WO2012174811A1 - 切换过程中消息的处理方法及演进型基站 - Google Patents
切换过程中消息的处理方法及演进型基站 Download PDFInfo
- Publication number
- WO2012174811A1 WO2012174811A1 PCT/CN2011/081014 CN2011081014W WO2012174811A1 WO 2012174811 A1 WO2012174811 A1 WO 2012174811A1 CN 2011081014 W CN2011081014 W CN 2011081014W WO 2012174811 A1 WO2012174811 A1 WO 2012174811A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pdcp
- uplink
- sdu
- sdus
- pdcp sdu
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000012545 processing Methods 0.000 title claims abstract description 14
- 230000005540 biological transmission Effects 0.000 claims description 10
- 239000000872 buffer Substances 0.000 claims description 3
- 238000004220 aggregation Methods 0.000 claims 1
- 230000002776 aggregation Effects 0.000 claims 1
- 239000002699 waste material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/02—Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
- H04W36/023—Buffering or recovering information during reselection
- H04W36/0235—Buffering or recovering information during reselection by transmitting sequence numbers, e.g. SN status transfer
Definitions
- the present invention relates to the field of mobile communications, and in particular, to a message processing method and an evolved base station (E-UTRAN Node B, referred to as e B) in a handover process.
- the source side eNB sends a SN Status Transfer message to the destination side eNB, where the message carries an uplink count value (UL COUNT Value) cell and an uplink PDCP SDUs receive status (Receive Status Of UL
- UL COUNT Value uplink count value
- PDCP SDU receive status
- the COUNT value of the service data unit (Service Data Unit, SDU for short) of the first packet data convergence protocol (PDCP) of the uplink is the COUNT value of the service data unit (SDU).
- the Receive Status OfUL PDCP SDUs cell indicates the reception status of the uplink SDU of the PDCP of the eNB.
- 1 is a schematic diagram showing the composition of a COUNT value according to the related art.
- the COUNT here is a 32-bit value, and is composed of a 20-bit Hyper Frame Number (HFN) and a 12-bit serial number (Sequence Number, Referred to as SN) cascading composition.
- HFN Hyper Frame Number
- SN Serial Number
- Last Submitted PDCP RX SN represents the SN corresponding to the last PDCP SDU of the eNB's PDCP upper layer delivery.
- the PDCP receives the PDCP protocol data unit from the lower layer (When the protocol data unit (referred to as PDU) falls outside the reordering sliding window, it will discard the PDCP PDU after processing.
- the PDCP of the source side eNB will deliver the consecutive SN consecutive PDCP SDUs. To the upper layer, the PDCP SDUs that are not consecutive to the SN are not delivered to the upper layer.
- the value of the Last Submitted PDCP RX SN is the SN value of the first lost PDCP SDU (ie, the SN corresponding to the UL COUNT Value) minus one. (The SN is not considered for the convenience of the description.) Therefore, the value range of the SN of the PDCP SDU used to construct the Receive Status Of UL PDCP SDUs is (the SN corresponding to the UL COUNT Value, and the UL COUNT Value. SN - 1 + 2048]
- the Receive Status Of UL PDCP SDUs cell is a bit stream (512 bytes) having a length of 4096. From the above analysis, the length is used here.
- the resulting bit stream 4096 for transmitting data and redundant waste of system resources The resulting bit stream 4096 for transmitting data and redundant waste of system resources.
- the present invention provides a processing scheme for a message in a handover process to solve at least the problem of resource waste and redundancy of transmission data when the source side eNB sends a sequence number state transmission message to the destination side eNB in the related art.
- a method of processing a message during handover is provided.
- the processing method of the message in the handover process includes the following steps: when the handover occurs, the eNB buffers the PDCP SDU after the last PDCP SDU delivered by the PDCP layer to the upper layer in the reordering sliding window;
- the case of the PDCP SDU stored in the sliding window constructs an uplink PDCP SDUs receiving status cell, wherein the length of the uplink PDCP SDUs receiving status cell is 2048 bits.
- the range of the SN corresponding to the PDCP SDU buffered in the reordering sliding window is (M, M+2048), where M is the SN corresponding to the last PDCP SDU delivered to the upper layer.
- the source side eNB according to the weight
- the case of the PDCP SDU stored in the sorting sliding window constructing the uplink PDCP SDUs receiving the status cell includes: the source side eNB receives the PDCP SDU with the SN value of the first lost PDCP SDU plus 1 as the starting point to reorder the sliding window
- the PDCP SDU stored in the middle end is the end point, and the uplink PDCP SDUs receiving status cell is constructed according to a predetermined rule.
- constructing the uplink PDCP SDUs according to the predetermined rule to receive the status cell includes: according to the PDCP SDU corresponding to the SN from the start point to the end point In the uplink receiving situation, the bits of the uplink PDCP SDUs receiving the status cell are sequentially filled, wherein the corresponding bit position 1 of the received PDCP SDU is not received, and the corresponding bit position 0 of the PDCP SDU is not received.
