WO2012174733A1 - Cosmetic defect reduction in anodized parts - Google Patents

Cosmetic defect reduction in anodized parts Download PDF

Info

Publication number
WO2012174733A1
WO2012174733A1 PCT/CN2011/076264 CN2011076264W WO2012174733A1 WO 2012174733 A1 WO2012174733 A1 WO 2012174733A1 CN 2011076264 W CN2011076264 W CN 2011076264W WO 2012174733 A1 WO2012174733 A1 WO 2012174733A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal part
ranges
station
anodized
degrees
Prior art date
Application number
PCT/CN2011/076264
Other languages
French (fr)
Inventor
Zhicong Yao
Chi-Hsiang Chang
Original Assignee
Apple Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc. filed Critical Apple Inc.
Priority to KR1020137031367A priority Critical patent/KR101475173B1/en
Priority to US13/995,146 priority patent/US20130270120A1/en
Priority to JP2014516157A priority patent/JP5723068B2/en
Priority to PCT/CN2011/076264 priority patent/WO2012174733A1/en
Priority to CN201180071770.XA priority patent/CN103608493B/en
Publication of WO2012174733A1 publication Critical patent/WO2012174733A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/005Apparatus specially adapted for electrolytic conversion coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing

Definitions

  • the present invention relates generally to manufacturing and part formation. More particularly, the present embodiments relate to improving the final cosmetic appearance of anodized metal parts.
  • the outward appearance of a computing system or device is important to many consumers.
  • an aesthetically pleasing and cosmetically clean device that is free of any seams, burrs, marks or other irregularities can be perceived as being nicer and more desirable that devices that are not so cosmetically clean.
  • Creating an outward appearance that is aesthetically pleasing and durable for computing systems and other devices that include metal parts can sometimes include the use of anodized metal parts.
  • anodizing metal parts can improve the outer surfaces of such parts by hardening and strengthening the surfaces, increasing resistance to corrosion and wear, and providing better adhesion for paint primers and adhesives, among other advantages.
  • the outward appearance of an anodized surface tends to be uniform and aesthetically pleasing, particularly with respect to aluminum.
  • anodization tends to change the crystal structure or other microscopic texture of the metal material. This is generally not a problem though, as the advantages of anodizing aluminum and other metals can outweigh any expenses or drawbacks in many cases.
  • anodized metal part or system of parts may not be pristine or seamless where the microscopic structure of the part or parts contains defects, irregularities, or foreign materials, such as trace amounts of Ti B, Cu, F ' e, Si and the like.
  • defects or irregularities which can occur at weld regions, seams or cracks, for example, can become manifested upon anodization.
  • This can result in the outward cosmetic appearance of the anodized metal part or parts having black lines, white lines, pits or other flaws that are revealed or magnified as a result of the anodization process. While some amount of minor "black line" flaws such as these may be tolerable in some cases, such outcomes have a lowered aesthetic value and can often result in an increased amount of part rejection or recycling in the manufacturing process.
  • the present application describes various embodiments regarding systems and methods for the anodization of metal parts having inherent internal defects or flaws that still result in a final anodizing finish that is cosmetically pleasing and less likely to result in part rejection or recycling for cosmetic reasons. This can be accomplished at least in part through the use of manufacturing systems and methods that utilize specialized degreasing, chemical polishing and anodizing processes for the treatment of metal parts.
  • a system adapted for the manufacture of anodized metal parts can include at least a degreasing station, a chemical polishing station, and an anodizing station.
  • the degreasing station can be adapted to degrease a separate metal part using an alkaline solution with a mild detergent, wherein the alkaline solution has a pH that ranges from about 8 to 9.
  • the chemical polishing station can be adapted to chemically polish the degreased metal part at a temperature that ranges from about 105 to 115 degrees C and for a period of about 15 to 30 seconds, by using a chemical polishing solution with one or more specialized additives.
  • the anodizing station can be adapted to anodize the chemically polished part for about 15 to 20 minutes and at a voltage that ranges from about 12.5 to 14.5 volts. More particularly, the chemical polishing can take place for about 15 seconds, while the anodizing can take place for about 15 minutes.
  • the system can be specially adapted to be used on aluminum parts, although other types of metal parts can also be processed.
  • Additional system stations can include an activating station adapted to neutralize or activate the metal part between the degreasing and chemically polishing steps, one or more rinsing stations adapted to rinse the metal part with tap water after the part has been processed through the degreasing station, and one or more deionized rinsing stations adapted to rinse the metal part with deionized water after the part has been processed through the chemical polishing station.
  • Still further system stations can include a de-smutting station adapted to de-smut the anodized metal part in a nitric acid solution at a temperature of about 25 degrees C and for a period of about 30 seconds, a sealing station adapted to seal the anodized metal part using an acetate solution that is applied at a temperature that ranges from about 92 to 96 degrees C and for a period of about 15 minutes, and a baking station adapted to bake the sealed metal part at a temperature that ranges from about 85-90 degrees C and for a period of about 10 to 15 minutes.
  • the chemical polishing solution comprises by weight about 76-82% phosphoric acid, 18-20% sulfuric acid, 1-5% nitric acid, 1-1.5% corrosion inhibiting additive, 1-1.5% buffering agent, and a trace amount of fatty alcohol ehyoxyl compound.
  • Method steps can include degreasing the metal part, chemically polishing the degreased metal part, and anodizing the chemically polished part.
  • degreasing can be performed using an alkaline solution having a mild detergent and a pH of about 8 to 9.
  • chemical polishing can be performed at a temperature that ranges from about 105 to 115 degrees C and for a period of about 15 to 30 seconds using a solution having one or more specialized additives.
  • anodizing can be performed for about 15 to 20 minutes and at a voltage that ranges from about 12.5 to 14.5 volts.
  • the chemical polishing can take place for about 15 seconds, while the anodizing can take place for about 15 minutes.
  • the subject metal parts can be aluminum, for example, and can be designed to be used for a computing device. Other metals and types of devices are also possible.
  • Additional process steps can include activating the degreased metal part between the degreasing and chemically polishing steps, rinsing the degreased metal part with tap water after the degreasing step, rinsing the chemically polished metal part with deionized water after the chemically polishing step, de-smutting the anodized metal part in a nitric acid solution at a temperature of about 25 degrees C and for a period of about 30 seconds, sealing the anodized metal part using an acetate solution that is applied at a temperature that ranges from about 92 to 96 degrees C and for a period of about 15 minutes, and baking the sealed metal part at a temperature that ranges from about 85-90 degrees C and for a period of about 10 to 15 minutes.
  • a computing device can include a processor, one or more input components coupled to the processor, one or more output components coupled to the processor, and an outer housing including at least one anodized metal component.
  • the anodized metal component or components can have been degreased in an alkaline solution having mild detergent and a pH that ranges from about 8 to 9, chemically polished at a temperature that ranges from about 105 to 115 degrees C and for a period of about 15 to 30 seconds using a solution having one or more specialized additives, and anodized for about 15 to 20 minutes and at a voltage that ranges from about 12.5 to 14.5 volts.
  • the chemical polishing can take place for about 15 seconds, while the anodizing can take place for about 15 minutes.
  • the anodized metal component or components can include anodized aluminum.
  • the outer housing can include one or more microstructure defects that are not made readily apparent as a result of the anodization process.
  • FIG. 1 A illustrates in front elevation view an exemplary computing device having one or more outer metal parts that can be treated according to the various embodiments of the present invention.
  • FIG. IB illustrates in side elevation view the exemplary computing device of FIG. 1A.
  • FIG. 2 illustrates in block diagram format an exemplary metal part finishing system.
  • FIG. 3 illustrates in block diagram format an alternative metal part finishing system according to one embodiment of the present invention.
  • FIG. 4 provides a flowchart of one way of manufacturing an anodized metal part.
  • FIG. 5 provides a flowchart of an alternative way of manufacturing an anodized metal part according to one embodiment of the present invention.
  • the present disclosure generally relates to the manufacture of various metallic housings and other computer components, as well as a manufacturing system and process adapted to treat and anodize such metal components.
  • Computing device 10 can be, for example, an iMac® personal computer commercially available from Apple, Inc. It will be readily understood, however, that a wide variety of computing devices or other items having metal components are similarly applicable for the systems and processes of the present invention.
  • Computing device 10 can include an outer housing 20 comprising one or more anodized metal parts.
  • outer housing 20 can be formed from anodized aluminum.
  • a display device 30 can be contained within outer housing 20.
  • Outer housing 20 can have a frontally offset bottom portion 21 that borders a bottom of the display region, as well as a raised frame 22 that surrounds the rest of the display region.
  • a recessed set back region (not shown) can be formed above the bottom portion 21 and/or just inside the frame 22 of the outer housing 20.
  • a stand 40 or other similar structure can be used to support the entire computing device 10.
  • outer housing 20 can also contain various additional computer components therewithin, such as one or more processors, storage units, speakers, additional displays or indicators, buttons or other input devices, video cards, sound cards, power inlets, various ports, and the like.
  • the entire outer housing 20 can present the appearance that it is formed from a single piece of material, despite the fact that the housing may be formed from two or more parts that are welded, adhered or otherwise joined together.
  • frontally offset bottom portion 21 may include a front portion that is welded, adhered or otherwise affixed to the rest of the outer housing 20.
  • one or more cosmetic imperfections or defects may result at the joined region 23 when the combined parts 20, 21 are then anodized or otherwise finished.
  • desktop computing device 10 has been shown for purposes of illustration, it will be readily appreciated that many other forms of computing devices can similarly have outer metal components that are suitable for the finishing systems and methods provided herein. Such other devices can include, for example, media playback devices, cellular telephones, tablet computing devices and the like. Furthermore, numerous other metal parts and components that are used for items other than computing devices may also be treated and finished using the various systems and methods disclosed herein.
