the entity adjusts the proportion of downlink data packet distribution according to the radio channel quality dynamics of the cell 3 and the cell 4 measured by the UE2.
  • the downlink data packet may be distributed according to a ratio of 1:1; If the radio channel quality of the cell 3 is better, some downlink data packets may be allocated to the MAC _ 2 entity located at the base station 3, and higher throughput may be obtained by transmitting data through the link with good quality of the radio channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种联合传输中下行数据的发送方法,参与联合传输的锚点网元和非锚点网元采用媒体接入控制(MAC)层分发数据包的数据传输协议架构;所述数据传输协议架构的MAC层包括位于锚点网元的MAC-1实体和MAC-2实体,以及位于非锚点网元的MAC-2实体;在联合传输数据时,所述位于锚点网元的MAC-1实体将下行数据包分发给各MAC-2实体,接收到下行数据包的MAC-2实体将收到的下行数据包发送给用户设备;本发明同时还公开了联合传输中下行数据的接收方法、上行数据的发送和接收方法及相应的网元侧和用户设备。通过本发明的方案,解决了在联合传输方式下的数据传输问题,有助于网络侧合理的分发数据,提高用户设备的数据传输的速率。

Description

联合传输中数据传输的方法、 网元侧及用户设备 技术领域
本发明涉及通信领域的第三代合作伙伴(3GPP )技术, 尤其涉及一种 联合传输中数据传输的方法、 网元侧及用户设备。 背景技术
现有 3GPP接入系统的架构,如图 1所示, 包括无线接入网部分和核心 网部分, 其中无线接入网部分包括 GERAN ( GSM EDGE Radio Access Network )、通用移动通信系统 ( UMTS , Universal Mobile Telecommunications System )接入网和长期演进(LTE, Long Term Evolution )接入网。 GERAN 和 UMTS的接入网均与核心网网元 GPRS服务支持节点 (SGSN, Serving GPRS Support Node )相连, LTE 的接入网与核心网网元移动性管理实体
( MME, Mobility Management Entity )相连。 GERAN是指基站子系统( BSS, Base Station Subsystem ), BSS包括基站控制器( BSC, Base Station Controller ) 和基站( BS, Base Station ); UMTS的接入网网元包括无线网络控制器( RNC, Radio Network Controller )和基站( NodeB ); LTE的接入网网元是演进基站
( eNB , Evolved NodeB )。为了确保连接态的用户设备( UE, User Equipment ) 能够在不同的接入系统之间自由的移动, SGSN和 MME之间建有 S3接口, 该接口可以实现用户设备在不同接入系统间的切换。
为了实现更高的传输速率, 3GPP提出了载波聚合( Carrier Aggregation ) 的技术方案, 利用多个载波同时为用户设备服务。 现有的载波聚合方案主 要利用单一系统内的多个载波同时为用户设备提供服务, 如 UMTS中利用 2个或 个以上的载波(每个载波可以是独立的小区,也可以是仅提供数据 传输的资源载波) 同时与用户设备保持通信, 或者 LTE中利用 2个或 2个 以上的载波同时与用户设备保持通信。 然而在实际的网络中, 由于载波频 率数量的限制,一些移动运营商没有足够的频率同时部署多个 UMTS和 LTE 系统, 移动运营商会根据接入网络的用户设备数量调整 UMTS和 LTE的载 频数。 由于 UMTS系统和 LTE系统会长期共存, 当单个系统的容量(载频 的限制) 不足以提供高的传输速率时, 人们想到了采用不同的系统联合传 输的方案, 这也可以称为跨系统的载波聚合, 如图 2所示, 用户设备同时 采用两种接入技术, 建立两条无线链路用于传输数据, 一条是用户设备与 LTE 的演进基站的无线链路, 另一条是用户设备与 UMTS 系统中基站和 RNC的无线链路, 这不仅可以获得更高的吞吐量, 而且可以达到较好的负 载均衡的效果。 在没有采用联合传输的方案之前, 系统间的负载均衡只能 通过切换、 重定向的方法实施, 如果采用联合传输的方案, 网络侧可以根 据不同接入系统的负载, 动态的调整每个用户设备在不同链路上的传输速 率, 可以更好的实现负载均衡。
用户设备采用联合传输的方案时, 用户设备必须具备同时支持两种接 入技术的硬件和软件的能力, 在联合传输方式下, 需要解决数据如何通过 两个系统进行传输, 如何确保完整有序的传输数据的问题。 发明内容
有鉴于此, 本发明实施例的主要目的在于提供一种联合传输中数据传 输的方法、 网元侧及用户设备, 解决了用户设备同时接入两个系统时数据 传输问题, 有助于网络侧合理的分发数据, 有助于提高用户设备的数据传 输的速率。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明实施例提供的一种联合传输中下行数据的发送方法, 该方法包 括:
参与联合传输的锚点网元和非锚点网元采用媒体接入控制 (MAC )层 分发数据包的数据传输协议架构;
所述数据传输协议架构的 MAC层包括位于锚点网元的 MAC - 1实体 和 MAC - 2实体, 以及位于非锚点网元的 MAC - 2实体;
在联合传输数据时, 所述位于锚点网元的 MAC - 1实体将下行数据包 分发给各 MAC - 2实体,接收到下行数据包的 MAC - 2实体将收到的下行 数据包发送给用户设备。
上述方案中, 所述 MAC层分发数据包的数据传输协议架构还包括: 分 组数据汇聚协议 ( PDCP, Packet Data Convergence Protocol )层和无线链路 控制 (RLC, Radio Link Control )层;
所述锚点网元将下行数据包经过 PDCP层的 PDCP实体和 RLC层的 RLC实体, 生成 RLC协议数据单元( PDU, Protocol Data Unit ); RLC实体 将 RLC PDU发送给 MAC层的 MAC - 1实体。
上述方案中, 所述位于锚点网元的 MAC - 1实体将下行数据包分发给 各 MAC - 2实体, 为: 所述 MAC - 1实体按照预先设定的分发策略通过数 据接口向各 MAC - 2实体分发下行数据包;
所述预先设定的分发策略为: 按照设定的比例分发下行数据包的策略、 或根据无线信道质量决定分发下行数据包的比例的策略。
上述方案中, 该方法还包括:
所述用户设备内部具备锚点网元所在系统对应的协议栈和非锚点网元 所在系统对应的协议栈, 用户设备在所述锚点网元所在系统对应的协议栈 设置 MAC - 1实体和 MAC - 2实体, 在所述非锚点网元所在系统对应的协 议栈设置 MAC - 2实体,并在自身 MAC - 1实体和 MAC - 2实体之间建立 数据接口。
上述方案中, 该方法还包括: 所述用户设备的物理层获得下行数据包, 通过自身内部锚点网元所在系统对应的协议栈的 MAC - 2实体和 /或非锚点 网元所在系统对应的协议栈的 MAC - 2实体, 将获得的下行数据包发送给 用户设备内锚点网元所在系统对应的协议栈的 MAC - 1实体;
