WO2012174624A1 - Thrust-stabilised magnetic levitation ultracentrifuge - Google Patents

Thrust-stabilised magnetic levitation ultracentrifuge Download PDF

Info

Publication number
WO2012174624A1
WO2012174624A1 PCT/BR2012/000202 BR2012000202W WO2012174624A1 WO 2012174624 A1 WO2012174624 A1 WO 2012174624A1 BR 2012000202 W BR2012000202 W BR 2012000202W WO 2012174624 A1 WO2012174624 A1 WO 2012174624A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnetic levitation
parallel
magnet
magnetic
Prior art date
Application number
PCT/BR2012/000202
Other languages
French (fr)
Portuguese (pt)
Other versions
WO2012174624A8 (en
Inventor
Paiva GERSON SILVA
Nelson César CAHVES PINTO FURTADO
Carlton Anthony Taft
Antonio Carlos PAVÃO
Original Assignee
Uiniversidade Federar De Pernambuco
Cbpf - Centro Brasileiro De Pesquisas Físicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uiniversidade Federar De Pernambuco, Cbpf - Centro Brasileiro De Pesquisas Físicas filed Critical Uiniversidade Federar De Pernambuco
Publication of WO2012174624A1 publication Critical patent/WO2012174624A1/en
Publication of WO2012174624A8 publication Critical patent/WO2012174624A8/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • F16C39/063Permanent magnets
    • F16C39/066Permanent magnets with opposing permanent magnets repelling each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0468Details of the magnetic circuit of moving parts of the magnetic circuit, e.g. of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2320/00Apparatus used in separating or mixing
    • F16C2320/42Centrifuges

Definitions

  • the present invention has application in the areas of centrifuges and ultracentrifuges for industrial or domestic use.
  • the present invention relates to an ultracentrifuge consisting of a homopolar motor used to centrifuge and separate constituents from liquid, colloidal or radioisotope solutions.
  • centrifuges and ultracentrifuges revolve around a mechanical axis that generates a relative centrifugal force capable of settling solids from liquids or immobile liquids of different densities, separating them.
  • rotor stabilization exclusively uses controlled lead wire coils - which use energy-consuming electronic circuits in rotor stabilization, neutralizing variations in rotor inclination during rotation.
  • Oscillations in the rotor spinning axis are due to the intrinsic non-homogeneity of the materials, causing rotor unbalance.
  • Rotor oscillation during rotation can also occur when the engine is moved from one place to another or when surface leveling changes or when the surface is shaken or vibrated. If there is one of these factors above the high speed rotor and in levitation may accidentally touch the stator resulting in motor destruction.
  • the above problem can be avoided by combining permanent magnets and materials that naturally repel magnets and at the same time is liquid and moldable, such as mercury and gallium, which also act as an electricity conductor, ensuring stability to the levitating rotor by the addition of thrust between the base of the liquid metal rotor (mercury or gallium).
  • Thrust is a force that supports the plane and stabilizes the ships over the sea.
  • the rotor will levitate by magnetic repulsion forces (poles of the same type) and have its stability guaranteed by the buoyant force at its base. The latter will instantly counterbalance any imbalance suffered by the rotor during its rotation by the principle of action and reaction, damping it NE the need for energy expenditure as with electronic stabilization.
  • the present invention uses the same principle as centrifuges, except that it does not revolve around a mechanical axis, but rather a thrust-stabilized magnetic axis resulting in greater savings in both maintenance and energy and reducing possible accidents caused by jitter rotor rotor instability.
  • the aim of this invention is to create a low maintenance ultra-centrifuge (high availability and maintainability) that requires less energy and completes its work faster and more efficiently.
  • This invention introduces the liquid metal temperature 'environment (eg, mercury or gallium) as possible instabilities j solution of the present levitating rotor for turning through the first thrust effect at the interface between the base region. of the rotor and the liquid metal.
  • Levitation and stability based on repulsion occurs between NdFeB or AINiCo magnets and highly diamagnetic liquid materials such as mercury or gallium.
  • Figure 2 shows, respectively, the lower (sectional) top view (with a tear in the upper cylinder of hi-bismuth pyrolytic graphite for a better view of the rotor).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Centrifugal Separators (AREA)

Abstract

A thrust-stabilised magnetic levitation ultracentrifuge comprises a magnetic levitation homopolar motor formed by a lower cylindrical magnet (1) that carries two parallel bismuth or graphite cylinders (2) with a rotor (3) located in a vacuum therebetween and comprising a lower electrically insulating disk (4) and two parallel cylindrical magnets (5 and 6) made of NbFeB (neodymium, iron and boron) or AlNiCo (aluminium, nickel and cobalt) interconnected by a hollow steel cylinder (7), the inside of which is in communication with the outside through a central vertical channel (8) located inside the upper magnet, and through which the sample to be centrifuged is injected and withdrawn, rotation being caused by the influence of the magnetic field on the electric current (9) that flows through the mercury or gallium (10) that fills the inside of the upper metal recipient (11) up to the positive pole (12) attached to the metal frame (13). The present invention is applicable in the fields of centrifuges and ultracentrifuges for industrial or domestic use.