  • Metal part finishing system 200 can include a plurality of stations adapted to treat or process metal parts. Such stations can involve baths having solution therein, piping, nozzles and other fluid delivery components, drains, heaters, voltage applicators and the like, as will be readily appreciated.
  • An initial station can be degrease station 210, which can be followed by a tap water rinse station 212.
  • a suitable degreasing formula for station 210 can be composed of, for example, sodium hydroxide, sodium carbonate and a surface activation component, which can be at a concentration of about 0.5 g/1, for example.
  • An alkaline etch station 220 can then be set up to provide an alkaline etch for degreased metal parts.
  • the alkaline etchant can involve a sodium hydroxide based solution having a relatively high alkaline pH of about 13-18.
  • Another tap water rinse station 222 can be provided after the alkaline etch station 220.
  • a de-smut station 224 can also be provided, which can involve a nitric acid de-smut solution.
  • Another tap water rinse station 226 can then follow the de-smut station 224.
  • rinsing may be performed at the same station in some arrangements, such that stations 212, 222 and 226 can actually be the same station.
  • a chemical polish station 230 can be used to facilitate the chemical polishing of the metal parts.
  • the chemical polishing solution can be, for example, sulfuric acid at 250g/l and phosphoric acid at 750 g/1. Polishing can be peformed at a temperature of about 78-86 degrees C for about 20-70 seconds.
  • a deionized water rinse station 232 can then be provided after the chemical polish station 230, as will be readily understood.
  • An anodize station 240 can then be used to anodize the chemically polished parts.
  • Anodizing can be conducted, for example, using 220 g/1 sulfuric acid for about 23-26 minutes, and at a voltage of about 14.5 to 15.5 volts.
  • seal station 250 and bake station 260 can also be provided, with the functions, temperatures and times used for these final stations being generally well known by those skilled in the art.
  • Metal part finishing system 300 is similar in some regards with respect to system 200, but has several notable differences.
  • degrease station 310, chemical polish station 320 and anodize station 330 should be noted as being significantly different than those for system 200.
  • no alkaline etch station is provided, while a surface activation station is added instead.
  • a preferable degreasing formula for station can be composed of, for example, a mild detergent contained within a mild alkaline solution having a pH of about 8 to 9. This can result in an effect degreasing of the metal parts without exposing the parts to the harsher nature of a highly alkaline solution such as that which is used in the previous example.
  • the mild detergent can be the Upland 102 model industrial detergent provided by the HangZhou Ylang Chemical Company of China.
  • a tap water rinse station 312 can then be used after the metal parts have been degreased in degrease station 310.
  • Tap water rinse station 312 can involve the use of three separate cleaning tanks for an efficient and effective rinsing of the metal parts.
  • ultrasonic vibrations can be provided for the fluids in station 312, as well as for any of stations 310-340, as may be desired for a given manufacturing system.
  • An activation station 314 can then be provided to activate the surface of the metal parts after the degreasing and rinsing stations.
  • a 150 g/1 nitric acid solution can be applied at about 25 degrees C for about 30 seconds to result in an effective activation of the degreased metal parts.
  • Another tap water rinse station 316 can then be provided. In some instances, tap water rinse stations 312 and 316 can actually be the same station if desired.
  • a chemical polish station 320 can then be provided for the chemical polishing of the metal parts.
  • the chemical polishing solution used can contain one or more specialized additives.
  • the additives can be found in the 2022 product model metal working liquid provided by the HangZhou PShang Chemical Company of China.
  • the resulting specialized chemical polishing solution can then comprise by weight about 76-82% phosphoric acid, 18-20% sulfuric acid, 1-5% nitric acid, 1-1.5% corrosion inhibiting additive, 1-1.5% buffering agent, and a trace amount of fatty alcohol ehyoxyl compound.
  • the actual polishing using this specialized solution can be conducted at a temperature that ranges from about 105 to 115 degrees C, and for a period of about 15 to 30 seconds, which is generally hotter and shorter than the previous example. More particularly, the chemical polishing can take place for about 15 seconds.
  • a deionized water rinse station 322 can then be provided after the chemical polish station 320, as will be readily appreciated.
  • a de-smut station 324 can then be used to de-smut the metal parts.
  • Such a de-smut can involve a nitric acid solution of a concentration less than about lOOg/1, and can be conducted at about 25 degrees C for about 30 seconds, for example. Other de-smut details or variations are also possible.
  • An anodize station 330 can then be used to anodize the chemically polished parts.
  • Anodizing can be conducted, for example, using 200 g/1 sulfuric acid for about 15 to 20 minutes, and at a voltage of about 12.5 to 14.5 volts. More particularly, the anodizing can take place for about 15 minutes. In comparison with the foregoing example, this is a less concentrated solution that is being used at a lower voltage for a shorter period of time.
  • Another de-smut station 332 can then be used to de-smut the metal parts after anodization.
  • Such a de-smut can involve a nitric acid solution of a concentration less than about lOOg/1, and can be conducted at about 25 degrees C for about 30 seconds, for example.
  • a seal station 340 can then be used to provide a sealing function. Sealing can be performed, for example, using an acetate solution at about 95 degrees C and for about 10 minutes.
  • a bake station can then be used to provide a baking function. Baking can be performed, for example, at about 85-90 degrees C and for about 10 minutes as well.
  • metal part finishing system 300 As a result of the different details in metal part finishing system 300 with respect to the foregoing example, such as those regarding degrease station 310, chemical polish station 320 and anodize station 330, among others, improved results in the final cosmetic appearance of the metal parts can be realized. In particular, many black lines, white lines, pits and other cosmetic imperfections are not so readily apparent, despite the presence of underlying microscopic flaws or issues that ordinarily result in the manifestation of such cosmetic issues. It has thus been determined that use of system 300 in FIG. 3, as well as the
  • FIG. 4 provides a flowchart of a typical way of manufacturing an anodized metal part.
  • This flowchart generally represents a process that can be performed using the system 200 set forth above in FIG. 2.
  • the metal part can be degreased using a degreasing formula at process step 402.
  • a degreasing formula can be composed of, for example, sodium hydroxide, sodium carbonate and a surface activation component.
  • a tap water rinse can also be performed after the degreasing step 402.
  • an alkaline etching procedure is performed using a sodium hydroxide based solution having a relatively high alkaline pH of about 13-18. Again, a tap water rinse can be performed after this alkaline etching step 404.
  • a de-smut can be conducted on the metal part, with such a de-smut utilizing a 30-40% by weight nitric acid solution. This can be done at room temperature for about 30-60 seconds, for example. Again, a tap water rinse can be performed after this de-smut step 406. A chemical polish can then be conducted on the metal part at process step 408. Such a chemical polish can be done using a solution containing sulfuric acid at 250g/l and phosphoric acid at 750 g/1 at a temperature of about 78-86 degrees C and for about 20-70 seconds. A water rinse can also be performed after this chemical polish step 408, and this may involve the use of deionized water.
  • the metal part can then be anodized using sulfuric acid at a concentration of 220 g/1 for about 23-26 minutes, and at a voltage of about 15 (+/- 0.5) volts.
  • Subsequent process step 412 can involve sealing the anodized metal part in a nickel acetate and water solution at a temperature of about 92-96 degrees C for about 15 minutes.
  • Process step 414 can then involve baking the sealed part at about 80-100 degrees C for about 10-15 minutes. The method then ends at end step 416.
  • FIG. 5 a flowchart is provided depicting an alternative way of manufacturing an anodized metal part according to one embodiment of the present invention. It will be understood that the provided steps are shown only for purposes of illustration, and that other steps may be included in the process, as may be desired. Furthermore, the order of steps may be changed where appropriate and not all steps need be performed in various instances. For example, de-smut step 516 may be performed earlier in the process, as may be desired. In other examples, various added water rinsing steps can also be performed and repeated throughout the process.
  • a suitable metal part can be degreased at process step 502. Again, this can be an aluminum part, although other types of metal can also be used.
  • degreasing can be performed in a mild alkaline solution having a pH of about 8 to 9. More particularly, the pH can be about 8.5.
  • Other details regarding the degreasing can be the same or substantially similar to those provided above in the embodiment of FIG. 3.
  • the metal part can then be optionally cleaned or rinsed with tap water at process step 504. Such a tap water rinse can take place in a three tank process, for example.
  • the metal part can then be activated in a nitric acid solution.
  • a 150 g/1 nitric acid solution can be applied at about 25 degrees C for about 30 seconds.
  • Another optional tap water rinse can then be performed at process step 508. Again, such a tap water rinse can take place in a three tank process.
  • a chemical polishing of the metal part can then be conducted at process step 510. Again, as in the foregoing embodiment of FIG. 3, chemical polishing can be performed using a chemical polishing solution with one or more specialized additives, and can be conducted at a temperature that ranges from about 105 to 115 degrees C, and for a period of about 15 to 30 seconds. Other details regarding the chemical polishing can be the same or substantially similar to those provided above in the embodiment of FIG. 3.
  • a deionized water rinse can then take place at process step 512.
  • This deionized water rinse can similarly take place in a three tank process.
  • a de-smut can then be performed on the metal part at process step 514.
  • Such a de-smut can involve a nitric acid solution of a concentration less than about lOOg/1, and can be conducted at about 25 degrees C for about 30 seconds.
  • the metal part can be anodized.
  • anodization can be performed using sulfuric acid at 200 g/1 for about 15 to 20 minutes, and at a voltage that ranges from about 12.5 to 14.5 volts. More particularly, a voltage of about 13.5 volts can be used.
  • Another de-smut can then be performed on the metal part at process step 518, with such a de-smut being the same or similar to the de-smut of step 514.
  • a sealing function can then take place at process step 520.
  • Sealing can be performed using an acetate solution at about 95 degrees C and for about 10 minutes.
  • Baking can then take place at process step 522, with such baking being performed at about 85-90 degrees C and for about 10 minutes as well.
  • the method then ends at end step 524.
  • one or more of the solution based steps or rinses can optionally be conducted using ultrasonically vibrating tanks or baths.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