所述用户设备内锚点网元所在系统对应的协议栈的 MAC - 1实体将所 述下行数据包经过用户设备的 RLC实体和 PDCP实体, 发送到应用层。
上述方案中, 该方法还包括: 用户设备在发送上行数据包时, 通过自 身内锚点网元所在系统对应的协议栈的 MAC - 1实体将上行数据包分发到 自身内各 MAC - 2实体, 所述 MAC - 2实体通过物理层将上行数据包发向 锚点网元和 /或非锚点网元。
上述方案中, 该方法还包括: 所述锚点网元和 /或非锚点网元的物理层 获得用户设备发送的上行数据包, 通过位于自身的 MAC - 2实体发送到位 于锚点网元的 MAC - 1实体;
所述位于锚点网元的 MAC - 1实体将所述上行数据包经过所述锚点网 元的 RLC实体发送到 PDCP实体。
上述方案中, 所述锚点网元为已与用户设备建立无线资源控制 (RRC ) 连接的系统的接入网网元。
上述方案中,所述已与用户设备建立 RRC连接的系统为 UMTS系统时, 所述锚点网元为 UMTS系统的 RNC或基站; 或者,所述已与用户设备建立 RRC连接的系统为 LTE系统时 , 所述锚点网元为 LTE系统的演进基站。
本发明实施例提供的一种联合传输中下行数据的接收方法, 该方法包 括:
用户设备在自身内部锚点网元所在系统对应的协议栈设置 MAC - 1实 体和 MAC - 2 实体, 在自身内部非锚点网元所在系统对应的协议栈设置 MAC - 2实体,并在自身 MAC - 1实体和 MAC - 2实体之间建立数据接口; 用户设备的物理层获得下行数据包, 通过自身内部锚点网元所在系统 对应的协议栈的 MAC - 2 实体和 /或非锚点网元所在系统对应的协议栈的 MAC - 2 实体, 将获得的下行数据包发送给用户设备内锚点网元所在系统 对应的协议栈的 MAC - 1实体;
所述用户设备内锚点网元所在系统对应的协议栈的 MAC - 1实体将所 述下行数据包经过用户设备的 RLC实体和 PDCP实体, 发送到应用层。
本发明实施例提供的一种联合传输中上行数据的发送方法, 该方法包 括:
用户设备在自身内部锚点网元所在系统对应的协议栈设置 MAC - 1实 体和 MAC - 2 实体, 在自身内部非锚点网元所在系统对应的协议栈设置 MAC - 2实体,并在自身 MAC - 1实体和 MAC - 2实体之间建立数据接口; 用户设备在发送上行数据包时, 通过自身内锚点网元所在系统对应的 协议栈的 MAC - 1实体将上行数据包分发到自身内各 MAC - 2实体, 所述 MAC - 2实体通过物理层将上行数据包发向锚点网元和 /或非锚点网元。
本发明实施例提供的一种联合传输中上行数据的接收方法, 该方法包 括:
参与联合传输的锚点网元和非锚点网元采用 MAC层分发数据包的数 据传输协议架构;
所述数据传输协议架构的 MAC层包括位于锚点网元的 MAC - 1 实体 和 MAC - 2实体, 以及位于非锚点网元的 MAC - 2实体;
锚点网元和 /或非锚点网元的物理层获得用户设备发送的上行数据包, 通过位于自身的 MAC - 2实体发送到位于锚点网元的 MAC - 1实体;
所述位于锚点网元的 MAC - 1实体将所述上行数据包经过所述锚点网 元的 RLC实体发送到 PDCP实体。
本发明实施例提供的一种联合传输中数据传输的网元侧, 该网元侧包 括: 锚点网元和非锚点网元; 其中,
所述锚点网元和非锚点网元采用 MAC层分发数据包的数据传输协议 架构, 所述数据传输协议架构的 MAC层包括位于锚点网元的 MAC - 1 实 体和 MAC - 2实体, 以及位于非锚点网元的 MAC - 2实体;
所述锚点网元, 用于在联合传输数据时, 通过位于自身的 MAC - 1实 体分发下行数据包到各 MAC - 2实体,自身的 MAC - 2实体将收到的 MAC - 1实体分发的下行数据包发送给用户设备;
所述非锚点网元, 用于通过自身的 MAC - 2实体将收到的 MAC - 1实 体分发的下行数据包发送给用户设备。
上述方案中, 所述锚点网元, 具体用于在联合传输数据时, 将下行数 据包经过 PDCP实体和 RLC实体发送给 MAC - 1实体; 通过 MAC - 1实 体将收到的下行数据包分发给各位于锚点网元的 MAC - 2实体和位于非锚 点网元的 MAC - 2实体。
本发明实施例提供的一种联合传输中数据传输的用户设备, 该用户设 备包括: 数据包接收单元和协议层传输单元; 其中,
所述用户设备在自身内部锚点网元所在系统对应的协议栈设置 MAC - 1 实体和 MAC - 2实体, 在自身内部非锚点网元所在系统对应的协议栈 设置 MAC - 2实体,并在自身 MAC - 1实体和 MAC - 2实体之间建立数据 接口;
所述数据包接收单元, 用于在物理层获得下行数据包;
协议层传输单元, 用于通过用户设备内锚点网元所在系统对应的协议 栈的 MAC - 2实体和 /或非锚点网元所在系统对应的协议栈的 MAC - 2实 体, 将获得的下行数据包发送给用户设备内锚点网元所在系统对应的协议 栈的 MAC - 1实体; 通过所述用户设备内锚点网元所在系统对应的协议栈 的 MAC - 1 实体将所述下行数据包经过用户设备的 RLC实体和 PDCP实 体, 发送到应用层。
本发明实施例提供的一种联合传输中数据传输的用户设备, 该用户设 备包括: 数据包发送单元; 其中,
所述用户设备在自身内部锚点网元所在系统对应的协议栈设置 MAC - 1 实体和 MAC - 2实体, 在自身内部非锚点网元所在系统对应的协议栈 设置 MAC - 2实体,并在自身 MAC - 1实体和 MAC - 2实体之间建立数据 接口;
所述数据包发送单元, 用于在发送上行数据包时, 通过用户设备内锚 点网元所在系统对应的协议栈的 MAC - 1实体将上行数据包分发到用户设 备内各 MAC - 2实体, 所述 MAC - 2实体通过物理层将上行数据包发向锚 点网元和 /或非锚点网元。
本发明实施例提供的一种联合传输中数据传输的网元侧, 该网元侧包 括: 锚点网元和非锚点网元; 其中,
所述锚点网元和非锚点网元采用 MAC层分发数据包的数据传输协议 架构;
所述数据传输协议架构的 MAC层包括位于锚点网元的 MAC - 1 实体 和 MAC - 2实体, 以及位于非锚点网元的 MAC - 2实体;
所述锚点网元, 用于在物理层获得用户设备发送的上行数据包时, 通 过位于自身的 MAC - 2实体发送到位于自身的 MAC - 1实体; 所述 MAC - 1 实体将收到的上行数据包经过所述锚点网元的 RLC实体发送到 PDCP 实体;
非锚点网元, 用于在物理层获得用户设备发送的上行数据包时, 通过 位于自身的 MAC - 2实体发送到位于锚点网元的 MAC - 1实体。
本发明实施例提供了一种联合传输中数据传输的方法、 网元侧及用户 设备,参与联合传输的锚点网元和非锚点网元采用 MAC层分发数据包的数 据传输协议架构; 所述数据传输协议架构的 MAC层包括位于锚点网元的 MAC - 1实体和 MAC - 2实体, 以及位于非锚点网元的 MAC - 2实体; 在 联合传输数据时, 所述位于锚点网元的 MAC - 1实体将下行数据包分发给 各 MAC - 2实体,接收到下行数据包的 MAC - 2实体将收到的下行数据包 发送给用户设备; 如此, 解决了在联合传输方式下的数据传输问题, 有助 于网络侧合理的分发数据, 提高用户设备的数据传输的速率。 附图说明
图 1为现有第三代合作伙伴计划接入系统的架构示意图;
图 2为现有技术中用户设备采用联合传输的结构示意图;
图 3 为本发明实施例实现一种联合传输中下行数据的发送方法的流程 示意图;
图 4为本发明实施例一实现联合传输中下行数据传输的方法的流程示 意图;
图 5为本发明实施例一中 RNC的 MAC层分发数据包的数据传输协议 架构示意图;
图 6为本发明实施例二实现联合传输中下行数据传输的方法的流程示 意图;
