WO2012174844A1 - Semiconductor photocatalyst for hydrogen production from biomass derivatives by photocatalytic reforming, and preparation method and use thereof - Google Patents

Semiconductor photocatalyst for hydrogen production from biomass derivatives by photocatalytic reforming, and preparation method and use thereof Download PDF

Info

Publication number
WO2012174844A1
WO2012174844A1 PCT/CN2012/000064 CN2012000064W WO2012174844A1 WO 2012174844 A1 WO2012174844 A1 WO 2012174844A1 CN 2012000064 W CN2012000064 W CN 2012000064W WO 2012174844 A1 WO2012174844 A1 WO 2012174844A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
complex
cobalt
nickel
iron
Prior art date
Application number
PCT/CN2012/000064
Other languages
French (fr)
Chinese (zh)
Inventor
吴骊珠
李治军
李成博
李旭兵
李嘉欣
Original Assignee
中国科学院理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011101702652A external-priority patent/CN102335618B/en
Priority claimed from CN201110308867.XA external-priority patent/CN103041829B/en
Priority claimed from CN201110344439.2A external-priority patent/CN103084190B/en
Application filed by 中国科学院理化技术研究所 filed Critical 中国科学院理化技术研究所
Publication of WO2012174844A1 publication Critical patent/WO2012174844A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J27/045Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/049Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0573Selenium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds

Definitions

  • the present invention relates to a photocatalytic system for photocatalytic reforming of biomass derivatives and hydrogen production, and more particularly to a semiconductor photocatalyst for photocatalytic reforming of biomass derivatives and hydrogen production and preparation method thereof And application. Background technique
  • Biomass is the most widespread substance on earth. It includes all animals, plants and microorganisms, as well as many organic matter derived, excreted and metabolized by these living things. All kinds of biomass have a certain amount of energy. Biomass is the biomass and the energy produced by biomass is biomass. Biomass energy is a form of energy in which solar energy is stored in the form of chemical energy, either directly or indirectly from the photosynthesis of plants. The energy consumed by plants on photosynthesis on Earth only accounts for 0.2% of the total radiation of the Earth. This ratio is not large, but the absolute value is amazing: the energy of photosynthesis is 40 times of the total human energy consumption. . It can be seen that biomass energy is a huge energy source.
  • biomass has the obvious disadvantage of low energy density and resource dispersion.
  • Hydrogen is a high-energy, high-efficiency, clean, high-quality energy source. Hydrogen can be transported as long as it can be stored for long periods of time, and the density of hydrogen hydride is higher than that of natural gas. Therefore, the conversion of a large amount of dispersed biomass into hydrogen, and the centralized storage and transportation of hydrogen is easier than the centralized storage and transportation of biomass, which is an important way to store and concentrate biomass.
  • the photocatalytic reforming biomass hydrogen production technology can be carried out under normal temperature and pressure, using sunlight as a driving force for the reaction, and is a clean and sustainable hydrogen production technology. The essence of its energy conversion is to convert the inexhaustible solar energy into the energy required by human beings, which is not only renewable but also environmentally friendly.
  • Japanese Patent No. 57,156,302 discloses a method for producing hydrogen by photocatalytic reforming of methanol using Ti0 2 , CdS , GaP;
  • Japanese Patent No. 59,203,701 discloses "a method for photocatalytic reforming of water by 1:1 water-methanol to produce hydrogen", the catalyst is Ti0 2 and one of CrB, Ni 2 B, Co 2 P, Mo 2 C, Cr 3 C 2 is supported on the surface thereof. Irradiation with a 500 W UV lamp produces a hydrogen production rate of 0.28 to 0.96 ml/h.
  • 6,186,943 also discloses "a method for photocatalytic reforming of 1:1 water-ethanol hydrogen production" using an amorphous Si-loaded Pt. When irradiated with a 100W halogen lamp, the hydrogen production rate can reach 0.03 ml/h.
  • Li Can et al. of the Dalian Institute of Chemical Physics, Chinese Academy of Sciences reported three different catalysts for photocatalytic reforming of biomass derivatives.
  • Chinese patent CN200410031517.3 discloses a novel composite photocatalyst which can be used for photocatalytic reforming of biomass derivatives under ultraviolet light and a preparation method thereof, and the atomic composition ratio of the catalyst is A ⁇ TaOs: B x , wherein X is 0 or 1; A is an alkali metal element; and B is a ruthenium or osmium element.
  • 200810240366.0 discloses a heterojunction photocatalyst for reforming biomass-derived hydrogen and a preparation method thereof, wherein the photocatalyst has a composition of m% WO x S y /CdS (where X is oxygen in a tungsten species) The amount fraction of the substance, 0 ⁇ x ⁇ l; y is the amount fraction of the substance of sulfur in the tungsten species, 0 ⁇ y ⁇ 2 ; m is the weight percentage of the tungsten element, 0 ⁇ m ⁇ 10).
  • the photocatalyst is based on the concept of semiconductor heterojunction.
  • the precursor of W is supported on the CdS catalyst by a dipping method using a CdS catalyst as a carrier. Then, the sulfur (oxygen) of W is assembled in CdS by high temperature baking. On the surface, a hydrogen heterojunction photocatalyst for the preparation of a hydrazine active reforming biomass derivative is prepared.
  • the hydrogen generating activity of the Ti0 2 photocatalyst is Ti0. 2
  • the reference agent (P25) is about five times lower, and the CO content in hydrogen is reduced by at least two orders of magnitude, even below 5 ppm.
  • a first technical problem to be solved by the present invention is to provide a semiconductor photocatalyst for photocatalytic reforming of biomass derivatives and hydrogen production.
  • a second technical problem to be solved by the present invention is to provide a method for producing the above semiconductor photocatalyst.
  • a third technical problem to be solved by the present invention is to provide a system comprising photocatalytic reforming of a biomass derivative of the above semiconductor photocatalyst and producing hydrogen gas.
  • a fourth technical problem to be solved by the present invention is to provide a method for photocatalytic reforming of a biomass derivative by using the above semiconductor photocatalyst and producing hydrogen.
  • the present invention relates to a semiconductor photocatalyst for photocatalytic reforming of biomass derivative hydrogen production, comprising the following technical features:
  • the atomic composition ratio of the semiconductor photocatalyst is M:NA X; one by one
  • is a family element ⁇ family element or ⁇ is a family element ⁇ family element;
  • A is one or more elements of cobalt, nickel, iron, copper, chromium, palladium, platinum, rhodium, ruthenium, gold, silver, manganese, ruthenium or osmium; wherein 0.02% ⁇ x ⁇ 1.0 %.
  • M to N means a group II element and a corresponding group VI element; or a group III element and a corresponding group V element.
  • Group II elements are lib group elements Zn, Cd; Group VI elements are Via group 3, Se, Te; Group III is Ilia group elements In; V is Va group elements P, As.
  • the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -M to NA x , Sn0 2 -M to NA x or ZnO-M to NA x .
  • the method for preparing the semiconductor photocatalysts M to NA X of the present invention comprises the following steps:
  • a cobalt salt, a cobalt complex, a nickel salt, a nickel complex, an iron salt, an iron complex, a copper salt, a chromium salt, a palladium salt, a platinum salt, or a platinum salt are added to the reactor.
  • step 5 passing an inert gas into solution C of step 4), or vacuuming the above reactor; irradiating the reactor with a mixed light beam of ultraviolet light, visible light or ultraviolet light and visible light in an inert gas or vacuum atmosphere, in situ A semiconductor catalyst having an atomic composition ratio of M to NA X was obtained.
  • biomass derivative is methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose, mannose, ascorbic acid, L-valine or L-half Cystine.
  • the preparation method of the semiconductor photocatalyst Ti0 2 -M ⁇ N- A x , Sn0 2 -M ⁇ NA x or ZnO-M ⁇ NA x of the present invention comprises the following steps:
  • a quantum dot composed of a group II ⁇ VI element or a group 111 ⁇ is added, and Ti0 2 , Sn0 2 , ZnO are added to adjust the pH 7; centrifugation, the supernatant is removed, and the precipitate is retained;
  • a salt of cobalt a complex of cobalt, a salt of nickel, a complex of nickel, a salt of iron, a complex of iron, a salt of copper, and a chromium Salt, palladium salt, platinum salt, barium salt, barium salt, barium salt, gold salt, silver salt, manganese salt, barium salt, barium salt;
  • the biomass derivative is triethanolamine, triethylamine, methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose or mannose.
  • step 1) in the quantum dot density or 111 ⁇ II ⁇ VI elements is greater than I xl0_ 4 g / L; refers to the concentration of the quantum dots quantum After all reactants are added to a vessel and dilute System Point concentration
  • the quantum dots composed of the group II to VI elements include composite structure quantum dots composed of one or more of CdS, CdSe, CdTe, PbS, PbSe, ZnS, and ZnSe.
  • the quantum dots composed of the group III to V elements include a composite structure quantum dot composed of one or two of InP and InAs.
  • the cobalt salt, the cobalt complex, the nickel salt, the nickel complex, the iron salt, the iron complex, the copper salt, the chromium salt, the palladium salt, the platinum The concentration of salt, barium salt, barium salt, barium salt, gold salt, silver salt, manganese salt, barium salt and/or barium salt in the reaction system ⁇ l xl (r 6 m 0 l /L ; that is, the cobalt salt, the cobalt complex, the nickel salt, the nickel complex, the iron salt, the iron complex, the copper salt, the chromium salt, the palladium salt, the platinum salt, the ruthenium Salt, barium salt, barium salt, gold salt, silver salt, manganese salt, barium salt, barium salt in the whole reaction system can reach the cobalt salt, cobalt complex, nickel Salt, nickel complex, iron salt, iron complex, copper salt, chromium salt, palladium salt, platinum salt, barium salt, barium salt
  • the cobalt complex is a cobalt-ammonia complex [Co(NH 3 ) 6 ] 3+ , a cobalt-cyano complex [Co(CN) 6 ] 4 cobalt-thiocyanate complex [Co(SCN) 4 ] 2 Cobalt-carbonyl complex [Co(CO) 4 ; r, cobalt-nitro complex [Co(N0 3 ) 4 f, cobalt-nitroso complex [Co(N0 2 ) 6 ] 3 _ or cobalt - a dimethylglyoxime complex; wherein the cobalt-butanedione oxime complex and its derivative are of the following structural formula:
  • L is 3 ⁇ 40 or CH 3 CN; R 3 ⁇ 4H, N(CH 3 ) 2 or (COOCH 3 );
  • the salt of nickel is nickel halide, nickel sulfate, nickel nitrate, nickel carbonate, nickel oxalate, nickel acetate, nickel phosphate or nickel chromite;
  • the complex of nickel is a nickel-ammonia complex [Ni(NH 3 ) 6 ] 2+ , a nickel-cyanide complex Ni(CN) 4 f, a nickel-chelate [Ni(en) 3 ] 2 + , nickel-carbonyl coordination compound Ni(CO) 4 or nickel-ethyl coordination compound (C 2 3 ⁇ 4) 2 Ni;
  • the iron salt is iron halide, iron sulfate, iron nitrate, iron carbonate, iron oxalate, iron acetate, iron phosphate, iron chromate, ferrous halide, ferrous sulfate, ferrous nitrate, ferrous carbonate, ferrous oxalate , ferrous acetate, ferrous phosphate, ferrous chromite or ammonium ferrous sulfate;
  • the iron complex is an iron-cyano complex [Fe(CN) 6 f, a ferrous-cyano complex [Fe(CN) 6 ] 4 iron-thiocyanate complex Fe(SCN) 3 , an iron-sulfur complex [Fe 2 S 2 (CO) 6 ], iron-carbonyl complex Fe(CO) 5 , iron-carbonyl complex Fe 2 (CO) 9 or iron-carbonyl complex Fe 3 (CO) 12 .
  • the copper salt is copper halide, copper sulfate (pentahydrate, monohydrate and anhydrous), copper nitrate, copper carbonate, copper oxalate, copper acetate, copper phosphate, copper chromate, copper pyrophosphate, copper cyanide, fatty acid Copper, copper bismuth citrate, cuprous halide, cuprous sulfate, cuprous carbonate or cuprous acetate;
  • the salt of chromium is chromium halide, chromium sulfate, chromium nitrate, chromium carbonate, chromium oxalate, chromium acetate or chromium phosphate;
  • the salt of the palladium is potassium chloropalladium, palladium halide, palladium sulfate, palladium nitrate or palladium acetate ;
  • the salt of platinum is potassium chloroplatinate, platinum halide or platinum nitrate;
  • the salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
  • the salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
  • the salt of gold is gold or chloroauric acid
  • the silver salt is silver halide, silver sulfate, silver nitrate or silver acetate
  • the salt of manganese is manganese halide, manganese sulfate, manganese nitrate or manganese acetate;
  • the salt of the cerium is cerium halide or chloroantimonic acid
  • the salt of ruthenium is pentacarbonylphosphonium chloride or pentacarbonylpentadium bromide
  • the concentration of the biomass derivative in the step 3) is ⁇ 1 ⁇ 10 ⁇ 4 mol/L or the molar percentage ⁇ 0.01% in the whole reaction system; the concentration or the mole percentage of the biomass derivative can reach the highest Saturated concentration in the system; theoretically, it can be added, but without any theoretical and economic value;
  • the present invention comprises a photocatalytic reforming biomass derivative comprising a semiconductor photocatalyst M ⁇ NA X And a system for preparing hydrogen,
  • a salt of cobalt a complex of cobalt, a salt of nickel, a complex of nickel, a salt of iron, a complex of iron, a salt of copper, a salt of chromium, a salt of palladium, a salt of platinum, a salt of cerium, a salt of cerium, a salt of cerium, a salt of gold, a salt of silver, a salt of cerium, a salt of cerium, a salt of cerium;
  • ⁇ value is 3 ⁇ 10
  • UV and / or visible light irradiation conditions UV and / or visible light irradiation conditions.
  • biomass derivative is methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose, mannose, ascorbic acid, L-valine or L-half Cystine.
  • the invention provides a system for photocatalytic reforming biomass derivatives comprising semiconductor photocatalysts Ti0 2 -M ⁇ NA x , Sn0 2 -M ⁇ NA x or ZnO-M ⁇ NA x and preparing hydrogen, characterized in that -
  • quantum dots composed of II ⁇ VI or III ⁇ V elements
  • the biomass derivative is triethanolamine, triethylamine, methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose or mannose.
  • the quantum dot concentration of the II ⁇ VI or 111 ⁇ group element is greater than l xliT L; the quantum dot concentration refers to the quantum dot concentration of the system after all reactants are added to the container and the volume is constant;
  • the quantum dots composed of the group II to VI elements include composite structure quantum dots composed of one or more of CdS, CdSe, CdTe, PbS, PbSe, ZnS, and ZnSe.
  • the quantum dots composed of the ⁇ group elements include a composite structure quantum dot composed of one or two of InP and InAs.
  • concentration of the salt, the barium salt, the barium salt, the gold salt, the silver salt, the manganese salt, the barium salt and/or the barium salt in the whole reaction system is ⁇ lxl (T 6 mol / L ; a salt of cobalt, a complex of cobalt, Nickel salt, nickel complex, iron salt, iron complex, copper salt, chromium salt, palladium salt, platinum salt, barium salt, barium salt, barium salt, gold salt,
  • concentration of silver salt, manganese salt, barium salt and barium salt in the whole reaction system can reach cobalt salt, cobalt complex, nickel salt, nickel complex, iron salt and iron.
  • the cobalt salt is cobalt halide, cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt oxalate, cobalt acetate, cobalt phosphate or cobalt chromate;
  • the cobalt complex is a cobalt-ammonia complex [Co(NH 3 ) 6 3+ , cobalt-cyano complex [Co(CN) 6 ] 4 _, cobalt-thiocyanate complex [Co(SCN) 4 f, cobalt-carbonyl complex [Co(CO)4]-, cobalt-nitrogen a complex [Co(N0 3 ) 4 f, a cobalt-nitroso complex [Co(N0 2 ) 6 ] 3 - or a cobalt-butanedione oxime complex; wherein, a cobalt-butanedione ruthenium complex and Its derivatives are of the following structural formula -
  • L is 3 ⁇ 40 or CH 3 CN; RJ3 ⁇ 4H, N(CH 3 ) 2 or (COOCH 3 );
  • the nickel salt is a nickel halide, nickel sulfate, nickel nitrate, nickel carbonate, nickel oxalate, nickel acetate, nickel phosphate or chromic acid.
  • the complex of nickel is a nickel-ammonia complex [Ni(NH 3 ) 6 ] 2+ , nickel-cyano complex [Ni(CN) 4 f, nickel-chelate [Ni(en) 3 ] 2+ , nickel-carbonyl complex Ni(CO) 4 or nickel-ethyl Compound (C 2 H 5 ) 2 Ni ;
  • the iron salt is iron, iron sulfate, iron nitrate, iron carbonate, iron oxalate, iron acetate, iron phosphate, iron chromate, ferrous halide, ferrous sulfate, ferrous nitrate, ferrous carbonate, ferrous oxalate , ferrous acetate, ferrous phosphate, ferrous chromite or ammonium ferrous sulfate;
  • the iron complex is an iron-cyano complex [Fe(CN) 6 ] 3 _, a ferrous-cyano complex [Fe(CN) 6 f, iron-thiocyanate complex Fe(SCN) 3 , iron-sulfur complex [Fe 2 S 2 (CO) 6 ], iron-carbonyl complex Fe(CO) 5 , iron-carbonyl complex Fe 2 (CO) 9 or iron-carbonyl complex Fe 3 (CO) 12 .
  • the copper salt is copper halide, copper sulfate (pentahydrate, monohydrate and anhydrous), copper nitrate, copper carbonate, copper oxalate, copper acetate, copper phosphate, copper chromate, copper pyrophosphate, copper cyanide, fatty acid Copper, copper naphthenate, cuprous halide, cuprous sulfate, cuprous carbonate or cuprous acetate;
  • the salt of chromium is chromium halide, chromium sulfate, chromium nitrate, chromium carbonate, chromium oxalate, chromium acetate or chromium phosphate;
  • the salt of the palladium is potassium chloropalladium, palladium halide, palladium sulfate, palladium nitrate or palladium acetate ;
  • the salt of platinum is potassium chloroplatinate, platinum halide or platinum nitrate;
  • the salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
  • the salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
  • the salt of gold is gold halide or chloroauric acid
  • the silver salt is silver halide, silver sulfate, silver nitrate or silver acetate
  • the manganese salt is manganese halide, sulfuric acid manganese, manganese nitrate or manganese acetate;
  • the salt of the cerium is cerium halide or chloroantimonic acid
  • the salt of ruthenium is pentacarbonylphosphonium chloride or pentacarbonylpentadium bromide
  • the biomass concentration ⁇ 1 derivative in the whole reaction system > ⁇ 10- 4 mol / L or molar percentage ⁇ 0.01%; derivative of said raw material concentration or molar percentage of the system which can be up to The saturation concentration in the middle; theoretically it can be added, but without any theoretical and economic value.
  • the present invention provides a method for photocatalytic reforming a biomass derivative using a semiconductor photocatalyst M ⁇ NA X and preparing hydrogen gas, comprising the following steps -
  • the method of adjusting the pH is: adding 1 mol/L NaOH or 1 mol/L HCL to the mixed solution B.
  • step 5 passing an inert gas into solution C of step 4), or vacuuming the above reactor; irradiating the reactor with a mixed light beam of ultraviolet light, visible light or ultraviolet light and visible light in an inert gas or vacuum atmosphere, in situ
  • the resulting catalyst is capable of photocatalytic reforming of biomass derivatives and preparation of hydrogen.
  • the biomass derivative is methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose, mannose, ascorbic acid, L-valine or L-cysteine. .
  • the invention provides a method for photocatalytic reforming a biomass derivative by using a semiconductor photocatalyst Ti0 2 -M ⁇ NA x , Sn0 2 -M ⁇ NA x or ZnO-M ⁇ NA x and preparing hydrogen, comprising the following steps -
  • a salt of cobalt a complex of cobalt, a salt of nickel, a complex of nickel, a salt of iron, a complex of iron, a salt of copper, a salt of chromium, a salt of palladium, a salt of platinum, a salt of cerium, a salt of cerium, a salt of cerium, a salt of gold, a salt of silver, a salt of manganese, a salt of cerium, a salt of cerium;
  • the biomass derivative is triethanolamine, triethylamine, methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose or mannose.
  • the quantum dot concentration of the II ⁇ VI or 111 ⁇ group element is greater than 1 x 10 -4 g/L; the quantum dot concentration refers to the system in which the reactants are added to the container and the volume is constant. Quantum dot concentration;
  • the quantum dots composed of the group II to VI elements include composite structure quantum dots composed of one or more of CdS, CdSe, CdTe, PbS, PbSe, ZnS, and ZnSe.
  • the quantum dots composed of the group III to V elements include a composite structure quantum dot composed of one or two of InP and InAs.
  • the salt of barium, the salt of barium, the salt of gold, the salt of silver, the salt of barium, the salt of barium, the salt of barium, the salt of barium, the highest concentration in the reaction system can reach cobalt salt, cobalt complex, nickel salt, nickel Complex, iron salt, iron complex, copper salt
  • the cobalt salt is cobalt halide, cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt oxalate, cobalt acetate, cobalt phosphate or cobalt chromate;
  • the cobalt complex is a cobalt-ammonia complex [Co(NH 3 ) 6 ] 3+ , a cobalt-cyano complex [Co(CN) 6 f, a cobalt-thiocyanate complex [Co(SCN) 4 ] 2 Cobalt-carbonyl complex [Co(CO) 4 ] cobalt-nitro complex [Co(N0 3 ) 4 f, cobalt-nitroso complex [ 3 _ or cobalt-butanedione oxime complex;
  • the cobalt-butanedione oxime complex and its derivatives are of the following structural formula:
  • L is 3 ⁇ 40 or CH 3 CN; RJ3 ⁇ 4H, N(CH 3 ) 2 or (COOCH 3 );
  • the salt of nickel is nickel halide, nickel sulfate, nickel nitrate, nickel carbonate, nickel oxalate, nickel acetate, nickel phosphate or nickel chromite;
  • the nickel complex is a nickel-ammonia complex [Ni(NH 3 ) 6 ] 2+ , a nickel-cyanide complex [Ni(CN) 4 ] 2 _, a nickel-chelate [Ni(en) 3 ] 2+ , nickel-carbonyl coordination compound Ni(CO) 4 or nickel-ethyl coordination compound (C 2 H 5 ) 2 Ni ;
  • the iron salt is iron halide, iron sulfate, iron nitrate, iron carbonate, iron oxalate, iron acetate, iron phosphate, iron chromate, ferrous halide, ferrous sulfate, ferrous nitrate, ferrous carbonate, ferrous oxalate. , ferrous acetate, ferrous phosphate, ferrous chromite or ferrous sulfate hinge;
  • the iron complex is an iron-cyano complex [Fe(CN) 6 f, a ferrous-cyano complex [Fe(CN) 6 ] 4 _, an iron-thiocyanate complex Fe(SCN) 3 , iron - Sulfur complex [Fe 2 S 2 (CO) 6 ], iron-carbonyl complex Fe(CO) 5 , iron-carbonyl complex Fe 2 (CO) 9 or iron-carbonyl complex Fe 3 (CO) 12 .
  • the copper salt is copper halide, copper sulfate (pentahydrate, monohydrate and anhydrous), copper nitrate, copper carbonate, copper oxalate, copper acetate, copper phosphate, copper chromate, copper pyrophosphate, copper cyanide, fatty acid Copper, copper naphthenate, cuprous halide, cuprous sulfate, cuprous carbonate or cuprous acetate;
  • the chromium salt is a chromium halide, a chromium sulfate, a chromium nitrate, a chromium carbonate, a chromium oxalate, a chromium acetate or a chromium phosphate; the salt of the palladium is potassium chloropalladium, palladium, palladium sulfate, palladium nitrate or acetic acid.
  • the salt of platinum is potassium chloroplatinate, platinum halide or platinum nitrate;
  • the salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
  • the salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
  • the salt of gold is gold halide or chloroauric acid
  • the silver salt is silver halide, silver sulfate, silver nitrate or silver acetate
  • the fierce salt is manganese halide, manganese sulfate, manganese nitrate or manganese acetate;
  • the salt of the cerium is cerium halide or chloroantimonic acid
  • the salt of ruthenium is pentacarbonylphosphonium chloride or pentacarbonylpentadium bromide
  • the concentration of the biomass derivative in the step 3) is ⁇ l xl (T 4 mol/L or mole percentage ⁇ 0.01% in the whole reaction system; the concentration or the mole percentage of the biomass derivative can be up to Its saturation concentration in the system; theoretically it can be added, but without any theoretical and economic value;
  • the reforming degradation of the biomass is to reform and decompose biomass derivatives (mainly composed of carbon, hydrogen and oxygen) into hydrogen and other small molecules, for example, C0 2 , CO, CH 4 , etc. Many intermediate species can also be produced in the reaction solution. It should be noted that there will be differences in the types and proportions of different reaction substrate products.
  • the intermediate species that may be formed in the reaction solution are complex, different biomass derivatives, different reaction conditions (such as - concentration, temperature, pH, etc.) and the selection of different quantum dots will cause a great change in the type and proportion of the product.
  • reaction conditions such as - concentration, temperature, pH, etc.
  • H 2 is always one of the important products of the reaction.
  • the invention can realize the in-situ preparation of high-efficiency semiconductor catalyst by quantum dots through visible light-driven photoreaction and catalytic reforming of biomass derivatives and preparation of hydrogen gas. More importantly, the method can generate a high-efficiency, stable and simple synthesis semiconductor photocatalytic reforming biomass hydrogen production catalyst in situ under illumination without harsh conditions such as calcination.
  • the method of the invention has high efficiency, simple operation and practicality.
  • FIG. 1 is an ultraviolet-visible absorption spectrum and an emission spectrum of an CdSe quantum dot of the present invention (excitation wavelength: 400 nm);
  • FIG. 2 is an ultraviolet-visible absorption spectrum and an emission spectrum of a CdS quantum dot of the present invention (excitation wavelength: 400 nm);
  • FIG. 3 is an ultraviolet-visible absorption spectrum and an emission spectrum of an CdTe quantum dot of the present invention (excitation wavelength: 400 nm);
  • FIG. 4 is an ultraviolet-visible absorption spectrum of a ZnS quantum dot of the present invention;
  • Figure 5 is a view showing the ultraviolet-visible absorption spectrum and the emission spectrum of the ZnSe quantum dots of the present invention.
  • FIG. 7 is a topographical view of a CdSe quantum dot of the present invention under HRTEM (high resolution transmission electron microscope);
  • FIG. 8 is a topographical view of a CdS quantum dot of the present invention under HRTEM observation;
  • Figure 9 is a topographical view of a CdTe quantum dot of the present invention under HRTEM observation
  • Fig. 10 is a screenshot showing the peak spectrum of the product produced by photocatalytic reaction of the photocatalytic reforming ethanol system of Example 1.
  • Figure 11 is in Example 108: l . Ti0 2 ; 2. ⁇ 0 2 and CdSe quantum dots after adsorption; 3. Ti0 2 and CdSe quantum dots after adsorption after adding various types of transition metal salts; 4. Ti0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours ; the absorption curves of the four groups of samples on the DRS spectrum;
  • Example 12 is the same as in Example 109: l . Ti0 2 ; 2. Ti0 2 and CdSe quantum dots after adsorption; 3. ⁇ 0 2 and CdSe quantum dots after adsorption and then various types of transition metal salts; 4. Ti0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours; the absorption curves of the four groups of samples on the DRS spectrum;
  • Example 13 is in Example 110: l . Ti0 2 ; 2. ⁇ 0 2 and CdSe quantum dots after adsorption; 3. Ti0 2 and CdSe quantum dots after adsorption of various transition metal salts; 4. Ti0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours ; the absorption curves of the four groups of samples on the DRS spectrum;
  • Example 14 is the following in Example 111: 1. ⁇ 0 2 ; 2. ⁇ 0 2 and CdSe quantum dots after adsorption; 3. Ti0 2 and CdSe quantum dots after adsorption of various transition metal salts; 4. Ti0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours; the absorption curves of the four groups of samples on the DRS spectrum;
  • Figure 15 is in Example 112: l. Ti0 2 ; 2. Ti0 2 and CdSe quantum dots after adsorption; 3. Ti0 2 and CdSe quantum dots after adsorption after adding various types of transition metal salts; 4. ⁇ 0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours ; the absorption curves of the four groups of samples on the DRS spectrum;
  • Figure 16 is the same as in Example 113: 1. ⁇ 0 2 ; 2. Ti0 2 and CdSe quantum dots after adsorption; 3. Ti0 2 and CdSe quantum dots after adsorption of various transition metal salts; 4. ⁇ 0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours ; the absorption curves of the four groups of samples on the DRS spectrum;
  • Example 17 is the same as in Example 114: 1. ⁇ 0 2 ; 2. Ti0 2 and CdSe quantum dots after adsorption; 3. Ti0 2 and CdSe quantum dots after adsorption of various transition metal salts; 4. Ti0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours ; the absorption curves of the four groups of samples on the DRS spectrum;
  • 18 is the embodiment 115: LTi0 2 ; 2. Ti0 2 and CdSe quantum dots after adsorption; 3. ⁇ 0 2 and CdSe quantum dots after adsorption of various transition metal salts; 4. ⁇ 0 2 and CdSe quantum dot adsorption After adding various transition metal salts, the light is illuminated for 8 hours; the absorption curves of the four sets of samples on the DRS spectrum;
  • P-25 type Ti0 2 exhibits a typical Ti0 2 ultraviolet absorption characteristic.
  • CdSe quantum dots are adsorbed with ⁇ 0 2
  • the system simultaneously exhibits P-25 type ⁇ 0 2 and CdSe quantum dot absorption.
  • Superposition which proves the adsorption of CdSe quantum dots on the surface of Ti0 2 ; when further adding the transition metal salt, based on the superposition of the absorption of P-25 Ti0 2 and CdSe quantum dots, it is located in the reddish position (500-700).
  • a new broad absorption band appears in nm; when further illumination occurs, a new distinct absorption occurs in the reddered area, indicating a new structure is created.
  • CdSe/CdS quantum dot solution concentration IxlO-'g/L 1 x lO ⁇ g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration IxlO-'g/L) to Pyrex tube, then add 0.5 ml of aqueous nickel dichloride solution (original Concentration 4.2xl (T 3 mol / L, containing 0.5 mg of nickel dichloride hexahydrate), 41 ⁇ ethanol (original concentration 17.161 ⁇ 01 / 20 ° C), adjust the pH value of 7, the total volume is 10ml, and The test tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass type glass filter) in a sealed nitrogen atmosphere.
  • aqueous nickel dichloride solution original Concentration 4.2xl (T 3 mol / L, containing 0.5 mg of nickel dichloride hexahydrate), 41 ⁇ ethanol (
  • FIG. 10 is a screenshot of the peak spectrum of the gas phase produced by the photocatalytic reaction of the photocatalytic reforming ethanol system of Example 1 on a gas chromatograph (TCD thermal conductivity detector). It can be seen from the figure that peaks of 3 ⁇ 4 and CH 4 (C is an internal standard) appear successively at different retention times.
  • the hydrogen production is 107 ⁇ - i-mg
  • CdSe/CdS quantum dot solution concentration 2xlO-L 1xlO-ig/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration 2xlO-L) to Pyrex tube. Then add 0.5 ml of cobalt dichloride aqueous solution (original concentration 4.2xl (T 3 mol/L, containing 0.5 mg of cobalt dichloride hexahydrate), 41 ⁇ methanol (original concentration 24.751 ⁇ 1, 20 °C), adjusting pH to 6, total volume to 10 ml, and making it sealed The tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass glass filter) in a nitrogen atmosphere.
  • a 500 W high pressure mercury lamp 400 nm long pass glass filter
  • the hydrogen production is 87 ⁇ — ⁇ mg ⁇
  • the total volume is 10 ml and placed in a sealed nitrogen atmosphere.
  • the tube is irradiated with a 500 W high pressure mercury lamp (400 nm long pass glass filter).
  • the hydrogen production is 81 ⁇ — ⁇ mg—
  • CdSe/CdS quantum dot solution concentration 2xlO-L 1xli ⁇ g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration 2xlO-L) to Pyrex tube and add 0.5 ml of cobalt nitrate aqueous solution (original concentration 4.2xl (T 3 mol) /L, containing 0.61 mg of cobalt nitrate hexahydrate), 41 ⁇ ethanol (original concentration 17.161 ⁇ 1 / 20 ° C), adjusting the pH to 7, the total volume is 10 ml, and placed in a sealed nitrogen atmosphere, The tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass type glass filter).
  • the amount of hydrogen produced is Q moH ⁇ mg - Example 5:
  • CdSe/CdS quantum dot solution concentration 2xlO- ! g/L 1xlO ⁇ g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration 2xlO- ! g/L) to Pyrex tube, then add 0.5 ml of nickel nitrate solution (original concentration 4.2xlO_ 3) Mol/L, containing 0.61 mg of hexahydrate hexahydrate Nickel), 4ml ethanol (original concentration 17.16mol/L, 20V), adjusted to pH 7, total volume to 10ml, and in a sealed nitrogen atmosphere, with 500W high pressure mercury lamp (400 nm long wave pass) Type glass filter) Irradiate the test tube.
  • nickel nitrate solution original concentration 4.2xlO_ 3
  • 4ml ethanol original concentration 17.16mol/L, 20V
  • the amount of hydrogen produced is 102 ⁇ 1 ⁇ 1 -1 mg.
  • CdSe/CdS quantum dot solution concentration 2xlO' ! g/L 1xlO ⁇ g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration 2xlO' ! g/L) to Pyrex tube, then add 0.5 ml of nickel sulfate solution (original concentration 4.2xl ( T 3 mol/L, containing 0.55 mg of nickel sulfate hexahydrate), 41 ⁇ 1 ethanol (original concentration 17.161101 ⁇ , 20), adjusted to pH 7, total volume to 10 ml, and in a sealed nitrogen atmosphere The tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass type glass filter).
  • the amount of hydrogen produced is K ⁇ mol'h mg—
  • the tube is irradiated with a 500W high pressure mercury lamp (400 nm long pass glass filter).
  • the atomic composition ratio of the semiconductor photocatalyst is irradiated by a 500 W high-pressure mercury lamp (400 nm long-wavelength glass filter).
  • CdSeS-Ni x; wherein the X value was determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x 0.12%.
  • the amount of hydrogen produced is moH ⁇ mg ⁇
  • the amount of hydrogen produced is SS moHi mg ⁇
  • CdSe/CdS quantum dot solution concentration 2xl0-'g/L 1xlO ⁇ g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration 2xl0-'g/L) to Pyrex tube and add 0.5 ml of nickel dichloride aqueous solution (original concentration 4.2).
  • Xl T 3 mol/L, containing 0.5 mg of nickel dichloride hexahydrate), 4 ml of glycerol (original concentration 13.7 mol/L, 20 V), adjusted to pH 7, total volume to 10 ml, and Place it in a sealed nitrogen atmosphere and illuminate with a 500W high pressure mercury lamp (400 nm long pass glass filter) Tube.
  • the hydrogen production is 21 ⁇ - ⁇ mg
  • the whole reaction system was added to the Pyrex tube at a concentration of lxl (T 4 g/L of core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration Zx lO-ig/L), and then added to the whole reaction system.
  • lxl T 4 g/L of core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration Zx lO-ig/L)
  • the reactor was evacuated and 500 W high pressure mercury lamp with a short (400 nm in Through-glass filter) Irradiate the tube.
  • the amount of hydrogen produced is 3 ⁇ — ⁇ mg— '.
  • the amount of hydrogen produced is ⁇ ⁇ 1 ⁇ ] ⁇ —
  • reaction system concentration to lxl (T 2 g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration Sx lO ⁇ g/L) to the Pyrex tube, and then add the whole reaction system concentration.
  • It is a cobalt-nitroso complex [Co(N0 2 ) 6 f of 2.1 ⁇ 10 ⁇ 4 mol/L, glucose of 0.1 mol/L in the whole reaction system, pH 8 is adjusted, and it is sealed nitrogen.
  • the test tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass type glass filter).
  • the amount of hydrogen produced is SQ mol'h mg—
  • Example 1 was repeated except that the doping compound was nickel dibromide and the biomass derivative was L-valine at a concentration of 0.1 mol/L.
  • Example 1 was repeated except that the doping compound was nickel sulfate and the biomass derivative was L-cysteine at a concentration of 0.1 mol/L.
  • Example 1 was repeated except that the doping compound was nickel oxalate and the biomass derivative was propanol.
  • Example 1 was repeated except that the doping compound was nickel acetate and the biomass derivative was butanol.
  • Example 1 was repeated except that the doping compound was nickel phosphate.
  • Example 1 was repeated except that the doping compound was a nickel-ammonia complex [Ni(NH 3 ) 6 ] 2+ .
  • Example 1 was repeated except that the doping compound was a nickel-cyanide complex [Ni(CN) 4 f.
  • Example 21
  • Example 1 was repeated except that the doping compound was a nickel-chelate [Ni(en)3] 2+ .
  • Example 1 was repeated except that the doping compound was nickel tetracarbonyl Ni(CO) 4 .
  • Example 1 was repeated except that the doping compound was a nickel-ethyl complex (C 2 H 5 ) 2 Ni.
  • Example 24 was repeated except that the doping compound was a nickel-ethyl complex (C 2 H 5 ) 2 Ni.
  • Example 1 was repeated except that the doping compound was ferric chloride.
  • Example 1 was repeated except that the doping compound was ferrous chloride.
  • Example 1 was repeated except that the doping compound was ferrous bromide.
  • Example 1 was repeated except that the doping compound was ferrous sulfate.
  • Example 1 was repeated except that the doping compound was iron fluoride.
  • Example 1 was repeated except that the doping compound was iron bromide.
  • Example 1 was repeated except that the doping compound was iron iodide.
  • Example 1 was repeated except that the doping compound was iron sulfate.
  • Example 1 was repeated except that the doping compound was ferric nitrate.
  • Example 1 was repeated except that the doping compound was iron carbonate.
  • Example 1 was repeated except that the doping compound was iron oxalate.
  • Example 1 was repeated except that the doping compound was iron acetate.
  • Example 1 was repeated except that the doping compound was iron phosphate.
  • Example 1 was repeated except that the doping compound was iron chromate.
  • Example 1 was repeated except that the doping compound was ferrous fluoride.
  • Example 1 was repeated except that the doping compound was ferrous iodide.
  • Example 1 was repeated except that the doping compound was ferrous nitrate.
  • Example 1 was repeated except that the doping compound was ferrous carbonate.
  • Example 1 was repeated except that the cumbersome compound was ferrous oxalate.
  • Example 43 The repeated examples differ only in that the doping compound is ferrous acetate.
  • the repeated examples differ only in that the doping compound is ferrous phosphate.
  • the repeated examples differ only in that the doping compound is ferrous chromite.
  • the repeated examples differ only in that the doping compound is ammonium ferrous sulfate.
  • the repeated examples differ only in that the doping compound is ammonium ferrous sulfate.
  • the repeated examples differ only in that the doping compound is a ferrous-cyano complex [Fe(CN) 6 ] 4 - Example 50:
  • Example 51 The repeated examples differ only in that the doping compound is an iron-thiocyanate complex Fe(SCN) 3 .
  • the doping compound is an iron-thiocyanate complex Fe(SCN) 3 .
  • Example 52 The repeated examples differ only in that the doping compound is an iron-carbonyl complex Fe(CO) 5 .
  • Example 52 - The repeated examples differ only in that the doping compound is an iron-carbonyl complex Fe 2 (CO) 9 .
  • Example 53
  • the repeated examples differ only in that the doping compound is nickel nitrate.
  • the repeated examples differ only in that the doping compound is nickel carbonate.
  • the repeated examples differ only in that the murky compound is nickel chromite.
  • the repeated examples differ only in that the doping compound is nickel fluoride.
  • the repeated examples differ only in that the doping compound is nickel iodide.
  • the repeated examples are different only in that the doping compound is cobalt difluoride.
  • the repeated examples differ only in that the doping compound is cobalt bromide.
  • the repeated examples are different only in that the doping compound is cobalt iodide.
  • the repeated examples differ only in that the doping compound is cobalt carbonate.
  • the repeated examples differ only in that the doping compound is cobalt oxalate.
  • the repeated examples are different only in that the doping compound is cobalt acetate.
  • Example 66 The repeated examples differ only in that the heterogeneous compound is cobalt phosphate.
  • Example 66 The repeated examples differ only in that the heterogeneous compound is cobalt phosphate.
  • Example 1 was repeated except that the doping compound was a cobalt-ammonia complex [Co(NH 3 ) 6 ] 3+ .
  • Example 1 was repeated except that the doping compound was a cobalt-cyano complex [Co(CN) 6 ] 4 -.
  • Example 1 was repeated except that the doping compound was a cobalt-thiocyanate complex [Co(SCN) 4 f.
  • Example 1 was repeated except that the doping compound was a cobalt-carbonyl complex [c 0 (co) 4 r.
  • Example 1 was repeated except that the doping compound was a cobalt-nitro complex [Co(N0 3 ) 4 f.
  • Example 1 was repeated except that the doping compound was a cobalt-nitroso complex [Co(N0 2 ) 6 ] 3 -.
  • Example 72
  • the amount of hydrogen produced is ⁇ ⁇
  • Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
  • Example 74 Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
  • Example 72 was repeated except that the cryptic compound was a cobalt-butanedione oxime complex having the following structure:
  • Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
  • Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
  • Example 78 - Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
  • R COOCH 3 .
  • Example 72 was repeated except that the cobalt-butanedione oxime complex is as follows:
  • Example 72 was repeated except that the cobalt-butanedione oxime complex is as follows:
  • Example 72 was repeated except that the cobalt-butanedione oxime complex is as follows:
  • Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
  • Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
  • Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
  • Example 85 Example 1 was repeated except that the doping compound was chromium dichloride.
  • Example 86 Example 86
  • Example 1 was repeated except that the doping compound was chromium trichloride.
  • Example 1 was repeated except that the dopant compound was chromium dibromide.
  • Example 88 is a group consisting of chromium dibromide.
  • Example 1 was repeated except that the doping compound was chromium tribromide.
  • Example 89
  • Example 1 was repeated except that the doping compound was chromium nitrate.
  • Example 1 was repeated except that the dopant compound was chromium carbonate.
  • Example 1 was repeated except that the doping compound was chromium oxalate.
  • Example 1 was repeated except that the doping compound was chromium acetate.
  • Example 1 was repeated except that the doping compound was chromium phosphate.
  • Table 1 Comparison of the composition and hydrogen production rate of the hydrogen production system of the examples 1 to 10 and the control file
  • Alcohol (4 ml) glycerol (4 ml), pH 3 ⁇ 10; 500 W high pressure mercury lamp; 400 nm filter to ensure transmission of light through the required wavelength; gas chromatography to detect hydrogen generation (4 A molecular sieve column) , TCD detector, methane internal standard quantitation).
  • the rate of hydrogen production in Examples 1 to 10 of the present invention is generally greater than that in Control Documents 1, 2, and the hydrogen production rate in Example 1 of the present invention is the most embarrassing, which is 107 moHi mg.
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen production rate was 357 ⁇ .
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen production rate is 23441 ⁇ )1 ⁇ .
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen production rate is 286 ⁇ -
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen production rate is 265 ⁇ 1 ⁇ 1 ⁇ —
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen production rate is 323 ⁇ 1 ⁇ 1 ⁇ —
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen production rate is 3494 ⁇ 101 ⁇ .
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Ni x; wherein the X value is passed through the ICP (electrical
  • the hydrogen production rate is 69 ⁇ 0 ⁇ —
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen production rate is 87 ⁇ 0 ⁇ —
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen: comprising the following steps:
  • the hydrogen production rate is 351 ⁇ -
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen production rate is 31 ⁇ 0 ⁇ —
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen production rate is 87 ⁇ - Example 105:
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen production rate is 18 ⁇ 0 1 ⁇ 1 ⁇ —
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the rate of hydrogen production is ⁇
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen production rate is 189 ⁇ -
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 56 ⁇ 1 ⁇ 1 ⁇ " 1 °.
  • the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdS e -Cr x; wherein the X value is passed through the ICP (electrical
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 71 ⁇ 1 ⁇ 1 ⁇ .
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 101 ⁇ 1 ⁇ 1 -1 .
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen produced in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 218 ⁇ 1 ⁇ 1 ⁇ .
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 20 ⁇ 1 ⁇ 1 ⁇ " 1 .
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the following steps:
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 3 ⁇ 1 ⁇ ] ⁇ -1 .
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • CdSe quantum dots stock concentration of cadmium ion concentration 1 x 10- 3
  • the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 2 ⁇ 1 ⁇ 1 " 1 .
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 6 ⁇ 1 ⁇ 1 ⁇ -1 .
  • the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 7 ⁇ 1 ⁇ 1 -1 .
  • the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 0.5 ⁇ ⁇ 1 ⁇ 1 ⁇ .
  • a photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
  • CdS quantum dot solution concentration is cadmium
  • the pH is adjusted to 11 with 1 mol/L sodium hydroxide, centrifuged, the supernatant is removed, and the precipitate is retained; then 0.5 ml of chromium trichloride is added.
  • the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 1.8 ⁇ 1 ⁇ 1 ⁇ -1 .
  • CdTe cadmium telluride quantum dots
  • the volume was set to 10 ml, and it was placed in a sealed nitrogen atmosphere.
  • the tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass type glass filter).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