A system and process for reducing cosmetic defects such as black lines, and otherwise improving the final cosmetic appearance of anodized parts is disclosed. The process includes degreasing an aluminum or other metal part in a neutral to low alkaline solution having a mild detergent, chemically polishing the metal part with a specialized solution having one or more additives at an increased temperature for a reduced amount of time. An activating step can also be performed as part of the overall process. Tap water rinse, de-ionized water rinse, de-smut, seal and bake procedures can also be performed on the metal part.

Description

COSMETIC DEFECT REDUCTION IN ANODIZED PARTS
TECHNICAL FIELD
[0001] The present invention relates generally to manufacturing and part formation. More particularly, the present embodiments relate to improving the final cosmetic appearance of anodized metal parts.
BACKGROUND
[0002] The outward appearance of a computing system or device is important to many consumers. In particular, an aesthetically pleasing and cosmetically clean device that is free of any seams, burrs, marks or other irregularities can be perceived as being nicer and more desirable that devices that are not so cosmetically clean. Creating an outward appearance that is aesthetically pleasing and durable for computing systems and other devices that include metal parts can sometimes include the use of anodized metal parts.
[0003] It is generally well known that anodizing metal parts can improve the outer surfaces of such parts by hardening and strengthening the surfaces, increasing resistance to corrosion and wear, and providing better adhesion for paint primers and adhesives, among other advantages. In addition, the outward appearance of an anodized surface tends to be uniform and aesthetically pleasing, particularly with respect to aluminum. It is also generally well known that anodization tends to change the crystal structure or other microscopic texture of the metal material. This is generally not a problem though, as the advantages of anodizing aluminum and other metals can outweigh any expenses or drawbacks in many cases.
[0004] Unfortunately, the outward cosmetic appearance of an anodized metal part or system of parts may not be pristine or seamless where the microscopic structure of the part or parts contains defects, irregularities, or foreign materials, such as trace amounts of Ti B, Cu, F'e, Si and the like. The existence of such defects or irregularities, which can occur at weld regions, seams or cracks, for example, can become manifested upon anodization. This can result in the outward cosmetic appearance of the anodized metal part or parts having black lines, white lines, pits or other flaws that are revealed or magnified as a result of the anodization process. While some amount of minor "black line" flaws such as these may be tolerable in some cases, such outcomes have a lowered aesthetic value and can often result in an increased amount of part rejection or recycling in the manufacturing process.
[0005] While many designs and techniques used with respect to anodizing metal parts and components have generally worked well in the past, there is always a desire to provide further designs and techniques for metal part
anodization that result in a higher incidence of acceptable and cosmetically pleasing finished parts. In particular, what is desired are improved designs and techniques that enable the anodization of metal parts having inherent internal defects or flaws that still result in a final anodizing finish that is cosmetically pleasing and less likely to result in part rejection or recycling for cosmetic reasons.
SUMMARY
[0006] The present application describes various embodiments regarding systems and methods for the anodization of metal parts having inherent internal defects or flaws that still result in a final anodizing finish that is cosmetically pleasing and less likely to result in part rejection or recycling for cosmetic reasons. This can be accomplished at least in part through the use of manufacturing systems and methods that utilize specialized degreasing, chemical polishing and anodizing processes for the treatment of metal parts.
[0007] In various embodiments, a system adapted for the manufacture of anodized metal parts can include at least a degreasing station, a chemical polishing station, and an anodizing station. The degreasing station can be adapted to degrease a separate metal part using an alkaline solution with a mild detergent, wherein the alkaline solution has a pH that ranges from about 8 to 9. The chemical polishing station can be adapted to chemically polish the degreased metal part at a temperature that ranges from about 105 to 115 degrees C and for a period of about 15 to 30 seconds, by using a chemical polishing solution with one or more specialized additives. The anodizing station can be adapted to anodize the chemically polished part for about 15 to 20 minutes and at a voltage that ranges from about 12.5 to 14.5 volts. More particularly, the chemical polishing can take place for about 15 seconds, while the anodizing can take place for about 15 minutes.
[0008] In various detailed embodiments, the system can be specially adapted to be used on aluminum parts, although other types of metal parts can also be processed. Additional system stations can include an activating station adapted to neutralize or activate the metal part between the degreasing and chemically polishing steps, one or more rinsing stations adapted to rinse the metal part with tap water after the part has been processed through the degreasing station, and one or more deionized rinsing stations adapted to rinse the metal part with deionized water after the part has been processed through the chemical polishing station. Still further system stations can include a de-smutting station adapted to de-smut the anodized metal part in a nitric acid solution at a temperature of about 25 degrees C and for a period of about 30 seconds, a sealing station adapted to seal the anodized metal part using an acetate solution that is applied at a temperature that ranges from about 92 to 96 degrees C and for a period of about 15 minutes, and a baking station adapted to bake the sealed metal part at a temperature that ranges from about 85-90 degrees C and for a period of about 10 to 15 minutes. In one particular embodiment, the chemical polishing solution comprises by weight about 76-82% phosphoric acid, 18-20% sulfuric acid, 1-5% nitric acid, 1-1.5% corrosion inhibiting additive, 1-1.5% buffering agent, and a trace amount of fatty alcohol ehyoxyl compound.
[0009] In further embodiments, various methods of manufacturing metal parts having aesthetically pleasing surface finishes are provided. Method steps can include degreasing the metal part, chemically polishing the degreased metal part, and anodizing the chemically polished part. In particular, degreasing can be performed using an alkaline solution having a mild detergent and a pH of about 8 to 9. Also, chemical polishing can be performed at a temperature that ranges from about 105 to 115 degrees C and for a period of about 15 to 30 seconds using a solution having one or more specialized additives. Further, anodizing can be performed for about 15 to 20 minutes and at a voltage that ranges from about 12.5 to 14.5 volts. More particularly, the chemical polishing can take place for about 15 seconds, while the anodizing can take place for about 15 minutes. Again, the subject metal parts can be aluminum, for example, and can be designed to be used for a computing device. Other metals and types of devices are also possible.
[0010] Additional process steps can include activating the degreased metal part between the degreasing and chemically polishing steps, rinsing the degreased metal part with tap water after the degreasing step, rinsing the chemically polished metal part with deionized water after the chemically polishing step, de-smutting the anodized metal part in a nitric acid solution at a temperature of about 25 degrees C and for a period of about 30 seconds, sealing the anodized metal part using an acetate solution that is applied at a temperature that ranges from about 92 to 96 degrees C and for a period of about 15 minutes, and baking the sealed metal part at a temperature that ranges from about 85-90 degrees C and for a period of about 10 to 15 minutes.