图 7为本发明实施例二中演进基站 3的 MAC层分发数据包的数据传输 协议架构示意图。 具体实施方式
参与联合传输的锚点网元和非锚点网元采用 MAC层分发数据包的数 据传输协议架构; 所述数据传输协议架构的 MAC 层包括位于锚点网元的 MAC - 1实体和 MAC - 2实体, 以及位于非锚点网元的 MAC - 2实体; 在 联合传输数据时, 所述位于锚点网元的 MAC - 1实体将下行数据包分发给 各 MAC - 2实体,接收到下行数据包的 MAC - 2实体将收到的下行数据包 发送给用户设备。 下面通过附图及具体实施例对本发明做进一步的详细说明。 本发明实施例实现一种联合传输中下行数据的发送方法, 如图 3所示, 该方法包括以下几个步驟:
步驟 101 : 参与联合传输的锚点网元和非锚点网元采用媒体接入控制 ( MAC )层分发数据包的数据传输协议架构;
本步驟中, 所述 MAC层分发数据包的数据传输协议架构包括: PDCP 层、 RLC层和 MAC层; 其中, 所述 MAC层包括位于锚点网元的 MAC - 1 实体和 MAC - 2实体, 以及位于非锚点网元的 MAC - 2实体, 所述 MAC - 1实体与 MAC - 2实体之间通过数据接口通信;
具体的, 在联合传输配置时, 锚点网元、 非锚点网元和用户设备配置 采用 MAC层分发数据包的数据传输协议架构的用户面参数;
所述锚点网元、非锚点网元和用户设备配置采用 MAC层分发数据包的 数据传输协议架构的用户面参数, 包括: 锚点网元确定进行联合传输后, 配置采用 MAC层分发数据包的数据传输协议架构的用户面参数,所述用户 面参数包括: PDCP层 PDCP实体、 RLC层 RLC实体、 MAC层 MAC - 1 实体和 MAC - 2实体的数据传输参数、 存储报告参数(BSR, Buffer Status Report )等, 并向非锚点网元发送联合传输请求; 所述非锚点网元收到联合 传输请求后, 在自身设置针对所述用户设备的 MAC - 2实体; 用户设备根 据锚点网元发送的承载建立或重配置信令获知进行联合传输, 则配置自身 采用 MAC层分发数据包的数据传输协议架构的用户面参数。
所述用户设备配置自身采用 MAC 层分发数据包的数据传输协议架构 的用户面参数, 包括: 配置用户设备的 PDCP层 PDCP实体、 RLC层 RLC 实体、 MAC层 MAC - 1实体和 MAC - 2实体的数据传输参数、 存储报告 参数等, 其中所述存储报告参数为可选的; 所述用户设备内部具备锚点网 元所在系统对应的协议栈和非锚点网元所在系统对应的协议栈, 用户设备 在所述锚点网元所在系统对应的协议栈设置自身 MAC - 1实体和 MAC - 2 实体, 在所述非锚点网元所在系统对应的协议栈设置自身 MAC - 2实体, 并在自身 MAC - 1实体和 MAC - 2实体之间建立数据接口。
步驟 102: 在联合传输数据时, 位于锚点网元的 MAC - 1 实体将下行 数据包分发给各 MAC - 2实体;
具体的, 在联合传输数据时, 锚点网元的下行数据包依次经过 PDCP 实体和 RLC实体,生成 RLC PDU, RLC实体将 RLC PDU发送给 MAC - 1 实体; 所述 RLC PDU到达 MAC - 1实体后即为 MAC SDU, 所述 MAC - 1 实体通过数据接口将收到的下行数据包分发给各位于锚点网元的 MAC - 2 实体和位于非锚点网元的 MAC - 2实体。这里,下行数据包依次经过 PDCP 实体和 RLC实体后, 已经实现加密、 分段等功能, 并且, 为了下行数据包 有序的传输, PDCP实体和 RLC实体对下行数据包增加各自的序列号(SN, Sequence Number )。
本步驟中, 所述 MAC - 1实体通过数据接口将收到的下行数据包分发 给各位于锚点网元的 MAC - 2实体和位于非锚点网元的 MAC - 2实体, 一 般是:所述 MAC - 1实体按照预先设定的分发策略通过数据接口向各 MAC - 2 实体分发下行数据包, 如: 锚点网元和非锚点网元所在系统分别为 UMTS系统和 LTE系统, 所述预先设定的分发策略为按照设定的比例分发 下行数据包, 支设设定的比例为 1比 1时, MAC - 1实体将下行 50%的下 行数据包发送到 UMTS系统的 MAC - 2实体,另外 50%的下行数据包发送 到 LTE系统的 MAC - 2实体; 或者, 所述预先设定的分发策略为根据无线 信道质量决定分发下行数据包的比例, 则 MAC - 1实体根据用户设备的测 量报告获得锚点网元和非锚点网元所在系统的无线信道质量, 其中, 无线 信道质量较好的分的比例大,无线信道质量较差的分的比例小,例如, MAC - 1 实体根据用户设备的测量报告获得锚点网元所在系统的无线信道质量 不适合传输数据、 非锚点网元所在系统的无线信道质量较好时, MAC - 1 实体不向位于锚点网元的 MAC - 2实体分发下行数据包, 向位于非锚点网 元的 MAC - 2实体分发下行数据包; MAC - 1实体根据用户设备的测量报 告获得锚点网元所在系统的无线信道质量较好、 非锚点网元所在系统的无 线信道质量不适合传输数据时, MAC - 1 实体向位于锚点网元的 MAC - 2 实体分发下行数据包, 不向位于非锚点网元的 MAC - 2实体分发下行数据 包; MAC - 1 实体根据用户设备的测量报告获得锚点网元所在系统的无线 信道质量与非锚点网元所在系统的无线信道质量均适合传输数据、 但锚点 网元所在系统的无线信道质量好于非锚点网元所在系统的无线信道质量 时, MAC - 1实体向位于锚点网元的 MAC - 2实体分发下行数据包的比例 大于向位于非锚点网元的 MAC - 2实体分发下行数据包的比例; 等等。
本实施例中, 所述锚点网元为已与用户设备建立 RRC连接的系统的接 入网网元; 所述已与用户设备建立 RRC连接的系统为 UMTS系统时, 所述 锚点网元为 UMTS系统的 RNC或基站;或者,所述已与用户设备建立 RRC 连接的系统为 LTE系统时, 所述锚点网元为 LTE系统的演进基站等。
本步驟中, 当用户设备配置为采用高速分组接入( HSPA )技术传输数 据时, 即上行是高速上行分组接入(HSUPA, High Speed Uplink Packet Access ), 下行是高速下行分组接入( HSDPA, High Speed Downlink Packet Access ), 用户设备使用的扩频码、 使用扩频码的时隙等均由基站控制, 则 在 UMTS系统中,所述 MAC - 2实体设置在 UMTS系统的基站; 当用户设 备没有配置为采用 HSPA技术传输数据时, 在 UMTS 系统中, 所述 MAC - 2实体设置在 UMTS系统的 RNC。
步驟 103: 接收到下行数据包的 MAC - 2实体将收到的下行数据包发 送给用户设备;
具体的, 接收到下行数据包的 MAC - 2实体将收到的下行数据包复用 后, 发送到用户设备的物理层; 所述接收到下行数据包的 MAC - 2实体可 以是位于锚点网元的 MAC - 2实体和 /或位于非锚点网元的 MAC - 2实体。
本实施例进一步包括一种联合传输中下行数据的接收方法, 该方法包 括:
用户设备的物理层将获得的下行数据包, 通过自身内部锚点网元所在 系统对应的协议栈的 MAC - 2实体和 /或非锚点网元所在系统对应的协议栈 的 MAC - 2 实体, 发送给用户设备内锚点网元所在系统对应的协议栈的 MAC - 1实体,这里,所述自身内部锚点网元所在系统对应的协议栈的 MAC - 2实体和 /或非锚点网元所在系统对应的协议栈的 MAC - 2实体还对下行 数据包进行解复用 (demultiplex ); 所述用户设备内锚点网元所在系统对应 的协议栈的 MAC - 1实体将所述下行数据包依次经过用户设备的 RLC实体 和 PDCP实体, 发送到应用层;