Description

ULTRACENTRÍFUGA DE LEVITAÇÃO MAGNÉTICA  MAGNETIC LEADING ULTRACENTRIFUG
ESTABILIZADA POR EMPUXO  PUSH STABILIZED
Campo de Invenção Field of Invention
A presente invenção tem aplicação nas áreas de centrífugas e ultracentrífugas para uso industrial ou doméstico. The present invention has application in the areas of centrifuges and ultracentrifuges for industrial or domestic use.
A presente invenção refere-se a uma ultracentrífuga constituída por um motor homopolar usado para centrifugar e separar os constituintes de soluções líquidas, coloidais ou radioisótopos.  The present invention relates to an ultracentrifuge consisting of a homopolar motor used to centrifuge and separate constituents from liquid, colloidal or radioisotope solutions.
Antecedentes Background
As centrífugas e ultracentrífugas usadas industrialmente giram em torno de um eixo mecânico que gera uma força centrífuga relativa com capacidade de sedimentar sólidos de líquidos ou líquidos imis íveis de diferentes densidades, separando-os. Industrially used centrifuges and ultracentrifuges revolve around a mechanical axis that generates a relative centrifugal force capable of settling solids from liquids or immobile liquids of different densities, separating them.
Após certo tempo de uso, estas exigem manutenção dos seus mancais devido ao desgaste causado pelo atrito entre o rotor e as peças fixas do motor. Além disso, têm velocidades limitadas, também pelo motivo anterior. Alguns modelos de motores ou ultracentrífugas de levitação magnética comerciais têm seus funcionamento baseado na repulsão de ímãs de pólos iguais para suspender o rotor das partes fixas (estator) na região dos seus mancais (Patente n° BR 0804447-3) ou pela combinação de mancais de ímãs permanentes com bobinas que geram! campos magnéticos produzidos por correntes elétricas com a finalidade de controlar e estabilizar a levitação do rotor (Patente n° US 3512852j; Patente n° US 4585282; Patente n° US 3888553). O grande problema dos motores de levitação magnética anteriores é que a estabilização do rotor utiliza exclusivamente bobinas de fios condutores controlados - por circuitos eletrônicos que consomem energia na estabilização do rotor, neutjralizando variações da inclinação do rotor durante o seu giro. Oscilações no eixo de giro do rotor (presseção do rotor como ocorre com o pião de brinquedo ao reduzir a sua velocidade de giro), devem-se a não homogeneidade intrínsecas dos materiais, causando desbalanceamento do rotor. Oscilação no rotor durante a sua rotação pode também ocorrer quando o motor é deslocado de um lugar para o outro ou quando há mudanças de nivelamento da superfície ou quando a superfície é abalada ou sofre vibração. Caso haja um destes fatores acima o rotor em alta velocidade e em levitação pode tocar o estator acidentalmente resultando em destruição do motor. O problema da estabilização de giro de levitação por campos eletromagnéticos é que o circuito que o comanda, além de complexo, consome muita energia para estabilizar o rotor. Além disso, caso haja uma pane no circuito eletrônico que comanda a estabilização, o rotor levitante em alta velocidade poderá bater no estator causando destruição no motor caso haja vibração ou deslocamento do motor como um todo. After some time of use, they require maintenance of their bearings due to wear caused by friction between the rotor and the fixed motor parts. Moreover, they have limited speeds, also for the previous reason. Some models of commercial magnetic levitation motors or ultracentrifuges have their operation based on repulsion of equal pole magnets to suspend the rotor of fixed parts (stator) in the region of their bearings (Patent No. BR 0804447-3) or by the combination of bearings. of permanent magnets with coils that generate! magnetic fields produced by electric currents for the purpose of controlling and stabilizing rotor levitation (US Patent No. 3,512,852; US Patent No. 4,585,282; US Patent No. 3,888,553). The major problem with previous magnetic levitation motors is that rotor stabilization exclusively uses controlled lead wire coils - which use energy-consuming electronic circuits in rotor stabilization, neutralizing variations in rotor inclination during rotation. Oscillations in the rotor spinning axis (rotor pressure as with the toy spinning top by reducing its spinning speed) are due to the intrinsic non-homogeneity of the materials, causing rotor unbalance. Rotor