- the uplink PDCP SDUs are sequentially padded.
- the bits of the receive status cell include: On the upstream PDCP
- the uplink PDCP SDUs receive the subsequent bits of the status cell to zero.
- the method further includes: the source side eNB sending the uplink PDCP SDUs receiving status cell to the destination side eNB. Sequence number transfer message.
- an e B is also provided.
- the storage module is configured to: when the handover occurs, buffer the PDCP SDU after the last PDCP SDU that is delivered to the upper layer by the PDCP layer in the reordering sliding window; constructing a module, setting The uplink PDCP SDUs receive status cells are constructed according to the PDCP SDUs stored in the reordering sliding window, wherein the uplink PDCP SDUs receive status cells have a length of 2048 bits.
- the constructing module is further configured to use a PDCP SDU with the SN value of the first lost PDCP SDU plus 1 as the starting point, and the PDCP SDU stored at the end of the reordering sliding window is used as an end point, and the uplink PDCP is constructed according to a predetermined rule.
- the SDUs receive status cells.
- the constructing module is further configured to sequentially fill the bits of the uplink PDCP SDUs receiving status cell according to the uplink receiving situation of the PDCP SDU corresponding to the SN from the start point to the end point, where the corresponding bit position of the PDCP SDU is received. , the corresponding bit position 0 of the PDCP SDU is not received.
- the constructing module is further configured to receive the subsequent bits of the status cell by the uplink PDCP SDUs in the case that the uplink PDCP SDUs receive status cell is not full.
- the method for constructing the uplink PDCP SDUs to receive the status cell according to the PDCP SDU stored in the reordering sliding window is used in the present invention to solve the problem that the source side eNB sends the sequence number status transmission message to the destination side eNB in the related art.
- the waste of resources and the redundancy of transmitted data improve the efficiency and performance of the system.
- FIG. 1 is a schematic diagram of a composition of a COUNT value according to the related art
- FIG. 2 is a flowchart of a method for processing a message in a handover procedure according to an embodiment of the present invention
- FIG. 3 is a structure of an eNB according to an embodiment of the present invention
- 4 is a structural block diagram of an eNB according to a preferred embodiment of the present invention
- FIG. 5 is a flowchart of a method for processing a message during a handover procedure according to a first embodiment of the present invention.
- BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
- a method for processing a message during handover is provided.
- 2 is a flowchart of a method for processing a message in a handover process according to an embodiment of the present invention. As shown in FIG.
- Step S202 When a handover occurs, the source side eNB delivers the PDCP layer to the last PDCP of the upper layer.
- the PDCP SDU after the SDU is cached in the reordering sliding window.
- step S204 the source side eNB constructs the uplink PDCP according to the PDCP SDU stored in the reordering sliding window.
- the SDUs receive status cells, where the uplink PDCP SDUs receive status cells have a length of 2048 bits.
- the method of constructing the uplink PDCP SDUs to receive the status cell according to the PDCP SDU stored in the reordering sliding window is used in the foregoing steps, and the related information is used when the source side eNB sends the sequence number status transmission message to the destination side eNB.
- the waste of resources and the redundancy of transmitted data improve the efficiency and performance of the system.
- the range of the SN corresponding to the PDCP SDU buffered in the reordering sliding window is (M, M+2048), where M is the SN corresponding to the last PDCP SDU delivered to the upper layer.
- the source side eNB receives For the PDCP PDUs with SNs of 9, 11, 12, 13, 17 2057, and 2058, the SN of the received PDCP PDU is 10, and the SN of the first lost PDCP SDU is 10, if the PDCP of the source eNB is up.
- the SN corresponding to the last PDCP SDU of the layer delivery is 9, and the SN corresponding to the PDCP SDU that can be buffered in the reordering sliding window is (9, 2057).
- the SN cannot be generated.
- the PDCP SDU is 10, so the SN corresponding to the PDCP SDU buffered in the reordering sliding window is 11, 12, 13, 17, ... 2057.
- This method can enhance the accuracy of the system.
- the source side eNB may use the PDCP SDU of the first lost PDCP SDU when the uplink is received by 1 (in this case, the SN flip is not considered), to reorder the end of the sliding window.
- the stored PDCP SDU is the end point, constructed according to predetermined rules
- the PDCP SDUs receive the status cells. The method improves the effectiveness of the system.
- constructing the uplink PDCP SDUs receiving status cells according to a predetermined rule comprises: according to the uplink receiving situation of the PDCP SDU corresponding to the SN from the start point to the end point, The bits of the uplink PDCP SDUs receiving the status cell are sequentially filled, wherein the corresponding bit position 1 of the received PDCP SDU is not received, and the corresponding bit position 0 of the PDCP SDU is not received.
- the uplink PDCP SDUs receiving status cell is sequentially padded.
- the bits include: On the upstream PDCP
- the subsequent bits can be padded with zeros.