[0011] In still further embodiments, a computing device can include a processor, one or more input components coupled to the processor, one or more output components coupled to the processor, and an outer housing including at least one anodized metal component. In particular, the anodized metal component or components can have been degreased in an alkaline solution having mild detergent and a pH that ranges from about 8 to 9, chemically polished at a temperature that ranges from about 105 to 115 degrees C and for a period of about 15 to 30 seconds using a solution having one or more specialized additives, and anodized for about 15 to 20 minutes and at a voltage that ranges from about 12.5 to 14.5 volts. More particularly, the chemical polishing can take place for about 15 seconds, while the anodizing can take place for about 15 minutes. The anodized metal component or components can include anodized aluminum. Also, the outer housing can include one or more microstructure defects that are not made readily apparent as a result of the anodization process.
[0012] Other apparatuses, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] The included drawings are for illustrative purposes and serve only to provide examples of possible structures and arrangements for the disclosed inventive systems and methods for the anodization of metal parts. These drawings in no way limit any changes in form and detail that may be made to the invention by one skilled in the art without departing from the spirit and scope of the invention.
[0014] FIG. 1 A illustrates in front elevation view an exemplary computing device having one or more outer metal parts that can be treated according to the various embodiments of the present invention.
[0015] FIG. IB illustrates in side elevation view the exemplary computing device of FIG. 1A.
[0016] FIG. 2 illustrates in block diagram format an exemplary metal part finishing system.
[0017] FIG. 3 illustrates in block diagram format an alternative metal part finishing system according to one embodiment of the present invention.
[0018] FIG. 4 provides a flowchart of one way of manufacturing an anodized metal part.
[0019] FIG. 5 provides a flowchart of an alternative way of manufacturing an anodized metal part according to one embodiment of the present invention.
DETAILED DESCRIPTION
[0020] Exemplary applications of apparatuses and methods according to the present invention are described in this section. These examples are being provided solely to add context and aid in the understanding of the invention. It will thus be apparent to one skilled in the art that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order to avoid unnecessarily obscuring the present invention. Other applications are possible, such that the following examples should not be taken as limiting.
[0021] In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific embodiments of the present invention. Although these embodiments are described in sufficient detail to enable one skilled in the art to practice the invention, it is understood that these examples are not limiting; such that other embodiments may be used, and changes may be made without departing from the spirit and scope of the invention.
[0022] The present disclosure generally relates to the manufacture of various metallic housings and other computer components, as well as a manufacturing system and process adapted to treat and anodize such metal components.
Although the following specific embodiments have been described with respect to a computer or computing device, it will be readily appreciated that other metal parts and components may be similarly treated without departing from the inventive features described herein and claimed below. For example, such parts can be used for the exteriors of refrigerators, valves, toys, or any other item having anodized parts that may be suitable. Further alternatives will be readily appreciated by those skilled in the art.
[0023] Referring first to FIGS. 1 A and IB an exemplary computing device having one or more outer metal parts that can be treated according to the various embodiments of the present invention is illustrated in front elevation and side elevation views respectively. Computing device 10 can be, for example, an iMac® personal computer commercially available from Apple, Inc. It will be readily understood, however, that a wide variety of computing devices or other items having metal components are similarly applicable for the systems and processes of the present invention. Computing device 10 can include an outer housing 20 comprising one or more anodized metal parts. For example, outer housing 20 can be formed from anodized aluminum. A display device 30 can be contained within outer housing 20. Outer housing 20 can have a frontally offset bottom portion 21 that borders a bottom of the display region, as well as a raised frame 22 that surrounds the rest of the display region. A recessed set back region (not shown) can be formed above the bottom portion 21 and/or just inside the frame 22 of the outer housing 20. In addition, a stand 40 or other similar structure can be used to support the entire computing device 10.
[0024] As seen in FIGS. 1A and IB, the overall structure and arrangement of the frame 22 and bottom portion 21 of outer housing 20 generally results in a relatively simple way of securing and supporting a display cover in a suitable location for viewing the display device 30 therethrough. As will be readily appreciated, outer housing 20 can also contain various additional computer components therewithin, such as one or more processors, storage units, speakers, additional displays or indicators, buttons or other input devices, video cards, sound cards, power inlets, various ports, and the like. In some embodiments, the entire outer housing 20 can present the appearance that it is formed from a single piece of material, despite the fact that the housing may be formed from two or more parts that are welded, adhered or otherwise joined together. For example, frontally offset bottom portion 21 may include a front portion that is welded, adhered or otherwise affixed to the rest of the outer housing 20. In such instances, one or more cosmetic imperfections or defects may result at the joined region 23 when the combined parts 20, 21 are then anodized or otherwise finished.
[0025] Although a desktop computing device 10 has been shown for purposes of illustration, it will be readily appreciated that many other forms of computing devices can similarly have outer metal components that are suitable for the finishing systems and methods provided herein. Such other devices can include, for example, media playback devices, cellular telephones, tablet computing devices and the like. Furthermore, numerous other metal parts and components that are used for items other than computing devices may also be treated and finished using the various systems and methods disclosed herein.
[0026] Moving next to FIG. 2, an exemplary metal part finishing system is illustrated in block diagram format. Metal part finishing system 200 can include a plurality of stations adapted to treat or process metal parts. Such stations can involve baths having solution therein, piping, nozzles and other fluid delivery components, drains, heaters, voltage applicators and the like, as will be readily appreciated. An initial station can be degrease station 210, which can be followed by a tap water rinse station 212. A suitable degreasing formula for station 210 can be composed of, for example, sodium hydroxide, sodium carbonate and a surface activation component, which can be at a concentration of about 0.5 g/1, for example.
[0027] An alkaline etch station 220 can then be set up to provide an alkaline etch for degreased metal parts. The alkaline etchant can involve a sodium hydroxide based solution having a relatively high alkaline pH of about 13-18. Another tap water rinse station 222 can be provided after the alkaline etch station 220. A de-smut station 224 can also be provided, which can involve a nitric acid de-smut solution. Another tap water rinse station 226 can then follow the de-smut station 224. As will be readily appreciated, rinsing may be performed at the same station in some arrangements, such that stations 212, 222 and 226 can actually be the same station. [0028] A chemical polish station 230 can be used to facilitate the chemical polishing of the metal parts. The chemical polishing solution can be, for example, sulfuric acid at 250g/l and phosphoric acid at 750 g/1. Polishing can be peformed at a temperature of about 78-86 degrees C for about 20-70 seconds. A deionized water rinse station 232 can then be provided after the chemical polish station 230, as will be readily understood.
[0029] An anodize station 240 can then be used to anodize the chemically polished parts. Anodizing can be conducted, for example, using 220 g/1 sulfuric acid for about 23-26 minutes, and at a voltage of about 14.5 to 15.5 volts.
Subsequent to the metal part anodizing, seal station 250 and bake station 260 can also be provided, with the functions, temperatures and times used for these final stations being generally well known by those skilled in the art.