oscillation during rotation can also occur when the engine is moved from one place to another or when surface leveling changes or when the surface is shaken or vibrated. If there is one of these factors above the high speed rotor and in levitation may accidentally touch the stator resulting in motor destruction. The problem with levitation spin stabilization by electromagnetic fields is that the circuit that drives it, besides being complex, consumes a lot of energy to stabilize the rotor. In addition, if there is a breakdown in the electronic circuit that drives stabilization, the high-speed levitator rotor can hit the stator causing motor destruction if the motor is vibrated or displaced as a whole.
Além disso, outro inconveniente é o tempo de resposta a perturbações de giro do rotor. Em grandes velocidades o circuito eletrônico não poderá responder a rápidas oscilações do eixo, podendo resultar em acidentes.  In addition, another drawback is the response time to rotor rotational disturbances. At high speeds the electronic circuit will not be able to respond to rapid shaft oscillations and could result in accidents.
O problema acima pode ser evitado pela combinação j de ímãs permanentes e materiais que naturalmente repelem ímãs e ab mesmo tempo é líquido e moldável, como o mercúrio e o gálio, que também atuam como condutor de eletricidade, garantindo estabilidade ao rotor levitante pela adição do empuxo entre a base do rotor metal líquido (mercúrio ou gálio). O empuxo é uma força que dá sustentação ao avião e estabiliza os navios sobre o mar. Neste caso, o rotor levitará pelas forças de repulsão magnética (pólos de mesmo tipo) e terá sua estabilidade garantida pela força de empuxo em sua base. Esta última contrabalanceará instantaneamente qualquer desequilíbrio sofrido pelo rotor durarte o seu giro pelo princípio de ação e reação, amortecendo-o NE a necessidade de gasto de energia como acontece com a estabilização eletrônica.  The above problem can be avoided by combining permanent magnets and materials that naturally repel magnets and at the same time is liquid and moldable, such as mercury and gallium, which also act as an electricity conductor, ensuring stability to the levitating rotor by the addition of thrust between the base of the liquid metal rotor (mercury or gallium). Thrust is a force that supports the plane and stabilizes the ships over the sea. In this case, the rotor will levitate by magnetic repulsion forces (poles of the same type) and have its stability guaranteed by the buoyant force at its base. The latter will instantly counterbalance any imbalance suffered by the rotor during its rotation by the principle of action and reaction, damping it NE the need for energy expenditure as with electronic stabilization.
Em termos simples, a presente invenção utiliza o mesmo princípio das centrífugas, com a diferença de que não gira em torno de um eixo mecânico, mas sim de um eixo magnético estabilizado pelo empuxo resultando em maior economia tanto em manutenção quanto em energia e reduzindo possíveis acidentes causados por instabilidades no girq do rotor levitante.  Simply put, the present invention uses the same principle as centrifuges, except that it does not revolve around a mechanical axis, but rather a thrust-stabilized magnetic axis resulting in greater savings in both maintenance and energy and reducing possible accidents caused by jitter rotor rotor instability.
Obietivos Objectives
O objetivo desta invenção é criar uma ultracentrífuga com baixo índice de manutenção (alta disponibilidade e mantenabilidade), que exija menos energia e complete seu trabalho com mais rapidez e eficiência. The aim of this invention is to create a low maintenance ultra-centrifuge (high availability and maintainability) that requires less energy and completes its work faster and more efficiently.
Solução A engenharia apresentada nesta invenção considera a solução da frequente manutenção dos mancais devido ao atrito citado e o consumo elevado de energia. Solution The engineering presented in this invention considers the solution of the frequent bearing maintenance due to the mentioned friction and the high energy consumption.