- the method is simple and practical, and has high operability. For example, the SN of the first lost PDCP PDU is 7 when the uplink is received, the SN of the last PDCP SDU delivered by the upper layer is 6, and the SN existing in the received status cell of the uplink PDCP SDUs is 8, 9, 10,
- the corresponding bit in the uplink PDCP SDUs receiving status cell is 1, and for the unreceived SN is 11, 12, 14 PDCP SDU,
- the corresponding bit in the received status cell of the uplink PDCP SDUs is 0, and the length of the received status cell of the uplink PDCP SDUs is 2048 bits, and the SN corresponding to the PDCP SDU stored at the end of the reordering sliding window is 2054, which is insufficient.
- the bit is complemented by 0. Therefore, the bit stream of the uplink PDCP SDUs receiving status cell is 11100101 1000.
- FIG. 3 is a structural block diagram of an eNB according to an embodiment of the present invention. As shown in FIG.
- the eNB includes: a storage module 32, configured to: when a handover occurs, a PDCP SDU after a last PDCP SDU that is delivered to the PDCP layer to an upper layer Cached in the reordering sliding window; the constructing module 34 is coupled to the storage module 32, configured to construct an uplink PDCP SDUs receiving status cell according to the PDCP SDU stored in the reordering sliding window, wherein the uplink PDCP SDUs receive the status cell
- the length is 2048 bits.
- the configuration of the uplink PDCP SDUs receiving status cells is configured by the configuration module 34 according to the PDCP SDUs stored in the reordering sliding window, and the source side eNB sends the sequence number status transmission message to the destination side eNB in the related art.
- the constructing module 34 is further configured to use the SN value of the first lost PDCP PDU plus 1 as the starting point when the uplink is received, to end the SN corresponding to the PDCP SDU stored at the end of the sliding window, and construct the uplink according to a predetermined rule.
- the PDCP SDUs receive status cells.
- the constructing module 34 is further configured to sequentially fill the bits of the uplink PDCP SDUs receiving status cell according to the uplink receiving situation of the PDCP SDU corresponding to the SN from the start point to the end point, wherein the corresponding bit position of the PDCP SDU is received. 1. The corresponding bit position 0 of the PDCP SDU has not been received.
- the constructing module 34 is further configured to receive the subsequent bits of the status cell by the uplink PDCP SDUs in the case that the uplink PDCP SDUs receive status cell is not full.
- 4 is a structural block diagram of an eNB according to a preferred embodiment of the present invention. As shown in FIG.
- the eNB further includes: a receiving module 42 configured to receive the PDCP PDU in the uplink of the PDCP layer; and a conversion module 44 coupled to the The receiving module 42 and the storage module 32 are configured to generate a corresponding PDCP SDU according to the PDCP PDU received by the PDCP layer.
- the Receive Status Of UL PDCP SDUs cell is constructed according to the reception condition of the uplink PDCP SDU of the eNB, and the value range of the SN of the PDCP SDU used to construct the Receive Status OfUL PDCP SDUs cell is (UL)
- the SN corresponding to the COUNT value is SN - 1 + 2048 corresponding to the UL COUNT Value. Therefore, it is unreasonable to set the bit stream of the Receive Status Of UL PDCP SDUs cell to 4096 in the related art.
- the receiving status of the UL PDCP SDUs is only required to be 2048 bits, and the receiving status of the uplink PDCP SDU can be completely represented.
- Step S502 When the handover occurs, the PDCP of the source side eNB receives the PDCP PDUs whose SNs are 9, 10, 11, 13, 15, 16, Vietnamese, 2059, 2060.
- Step S504 The PDCP of the source side eNB processes the PDCP PDU with the SN of 9, 10, and 11 to generate the PDCP SDU, and delivers the PDCP SDU to the upper layer, and updates the last delivery serial number ( Last Submitted PDCP RX SN ) to 11.
- Step S506 due to SN
- the PDCP PDU of the source side eNB is processed, and the PDCP PDUs of the SNs of 13, 15, 16, ..., 2059 are processed to generate PDCP SDUs, which are cached in the reordering sliding window.
- Step S508 The PDCP PDU with the SN of 2060 falls outside the reordering sliding window and is discarded after processing. It is not cached in the reordering sliding window.
- the PDCP PDU after the SN is 2060 is also discarded outside the reordering sliding window and is discarded after processing.
- Step 510 The source side eNB constructs a Receive Status OfUL PDCP SDUs cell according to the reception condition of the PDCP SDU in the reordering sliding window of the PDCP, and the SN existing in the reordering sliding window is 13, 15, 16, ...., 2059 PDCP SDU constructs the uplink PDCP SDUs Receive Status (Receive Status OfUL PDCP SDUs) cells, the bit stream is 1011 alone10, a total of 2048 bits, the last bit It is a padding bit and is 0. It can be seen that the SN Status Transfer message in this embodiment can save 2048 bits (256 bytes), and the length value of the Receive Status Of UL PDCP SDUs cell is more in line with the actual processing logic.
- the source side e B constructs the uplink PDCP SDUs to receive the status cell according to the PDCP SDU stored in the reordering sliding window, and solves the related art in the related art.