其中,所述 RLC实体根据 RLC层的 SN将数据包完整的组合发送给自 身的 PDCP实体, 所述 PDCP实体根据 PDCP层的 SN, 按序将数据包发送 给应用层, 这样, 用户设备可以接收到完整、 有序的数据包。
本实施例进一步还包括一种联合传输中上行数据的发送方法, 该方法 包括:
用户设备在发送上行数据包时, 通过自身内锚点网元所在系统对应的 协议栈的 MAC - 1实体将上行数据包分发到自身内各 MAC - 2实体;
所述 MAC - 2实体通过物理层将上行数据包发向锚点网元和 /或非锚点 网元。
本实施例进一步还包括一种联合传输中上行数据的接收方法, 该方法 包括:
锚点网元和 /或非锚点网元的物理层获得用户设备发送的上行数据包, 通过位于自身的 MAC - 2实体发送到位于锚点网元的 MAC - 1实体; 所述位于锚点网元的 MAC - 1实体将所述上行数据包依次经过所述锚 点网元的 RLC实体发送到 PDCP实体。
为了实现上述方法, 本发明实施例还提供一种联合传输中数据传输的 网元侧, 该网元侧包括: 锚点网元和非锚点网元; 其中,
所述锚点网元和非锚点网元采用 MAC层分发数据包的数据传输协议 架构, 所述数据传输协议架构的 MAC层包括位于锚点网元的 MAC - 1 实 体和 MAC - 2实体, 以及位于非锚点网元的 MAC - 2实体;
所述锚点网元, 用于在联合传输数据时, 通过位于自身的 MAC - 1实 体分发下行数据包到各 MAC - 2实体,自身的 MAC - 2实体将收到的 MAC - 1实体分发的下行数据包发送给用户设备;
所述非锚点网元, 用于通过自身的 MAC - 2实体将收到的 MAC - 1实 体分发的下行数据包发送给用户设备。
所述锚点网元, 具体用于在联合传输数据时, 将下行数据包依次经过 PDCP实体和 RLC实体发送给 MAC - 1实体;通过 MAC - 1实体将收到的 下行数据包分发给各位于锚点网元的 MAC - 2 实体和位于非锚点网元的 MAC - 2实体。
所述锚点网元, 进一步用于通过 MAC - 1实体和数据接口, 按照预先 设定的分发策略向各 MAC - 2实体分发下行数据包。
基于上述网元侧, 本发明实施例还提供一种联合传输中数据传输的用 户设备, 该用户设备包括: 数据包接收单元和协议层传输单元; 其中, 所述用户设备在自身内部锚点网元所在系统对应的协议栈设置 MAC - 1 实体和 MAC - 2实体, 在自身内部非锚点网元所在系统对应的协议栈 设置 MAC - 2实体,并在自身 MAC - 1实体和 MAC - 2实体之间建立数据 接口;
所述数据包接收单元, 用于在物理层获得下行数据包; 协议层传输单元, 用于通过用户设备内锚点网元所在系统对应的协议 栈的 MAC - 2实体和 /或非锚点网元所在系统对应的协议栈的 MAC - 2实 体, 将获得的下行数据包发送给用户设备内锚点网元所在系统对应的协议 栈的 MAC - 1实体; 通过所述用户设备内锚点网元所在系统对应的协议栈 的 MAC - 1实体将所述下行数据包依次经过用户设备的 RLC实体和 PDCP 实体, 发送到应用层。
本发明实施例还提供一种联合传输中数据传输的用户设备, 该用户设 备包括: 数据包发送单元; 其中,
所述用户设备在自身内部锚点网元所在系统对应的协议栈设置 MAC - 1 实体和 MAC - 2实体, 在自身内部非锚点网元所在系统对应的协议栈 设置 MAC - 2实体,并在自身 MAC - 1实体和 MAC - 2实体之间建立数据 接口;
所述数据包发送单元, 用于在发送上行数据包时, 通过用户设备内锚 点网元所在系统对应的协议栈的 MAC - 1实体将上行数据包分发到用户设 备内各 MAC - 2实体, 所述 MAC - 2实体通过物理层将上行数据包发向锚 点网元和 /或非锚点网元。
所述数据包发送单元, 具体用于通过用户设备内锚点网元所在系统对 应的协议栈的 MAC - 1实体和数据接口, 按照预先设定的分发策略向用户 设备内各 MAC - 2实体分发下行数据包; 所述预先设定的分发策略包括: 按照设定的比例分发下行数据包的策略、 或根据无线信道质量决定分发下 行数据包的比例的策略等。
基于上述用户设备, 本发明实施例还提供一种联合传输中数据传输的 网元侧, 该网元侧包括: 锚点网元和非锚点网元; 其中,
所述锚点网元和非锚点网元采用 MAC层分发数据包的数据传输协议 架构; 所述数据传输协议架构的 MAC层包括位于锚点网元的 MAC - 1实体 和 MAC - 2实体, 以及位于非锚点网元的 MAC - 2实体;
所述锚点网元, 用于在物理层获得用户设备发送的上行数据包时, 通 过位于自身的 MAC - 2实体发送到位于自身的 MAC - 1实体; 所述 MAC - 1 实体将收到的上行数据包依次经过所述锚点网元的 RLC 实体发送到 PDCP实体;
非锚点网元, 用于在物理层获得用户设备发送的上行数据包时, 通过 位于自身的 MAC - 2实体发送到位于锚点网元的 MAC - 1实体。 理。
实施例一
本实施例中,用户设备 UE1驻留在 UMTS系统中的基站 1所辖小区 1 , 处于空闲状态,基站 1由 RNC管辖。与小区 1具有相同覆盖(或重叠覆盖) 的小区 2由演进基站 2管辖,演进基站 2属于 LTE系统。在 UMTS系统中, RNC与基站 1之间建有 Iub接口。 由于 RNC可能与 LTE中的演进基站 2 实施联合传输, 因此 RNC与演进基站 2之间建立了新的接口, 用于传递数 据和控制信令。 RNC 与演进基站 2 之间的接口建立可以由操作与维护 ( Operation & Maintenance )服务器实施。 本实施例实现一种联合传输中下 行数据传输的方法, 如图 4所示, 该方法包括以下几个步驟:
步驟 201 , UE1在小区 1发起随机接入, 向 RNC发送 RRC连接请求; 步驟 202, RNC接受 UE1发送的连接请求, 向 UE1返回 RRC连接建 立( RRC Connection Setup )信令, 所述 RRC连接建立信令中包含信令无线 承载(SRB, Signaling Radio Bearer ) 的配置参数;
步驟 203 , UE1应用 RRC连接建立信令中 SRB的配置参数, 向 RNC 发送 RRC连接建立完成( RRC Connection Setup Complete )信令; 所述 RRC连接建立完成信令中还包含 UE1的能力信息, 即 UE1支持 联合传输的能力信息。
至此, UE1已经与 RNC建立了 RRC连接。
步驟 204, UE1向 RNC发送初始直传( Initial Direct Transfer )信令, 其中包含非接入层信令, 即业务请求; RNC收到初始直传信令后, 将业务 请求发送给核心网;
步驟 205, 核心网收到业务请求后, 对用户设备鉴权成功后, 向 RNC 返回无线接入 载指派请求 ( Radio Access Bearer Assignment Request ), 其 中包含需要建立的数据无线承载( Data Radio Bearer ) DRB1的服务质量参 数等。
本步驟中, 所述无线接入承载指派请求的承载对应空口的 DRB1 ,在本 实施例中, DRB1需要的数据传输速率很高, 即服务质量参数中包含的数据 速率很高。
步驟 206, RNC检测到小区 1的无线资源满足不了 DRB1的数据传输 速率需求, RNC选择小区 2作为联合传输的目标小区, RNC配置自身 MAC 层分发数据包的数据传输协议架构的用户面参数, 并通过与演进基站 2之 间的接口向演进基站 2发送联合传输请求;
本步驟中, 所述 RNC的 MAC层分发数据包的数据传输协议架构如图 5所示, 包括: PDCP层、 RLC层和 MAC层; 其中, MAC层包括位于 RNC 的 MAC - 1实体和 MAC - 2实体, 以及位于演进基站 2的 MAC - 2实体; 所述 RNC配置自身 MAC层分发数据包的数据传输协议架构的用户面 参数, 具体为: 所述 RNC配置自身 PDCP层 PDCP实体、 RLC层 RLC实 体、 MAC层 MAC - 1实体和 MAC - 2实体的数据传输参数、 存储报告参 数等, 其中所述存储报告参数为可选的;