Esta invenção apresenta os metais líquidos à temperatura' ambiente (por exemplo: mercúrio ou gálio) como j solução das eventuais instabilidades presentes pelo rotor levitante durante o giro graças1 ao efeito de empuxo na região de interface entre a base. do rotor e o metal líquido. Ocorre uma levitação e uma estabilidade baseadas na repulsão entre imãs de NdFeB ou AINiCo e materiais líquidos altamente diamagnéticos como o mercúrio ou o gálio. This invention introduces the liquid metal temperature 'environment (eg, mercury or gallium) as possible instabilities j solution of the present levitating rotor for turning through the first thrust effect at the interface between the base region. of the rotor and the liquid metal. Levitation and stability based on repulsion occurs between NdFeB or AINiCo magnets and highly diamagnetic liquid materials such as mercury or gallium.
O consumo de energia e o atrito são amenizados pela prêsença do mercúrio e o gálio como condutor elétrico entre a parte móvel (rotor) e a parte fixa do motor, que também atua como amortecedor ou estabilizador de eventuais oscilações na inclinação do eixo de giro do rotor pelo efeito da ação e reação causado pelo empuxo entre a |base do rotor e ψ mercúrio ou gálio em fase líquida impedindo possíveis acidentes.  Energy consumption and friction are mitigated by the presence of mercury and gallium as the electrical conductor between the moving part (rotor) and the fixed part of the engine, which also acts as a damper or stabilizer for any oscillations in the inclination of the rotating shaft. rotor by the effect of the action and reaction caused by the thrust between the rotor base and liquid phase mercury or gallium preventing possible accidents.
Descrição Detalhada Detailed Description
A disponibilidade de imãs de grande força (NdFeB - Liga de Neodímio, Ferro e Boro; AINiCo - Liga de Alumínio, Níquel, Cobajto) torna possível a construção deste pequeno e económico aparelho de [flutuação de ar, com o grafite e o bismuto como imãs diamagnéticos. Materiais diamagnéticos repelem ambos os pólos magnéticos. A força da gravidade que age sobre ele é quase completamente anulada pela força ô\ atração de um imã que se encontra na parte inferior do motor. Duas lacas de grafite ou bismuto, uma acima e outra abaixo do imã NdFeB o AINiCo, força este último a manter uma posição de equilíbrio estável, já q e ambos os pólos do imã são repelidos pelas placas de grafite ou bismuto (diamagnetismo). The availability of high strength magnets (NdFeB - Neodymium, Iron and Boron Alloy; AINiCo - Aluminum Alloy, Nickel, Cobajto) makes it possible to build this small and economical [air flotation device], with graphite and bismuth as diamagnetic magnets. Diamagnetic materials repel both magnetic poles. The force of gravity acting on it is almost completely nullified by the force of attraction of a magnet at the bottom of the engine. Two graphite or bismuth lacquers, one above and one below the NdFeB or AINiCo magnet, forces the latter to maintain a stable equilibrium position, as both poles of the magnet are repelled by the graphite or bismuth plates (diamagnetism).
Nas figuras 1 e 2 os numerais se referem a:  In figures 1 and 2 the numerals refer to:
1. Imã cilíndrico inferior;  1. Lower cylindrical magnet;
2. Cilindros paralelos de grafite pirolítico ou bismuto;  2. Parallel cylinders of pyrolytic graphite or bismuth;
3. Rotor constituído por dois imãs cilíndricos de NbFeB ou AlN|£o;  3. rotor consisting of two cylindrical magnets of NbFeB or AlN |
4. Isolante elétrico inferior.  4. Bottom electrical insulator.
5. e 6. imãs cilíndricos paralelos de NbFeB (Njeodímio, Ferro e||Boro)5 and 6 of parallel cylindrical magnet NbFeB (N j eodímio, Iron and Boron ||)
7. Cilindro oco de aço (compartimento da ambstra); 7. Steel hollow cylinder (ambstra compartment);
8. Canal central dentro do imã superior;  8. Central channel within the upper magnet;
9. Corrente elétrica; 10. Mercúrio e o gálio; 9. electric current; 10. Mercury and gallium;
1 1. Recipiente metálico superior contendo mercúrio e o gálio;  1 1. Upper metallic container containing mercury and gallium;
12. Pólo positivo da bateria; 12. Battery positive pole;
3. Carcaça feita de cobre, alumínio, latão ou material plásticoy  3. Housing made of copper, aluminum, brass or plastic material
Na Figura 2 vê-se, respectivamente, a vista irferior (em corte) superior (com um rasgo no cilindro superior de grafite pirolítico oi| bismuto para melhor visualização do rotor). Figure 2 shows, respectively, the lower (sectional) top view (with a tear in the upper cylinder of hi-bismuth pyrolytic graphite for a better view of the rotor).
Figure imgf000006_0001
Figure imgf000006_0001