A semiconductor photocatalyst for hydrogen production from biomass derivatives by photocatalytic reforming. The atomic composition ratio thereof is M~N-Ax, wherein M~N is II-VI group elements or III-V group elements, A is one or more of the following elements: cobalt, nickel, iron, copper, chromium, palladium, platinum, ruthenium, rhodium, iridium or silver, and 0.02% ≤ x ≤ 1.0%. The semiconductor photocatalyst is prepared in situ from quantum dots by a photoreaction method without calcination.

Description

生物质衍生物光催化重整并制氢的半导体光催化剂及其制备方法与应用 技术领域  Semiconductor photocatalyst for photocatalytic reforming and hydrogen production of biomass derivatives, and preparation method and application thereof
本发明涉及一种光催化重整生物质衍生物并制氢的光催化体系构筑及应用,尤其是涉 及一种用于光催化重整生物质衍生物并制氢的半导体光催化剂及其制备方法与应用。 背景技术  The present invention relates to a photocatalytic system for photocatalytic reforming of biomass derivatives and hydrogen production, and more particularly to a semiconductor photocatalyst for photocatalytic reforming of biomass derivatives and hydrogen production and preparation method thereof And application. Background technique
迄今为止, 全球能量的主要来源还是依靠化石燃料。但是, 化石燃料作为一种非再生 能源不可能永远满足人类日益增长的能源需求。同时,环境污染和气候变化等使用化石燃 料带来的负面效应也越来越受到人们的重视。幵发利用新的环境友好型非化石能源迫在眉 睫。 目前, 化石燃料最好的替代品就是太阳能, 这是因为太阳能是一种环境友好而且可持 续使用的能源。 因此, 太阳能的存储利用备受关注, 而且在全世界范围内已经掀起了研究 狂潮。 但是, 以目前的研究进展, 用太阳能完全替代化石燃料是不实际的。 因此, 将太阳 能这样一个无限的能源转化为非化石燃料的能源成为了科学家研究的主要方面。例如直接 把太阳能转化为化学能,特别是氢能, 是目前科学家研究的主要突破口也是接下来几十年 科学家所要面对的主要挑战。  To date, the main source of global energy has relied on fossil fuels. However, fossil fuels as a non-renewable energy source cannot always meet the growing energy needs of mankind. At the same time, the negative effects of using fossil fuels such as environmental pollution and climate change are receiving more and more attention. It is imminent to use new environmentally friendly non-fossil energy sources. Currently, the best alternative to fossil fuels is solar energy because solar energy is an environmentally friendly and sustainable energy source. Therefore, the storage and utilization of solar energy has attracted much attention, and research frenzy has already started around the world. However, with current research progress, it is not practical to completely replace fossil fuels with solar energy. Therefore, transforming an infinite energy source of solar energy into non-fossil fuel energy has become a major aspect of scientists' research. For example, direct conversion of solar energy into chemical energy, especially hydrogen energy, is the main breakthrough for scientists today and the main challenge for scientists in the next few decades.
生物质是地球上最广泛存在的物质, 它包括所有动物、植物和微生物以及由这些有生 命物质派生、 排泄和代谢的许多有机质。 各种生物质都具有一定能量。 以生物质为载体、 由生物质产生的能量便是生物质能。生物质能是太阳能以化学能形式贮存在生物中的一种 能量形式, 直接或间接来源于植物的光合作用。 地球上植物进行光合作用所消费的能量, 仅占太阳照射到地球总辐射量的 0.2%, 这个比例虽不大, 但绝对值很惊人: 光合作用的 能量是目前人类能源消费总量的 40倍。 可见生物质能是一个巨大的能源。 然而, 尽管生 物质遍布世界各地,其蕴藏量也极大,但生物质能具有能量密度低和资源分散的明显缺点。 氢是高能量密度、 高效率、 清洁的优质能源。 氢气既可以运输, 又可以长期储存, 而且液 化氢的密度高于天然气。 因此, 将大量分散的生物质转化为氢气, 再将氢气进行集中储存 和运输,要比生物质集中储存和运输来得容易,这也是生物质能储存和集中的一种重要途 径。更重要的是光催化重整生物质制氢技术可以在常温常压下进行, 利用太阳光作为反应 的推动力, 是一种清洁的、 可持续发展的制氢技术。 其能量转换的实质是将取之不尽、 用 之不竭的太阳能转换为人类所需的能量, 不仅具有可再生性, 而且具有环境友好的优点。  Biomass is the most widespread substance on earth. It includes all animals, plants and microorganisms, as well as many organic matter derived, excreted and metabolized by these living things. All kinds of biomass have a certain amount of energy. Biomass is the biomass and the energy produced by biomass is biomass. Biomass energy is a form of energy in which solar energy is stored in the form of chemical energy, either directly or indirectly from the photosynthesis of plants. The energy consumed by plants on photosynthesis on Earth only accounts for 0.2% of the total radiation of the Earth. This ratio is not large, but the absolute value is amazing: the energy of photosynthesis is 40 times of the total human energy consumption. . It can be seen that biomass energy is a huge energy source. However, despite the vast amount of biomass in the world, biomass has the obvious disadvantage of low energy density and resource dispersion. Hydrogen is a high-energy, high-efficiency, clean, high-quality energy source. Hydrogen can be transported as long as it can be stored for long periods of time, and the density of hydrogen hydride is higher than that of natural gas. Therefore, the conversion of a large amount of dispersed biomass into hydrogen, and the centralized storage and transportation of hydrogen is easier than the centralized storage and transportation of biomass, which is an important way to store and concentrate biomass. More importantly, the photocatalytic reforming biomass hydrogen production technology can be carried out under normal temperature and pressure, using sunlight as a driving force for the reaction, and is a clean and sustainable hydrogen production technology. The essence of its energy conversion is to convert the inexhaustible solar energy into the energy required by human beings, which is not only renewable but also environmentally friendly.
因此研制高效、 低成本的太阳能制氢技术对于改善能源结构, 保护生态环境, 推动经 济及社会的可持续发展都具有重大和深远的战略意义。  Therefore, the development of efficient and low-cost solar hydrogen production technology has great and far-reaching strategic significance for improving energy structure, protecting the ecological environment, and promoting sustainable economic and social development.
日本科学家 Kawai等人 [Chem. Lett. 1981,81-84; Nature. 1980, 286, 474-476]早在上世 纪八十年代就利用 Pt/Ru02/Ti02催化剂, 在水中光催化重整生物质衍生物制得氢气。 随后 又有大量文献报道了利用各种生物质衍生物制氢的方法 [J. Phys. Chem. 1983, 87, 801-805; J. Am. Chem. Soc. 1985, 107, 1773-1774; Chem. Phys. Lett. 1981, 80, 341-344; Photochem. Reviews 2003, 4, 5-18; Catal. Lett. 2004, 98, 61; Chem. Chmman. 2004, 2192-2193], 例如: 甲 醇、 乙醇、 乳酸、 甘氨酸、 谷氨酸、 脯氨酸, 食糖、 可溶性淀粉、 自明胶蛋白质、 海藻、 蟑螂尸体、 人类尿液、 动物粪、 撕碎的滤纸 (主要成分是纤维素)等。 Japanese scientist Kawai et al. [Chem. Lett. 1981, 81-84; Nature. 1980, 286, 474-476] Photocatalytic reforming in water using Pt/Ru0 2 /TiO 2 catalyst as early as the 1980s The biomass derivative produces hydrogen. Subsequently, a large number of literatures have reported on the use of various biomass derivatives to produce hydrogen [J. Phys. Chem. 1983, 87, 801-805; J. Am. Chem. Soc. 1985, 107, 1773-1774; Chem Phys. Lett. 1981, 80, 341-344; Photochem. Reviews 2003, 4, 5-18; Catal. Lett. 2004, 98, 61; Chem. Chmman. 2004, 2192-2193], eg: methanol, ethanol , lactic acid, glycine, glutamic acid, proline, sugar, soluble starch, self-gelatin protein, seaweed, corpse corpse, human urine, animal dung, shredded filter paper (mainly cellulose).
同时, 亦有相关专利报道利用太阳能催化重整生物质衍生物制氢的方法。 日本专利 57,156,302 公开了一种利用 Ti02, CdS , GaP 光催化重整甲醇制氢的方法; 日本专利 59,203,701公开了 "一种光催化重整 1:1水-甲醇制氢地方法", 催化剂是 Ti02, 并在其表面 负载 CrB、 Ni2B、 Co2P、 Mo2C、 Cr3C2中的一种。用 500W紫外灯照射,制氢速率为 0.28〜 0.96 ml/h。 日本专利 6186,943还公开了"一种光催化重整 1 :1水-乙醇制氢的方法",使用的 催化剂为无定形 Si负载 Pt。 当用 100W的卤灯照射时, 产氢速率可达 0.03 ml/h。 此外, 中国科学院大连化物所的李灿等报道了三种不同的催化剂用于光催化重整生物质衍生物 制氢, 中国专利 CN200410031517.3公开了一种可用于紫外光条件下光催化重整生物质衍 生物制氢的新型复合光催化剂及其制备方法, 其催化剂的原子组成比为 A^TaOs: Bx, 其 中 X值为 0或 1 ; A为碱金属元素; B为镧或铋元素。 中国专利 200810240366.0公开了 一种重整生物质衍生物制氢的异质结光催化剂及其制备方法, 所述光催化剂的组成为 m%WOxSy/CdS (其中 X是钨物种中氧的物质的量分数, 0≤x≤l ; y是钨物种中硫的物质 的量分数, 0< y≤2; m是钨元素的重量百分数, 0< m≤10)。 该光催化剂以半导体异质结 概念为基础, 采用 CdS催化剂为载体, 通过浸渍法将 W的前驱体担载在 CdS催化剂上; 然后采用高温焙烧的方法将 W的硫 (氧) 化物组装在 CdS表面, 制备出髙活性重整生物 质衍生物制氢异质结光催化剂。 中国专利 200910136643.8公幵了一种用于光催化重整生 物质衍生物制氢的 Ή02光催化剂,锐钛矿和金红石相的晶相组成可以在较宽范围内调控, 该 Ti02光催化剂可用于光催化重整生物质衍生物制氢反应中, 大幅度的提高了产氢活性 并有效抑制一氧化碳的生成, 其中在光催化重整甲醇反应中, 该 Ti02光催化剂的产氢活 性是 Ti02参比剂 (P25)的五倍左右, 氢气中 CO的含量至少降低两个数量级, 甚至到 5ppm 以下。 At the same time, there are related patent reports on the use of solar energy to catalyze the hydrogen production of biomass derivatives. Japanese Patent No. 57,156,302 discloses a method for producing hydrogen by photocatalytic reforming of methanol using Ti0 2 , CdS , GaP; Japanese Patent No. 59,203,701 discloses "a method for photocatalytic reforming of water by 1:1 water-methanol to produce hydrogen", the catalyst is Ti0 2 and one of CrB, Ni 2 B, Co 2 P, Mo 2 C, Cr 3 C 2 is supported on the surface thereof. Irradiation with a 500 W UV lamp produces a hydrogen production rate of 0.28 to 0.96 ml/h. Japanese Patent No. 6,186,943 also discloses "a method for photocatalytic reforming of 1:1 water-ethanol hydrogen production" using an amorphous Si-loaded Pt. When irradiated with a 100W halogen lamp, the hydrogen production rate can reach 0.03 ml/h. In addition, Li Can et al. of the Dalian Institute of Chemical Physics, Chinese Academy of Sciences reported three different catalysts for photocatalytic reforming of biomass derivatives. Hydrogen production, Chinese patent CN200410031517.3 discloses a novel composite photocatalyst which can be used for photocatalytic reforming of biomass derivatives under ultraviolet light and a preparation method thereof, and the atomic composition ratio of the catalyst is A^TaOs: B x , wherein X is 0 or 1; A is an alkali metal element; and B is a ruthenium or osmium element. Chinese Patent No. 200810240366.0 discloses a heterojunction photocatalyst for reforming biomass-derived hydrogen and a preparation method thereof, wherein the photocatalyst has a composition of m% WO x S y /CdS (where X is oxygen in a tungsten species) The amount fraction of the substance, 0 ≤ x ≤ l; y is the amount fraction of the substance of sulfur in the tungsten species, 0 < y ≤ 2 ; m is the weight percentage of the tungsten element, 0 < m ≤ 10). The photocatalyst is based on the concept of semiconductor heterojunction. The precursor of W is supported on the CdS catalyst by a dipping method using a CdS catalyst as a carrier. Then, the sulfur (oxygen) of W is assembled in CdS by high temperature baking. On the surface, a hydrogen heterojunction photocatalyst for the preparation of a hydrazine active reforming biomass derivative is prepared. Chinese Patent No. 200910136643.8 well Jian a photocatalytic hydrogen production reforming of biomass derivative Ή0 2 photocatalyst, the crystal phase of anatase and rutile phase may be regulated within a wide range, the catalyst can be light Ti0 2 In the hydrogen production reaction of photocatalytic reforming biomass derivatives, the hydrogen production activity is greatly improved and the formation of carbon monoxide is effectively inhibited. In the photocatalytic reforming methanol reaction, the hydrogen generating activity of the Ti0 2 photocatalyst is Ti0. 2 The reference agent (P25) is about five times lower, and the CO content in hydrogen is reduced by at least two orders of magnitude, even below 5 ppm.
但到目前为止, 还没有任何专利和文献报道利用量子点和钴、 镍、 铁、 铜、 铬、 钯、 铂、 钌、 铑、 金、 银、 锰、 铱或铼等过渡金属的盐或配合物在温和的条件下, 利用光化学 方法原位生成高效、 稳定合成简单的半导体催化用于光催化重整生物质衍生物制氢。 发明内容  But so far, there are no patents or literature reports on the use of quantum dots and salts or complexes of transition metals such as cobalt, nickel, iron, copper, chromium, palladium, platinum, rhodium, ruthenium, gold, silver, manganese, ruthenium or osmium. Under mild conditions, photochemical methods are used to generate high-efficiency, stable and simple semiconductor catalysis for the photocatalytic reforming of biomass-derived hydrogen. Summary of the invention
本发明要解决的第一个技术问题在于提供一种用于光催化重整生物质衍生物并制氢 的半导体光催化剂。  A first technical problem to be solved by the present invention is to provide a semiconductor photocatalyst for photocatalytic reforming of biomass derivatives and hydrogen production.
本发明要解决的第二个技术问题在于提供一种上述半导体光催化剂的制备方法。 本发明要解决的第三个技术问题在于提供一种包含有上述半导体光催化剂的光催化 重整生物质衍生物并制备氢气的体系。  A second technical problem to be solved by the present invention is to provide a method for producing the above semiconductor photocatalyst. A third technical problem to be solved by the present invention is to provide a system comprising photocatalytic reforming of a biomass derivative of the above semiconductor photocatalyst and producing hydrogen gas.
本发明要解决的第四个技术问题在于提供一种利用上述半导体光催化剂光催化重整 生物质衍生物并制氢的方法。  A fourth technical problem to be solved by the present invention is to provide a method for photocatalytic reforming of a biomass derivative by using the above semiconductor photocatalyst and producing hydrogen.
为解决上述第一个技术问题,本发明一种用于光催化重整生物质衍生物制氢的半导体 光催化剂, 包括如下技术特征:  In order to solve the above first technical problem, the present invention relates to a semiconductor photocatalyst for photocatalytic reforming of biomass derivative hydrogen production, comprising the following technical features:
该半导体光催化剂的原子组成比为 M:N-AX; 一 一 The atomic composition ratio of the semiconductor photocatalyst is M:NA X; one by one
式中: 〜 为 族元素〜 族元素或 〜 为 族元素〜 族元素;  Where: ~ is a family element ~ family element or ~ is a family element ~ family element;
式中, A为钴、 镍、 铁、 铜、 铬、 钯、 铂、 钌、 铑、 金、 银、 锰、 铱或铼的一种或两 种以上元素; 式中, 0.02%≤x≤1.0%。  Wherein A is one or more elements of cobalt, nickel, iron, copper, chromium, palladium, platinum, rhodium, ruthenium, gold, silver, manganese, ruthenium or osmium; wherein 0.02% ≤ x ≤ 1.0 %.
本发明中 M〜N的含义是指 II族元素和相应的 VI族元素; 或者是指 III族元素和相 应的 V族元素。  In the present invention, M to N means a group II element and a corresponding group VI element; or a group III element and a corresponding group V element.
其中, II族元素是 lib族元素 Zn、 Cd; VI族元素是 Via族3、 Se、 Te; III族是 Ilia 族元素 In; V是 Va族元素 P、 As。  Among them, Group II elements are lib group elements Zn, Cd; Group VI elements are Via group 3, Se, Te; Group III is Ilia group elements In; V is Va group elements P, As.
进一步地, 所述半导体光催化剂的原子组成比为 Ti02-M〜N-Ax、 Sn02-M〜N-Ax或 ZnO-M〜N-AxFurther, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -M to NA x , Sn0 2 -M to NA x or ZnO-M to NA x .
为解决上述第二个技术问题, 本发明半导体光催化剂M〜N-AX的制备方法, 包括如 下步骤: In order to solve the above second technical problem, the method for preparing the semiconductor photocatalysts M to NA X of the present invention comprises the following steps:
1 ) 在反应器中, 加入由 II〜VI族元素或 111〜 族元素组成的量子点;  1) adding a quantum dot composed of a group II~VI element or a group 111~ in the reactor;
2) 向反应器中加入钴的盐、 钴的配合物、 镍的盐、 镍的配合物、 铁的盐、 铁的配合 物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰 的盐、 铱的盐、 铼的盐溶液中的一种或两种, 得到溶液 Α;  2) a cobalt salt, a cobalt complex, a nickel salt, a nickel complex, an iron salt, an iron complex, a copper salt, a chromium salt, a palladium salt, a platinum salt, or a platinum salt, are added to the reactor. a solution of strontium salt, barium salt, barium salt, gold salt, silver salt, manganese salt, barium salt, barium salt solution or a solution of barium;
3 ) 向上述溶液 Α中加入生物质衍生物的水溶液, 得到混合溶液 B; 4) 调节混合溶液 B的 pH值为 3〜10, 得到混合溶液 C; 所述调节 pH的方法为: 向 上述混合溶液 B滴加 Imol/L NaOH或 1 mol/L HC1。 3) adding an aqueous solution of the biomass derivative to the above solution hydrazine to obtain a mixed solution B; 4) adjusting the pH of the mixed solution B to 3 to 10 to obtain a mixed solution C; the method of adjusting the pH is: adding 1 mol/L NaOH or 1 mol/L HCl to the mixed solution B.
5 )将惰性气体通入步骤 4) 的溶液 C中, 或者将上述反应器抽真空; 在惰性气体或真 空氛围中, 用紫外光、可见光或紫外光和可见光的混合光束照射反应器, 原位制得原子组 成比为 M〜N-AX的半导体催化剂。 5) passing an inert gas into solution C of step 4), or vacuuming the above reactor; irradiating the reactor with a mixed light beam of ultraviolet light, visible light or ultraviolet light and visible light in an inert gas or vacuum atmosphere, in situ A semiconductor catalyst having an atomic composition ratio of M to NA X was obtained.
进一步地, 所述生物质衍生物为甲醇、 乙醇、 丙醇、丁醇、 乙二醇、 丙三醇、 葡萄糖、 蔗糖、 果糖、 麦芽糖、 甘露糖、 抗坏血酸、 L-脯氨酸或 L-半胱氨酸。  Further, the biomass derivative is methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose, mannose, ascorbic acid, L-valine or L-half Cystine.
进一步地, 本发明半导体光催化剂 Ti02-M〜N- Ax、 Sn02-M〜N-Ax或 ZnO-M〜N-Ax 的制备方法, 包括如下步骤: Further, the preparation method of the semiconductor photocatalyst Ti0 2 -M~N- A x , Sn0 2 -M~NA x or ZnO-M~NA x of the present invention comprises the following steps:
在反应器中, 加入 II〜VI族元素或 111〜 族元素组成的量子点, 再加入 Ti02、 Sn02、 ZnO, 调节 pH 7; 离心, 去掉上层清液, 保留沉淀物; In the reactor, a quantum dot composed of a group II~VI element or a group 111~ is added, and Ti0 2 , Sn0 2 , ZnO are added to adjust the pH 7; centrifugation, the supernatant is removed, and the precipitate is retained;
向沉淀物中加入下列物质中的一种或两种以上混合物:钴的盐、钴的配合物、镍的盐、 镍的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐;  To the precipitate, one or a mixture of two or more of the following: a salt of cobalt, a complex of cobalt, a salt of nickel, a complex of nickel, a salt of iron, a complex of iron, a salt of copper, and a chromium Salt, palladium salt, platinum salt, barium salt, barium salt, barium salt, gold salt, silver salt, manganese salt, barium salt, barium salt;
再向沉淀物中加入生物质衍生物的水溶液;  Adding an aqueous solution of the biomass derivative to the precipitate;
在惰性气体或真空氛围中, 用紫外和 /或可见光照射反应器, 制得原子组成比为 Ti02-M〜N-Ax、 Sn02-M〜N-Ax或ZnO-M〜N-Ax的半导体光催化剂; Irradiating the reactor with ultraviolet and/or visible light in an inert gas or vacuum atmosphere to obtain a semiconductor photocatalyst having an atomic composition ratio of Ti0 2 -M~NA x , Sn0 2 -M~NA x or ZnO-M~NA x ;
进一步地, 所述生物质衍生物为三乙醇胺、 三乙胺、 甲醇、 乙醇、 丙醇、 丁醇、 乙二 醇、 丙三醇、 葡萄糖、 蔗糖、 果糖、 麦芽糖或甘露糖。  Further, the biomass derivative is triethanolamine, triethylamine, methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose or mannose.
进一步地, 步骤 1 ) 中所述 II〜VI或 111〜 族元素组成的量子点浓度大于 I xl0_4g/L; 所 述量子点浓度是指所有反应物均加入容器并定容后体系的量子点浓度; Further, step 1) in the quantum dot density or 111~ II~VI elements, is greater than I xl0_ 4 g / L; refers to the concentration of the quantum dots quantum After all reactants are added to a vessel and dilute System Point concentration
所述 II〜VI族元素组成的量子点包括 CdS、 CdSe、 CdTe、 PbS、 PbSe、 ZnS、 ZnSe中 的一种或两种以上组成的复合结构量子点。  The quantum dots composed of the group II to VI elements include composite structure quantum dots composed of one or more of CdS, CdSe, CdTe, PbS, PbSe, ZnS, and ZnSe.
所述 III〜V族元素组成的量子点包括 InP、 InAs中的一种或两种组成的复合结构量子 点。  The quantum dots composed of the group III to V elements include a composite structure quantum dot composed of one or two of InP and InAs.
进一步地, 步骤 2) 中所述钴的盐、 钴的配合物、 镍的盐、 镍的配合物、 铁的盐、 铁 的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的 盐、 锰的盐、 铱的盐和 /或铼的盐在反应体系中的浓度≥l xl(r6m0l/L; 即所述钴的盐、 钴的 配合物、 镍的盐、 镍的配合物、 铁的盐、 铁的配合物、铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐在整个反应体系中 的浓度最高可以达到钴的盐、 钴的配合物、 镍的盐、 镍的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐的饱和浓度; 理论上还可以继续加入, 但是没有任何理论和经济价值; 所述钴的盐是卤化钴、 硫酸钴、 硝酸钴、 碳酸钴、 草酸钴、 醋酸钴、 磷酸钴或铬酸 钴; Further, in the step 2), the cobalt salt, the cobalt complex, the nickel salt, the nickel complex, the iron salt, the iron complex, the copper salt, the chromium salt, the palladium salt, the platinum The concentration of salt, barium salt, barium salt, barium salt, gold salt, silver salt, manganese salt, barium salt and/or barium salt in the reaction system ≥ l xl (r 6 m 0 l /L ; that is, the cobalt salt, the cobalt complex, the nickel salt, the nickel complex, the iron salt, the iron complex, the copper salt, the chromium salt, the palladium salt, the platinum salt, the ruthenium Salt, barium salt, barium salt, gold salt, silver salt, manganese salt, barium salt, barium salt in the whole reaction system can reach the cobalt salt, cobalt complex, nickel Salt, nickel complex, iron salt, iron complex, copper salt, chromium salt, palladium salt, platinum salt, barium salt, barium salt, barium salt, gold salt, silver Saturated concentration of salt, manganese salt, barium salt, barium salt; theoretically it can continue to be added, but without any theoretical and economic value; Cobalt halides, cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt oxalate, cobalt acetate, cobalt phosphate, cobalt, or chromium;
所述钴的配合物是钴-氨配合物 [Co(NH3)6]3+、 钴-氰配合物 [Co(CN)6]4 钴 -硫氰配合物 [Co(SCN)4]2\ 钴 -羰基配合物 [Co(CO)4;r、 钴 -硝基配合物 [Co(N03)4f、 钴-亚硝基配合物 [Co(N02)6]3_或钴 -丁二酮肟配合物; 其中, 钴-丁二酮肟配合物及其衍生物为如下结构式:
Figure imgf000005_0001
The cobalt complex is a cobalt-ammonia complex [Co(NH 3 ) 6 ] 3+ , a cobalt-cyano complex [Co(CN) 6 ] 4 cobalt-thiocyanate complex [Co(SCN) 4 ] 2 Cobalt-carbonyl complex [Co(CO) 4 ; r, cobalt-nitro complex [Co(N0 3 ) 4 f, cobalt-nitroso complex [Co(N0 2 ) 6 ] 3 _ or cobalt - a dimethylglyoxime complex; wherein the cobalt-butanedione oxime complex and its derivative are of the following structural formula:
Figure imgf000005_0001
式中, L为 ¾0或 CH3CN; R ¾H、 N(CH3)2或 (COOCH3 ); Wherein L is 3⁄40 or CH 3 CN; R 3⁄4H, N(CH 3 ) 2 or (COOCH 3 );
所述镍的盐是卤化镍、 硫酸镍、 硝酸镍、 碳酸镍、 草酸镍、 醋酸镍、 磷酸镍或亚铬酸 镍;  The salt of nickel is nickel halide, nickel sulfate, nickel nitrate, nickel carbonate, nickel oxalate, nickel acetate, nickel phosphate or nickel chromite;
所述镍的配合物是镍-氨配位化合物 [Ni(NH3)6]2+、 镍-氰配位化合物Ni(CN)4f、 镍-螯 合物 [Ni(en)3]2+、 镍-羰基配位化合物 Ni(CO)4或镍-乙基配位化合物 (C2¾)2Ni; The complex of nickel is a nickel-ammonia complex [Ni(NH 3 ) 6 ] 2+ , a nickel-cyanide complex Ni(CN) 4 f, a nickel-chelate [Ni(en) 3 ] 2 + , nickel-carbonyl coordination compound Ni(CO) 4 or nickel-ethyl coordination compound (C 2 3⁄4) 2 Ni;
所述铁的盐是卤化铁、硫酸铁、硝酸铁、碳酸铁、 草酸铁、 醋酸铁、 磷酸铁、铬酸铁、 卤化亚铁、 硫酸亚铁、 硝酸亚铁、 碳酸亚铁、 草酸亚铁、 醋酸亚铁、 磷酸亚铁、 铬酸亚铁 或硫酸亚铁铵;  The iron salt is iron halide, iron sulfate, iron nitrate, iron carbonate, iron oxalate, iron acetate, iron phosphate, iron chromate, ferrous halide, ferrous sulfate, ferrous nitrate, ferrous carbonate, ferrous oxalate , ferrous acetate, ferrous phosphate, ferrous chromite or ammonium ferrous sulfate;
所述铁的配合物是铁-氰配合物 [Fe(CN)6f、 亚铁-氰配合物 [Fe(CN)6]4 铁-硫氰配合 物 Fe(SCN)3、 铁-硫配合物 [Fe2S2(CO)6]、 铁 -羰基配合物 Fe(CO)5、 铁 -羰基配合物 Fe2(CO)9 或铁 -羰基配合物 Fe3(CO)12The iron complex is an iron-cyano complex [Fe(CN) 6 f, a ferrous-cyano complex [Fe(CN) 6 ] 4 iron-thiocyanate complex Fe(SCN) 3 , an iron-sulfur complex [Fe 2 S 2 (CO) 6 ], iron-carbonyl complex Fe(CO) 5 , iron-carbonyl complex Fe 2 (CO) 9 or iron-carbonyl complex Fe 3 (CO) 12 .
所述铜的盐是卤化铜、 硫酸铜 (五水、 一水和无水)、 硝酸铜、 碳酸铜、 草酸铜、 醋 酸铜、 磷酸铜、 铬酸铜、 焦磷酸铜、 氰化铜、脂肪酸铜、 环垸酸铜、 卤化亚铜、硫酸亚铜、 碳酸亚铜或醋酸亚铜;  The copper salt is copper halide, copper sulfate (pentahydrate, monohydrate and anhydrous), copper nitrate, copper carbonate, copper oxalate, copper acetate, copper phosphate, copper chromate, copper pyrophosphate, copper cyanide, fatty acid Copper, copper bismuth citrate, cuprous halide, cuprous sulfate, cuprous carbonate or cuprous acetate;
所述铬的盐是卤化铬、 硫酸铬、 硝酸铬、 碳酸铬、 草酸铬、 醋酸铬或磷酸铬; 所述钯的盐是氯亚钯酸钾、 卤化钯、 硫酸钯、 硝酸钯或醋酸钯;  The salt of chromium is chromium halide, chromium sulfate, chromium nitrate, chromium carbonate, chromium oxalate, chromium acetate or chromium phosphate; the salt of the palladium is potassium chloropalladium, palladium halide, palladium sulfate, palladium nitrate or palladium acetate ;
所述铂的盐是氯亚铂酸钾、 卤化铂或硝酸铂;  The salt of platinum is potassium chloroplatinate, platinum halide or platinum nitrate;
所述钌的盐是卤化钌、 硫酸钌、 硝酸钌或醋酸钌; 所述铑的盐是卤化铑、 硫酸铑、 硝酸铑或醋酸铑; The salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate; The salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
所述金的盐是 ^化金或氯金酸;  The salt of gold is gold or chloroauric acid;
所述银的盐是卤化银、 硫酸银、 硝酸银或醋酸银;  The silver salt is silver halide, silver sulfate, silver nitrate or silver acetate;
所述锰的盐是卤化锰、 硫酸锰、 硝酸锰或醋酸锰;  The salt of manganese is manganese halide, manganese sulfate, manganese nitrate or manganese acetate;
所述铱的盐是卤化铱或氯铱酸;  The salt of the cerium is cerium halide or chloroantimonic acid;
所述铼的盐是五羰基氯化铼或五羰基溴化铼;  The salt of ruthenium is pentacarbonylphosphonium chloride or pentacarbonylpentadium bromide;
进一步地, 步骤 3 ) 中所述生物质衍生物在整个反应体系中的浓度≥l xlO_4mol/L或摩 尔百分比≥ 0.01%; 所述生物质衍生物的浓度或摩尔百分比最高可以达到其在体系中的饱 和浓度; 理论上还可以加入, 但没有任何理论和经济价值; 为解决上述第三个技术问题, 本发明一种包含有半导体光催化剂 M〜N-AX的光催化 重整生物质衍生物并制备氢气的体系, Further, the concentration of the biomass derivative in the step 3) is ≥1×10 −4 mol/L or the molar percentage ≥0.01% in the whole reaction system; the concentration or the mole percentage of the biomass derivative can reach the highest Saturated concentration in the system; theoretically, it can be added, but without any theoretical and economic value; To solve the above third technical problem, the present invention comprises a photocatalytic reforming biomass derivative comprising a semiconductor photocatalyst M~NA X And a system for preparing hydrogen,
包含如下成分:  Contains the following ingredients:
1 ) II〜VI或 111〜 族元素组成的量子点; 以及  1) quantum dots composed of II~VI or 111~ group elements;