所述联合传输请求中包含了 DRB1的服务质量参数信息和小区 2的小 区标识信息;
所述 RNC根据小区 1已使用的无线资源和 DRB1需要占用的无线资源, 得出小区 1满足不了 DRB1需求的决策。
进一步的, 所述 RNC向 UE1发送测量配置, 根据 UE1返回的测量报 告选择小区 2作为联合传输的目标小区。
本实施例不限定用于表示需要建立跨系统联合传输的信令名称, 本实 施例也不限定 MAC层分成两部分的确切名称, 本实施例采用 MAC - 1实 体和 MAC - 2实体的名称,在实际中,可以采用其他的名称,如 MAC - Share 实体和 MAC - Schedule实体等,其中 MAC - 1实体或 MAC - Share实体具 备分发数据包的功能, MAC - 2实体或 MAC - Schedule实体具备资源调度 的功能, MAC - 2实体或 MAC - Schedule实体调度资源通过物理层发送数 据包。
步驟 207, 演进基站 2收到联合传输请求后, 接受该请求, 分配 UE1 在小区 2中的无线资源, 通过联合传输响应向 RNC返回分配的无线资源, 并在自身设置针对 UE1的 MAC - 2实体;
所述向 RNC返回分配的无线资源至少包括以下之一: 在小区 2 中的 RNTL 扰码、 随机接入参数、 物理层配置参数等。
步驟 208 , RNC收到演进基站 2返回的联合传输响应后, 分配 UE1在 小区 1中的无线资源,通过 RRC信令向 UE1发送承载建立信令,所述承载 建立信令中包含 RNC为 UE1分配的无线资源及演进基站 2为 UE1分配的 无线资源;
所述承载建立信令可以复用现有的 RRC信令, 如无线承载建立、 或无 线 载重配置、 或 RRC连接重配置, 也可以新增加 RRC信令, 该 RRC信 令携带在每个联合传输系统中为用户设备分配的无线资源。
步驟 209, UE1收到承载建立信令后, 得到演进基站 2为 UE1配置的 无线资源及 RNC为 UE1配置的无线资源,配置 MAC层分发数据包的数据 传输协议架构的用户面参数;
本步驟中, UE1内部具备 UMTS系统对应的协议栈和 LTE系统对应的 协议栈, UE1在 UMTS系统对应的协议栈设置自身 MAC - 1实体和 MAC - 2 实体, 在 LTE 系统对应的协议栈设置自身 MAC - 2 实体, 并在自身 MAC - 1实体和 MAC - 2实体之间建立数据接口; UE1配置自身的 PDCP 层 PDCP实体、 RLC层 RLC实体、 MAC层 MAC - 1实体和 MAC - 2实体 的数据传输参数、 存储报告参数等, 其中所述存储报告参数为可选的。
此处需要说明的是, 在步驟 209中, UE1收到小区 2的无线资源中可 以包含随机接入资源, 该随机接入资源由演进基站 2分配, 经由 RNC发送 给 UE1 , UE1依据该随机接入资源在小区 2发起随机接入获得上行同步。
考虑到运营商在布局联合传输的网络时, 为了减少用户设备在不同系 统中的同步问题, UMTS系统和 LTE系统部署成同步状态, 即 UE1在取得 与 UMTS的同步后, 自动获得与 LTE系统的同步,这样 UE1不需要在小区 2实施随机接入获得上行同步, 此时小区 2为 UE1分配的无线资源可以不 包含随机接入资源。
步驟 210: 在联合传输数据时, 位于 RNC的 MAC - 1实体将下行数据 包分发给位于 RNC和演进基站 2的 MAC - 2实体;
具体的, 在联合传输数据时, RNC的下行数据包依次经过 PDCP实体 和 RLC实体, 生成 RLC PDU, RLC实体将 RLC PDU发送给 MAC - 1实 体; 所述 RLC PDU到达 MAC - 1实体后即为 MAC SDU, 所述 MAC - 1 实体通过数据接口将收到的下行数据包按照预先设定的分发策略分发给各 位于 RNC的 MAC - 2实体和位于基站 2的 MAC - 2实体。 这里, 下行数 据包依次经过 PDCP实体和 RLC实体后, 已经实现加密、 分段等功能, 并 且, 为了下行数据包有序的传输, PDCP实体和 RLC实体对下行数据包增 加各自的 SN。
步驟 211: 接收到下行数据包的 MAC - 2实体将收到的下行数据包发 送给 UE1;
具体的,所述 RNC和演进基站 2中的 MAC - 2实体在接收到下行数据 包时, 分别将收到的下行数据包复用后, 发送到 UE1的物理层。
步驟 212: UE1将获得的数据包合并后得到完整数据。
具体的, UE1的物理层将获得的下行数据包, 通过自身内部 UMTS系 统对应的协议栈的 MAC - 2实体和 /或 LTE系统对应的协议栈的 MAC - 2 实体, 发送给 UE1内 UMTS系统对应的协议栈的 MAC - 1实体, 这里, 所 述自身内部 UMTS系统对应的协议栈的 MAC - 2实体和 /或 LTE系统对应 的协议栈的 MAC - 2实体还对下行数据包进行解复用; 所述 UE1内 UMTS 系统对应的协议栈的 MAC - 1实体将所述下行数据包依次经过 UE1的 RLC 实体和 PDCP实体, 发送到应用层;
其中,所述 RLC实体根据 RLC层的 SN将数据包完整的组合发送给自 身的 PDCP实体, 所述 PDCP实体根据 PDCP层的 SN, 按序将数据包发送 给应用层, 这样, UE1可以接收到完整、 有序的数据包。
本实施例中, RNC为锚点网元, LTE系统的演进基站 2为非锚点网元。 实施例二
本实施例中,用户设备 UE2通过 LTE系统接入网络处于连接状态 , UE2 接入演进基站 3所辖小区 3, 即演进基站 3已经为 UE2建立了 RRC连接。 UMTS系统中的基站 4由 RNC管辖,基站 4所辖小区 4与小区 3的覆盖区 域重叠。
本实施例的应用场景为: UE2 已经建立了一条数据无线承载(DRB, Data Radio Bearer ), 以下用 DRB1表示。 若 UE2需要新建一条数据无线承 载 DRB2, 而演进基站 3没有足够的资源满足 UE2的新 DRB2的服务质量 参数需求时, 由于演进基站 3在 UE2接入网络时已经获知 UE2具备支持联 合传输的能力, 因此演进基站 3希望使用联合传输的方式使得 UE2能够获 得更多的无线资源。 演进基站 3通过 UE2上报的测量报告, 获知 UE2测得 小区 4的信号质量超过预定的门限, 演进基站 3为 UE2配置联合传输。 本 实施例联合传输中下行数据传输的方法, 如图 6所示, 包括以下几个步驟: 步驟 301 , 演进基站 3配置自身 MAC层分发数据包的数据传输协议架 构的用户面参数, 通过与 RNC之间的接口向 RNC发送联合传输请求; 本步驟中,所述演进基站 3的 MAC层分发数据包的数据传输协议架构 如图 7所示, 包括: PDCP层、 RLC层和 MAC层; 其中, MAC层包括位 于演进基站 3的 MAC - 1实体和 MAC - 2实体,以及位于 RNC的 MAC - 2实体;
所述演进基站 3配置自身 MAC层分发数据包的数据传输协议架构的用 户面参数, 具体为: 所述演进基站 3配置自身 PDCP层 PDCP实体、 RLC 层 RLC实体、 MAC层 MAC - 1实体和 MAC - 2实体的数据传输参数、 存 储报告参数等;
所述联合传输请求中包含 DRB2的服务质量参数信息和小区 4的小区 标识信息。
步驟 302, RNC收到联合传输请求后, 接受该请求, 分配 UE2在小区 4的无线资源, 通过联合传输响应向演进基站 3返回分配的无线资源, 并在 自身设置针对 UE2的 MAC - 2实体, 配置 MAC - 2实体的数据传输参数、 存储报告参数等;
所述向演进基站 3 返回分配的无线资源包括在小区 4或 RNC 中的 RNTL 扰码、 随机接入参数、 物理层配置参数等;