- the eNB sends the sequence number status transmission message, there is a problem of resource waste and redundancy of transmission data, which improves the efficiency and performance of the system.
- the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
- the invention is not limited to any specific combination of hardware and software.
- the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种切换过程中消息的处理方法及演进基站(eNB),该方法包括以下步骤:切换发生时,源侧演进基站eNB将PDCP层向上层投递的最后一个分组数据汇聚协议(PDCP)服务数据单元(SDU)之后的PDCP SDU缓存在重排序滑窗中;源侧eNB根据重排序滑窗中存储的PDCP SDU的情况构造上行PDCP SDUs接收状态信元,其中,上行PDCP SDUs接收状态信元的长度为2048比特。通过本发明提高了系统的效率和性能。
Description
切换过程中消息的处理方法及演进型基站 技术领域 本发明涉及移动通信领域, 尤其涉及一种切换过程中消息的处理方法及演进基站 (E-UTRAN Node B, 简称为 e B)。 背景技术 切换过程中, 源侧 eNB向目的侧 eNB发送序号状态传输 (SN Status Transfer) 消 息, 其中, 消息携带有上行计数值 (UL COUNT Value) 信元和上行 PDCP SDUs接收 状态 (Receive Status Of UL PDCP SDUs) 信元, UL COUNT Value信元表示上行第一 个丢失的分组数据汇聚协议 (Packet Data Converse Protocol, 简称为 PDCP) 的服务数 据单元( Service Data Unit,简称为 SDU)对应的 COUNT值, Receive Status OfUL PDCP SDUs信元表示 eNB的 PDCP的上行 SDU的接收情况。 图 1是根据相关技术的 COUNT值的组成示意图, 如图 1所示, 这里的 COUNT 是 32比特值, 由 20比特超帧号(Hyper Frame Number, 简称为 HFN)和 12比特序号 ( Sequence Number, 简称为 SN) 级联组成。 eNB 的 PDCP 存 在 重 排 序 滑 窗 , 重 排 序 滑 窗 的 范 围 是
(Last Submitted PDCP RX SN, Last Submitted PDCP RX SN + 2048], 其中, Last Submitted PDCP RX SN表示 eNB的 PDCP向上层投递的最后一个 PDCP SDU 对应的 SN。当 PDCP从下层收到 PDCP协议数据单元(Protocol Data Unit,简称为 PDU) 落在该重排序滑窗之外时, 会将该 PDCP PDU处理完成之后丢弃。 发生切换时,源侧 eNB的 PDCP会将上行收到的 SN连续的 PDCP SDU投递到上 层, 对于 SN 不连续的 PDCP SDU 是不会投递给上层的, 因此, Last Submitted PDCP RX SN 的值为第一个丢失的 PDCP SDU 的 SN值 (即, UL COUNT Value对应的 SN) 减 1 (这里为了表述方便, 就不考虑 SN翻转的情况)。 因 此, 用来构造 Receive Status Of UL PDCP SDUs信元的 PDCP SDU的 SN的取值区间 就是 (UL COUNT Value对应的 SN, UL COUNT Value对应的 SN - 1 + 2048]。 但是, 在相关技术中, Receive Status Of UL PDCP SDUs信元是长度为 4096的比 特流 (512字节), 由上述分析可知, 这里采用长度为 4096的比特流造成了系统资源 的浪费以及传输数据的冗余。
发明内容 本发明提供了一种切换过程中消息的处理方案, 以至少解决上述相关技术中源侧 eNB向目的侧 eNB发送序号状态传输消息时存在资源浪费及传输数据的冗余的问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种切换过程中消息的处理 方法。 根据本发明的切换过程中消息的处理方法, 包括以下步骤: 切换发生时, eNB将 PDCP层向上层投递的最后一个 PDCP SDU之后的 PDCP SDU缓存在重排序滑窗中; 源侧 eNB根据重排序滑窗中存储的 PDCP SDU的情况构造上行 PDCP SDUs接收状态 信元, 其中, 上行 PDCP SDUs接收状态信元的长度为 2048比特。 优选地, 重排序滑窗中缓存的 PDCP SDU对应的 SN的范围为 (M, M+2048], 其中, M为向上层投递的最后一个 PDCP SDU对应的 SN。 优选地, 源侧 eNB根据重排序滑窗中存储的 PDCP SDU的情况构造上行 PDCP SDUs接收状态信元包括: 源侧 eNB以上行接收时第一个丢失的 PDCP SDU的 SN值 加 1的 PDCP SDU为起点, 以重排序滑窗中末尾存储的 PDCP SDU为终点, 按照预定 规则构造上行 PDCP SDUs接收状态信元。 优选地, 按照预定规则构造上行 PDCP SDUs接收状态信元包括: 按照与从起点 至终点中 SN对应的 PDCP SDU的上行接收情况, 依次填充上行 PDCP SDUs接收状 态信元的比特位, 其中, 收到 PDCP SDU的对应的比特位置 1, 未收到 PDCP SDU的 对应的比特位置 0。 优选地, 依次填充上行 PDCP SDUs接收状态信元的比特位包括: 在上行 PDCP