2) 下列物质中的一种或两种以上的混合物: 钴的盐、 钴的配合物、 镍的盐、 镍的配 合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的 盐、 金的盐、 银的盐、 掹的盐、 铱的盐、 铼的盐;  2) one or a mixture of two or more of the following: a salt of cobalt, a complex of cobalt, a salt of nickel, a complex of nickel, a salt of iron, a complex of iron, a salt of copper, a salt of chromium, a salt of palladium, a salt of platinum, a salt of cerium, a salt of cerium, a salt of cerium, a salt of gold, a salt of silver, a salt of cerium, a salt of cerium, a salt of cerium;
3 ) 生物质衍生物的水溶液;  3) an aqueous solution of a biomass derivative;
以及包括如下条件:  And includes the following conditions:
ρΗ值为 3〜10;  ρΗ value is 3~10;
紫外和 /或可见光照射条件。  UV and / or visible light irradiation conditions.
进一步地, 所述生物质衍生物为甲醇、 乙醇、 丙醇、 丁醇、 乙二醇、 丙三醇、 葡萄糖、 蔗糖、 果糖、 麦芽糖、 甘露糖、 抗坏血酸、 L-脯氨酸或 L-半胱氨酸。  Further, the biomass derivative is methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose, mannose, ascorbic acid, L-valine or L-half Cystine.
本发明一种包含半导体光催化剂 Ti02-M〜N-Ax、 Sn02-M〜N-Ax或 ZnO-M〜N-Ax的光 催化重整生物质衍生物并制备氢气的体系, 其特征在于- 包括以下原料: The invention provides a system for photocatalytic reforming biomass derivatives comprising semiconductor photocatalysts Ti0 2 -M~NA x , Sn0 2 -M~NA x or ZnO-M~NA x and preparing hydrogen, characterized in that - The following ingredients:
1 ) II〜VI或 III〜V族元素组成的量子点;  1) quantum dots composed of II~VI or III~V elements;
2) Ti02、 Sn02或 ZnO; 2) Ti0 2 , Sn0 2 or ZnO;
3 ) 下列物质中的一种或两种以上的混合物: 钴的盐、 钴的配合物、 镍的盐、 镍的配 合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的 盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐;  3) one or a mixture of two or more of the following: cobalt salt, cobalt complex, nickel salt, nickel complex, iron salt, iron complex, copper salt, chromium salt, a salt of palladium, a salt of platinum, a salt of cerium, a salt of cerium, a salt of cerium, a salt of gold, a salt of silver, a salt of manganese, a salt of cerium, a salt of cerium;
4) 生物质衍生物的水溶液;  4) an aqueous solution of a biomass derivative;
以及包括以下条件:  And includes the following conditions:
碱性条件和紫外和 /或可见光照射条件。  Alkaline conditions and UV and / or visible light irradiation conditions.
进一步地, 所述生物质衍生物为三乙醇胺、 三乙胺、 甲醇、 乙醇、 丙醇、 丁醇、 乙二 醇、 丙三醇、 葡萄糖、 蔗糖、 果糖、 麦芽糖或甘露糖。  Further, the biomass derivative is triethanolamine, triethylamine, methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose or mannose.
进一步地, 所述 II〜VI或 111〜 族元素组成的量子点浓度大于 l xliT L; 所述量子点 浓度是指所有反应物均加入容器并定容后体系的量子点浓度;  Further, the quantum dot concentration of the II~VI or 111~ group element is greater than l xliT L; the quantum dot concentration refers to the quantum dot concentration of the system after all reactants are added to the container and the volume is constant;
所述 II〜VI族元素组成的量子点包括 CdS、 CdSe、 CdTe、 PbS、 PbSe、 ZnS、 ZnSe中 的一种或两种以上组成的复合结构量子点。  The quantum dots composed of the group II to VI elements include composite structure quantum dots composed of one or more of CdS, CdSe, CdTe, PbS, PbSe, ZnS, and ZnSe.
所述 ΠΙ〜ν族元素组成的量子点包括 InP、 InAs中的一种或两种组成的复合结构量子 点。  The quantum dots composed of the ΠΙ~ν group elements include a composite structure quantum dot composed of one or two of InP and InAs.
' 进一步地, 所述钴的盐、 钴的配合物、 镍的盐、 镍的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐和 /或铼的盐在整个反应体系中的浓度≥lxl(T6mol/L; 即所述钴的盐、 钴的配合物、 镍的盐、 镍的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐在整个反应体系中的浓度最 高可以达到钴的盐、 钴的配合物、 镍的盐、 镍的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐的饱和浓度; 理论上还可以继续加入, 但是没有任何理论和经济价值; Further, the cobalt salt, the cobalt complex, the nickel salt, the nickel complex, the iron salt, the iron complex, the copper salt, the chromium salt, the palladium salt, the platinum salt, the ruthenium The concentration of the salt, the barium salt, the barium salt, the gold salt, the silver salt, the manganese salt, the barium salt and/or the barium salt in the whole reaction system is ≥ lxl (T 6 mol / L ; a salt of cobalt, a complex of cobalt, Nickel salt, nickel complex, iron salt, iron complex, copper salt, chromium salt, palladium salt, platinum salt, barium salt, barium salt, barium salt, gold salt, The concentration of silver salt, manganese salt, barium salt and barium salt in the whole reaction system can reach cobalt salt, cobalt complex, nickel salt, nickel complex, iron salt and iron. , copper salt, chromium salt, palladium salt, platinum salt, barium salt, barium salt, barium salt, gold salt, silver salt, manganese salt, barium salt, barium salt Saturated concentration; theoretically can continue to join, but without any theoretical and economic value;
所述钴的盐是卤化钴、硫酸钴、硝酸钴、碳酸钴、草酸钴、醋酸钴、磷酸钴或铬酸钴; 所述钴的配合物是钴-氨配合物 [Co(NH3)6]3+、 钴-氰配合物 [Co(CN)6]4_、 钴 -硫氰配合物 [Co(SCN)4f、 钴 -羰基配合物 [Co(CO)4]—、 钴 -硝基配合物 [Co(N03)4f、 钴-亚硝基配合物 [Co(N02)6]3—或钴 -丁二酮肟配合物; 其中, 钴-丁二酮肟配合物及其衍生物为如下结构式- The cobalt salt is cobalt halide, cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt oxalate, cobalt acetate, cobalt phosphate or cobalt chromate; the cobalt complex is a cobalt-ammonia complex [Co(NH 3 ) 6 3+ , cobalt-cyano complex [Co(CN) 6 ] 4 _, cobalt-thiocyanate complex [Co(SCN) 4 f, cobalt-carbonyl complex [Co(CO)4]-, cobalt-nitrogen a complex [Co(N0 3 ) 4 f, a cobalt-nitroso complex [Co(N0 2 ) 6 ] 3 - or a cobalt-butanedione oxime complex; wherein, a cobalt-butanedione ruthenium complex and Its derivatives are of the following structural formula -
Figure imgf000007_0001
Figure imgf000007_0001
式中, L为 ¾0或 CH3CN; RJ¾H、 N(CH3)2或 (COOCH3 ); Wherein L is 3⁄40 or CH 3 CN; RJ3⁄4H, N(CH 3 ) 2 or (COOCH 3 );
所述镍的盐是卤化镍、 硫酸镍、 硝酸镍、 碳酸镍、 草酸镍、 醋酸镍、 磷酸镍或亚铬酸 所述镍的配合物是镍-氨配位化合物 [Ni(NH3)6]2+、 镍-氰配位化合物 [Ni(CN)4f、 镍-螯 合物 [Ni(en)3]2+、 镍-羰基配位化合物 Ni(CO)4或镍-乙基配位化合物 (C2H5)2Ni; The nickel salt is a nickel halide, nickel sulfate, nickel nitrate, nickel carbonate, nickel oxalate, nickel acetate, nickel phosphate or chromic acid. The complex of nickel is a nickel-ammonia complex [Ni(NH 3 ) 6 ] 2+ , nickel-cyano complex [Ni(CN) 4 f, nickel-chelate [Ni(en) 3 ] 2+ , nickel-carbonyl complex Ni(CO) 4 or nickel-ethyl Compound (C 2 H 5 ) 2 Ni ;
所述铁的盐是 化铁、硫酸铁、硝酸铁、碳酸铁、 草酸铁、 醋酸铁、 磷酸铁、铬酸铁、 卤化亚铁、 硫酸亚铁、 硝酸亚铁、 碳酸亚铁、 草酸亚铁、 醋酸亚铁、 磷酸亚铁、 铬酸亚铁 或硫酸亚铁铵;  The iron salt is iron, iron sulfate, iron nitrate, iron carbonate, iron oxalate, iron acetate, iron phosphate, iron chromate, ferrous halide, ferrous sulfate, ferrous nitrate, ferrous carbonate, ferrous oxalate , ferrous acetate, ferrous phosphate, ferrous chromite or ammonium ferrous sulfate;
所述铁的配合物是铁-氰配合物 [Fe(CN)6]3_、 亚铁-氰配合物 [Fe(CN)6f、 铁-硫氰配合 物 Fe(SCN)3、 铁-硫配合物 [Fe2S2(CO)6]、 铁 -羰基配合物 Fe(CO)5、 铁 -羰基配合物 Fe2(CO)9 或铁 -羰基配合物 Fe3(CO)12The iron complex is an iron-cyano complex [Fe(CN) 6 ] 3 _, a ferrous-cyano complex [Fe(CN) 6 f, iron-thiocyanate complex Fe(SCN) 3 , iron-sulfur complex [Fe 2 S 2 (CO) 6 ], iron-carbonyl complex Fe(CO) 5 , iron-carbonyl complex Fe 2 (CO) 9 or iron-carbonyl complex Fe 3 (CO) 12 .
所述铜的盐是卤化铜、 硫酸铜 (五水、 一水和无水)、 硝酸铜、 碳酸铜、 草酸铜、 醋 酸铜、 磷酸铜、 铬酸铜、 焦磷酸铜、 氰化铜、 脂肪酸铜、 环烷酸铜、 卤化亚铜、硫酸亚铜、 碳酸亚铜或醋酸亚铜;  The copper salt is copper halide, copper sulfate (pentahydrate, monohydrate and anhydrous), copper nitrate, copper carbonate, copper oxalate, copper acetate, copper phosphate, copper chromate, copper pyrophosphate, copper cyanide, fatty acid Copper, copper naphthenate, cuprous halide, cuprous sulfate, cuprous carbonate or cuprous acetate;
所述铬的盐是卤化铬、 硫酸铬、 硝酸铬、 碳酸铬、 草酸铬、 醋酸铬或磷酸铬; 所述钯的盐是氯亚钯酸钾、 卤化钯、 硫酸钯、 硝酸钯或醋酸钯;  The salt of chromium is chromium halide, chromium sulfate, chromium nitrate, chromium carbonate, chromium oxalate, chromium acetate or chromium phosphate; the salt of the palladium is potassium chloropalladium, palladium halide, palladium sulfate, palladium nitrate or palladium acetate ;
所述铂的盐是氯亚铂酸钾、 卤化铂或硝酸铂;  The salt of platinum is potassium chloroplatinate, platinum halide or platinum nitrate;
所述钌的盐是卤化钌、 硫酸钌、 硝酸钌或醋酸钌;  The salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
所述铑的盐是卤化铑、 硫酸铑、 硝酸铑或醋酸铑;  The salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
所述金的盐是卤化金或氯金酸;  The salt of gold is gold halide or chloroauric acid;
所述银的盐是卤化银、 硫酸银、 硝酸银或醋酸银;  The silver salt is silver halide, silver sulfate, silver nitrate or silver acetate;
所述锰的盐是卤化锰、 硫酸猛、 硝酸锰或醋酸锰;  The manganese salt is manganese halide, sulfuric acid manganese, manganese nitrate or manganese acetate;
所述铱的盐是卤化铱或氯铱酸;  The salt of the cerium is cerium halide or chloroantimonic acid;
所述铼的盐是五羰基氯化铼或五羰基溴化铼;  The salt of ruthenium is pentacarbonylphosphonium chloride or pentacarbonylpentadium bromide;
进一步地, 所述生物质衍生物在整个反应体系中的浓度≥1 ><10— 4 mol/L或摩尔百分比≥ 0.01%; 所述生物质衍生物的浓度或摩尔百分比最高可以达到其在体系中的饱和浓度; 理 论上还可以加入, 但没有任何理论和经济价值。 为解决上述第四个技术问题, 本发明一种利用半导体光催化剂 M〜N-AX光催化重整 生物质衍生物并制备氢气的方法, 包含如下步骤-Further, the biomass concentration ≥1 derivative in the whole reaction system><10- 4 mol / L or molar percentage ≥ 0.01%; derivative of said raw material concentration or molar percentage of the system which can be up to The saturation concentration in the middle; theoretically it can be added, but without any theoretical and economic value. In order to solve the above fourth technical problem, the present invention provides a method for photocatalytic reforming a biomass derivative using a semiconductor photocatalyst M~NA X and preparing hydrogen gas, comprising the following steps -
1 ) 在反应器中, 加入由 II〜VI或 111〜 族元素组成的量子点; 1) adding a quantum dot composed of II~VI or 111~ group elements in the reactor;
2) 再向反应器中加入下列物质中的一种或多种: 钴的盐、 钴的配合物、 镍的盐、 镍 的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐, 得到溶液 Α;  2) Add one or more of the following substances to the reactor: cobalt salt, cobalt complex, nickel salt, nickel complex, iron salt, iron complex, copper salt, chromium Salt, palladium salt, platinum salt, barium salt, barium salt, barium salt, gold salt, silver salt, manganese salt, barium salt, barium salt, to obtain a solution;
3 ) 向上述溶液 Α中加入生物质衍生物的水溶液, 得到混合溶液 B;  3) adding an aqueous solution of the biomass derivative to the above solution to obtain a mixed solution B;
4) 调节混合溶液 B的 pH值为 3~10, 得到混合溶液 C; 所述调节 pH的方法为: 向 上述混合溶液 B滴加 Imol/LNaOH或 1 mol/L HCL  4) adjusting the pH of the mixed solution B to 3 to 10 to obtain a mixed solution C; the method of adjusting the pH is: adding 1 mol/L NaOH or 1 mol/L HCL to the mixed solution B.
5 )将惰性气体通入步骤 4) 的溶液 C中, 或者将上述反应器抽真空; 在惰性气体或真 空氛围中, 用紫外光、可见光或紫外光和可见光的混合光束照射反应器, 原位生成的催化 剂即可光催化重整生物质衍生物并制备氢气。  5) passing an inert gas into solution C of step 4), or vacuuming the above reactor; irradiating the reactor with a mixed light beam of ultraviolet light, visible light or ultraviolet light and visible light in an inert gas or vacuum atmosphere, in situ The resulting catalyst is capable of photocatalytic reforming of biomass derivatives and preparation of hydrogen.
所述生物质衍生物是甲醇、 乙醇、 丙醇、 丁醇、 乙二醇、 丙三醇、 葡萄糖、 蔗糖、 果糖、 麦芽糖、 甘露糖、 抗坏血酸、 L-脯氨酸或 L-半胱氨酸。  The biomass derivative is methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose, mannose, ascorbic acid, L-valine or L-cysteine. .
本发明一种利用半导体光催化剂 Ti02-M〜N-Ax、 Sn02-M〜N-Ax或 ZnO-M〜N-Ax光催 化重整生物质衍生物并制备氢气的方法, 包含如下步骤-The invention provides a method for photocatalytic reforming a biomass derivative by using a semiconductor photocatalyst Ti0 2 -M~NA x , Sn0 2 -M~NA x or ZnO-M~NA x and preparing hydrogen, comprising the following steps -
1 )在反应器中, 加入 II〜VI族元素或 111〜 族元素组成的量子点, 再加入 Ti02、 Sn02 或 ZnO, 调节 pH 7; 离心, 去掉上层清液, 保留沉淀物; 1) adding a quantum dot composed of a group II~VI element or a 111~ group element in the reactor, adding Ti0 2 , Sn0 2 or ZnO to adjust the pH 7; centrifuging, removing the supernatant liquid, and retaining the precipitate;
2 ) 向沉淀物中加入下列物质中的一种或两种以上混合物: 钴的盐、 钴的配合物、 镍 的盐、 镍的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐;  2) one or a mixture of two or more of the following substances is added to the precipitate: a salt of cobalt, a complex of cobalt, a salt of nickel, a complex of nickel, a salt of iron, a complex of iron, a salt of copper, a salt of chromium, a salt of palladium, a salt of platinum, a salt of cerium, a salt of cerium, a salt of cerium, a salt of gold, a salt of silver, a salt of manganese, a salt of cerium, a salt of cerium;
3 ) 再向沉淀物中加入生物质衍生物的水溶液, 调节 pH 7;  3) adding an aqueous solution of the biomass derivative to the precipitate to adjust the pH 7;
4)在惰性气体或真空氛围中, 用紫外和 /或可见光照射反应器, 制得复合型半导体光 催化剂同时重整生物质衍生物并产生氢气。  4) Irradiating the reactor with ultraviolet light and/or visible light in an inert gas or vacuum atmosphere to obtain a composite semiconductor photocatalyst, simultaneously reforming the biomass derivative and generating hydrogen gas.
所述生物质衍生物是三乙醇胺、三乙胺、 甲醇、 乙醇、 丙醇、 丁醇、 乙二醇、 丙三醇、 葡萄糖、 蔗糖、 果糖、 麦芽糖或甘露糖。 进一步地, 步骤 1 )中所述 II〜VI或 111〜 族元素组成的量子点浓度大于 1 x10— 4g/L; 所 述量子点浓度是指 有反应物均加入容器并定容后体系的量子点浓度; The biomass derivative is triethanolamine, triethylamine, methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose or mannose. Further, in the step 1), the quantum dot concentration of the II~VI or 111~ group element is greater than 1 x 10 -4 g/L; the quantum dot concentration refers to the system in which the reactants are added to the container and the volume is constant. Quantum dot concentration;
所述 II〜VI族元素组成的量子点包括 CdS、 CdSe、 CdTe、 PbS、 PbSe、 ZnS、 ZnSe中 的一种或两种以上组成的复合结构量子点。  The quantum dots composed of the group II to VI elements include composite structure quantum dots composed of one or more of CdS, CdSe, CdTe, PbS, PbSe, ZnS, and ZnSe.
所述 III〜V族元素组成的量子点包括 InP、 InAs中的一种或两种组成的复合结构量子 点。  The quantum dots composed of the group III to V elements include a composite structure quantum dot composed of one or two of InP and InAs.
进一步地, 步骤 2) 中所述钴的盐、 钴的配合物、 镍的盐、 镍的配合物、 铁的盐、 铁 的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的 盐、 锰的盐、 铱的盐和 /或铼的盐在反应体系中的浓度≥^10—6^101 ; 即所述钴的盐、 钴的 配合物、 镍的盐、 镍的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 猛的盐、 铱的盐、 铼的盐在反应体系中最高 浓度可以达到钴的盐、钴的配合物、镍的盐、镍的配合物、铁的盐、铁的配合物、铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐的饱和浓度; 理论上还可以继续加入, 但是没有任何理论和经济价值; Further, in the step 2), the cobalt salt, the cobalt complex, the nickel salt, the nickel complex, the iron salt, the iron complex, the copper salt, the chromium salt, the palladium salt, the platinum salts, ruthenium salts, rhodium salts, iridium salts, gold salts, silver salts, the concentration of manganese salt, iridium salt and / or rhenium salt in the reaction system ≥ ^ 10- 6 ^ 1 0 1 That is, the cobalt salt, the cobalt complex, the nickel salt, the nickel complex, the iron salt, the iron complex, the copper salt, the chromium salt, the palladium salt, the platinum salt, the barium salt The salt of barium, the salt of barium, the salt of gold, the salt of silver, the salt of barium, the salt of barium, the salt of barium, the highest concentration in the reaction system can reach cobalt salt, cobalt complex, nickel salt, nickel Complex, iron salt, iron complex, copper salt, chromium salt, palladium salt, platinum salt, barium salt, barium salt, barium salt, gold salt, silver salt, manganese The saturated concentration of salt, barium salt, and barium salt; theoretically, it can continue to be added, but without any theoretical and economic value;
所述钴的盐是卤化钴、 硫酸钴、 硝酸钴、 碳酸钴、 草酸钴、 醋酸钴、 磷酸钴或铬酸 钴;  The cobalt salt is cobalt halide, cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt oxalate, cobalt acetate, cobalt phosphate or cobalt chromate;
所述钴的配合物是钴-氨配合物 [Co(NH3)6]3+、 钴-氰配合物 [Co(CN)6f、 钴 -硫氰配合物 [Co(SCN)4]2\ 钴 -羰基配合物 [Co(CO)4] 钴 -硝基配合物 [Co(N03)4f、 钴-亚硝基配合物 [ 3_或钴 -丁二酮肟配合物; 其中, 钴-丁二酮肟配合物及其衍生物为如下结构式: The cobalt complex is a cobalt-ammonia complex [Co(NH 3 ) 6 ] 3+ , a cobalt-cyano complex [Co(CN) 6 f, a cobalt-thiocyanate complex [Co(SCN) 4 ] 2 Cobalt-carbonyl complex [Co(CO) 4 ] cobalt-nitro complex [Co(N0 3 ) 4 f, cobalt-nitroso complex [ 3 _ or cobalt-butanedione oxime complex; The cobalt-butanedione oxime complex and its derivatives are of the following structural formula:
Figure imgf000009_0001
Figure imgf000010_0001
Figure imgf000009_0001
Figure imgf000010_0001
或 ;  Or ;
式中, L为 ¾0或 CH3CN; RJ¾H、 N(CH3)2或 (COOCH3); Wherein L is 3⁄40 or CH 3 CN; RJ3⁄4H, N(CH 3 ) 2 or (COOCH 3 );
所述镍的盐是卤化镍、 硫酸镍、 硝酸镍、 碳酸镍、 草酸镍、 醋酸镍、 磷酸镍或亚铬酸 镍;  The salt of nickel is nickel halide, nickel sulfate, nickel nitrate, nickel carbonate, nickel oxalate, nickel acetate, nickel phosphate or nickel chromite;
所述镍的配合物是镍-氨配位化合物 [Ni(NH3)6]2+、 镍-氰配位化合物 [Ni(CN)4]2_、 镍-螯 合物 [Ni(en)3]2+、 镍-羰基配位化合物 Ni(CO)4或镍-乙基配位化合物 (C2H5)2Ni; The nickel complex is a nickel-ammonia complex [Ni(NH 3 ) 6 ] 2+ , a nickel-cyanide complex [Ni(CN) 4 ] 2 _, a nickel-chelate [Ni(en) 3 ] 2+ , nickel-carbonyl coordination compound Ni(CO) 4 or nickel-ethyl coordination compound (C 2 H 5 ) 2 Ni ;
所述铁的盐是卤化铁、硫酸铁、硝酸铁、碳酸铁、 草酸铁、 醋酸铁、磷酸铁、铬酸铁、 卤化亚铁、 硫酸亚铁、 硝酸亚铁、 碳酸亚铁、 草酸亚铁、 醋酸亚铁、 磷酸亚铁、 铬酸亚铁 或硫酸亚铁铰;  The iron salt is iron halide, iron sulfate, iron nitrate, iron carbonate, iron oxalate, iron acetate, iron phosphate, iron chromate, ferrous halide, ferrous sulfate, ferrous nitrate, ferrous carbonate, ferrous oxalate. , ferrous acetate, ferrous phosphate, ferrous chromite or ferrous sulfate hinge;
所述铁的配合物是铁-氰配合物 [Fe(CN)6f、 亚铁-氰配合物 [Fe(CN)6]4_、 铁-硫氰配合 物 Fe(SCN)3、 铁-硫配合物 [Fe2S2(CO)6]、 铁 -羰基配合物 Fe(CO)5、 铁 -羰基配合物 Fe2(CO)9 或铁 -羰基配合物 Fe3(CO)12The iron complex is an iron-cyano complex [Fe(CN) 6 f, a ferrous-cyano complex [Fe(CN) 6 ] 4 _, an iron-thiocyanate complex Fe(SCN) 3 , iron - Sulfur complex [Fe 2 S 2 (CO) 6 ], iron-carbonyl complex Fe(CO) 5 , iron-carbonyl complex Fe 2 (CO) 9 or iron-carbonyl complex Fe 3 (CO) 12 .
所述铜的盐是卤化铜、 硫酸铜 (五水、 一水和无水)、 硝酸铜、 碳酸铜、 草酸铜、 醋 酸铜、 磷酸铜、 铬酸铜、 焦磷酸铜、 氰化铜、 脂肪酸铜、 环烷酸铜、 卤化亚铜、 硫酸亚铜、 碳酸亚铜或醋酸亚铜;  The copper salt is copper halide, copper sulfate (pentahydrate, monohydrate and anhydrous), copper nitrate, copper carbonate, copper oxalate, copper acetate, copper phosphate, copper chromate, copper pyrophosphate, copper cyanide, fatty acid Copper, copper naphthenate, cuprous halide, cuprous sulfate, cuprous carbonate or cuprous acetate;
所述铬的盐是卤化铬、 硫酸铬、 硝酸铬、 碳酸铬、 草酸铬、 醋酸铬或磷酸铬; 所述钯的盐是氯亚钯酸钾、 ¾化钯、 硫酸钯、 硝酸钯或醋酸钯;  The chromium salt is a chromium halide, a chromium sulfate, a chromium nitrate, a chromium carbonate, a chromium oxalate, a chromium acetate or a chromium phosphate; the salt of the palladium is potassium chloropalladium, palladium, palladium sulfate, palladium nitrate or acetic acid. Palladium
所述铂的盐是氯亚铂酸钾、 卤化铂或硝酸铂;  The salt of platinum is potassium chloroplatinate, platinum halide or platinum nitrate;
所述钌的盐是卤化钌、 硫酸钌、 硝酸钌或醋酸钌;  The salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
所述铑的盐是卤化铑、 硫酸铑、 硝酸铑或醋酸铑;  The salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
所述金的盐是卤化金或氯金酸;  The salt of gold is gold halide or chloroauric acid;
所述银的盐是卤化银、 硫酸银、 硝酸银或醋酸银;  The silver salt is silver halide, silver sulfate, silver nitrate or silver acetate;
所述猛的盐是卤化锰、 硫酸锰、 硝酸锰或醋酸锰;  The fierce salt is manganese halide, manganese sulfate, manganese nitrate or manganese acetate;
所述铱的盐是卤化铱或氯铱酸;  The salt of the cerium is cerium halide or chloroantimonic acid;
所述铼的盐是五羰基氯化铼或五羰基溴化铼;  The salt of ruthenium is pentacarbonylphosphonium chloride or pentacarbonylpentadium bromide;
进一步地, 步骤 3 ) 中所述生物质衍生物在整个反应体系中的浓度≥l xl(T4mol/L或摩 尔百分比≥ 0.01%; 所述生物质衍生物的浓度或摩尔百分比最高可以达到其在体系中的饱 和浓度; 理论上还可以加入, 但没有任何理论和经济价值; Further, the concentration of the biomass derivative in the step 3) is ≥ l xl (T 4 mol/L or mole percentage ≥ 0.01% in the whole reaction system; the concentration or the mole percentage of the biomass derivative can be up to Its saturation concentration in the system; theoretically it can be added, but without any theoretical and economic value;
所述生物质的重整降解是将生物质衍生物 (主要由碳、 氢、 氧三种元素组成)重整分解 为氢气以及其他小分子, 例如, C02、 CO、 CH4等, 同时在反应液中亦可生成许多中间物 种。 需要说明的是对不同的反应底物产物的种类和比例都会有差异。 The reforming degradation of the biomass is to reform and decompose biomass derivatives (mainly composed of carbon, hydrogen and oxygen) into hydrogen and other small molecules, for example, C0 2 , CO, CH 4 , etc. Many intermediate species can also be produced in the reaction solution. It should be noted that there will be differences in the types and proportions of different reaction substrate products.
反应液中可能生成的中间物种很复杂, 不同的生物质衍生物, 不同的反应条件 (如- 浓度、 温度、 pH值等)以及选用不同的量子点都会导致产物的种类、 比例发生很大变化, 这里无法一一列举, 但可以肯定的是 H2总是反应的重要产物之一。 The intermediate species that may be formed in the reaction solution are complex, different biomass derivatives, different reaction conditions (such as - concentration, temperature, pH, etc.) and the selection of different quantum dots will cause a great change in the type and proportion of the product. Here, it is impossible to enumerate them one by one, but it is certain that H 2 is always one of the important products of the reaction.
本发明具有如下有益效果:  The invention has the following beneficial effects:
本发明可以简单快捷实现由量子点通过可见光驱动光反应原位制备高效半导体催化 剂并催化重整生物质衍生物并制备氢气。更重要的是, 本方法无需煅烧等严苛条件就可以 在光照下原位生成高效、 稳定、 合成简单的半导体光催化重整生物质衍生物制氢催化剂。 本发明的方法反应高效、 操作简单、 实用。 The invention can realize the in-situ preparation of high-efficiency semiconductor catalyst by quantum dots through visible light-driven photoreaction and catalytic reforming of biomass derivatives and preparation of hydrogen gas. More importantly, the method can generate a high-efficiency, stable and simple synthesis semiconductor photocatalytic reforming biomass hydrogen production catalyst in situ under illumination without harsh conditions such as calcination. The method of the invention has high efficiency, simple operation and practicality.
附图说明 DRAWINGS
图 1为本发明 CdSe量子点的紫外-可见吸收光谱和发射光谱谱图(激发波长: 400 nm); 图 2为本发明 CdS量子点的紫外-可见吸收光谱和发射光谱谱图 (激发波长: 400 nm); 图 3为本发明 CdTe量子点的紫外-可见吸收光谱和发射光谱谱图(激发波长: 400 nm); 图 4为本发明 ZnS量子点的紫外-可见吸收光谱;  1 is an ultraviolet-visible absorption spectrum and an emission spectrum of an CdSe quantum dot of the present invention (excitation wavelength: 400 nm); FIG. 2 is an ultraviolet-visible absorption spectrum and an emission spectrum of a CdS quantum dot of the present invention (excitation wavelength: 400 nm); FIG. 3 is an ultraviolet-visible absorption spectrum and an emission spectrum of an CdTe quantum dot of the present invention (excitation wavelength: 400 nm); FIG. 4 is an ultraviolet-visible absorption spectrum of a ZnS quantum dot of the present invention;
图 5为本发明 ZnSe量子点的紫外 -可见吸收光谱和发射光谱谱图;  Figure 5 is a view showing the ultraviolet-visible absorption spectrum and the emission spectrum of the ZnSe quantum dots of the present invention;
图 6为本发明 CdSe/CdS量子点的紫外-可见吸收光谱和发射光谱谱图 (激发波长: 400 nm);  6 is an ultraviolet-visible absorption spectrum and an emission spectrum of an CdSe/CdS quantum dot of the present invention (excitation wavelength: 400 nm);
图 7为本发明 CdSe量子点在 HRTEM (高分辨透射电子显微镜) 观察下的形貌图; 图 8为本发明 CdS量子点在 HRTEM观察下的形貌图;  7 is a topographical view of a CdSe quantum dot of the present invention under HRTEM (high resolution transmission electron microscope); FIG. 8 is a topographical view of a CdS quantum dot of the present invention under HRTEM observation;
图 9为本发明 CdTe量子点在 HRTEM观察下的形貌图;  Figure 9 is a topographical view of a CdTe quantum dot of the present invention under HRTEM observation;
图 10为实施例 1的光催化重整乙醇体系经光催化反应后生成的产物在气相色谱上的出 峰谱图截图。  Fig. 10 is a screenshot showing the peak spectrum of the product produced by photocatalytic reaction of the photocatalytic reforming ethanol system of Example 1.
图 11为实施例 108中: l.Ti02 ; 2.Ή02与 CdSe量子点吸附后; 3.Ti02与 CdSe量子点吸附 后再加入各类过渡金属盐之后; 4.Ti02与 CdSe量子点吸附后加入各类过渡金属盐之后光照 8h; 这四组试样在 DRS光谱上的吸收曲线; Figure 11 is in Example 108: l . Ti0 2 ; 2. Ή 0 2 and CdSe quantum dots after adsorption; 3. Ti0 2 and CdSe quantum dots after adsorption after adding various types of transition metal salts; 4. Ti0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours ; the absorption curves of the four groups of samples on the DRS spectrum;
图 12为实施例 109中: l.Ti02 ; 2.Ti02与 CdSe量子点吸附后; 3.Ή02与 CdSe量子点吸附 后再加入各类过渡金属盐之后; 4.Ti02与 CdSe量子点吸附后加入各类过渡金属盐之后光照 8h; 这四组试样在 DRS光谱上的吸收曲线; 12 is the same as in Example 109: l . Ti0 2 ; 2. Ti0 2 and CdSe quantum dots after adsorption; 3. Ή 0 2 and CdSe quantum dots after adsorption and then various types of transition metal salts; 4. Ti0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours; the absorption curves of the four groups of samples on the DRS spectrum;
图 13为实施例 110中: l.Ti02 ; 2.Ή02与 CdSe量子点吸附后; 3.Ti02与 CdSe量子点吸附 后再加入各类过渡金属盐之后; 4.Ti02与 CdSe量子点吸附后加入各类过渡金属盐之后光照 8h; 这四组试样在 DRS光谱上的吸收曲线; 13 is in Example 110: l . Ti0 2 ; 2. Ή 0 2 and CdSe quantum dots after adsorption; 3. Ti0 2 and CdSe quantum dots after adsorption of various transition metal salts; 4. Ti0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours ; the absorption curves of the four groups of samples on the DRS spectrum;