本步驟中, 所述分配 UE2在小区 4的无线资源, 一般是根据 DRB2的 服务质量参数分配 UE2在小区 4的无线资源,尽可能满足用户设备的 DRB2 数据传输要求。
步驟 303, 演进基站 3收到 RNC返回的联合传输响应后, 分配 UE2在 小区 3中的无线资源,通过 RRC信令向 UE2发送承载建立信令,所述承载 建立信令中包含演进基站 3为 UE2配置的无线资源及 RNC为 UE2配置的 无线资源;
本步驟所述在小区 4中的无线资源至少包括以下之一: 在小区 4中的 RNTL 扰码、 随机接入参数、 或物理层配置参数等。
步驟 304, UE2收到承载建立信令后, 获得演进基站 3为 UE2配置的 无线资源及 RNC为 UE2配置的无线资源,配置 MAC层分发数据包的数据 传输协议架构的用户面参数;
本步驟所述用户面参数包括: UE2的 PDCP层 PDCP实体、 RLC层 RLC 实体、 MAC层 MAC - 1实体和 MAC - 2实体的数据传输参数、 存储报告 参数等。
步驟 305: 在联合传输数据时, 位于演进基站 3的 MAC - 1实体将下 行数据包分发给位于 RNC和演进基站 3的 MAC - 2实体;
具体的, 在联合传输数据时, 演进基站 3的下行数据包依次经过 PDCP 实体和 RLC实体,生成 RLC PDU, RLC实体将 RLC PDU发送给 MAC - 1 实体; 所述 RLC PDU到达 MAC - 1实体后即为 MAC SDU, 所述 MAC - 1 实体通过数据接口将收到的下行数据包按照预先设定的分发策略分发给各 位于 RNC的 MAC - 2实体和位于基站 3的 MAC - 2实体。 这里, 下行数 据包依次经过 PDCP实体和 RLC实体后, 已经实现加密、 分段等功能, 并 且, 为了下行数据包有序的传输, PDCP实体和 RLC实体对下行数据包增 加各自的 SN。
步驟 306: 接收到下行数据包的 MAC - 2实体将收到的下行数据包发 送给 UE2; 具体的,所述 RNC和演进基站 3中的 MAC - 2实体在接收到下行数据 包时, 分别将收到的下行数据包复用后, 发送到 UE2的物理层。
步驟 307: UE2将获得的下行数据包合并后得到完整数据。
具体的, UE2的物理层将获得的下行数据包, 通过自身内部 UMTS系 统对应的协议栈的 MAC - 2实体和 /或 LTE系统对应的协议栈的 MAC - 2 实体, 发送给 UE2内 LTE系统对应的协议栈的 MAC - 1实体, 这里, 所述 自身内部 UMTS系统对应的协议栈的 MAC - 2实体和 /或 LTE系统对应的 协议栈的 MAC - 2实体还对下行数据包进行解复用;所述 UE2内 LTE系统 对应的协议栈的 MAC - 1实体将所述下行数据包依次经过 UE2的 RLC实 体和 PDCP实体, 发送到应用层;
其中,所述 RLC实体根据 RLC层的 SN将数据包完整的组合发送给自 身的 PDCP实体, 所述 PDCP实体根据 PDCP层的 SN, 按序将数据包发送 给应用层, 这样, UE2可以接收到完整、 有序的下行数据包。
本实施例中, 演进基站 3为锚点网元, RNC为非锚点网元。
本实施例还有其他的实现方式,如果 UE2在 UMTS侧使用 HSPA技术, MAC - 2实体可以位于基站 4, 基站 3可以通过与 RNC之间的接口传递用 户的下行数据包, 然后再由 RNC通过与基站 4之间的接口传递给基站 4, 基站 4内的 MAC - 2实体负责资源调度, 将下行数据包发送给 UE2; 或者 基站 3与基站 4之间建立直接接口, 基站 3通过所述接口向基站 4传递用 户的下行数据包, 基站 4内的 MAC - 2实体负责资源调度, 将下行数据包 发送给 UE2。
本实施例中, 所述 MAC - 1实体通过数据接口将收到的下行数据包按 照预先设定的分发策略分发给各位于 RNC的 MAC - 2实体和位于基站 3 的 MAC - 2实体, 一般是: MAC - 1实体按照设定的比例分发数据包、 或 MAC - 1实体根据无线信道质量决定分发下行数据包的比例,如: MAC - 1 实体依据 UE2所测得小区 3和小区 4的无线信道质量动态的调整下行数据 包分发的比例, 如果小区 3和小区 4的无线信道质量相同, 则可以按照 1: 1的比例分发下行数据包; 如果小区 3的无线信道质量更好, 则可以多分配 一些下行数据包给位于基站 3的 MAC _ 2实体, 通过无线信道质量好的链 路传输数据可以获得更高的吞吐量。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种联合传输中下行数据的发送方法, 其特征在于, 该方法包括: 参与联合传输的锚点网元和非锚点网元采用媒体接入控制 (MAC )层 分发数据包的数据传输协议架构;
所述数据传输协议架构的 MAC层包括位于锚点网元的 MAC - 1实体 和 MAC - 2实体, 以及位于非锚点网元的 MAC - 2实体;
在联合传输数据时, 所述位于锚点网元的 MAC - 1实体将下行数据包 分发给各 MAC - 2实体,接收到下行数据包的 MAC - 2实体将收到的下行 数据包发送给用户设备。
2、 根据权利要求 1所述的发送方法, 其特征在于, 所述 MAC层分发 数据包的数据传输协议架构还包括: 分组数据汇聚协议 ( PDCP )层和无线 链路控制 (RLC )层;
所述锚点网元将下行数据包经过 PDCP层的 PDCP实体和 RLC层的 RLC实体, 生成 RLC协议数据单元( PDU ); RLC实体将 RLC PDU发送 给 MAC层的 MAC - 1实体。
3、 根据权利要求 1所述的发送方法, 其特征在于, 所述位于锚点网元 的 MAC - 1实体将下行数据包分发给各 MAC - 2实体, 为:
所述 MAC - 1 实体按照预先设定的分发策略通过数据接口向各 MAC - 2实体分发下行数据包;
所述预先设定的分发策略为: 按照设定的比例分发下行数据包的策略、 或根据无线信道质量决定分发下行数据包的比例的策略。
4、 根据权利要求 1所述的发送方法, 其特征在于, 该方法还包括: 所述用户设备内部具备锚点网元所在系统对应的协议栈和非锚点网元 所在系统对应的协议栈, 用户设备在所述锚点网元所在系统对应的协议栈 设置 MAC - 1实体和 MAC - 2实体, 在所述非锚点网元所在系统对应的协 议栈设置 MAC - 2实体,并在自身 MAC - 1实体和 MAC - 2实体之间建立 数据接口。
5、 根据权利要求 4所述的发送方法, 其特征在于, 该方法还包括: 所 述用户设备的物理层获得下行数据包, 通过自身内部锚点网元所在系统对 应的协议栈的 MAC - 2 实体和 /或非锚点网元所在系统对应的协议栈的 MAC - 2 实体, 将获得的下行数据包发送给用户设备内锚点网元所在系统 对应的协议栈的 MAC - 1实体;
所述用户设备内锚点网元所在系统对应的协议栈的 MAC - 1实体将所 述下行数据包经过用户设备的 RLC实体和 PDCP实体, 发送到应用层。
6、 根据权利要求 4所述的发送方法, 其特征在于, 该方法还包括: 用 户设备在发送上行数据包时, 通过自身内锚点网元所在系统对应的协议栈 的 MAC - 1实体将上行数据包分发到自身内各 MAC - 2实体, 所述 MAC - 2实体通过物理层将上行数据包发向锚点网元和 /或非锚点网元。
7、 根据权利要求 6所述的发送方法, 其特征在于, 该方法还包括: 所 述锚点网元和 /或非锚点网元的物理层获得用户设备发送的上行数据包, 通 过位于自身的 MAC - 2实体发送到位于锚点网元的 MAC - 1实体;
所述位于锚点网元的 MAC - 1实体将所述上行数据包经过所述锚点网 元的 RLC实体发送到 PDCP实体。
8、 根据权利要求 1至 7任一项所述的发送方法, 其特征在于, 所述锚 点网元为已与用户设备建立无线资源控制 (RRC )连接的系统的接入网网 元。