SDUs接收状态信元未填满的情况下,将上行 PDCP SDUs接收状态信元的后续位补零。 优选地, 源侧 eNB根据重排序滑窗中存储的 PDCP SDU的情况构造上行 PDCP SDUs接收状态信元之后,该方法还包括:源侧 eNB向目的侧 eNB发送携带上行 PDCP SDUs接收状态信元的序号状态传输消息。 为了实现上述目的, 根据本发明的另一方面, 还提供了一种 e B。 根据本发明的 e B, 包括: 存储模块, 设置为在切换发生时, 将 PDCP层向上层 投递的最后一个 PDCP SDU之后的 PDCP SDU缓存在重排序滑窗中; 构造模块, 设置
为根据重排序滑窗中存储的 PDCP SDU的情况构造上行 PDCP SDUs接收状态信元, 其中, 上行 PDCP SDUs接收状态信元的长度为 2048比特。 优选地, 构造模块还设置为以上行接收时第一个丢失的 PDCP SDU的 SN值加 1 的 PDCP SDU为起点, 以重排序滑窗中末尾存储的 PDCP SDU为终点, 按照预定规则 构造上行 PDCP SDUs接收状态信元。 优选地, 构造模块还设置为按照与从起点至终点中 SN对应的 PDCP SDU的上行 接收情况, 依次填充上行 PDCP SDUs接收状态信元的比特位, 其中, 收到 PDCP SDU 的对应的比特位置 1, 未收到 PDCP SDU的对应的比特位置 0。 优选地, 构造模块还设置为在上行 PDCP SDUs接收状态信元未填满的情况下, 将上行 PDCP SDUs接收状态信元的后续位补零。 通过本发明,采用源侧 eNB根据重排序滑窗中存储的 PDCP SDU的情况构造上行 PDCP SDUs接收状态信元的方式, 解决了相关技术中源侧 eNB向目的侧 eNB发送序 号状态传输消息时存在资源浪费及传输数据的冗余的问题,提高了系统的效率和性能。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的 COUNT值的组成示意图; 图 2是根据本发明实施例的切换过程中消息的处理方法的流程图; 图 3是根据本发明实施例的 eNB的结构框图; 图 4是根据本发明优选实施例的 eNB的结构框图; 图 5是根据本发明实施例一的切换过程中消息的处理方法的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。
根据本发明实施例, 提供了一种切换过程中消息的处理方法。 图 2是根据本发明 实施例的切换过程中消息的处理方法的流程图, 如图 2所示, 包括以下步骤: 步骤 S202,切换发生时,源侧 eNB将 PDCP层向上层投递的最后一个 PDCP SDU 之后的 PDCP SDU缓存在重排序滑窗中; 步骤 S204,源侧 eNB根据重排序滑窗中存储的 PDCP SDU的情况构造上行 PDCP
SDUs接收状态信元, 其中, 上行 PDCP SDUs接收状态信元的长度为 2048比特。 通过上述步骤,采用源侧 eNB根据重排序滑窗中存储的 PDCP SDU的情况构造上 行 PDCP SDUs接收状态信元的方式, 解决了相关技术中源侧 eNB向目的侧 eNB发送 序号状态传输消息时存在资源浪费及传输数据的冗余的问题, 提高了系统的效率和性 能。 优选地, 重排序滑窗中缓存的 PDCP SDU对应的 SN的范围为 (M, M+2048], 其中, M为向上层投递的最后一个 PDCP SDU对应的 SN。例如,源侧 eNB收到的 SN 为 9、 11、 12、 13、 17 2057、 2058的 PDCP PDU, 从收到的 PDCP PDU的 SN的 连续性可知,第一个丢失的 PDCP SDU的 SN为 10,若源侧 eNB的 PDCP向上层投递 的最后一个 PDCP SDU对应的 SN为 9, 则重排序滑窗中可以缓存的 PDCP SDU对应 的 SN为 (9, 2057], 此时, 没有 SN为 10的 PDCP PDU, 也就无法生成 SN为 10的 PDCP SDU, 所以, 重排序滑窗中缓存的 PDCP SDU对应的 SN 为 11、 12、 13、 17... ...2057。 该方法可以增强系统的准确性。 优选地, 在步骤 S204中, 源侧 eNB可以以上行接收时第一个丢失的 PDCP SDU 的 SN值加 1 (这里为表述方便, 就不考虑 SN翻转的情况) 的 PDCP SDU为起点, 以 重排序滑窗中末尾存储的 PDCP SDU为终点, 按照预定规则构造上行 PDCP SDUs接 收状态信元。 该方法提高了系统的有效性。 优选地, 按照预定规则构造上行 PDCP SDUs接收状态信元包括: 按照与从起点 至终点中 SN对应的 PDCP SDU的上行接收情况, 依次填充上行 PDCP SDUs接收状 态信元的比特位, 其中, 收到 PDCP SDU的对应的比特位置 1, 未收到 PDCP SDU的 对应的比特位置 0。 优选地, 依次填充上行 PDCP SDUs接收状态信元的比特位包括: 在上行 PDCP
SDUs接收状态信元未填满的情况下, 可以给后续位补零。 该方法简单实用、 可操作 性强。
例如,上行接收时第一个丢失的 PDCP PDU的 SN为 7,上层投递的最后一个 PDCP SDU对应的 SN为 6, 且在上行 PDCP SDUs接收状态信元中存在的 SN为 8、 9、 10、