图 14为实施例 111中: 1.Ή02 ; 2.Ή02与 CdSe量子点吸附后; 3.Ti02与 CdSe量子点吸附 后再加入各类过渡金属盐之后; 4.Ti02与 CdSe量子点吸附后加入各类过渡金属盐之后光照 8h; 这四组试样在 DRS光谱上的吸收曲线; 14 is the following in Example 111: 1. Ή0 2 ; 2. Ή0 2 and CdSe quantum dots after adsorption; 3. Ti0 2 and CdSe quantum dots after adsorption of various transition metal salts; 4. Ti0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours; the absorption curves of the four groups of samples on the DRS spectrum;
图 15为实施例 112中: l.Ti02; 2.Ti02与 CdSe量子点吸附后; 3.Ti02与 CdSe量子点吸附 后再加入各类过渡金属盐之后; 4.Ή02与 CdSe量子点吸附后加入各类过渡金属盐之后光照 8h; 这四组试样在 DRS光谱上的吸收曲线; Figure 15 is in Example 112: l. Ti0 2 ; 2. Ti0 2 and CdSe quantum dots after adsorption; 3. Ti0 2 and CdSe quantum dots after adsorption after adding various types of transition metal salts; 4. Ή0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours ; the absorption curves of the four groups of samples on the DRS spectrum;
图 16为实施例 113中: 1.Ή02 ; 2.Ti02与 CdSe量子点吸附后; 3.Ti02与 CdSe量子点吸附 后再加入各类过渡金属盐之后; 4.Ή02与 CdSe量子点吸附后加入各类过渡金属盐之后光照 8h; 这四组试样在 DRS光谱上的吸收曲线; Figure 16 is the same as in Example 113: 1. Ή0 2 ; 2. Ti0 2 and CdSe quantum dots after adsorption; 3. Ti0 2 and CdSe quantum dots after adsorption of various transition metal salts; 4. Ή0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours ; the absorption curves of the four groups of samples on the DRS spectrum;
图 17为实施例 114中: 1.Ή02 ; 2.Ti02与 CdSe量子点吸附后; 3.Ti02与 CdSe量子点吸附 后再加入各类过渡金属盐之后; 4.Ti02与 CdSe量子点吸附后加入各类过渡金属盐之后光照 8h; 这四组试样在 DRS光谱上的吸收曲线; 17 is the same as in Example 114: 1. Ή0 2 ; 2. Ti0 2 and CdSe quantum dots after adsorption; 3. Ti0 2 and CdSe quantum dots after adsorption of various transition metal salts; 4. Ti0 2 and CdSe quantum After the adsorption, various transition metal salts were added and the light was irradiated for 8 hours ; the absorption curves of the four groups of samples on the DRS spectrum;
图 18为实施例 115中: LTi02 ; 2.Ti02与 CdSe量子点吸附后; 3.Ή02与 CdSe量子点吸附 后再加入各类过渡金属盐之后; 4.Ή02与 CdSe量子点吸附后加入各类过渡金属盐之后光照 8h; 这四组试样在 DRS光谱上的吸收曲线; 18 is the embodiment 115: LTi0 2 ; 2. Ti0 2 and CdSe quantum dots after adsorption; 3. Ή 0 2 and CdSe quantum dots after adsorption of various transition metal salts; 4. Ή0 2 and CdSe quantum dot adsorption After adding various transition metal salts, the light is illuminated for 8 hours; the absorption curves of the four sets of samples on the DRS spectrum;
从图中可以看出, P-25型 Ti02表现出了典型的 Ti02紫外吸收特征, 当 CdSe量子点与 Ή02吸附后,体系同时表现出 P-25型 Ή02与 CdSe量子点吸收的叠加,证明了 CdSe量子点在 Ti02表面的吸附; 当进一步加入过渡金属盐后, 在 P-25型 Ti02与 CdSe量子点吸收的叠加的 基础上, 位于吸收更红的位置 (500-700 nm)出现了一新的宽吸收带; 当进一步光照后, 在 位置更红的区域出现了新的明显的吸收, 这说明其间生成了新的结构。 具体实施方式 实施例 1 It can be seen from the figure that P-25 type Ti0 2 exhibits a typical Ti0 2 ultraviolet absorption characteristic. When CdSe quantum dots are adsorbed with Ή0 2 , the system simultaneously exhibits P-25 type Ή0 2 and CdSe quantum dot absorption. Superposition, which proves the adsorption of CdSe quantum dots on the surface of Ti0 2 ; when further adding the transition metal salt, based on the superposition of the absorption of P-25 Ti0 2 and CdSe quantum dots, it is located in the reddish position (500-700). A new broad absorption band appears in nm; when further illumination occurs, a new distinct absorption occurs in the reddered area, indicating a new structure is created. DETAILED DESCRIPTION OF THE INVENTION Embodiment 1
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法:  A method for preparing hydrogen by photocatalytic reforming of biomass derivatives using a semiconductor photocatalyst:
向 Pyrex试管中加入 1 x lO^g/L核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 IxlO-'g/L), 然后加入 0.5 ml二氯化镍水溶液 (原始浓度 4.2xl(T3mol/L,含 0.5 mg六水合二氯 化镍)、 41^乙醇(原始浓度17.161^01/ 20°C), 调节 pH值为 7, 总体积定容为 10ml, 并使 其处于密封的氮气氛围中, 用 500W高压汞灯(400 nm的长波通型玻璃滤光片)照射试管。 Add 1 x lO^g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration IxlO-'g/L) to Pyrex tube, then add 0.5 ml of aqueous nickel dichloride solution (original Concentration 4.2xl (T 3 mol / L, containing 0.5 mg of nickel dichloride hexahydrate), 41 ^ ethanol (original concentration 17.161 ^ 01 / 20 ° C), adjust the pH value of 7, the total volume is 10ml, and The test tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass type glass filter) in a sealed nitrogen atmosphere.
该半导体光催化剂的原子组成比为 CdSeS-Nix; 其中 X值经 ICP (电感耦合等离子体 发射光谱仪)测定为: x=0.16%。  The atomic composition ratio of the semiconductor photocatalyst was CdSeS-Nix; wherein the X value was measured by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.16%.
乙醇可以从生物质发酵大规模制得, 所以光催化重整乙醇制氢具有实际意义。 图 10 为本实施例 1的光催化重整乙醇体系经光催化反应后产生的气相在气相色谱 (TCD热导检 测器)上的出峰谱图截图。 从图中可以看出, 在不同的保留时间先后出现了 ¾和 CH4(C 为内标)的谱峰。 产氢量为 107 μπιοΗι— i-mg Ethanol can be produced on a large scale from biomass fermentation, so photocatalytic reforming of ethanol to produce hydrogen has practical significance. FIG. 10 is a screenshot of the peak spectrum of the gas phase produced by the photocatalytic reaction of the photocatalytic reforming ethanol system of Example 1 on a gas chromatograph (TCD thermal conductivity detector). It can be seen from the figure that peaks of 3⁄4 and CH 4 (C is an internal standard) appear successively at different retention times. The hydrogen production is 107 μπιοΗι- i-mg
实施例 2 Example 2
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法:  A method for preparing hydrogen by photocatalytic reforming of biomass derivatives using a semiconductor photocatalyst:
向 Pyrex试管中加入 lxlO—ig/L核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 2xlO- L).然后加入 0.5 ml二氯化钴水溶液 (原始浓度 4.2xl(T3mol/L,含 0.5 mg六水合二氯 化钴)、 41^甲醇(原始浓度24.751^1 , 20°C), 调节 pH值为 6, 总体积定容为 10 ml, 并使 其处于密封的氮气氛围中,用 500 W高压汞灯(400 nm的长波通型玻璃滤光片)照射试管。 Add 1xlO-ig/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration 2xlO-L) to Pyrex tube. Then add 0.5 ml of cobalt dichloride aqueous solution (original concentration 4.2xl (T 3 mol/L, containing 0.5 mg of cobalt dichloride hexahydrate), 41^methanol (original concentration 24.751^1, 20 °C), adjusting pH to 6, total volume to 10 ml, and making it sealed The tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass glass filter) in a nitrogen atmosphere.
反应过程中, 用气相色谱 (TCD热导检测器)检测反应中生成的氢气。  During the reaction, the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector).
该半导体光催化剂的原子组成比为 CdSeS-Cox; 其中 X值经 ICP (电感耦合等离子体 发射光谱仪)测定为: x=0.13%。 产氢量为 87μπιοΗ— ^mg^ The atomic composition ratio of the semiconductor photocatalyst was CdSeS-Co x ; wherein the X value was measured by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) to be: x = 0.13%. The hydrogen production is 87μπιοΗ— ^mg^
实施例 3:  Example 3:
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法 - 向 Pyrex试管中加入 1 x 1 O^g/L核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 2xlO g/L), 然后加入 0.5 ml硫酸钴水溶液 (原始浓度 4.2xlO_3mol/L, 含 0.59 mg七水合硫酸 钴)、 4ml乙醇(原始浓度17.16mol/L, 20V), 调节 pH值为 7, 总体积定容为 10ml, 并使其 处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 A method for preparing hydrogen by photocatalytic reforming of biomass derivatives by using semiconductor photocatalyst - adding 1 x 1 O ^ g / L core shell cadmium selenide / cadmium sulfide quantum dots (PdSe / CdS quantum dot stock solution) to Pyrex test tube Concentration 2xlO g / L), then add 0.5 ml of cobalt sulfate aqueous solution (original concentration 4.2xlO 3 mol / L, containing 0.59 mg cobalt sulfate heptahydrate), 4ml ethanol (original concentration 17.16mol / L, 20V), adjust the pH value 7. The total volume is 10 ml and placed in a sealed nitrogen atmosphere. The tube is irradiated with a 500 W high pressure mercury lamp (400 nm long pass glass filter).
该半导体光催化剂的原子组成比为 CdSeS-Cox; 其中 X值经 ICP (电感耦合等离子体 发射光谱仪)测定为: x=0.23%。 产氢量为 81 μπιοΗι— ^mg— The atomic composition ratio of the semiconductor photocatalyst was CdSeS-Co x ; wherein the X value was measured by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) to be: x = 0.23%. The hydrogen production is 81 μπιοΗι— ^mg—
实施例 4:  Example 4:
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法:  A method for preparing hydrogen by photocatalytic reforming of biomass derivatives using a semiconductor photocatalyst:
向 Pyrex试管中加入 lxli^g/L核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 2xlO- L)'然后加入 0.5 ml硝酸钴水溶液 (原始浓度 4.2xl(T3mol/L, 含 0.61 mg六水合硝酸 钴)、 41^乙醇(原始浓度17.161^1/ 20°C), 调节 pH值为 7, 总体积定容为 10ml, 并使其 处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 Add 1xli^g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration 2xlO-L) to Pyrex tube and add 0.5 ml of cobalt nitrate aqueous solution (original concentration 4.2xl (T 3 mol) /L, containing 0.61 mg of cobalt nitrate hexahydrate), 41 ^ ethanol (original concentration 17.161 ^ 1 / 20 ° C), adjusting the pH to 7, the total volume is 10 ml, and placed in a sealed nitrogen atmosphere, The tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass type glass filter).
该半导体光催化剂的原子组成比为 CdSeS-Cox; 其中 X值经 ICP (电感耦合等离子体 发射光谱仪)测定为: x=0.26%。 产氢量为 Q moH^mg— 实施例 5: The atomic composition ratio of the semiconductor photocatalyst was CdSeS-Co x ; wherein the X value was measured by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) to be: x = 0.26%. The amount of hydrogen produced is Q moH^mg - Example 5:
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法:  A method for preparing hydrogen by photocatalytic reforming of biomass derivatives using a semiconductor photocatalyst:
向 Pyrex试管中加入 lxlO^g/L核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 2xlO-!g/L), 然后加入 0.5 ml硝酸镍水溶液 (原始浓度 4.2xlO_3mol/L, 含 0.61 mg六水合硝酸 镍)、 4ml乙醇(原始浓度17.16mol/L, 20V), 调节 pH值为 7, 总体积定容为 10ml, 并使其 处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 Add 1xlO^g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration 2xlO- ! g/L) to Pyrex tube, then add 0.5 ml of nickel nitrate solution (original concentration 4.2xlO_ 3) Mol/L, containing 0.61 mg of hexahydrate hexahydrate Nickel), 4ml ethanol (original concentration 17.16mol/L, 20V), adjusted to pH 7, total volume to 10ml, and in a sealed nitrogen atmosphere, with 500W high pressure mercury lamp (400 nm long wave pass) Type glass filter) Irradiate the test tube.
该半导体光催化剂的原子组成比为 CdSeS-Nix; 其中 X值经 ICP (电感耦合等离子体 发射光谱仪)测定为: x=0.18%。 产氢量为 102 μπιο1·1ι— mg 。 The atomic composition ratio of the semiconductor photocatalyst was CdSeS-Ni x ; wherein the X value was measured by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.18%. The amount of hydrogen produced is 102 μπιο1·1 -1 mg.
实施例 6:  Example 6:
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法:  A method for preparing hydrogen by photocatalytic reforming of biomass derivatives using a semiconductor photocatalyst:
向 Pyrex试管中加入 lxlO^g/L核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 2xlO'!g/L), 然后加入 0.5 ml硫酸镍水溶液 (原始浓度 4.2xl(T3mol/L, 含 0.55 mg六水合硫酸 镍)、 41^1乙醇(原始浓度17.161101^, 20 ), 调节 pH值为 7, 总体积定容为 10 ml, 并使其 处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 Add 1xlO^g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration 2xlO' ! g/L) to Pyrex tube, then add 0.5 ml of nickel sulfate solution (original concentration 4.2xl ( T 3 mol/L, containing 0.55 mg of nickel sulfate hexahydrate), 41^1 ethanol (original concentration 17.161101^, 20), adjusted to pH 7, total volume to 10 ml, and in a sealed nitrogen atmosphere The tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass type glass filter).
该半导体光催化剂的原子组成比为 CdSeS-Nix; 其中 X值经 ICP (电感耦合等离子体 发射光谱仪)测定为: x=0.21%。 产氢量为 K^ mol'h mg— The atomic composition ratio of the semiconductor photocatalyst was CdSeS-Ni x ; wherein the X value was determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) to be: x = 0.21%. The amount of hydrogen produced is K^ mol'h mg—
实施例 7:  Example 7
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法- 向 Pyrex试管中加入 lxlO^g/L核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 2 10" ¾>然后加入 0.51^二氯化镍水溶液(原始浓度4.2 10—31^1/1, 含 0.5 mg六水合二氯 化镍)、 4ml蔗糖水溶液(原始浓度0.25mol/L, 20°C), 调节 pH值为 7, 总体积定容为 10 ml, 并使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通型玻璃滤光片) 照射 试管。 A method for preparing hydrogen by photocatalytic reforming of biomass derivatives by using semiconductor photocatalyst - adding lxlO^g/L core-shell cadmium selenide/cadmium sulfide quantum dots to Pyrex tube (CdSe/CdS quantum dot solution concentration 2 10 "3⁄4> Then add 0.51 ^ nickel dichloride aqueous solution (original concentration 4.2 10 - 3 1 ^ 1 / 1, containing 0.5 mg of nickel dichloride hexahydrate), 4 ml of sucrose aqueous solution (original concentration 0.25mol / L, 20 ° C ), adjust the pH to 7, the total volume is 10 ml, and place it in a sealed nitrogen atmosphere. The tube is irradiated with a 500W high pressure mercury lamp (400 nm long pass glass filter).
该半导体光催化剂的原子组成比为 CdS X值经 ICP (电感耦合等离子体 发射光谱仪)测定为: x=0.13%。 产氢量为 δ
Figure imgf000013_0001
The atomic composition ratio of the semiconductor photocatalyst was measured by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as follows: x = 0.13%. Hydrogen production is δ
Figure imgf000013_0001
实施例 8:  Example 8
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法- 向 Pyrex试管中加入 lxlO^g/L核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 2x10-^)' 然后加入 0.5 ml二氯化镍水溶液 (原始浓度 4.2xlO—3mol/L, 含 0.5 mg六水合二氯 化镍)、4 ml葡萄糖水溶液 (原始浓度 0.25 mol/L, 20V),调节 pH值为 7,总体积定容为 10 ml, 并使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通型玻璃滤光片) 照射 该半导体光催化剂的原子组成比为 CdSeS-Nix; 其中 X值经 ICP (电感耦合等离子体 发射光谱仪)测定为: x=0.12%。 产氢量为 moH^mg^ A method for preparing hydrogen by photocatalytic reforming of biomass derivative by using semiconductor photocatalyst - adding lxlO^g/L core-shell cadmium selenide/cadmium sulfide quantum dot to Pyrex test tube (CdSe/CdS quantum dot solution concentration 2x10- ^)' Then add 0.5 ml of aqueous nickel dichloride solution (original concentration 4.2xlO- 3 mol/L, containing 0.5 mg of nickel dichloride hexahydrate), 4 ml aqueous dextrose solution (original concentration 0.25 mol/L, 20 V), adjust The pH value is 7, the total volume is 10 ml, and it is in a sealed nitrogen atmosphere. The atomic composition ratio of the semiconductor photocatalyst is irradiated by a 500 W high-pressure mercury lamp (400 nm long-wavelength glass filter). CdSeS-Ni x; wherein the X value was determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.12%. The amount of hydrogen produced is moH^mg^
实施例 9:  Example 9
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法:  A method for preparing hydrogen by photocatalytic reforming of biomass derivatives using a semiconductor photocatalyst:
向 Pyrex试管中加入 1 χ 1 (^g/L核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 2X10- L)'然后加入 0.5 ml二氯化镍水溶液 (原始浓度 4.2xlO—3mol/L, 含 0.5 mg六水合二氯 化镍)、 4 ml乙二醇 (原始浓度 17.9 mol/L, 20V), 调节 pH值为 7, 总体积定容为 10 ml, 并 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通型玻璃滤光片) 照射试 管。 Add 1 χ 1 (^g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot stock solution 2X10-L)' to the Pyrex tube and add 0.5 ml of aqueous nickel dichloride solution (original concentration 4.2). xlO— 3 mol/L, containing 0.5 mg of nickel dichloride hexahydrate), 4 ml of ethylene glycol (original concentration: 17.9 mol/L, 20 V), adjusting the pH to 7, the total volume is 10 ml, and It was placed in a sealed nitrogen atmosphere and the tube was illuminated with a 500 W high pressure mercury lamp (400 nm long pass glass filter).
该半导体光催化剂的原子组成比为 CdSeS-Nix; 其中 X值经 ICP (电感耦合等离子体 发射光谱仪)测定为: x=0.19%。 产氢量为 SS moHi mg^ The atomic composition ratio of the semiconductor photocatalyst was CdSeS-Ni x ; wherein the X value was measured by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) to be: x = 0.19%. The amount of hydrogen produced is SS moHi mg^
实施例 10:  Example 10
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法:  A method for preparing hydrogen by photocatalytic reforming of biomass derivatives using a semiconductor photocatalyst:
向 Pyrex试管中加入 lxlO^g/L核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 2xl0-'g/L)'然后加入 0.5 ml二氯化镍水溶液 (原始浓度 4.2xl(T3mol/L, 含 0.5 mg六水合二氯 化镍)、 4 ml丙三醇 (原始浓度 13.7 mol/L, 20V), 调节 pH值为 7, 总体积定容为 10 ml, 并 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通型玻璃滤光片) 照射试 管。 Add 1xlO^g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration 2xl0-'g/L) to Pyrex tube and add 0.5 ml of nickel dichloride aqueous solution (original concentration 4.2). Xl (T 3 mol/L, containing 0.5 mg of nickel dichloride hexahydrate), 4 ml of glycerol (original concentration 13.7 mol/L, 20 V), adjusted to pH 7, total volume to 10 ml, and Place it in a sealed nitrogen atmosphere and illuminate with a 500W high pressure mercury lamp (400 nm long pass glass filter) Tube.
该半导体光催化剂的原子组成比为 CdSeS-Nix ; 其中 X值经 ICP (电感耦合等离子体 发射光谱仪)测定为: x=0.15%。 产氢量为 21 μπιοΗι— ^mg The atomic composition ratio of the semiconductor photocatalyst was CdSeS-Ni x ; wherein the X value was measured by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.15%. The hydrogen production is 21 μπιοΗι- ^mg
实施例 11 :  Example 11:
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法:  A method for preparing hydrogen by photocatalytic reforming of biomass derivatives using a semiconductor photocatalyst:
向 Pyrex试管中加入整个反应体系浓度为 l x l(T4g/L 的核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 Zx lO—ig/L), 然后加入整个反应体系浓度为 1 >< 10—6 mol/L的硫 酸铬水溶液、 0.1 mol/L L-半胱氨酸, 调节 PH值为 3, 将反应器抽真空, 用 500 W高压汞 灯 (400 nm的短波通型玻璃滤光片) 照射试管。 The whole reaction system was added to the Pyrex tube at a concentration of lxl (T 4 g/L of core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration Zx lO-ig/L), and then added to the whole reaction system. at a concentration of 1><10- 6 mol / L aqueous solution of chromium sulfate, 0.1 mol / L L- cysteine adjust the PH value of 3, the reactor was evacuated and 500 W high pressure mercury lamp with a short (400 nm in Through-glass filter) Irradiate the tube.
该半导体光催化剂的原子组成比为 CdSeS-Crx; 其中 X值经 ICP (电感耦合等离子体 发射光谱仪)测定为: x=0.23%。 产氢量为 3 μπιοΗι— ^mg— '。 The atomic composition ratio of the semiconductor photocatalyst was CdSeS-C rx; wherein the X value was measured by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.23%. The amount of hydrogen produced is 3 μπιοΗι— ^mg— '.
实施例 12 : Example 12 :
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法:  A method for preparing hydrogen by photocatalytic reforming of biomass derivatives using a semiconductor photocatalyst:
向 Pyrex 试管中加入整个反应体系浓度为 l xl(T3g/L 核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 Zx lO^g/L), 然后加入整个反应体系浓度为 1 χ 10_5 mol/L的钴- 硝基配合物 [Co(N03)4]2_、 整个反应体系浓度为 l x lCT3 mol/L的蔗糖, 调节 pH值为 10, 并 使其处于密封的氮气氛围中, 用 500 W高压汞灯 (玻璃试管本身可透过紫外加可见光) 照射试管。 Add the whole reaction system concentration to lxl (T 3 g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration Zx lO^g/L) to Pyrex tube, and then add the whole reaction system. Cobalt-nitro complex [Co(N0 3 )4] 2 _ at a concentration of 1 χ 10_ 5 mol/L, sucrose at a concentration of lx lCT 3 mol/L, adjusted to a pH of 10, and The test tube was irradiated with a 500 W high pressure mercury lamp (the glass tube itself was permeable to ultraviolet light plus visible light) in a sealed nitrogen atmosphere.
该半导体光催化剂的原子组成比为 CdSeS-Cox; 其中 X值经 ICP (电感耦合等离子体 发射光谱仪)测定为: x=0.25%。 产氢量为 όΑ μπιοΗι·1·]^— The atomic composition ratio of the semiconductor photocatalyst was CdSeS-Co x ; wherein the X value was measured by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.25%. The amount of hydrogen produced is όΑ μπιοΗι· 1 ·]^—
实施例 13:  Example 13
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法:  A method for preparing hydrogen by photocatalytic reforming of biomass derivatives using a semiconductor photocatalyst:
向 Pyrex 试管中加入整个反应体系浓度为 l x l(T2g/L 核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 Sx lO^g/L),然后加入整个反应体系浓度为 2.1 χ10·4 mol/L的钴 -亚硝基配合物 [Co(N02)6f、 整个反应体系浓度为 0.1mol/L的葡萄糖, 调节 pH值为 8, 并使其处于密封的氮气氛围中, 用 500 W高压汞灯 (400 nm长波通型的玻璃滤光片) 照 射试管。 Add the whole reaction system concentration to lxl (T 2 g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration Sx lO^g/L) to the Pyrex tube, and then add the whole reaction system concentration. It is a cobalt-nitroso complex [Co(N0 2 ) 6 f of 2.1 χ10· 4 mol/L, glucose of 0.1 mol/L in the whole reaction system, pH 8 is adjusted, and it is sealed nitrogen. In the atmosphere, the test tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass type glass filter).
该半导体光催化剂的原子组成比为 CdSeS-Cox;其中 X值经 ICP (电感耦合等离子体发 射光谱仪)测定为: x=0.10%。 产氢量为 SQ mol'h mg— The atomic composition ratio of the semiconductor photocatalyst was CdSeS-Co x ; wherein the X value was measured by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) to be: x = 0.10%. The amount of hydrogen produced is SQ mol'h mg—
实施例 14:  Example 14
重复实施例 1,其不同之处仅在于掺杂化合物为二溴化镍,生物质衍生物为浓度为 0.1 mol/L 的 L-脯氨酸。  Example 1 was repeated except that the doping compound was nickel dibromide and the biomass derivative was L-valine at a concentration of 0.1 mol/L.
实施例 15:  Example 15
重复实施例 1, 其不同之处仅在于掺杂化合物为硫酸镍, 生物质衍生物为浓度为 0.1 mol/L 的 L-半胱氨酸。  Example 1 was repeated except that the doping compound was nickel sulfate and the biomass derivative was L-cysteine at a concentration of 0.1 mol/L.
实施例 16:  Example 16:
重复实施例 1, 其不同之处仅在于掺杂化合物为草酸镍, 生物质衍生物为丙醇。  Example 1 was repeated except that the doping compound was nickel oxalate and the biomass derivative was propanol.
实施例 17: Example 17 :
重复实施例 1, 其不同之处仅在于掺杂化合物为醋酸镍, 生物质衍生物为丁醇。  Example 1 was repeated except that the doping compound was nickel acetate and the biomass derivative was butanol.
实施例 18:  Example 18
重复实施例 1, 其不同之处仅在于掺杂化合物为磷酸镍。  Example 1 was repeated except that the doping compound was nickel phosphate.
实施例 19:  Example 19
重复实施例 1 , 其不同之处仅在于掺杂化合物为镍-氨配位化合物 [Ni(NH3)6]2+Example 1 was repeated except that the doping compound was a nickel-ammonia complex [Ni(NH 3 ) 6 ] 2+ .
实施例 20:  Example 20
重复实施例 1, 其不同之处仅在于掺杂化合物为镍-氰配位化合物 [Ni(CN)4f。 实施例 21 : Example 1 was repeated except that the doping compound was a nickel-cyanide complex [Ni(CN) 4 f. Example 21:
重复实施例 1, 其不同之处仅在于掺杂化合物为镍-螯合物 [Ni(en)3]2+Example 1 was repeated except that the doping compound was a nickel-chelate [Ni(en)3] 2+ .
实施例 22 : Example 22:
重复实施例 1, 其不同之处仅在于掺杂化合物为四羰基镍 Ni(CO)4Example 1 was repeated except that the doping compound was nickel tetracarbonyl Ni(CO) 4 .
实施例 23 : Example 23 :
重复实施例 1, 其不同之处仅在于掺杂化合物为镍-乙基配位化合物 (C2H5)2Ni。 实施例 24: Example 1 was repeated except that the doping compound was a nickel-ethyl complex (C 2 H 5 ) 2 Ni. Example 24 :
重复实施例 1 , 其不同之处仅在于掺杂化合物为氯化铁。 Example 1 was repeated except that the doping compound was ferric chloride.
实施例 25: Example 25:
重复实施例 1, 其不同之处仅在于掺杂化合物为氯化亚铁。 Example 1 was repeated except that the doping compound was ferrous chloride.
实施例 26: Example 26
重复实施例 1, 其不同之处仅在于掺杂化合物为溴化亚铁。 Example 1 was repeated except that the doping compound was ferrous bromide.
实施例 27: Example 27
重复实施例 1, 其不同之处仅在于掺杂化合物为硫酸亚铁。 Example 1 was repeated except that the doping compound was ferrous sulfate.
实施例 28: Example 28
重复实施例 1, 其不同之处仅在于掺杂化合物为氟化铁。 Example 1 was repeated except that the doping compound was iron fluoride.
实施例 29 : Example 29 :
重复实施例 1, 其不同之处仅在于掺杂化合物为溴化铁。 Example 1 was repeated except that the doping compound was iron bromide.
实施例 30: Example 30
重复实施例 1, 其不同之处仅在于掺杂化合物为碘化铁。 Example 1 was repeated except that the doping compound was iron iodide.
实施例 31 : Example 31:
重复实施例 1, 其不同之处仅在于掺杂化合物为硫酸铁。 Example 1 was repeated except that the doping compound was iron sulfate.
实施例 32: Example 32:
重复实施例 1, 其不同之处仅在于掺杂化合物为硝酸铁。 Example 1 was repeated except that the doping compound was ferric nitrate.
实施例 33: Example 33:
重复实施例 1, 其不同之处仅在于掺杂化合物为碳酸铁。  Example 1 was repeated except that the doping compound was iron carbonate.
实施例 34 : Example 34 :
重复实施例 1, 其不同之处仅在于掺杂化合物为草酸铁。  Example 1 was repeated except that the doping compound was iron oxalate.
实施例 35: Example 35
重复实施例 1, 其不同之处仅在于掺杂化合物为醋酸铁。  Example 1 was repeated except that the doping compound was iron acetate.
实施例 36: Example 36:
重复实施例 1, 其不同之处仅在于掺杂化合物为磷酸铁。  Example 1 was repeated except that the doping compound was iron phosphate.
实施例 37: Example 37
重复实施例 1, 其不同之处仅在于掺杂化合物为铬酸铁。  Example 1 was repeated except that the doping compound was iron chromate.
实施例 38: Example 38:
重复实施例 1, 其不同之处仅在于掺杂化合物为氟化亚铁。  Example 1 was repeated except that the doping compound was ferrous fluoride.
实施例 39: Example 39
重复实施例 1, 其不同之处仅在于掺杂化合物为碘化亚铁。  Example 1 was repeated except that the doping compound was ferrous iodide.
实施例 40: Example 40
重复实施例 1, 其不同之处仅在于掺杂化合物为硝酸亚铁。  Example 1 was repeated except that the doping compound was ferrous nitrate.
实施例 41 : Example 41:
重复实施例 1, 其不同之处仅在于掺杂化合物为碳酸亚铁。  Example 1 was repeated except that the doping compound was ferrous carbonate.
实施例 42 : Example 42 :
重复实施例 1, 其不同之处仅在于惨杂化合物为草酸亚铁。  Example 1 was repeated except that the cumbersome compound was ferrous oxalate.
实施例 43: 重复实施例 其不同之处仅在于掺杂化合物为醋酸亚铁。 Example 43 The repeated examples differ only in that the doping compound is ferrous acetate.
实施例 44: Example 44:
重复实施例 其不同之处仅在于掺杂化合物为磷酸亚铁。 The repeated examples differ only in that the doping compound is ferrous phosphate.
实施例 45: Example 45:
重复实施例 其不同之处仅在于掺杂化合物为铬酸亚铁。 The repeated examples differ only in that the doping compound is ferrous chromite.
实施例 46: Example 46:
重复实施例 其不同之处仅在于掺杂化合物为硫酸亚铁铵。 The repeated examples differ only in that the doping compound is ammonium ferrous sulfate.
实施例 47: Example 47:
重复实施例 其不同之处仅在于掺杂化合物为硫酸亚铁铵。 The repeated examples differ only in that the doping compound is ammonium ferrous sulfate.
实施例 48: Example 48:
重复实施例 其不同之处仅在于掺杂化合物为铁-氰配合物 [Fe(CN)6f。 实施例 49: The repeated examples differ only in that the doping compound is an iron-cyano complex [Fe(CN) 6 f. Example 49
重复实施例 其不同之处仅在于掺杂化合物为亚铁-氰配合物 [Fe(CN)6]4— 实施例 50: The repeated examples differ only in that the doping compound is a ferrous-cyano complex [Fe(CN) 6 ] 4 - Example 50:
重复实施例 其不同之处仅在于掺杂化合物为铁 -硫氰配合物 Fe(SCN)3。 实施例 51 : The repeated examples differ only in that the doping compound is an iron-thiocyanate complex Fe(SCN) 3 . Example 51:
重复实施例 其不同之处仅在于掺杂化合物为铁 -羰基配合物 Fe(CO)5。 实施例 52- 重复实施例 其不同之处仅在于掺杂化合物为铁 -羰基配合物 Fe2(CO)9。 实施例 53: The repeated examples differ only in that the doping compound is an iron-carbonyl complex Fe(CO) 5 . Example 52 - The repeated examples differ only in that the doping compound is an iron-carbonyl complex Fe 2 (CO) 9 . Example 53
重复实施例 其不同之处仅在于掺杂化合物为铁 -羰基配合物 Fe3(CO)12 实施例 54: The repeated examples differ only in that the doping compound is an iron-carbonyl complex Fe 3 (CO) 12 Example 54:
重复实施例 其不同之处仅在于掺杂化合物为硝酸镍。 The repeated examples differ only in that the doping compound is nickel nitrate.
实施例 55: Example 55
重复实施例 其不同之处仅在于摻杂化合物为碳酸镍。 The repeated examples differ only in that the doping compound is nickel carbonate.
实施例 56: Example 56
重复实施例 其不同之处仅在于惨杂化合物为亚铬酸镍。 The repeated examples differ only in that the murky compound is nickel chromite.
实施例 57: Example 57
重复实施例 其不同之处仅在于掺杂化合物为氟化镍。 The repeated examples differ only in that the doping compound is nickel fluoride.
实施例 58: Example 58
重复实施例 其不同之处仅在于掺杂化合物为碘化镍。 The repeated examples differ only in that the doping compound is nickel iodide.
实施例 59: Example 59
重复实施例 其不同之处仅在于掺杂化合物为二氟化钴。 The repeated examples are different only in that the doping compound is cobalt difluoride.
实施例 60: Example 60
重复实施例 其不同之处仅在于掺杂化合物为溴化钴。 The repeated examples differ only in that the doping compound is cobalt bromide.
实施例 61 : Example 61:
重复实施例 其不同之处仅在于掺杂化合物为碘化钴。 The repeated examples are different only in that the doping compound is cobalt iodide.
实施例 62: Example 62
重复实施例 其不同之处仅在于掺杂化合物为碳酸钴。 The repeated examples differ only in that the doping compound is cobalt carbonate.
实施例 63: Example 63:
重复实施例 其不同之处仅在于掺杂化合物为草酸钴。 The repeated examples differ only in that the doping compound is cobalt oxalate.
实施例 64: Example 64:
重复实施例 其不同之处仅在于掺杂化合物为醋酸钴。 The repeated examples are different only in that the doping compound is cobalt acetate.
实施例 65: Example 65
重复实施例 其不同之处仅在于惨杂化合物为磷酸钴。 实施例 66: The repeated examples differ only in that the heterogeneous compound is cobalt phosphate. Example 66:
重复实施例 1, 其不同之处仅在于掺杂化合物为钴-氨配合物 [Co(NH3)6]3+Example 1 was repeated except that the doping compound was a cobalt-ammonia complex [Co(NH 3 ) 6 ] 3+ .
实施例 67:  Example 67:
重复实施例 1, 其不同之处仅在于掺杂化合物为钴-氰配合物 [Co(CN)6]4—。 Example 1 was repeated except that the doping compound was a cobalt-cyano complex [Co(CN) 6 ] 4 -.
实施例 68:  Example 68:
重复实施例 1, 其不同之处仅在于掺杂化合物为钴 -硫氰配合物 [Co(SCN)4f。 Example 1 was repeated except that the doping compound was a cobalt-thiocyanate complex [Co(SCN) 4 f.
实施例 69:  Example 69:
重复实施例 1, 其不同之处仅在于掺杂化合物为钴 -羰基配合物 [c0(co)4r。 Example 1 was repeated except that the doping compound was a cobalt-carbonyl complex [c 0 (co) 4 r.
实施例 70:  Example 70:
重复实施例 1, 其不同之处仅在于掺杂化合物为钴 -硝基配合物 [Co(N03)4f。 Example 1 was repeated except that the doping compound was a cobalt-nitro complex [Co(N0 3 ) 4 f.
实施例 71:  Example 71:
重复实施例 1 , 其不同之处仅在于掺杂化合物为钴-亚硝基配合物 [Co(N02)6]3—。 实施例 72: Example 1 was repeated except that the doping compound was a cobalt-nitroso complex [Co(N0 2 ) 6 ] 3 -. Example 72:
一种利用半导体光催化剂光催化重整生物质衍生物制备氢气的方法:  A method for preparing hydrogen by photocatalytic reforming of biomass derivatives using a semiconductor photocatalyst:
向 Pyrex试管中加入 1 χ 1 (^g/L核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子点原液浓度 Add 1 χ 1 to the Pyrex tube (^g/L core-shell cadmium selenide/cadmium sulfide quantum dots (CdSe/CdS quantum dot solution concentration)
2χ10" ¾- 然后加入 0.8mg(2.1 xl(T4 M)结构如下的钴 -丁二酮肟配合物、 4 ml乙醇 (原始浓 度 17.16 mol/L, 20°C), 调节 pH值为 7, 总体积定容为 10 ml, 并使其处于密封的氮气氛围 中, 用 500W高压汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 2χ10" 3⁄4- Then add 0.8mg (2.1 xl (T 4 M) cobalt-butanedione oxime complex with the following structure, 4 ml ethanol (original concentration 17.16 mol/L, 20 ° C), adjust the pH to 7, The total volume was set to 10 ml and placed in a sealed nitrogen atmosphere. The tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass glass filter).
该半导体光催化剂的原子组成比为 CdSeS-Cox; 其中 X值经 ICP (电感耦合等离子体 发射光谱仪)测定为: x=0.11%。 产氢量为 ό μπιοΗ^η^ The atomic composition ratio of the semiconductor photocatalyst was CdSeS-Co x ; wherein the X value was measured by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.11%. The amount of hydrogen produced is ό μπιοΗ^η^
Figure imgf000017_0001
Figure imgf000017_0001
;
其中 L = H20。 Where L = H 2 0.
实施例 73:  Example 73:
重复实施例 72, 其不同之处仅在于掺杂化合物为结构如下的钴 -丁二酮肟配合物:  Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
Figure imgf000017_0002
Figure imgf000017_0002
其中 L = CH3CN。 Where L = CH 3 CN.
实施例 74: 重复实施例 72, 其不同之处仅在于掺杂化合物为结构如下的钴 -丁二酮肟配合物: Example 74: Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
Figure imgf000018_0001
Figure imgf000018_0001
其中 L = H20。 Where L = H 2 0.
实施例 75: Example 75
重复实施例 72, 其不同之处仅在于惨杂化合物为结构如下的钴 -丁二酮肟配合物: Example 72 was repeated except that the cryptic compound was a cobalt-butanedione oxime complex having the following structure:
F B 其中 L = CH3CN。 F B where L = CH 3 CN.
实施例 76: Example 76:
重复实施例 72, 其不同之处仅在于掺杂化合物为结构如下的钴 -丁二酮肟配合物: Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
Figure imgf000018_0002
Figure imgf000018_0002
其中 R=H。 Where R=H.
实施例 77: Example 77:
重复实施例 72, 其不同之处仅在于掺杂化合物为结构如下的钴 -丁二酮肟配合物:
Figure imgf000019_0001
Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
Figure imgf000019_0001
其中 R=N(C )2Where R = N(C) 2 .
实施例 78- 重复实施例 72, 其不同之处仅在于掺杂化合物为结构如下的钴 -丁二酮肟配合物: Example 78 - Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
Figure imgf000019_0002
Figure imgf000019_0002
其中 R=COOCH3Wherein R = COOCH 3 .
实施例 79: Example 79
重复实施例 72, 其不同之处仅 如下的钴 -丁二酮肟配合物: Example 72 was repeated except that the cobalt-butanedione oxime complex is as follows:
Figure imgf000019_0003
其中 L = H20。
Figure imgf000019_0003
Where L = H 2 0.
实施例 80: Example 80
重复实施例 72, 其不同之处仅 如下的钴-丁二酮肟配合物: Example 72 was repeated except that the cobalt-butanedione oxime complex is as follows:
Figure imgf000019_0004
其中 L = CH3CN。 实施例 81 :
Figure imgf000019_0004
Where L = CH 3 CN. Example 81:
重复实施例 72, 其不同之处仅 如下的钴 -丁二酮肟配合物: Example 72 was repeated except that the cobalt-butanedione oxime complex is as follows:
Figure imgf000020_0001
Figure imgf000020_0001
实施例 82: Example 82:
重复实施例 72, 其不同之处仅在于掺杂化合物为结构如下的钴 -丁二酮肟配合物: Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
Figure imgf000020_0002
实施例 83:
Figure imgf000020_0002
Example 83:
重复实施例 72, 其不同之处仅在于掺杂化合物为结构如下的钴 -丁二酮肟配合物: Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
Figure imgf000020_0003
实施例 84:
Figure imgf000020_0003
Example 84:
重复实施例 72, 其不同之处仅在于掺杂化合物为结构如下的钴 -丁二酮肟配合物: Example 72 was repeated except that the doping compound was a cobalt-butanedione oxime complex having the following structure:
Figure imgf000020_0004
实施例 85: 重复实施例 1, 其不同之处仅在于掺杂化合物为二氯化铬。 实施例 86:
Figure imgf000020_0004
Example 85: Example 1 was repeated except that the doping compound was chromium dichloride. Example 86
重复实施例 1, 其不同之处仅在于掺杂化合物为三氯化铬。 实施例 87:  Example 1 was repeated except that the doping compound was chromium trichloride. Example 87:
重复实施例 1, 其不同之处仅在于渗杂化合物为二溴化铬。 实施例 88:  Example 1 was repeated except that the dopant compound was chromium dibromide. Example 88
重复实施例 1, 其不同之处仅在于掺杂化合物为三溴化铬。 实施例 89:  Example 1 was repeated except that the doping compound was chromium tribromide. Example 89
重复实施例 1, 其不同之处仅在于掺杂化合物为硝酸铬。  Example 1 was repeated except that the doping compound was chromium nitrate.
实施例 90:  Example 90
重复实施例 1, 其不同之处仅在于渗杂化合物为碳酸铬。  Example 1 was repeated except that the dopant compound was chromium carbonate.
实施例 91 :  Example 91:
重复实施例 1, 其不同之处仅在于掺杂化合物为草酸铬。  Example 1 was repeated except that the doping compound was chromium oxalate.
实施例 92:  Example 92
重复实施例 1, 其不同之处仅在于掺杂化合物为醋酸铬。  Example 1 was repeated except that the doping compound was chromium acetate.
实施例 93:  Example 93
重复实施例 1, 其不同之处仅在于掺杂化合物为磷酸铬。 表 1 实施例 1〜 10与对照文件产氢体系的组成及产氢速率的对比  Example 1 was repeated except that the doping compound was chromium phosphate. Table 1 Comparison of the composition and hydrogen production rate of the hydrogen production system of the examples 1 to 10 and the control file
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000021_0001
Figure imgf000022_0001
醇 (4 ml) 丙三醇 (4 ml)、; pH 3〜10; 500 W高压汞灯照射; 400 nm滤光片保证透过需要 波段波长的光; 气相色谱检测氢气生成 (4 A分子筛柱, TCD检测器, 甲烷内标定量)。  Alcohol (4 ml) glycerol (4 ml), pH 3~10; 500 W high pressure mercury lamp; 400 nm filter to ensure transmission of light through the required wavelength; gas chromatography to detect hydrogen generation (4 A molecular sieve column) , TCD detector, methane internal standard quantitation).
通过表 1可以看出, 本发明实施例 1〜10中产氢速率普遍大于对照文件 1、 2中的产氢速 率, 同时, 本发明实施例 1的产氢速率是最髙的, 为 107 moHi mg  As can be seen from Table 1, the rate of hydrogen production in Examples 1 to 10 of the present invention is generally greater than that in Control Documents 1, 2, and the hydrogen production rate in Example 1 of the present invention is the most embarrassing, which is 107 moHi mg.
实施例 94  Example 94
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS 量子点原液浓度以镉离子浓度为基准, 镉离子浓度 =l x l(T3mol/L), 用 lmol/L氢氧化钠调 节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml二氯化镍水溶液 (原始浓 度 4.2x l(T3mol/L含 0.5mg六水合二氯化镍)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), 1M NaOH调节 pH=ll并使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压 汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to the Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lxl (T 3 mol / L), adjust the pH to 11 with 1mol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5ml of nickel dichloride solution (original concentration 4.2xl (T 3 mol / L contains 0.5mg six) Hydrated nickel dichloride), 4ml ethanol (original concentration 17.16 mol / L, 20 ° C), 1M NaOH adjusted pH = ll and the total volume is 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure mercury The lamp (400 nm long pass glass filter) illuminates the tube.
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSeS-Nix ;其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.26%。 产氢速率为 357μπιοΗι 实施例 95 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Ni x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.26%. The hydrogen production rate was 357 μπιοΗι. Example 95
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子 点原液浓度以镉离子浓度为基准, 镉离子浓度 =1 x 10— 3mol/L), 用 lmol/L氢氧化钠调节 pH 为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml二氯化镍水溶液 (原始浓度 4.2 l O"3mol/L,含 0.5mg六水合二氯化镍)、 4ml甲醇 (原始浓度 24.75 mol/L, 20°C), lM NaOH 调节 pH=l l并使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to the Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = 1 x 10 - 3 mol /L), adjust the pH to 11 with 1 mol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5 ml of nickel dichloride aqueous solution (original concentration 4.2 l O" 3 mol/L, containing 0.5 Mg hexahydrate nickel dichloride), 4ml methanol (original concentration 24.75 mol / L, 20 ° C), lM NaOH adjust pH = ll and make the total volume to 10ml, so that it is in a sealed nitrogen atmosphere, with 500W A high pressure mercury lamp (400 nm long pass glass filter) illuminates the tube.
本实施例中,该半导体光催化剂的原子组成比为 Ti02-CdSeS-Nix;其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.13%。 产氢速率为 23441^)1·^。 实施例 96: In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Ni x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.13%. The hydrogen production rate is 23441^)1·^. Example 96:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS 量子点原液浓度以镉离子浓度为基准, 镉离子浓度 =l x lO—3mol/L), 用 lmol/L氢氧化钠调 节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml硫酸钴水溶液 (原始浓度 4.2x 10-3mol/L含 0.59mg七水合硫酸钴)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), lM NaOH 调节 pH=l l并使总体积定容为 10ml,使其处于密封的氮气氛围中,用 500W高压汞灯(400 nm的长波通型玻璃滤光片) 照射试管。 本实施例中,该半导体光催化剂的原子组成比为 Ti02-CdSeS-Cox;其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.24%。 产氢速率为 286μπιοΗι— Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to the Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lx lO - 3 mol / L), adjust the pH to 11 with 1 mol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5 ml of cobalt sulfate aqueous solution (original concentration 4.2× 10- 3 mol/L containing 0.59 mg of heptahydrate sulfuric acid) Cobalt), 4ml ethanol (original concentration 17.16 mol/L, 20 °C), lM NaOH adjust pH=ll and make the total volume to 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure mercury lamp (400 nm) Long pass glass filter) Irradiate the tube. In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Co x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.24%. The hydrogen production rate is 286μπιοΗι-
实施例 97:  Example 97
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤:  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS 量子点原液浓度以镉离子浓度为基准, 镉离子浓度 =1 x 10— 3mol/L), 用 lmol/L氢氧化钠调 节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml硝酸钴水溶液 (原始浓度 4.2x lO-3mol/L含 0.61mg六水合硝酸钴)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), IM NaOH 调节 pH=ll并使总体积定容为 10ml,使其处于密封的氮气氛围中,用 500W高压汞灯(400 nm的长波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to the Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = 1 x 10 - 3 mol /L), adjust the pH to 11 with 1 mol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5 ml of cobalt nitrate aqueous solution (original concentration 4.2x lO- 3 mol/L with 0.61 mg hexahydrate) Cobalt nitrate), 4ml ethanol (original concentration 17.16 mol/L, 20 °C), IM NaOH adjusted pH=ll and the total volume is 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure mercury lamp (400 Long-pass glass filter of nm) Irradiation of the test tube.
本实施例中,该半导体光催化剂的原子组成比为 Ti02-CdSeS-Cox;其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.19%。 产氢速率为 265μπιο1·1ι— In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Co x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.19%. The hydrogen production rate is 265μπιο1·1ι—
实施例 98:  Example 98
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子 点原液浓度以镉离子浓度为基准, 镉离子浓度 =1 x 10— 3mol/L), 用 lmol/L氢氧化钠调节 pH 为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml硝酸镍水溶液(原始浓度 4.2x 10"3mol/L, 含 0.61mg六水合硝酸镍)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), IM NaOH 调节 pH=l l并使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to the Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = 1 x 10 - 3 mol /L), adjust the pH to 11 with lmol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5ml of nickel nitrate solution (original concentration 4.2x 10" 3 mol / L, containing 0.61mg six Hydrated nickel nitrate), 4ml ethanol (original concentration 17.16 mol / L, 20 ° C), IM NaOH adjusted pH = ll and the total volume is 10ml, so that it is in a sealed nitrogen atmosphere, with a 500W high pressure mercury lamp ( A 400 nm long pass glass filter is used to illuminate the tube.
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSeS-Nix; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.17%。 产氢速率为 323μπιο1·1ι— In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Ni x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.17%. The hydrogen production rate is 323μπιο1·1ι—
实施例 99:  Example 99
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS量子 点原液浓度以镉离子浓度为基准, 镉离子浓度 =1 x 10— 3mol/L), 用 lmol/L氢氧化钠调节 pH 为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml硫酸镍水溶液 (原始浓度 4.2 l O"3mol/L, 含 0.61mg七水合硫酸镍)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), IM NaOH 调节 pH=l l并使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to the Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = 1 x 10 - 3 mol /L), adjust the pH to 11 with 1 mol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5 ml of nickel sulfate aqueous solution (original concentration 4.2 l O" 3 mol/L, containing 0.61 mg seven Hydrated nickel sulfate), 4ml ethanol (original concentration 17.16 mol/L, 20 °C), IM NaOH adjusted pH=ll and the total volume is 10ml, so that it is in a sealed nitrogen atmosphere, using a 500W high pressure mercury lamp ( A 400 nm long pass glass filter is used to illuminate the tube.
本实施例中,该半导体光催化剂的原子组成比为 Ti02-CdSeS-Nix;其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.25%。 产氢速率为 3494^101·^。 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Ni x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.25%. The hydrogen production rate is 3494^101·^.
实施例 100:  Example 100:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS 量子点原液浓度以镉离子浓度为基准, 镉离子浓度 =l x l(T3mol/L), 用 lmol/L氢氧化钠调 节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml二氯化镍水溶液 (原始浓 度 4.2x l(T3mol/L含 0.5mg六水合二氯化镍)、 4ml蔗糖水溶液 (原始浓度 0.25 mol/L, 20°C), IM NaOH调节 pH=ll并使总体积定容为 10ml, 使其处于密封的氮气氛围中,用 500W高 压汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to the Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lxl (T 3 mol / L), adjust the pH to 11 with 1mol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5ml of nickel dichloride solution (original concentration 4.2xl (T 3 mol / L contains 0.5mg six) Hydrated nickel dichloride), 4ml sucrose aqueous solution (original concentration 0.25 mol / L, 20 ° C), IM NaOH adjusted pH = ll and the total volume is 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure Mercury lamps (400 nm long pass glass filters) are irradiated to the tubes.
本实施例中,该半导体光催化剂的原子组成比为 Ti02-CdSeS-Nix;其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.12%。 产氢速率为 69μηι0Ηι— In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Ni x; wherein the X value is passed through the ICP (electrical The inductively coupled plasma optical emission spectrometer was determined to be: x = 0.12%. The hydrogen production rate is 69μηι 0 Ηι—
实施例 101 :  Example 101:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS 量子点原液浓度以镉离子浓度为基准, 镉离子浓度 =l x l O—3mol/L), 用 lmol/L氢氧化钠调 节 pH为 11 , 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml二氯化镍水溶液 (原始浓 度 4.2x l O_3mol/L含 0.5mg六水合二氯化镍)、 4ml葡萄糖水溶液 (原始浓度 0.25 mol/L, 20 °C),lM NaOH调节 pH=ll并使总体积定容为 10ml,使其处于密封的氮气氛围中,用 500W 高压汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to the Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lxl O - 3 mol / L), adjust the pH to 11 with lmol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5ml of nickel dichloride aqueous solution (original concentration 4.2xl O_ 3 mol/L with 0.5mg hexahydrate) Nickel dichloride), 4ml aqueous glucose solution (original concentration 0.25 mol/L, 20 °C), pH=ll adjusted by lM NaOH and the total volume is 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure mercury The lamp (400 nm long pass glass filter) illuminates the tube.
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSeS-Nix; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.16%。 产氢速率为 87μπι0Ηι— In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Ni x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.16%. The hydrogen production rate is 87μπι 0 Ηι—
实施例 102:  Example 102:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法:包 括以下步骤: 一 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen: comprising the following steps:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS 量子点原液浓度以镉离子浓度为基准, 镉离子浓度 =l x l O_3mol/L), 用 lmol/L氢氧化钠调 节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml二氯化镍水溶液 (原始浓 度 4.2x l CT3mol/L含 0.5mg六水合二氯化镍)、 4ml异丙醇 (原始浓度 13.1 mol/L, 20°C), 1M NaOH调节 pH=ll并使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压 汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to the Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lxl O_ 3 mol/L ), adjust the pH to 11 with 1 mol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5 ml of aqueous nickel dichloride solution (original concentration 4.2 x l CT 3 mol/L with 0.5 mg hexahydrate) Nickel chloride), 4ml isopropanol (original concentration 13.1 mol/L, 20 °C), 1M NaOH adjusted pH=ll and the total volume is 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure mercury The lamp (400 nm long pass glass filter) illuminates the tube.
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSeS-Nix; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.23%。 产氢速率为 351μπιοΗι— In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Ni x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) to be: x = 0.23%. The hydrogen production rate is 351μπιοΗι-
实施例 103:  Example 103:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS 量子点原液浓度以镉离子浓度为基准, 镉离子浓度 =l x l0—3mol/L), 用 lmol/L氢氧化钠调 节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml二氯化镍水溶液 (原始浓 度 4.2x l O_3mol/L含 0.5mg六水合二氯化镍)、 4ml正丁醇 (原始浓度 10.9 mol/L, 20 °C), 1M NaOH调节 pH=7并使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞 灯 (400 nm的短波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to the Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lx l0 - 3 mol / L), adjust the pH to 11 with 1mol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5ml of nickel dichloride solution (original concentration 4.2xl O_ 3 mol/L with 0.5mg hexahydrate) Nickel dichloride), 4ml n-butanol (original concentration 10.9 mol/L, 20 °C), 1M NaOH adjusted pH=7 and the total volume is 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure A mercury lamp (400 nm short-wavelength glass filter) is used to illuminate the tube.
本实施例中,该半导体光催化剂的原子组成比为 Ti02-CdSeS-Nix; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.11%。 产氢速率为 31μπι0Ηι— In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Ni x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x=0.11%. The hydrogen production rate is 31μπι 0 Ηι—
实施例 104:  Example 104
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS 量子点原液浓度以镉离子浓度为基准, 镉离子浓度 =1 x 10— 3mol/L), 用 lmol/L氢氧化钠调 节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml二氯化鎳水溶液 (原始浓 度 4.2x l O-3mol/L含 0.5mg六水合二氯化镍)、 4ml乙二醇 (原始浓度 17.9 mol/L, 20°C), 1M NaOH调节 pH=9并使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞 灯 (玻璃试管本身可透过紫外加可见光) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to the Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = 1 x 10 - 3 mol /L), adjust the pH to 11 with 1 mol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5 ml of nickel dichloride aqueous solution (original concentration 4.2xl O- 3 mol/L 0.5mg) Chlorine hexahydrate), 4ml ethylene glycol (original concentration 17.9 mol/L, 20 ° C), 1M NaOH adjusted pH = 9 and the total volume is 10 ml, so that it is in a sealed nitrogen atmosphere, with A 500W high pressure mercury lamp (the glass tube itself can be passed through the UV plus visible light) illuminates the tube.
本实施例中,该半导体光催化剂的原子组成比为 Ti02-CdSeS-Nix; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.18%。 产氢速率为 87μπιοΗι— 实施例 105: In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Ni x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.18%. The hydrogen production rate is 87μπιοΗι- Example 105:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤:  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS 量子点原液浓度以镉离子浓度为基准, 镉离子浓度 =l x l O_3mol/L), 用 lmol/L氢氧化钠调 节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml二氯化镍水溶液 (原始浓 度 4.2x l(T3mol/L含 0.5mg六水合二氯化镍)、 4ml丙三醇 (原始浓度 13.7 mol L, 20°C), 1M NaOH调节 pH=12并使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压 汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to the Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lxl O_ 3 mol/L ), adjust the pH to 11 with 1 mol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5 ml of aqueous nickel dichloride solution (original concentration 4.2 x l (T 3 mol/L with 0.5 mg hexahydrate) Nickel dichloride), 4ml glycerol (original concentration 13.7 mol L, 20 ° C), 1M NaOH adjusted pH = 12 and the total volume is 10 ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure mercury The lamp (400 nm long pass glass filter) illuminates the tube.