[0030] Continuing now with FIG. 3, an alternative metal part finishing system according to one embodiment of the present invention is similarly shown in block diagram format. Metal part finishing system 300 is similar in some regards with respect to system 200, but has several notable differences. In particular, the details regarding degrease station 310, chemical polish station 320 and anodize station 330 should be noted as being significantly different than those for system 200. Further, no alkaline etch station is provided, while a surface activation station is added instead.
[0031] Starting with degrease station 310, a preferable degreasing formula for station can be composed of, for example, a mild detergent contained within a mild alkaline solution having a pH of about 8 to 9. This can result in an effect degreasing of the metal parts without exposing the parts to the harsher nature of a highly alkaline solution such as that which is used in the previous example. In one particular example, the mild detergent can be the Upland 102 model industrial detergent provided by the HangZhou Ylang Chemical Company of China. A tap water rinse station 312 can then be used after the metal parts have been degreased in degrease station 310. Tap water rinse station 312 can involve the use of three separate cleaning tanks for an efficient and effective rinsing of the metal parts. In addition, ultrasonic vibrations can be provided for the fluids in station 312, as well as for any of stations 310-340, as may be desired for a given manufacturing system. [0032] An activation station 314 can then be provided to activate the surface of the metal parts after the degreasing and rinsing stations. As a particular example, a 150 g/1 nitric acid solution can be applied at about 25 degrees C for about 30 seconds to result in an effective activation of the degreased metal parts. Another tap water rinse station 316 can then be provided. In some instances, tap water rinse stations 312 and 316 can actually be the same station if desired.
[0033] A chemical polish station 320 can then be provided for the chemical polishing of the metal parts. The chemical polishing solution used can contain one or more specialized additives. In one particular example, the additives can be found in the 2022 product model metal working liquid provided by the HangZhou PShang Chemical Company of China. By using these particular additives, the resulting specialized chemical polishing solution can then comprise by weight about 76-82% phosphoric acid, 18-20% sulfuric acid, 1-5% nitric acid, 1-1.5% corrosion inhibiting additive, 1-1.5% buffering agent, and a trace amount of fatty alcohol ehyoxyl compound. The actual polishing using this specialized solution can be conducted at a temperature that ranges from about 105 to 115 degrees C, and for a period of about 15 to 30 seconds, which is generally hotter and shorter than the previous example. More particularly, the chemical polishing can take place for about 15 seconds. A deionized water rinse station 322 can then be provided after the chemical polish station 320, as will be readily appreciated. A de-smut station 324 can then be used to de-smut the metal parts. Such a de-smut can involve a nitric acid solution of a concentration less than about lOOg/1, and can be conducted at about 25 degrees C for about 30 seconds, for example. Other de-smut details or variations are also possible.
[0034] An anodize station 330 can then be used to anodize the chemically polished parts. Anodizing can be conducted, for example, using 200 g/1 sulfuric acid for about 15 to 20 minutes, and at a voltage of about 12.5 to 14.5 volts. More particularly, the anodizing can take place for about 15 minutes. In comparison with the foregoing example, this is a less concentrated solution that is being used at a lower voltage for a shorter period of time. Another de-smut station 332 can then be used to de-smut the metal parts after anodization. Again, such a de-smut can involve a nitric acid solution of a concentration less than about lOOg/1, and can be conducted at about 25 degrees C for about 30 seconds, for example. [0035] A seal station 340 can then be used to provide a sealing function. Sealing can be performed, for example, using an acetate solution at about 95 degrees C and for about 10 minutes. A bake station can then be used to provide a baking function. Baking can be performed, for example, at about 85-90 degrees C and for about 10 minutes as well.
[0036] As a result of the different details in metal part finishing system 300 with respect to the foregoing example, such as those regarding degrease station 310, chemical polish station 320 and anodize station 330, among others, improved results in the final cosmetic appearance of the metal parts can be realized. In particular, many black lines, white lines, pits and other cosmetic imperfections are not so readily apparent, despite the presence of underlying microscopic flaws or issues that ordinarily result in the manifestation of such cosmetic issues. It has thus been determined that use of system 300 in FIG. 3, as well as the
corresponding process in FIG. 5 below, results in the significantly improved cosmetic appearance of anodized parts. That is to say, where the use of system 200 and the corresponding process in FIG. 4 below may result in more noticeable cosmetic flaws in a finished anodized metal part, the use of system 300 and the corresponding process in FIG. 5 does not. Accordingly, where a metal part includes one or more microstructure defects, such defects are not made readily apparent in a final cosmetic sense as a result of the anodization process used in system 300 and FIG. 5.
[0037] FIG. 4 provides a flowchart of a typical way of manufacturing an anodized metal part. This flowchart generally represents a process that can be performed using the system 200 set forth above in FIG. 2. After an initial step 400, the metal part can be degreased using a degreasing formula at process step 402. Such a degreasing formula can be composed of, for example, sodium hydroxide, sodium carbonate and a surface activation component. A tap water rinse can also be performed after the degreasing step 402. At the following process step 404, an alkaline etching procedure is performed using a sodium hydroxide based solution having a relatively high alkaline pH of about 13-18. Again, a tap water rinse can be performed after this alkaline etching step 404.
[0038] At subsequent process step 406, a de-smut can be conducted on the metal part, with such a de-smut utilizing a 30-40% by weight nitric acid solution. This can be done at room temperature for about 30-60 seconds, for example. Again, a tap water rinse can be performed after this de-smut step 406. A chemical polish can then be conducted on the metal part at process step 408. Such a chemical polish can be done using a solution containing sulfuric acid at 250g/l and phosphoric acid at 750 g/1 at a temperature of about 78-86 degrees C and for about 20-70 seconds. A water rinse can also be performed after this chemical polish step 408, and this may involve the use of deionized water.
[0039] At the following process step 410, the metal part can then be anodized using sulfuric acid at a concentration of 220 g/1 for about 23-26 minutes, and at a voltage of about 15 (+/- 0.5) volts. Subsequent process step 412 can involve sealing the anodized metal part in a nickel acetate and water solution at a temperature of about 92-96 degrees C for about 15 minutes. Process step 414 can then involve baking the sealed part at about 80-100 degrees C for about 10-15 minutes. The method then ends at end step 416.
[0040] Finishing now with FIG. 5, a flowchart is provided depicting an alternative way of manufacturing an anodized metal part according to one embodiment of the present invention. It will be understood that the provided steps are shown only for purposes of illustration, and that other steps may be included in the process, as may be desired. Furthermore, the order of steps may be changed where appropriate and not all steps need be performed in various instances. For example, de-smut step 516 may be performed earlier in the process, as may be desired. In other examples, various added water rinsing steps can also be performed and repeated throughout the process.