9、 根据权利要求 8所述的发送方法, 其特征在于, 所述已与用户设备 建立 RRC连接的系统为通用移动通信系统(UMTS ) 系统时, 所述锚点网 元为 UMTS系统的 RNC或基站; 或者, 所述已与用户设备建立 RRC连接 的系统为长期演进(LTE ) 系统时, 所述锚点网元为 LTE系统的演进基站。
10、 一种联合传输中下行数据的接收方法, 其特征在于, 该方法包括: 用户设备在自身内部锚点网元所在系统对应的协议栈设置 MAC - 1实 体和 MAC - 2 实体, 在自身内部非锚点网元所在系统对应的协议栈设置 MAC - 2实体,并在自身 MAC - 1实体和 MAC - 2实体之间建立数据接口; 用户设备的物理层获得下行数据包, 通过自身内部锚点网元所在系统 对应的协议栈的 MAC - 2 实体和 /或非锚点网元所在系统对应的协议栈的 MAC - 2 实体, 将获得的下行数据包发送给用户设备内锚点网元所在系统 对应的协议栈的 MAC - 1实体;
所述用户设备内锚点网元所在系统对应的协议栈的 MAC - 1实体将所 述下行数据包经过用户设备的 RLC实体和 PDCP实体, 发送到应用层。
11、 一种联合传输中上行数据的发送方法, 其特征在于, 该方法包括: 用户设备在自身内部锚点网元所在系统对应的协议栈设置 MAC - 1实 体和 MAC - 2 实体, 在自身内部非锚点网元所在系统对应的协议栈设置 MAC - 2实体,并在自身 MAC - 1实体和 MAC - 2实体之间建立数据接口; 用户设备在发送上行数据包时, 通过自身内锚点网元所在系统对应的 协议栈的 MAC - 1实体将上行数据包分发到自身内各 MAC - 2实体, 所述 MAC - 2实体通过物理层将上行数据包发向锚点网元和 /或非锚点网元。
12、 一种联合传输中上行数据的接收方法, 其特征在于, 该方法包括: 参与联合传输的锚点网元和非锚点网元采用 MAC层分发数据包的数 据传输协议架构;
所述数据传输协议架构的 MAC层包括位于锚点网元的 MAC - 1实体 和 MAC - 2实体, 以及位于非锚点网元的 MAC - 2实体;
锚点网元和 /或非锚点网元的物理层获得用户设备发送的上行数据包, 通过位于自身的 MAC - 2实体发送到位于锚点网元的 MAC - 1实体;
所述位于锚点网元的 MAC - 1实体将所述上行数据包经过所述锚点网 元的 RLC实体发送到 PDCP实体。
13、 一种联合传输中数据传输的网元侧, 其特征在于, 该网元侧包括: 锚点网元和非锚点网元; 其中,
所述锚点网元和非锚点网元采用 MAC层分发数据包的数据传输协议 架构, 所述数据传输协议架构的 MAC层包括位于锚点网元的 MAC - 1实 体和 MAC - 2实体, 以及位于非锚点网元的 MAC - 2实体;
所述锚点网元, 用于在联合传输数据时, 通过位于自身的 MAC - 1实 体分发下行数据包到各 MAC - 2实体,自身的 MAC - 2实体将收到的 MAC - 1实体分发的下行数据包发送给用户设备;
所述非锚点网元, 用于通过自身的 MAC - 2实体将收到的 MAC - 1实 体分发的下行数据包发送给用户设备。
14、 根据权利要求 13所述的网元侧, 其特征在于, 所述锚点网元, 具 体用于在联合传输数据时, 将下行数据包经过 PDCP实体和 RLC实体发送 给 MAC - 1实体; 通过 MAC - 1实体将收到的下行数据包分发给各位于锚 点网元的 MAC - 2实体和位于非锚点网元的 MAC - 2实体。
15、 一种联合传输中数据传输的用户设备, 其特征在于, 该用户设备 包括: 数据包接收单元和协议层传输单元; 其中,
所述用户设备在自身内部锚点网元所在系统对应的协议栈设置 MAC - 1 实体和 MAC - 2实体, 在自身内部非锚点网元所在系统对应的协议栈 设置 MAC - 2实体,并在自身 MAC - 1实体和 MAC - 2实体之间建立数据 接口;
所述数据包接收单元, 用于在物理层获得下行数据包;
协议层传输单元, 用于通过用户设备内锚点网元所在系统对应的协议 栈的 MAC - 2实体和 /或非锚点网元所在系统对应的协议栈的 MAC - 2实 体, 将获得的下行数据包发送给用户设备内锚点网元所在系统对应的协议 栈的 MAC - 1实体; 通过所述用户设备内锚点网元所在系统对应的协议栈 的 MAC - 1 实体将所述下行数据包经过用户设备的 RLC实体和 PDCP实 体, 发送到应用层。
16、 一种联合传输中数据传输的用户设备, 其特征在于, 该用户设备 包括: 数据包发送单元; 其中,
所述用户设备在自身内部锚点网元所在系统对应的协议栈设置 MAC - 1 实体和 MAC - 2实体, 在自身内部非锚点网元所在系统对应的协议栈 设置 MAC - 2实体,并在自身 MAC - 1实体和 MAC - 2实体之间建立数据 接口;
所述数据包发送单元, 用于在发送上行数据包时, 通过用户设备内锚 点网元所在系统对应的协议栈的 MAC - 1实体将上行数据包分发到用户设 备内各 MAC - 2实体, 所述 MAC - 2实体通过物理层将上行数据包发向锚 点网元和 /或非锚点网元。
17、 一种联合传输中数据传输的网元侧, 其特征在于, 该网元侧包括: 锚点网元和非锚点网元; 其中,
所述锚点网元和非锚点网元采用 MAC层分发数据包的数据传输协议 架构;
所述数据传输协议架构的 MAC层包括位于锚点网元的 MAC - 1实体 和 MAC - 2实体, 以及位于非锚点网元的 MAC - 2实体;
所述锚点网元, 用于在物理层获得用户设备发送的上行数据包时, 通 过位于自身的 MAC - 2实体发送到位于自身的 MAC - 1实体; 所述 MAC - 1 实体将收到的上行数据包经过所述锚点网元的 RLC实体发送到 PDCP 实体;
非锚点网元, 用于在物理层获得用户设备发送的上行数据包时, 通过 位于自身的 MAC - 2实体发送到位于锚点网元的 MAC - 1实体。
PCT/CN2012/072214 2011-06-23 2012-03-12 联合传输中数据传输的方法、网元侧及用户设备 WO2012174889A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110171606.8A CN102843730B (zh) 2011-06-23 2011-06-23 联合传输中数据传输的方法、网元侧及用户设备
CN201110171606.8 2011-06-23

Publications (1)

Publication Number Publication Date
WO2012174889A1 true WO2012174889A1 (zh) 2012-12-27

Family

ID=47370728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072214 WO2012174889A1 (zh) 2011-06-23 2012-03-12 联合传输中数据传输的方法、网元侧及用户设备

Country Status (2)

Country Link
CN (1) CN102843730B (zh)
WO (1) WO2012174889A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014172892A1 (zh) * 2013-04-26 2014-10-30 华为技术有限公司 业务分流方法、装置及系统
CN104320812B (zh) * 2014-10-13 2018-12-28 中国联合网络通信集团有限公司 一种联合传输的方法、装置及系统
WO2017045100A1 (zh) * 2015-09-14 2017-03-23 华为技术有限公司 一种基于多基站多载波的数据传输方法以及基站