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSeS-Nix;其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.13%。 产氢速率为 18μπι01·1ι— In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Ni x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.13%. The hydrogen production rate is 18μπι 0 1·1ι—
实施例 106:  Example 106:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS 量子点原液浓度以镉离子浓度为基准, 镉离子浓度 =l x l(T3moI/L), 用 lmol/L氢氧化钠调 节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml二氯化镍水溶液 (原始浓 度 4.2x l O_3mol/L含 0.5mg六水合二氯化镍)、 4ml三乙胺溶液 (原始浓度 0.25mol/L, 20°C), 1M NaOH调节 pH 14并使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W 高压汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lxl (T 3 moI/ L), adjust the pH to 11 with 1mol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5ml of nickel dichloride solution (original concentration 4.2xl O_ 3 mol/L with 0.5mg hexahydrate) Nickel dichloride), 4ml of triethylamine solution (original concentration 0.25mol/L, 20°C), pH 14 adjusted by 1M NaOH and the total volume is 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure Mercury lamps (400 nm long pass glass filters) were irradiated to the tubes.
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSeS-Nix ;其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.19%。 产氢速率为 ΖΒΙμπιοΙ In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Ni x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.19%. The rate of hydrogen production is ΖΒΙμπιοΙ
实施例 107:  Example 107:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一 ―  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉 /硫化镉量子点 (CdSe/CdS 量子点原液浓度以镉离子浓度为基准, 镉离子浓度 =l x l O_3mol/L), 用 lmol/L氢氧化钠调 节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml二氯化镍水溶液 (原始浓 度 4.2x l O-3mol/L含 0.5mg六水合二氯化镍)、 4ml三乙醇胺 (原始浓度 0.25 mol/L, 20°C), lM NaOH调节 pH=13并使总体积定容为 10ml,使其处于密封的氮气氛围中,用 500W高 压汞灯 (400 nm的长波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide/cadmium sulfide quantum dots to the Pyrex tube (CdSe/CdS quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lxl O_ 3 mol/L ), adjust the pH to 11 with 1 mol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; then add 0.5 ml of nickel dichloride aqueous solution (original concentration 4.2xl O- 3 mol/L with 0.5mg hexahydrate) Nickel dichloride), 4ml triethanolamine (original concentration 0.25 mol / L, 20 ° C), lM NaOH adjusted pH = 13 and the total volume is 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure mercury The lamp (400 nm long pass glass filter) illuminates the tube.
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSeS-Nix;其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.17%。 产氢速率为 189μπιοΗι— In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSeS-Ni x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.17%. The hydrogen production rate is 189μπιοΗι-
实施例 108 Example 108
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉量子点 (CdSe量子点原液浓 度以镉离子浓度为基准, 镉离子浓度 =l x l(T3mol/L), 用 lmol/L氢氧化钠调节 pH为 11 , 离心,去掉上层清液,保留沉淀物;然后加入 0.5ml三氯化铬水溶液 (原始浓度 4.2x 1 (T3moI/L 含 0.56mg六水合三氯化铬)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), 1M NaOH调节 pH=l l 并使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长 波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide quantum dots to Pyrex tube (CdSe quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lxl (T 3 mol / L), with 1mol /L sodium hydroxide to adjust the pH to 11, centrifugation, remove the supernatant, retain the precipitate; then add 0.5ml of chromium trichloride aqueous solution (original concentration 4.2x 1 (T 3 moI / L contains 0.56mg hexahydrate trichlorinated Chromium), 4ml ethanol (original concentration 17.16 mol/L, 20 °C), 1M NaOH to adjust pH=ll and make the total volume to 10ml, in a sealed nitrogen atmosphere, with 500W high pressure mercury lamp (400 nm) Long pass glass filter) Irradiate the tube.
反应过程中, 用气相色谱 (TCD 热导检测器)检测反应中生成的氢气, 产氢速率为 56μπιο1·1ι"1 ° During the reaction, the hydrogen generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 56 μπιο1·1ι" 1 °.
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSe-Crx; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.17%。 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdS e -Cr x; wherein the X value is passed through the ICP (electrical The inductively coupled plasma optical emission spectrometer was determined to be: x = 0.17%.
实施例 109:  Example 109:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉量子点 (CdSe量子点原液浓 度以镉离子浓度为基准, 镉离子浓度 =l xlO—3mol/L), 用 lmol/L氢氧化钠调节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml 氯亚铂酸钾水溶液(原始浓度 4.2x10"3mol/L含 0.87mg氯亚铂酸钾)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), IM NaOH 调节 pH=ll并使总体积定容为 10ml,使其处于密封的氮气氛围中,用 500W高压汞灯(400 nm的长波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide quantum dots to the Pyrex tube (CdSe quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = l xlO- 3 mol/L), with 1mol /L sodium hydroxide to adjust the pH to 11, centrifugation, remove the supernatant, retain the precipitate; then add 0.5ml potassium chloroplatinate solution (original concentration 4.2x10" 3 mol / L with 0.87mg potassium chloroplatinate) 4ml ethanol (original concentration 17.16 mol/L, 20 °C), IM NaOH adjust pH=ll and make the total volume to 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure mercury lamp (400 nm long wave) Through-glass filter) Irradiate the tube.
反应过程中, 用气相色谱 (TCD 热导检测器)检测反应中生成的氢气, 产氢速率为 71μπιο1·1ι 。  During the reaction, the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 71 μπιο1·1ι.
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSe-Ptx; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.31%。 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSe-Pt x; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) to be: x=0.31%.
实施例 110:  Example 110:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉量子点 (CdSe量子点原液浓 度以镉离子浓度为基准, 镉离子浓度 =l xl(T3mol/L), 用 lmol/L氢氧化钠调节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml 氯亚钯酸钾水溶液(原始浓度 4.2 lO"3mol/L含 0.69mg氯亚钯酸钾)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), IM NaOH 调节 pH=ll并使总体积定容为 10ml,使其处于密封的氮气氛围中,用 500W高压汞灯(400 nm的长波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide quantum dots to Pyrex tube (CdSe quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = l xl (T 3 mol/L), Lmol/L sodium hydroxide was adjusted to pH 11, centrifuged, the supernatant was removed, and the precipitate was retained. Then 0.5 ml of potassium chloropalladium solution (original concentration 4.2 lO) 3 mol/L containing 0.69 mg of potassium chloropalladium was added. ), 4ml ethanol (original concentration 17.16 mol / L, 20 ° C), IM NaOH adjust pH = ll and make the total volume to 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure mercury lamp (400 nm Long pass glass filter) Irradiate the tube.
反应过程中, 用气相色谱 (TCD 热导检测器)检测反应中生成的氢气, 产氢速率为 101μπιο1·1ι-1During the reaction, the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 101 μπιο1· 1 -1 .
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSe-Pdx; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.34%。 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSe-Pd x; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.34%.
实施例 111:  Example 111:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉量子点 (CdSe量子点原液浓 度以镉离子浓度为基准, 镉离子浓度 =l xlO_3mol/L), 用 lmol/L氢氧化钠调节 pH为 11, 离心,去掉上层清液,保留沉淀物;然后加入 0.5ml三氯化钌水溶液 (原始浓度 4.2x1 (T3mol/L 含 0.44mg三氯化钌)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), IM NaOH调节 pH=ll并使 总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通 型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide quantum dots to the Pyrex tube (CdSe quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = l xlO_ 3 mol/L), using 1mol/ L sodium hydroxide was adjusted to pH 11, centrifuged, the supernatant was removed, and the precipitate was retained; then 0.5 ml of an aqueous solution of antimony trichloride was added (original concentration 4.2 x 1 (T 3 mol/L containing 0.44 mg of antimony trichloride), 4 ml Ethanol (original concentration 17.16 mol/L, 20 °C), IM NaOH adjusts pH=ll and makes the total volume constant to 10 ml, so that it is in a sealed nitrogen atmosphere, using a 500W high pressure mercury lamp (400 nm long wave pass type) Glass filter) Irradiate the tube.
反应过程中, 用气相色谱 (TCD 热导检测器)检测反应中生成的氢气, 产氢速率为 218μπιο1·1ι  During the reaction, the hydrogen produced in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 218 μπιο1·1ι.
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSe-Rux; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.36%。 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSe-Ru x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.36%.
实施例 112:  Example 112:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉量子点 (CdSe量子点原液浓 度以镉离子浓度为基准, 镉离子浓度 =l x lO—3mol/L), 用 lmol/L氢氧化钠调节 pH为 11, 离心, 去掉上层清液,保留沉淀物; 然后加入 0.5ml硫酸铜水溶液 (原始浓度 4.2x l(T3mol/L 含 0.52mg五水硫酸铜)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), IM NaOH调节 pH=l l并 使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波 通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide quantum dots to the Pyrex tube (CdSe quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lx lO- 3 mol/L), with 1mol /L sodium hydroxide adjusts the pH to 11, Centrifuge, remove the supernatant, and retain the precipitate; then add 0.5ml of copper sulfate solution (original concentration 4.2xl (T 3 mol / L containing 0.52mg copper sulfate pentahydrate), 4ml ethanol (original concentration 17.16 mol / L, 20 ° C), IM NaOH was adjusted to pH = ll and the total volume was made up to 10 ml, which was placed in a sealed nitrogen atmosphere, and the tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass type glass filter).
反应过程中, 用气相色谱 (TCD 热导检测器)检测反应中生成的氢气, 产氢速率为 20μπιο1·1ι"1During the reaction, the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 20 μπιο1·1ι" 1 .
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSe-CUx; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.13%。 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSe-C Ux; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.13%.
实施例 113:  Example 113:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下歩骤:  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the following steps:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉量子点 (CdSe量子点原液浓 度以镉离子浓度为基准, 镉离子浓度 =l x l O_3mol/L), 用 lmol/L氢氧化钠调节 pH为 11, 离心, 去掉上层清液,保留沉淀物; 然后加入 0.5ml硫酸锰水溶液 (原始浓度 4.2x 10—3mol/L 含 0.36mg水合硫酸锰)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), 1M NaOH调节 pH=ll并 使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波 通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide quantum dots to the Pyrex tube (CdSe quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lxl O_ 3 mol/L), using 1mol/ L sodium hydroxide adjusted to pH 11, centrifuged, the supernatant removed, the precipitate was retained; 0.5ml aqueous manganese sulfate solution was then added (the original concentration of 4.2x 10- 3 mol / L manganese sulfate-containing 0.36mg), 4ml ethanol (original Concentration 17.16 mol/L, 20 °C), 1M NaOH adjust pH=ll and make the total volume to 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure mercury lamp (400 nm long wave pass glass filter) Tablet) Irradiate the tube.
反应过程中, 用气相色谱 (TCD 热导检测器)检测反应中生成的氢气, 产氢速率为 Sl mol'h—  During the reaction, the hydrogen produced in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was Sl mol'h-
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSe-Mnx ; 其中 x值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.14%。 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSe-Mn x ; wherein the value of x is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.14%.
实施例 114:  Example 114:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉量子点 (CdSe量子点原液浓 度以镉离子浓度为基准, 镉离子浓度 =l x l(T3mol/L), 用 lmol/L氢氧化钠调节 pH为 11, 离心, 去掉上层清液,保留沉淀物; 然后加入 0.5ml硝酸银水溶液 (原始浓度 4.2x l(T3mol/L 含 0.36mg硝酸银)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), 1M NaOH调节 pH=ll并使总 体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通型 玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 5ml core-shell cadmium selenide quantum dots to Pyrex tube (CdSe quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lxl (T 3 mol / L), with 1mol /L sodium hydroxide to adjust the pH to 11, centrifugation, remove the supernatant, retain the precipitate; then add 0.5ml of silver nitrate aqueous solution (original concentration 4.2xl (T 3 mol / L containing 0.36mg silver nitrate), 4ml ethanol (original Concentration 17.16 mol/L, 20 °C), 1M NaOH adjust pH=ll and make the total volume to 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure mercury lamp (400 nm long wave pass glass filter) Tablet) Irradiate the tube.
反应过程中, 用气相色谱 (TCD 热导检测器)检测反应中生成的氢气, 产氢速率为 3μπιο1·]ι-1During the reaction, the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 3 μπιο1·]ι -1 .
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSe-Agx; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.17%。 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSe-Ag x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.17%.
实施例 115:  Example 115:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉量子点 (CdSe量子点原液浓 度以镉离子浓度为基准, 镉离子浓度 =1 x 10— 3mol/L), 用 lmol/L氢氧化钠调节 pH为 11 , 离心, 去掉上层清液,保留沉淀物; 然后加入 0.5ml氯金酸水溶液 (原始浓度 4.2x l(T3mol/L 含 0.87mg四水合氯金酸)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), IM NaOH调节 pH=ll 并使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长 波通型玻璃滤光片) 照射试管。 Pyrex tube was added to 5mg P-25 type Ti0 2, 5ml core shell quantum dots cadmium selenide (CdSe quantum dots stock concentration of cadmium ion concentration as a reference, the cadmium ion concentration = 1 x 10- 3 mol / L ), with Lmol / L sodium hydroxide to adjust the pH to 11, centrifugation, remove the supernatant, retain the precipitate; then add 0.5ml aqueous chloroauric acid (original concentration 4.2xl (T 3 mol / L contains 0.87mg chloroauric acid tetrahydrate) 4ml ethanol (original concentration 17.16 mol/L, 20 °C), IM NaOH adjust pH=ll and make the total volume to 10ml, so that it is in a sealed nitrogen atmosphere, with 500W high pressure mercury lamp (400 nm long wave) Through-glass filter) Irradiate the tube.
反应过程中, 用气相色谱 (TCD 热导检测器)检测反应中生成的氢气, 产氢速率为 2μηιο1·1 "1。 本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSe-Aux; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.12%。 During the reaction, the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 2 μηιο1·1 " 1 . In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSe-Au x; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x=0.12%.
实施例 116:  Example 116:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: 一  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ή02、 5ml核壳层硒化镉量子点 (CdSe量子点原液浓 度以镉离子浓度为基准, 镉离子浓度 =l x l(T3mol/L), 用 lmol/L氢氧化钠调节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml氯化铑水溶液 (原始浓度 4.2x 10_3mol/L 含 0.44mg水合氯化铑)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), 1M NaOH调节 pH=ll并 使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波 通型玻璃滤光片) 照射试管。 Add 5mg P-25 type Ή0 2 and 5ml core-shell cadmium selenide quantum dots to Pyrex tube (CdSe quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = lxl (T 3 mol / L), with 1mol /L sodium hydroxide to adjust the pH to 11, centrifugation, remove the supernatant, retain the precipitate; then add 0.5ml aqueous solution of barium chloride (original concentration 4.2x 10_ 3 mol / L containing 0.44mg hydrated barium chloride), 4ml ethanol (Original concentration: 17.16 mol/L, 20 °C), 1M NaOH adjusts pH=ll and makes the total volume constant to 10ml, so that it is in a sealed nitrogen atmosphere, using 500W high pressure mercury lamp (400 nm long wave pass glass) Filter) Irradiate the tube.
反应过程中, 用气相色谱 (TCD 热导检测器)检测反应中生成的氢气, 产氢速率为 6μηιο1·1ι-1During the reaction, the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 6 μηιο1·1ι -1 .
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSe-R x; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.15%。 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdSe-R x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.15%.
实施例 117:  Example 117:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤- 向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉量子点 (CdSe量子点原液浓 度以镉离子浓度为基准, 镉离子浓度 =l x l(T3mol/L), 用 lmol/L氢氧化钠调节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml 六氯铼酸钾水溶液 (原始浓度 4.2x l(T3mol/L含 l.Omg六氯铼酸钾)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), 1M NaOH 调节 pH=ll并使总体积定容为 10ml,使其处于密封的氮气氛围中,用 500W高压汞灯(400 nm的长波通型玻璃滤光片) 照射试管。 A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen comprises the following steps: adding 5 mg of P-25 type Ti0 2 and 5 ml of core-shell cadmium selenide quantum dots to a Pyrex tube (CdSe quantum dot solution concentration is based on cadmium ion concentration, cadmium ion concentration = lxl (T 3 mol / L), pH is adjusted to 11 with 1 mol / L sodium hydroxide, centrifuged, the supernatant is removed, and the precipitate is retained; Add 0.5ml aqueous solution of potassium hexachloroantimonate (original concentration 4.2xl (T 3 mol / L containing 1.0 mg of potassium hexachloroantimonate), 4 ml of ethanol (original concentration 17.16 mol / L, 20 ° C), 1M NaOH to adjust the pH =ll and the total volume was made 10 ml, in a sealed nitrogen atmosphere, and the tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass glass filter).
反应过程中, 用气相色谱 (TCD 热导检测器)检测反应中生成的氢气, 产氢速率为 7μηιο1·1ι- 1During the reaction, the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 7 μηιο1· 1 -1 .
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSe-Rex; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.13%。 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdS e -Re x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.13%.
实施例 118:  Example 118:
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤- 向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml核壳层硒化镉量子点 (CdSe量子点原液浓 度以镉离子浓度为基准, 镉离子浓度=1 ><10— 0】 ), 用 lmol/L氢氧化钠调节 pH为 11 , 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml氯铱酸水溶液 (原始浓度 4.2x l(T3mol/L 含 l.lmg六水合氯铱酸)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), 1M NaOH调节 pH=l l 并使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长 波通型玻璃滤光片) 照射试管。 A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen comprises the following steps: adding 5 mg of P-25 type Ti0 2 and 5 ml of core-shell cadmium selenide quantum dots to a Pyrex tube (CdSe quantum dot solution concentration based on cadmium ion concentration, cadmium ion concentration = 1 ><10-0]), adjust pH to 11 with 1 mol/L sodium hydroxide, centrifuge, remove the supernatant, and retain the precipitate; Add 0.5ml aqueous solution of chlorohydric acid (original concentration 4.2xl (T 3 mol/L containing 1.1 mg of chlorhexidine hexahydrate), 4 ml of ethanol (original concentration 17.16 mol/L, 20 ° C), 1M NaOH to adjust pH=ll The total volume was made up to a volume of 10 ml, which was placed in a sealed nitrogen atmosphere, and the tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass type glass filter).
反应过程中, 用气相色谱 (TCD 热导检测器)检测反应中生成的氢气, 产氢速率为 0.5μη ο1·1ι 。  During the reaction, the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 0.5 μη ο1·1ι.
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdSe-Irx ; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.11%。 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdS e -Ir x ; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.11%.
实施例 119  Example 119
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤:  A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen, comprising the steps of:
向 Pyrex试管中加入 5mg P-25型 Ti02、 lml硫化镉量子点 (CdS量子点原液浓度以镉 离子浓度为基准, 镉离子浓度 =5x l O-3mol/L), 用 lmol/L氢氧化钠调节 pH为 11, 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml三氯化铬水溶液 (原始浓度 4.2x l(T3mol/L含 0.56mg六水合三氯化铬)、 4ml甲醇 (原始浓度 24.75 mol/L, 20 °C), 1M NaOH调节 pH=l l 并使总体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长 波通型玻璃滤光片) 照射试管。 Add 5mg P-25 Ti0 2 and 1ml cadmium sulfide quantum dots to the Pyrex tube (CdS quantum dot solution concentration is cadmium The ion concentration is based on the cadmium ion concentration = 5x l O- 3 mol/L), the pH is adjusted to 11 with 1 mol/L sodium hydroxide, centrifuged, the supernatant is removed, and the precipitate is retained; then 0.5 ml of chromium trichloride is added. Aqueous solution (original concentration 4.2xl (T 3 mol/L contains 0.56mg chromium trichloride hexahydrate), 4ml methanol (original concentration 24.75 mol/L, 20 °C), 1M NaOH adjusts pH=ll and makes the total volume constant For 10 ml, it was placed in a sealed nitrogen atmosphere, and the tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass type glass filter).
反应过程中, 用气相色谱 (TCD 热导检测器)检测反应中生成的氢气, 产氢速率为 1.8μπιο1·1ι-1During the reaction, the hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 1.8 μπιο1·1ι -1 .
本实施例中, 该半导体光催化剂的原子组成比为 Ti02- CdS- Qrx ; 其中 x值经 ICP (电感 耦合等离子体发射光谱仪)测定为: x=0.16%。 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 - CdS-Qr x ; wherein the value of x is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.16%.
实施例 120  Example 120
一种含复合型半导体光催化剂的光催化体系重整生物质衍生物并制备氢气的方法,包 括以下步骤: _ 一 向 Pyrex试管中加入 5mg P-25型 Ti02、 5ml碲化镉量子点 (CdTe量子点原液浓度以镉 离子浓度为基准, 镉离子浓度 =l x l(T3mol/L), 用 lmol/L氢氧化钠调节 pH为 11 , 离心, 去掉上层清液, 保留沉淀物; 然后加入 0.5ml氯铂酸钾水溶液 (原始浓度 4.2x l(T3mol/L含 0.87mg氯铂酸钾)、 4ml乙醇 (原始浓度 17.16 mol/L, 20°C), 1M NaOH调节 pH=l l并使总 体积定容为 10ml, 使其处于密封的氮气氛围中, 用 500W高压汞灯 (400 nm的长波通型 玻璃滤光片) 照射试管。 A photocatalytic system comprising a composite semiconductor photocatalyst for reforming a biomass derivative and preparing hydrogen comprises the following steps: _ Adding 5 mg of P-25 type Ti0 2 and 5 ml of cadmium telluride quantum dots (CdTe) to a Pyrex tube The concentration of the quantum dot solution is based on the cadmium ion concentration, the cadmium ion concentration = lxl (T 3 mol / L), the pH is adjusted to 11 with 1 mol / L sodium hydroxide, centrifuged, the supernatant is removed, and the precipitate is retained; then 0.5 is added. Ml chloroplatinate potassium solution (original concentration 4.2xl (T 3 mol / L containing 0.87mg potassium chloroplatinate), 4ml ethanol (original concentration 17.16 mol / L, 20 ° C), 1M NaOH to adjust pH = ll and total The volume was set to 10 ml, and it was placed in a sealed nitrogen atmosphere. The tube was irradiated with a 500 W high pressure mercury lamp (400 nm long pass type glass filter).
反应过程中, 用气相色谱 (TCD 热导检测器)检测反应中生成的氢气, 产氢速率为 1.5μπιο1·1ι-1During the reaction, hydrogen gas generated in the reaction was detected by gas chromatography (TCD thermal conductivity detector), and the hydrogen production rate was 1.5 μπιο1·1ι -1 .
本实施例中, 该半导体光催化剂的原子组成比为 Ti02-CdTe-Ptx; 其中 X值经 ICP (电 感耦合等离子体发射光谱仪)测定为: x=0.18%。 显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例, 而并非是对本发 明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做 出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的 技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。 In this embodiment, the atomic composition ratio of the semiconductor photocatalyst is Ti0 2 -CdTe-Pt x; wherein the X value is determined by ICP (Inductively Coupled Plasma Atomic Emission Spectrometer) as: x = 0.18%. It is apparent that the above-described embodiments of the present invention are merely illustrative of the present invention and are not intended to limit the embodiments of the present invention. Other variations or modifications of the various forms may be made by those skilled in the art in light of the above description. It is not possible to exhaust all implementations here. Obvious changes or variations that come within the scope of the invention are still within the scope of the invention.