13、 15 2052, 那么由于收到 SN为 8的 PDCP SDU, 所以, 上行 PDCP SDUs接收 状态信元中对应的比特位为 1, 而对于未收到的 SN为 11、 12、 14的 PDCP SDU, 则 上行 PDCP SDUs接收状态信元中对应的比特位为 0, 又因为上行 PDCP SDUs接收状 态信元的长度为 2048比特,而重排序滑窗中末尾存储的 PDCP SDU对应的 SN为 2054, 不足的比特位补 0, 因此, 上行 PDCP SDUs 接收状态信元的比特流为 11100101 1000。 优选地, 在步骤 S204之后, 源侧 eNB向目的侧 e B发送携带上行 PDCP SDUs 接收状态信元的序号状态传输消息。 该方法提高了切换时系统的灵活性。 对应于上述方法, 本发明实施例还提供了一种 eNB。 图 3是根据本发明实施例的 eNB的结构框图, 如图 3所示, 该 eNB包括: 存储模块 32, 设置为在切换发生时, 将 PDCP层向上层投递的最后一个 PDCP SDU之后的 PDCP SDU缓存在重排序滑窗 中; 构造模块 34, 耦合至存储模块 32, 设置为根据重排序滑窗中存储的 PDCP SDU 的情况构造上行 PDCP SDUs接收状态信元, 其中, 上行 PDCP SDUs接收状态信元的 长度为 2048比特。 通过上述 e B, 采用构造模块 34根据重排序滑窗中存储的 PDCP SDU的情况构 造上行 PDCP SDUs接收状态信元的方式, 解决了相关技术中源侧 eNB向目的侧 eNB 发送序号状态传输消息时存在资源浪费及传输数据的冗余的问题, 提高了系统的效率 和性能。 优选地,构造模块 34还设置为以上行接收时第一个丢失的 PDCP PDU的 SN值加 1为起点, 以重排序滑窗中末尾存储的 PDCP SDU对应的 SN为终点, 按照预定规则 构造上行 PDCP SDUs接收状态信元。 优选地,构造模块 34还设置为按照与从起点至终点中 SN对应的 PDCP SDU的上 行接收情况,依次填充上行 PDCP SDUs接收状态信元的比特位,其中,收到 PDCP SDU 的对应的比特位置 1, 未收到 PDCP SDU的对应的比特位置 0。 优选地,构造模块 34还设置为在上行 PDCP SDUs接收状态信元未填满的情况下, 将上行 PDCP SDUs接收状态信元的后续位补零。 图 4是根据本发明优选实施例的 eNB的结构框图, 如图 4所示, 该 eNB还包括: 接收模块 42, 设置为所述 PDCP层上行接收所述 PDCP PDU; 转换模块 44, 耦合至接
收模块 42和存储模块 32, 设置为根据所述 PDCP层上行收到的所述 PDCP PDU生成 对应的 PDCP SDU。 下面结合优选实施例和附图对上述实施例的实现过程进行详细说明。 在切换过程中, Receive Status Of UL PDCP SDUs信元是根据 eNB的上行 PDCP SDU的接收情况来构造的,而用来构造 Receive Status OfUL PDCP SDUs信元的 PDCP SDU的 SN的取值区间是 (UL COUNT Value对应的 SN,UL COUNT Value对应的 SN - 1 + 2048], 所以, 相关技术中将 Receive Status Of UL PDCP SDUs信元的长度设置为 4096的比特流是不合理的, 本实施例中的 Receive Status Of UL PDCP SDUs信元只需 要 2048比特就可以完整的表示上行 PDCP SDU的接收情况。 图 5是根据本发明实施例一的切换过程中消息的处理方法的流程图,如图 5所示, 该方法包括以下步骤: 步骤 S502,切换发生时,源侧 eNB的 PDCP收到 SN为 9、 10、 11、 13、 15、 16、 .....、 2059、 2060的 PDCP PDU。 步骤 S504, 源侧 eNB的 PDCP将 SN为 9、 10、 11的 PDCP PDU经过处理之后 生成了 PDCP SDU , 并将其 向上层投递, 将最后一个投递的序号 ( Last Submitted PDCP RX SN ) 更新为 11。 步骤 S506, 由于 SN为 12的 PDCP PDU丢失, 源侧 eNB的 PDCP将 SN为 13、 15、 16、 .....、 2059的 PDCP PDU经过处理之后生成了 PDCP SDU, 缓存在重排序滑 窗中。 步骤 S508, SN为 2060的 PDCP PDU落于重排序滑窗外, 在处理后被丢弃, 未缓 存于重排序滑窗中,收到 SN为 2060之后的 PDCP PDU同样落于重排序滑窗外在处理 后被丢弃, 未缓存于重排序滑窗中。 步骤 S510, 源侧 eNB根据 PDCP的重排序滑窗中的 PDCP SDU的接收情况构造 Receive Status OfUL PDCP SDUs信元,根据重排序滑窗中存在的 SN为 13、 15、 16、 .....、 2059的 PDCP SDU构造上行 PDCP SDUs接收状态(Receive Status OfUL PDCP SDUs) 信元, 其比特流为 1011.....10, 共 2048个比特, 最后一个比特属于填充比特, 为 0。 可见, 采用本实施中的 SN Status Transfer消息可以节省 2048比特 (256字节) 的 长度, 同时, 使 Receive Status Of UL PDCP SDUs信元的长度值更符合实际的处理逻 辑, 提高了系统资源的利用率。
综上所述,通过本发明实施例,采用源侧 e B根据重排序滑窗中存储的 PDCP SDU 的情况构造上行 PDCP SDUs接收状态信元的方式, 解决了相关技术中源侧 eNB向目 的侧 eNB发送序号状态传输消息时存在资源浪费及传输数据的冗余的问题,提高了系 统的效率和性能。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而可以将 它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限 制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1. 一种切换过程中消息的处理方法, 包括以下步骤:
切换发生时,源侧演进基站 eNB将分组数据汇聚协议 PDCP层向上层投递 的最后一个 PDCP服务数据单元 SDU之后的 PDCP SDU缓存在重排序滑窗中; 所述源侧 eNB根据所述重排序滑窗中存储的 PDCP SDU的情况构造上行 PDCP SDUs接收状态信元, 其中, 所述上行 PDCP SDUs接收状态信元的长度 为 2048比特。