[0041] After a start step 500, a suitable metal part can be degreased at process step 502. Again, this can be an aluminum part, although other types of metal can also be used. As in the foregoing embodiment of FIG. 3, degreasing can be performed in a mild alkaline solution having a pH of about 8 to 9. More particularly, the pH can be about 8.5. Other details regarding the degreasing can be the same or substantially similar to those provided above in the embodiment of FIG. 3. Following degreasing, the metal part can then be optionally cleaned or rinsed with tap water at process step 504. Such a tap water rinse can take place in a three tank process, for example. [0042] At subsequent process step 506, the metal part can then be activated in a nitric acid solution. In one example, a 150 g/1 nitric acid solution can be applied at about 25 degrees C for about 30 seconds. Another optional tap water rinse can then be performed at process step 508. Again, such a tap water rinse can take place in a three tank process. A chemical polishing of the metal part can then be conducted at process step 510. Again, as in the foregoing embodiment of FIG. 3, chemical polishing can be performed using a chemical polishing solution with one or more specialized additives, and can be conducted at a temperature that ranges from about 105 to 115 degrees C, and for a period of about 15 to 30 seconds. Other details regarding the chemical polishing can be the same or substantially similar to those provided above in the embodiment of FIG. 3.
[0043] A deionized water rinse can then take place at process step 512. This deionized water rinse can similarly take place in a three tank process. A de-smut can then be performed on the metal part at process step 514. Such a de-smut can involve a nitric acid solution of a concentration less than about lOOg/1, and can be conducted at about 25 degrees C for about 30 seconds. At subsequent process step 516, the metal part can be anodized. In particular, anodization can be performed using sulfuric acid at 200 g/1 for about 15 to 20 minutes, and at a voltage that ranges from about 12.5 to 14.5 volts. More particularly, a voltage of about 13.5 volts can be used. Another de-smut can then be performed on the metal part at process step 518, with such a de-smut being the same or similar to the de-smut of step 514.
[0044] A sealing function can then take place at process step 520. Sealing can be performed using an acetate solution at about 95 degrees C and for about 10 minutes. Baking can then take place at process step 522, with such baking being performed at about 85-90 degrees C and for about 10 minutes as well. The method then ends at end step 524. In addition to the foregoing details, it will be readily appreciated that one or more of the solution based steps or rinses can optionally be conducted using ultrasonically vibrating tanks or baths.
[0045] Although the foregoing invention has been described in detail by way of illustration and example for purposes of clarity and understanding, it will be recognized that the above described invention may be embodied in numerous other specific variations and embodiments without departing from the spirit or essential characteristics of the invention. Certain changes and modifications may be practiced, and it is understood that the invention is not to be limited by the foregoing details, but rather is to be defined by the scope of the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A system adapted for the manufacture of anodized metal parts, the system comprising:
a degreasing station adapted to degrease a separate metal part, said degreasing station having an alkaline solution with a mild detergent, wherein the alkaline solution has a pH that ranges from about 8 to 9;
a chemical polishing station adapted to chemically polish the degreased metal part at a temperature that ranges from about 105 to 115 degrees C and for a period of about 15 to 30 seconds, said chemical polishing station having a chemical polishing solution with one or more specialized additives; and
an anodizing station adapted to anodize the chemically polished part for about 15 to 20 minutes and at a voltage that ranges from about 12.5 to 14.5 volts.
2. The system of claim 1 , wherein said system is adapted to be used on aluminum parts.
3. The system of claim 1, further including:
an activation station adapted to activate the metal part between the degreasing and chemically polishing steps.
4. The system of claim 1, further including:
one or more rinsing stations adapted to rinse the metal part with tap water after the part has been processed through the degreasing station.
5. The system of claim 1, further including:
one or more deionized rinsing stations adapted to rinse the metal part with deionized water after the part has been processed through the chemical polishing station.
6. The system of claim 1, further including:
a de-smutting station adapted to de-smut the anodized metal part in a nitric acid solution at a temperature of about 25 degrees C and for a period of about 30 seconds.
7. The system of claim 1, further including:
a sealing station adapted to seal the anodized metal part using an acetate solution that is applied at a temperature that ranges from about 92 to 96 degrees C and for a period of about 15 minutes.
8. The system of claim 1, further including:
a baking station adapted to bake the sealed metal part at a temperature that ranges from about 85-90 degrees C and for a period of about 10 to 15 minutes.
9. The system of claim 1, wherein the chemical polishing solution comprises by weight about 76-82% phosphoric acid, 18-20%) sulfuric acid, l-5%> nitric acid,
1-1.5% corrosion inhibiting additive, 1-1.5% buffering agent, and a trace amount of fatty alcohol ehyoxyl compound.
10. A method of manufacturing a metal part having an aesthetically pleasing surface finish, comprising:
degreasing the metal part in an alkaline solution having a mild detergent, wherein the alkaline solution has a pH that ranges from about 8 to 9;
chemically polishing the degreased metal part at a temperature that ranges from about 105 to 115 degrees C and for a period of about 15 to 30 seconds, wherein said chemical polishing is accomplished using a solution having one or more specialized additives; and
anodizing the chemically polished part for about 15 to 20 minutes and at a voltage that ranges from about 12.5 to 14.5 volts.
11. The method of claim 10, wherein the metal part is aluminum.
12. The method of claim 10, wherein the metal part is designed to be used for a computing device.
13. The method of claim 10, further including the step of:
activating the degreased metal part between the degreasing and chemically polishing steps.
14. The method of claim 10, further including the step of:
rinsing the degreased metal part with tap water after the degreasing step.
15. The method of claim 10, further including the step of:
rinsing the degreased metal part with deionized water after the chemically polishing step.
16. The method of claim 10, further including the step of:
de-smutting the anodized metal part in a nitric acid solution at a temperature of about 25 degrees C and for a period of about 30 seconds.
17. The method of claim 10, further including the steps of:
sealing the anodized metal part using an acetate solution that is applied at a temperature that ranges from about 92 to 96 degrees C and for a period of about 15 minutes; and
baking the sealed metal part at a temperature that ranges from about 85-90 degrees C and for a period of about 10 to 15 minutes.
18. A computing device, comprising:
a processor;
one or more input components coupled to the processor;
one or more output components coupled to the processor; and
an outer housing including at least one anodized metal component, wherein said at least one anodized metal component has been degreased in an alkaline solution having mild detergent and a pH that ranges from about 8 to 9, chemically polished at a temperature that ranges from about 105 to 115 degrees C and for a period of about 15 to 30 seconds using a solution having one or more specialized additives, and anodized for about 15 to 20 minutes and at a voltage that ranges from about 12.5 to 14.5 volts.
19. The computing device of claim 18, wherein said at least one anodized metal component comprises anodized aluminum.
20. The computing device of claim 18, wherein said outer housing includes one or more microstructure defects that are not made readily apparent as a result of the anodization process.
PCT/CN2011/076264 2011-06-24 2011-06-24 Cosmetic defect reduction in anodized parts WO2012174733A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137031367A KR101475173B1 (en) 2011-06-24 2011-06-24 Cosmetic defect reduction in anodized parts
US13/995,146 US20130270120A1 (en) 2011-06-24 2011-06-24 Cosmetic defect reduction in anodized parts
JP2014516157A JP5723068B2 (en) 2011-06-24 2011-06-24 Method and computing device for anodizing aluminum parts
PCT/CN2011/076264 WO2012174733A1 (en) 2011-06-24 2011-06-24 Cosmetic defect reduction in anodized parts
CN201180071770.XA CN103608493B (en) 2011-06-24 2011-06-24 Reduce the appearance defect of anodization parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076264 WO2012174733A1 (en) 2011-06-24 2011-06-24 Cosmetic defect reduction in anodized parts