Claims

权利要求书 Claim
1、 一种用于光催化重整生物质衍生物制氢的半导体光催化剂, 其特征在于, 所述半导体光催化剂的原子组成比为 M〜N-AX ;A semiconductor photocatalyst for photocatalytic reforming of a biomass derivative for hydrogen production, characterized in that the atomic composition ratio of the semiconductor photocatalyst is M~NA X ;
式中: M〜N为 II族元素〜 VI族元素或 M〜N为 III族元素〜 V族元素;  Wherein: M~N is a group II element to a group VI element or M~N is a group III element to a group V element;
式中, A为钴、 镍、 铁、 铜、 铬、 钯、 铂、 钌、 铑、 金、 银、 锰、 铱或铼的一种或两种以 上元素; 式中, 0.02%<x<1.0 Wherein A is one or more elements of cobalt, nickel, iron, copper, chromium, palladium, platinum, rhodium, ruthenium, gold, silver, manganese, ruthenium or osmium; wherein 0.02% < x < 1.0
2、 根据权利要求 1所述的半导体光催化剂, 其特征在于:  2. A semiconductor photocatalyst according to claim 1 wherein:
所述半导体光催化剂的原子组成比为 Ti02-M〜N-Ax、 Sn02-M〜N-Ax或 ZnO-M〜 N-AxThe semiconductor photocatalyst atomic composition ratio of Ti0 2 -M~NA x, Sn0 2 -M~NA x or ZnO-M~ NA x.
3、 一种如权利要求 1所述的半导体光催化剂的制备方法, 其特征在于, 包括如下步 骤:  3. A method of fabricating a semiconductor photocatalyst according to claim 1, comprising the steps of:
1 ) 在反应器中, 加入由 II〜VI族元素或 ΠI〜V族元素组成的量子点;  1) adding a quantum dot composed of a group II~VI element or a group ΠI~V element in the reactor;
2) 向反应器中加入下列物质中的一种或两种以上混合物: 钴的盐、 钴的配合物、 镍 的盐、 镍的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐溶液, 得到溶液 Α;  2) One or a mixture of two or more of the following substances is added to the reactor: a salt of cobalt, a complex of cobalt, a salt of nickel, a complex of nickel, a salt of iron, a complex of iron, a salt of copper, a chromium salt, a palladium salt, a platinum salt, a barium salt, a barium salt, a barium salt, a gold salt, a silver salt, a manganese salt, a barium salt, a barium salt solution, to obtain a solution crucible;
3 ) 向上述溶液 Α中加入生物质衍生物的水溶液, 得到混合溶液 B;  3) adding an aqueous solution of the biomass derivative to the above solution to obtain a mixed solution B;
4) 调节混合溶液 B的 pH值为 3~10, 得到混合溶液 C; 所述调节 pH的方法为: 向 上述混合溶液 B滴加 Imol/L NaOH或 1 mol/L HC1;  4) adjusting the pH of the mixed solution B to 3~10, to obtain a mixed solution C; the method for adjusting the pH is: adding 1 mol/L NaOH or 1 mol/L HCl to the mixed solution B;
5 )将惰性气体通入步骤 4) 的溶液 C中, 或者将上述反应器抽真空; 在惰性气体或真 空氛围中, 用紫外光、 可见光或紫外光和可见光的混合光束照射反应器, 原位制得原子组 成比为 M〜N-AX的半导体催化剂。 5) passing an inert gas into solution C of step 4), or vacuuming the above reactor; irradiating the reactor with a mixed light beam of ultraviolet light, visible light or ultraviolet light and visible light in an inert gas or vacuum atmosphere, in situ A semiconductor catalyst having an atomic composition ratio of M to NA X was obtained.
4、 根据权利要求 3所述的半导体光催化剂的制备方法, 其特征在于: 所述生物质衍 生物为甲醇、 乙醇、 丙醇、 丁醇、 乙二醇、 丙三醇、 葡萄糖、 蔗糖、 果糖、 麦芽糖、 甘露 糖、 抗坏血酸、 L-脯氨酸或 L-半胱氨酸。  The method for preparing a semiconductor photocatalyst according to claim 3, wherein the biomass derivative is methanol, ethanol, propanol, butanol, ethylene glycol, glycerin, glucose, sucrose, fructose , maltose, mannose, ascorbic acid, L-valine or L-cysteine.
5、 一种如权利要求 2所述的半导体光催化剂的制备方法, 其特征在于, 包括如下步 骤:  A method of preparing a semiconductor photocatalyst according to claim 2, comprising the steps of:
1 )在反应器中, 加入 II〜VI族元素或 111〜 族元素组成的量子点, 再加入 Ti02、 Sn02 或 ZnO, 调节 pH 7; 离心, 去掉上层清液, 保留沉淀物; 1) adding a quantum dot composed of a group II~VI element or a 111~ group element in the reactor, adding Ti0 2 , Sn0 2 or ZnO to adjust the pH 7; centrifuging, removing the supernatant liquid, and retaining the precipitate;
2) 向沉淀物中加入下列物质中的一种或两种以上混合物: 钴的盐、 钴的配合物、 镍 的盐、 镍的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐溶液;  2) One or a mixture of two or more of the following substances is added to the precipitate: a salt of cobalt, a complex of cobalt, a salt of nickel, a complex of nickel, a salt of iron, a complex of iron, a salt of copper, a salt of chromium, a salt of palladium, a salt of platinum, a salt of cerium, a salt of cerium, a salt of cerium, a salt of gold, a salt of silver, a salt of manganese, a salt of cerium, a salt solution of cerium;
3 ) 再向沉淀物中加入生物质衍生物的水溶液;  3) adding an aqueous solution of the biomass derivative to the precipitate;
4 ) 在惰性气体或真空氛围中, 用紫外和 /或可见光照射反应器, 制得原子组成比为 Ti02-M〜N-Ax、 Sn02-M〜N-Ax或ZnO-M〜N-Ax的半导体光催化剂。 4) irradiating the reactor with ultraviolet light and/or visible light in an inert gas or vacuum atmosphere to obtain a semiconductor having an atomic composition ratio of Ti0 2 -M~NA x , Sn0 2 -M~NA x or ZnO-M~NA x catalyst of light.
6、 根据权利要求 5所述的半导体光催化剂的制备方法, 其特征在于: 所述生物质衍 生物为三乙醇胺、 三乙胺、 甲醇、 乙醇、 丙醇、 丁醇、 乙二醇、 丙三醇、 葡萄糖、 蔗糖、 果糖、 麦芽糖或甘露糖<=  The method for preparing a semiconductor photocatalyst according to claim 5, wherein the biomass derivative is triethanolamine, triethylamine, methanol, ethanol, propanol, butanol, ethylene glycol, or propylene Alcohol, glucose, sucrose, fructose, maltose or mannose<=
7、 根据权利要求 3或 5所述的方法, 其特征在于: 所述 II〜VI族元素组成的量子点包 括 CdS、 CdSe、 CdTe、 PbS、 PbSe、 ZnS、 ZnSe中的一种或两种以上组成的复合结构量子 点;所述 ΠΙ〜ν族元素组成的量子点包括 InP、InAs中的一种或两种组成的复合结构量子点。  The method according to claim 3 or 5, wherein the quantum dots composed of the group II to VI elements include one or more of CdS, CdSe, CdTe, PbS, PbSe, ZnS, and ZnSe. The composite structure quantum dot is composed; the quantum dot composed of the ΠΙ~ν group element comprises a composite structure quantum dot composed of one or two of InP and InAs.
8、 根据权利要求 3或 5所述的方法, 其特征在于, 步骤 1 ) 中所述 II〜VI或 III〜V族元 素组成的量子点浓度大于 l xlO^ g The method according to claim 3 or 5, wherein the quantum dot concentration of the II~VI or III~V elements in step 1) is greater than l xlO^g
9、 根据权利要求 3或 5所述的方法, 其特征在于, 步骤 2 ) 中所述钴的盐、 钴的配合 物、 镍的盐、 镍的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌 的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐的整个反应体系浓度 >l lO"6 mol/L; The method according to claim 3 or 5, wherein in the step 2), the cobalt salt, the cobalt complex, the nickel salt, the nickel complex, the iron salt, the iron complex, The whole reaction of copper salt, chromium salt, palladium salt, platinum salt, barium salt, barium salt, barium salt, gold salt, silver salt, manganese salt, barium salt, barium salt System concentration > l lO" 6 mol / L;
所述钴的盐是卤化钴、硫酸钴、硝酸钴、碳酸钴、草酸钴、醋酸钴、磷酸钴或铬酸钴; 所述钴的配合物是钴-氨配合物 [Co(N¾)6]3+、 钴-氰配合物 [Co(CN)6f、 钴 -硫氰配合物 [Co(SCN)4]2\ 钴-羰基配合物 [Co(CO)4] 钴 -硝基配合物 [Co(N03)4f、 钴-亚硝基配合物 [Co(N02)6]3—或钴 -丁二酮肟配合物; 其中, 钴-丁二酮肟配合物及其衍生物为如下结构式: The cobalt salt is cobalt halide, cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt oxalate, cobalt acetate, cobalt phosphate or cobalt chromate; the cobalt complex is a cobalt-ammonia complex [Co(N3⁄4) 6 ] 3+ , cobalt-cyano complex [Co(CN) 6 f, cobalt-thiocyanate complex [Co(SCN) 4 ] 2 \ cobalt-carbonyl complex [Co(CO) 4 ] cobalt-nitro complex [ Co(N0 3 ) 4 f, cobalt-nitroso complex [Co(N0 2 ) 6 ] 3 — or cobalt-butanedione oxime complex; wherein, the cobalt-butanedione oxime complex and its derivative are The following structural formula:
Figure imgf000031_0001
Figure imgf000031_0001
式中, L为 ¾0或 C¾CN; 1为1、 N(CH3)2或 (COOCH3 ); Where L is 3⁄40 or C3⁄4CN; 1 is 1, N(CH 3 ) 2 or (COOCH 3 );
所述镍的盐是卤化镍、 硫酸镍、 硝酸镍、 碳酸镍、 草酸镍、 醋酸镍、 磷酸镍或亚铬酸 镍;  The salt of nickel is nickel halide, nickel sulfate, nickel nitrate, nickel carbonate, nickel oxalate, nickel acetate, nickel phosphate or nickel chromite;
所述镍的配合物是镍-氨配位化合物 [Ni(NH3)6]2+、 镍-氰配位化合物 [Ni(CN)4f、 镍-螯 合物 [Ni(en)3]2+、 镍-羰基配位化合物 Ni(CO)4或镍-乙基配位化合物 (C2¾)2Ni; The nickel complex is a nickel-ammonia complex [Ni(NH 3 ) 6 ] 2+ , a nickel-cyanide complex [Ni(CN) 4 f, a nickel-chelate [Ni(en) 3 ] 2+ , nickel-carbonyl coordination compound Ni(CO) 4 or nickel-ethyl coordination compound (C 2 3⁄4) 2 Ni;
所述铁的盐是卤化铁、硫酸铁、硝酸铁、碳酸铁、 草酸铁、醋酸铁、 磷酸铁、铬酸铁、 卤化亚铁、 硫酸亚铁、 硝酸亚铁、 碳酸亚铁、 草酸亚铁、 醋酸亚铁、 磷酸亚铁、 铬酸亚铁 或硫酸亚铁铵;  The iron salt is iron halide, iron sulfate, iron nitrate, iron carbonate, iron oxalate, iron acetate, iron phosphate, iron chromate, ferrous halide, ferrous sulfate, ferrous nitrate, ferrous carbonate, ferrous oxalate. , ferrous acetate, ferrous phosphate, ferrous chromite or ammonium ferrous sulfate;
所述铁的配合物是铁-氰配合物 [Fe(CN)6f、 亚铁-氰配合物 [Fe(CN)6]4_、 铁-硫氰配合 物 Fe(SCN)3、 铁-硫配合物 [Fe2S2(CO)6]、 铁 -羰基配合物 Fe(CO)5、 铁 -羰基配合物 Fe2(CO)9 或铁 -羰基配合物 Fe3(CO)12 ; The iron complex is an iron-cyano complex [Fe(CN) 6 f, a ferrous-cyano complex [Fe(CN) 6 ] 4 _, an iron-thiocyanate complex Fe(SCN) 3 , iron - Sulfur complex [Fe 2 S 2 (CO) 6 ], iron-carbonyl complex Fe(CO) 5 , iron-carbonyl complex Fe 2 (CO) 9 Or an iron-carbonyl complex Fe 3 (CO) 12 ;
所述铜的盐是卤化铜、硫酸铜、硝酸铜、碳酸铜、 草酸铜、醋酸铜、 磷酸铜、 铬酸铜、 焦磷酸铜、 氰化铜、 脂肪酸铜、 环烷酸铜、 卤化亚铜、 硫酸亚铜、 碳酸亚铜或醋酸亚铜; 所述铬的盐是卤化铬、 硫酸铬、 硝酸铬、 碳酸铬、 草酸铬、 醋酸铬或磷酸铬; 所述钯的盐是四氯亚钯酸钾、 卤化钯、 硫酸钯、 硝酸钯或醋酸钯;  The copper salt is copper halide, copper sulfate, copper nitrate, copper carbonate, copper oxalate, copper acetate, copper phosphate, copper chromate, copper pyrophosphate, copper cyanide, copper fatty acid, copper naphthenate, cuprous halide , cuprous sulfate, cuprous carbonate or cuprous acetate; the chromium salt is chromium halide, chromium sulfate, chromium nitrate, chromium carbonate, chromium oxalate, chromium acetate or chromium phosphate; the salt of the palladium is tetrachloropalladium Potassium acid, palladium halide, palladium sulfate, palladium nitrate or palladium acetate;
所述铂的盐是四氯亚铂酸钾、 卤化铂或硝酸铂;  The salt of platinum is potassium tetrachloroplatinate, platinum halide or platinum nitrate;
所述钌的盐是卤化钌、 硫酸钌、 硝酸钌或醋酸钌;  The salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
所述铑的盐是卤化铑、 硫酸铑、 硝酸铑或醋酸铑;  The salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
所述金的盐是卤化金或氯金酸;  The salt of gold is gold halide or chloroauric acid;
所述银的盐是卤化银、 硫酸银、 硝酸银或醋酸银;  The silver salt is silver halide, silver sulfate, silver nitrate or silver acetate;
所述锰的盐是卤化锰、 硫酸锰、 硝酸猛或醋酸锰;  The manganese salt is manganese halide, manganese sulfate, nitric acid or manganese acetate;
所述铱的盐是卤化铱或氯铱酸;  The salt of the cerium is cerium halide or chloroantimonic acid;
所述铼的盐是五羰基氯化铼或五羰基溴化铼;  The salt of ruthenium is pentacarbonylphosphonium chloride or pentacarbonylpentadium bromide;
10、 根据权利要求 3或 5所述的方法, 其特征在于, 步骤 3 ) 所述生物质衍生物在整 个反应体系中的浓度≥l xl(T4mol/L或摩尔百分比≥ 0.01%。 10. The method according to claim 3 or 5, characterized in that the concentration of the biomass derivative in the entire reaction system is ≥ l xl (T 4 mol/L or mole percentage ≥ 0.01%).
11、 一种包含权利要求 1所述的半导体光催化剂的光催化重整生物质衍生物并制备氢 气的体系, 其特征在于- 包含如下原料:  A system comprising a photocatalytic reforming biomass derivative of the semiconductor photocatalyst according to claim 1 and producing hydrogen, characterized in that it comprises the following materials:
1 ) II-VI或 III〜V族元素组成的量子点;  1) quantum dots composed of II-VI or III~V elements;
2) 下列物质中的一种或两种以上的混合物: 钴的盐、 钴的配合物、 镍的盐、 镍的配 合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的 盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐溶液;  2) one or a mixture of two or more of the following: a salt of cobalt, a complex of cobalt, a salt of nickel, a complex of nickel, a salt of iron, a complex of iron, a salt of copper, a salt of chromium, a salt of palladium, a salt of platinum, a salt of cerium, a salt of cerium, a salt of cerium, a salt of gold, a salt of silver, a salt of manganese, a salt of cerium, a salt solution of cerium;
3 ) 生物质衍生物的水溶液;  3) an aqueous solution of a biomass derivative;
以及包括如下条件:  And includes the following conditions:
pH值为 3〜10;  pH value is 3~10;
紫外和 /或可见光照射条件。  UV and / or visible light irradiation conditions.
12、 一种包含权利要求 2所述的半导体光催化剂的光催化重整生物质衍生物并制备氢 气的体系, 其特征在于:  A system for photocatalytic reforming a biomass derivative comprising the semiconductor photocatalyst of claim 2 and producing hydrogen, characterized by:
包括以下原料:  Includes the following ingredients:
1 ) II-VI或 πι〜ν族元素组成的量子点;  1) quantum dots composed of II-VI or πι~ν group elements;
2 ) Ti02、 Sn02或 ZnO; 2) Ti0 2 , Sn0 2 or ZnO;
3 ) 下列物质中的一种或两种以上的混合物: 钴的盐、 钴的配合物、 镍的盐、 镍的配 合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的 盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐溶液;  3) one or a mixture of two or more of the following: cobalt salt, cobalt complex, nickel salt, nickel complex, iron salt, iron complex, copper salt, chromium salt, a salt of palladium, a salt of platinum, a salt of cerium, a salt of cerium, a salt of cerium, a salt of gold, a salt of silver, a salt of manganese, a salt of cerium, a salt solution of cerium;
4) 生物质衍生物的水溶液;  4) an aqueous solution of a biomass derivative;
以及包括以下条件:  And includes the following conditions:
碱性条件和紫外和 /或可见光照射条件。  Alkaline conditions and UV and / or visible light irradiation conditions.
13、 根据权利要求 11或 12所述的体系, 其特征在于, 所述 II〜VI或 III〜V族元素组成 的量子点浓度大于 1 X 10-4 g/L; 13. The system according to claim 11 or claim 12, wherein the concentration of the quantum dots or III~V II~VI elements, is greater than 1 X 10- 4 g / L;
所述 II〜VI 族元素组成的量子点包括 CdS、 CdSe、 CdTe、 PbS、 PbSe、 ZnS、 ZnSe中 的一种或两种以上组成的复合结构量子点;  The quantum dots composed of the group II~VI elements include composite structure quantum dots composed of one or more of CdS, CdSe, CdTe, PbS, PbSe, ZnS, and ZnSe;
所述 ΙΠ〜ν族元素组成的量子点包括 InP、 InAs中的一种或两种组成的复合结构量子 点。  The quantum dots composed of the ΙΠ~ν group elements include a composite structure quantum dot composed of one or two of InP and InAs.
14、 根据权利要求 11或 12所述的体系, 其特征在于: 所述钴的盐、 钴的配合物、 镍 的盐、 镍的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐和 /或铼的盐在整个反应体系中的浓 度≥1 10 01 ; The system according to claim 11 or 12, wherein the cobalt salt, the cobalt complex, the nickel salt, the nickel complex, the iron salt, the iron complex, the copper salt, a salt of chromium, a salt of palladium, a salt of platinum, a salt of barium, The concentration of barium salts, barium salts, gold salts, silver salts, manganese salts, barium salts and/or barium salts in the whole reaction system is ≥1 10 01 ;
所述钴的盐是卤化钴、硫酸钴、硝酸钴、碳酸钴、草酸钴、醋酸钴、磷酸钴或铬酸钴; 所述钴的配合物是钴-氨配合物 [Co(NH3)6]3+、 钴-氰配合物 [Co(CN)6广、 钴 -硫氰配合物 [Co(SCN)4f、 钴 -羰基配合物 [Co(CO)4]_、 钴 -硝基配合物 [Co(N03)4f、 钴-亚硝基配合物 [Co(N02)6]3—或钴 -丁二酮肟配合物; 其中, 钴-丁二酮肟配合物及其衍生物为如下结构式: The cobalt salt is cobalt halide, cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt oxalate, cobalt acetate, cobalt phosphate or cobalt chromate; the cobalt complex is a cobalt-ammonia complex [Co(NH 3 ) 6 3+ , cobalt-cyano complex [Co(CN) 6 wide, cobalt-thiocyanate complex [Co(SCN) 4 f, cobalt-carbonyl complex [Co(CO) 4 ]_, cobalt-nitro complex [Co(N0 3 ) 4 f, cobalt-nitroso complex [Co(N0 2 ) 6 ] 3 — or cobalt-butanedione oxime complex; wherein, cobalt-butanedione oxime complex and its derivatives The object is of the following structure:
Figure imgf000033_0001
Figure imgf000033_0001
式中, L为 H20或 C¾CN; 1为1{、 N(CH3)2或 (COOCH3); Wherein L is H 2 0 or C 3⁄4CN; 1 is 1{, N(CH 3 ) 2 or (COOCH 3 );
所述镍的盐是卤化镍、 硫酸镍、 硝酸镍、 碳酸镍、 草酸镍、 醋酸镍、 磷酸镍或亚铬酸 镍;  The salt of nickel is nickel halide, nickel sulfate, nickel nitrate, nickel carbonate, nickel oxalate, nickel acetate, nickel phosphate or nickel chromite;
所述镍的配合物是镍-氨配位化合物 [Ni(NH3)6]2+、 镍-氰配位化合物 [Ni(CN)4f、 镍-螯 合物 [Ni(en)3]2+、 镍-羰基配位化合物 Ni(CO)4或镍-乙基配位化合物 (C2¾)2Ni; The nickel complex is a nickel-ammonia complex [Ni(NH 3 ) 6 ] 2+ , a nickel-cyanide complex [Ni(CN) 4 f, a nickel-chelate [Ni(en) 3 ] 2+ , nickel-carbonyl coordination compound Ni(CO) 4 or nickel-ethyl coordination compound (C 2 3⁄4) 2 Ni;
所述铁的盐是卤化铁、硫酸铁、硝酸铁、碳酸铁、 草酸铁、 醋酸铁、 磷酸铁、铬酸铁、 卤化亚铁、 硫酸亚铁、 硝酸亚铁、 碳酸亚铁、 草酸亚铁、 醋酸亚铁、 磷酸亚铁、 铬酸亚铁 或硫酸亚铁铵;  The iron salt is iron halide, iron sulfate, iron nitrate, iron carbonate, iron oxalate, iron acetate, iron phosphate, iron chromate, ferrous halide, ferrous sulfate, ferrous nitrate, ferrous carbonate, ferrous oxalate , ferrous acetate, ferrous phosphate, ferrous chromite or ammonium ferrous sulfate;
所述铁的配合物是铁-氰配合物 [Fe(CN)6]3 亚铁-氰配合物 [Fe(CN)6]4_、 铁-硫氰配合 物 Fe(SCN)3、 铁-硫配合物 [Fe2S2(CO)6]、 铁 -羰基配合物 Fe(CO)5、 铁 -羰基配合物 Fe2(CO)9 或铁 -羰基配合物 Fe3(CO)12 ; The iron complex is an iron-cyano complex [Fe(CN) 6 ] 3 ferrous-cyano complex [Fe(CN) 6 ] 4 _, iron-thiocyanate complex Fe(SCN) 3 , iron - Sulfur complex [Fe 2 S 2 (CO) 6 ], iron-carbonyl complex Fe(CO) 5 , iron-carbonyl complex Fe 2 (CO) 9 or iron-carbonyl complex Fe 3 (CO) 12 ;
所述铜的盐是卤化铜、硫酸铜、硝酸铜、碳酸铜、草酸铜、 醋酸铜、 磷酸铜、铬酸铜、 焦磷酸铜、 氰化铜、 脂肪酸铜、 环烷酸铜、 卤化亚铜、 硫酸亚铜、 碳酸亚铜或醋酸亚铜; 所述铬的盐是卤化铬、 硫酸铬、 硝酸铬、 碳酸铬、 草酸铬、 醋酸铬或磷酸铬; 所述钯的盐是四氯亚钯酸钾、 卤化钯、 硫酸钯、 硝酸钯或醋酸钯; The copper salt is a copper halide, copper sulfate, copper nitrate, copper carbonate, copper oxalate, copper acetate, copper phosphate, copper chromate, Copper pyrophosphate, copper cyanide, copper fatty acid, copper naphthenate, cuprous halide, cuprous sulfate, cuprous carbonate or cuprous acetate; the chromium salt is chromium halide, chromium sulfate, chromium nitrate, chromium carbonate, Chromium oxalate, chromium acetate or chromium phosphate; the salt of the palladium is potassium tetrachlorophosphinate, palladium halide, palladium sulfate, palladium nitrate or palladium acetate;