2. 根据权利要求 1所述的方法, 其中, 所述重排序滑窗中缓存的 PDCP SDU对应 的序号 SN的范围为 (M, M+2048], 其中, M为所述向上层投递的最后一个 PDCP SDU对应的 SN。
3. 根据权利要求 1所述的方法, 其中, 所述源侧 eNB根据所述重排序滑窗中存储 的 PDCP SDU的情况构造所述上行 PDCP SDUs接收状态信元包括:
所述源侧 eNB以上行接收时第一个丢失的 PDCP SDU的 SN值加 1的 PDCP SDU为起点, 以所述重排序滑窗中末尾存储的 PDCP SDU为终点,按照预定规 则构造所述上行 PDCP SDUs接收状态信元。
4. 根据权利要求 3所述的方法,其中,按照所述预定规则构造所述上行 PDCP SDUs 接收状态信元包括:
按照与从所述起点至所述终点中 SN对应的 PDCP SDU的上行接收情况, 依次填充所述上行 PDCP SDUs接收状态信元的比特位,其中,收到 PDCP SDU 的对应的比特位置 1, 未收到 PDCP SDU的对应的比特位置 0。
5. 根据权利要求 4所述的方法, 其中, 依次填充所述上行 PDCP SDUs接收状态 信元的比特位包括:
在所述上行 PDCP SDUs接收状态信元未填满的情况下,将所述上行 PDCP SDUs接收状态信元的后续位补零。
6. 根据权利要求 1至 5中任一项所述的方法, 其中, 所述源侧 eNB根据所述重排 序滑窗中存储的 PDCP SDU的情况构造所述上行 PDCP SDUs接收状态信元之 后, 还包括: 所述源侧 e B向目的侧 eNB发送携带所述上行 PDCP SDUs接收状态信元 的序号状态传输消息。 一种演进基站 eNB, 包括:
存储模块, 设置为在切换发生时, 将 PDCP层向上层投递的最后一个分组 数据汇聚协议 PDCP服务数据单元 SDU之后的 PDCP SDU缓存在重排序滑窗 中;
构造模块, 设置为根据所述重排序滑窗中存储的 PDCP SDU的情况构造上 行 PDCP SDUs接收状态信元, 其中, 所述上行 PDCP SDUs接收状态信元的长 度为 2048比特。 根据权利要求 7所述的 e B, 其中, 所述构造模块还设置为以上行接收时第一 个丢失的 PDCP SDU的序号 SN值加 1的 PDCP SDU为起点, 以所述重排序滑 窗中末尾存储的 PDCP SDU为终点, 按照预定规则构造所述上行 PDCP SDUs 接收状态信元。 根据权利要求 8所述的 e B, 其中, 所述构造模块还设置为按照与从所述起点 至所述终点中 SN对应的 PDCP SDU的上行接收情况,依次填充所述上行 PDCP SDUs接收状态信元的比特位, 其中, 收到 PDCP SDU的对应的比特位置 1, 未收到 PDCP SDU的对应的比特位置 0。 根据权利要求 9所述的 e B, 其中, 所述构造模块还设置为在所述上行 PDCP SDUs接收状态信元未填满的情况下,将所述上行 PDCP SDUs接收状态信元的 后续位补零。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110173831.5A CN102843733B (zh) | 2011-06-24 | 2011-06-24 | 切换过程中消息的处理方法及演进型基站 |
CN201110173831.5 | 2011-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012174811A1 true WO2012174811A1 (zh) | 2012-12-27 |
Family
ID=47370731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/081014 WO2012174811A1 (zh) | 2011-06-24 | 2011-10-20 | 切换过程中消息的处理方法及演进型基站 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102843733B (zh) |
WO (1) | WO2012174811A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114501563A (zh) * | 2019-09-30 | 2022-05-13 | Oppo广东移动通信有限公司 | 无线通信方法、装置和网络设备 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011043847A1 (en) * | 2009-10-07 | 2011-04-14 | Qualcomm Incorporated | Apparatus and method for facilitating handover in td-scdma systems |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101677266A (zh) * | 2008-09-19 | 2010-03-24 | 大唐移动通信设备有限公司 | 控制重排序和重复消除操作的方法、系统及装置 |
CN101997660A (zh) * | 2009-08-14 | 2011-03-30 | 中兴通讯股份有限公司 | 一种避免上行数据丢失的方法及装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101483505B (zh) * | 2008-01-08 | 2013-02-27 | 中兴通讯股份有限公司 | 一种服务数据单元丢弃方法 |
-
2011
- 2011-06-24 CN CN201110173831.5A patent/CN102843733B/zh not_active Expired - Fee Related