Publications (1)

Publication Number Publication Date
WO2012174733A1 true WO2012174733A1 (en) 2012-12-27

Family

ID=47421996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076264 WO2012174733A1 (en) 2011-06-24 2011-06-24 Cosmetic defect reduction in anodized parts

Country Status (5)

Country Link
US (1) US20130270120A1 (en)
JP (1) JP5723068B2 (en)
KR (1) KR101475173B1 (en)
CN (1) CN103608493B (en)
WO (1) WO2012174733A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10087542B2 (en) 2012-09-24 2018-10-02 Arconic Inc. Anodized aluminum alloy products having improved appearance and/or abrasion resistance, and methods of making the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762538B (en) * 2015-04-09 2017-01-25 广东欧珀移动通信有限公司 Aluminum alloy and anodic oxidation method thereof
CN106498469A (en) * 2016-09-30 2017-03-15 北京小米移动软件有限公司 The manufacture method of metal-back, metal-back and terminal
KR102083948B1 (en) * 2017-06-29 2020-03-04 주식회사 테크트랜스 TECH ARC COATING METHOD FOR Al ALLOYS GOODS
CN107460519A (en) * 2017-07-04 2017-12-12 泰州亚泰金属有限公司 A kind of process of surface treatment of aluminum products
CN109837577A (en) * 2017-11-24 2019-06-04 鸿富锦精密电子(成都)有限公司 The surface treatment method and pre-dyeing treatment agent of metal works
CN109722696A (en) * 2019-03-05 2019-05-07 东莞金稞电子科技有限公司 A kind of three color gradual change dyeing of aluminum alloy anode
US20230265279A1 (en) 2020-09-11 2023-08-24 3M Innovative Properties Company Color Stable Epoxy Compositions
CN113507792B (en) * 2021-06-08 2022-09-09 广东利尔化学有限公司 Method for adding activating liquid applied to circuit board hole metallization
WO2023161771A1 (en) 2022-02-22 2023-08-31 3M Innovative Properties Company Color stable epoxy compositions
CN114481147A (en) * 2022-04-06 2022-05-13 南昌航空大学 Environment-friendly aviation aluminum alloy anodic oxidation pretreatment deoxidizing solution and deoxidizing method
CN115205290B (en) * 2022-09-15 2022-11-18 深圳市合成快捷电子科技有限公司 Online detection method and system for PCB production process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090091879A1 (en) * 2007-10-03 2009-04-09 Apple Inc. Methods and apparatus for providing holes through portions of a housing
CN101515212A (en) * 2007-10-03 2009-08-26 苹果公司 Shaping a cover glass
CN101839576A (en) * 2010-01-05 2010-09-22 云南省玉溪市佳利太阳能设备有限公司 Process for producing solar heat collection strip anode coating film
CN101845652A (en) * 2010-03-17 2010-09-29 中国船舶重工集团公司第十二研究所 Method for preparing micro-arc oxide film layer