所述铂的盐是四氯亚铂酸钾、 卤化铂或硝酸铂;  The salt of platinum is potassium tetrachloroplatinate, platinum halide or platinum nitrate;
所述钌的盐是卤化钌、 硫酸钌、 硝酸钌或醋酸钌;  The salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
所述铑的盐是卤化铑、 硫酸铑、 硝酸铑或醋酸铑;  The salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
所述金的盐是卤化金或氯金酸;  The salt of gold is gold halide or chloroauric acid;
所述银的盐是卤化银、 硫酸银、 硝酸银或醋酸银;  The silver salt is silver halide, silver sulfate, silver nitrate or silver acetate;
所述锰的盐是卤化锰、 硫酸锰、 硝酸锰或醋酸锰;  The salt of manganese is manganese halide, manganese sulfate, manganese nitrate or manganese acetate;
所述铱的盐是卤化铱或氯铱酸;  The salt of the cerium is cerium halide or chloroantimonic acid;
所述铼的盐是五羰基氯化铼或五羰基溴化铼。  The salt of ruthenium is pentacarbonylphosphonium chloride or pentacarbonylpentadium bromide.
15、 根据权利要求 11所述的体系, 其特征在于, 所述生物质衍生物是甲醇、 乙醇、 丙醇、 丁醇、 乙二醇、 丙三醇、 葡萄糖、 蔗糖、 果糖、 麦芽糖、 甘露糖、 抗坏血酸、 L- 脯氨酸或 L-半胱氨酸。  15. The system according to claim 11, wherein the biomass derivative is methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose, mannose. , ascorbic acid, L-proline or L-cysteine.
16、 根据权利要求 12所述的体系, 其特征在于: 所述生物质衍生物为三乙醇胺、 三 乙胺、 甲醇、 乙醇、 丙醇、 丁醇、 乙二醇、 丙三醇、 葡萄糖、 蔗糖、 果糖、 麦芽糖或甘露 糖。  16. The system according to claim 12, wherein: the biomass derivative is triethanolamine, triethylamine, methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose. , fructose, maltose or mannose.
17、一种利用如权利要求 1所述的半导体光催化剂光催化重整生物质衍生物并制备氢 气的方法, 其特征在于, 包含如下步骤:  A method of photocatalytic reforming a biomass derivative using the semiconductor photocatalyst according to claim 1 and producing hydrogen gas, comprising the steps of:
1 ) 在反应器中, 加入由 II〜VI族元素或 111〜 族元素组成的量子点;  1) adding a quantum dot composed of a group II~VI element or a group 111~ in the reactor;
2) 再向反应器中加入下列物质中的一种或多种: 钴的盐、 钴的配合物、 镍的盐、 镍 的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐溶液, 得到溶液 A;  2) Add one or more of the following substances to the reactor: cobalt salt, cobalt complex, nickel salt, nickel complex, iron salt, iron complex, copper salt, chromium a salt, a palladium salt, a platinum salt, a barium salt, a barium salt, a barium salt, a gold salt, a silver salt, a manganese salt, a barium salt, a barium salt solution, to obtain a solution A;
3 ) 向上述溶液 A中加入生物质衍生物的水溶液, 得到混合溶液 B;  3) adding an aqueous solution of the biomass derivative to the above solution A to obtain a mixed solution B;
4) 调节混合溶液 B的 pH值为 3~10, 得到混合溶液 C;  4) adjusting the pH of the mixed solution B to 3~10, to obtain a mixed solution C;
5 )将惰性气体通入步骤 4) 的溶液 C中, 或者将上述反应器抽真空; 在惰性气体或真 空氛围中, 用紫外光、 可见光或紫外光和可见光的混合光束照射反应器, 原位生成的催化 剂即可光催化重整生物质衍生物并制备氢气。  5) passing an inert gas into solution C of step 4), or vacuuming the above reactor; irradiating the reactor with a mixed light beam of ultraviolet light, visible light or ultraviolet light and visible light in an inert gas or vacuum atmosphere, in situ The resulting catalyst is capable of photocatalytic reforming of biomass derivatives and preparation of hydrogen.
18、 一种利用如权利要求 2所述的半导体光催化剂光催化重整生物质衍生物并制备氢 气的方法, 其特征在于, 包含如下步骤:  18. A method of photocatalytic reforming a biomass derivative using the semiconductor photocatalyst of claim 2 and producing hydrogen gas, comprising the steps of:
1 )在反应器中, 加入 II〜VI族元素或 111〜 族元素组成的量子点, 再加入 Ti02、 Sn02 或 ZnO, 调节 pH 7; 离心, 去掉上层清液, 保留沉淀物; 1) adding a quantum dot composed of a group II~VI element or a 111~ group element in the reactor, adding Ti0 2 , Sn0 2 or ZnO to adjust the pH 7; centrifuging, removing the supernatant liquid, and retaining the precipitate;
2) 向沉淀物中加入下列物质中的一种或两种以上混合物: 钴的盐、 钴的配合物、 镍 的盐、 镍的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐、 铼的盐溶液;  2) One or a mixture of two or more of the following substances is added to the precipitate: a salt of cobalt, a complex of cobalt, a salt of nickel, a complex of nickel, a salt of iron, a complex of iron, a salt of copper, a salt of chromium, a salt of palladium, a salt of platinum, a salt of cerium, a salt of cerium, a salt of cerium, a salt of gold, a salt of silver, a salt of manganese, a salt of cerium, a salt solution of cerium;
3 ) 再向沉淀物中加入生物质衍生物的水溶液, 调节 pH 7;  3) adding an aqueous solution of the biomass derivative to the precipitate to adjust the pH 7;
4)在惰性气体或真空氛围中, 用紫外和 /或可见光照射反应器, 制得复合型半导体光 催化剂同时重整生物质衍生物并产生氢气。  4) Irradiating the reactor with ultraviolet light and/or visible light in an inert gas or vacuum atmosphere to obtain a composite semiconductor photocatalyst, simultaneously reforming the biomass derivative and generating hydrogen gas.
19、根据权利要求 17或 18所述的方法, 其特征在于, 步骤 1 )所述 II〜VI族元素或 ΙΠ〜 V族元素组成的量子点浓度大于 1 x10— 4 g/L; The method according to claim 17 or 18, wherein the concentration of quantum dots composed of the group II~VI elements or the ΙΠ~V group elements is greater than 1 x 10 -4 g/L ;
所述 II〜VI族元素组成的量子点包括 CdS、 CdSe、 CdTe、 PbS、 PbSe、 ZnS、 ZnSe中 的一种或两种以上组成的复合结构量子点;  The quantum dots composed of the group II to VI elements include composite structure quantum dots composed of one or more of CdS, CdSe, CdTe, PbS, PbSe, ZnS, and ZnSe;
所述 III〜V族元素组成的量子点包括 InP、 InAs中的一种或两种组成的复合结构量子 点。  The quantum dots composed of the group III to V elements include a composite structure quantum dot composed of one or two of InP and InAs.
20、 根据权利要求 17或 18所述的方法, 其特征在于, 步骤 2) 中所述钴的盐、 钴的 配合物、镍的盐、 镍的配合物、 铁的盐、 铁的配合物、 铜的盐、 铬的盐、 钯的盐、 铂的盐、 钌的盐、 铑的盐、 铱的盐、 金的盐、 银的盐、 锰的盐、 铱的盐和 /或铼的盐在整个反应体 系中浓度≥1 >< 10-6 1^1/:1; 20. The method according to claim 17 or 18, wherein the cobalt salt, cobalt in step 2) Complex, nickel salt, nickel complex, iron salt, iron complex, copper salt, chromium salt, palladium salt, platinum salt, barium salt, barium salt, barium salt, gold The concentration of salt, silver salt, manganese salt, barium salt and/or barium salt in the whole reaction system is ≥1 >< 10 -6 1^1/:1 ;
所述 Ϊ古的盐是卤化钴、硫酸钴、硝酸钴、碳酸钴、 草酸钴、醋酸钴、磷酸钴或铬酸钴; 所述钴的配合物是钴-氨配合物 [Co(NH3)6]3+、 钴-氰配合物 [Co(CN)6f、 钴 -硫氰配合物 [Co(SCN)4]2\ 钴 -羰基配合物 [Co(CO)4]-、 钴 -硝基配合物 [Co(N03)4f、 钴-亚硝基配合物 [Co(N02)6f或钴 -丁二酮肟配合物; 其中, 钴-丁二酮肟配合物及其衍生物为如下结构式: The antimony salt is cobalt halide, cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt oxalate, cobalt acetate, cobalt phosphate or cobalt chromate; the cobalt complex is a cobalt-ammonia complex [Co(NH 3 ) 6 ] 3+ , cobalt-cyano complex [Co(CN) 6 f, cobalt-thiocyanate complex [Co(SCN) 4 ] 2 \ cobalt-carbonyl complex [Co(CO) 4 ]-, cobalt-nitrate Base complex [Co(N0 3 ) 4 f, cobalt-nitroso complex [Co(N0 2 ) 6 f or cobalt-butanedione oxime complex; wherein, cobalt-butanedione oxime complex and its derivatives The object is of the following structure:
Figure imgf000035_0001
Figure imgf000035_0001
式中, L为 ¾0或 CH3CN; IC¾H、 N(CH3)2或 (COOC¾ ); Where L is 3⁄40 or CH 3 CN; IC3⁄4H, N(CH 3 ) 2 or (COOC3⁄4 );
所述镍的盐是卤化镍、 硫酸镍、 硝酸镍、 碳酸镍、 草酸镍、 醋酸镍、 磷酸镍或亚铬酸 镜;  The nickel salt is a nickel halide, nickel sulfate, nickel nitrate, nickel carbonate, nickel oxalate, nickel acetate, nickel phosphate or chromic acid mirror;
所述镍的配合物是镍-氨配位化合物 [Ni(NH3)6]2+、 镍-氰配位化合物 [Ni(CN)4f、 镍-螯 合物 [Ni(en)3]2+、 镍-羰基配位化合物 Ni(CO)4或镍-乙基配位化合物 (C2¾)2Ni; The nickel complex is a nickel-ammonia complex [Ni(NH 3 ) 6 ] 2+ , a nickel-cyanide complex [Ni(CN) 4 f, a nickel-chelate [Ni(en) 3 ] 2+ , nickel-carbonyl coordination compound Ni(CO) 4 or nickel-ethyl coordination compound (C 2 3⁄4) 2 Ni;
所述铁的盐是卤化铁、硫酸铁、硝酸铁、碳酸铁、 草酸铁、醋酸铁、 磷酸铁、铬酸铁、 卤化亚铁、 硫酸亚铁、 硝酸亚铁、 碳酸亚铁、 草酸亚铁、 醋酸亚铁、 磷酸亚铁、 铬酸亚铁 或硫酸亚铁铵;  The iron salt is iron halide, iron sulfate, iron nitrate, iron carbonate, iron oxalate, iron acetate, iron phosphate, iron chromate, ferrous halide, ferrous sulfate, ferrous nitrate, ferrous carbonate, ferrous oxalate. , ferrous acetate, ferrous phosphate, ferrous chromite or ammonium ferrous sulfate;
所述铁的配合物是铁-氰配合物 [Fe(CN)6f、 亚铁-氰配合物 [Fe(CN)6]4 铁-硫氰配合 物 Fe(SCN)3、 铁-硫配合物 [Fe2S2(CO)6]、 铁 -羰基配合物 Fe(CO)5、 铁 -羰基配合物 Fe2(CO)9 或铁 -羰基配合物 Fe3(CO)12 ; 所述铜的盐是卤化铜、硫酸铜、 硝酸铜、碳酸铜、 草酸铜、醋酸铜、 磷酸铜、铬酸铜、 焦磷酸铜、 氰化铜、 脂肪酸铜、 环烷酸铜、 卤化亚铜、 硫酸亚铜、 碳酸亚铜或醋酸亚铜; 所述铬的盐是卤化铬、 硫酸铬、 硝酸铬、 碳酸铬、 草酸铬、 醋酸铬或磷酸铬; 所述钯的盐是四氯亚钯酸钾、 卤化钯、 硫酸钯、 硝酸钯或醋酸钯; The iron complex is an iron-cyano complex [Fe(CN) 6 f, a ferrous-cyano complex [Fe(CN) 6 ] 4 iron-thiocyanate complex Fe(SCN) 3 , an iron-sulfur complex [Fe 2 S 2 (CO) 6 ], iron-carbonyl complex Fe(CO) 5 , iron-carbonyl complex Fe 2 (CO) 9 or iron-carbonyl complex Fe 3 (CO) 12 ; The copper salt is copper halide, copper sulfate, copper nitrate, copper carbonate, copper oxalate, copper acetate, copper phosphate, copper chromate, copper pyrophosphate, copper cyanide, copper fatty acid, copper naphthenate, cuprous halide , cuprous sulfate, cuprous carbonate or cuprous acetate; the chromium salt is chromium halide, chromium sulfate, chromium nitrate, chromium carbonate, chromium oxalate, chromium acetate or chromium phosphate; the salt of the palladium is tetrachloropalladium Potassium acid, palladium halide, palladium sulfate, palladium nitrate or palladium acetate;
所述铂的盐是四氯亚铂酸钾、 卤化铂或硝酸铂;  The salt of platinum is potassium tetrachloroplatinate, platinum halide or platinum nitrate;
所述钌的盐是卤化钌、 硫酸钌、 硝酸钌或醋酸钌;  The salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
所述铑的盐是卤化铑、 硫酸铑、 硝酸铑或醋酸铑;  The salt of the cerium is cerium halide, cerium sulfate, cerium nitrate or cerium acetate;
所述金的盐是卤化金或氯金酸;  The salt of gold is gold halide or chloroauric acid;
所述银的盐是卤化银、 硫酸银、 硝酸银或醋酸银;  The silver salt is silver halide, silver sulfate, silver nitrate or silver acetate;
所述锰的盐是卤化锰、 硫酸锰、 硝酸锰或醋酸锰;  The salt of manganese is manganese halide, manganese sulfate, manganese nitrate or manganese acetate;
所述铱的盐是卤化铱或氯铱酸;  The salt of the cerium is cerium halide or chloroantimonic acid;
所述铼的盐是五羰基氯化铼或五羰基溴化铼。  The salt of ruthenium is pentacarbonylphosphonium chloride or pentacarbonylpentadium bromide.
21、 根据权利要求 17或 18所述的方法, 其特征在于, 步骤 3 )所述生物质衍生物在 整个反应体系中的浓度 l x lO_4 mol/L或摩尔百分比 0.01%。 The method according to claim 17 or 18, wherein the step 3) the concentration of the biomass derivative in the entire reaction system is lx 10 - 4 mol / L or 0.01% by mole.
22、 根据权利要求 17所述的方法, 其特征在于, 所述生物质衍生物是甲醇、 乙醇、 丙醇、 丁醇、 乙二醇、 丙三醇、 葡萄糖、 蔗糖、 果糖、 麦芽糖、 甘露糖、 抗坏血酸、 L- 脯氨酸或 L-半胱氨酸。  22. The method according to claim 17, wherein the biomass derivative is methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose, fructose, maltose, mannose. , ascorbic acid, L-proline or L-cysteine.
23、 根据权利要求 18所述的体系, 其特征在于: 所述生物质衍生物为三乙醇胺、 三 乙胺、 甲醇、 乙醇、 丙醇、 丁醇、 乙二醇、 丙三醇、 葡萄糖、 蔗糖、 果糖、 麦芽糖或甘露 糖。  23. The system according to claim 18, wherein: the biomass derivative is triethanolamine, triethylamine, methanol, ethanol, propanol, butanol, ethylene glycol, glycerol, glucose, sucrose. , fructose, maltose or mannose.
PCT/CN2012/000064 2011-06-23 2012-01-13 Semiconductor photocatalyst for hydrogen production from biomass derivatives by photocatalytic reforming, and preparation method and use thereof WO2012174844A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN2011101702652A CN102335618B (en) 2011-06-23 2011-06-23 Semiconductor catalyst, and preparation method thereof, catalysis and hydrogen production system comprising semiconductor catalyst, and hydrogen production method
CN201110170265.2 2011-06-23
CN201110308867.XA CN103041829B (en) 2011-10-12 2011-10-12 The semiconductor light-catalyst of a kind of photocatalytic reforming biomass and derivative hydrogen manufacturing thereof and preparation and application
CN201110308867.X 2011-10-12
CN201110344439.2 2011-11-03
CN201110344439.2A CN103084190B (en) 2011-11-03 2011-11-03 Compound semiconductor photocatalyst, preparation method of the compound semiconductor photocatalyst, photocatalytic system comprising the compound semiconductor photocatalyst, and hydrogen preparation method

Publications (1)

Publication Number Publication Date
WO2012174844A1 true WO2012174844A1 (en) 2012-12-27

Family

ID=47422015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000064 WO2012174844A1 (en) 2011-06-23 2012-01-13 Semiconductor photocatalyst for hydrogen production from biomass derivatives by photocatalytic reforming, and preparation method and use thereof

Country Status (1)

Country Link
WO (1) WO2012174844A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351447A (en) * 2023-03-23 2023-06-30 宁夏大学 Mo (molybdenum) 2 C(TiO 2 CdS) composite photocatalyst, and preparation and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156302A (en) * 1981-03-19 1982-09-27 Toshiba Corp Photochemically reacting method
CN101074369A (en) * 2007-06-27 2007-11-21 哈尔滨工业大学 Cds quantum point doped with cobalt inside lattice-ion and its production
CN101786005A (en) * 2010-02-04 2010-07-28 上海交通大学 Method for preparing cadmium sulfide-titanium dioxide nano-tube composite catalyst
CN101875843A (en) * 2010-05-31 2010-11-03 武汉大学 Preparation method of Mn-doped ZnCdS quantum dots
CN101940933A (en) * 2010-07-30 2011-01-12 武汉理工大学 Preparation method for visible light photocatalyst prepared by CdS quantum dot sensitization Zn1-xCdxs and photodecomposition of water into hydrogen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156302A (en) * 1981-03-19 1982-09-27 Toshiba Corp Photochemically reacting method
CN101074369A (en) * 2007-06-27 2007-11-21 哈尔滨工业大学 Cds quantum point doped with cobalt inside lattice-ion and its production
CN101786005A (en) * 2010-02-04 2010-07-28 上海交通大学 Method for preparing cadmium sulfide-titanium dioxide nano-tube composite catalyst
CN101875843A (en) * 2010-05-31 2010-11-03 武汉大学 Preparation method of Mn-doped ZnCdS quantum dots
CN101940933A (en) * 2010-07-30 2011-01-12 武汉理工大学 Preparation method for visible light photocatalyst prepared by CdS quantum dot sensitization Zn1-xCdxs and photodecomposition of water into hydrogen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, GUOPENG: "H2 Prodution via Photocatalytic Reforming of Methanol and Biomass-derived Compounds", FULL-TEXT DATABASE OF CHINESE DOCTORAL THESIS, ENGINEERING TECHNOLOGY I SERIES, 15 March 2008 (2008-03-15), pages B015-4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351447A (en) * 2023-03-23 2023-06-30 宁夏大学 Mo (molybdenum) 2 C(TiO 2 CdS) composite photocatalyst, and preparation and application thereof

Similar Documents

Publication Publication Date Title
Zhang et al. Construction of a Z-scheme heterojunction for high-efficiency visible-light-driven photocatalytic CO 2 reduction
JP5890842B2 (en) Semiconductor photocatalyst for photocatalysis and reforming of biomass derivatives to produce hydrogen and its production and application
Daulbayev et al. 0D, 1D and 2D nanomaterials for visible photoelectrochemical water splitting. A review
Zhao et al. Recent advances in photocatalytic hydrogen evolution with high-performance catalysts without precious metals
Wang et al. Nanostructured metal sulfides: classification, modification strategy, and solar‐driven CO2 reduction application
Fu et al. Photocatalytic conversion of carbon dioxide: From products to design the catalysts
Liu et al. Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting
Li et al. Engineering cobalt oxide with coexisting cobalt defects and oxygen vacancies for enhanced catalytic oxidation of toluene
Liu et al. Surface sites engineering on semiconductors to boost photocatalytic CO2 reduction
Li et al. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels
Yang et al. 2020 Roadmap on gas-involved photo-and electro-catalysis
Gao et al. Recent advances in visible-light-driven conversion of CO2 by photocatalysts into fuels or value-added chemicals
Yang et al. Photocatalytic conversion of CO 2 over graphene-based composites: current status and future perspective
Tang et al. An overview of solar-driven photoelectrochemical CO2 conversion to chemical fuels
Tahir et al. Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels
Zhang et al. TiO2-based photocatalysts for CO2 reduction and solar fuel generation
Guo et al. Review on the advancement of SnS 2 in photocatalysis
Zhang et al. Photoenzymatic catalytic cascade system of a pyromellitic diimide/g-C3N4 heterojunction to efficiently regenerate NADH for highly selective CO2 reduction toward formic acid
Huang et al. Efficient photocatalytic hydrogen evolution over Cu3Mo2O9/TiO2 pn heterojunction
Matavos-Aramyan et al. On engineering strategies for photoselective CO2 reduction–A thorough review
Gautam et al. Nanocluster materials in photosynthetic machines
Devi et al. Advancement in electrochemical, photocatalytic, and photoelectrochemical CO2 reduction: Recent progress in the role of oxygen vacancies in catalyst design
Mou et al. Visible-light assisted photoreduction of CO2 using CdS-decorated Bi24O31Br10
Li et al. Ordered macroporous structured TiO2-based photocatalysts for CO2 reduction: a review
Su et al. Oxygen-deficient MoO 3− x evoked synergistic photo-thermal catalytic CO 2 reduction over gC 3 N 4

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802896

Country of ref document: EP

Kind code of ref document: A1