- 2011-10-20 WO PCT/CN2011/081014 patent/WO2012174811A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101677266A (zh) * | 2008-09-19 | 2010-03-24 | 大唐移动通信设备有限公司 | 控制重排序和重复消除操作的方法、系统及装置 |
CN101997660A (zh) * | 2009-08-14 | 2011-03-30 | 中兴通讯股份有限公司 | 一种避免上行数据丢失的方法及装置 |
Non-Patent Citations (1)
Title |
---|
LTE: "Evolved Universal Terrestrial Radio Access (E-UTRA), Packet Data Convergence Protocol (PDCP) specification", (3GPP TS 36.323 VERSION 10.0.0 RELEASE 10), ETSI, January 2011 (2011-01-01), pages 15 AND 22 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114501563A (zh) * | 2019-09-30 | 2022-05-13 | Oppo广东移动通信有限公司 | 无线通信方法、装置和网络设备 |
CN114501563B (zh) * | 2019-09-30 | 2024-05-03 | Oppo广东移动通信有限公司 | 无线通信方法、装置和网络设备 |
Also Published As
Publication number | Publication date |
---|---|
CN102843733A (zh) | 2012-12-26 |
CN102843733B (zh) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018127238A1 (zh) | 信息处理方法及装置 | |
WO2017185941A1 (zh) | 一种数据传输方法及相关设备 | |
CN114189901B (zh) | 一种数据接收状态报告方法及装置 | |
US11159981B2 (en) | Congestion processing method and apparatus | |
JP4625044B2 (ja) | ウィンドウ制御及び再送制御方法、及び、送信側装置 | |
EP2469750A1 (en) | Method and apparatus for downlink data transmission control in multi-hop relay communication system | |
WO2007098676A1 (fr) | Procédé de réassemblage de données dans un système de communication sans fil et appareil associé | |
WO2018177253A1 (zh) | 一种通信方法及设备 | |
KR101379408B1 (ko) | 재송요구 송신방법 및 수신측장치 | |
WO2011047621A1 (zh) | 基于重传机制的对头压缩数据包进行传输的方法和装置 | |
WO2017049647A1 (zh) | 一种数据发送方法、数据接收方法和相关设备 | |
KR20100053625A (ko) | 무선 통신 시스템에서의 핸드오버 동안 데이터의 계층 2 터널링 | |
TW200304748A (en) | A scheme to prevent HFN un-synchronization for UM RLC in a high speed wireless communication system | |
WO2010105467A1 (zh) | 一种用户设备以及用户设备接收下行数据的方法 | |
WO2011017849A1 (zh) | 数据处理方法和装置 | |
WO2012146189A1 (zh) | 消息处理方法、设备及系统 | |
KR20090122962A (ko) | 재송요구 송신방법 및 수신측 장치 | |
WO2019095975A1 (zh) | 数据包处理的方法和设备 | |
WO2009033371A1 (fr) | Système et appareil de remplissage d'unité de données de protocole (pdu) et son procédé de traitement correspondant | |
Saif et al. | A reliable A-MSDU frame aggregation scheme in 802.11 n wireless networks | |
CN106341368A (zh) | 一种实现数据处理的方法及装置 | |
WO2011116577A1 (zh) | 数据重传方法及装置 | |
WO2012174811A1 (zh) | 切换过程中消息的处理方法及演进型基站 | |
WO2015180066A1 (zh) | 一种无线链路控制传输方法及设备 | |
CN108200605B (zh) | 一种基站的数据传输方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11868131 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11868131 Country of ref document: EP Kind code of ref document: A1 |