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101737A (en) * 1975-03-05 1976-09-08 Yoshida Kogyo Kk Aruminiumumataha aruminiumugokinno denkaichakushokuho
GB1565349A (en) * 1975-10-20 1980-04-16 Albright & Wilson Aluminium polishing compositions
US4104134A (en) * 1977-08-31 1978-08-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for making an aluminum or copper substrate panel for selective absorption of solar energy
DE3708938A1 (en) * 1987-03-19 1988-09-29 Henkel Kgaa LIQUID, PHOSPHATE-FREE SINGLE-PHASE DEGREASING AGENT FOR ALUMINUM SURFACES
US4956022A (en) * 1988-01-15 1990-09-11 International Business Machines Corporation Chemical polishing of aluminum alloys
FR2692599B1 (en) * 1992-06-17 1994-09-16 Prod Ind Cfpi Franc Process for treating aluminum-based substrates with a view to their anodization, bath used in this process and concentrated to prepare the bath.
JP3046594B1 (en) * 1999-04-02 2000-05-29 日本テクノ株式会社 Anodizing system for metals utilizing vibrating flow agitation
US20020179189A1 (en) * 2001-02-26 2002-12-05 Nelson Homma Process and composition for sealing porous coatings containing metal and oxygen atoms
JP2004216480A (en) * 2003-01-10 2004-08-05 Fujikura Ltd Actuator arm and surface treatment method
JP4808374B2 (en) * 2003-11-13 2011-11-02 富士通株式会社 Surface treatment method for metal molded products
JP2005187856A (en) * 2003-12-25 2005-07-14 Denka Himaku Kogyo Kk Aluminum, aluminum alloy material, and method for manufacturing the same
CN101080514B (en) * 2004-12-17 2011-04-20 赫克赛尔公司 Anodized aluminum foil sheets and expanded aluminum foil (EAF) sheets and methods of making and using the same
CN100588958C (en) * 2006-06-15 2010-02-10 四川大学 Method for manufacturing self-short-circuit type coaxial shock wave electric probe
JP5405800B2 (en) * 2008-11-04 2014-02-05 三菱化学株式会社 Corrosion-resistant treatment method for aluminum or aluminum alloy
US10392718B2 (en) * 2009-09-04 2019-08-27 Apple Inc. Anodization and polish surface treatment
US8338737B2 (en) * 2009-09-30 2012-12-25 Apple Inc. Computer housing
JP5334125B2 (en) * 2009-12-11 2013-11-06 三菱アルミニウム株式会社 Method for producing surface-treated aluminum material for vacuum equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090091879A1 (en) * 2007-10-03 2009-04-09 Apple Inc. Methods and apparatus for providing holes through portions of a housing
CN101515212A (en) * 2007-10-03 2009-08-26 苹果公司 Shaping a cover glass
CN101839576A (en) * 2010-01-05 2010-09-22 云南省玉溪市佳利太阳能设备有限公司 Process for producing solar heat collection strip anode coating film
CN101845652A (en) * 2010-03-17 2010-09-29 中国船舶重工集团公司第十二研究所 Method for preparing micro-arc oxide film layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10087542B2 (en) 2012-09-24 2018-10-02 Arconic Inc. Anodized aluminum alloy products having improved appearance and/or abrasion resistance, and methods of making the same

Also Published As

Publication number Publication date
CN103608493B (en) 2016-06-08
CN103608493A (en) 2014-02-26
JP2014517156A (en) 2014-07-17
KR20130133920A (en) 2013-12-09
KR101475173B1 (en) 2014-12-19
JP5723068B2 (en) 2015-05-27
US20130270120A1 (en) 2013-10-17

Similar Documents

Publication Publication Date Title
US20130270120A1 (en) Cosmetic defect reduction in anodized parts
TWI496948B (en) Method for conversion treating surface of magnesium alloy workpiece
CN105386030A (en) Stainless steel surface processing method
DE602009000370D1 (en) Surface working method of a mechanical steel workpiece with high resistance and sealing system, which results from the application of this method
CN105755486A (en) Stainless steel room temperature pickling process
CN104149034B (en) The method removing titanium alloy seamless pipe surfaces externally and internally oxide layer
CN103757647A (en) Steel material acid-washing and phosphorization method
CN106967968B (en) High-efficiency environment friendly steel derusting conjunctiva agent and preparation method thereof
CN104213137A (en) Pickling apparatus
CN106238299A (en) A kind of surface treatment technique for stainless steel
CN104213132A (en) Chemical cleaning method of rust-proof aluminum alloy
CN108930032A (en) A kind of process of surface treatment improving corrosion resistance of aluminum alloy
CN104646339A (en) Cleaning method of aluminium alloy parts
CN102330853A (en) Pipe fitting with zinc plated at outer part and plastic coated at inner part as well as production process of same
CN112725865A (en) Surface treatment process of high-strength corrosion-resistant aluminum alloy for wheelchair processing
CN101457362A (en) Aluminum section bar three acid polishing and leveling fog inhibitor for furniture and finishing method thereof
CN106835168A (en) The preparation method of aluminum alloy cleaning agent
CN105420727A (en) Anticorrosion treatment process of zinc alloy die casting
CN105695960A (en) Iron piece chemical nickel plating process
Höche et al. Surface cleaning and pre-conditioning surface treatments to improve the corrosion resistance of magnesium (Mg) alloys
KR20150130197A (en) Vehicle engine cooling pipe and a manufacturing method
CN203320132U (en) Pickler
KR102410394B1 (en) Manufacturing Method of VCR fitting Unit Using Aluminum Tube
JP6396620B1 (en) Surface treatment method for stainless steel cooling pipe for beer server and beer server assembly method
CN106757090A (en) The cleaning method of aluminium alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13995146

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014516157

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137031367

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868230

Country of ref document: EP

Kind code of ref document: A1