US10694417B2 (en) * 2016-01-07 2020-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for downlink flow control in wireless communication systems
CN110649942A (zh) * 2018-06-27 2020-01-03 华为技术有限公司 一种联合传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120732A2 (en) * 2009-04-13 2010-10-21 Qualcomm Incorporated Radio link control protocol data unit size selection in dual carrier hsupa
WO2010131850A2 (ko) * 2009-05-11 2010-11-18 엘지전자 주식회사 다중 반송파를 지원하는 무선 통신 시스템에서 중복 데이터를 송신 및 수신하는 방법 및 장치
CN102014515A (zh) * 2009-12-31 2011-04-13 大唐移动通信设备有限公司 一种随机接入方法、设备和系统
US20110103332A1 (en) * 2009-11-05 2011-05-05 Richard Lee-Chee Kuo Method and apparatus to trigger a random access procedure for carrier aggregration in a wireless communication network

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7596112B2 (en) * 2005-03-22 2009-09-29 Interdigital Technology Corporation Method and apparatus for rate compatible dirty paper coding
CN101064728B (zh) * 2006-04-30 2010-06-23 中兴通讯股份有限公司 一种基于td-scdma系统的随机接入控制方法
CN101179476B (zh) * 2006-11-09 2010-06-02 大唐移动通信设备有限公司 一种利用hsdpa传送mbms业务的方法、装置及系统
EP2232908A2 (en) * 2008-01-02 2010-09-29 InterDigital Technology Corporation Method and apparatus for cooperative wireless communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120732A2 (en) * 2009-04-13 2010-10-21 Qualcomm Incorporated Radio link control protocol data unit size selection in dual carrier hsupa
WO2010131850A2 (ko) * 2009-05-11 2010-11-18 엘지전자 주식회사 다중 반송파를 지원하는 무선 통신 시스템에서 중복 데이터를 송신 및 수신하는 방법 및 장치
US20110103332A1 (en) * 2009-11-05 2011-05-05 Richard Lee-Chee Kuo Method and apparatus to trigger a random access procedure for carrier aggregration in a wireless communication network
CN102014515A (zh) * 2009-12-31 2011-04-13 大唐移动通信设备有限公司 一种随机接入方法、设备和系统

Also Published As

Publication number Publication date
CN102843730B (zh) 2017-05-03
CN102843730A (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
US12108413B2 (en) Method and apparatus for transmitting and receiving data using plurality of carriers in mobile communication system
US11470632B2 (en) Method and device for transmitting or receiving scheduling request in mobile communication system
JP5917691B2 (ja) ワイヤレスブロードバンド通信方法、デバイス、およびシステム
US10708940B2 (en) Method and apparatus for reporting buffer state by user equipment in communication system
KR102184046B1 (ko) 이동통신 시스템에서 복수의 캐리어를 이용하는 데이터 송수신 방법 및 장치
EP2744260B1 (en) Data transmission method and device
WO2018028694A1 (zh) 设备直通系统的通信方法及装置、通信系统
EP3764580B1 (en) Method and apparatus for transmitting data in carrier aggregation manner
KR102041429B1 (ko) 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치
WO2017124941A1 (zh) 传输数据的方法、用户设备和基站
WO2010083771A1 (zh) 上行载频管理方法、装置和系统
WO2010142198A1 (zh) 载波聚合系统中的载波分配方法与装置
KR101896440B1 (ko) 기지국간 반송파 집적 기술을 사용하는 무선통신시스템에서 버퍼 상태 보고를 처리하는 방법 및 장치
WO2011150774A1 (zh) 一种多个无线接入网聚合系统及其实现方法
CN107135547B (zh) 一种多连接系统中的数据处理方法和装置
WO2013060300A1 (zh) 数据分流传输方法、用户设备和基站
CN102843723B (zh) 一种联合传输的方法、系统及锚点网元
EP2966898A1 (en) Radio resource management method, macro base station, and low-power node
JP2014131240A (ja) バッファ状態報告の送信制御方法、ユーザ装置、および無線通信システム
WO2013064124A1 (zh) 传输时间间隔的确定方法、基站和无线网络控制器
WO2014101677A1 (zh) 一种发送rrc信令的方法、基站和系统
WO2012174889A1 (zh) 联合传输中数据传输的方法、网元侧及用户设备
WO2016026117A1 (zh) 一种资源分配、业务传输方法及装置
WO2012126330A1 (zh) 联合传输方法及系统
WO2016029409A1 (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803404

Country of ref document: EP

Kind code of ref document: A1