Claims

REIVINDICAÇÕES
1. ULTRACENTRÍFUGA DE LEVITAÇÃO MAGNÉTICA, ESTABILIZADA POR EMPUXO caracterizada por conter um motor homopolar de levitação magnética formado por um imã cilíndrico inferior (1), apresentando sobre $i dois cilindros paralelos de bismuto ou grafite (2), entre os qúaiis se situa, no vácuo, um rotor (3) constituído por um disco isolante elétrico inferior (4) e por, doi.; imãs cilíndricos paralelos (5 e 6) unidos entre si por meio de um cilín'dro ocoide aoo (7), cuja parte interna se comunica com o exterior através de jám cmnal cendal v rtical (8) dentro do imã superior e o recipiente metálico (1 1) superior preenchido com um metal líquido até atingir o pólo positivo (12) solidário à carcaça metálica (13). 1. PUSH-STABILIZED MAGNETIC DRIVING ULTRACENTRIFUG, characterized in that it contains a homopolar magnetic levitation motor formed by a lower cylindrical magnet (1), having over two parallel bismuth or graphite cylinders (2), between which they are located; in vacuum a rotor (3) consisting of a lower electrical insulating disc (4) and doi; parallel cylindrical magnets (5 and 6) joined together by means of a hollow cylindrical steel (7), the inner part of which communicates with the outside through a vertical cendal membrane (8) within the upper magnet and the metal container (11) Top filled with a liquid metal until it reaches the positive pole (12) integral with the metal housing (13).
2. ULTRACENTRÍFUGA DE LEVITAÇÃO MAGNÉTICA ESTABILIZADA POR EMPUXO conforme reivindicação 1 caracterizada jpelos dois imãs cilíndricos paralelos (5 e 6) serem de NbFeB (Neodímijo, Fèfro e Bcro) ou de AINiCo (Alumínio, Níquel e Cobalto). PUSH-STABILIZED MAGNETIC LEVITATION ULTRACENTRIFUG according to claim 1, characterized in that the two parallel cylindrical magnets (5 and 6) are either NbFeB (Neodymium, Ferro and Bcro) or AINiCo (Aluminum, Nickel and Cobalt).
3. ULTRACENTRÍFUGA DE LEVITAÇÃO MAGNÉTICA jiESTAB LIZADA POR EMPUXO conforme reivindicação 1 ou 2 caracterizada pelo |recipiente metálico (1 1) superior conter mercúrio. EMPLOYED MAGNETIC LEADING ULTRACENTRIFUG according to claim 1 or 2, characterized in that the upper metal container (11) contains mercury.
4. ULTRACENTRÍFUGA DE LEVITAÇÃO MAGNÉTICA jESTAB Lizk-DA POR EMPUXO conforme reivindicação 1 ou 2 càraçterizacfa pelo ji"eci iente metálico (1 1) superior conter gálio. 4. JESTAB EMPLOYED MAGNETIC LEADING ULTRACENTRIFUGE according to claim 1 or 2, wherein the upper metal (11) contains gallium.
PCT/BR2012/000202 2011-06-20 2012-06-20 Thrust-stabilised magnetic levitation ultracentrifuge WO2012174624A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1103100-0A BRPI1103100B1 (en) 2011-06-20 2011-06-20 PUSH-STABILIZED MAGNETIC LEVITATION ULTRACENTRIFUGAL
BRPI1103100-0 2011-06-20

Publications (2)

Publication Number Publication Date
WO2012174624A1 true WO2012174624A1 (en) 2012-12-27
WO2012174624A8 WO2012174624A8 (en) 2013-02-28

Family

ID=47421934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000202 WO2012174624A1 (en) 2011-06-20 2012-06-20 Thrust-stabilised magnetic levitation ultracentrifuge

Country Status (2)

Country Link
BR (1) BRPI1103100B1 (en)
WO (1) WO2012174624A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110013919A (en) * 2019-03-11 2019-07-16 中国水利水电科学研究院 A kind of vacuum line magnetic suspension ground centrifuge
CN114618692A (en) * 2022-03-11 2022-06-14 海门海立电子科技有限公司 Magnetic suspension centrifuge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512852A (en) * 1969-03-07 1970-05-19 Atomic Energy Commission Stabilized levitation of magnetic elements
US4585282A (en) * 1983-07-19 1986-04-29 Bosley Robert W Magnetic levitation system
BRPI0804447A2 (en) * 2008-07-18 2010-07-13 Julio Cesar Batista permanent magnet magnetic bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512852A (en) * 1969-03-07 1970-05-19 Atomic Energy Commission Stabilized levitation of magnetic elements
US4585282A (en) * 1983-07-19 1986-04-29 Bosley Robert W Magnetic levitation system
BRPI0804447A2 (en) * 2008-07-18 2010-07-13 Julio Cesar Batista permanent magnet magnetic bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110013919A (en) * 2019-03-11 2019-07-16 中国水利水电科学研究院 A kind of vacuum line magnetic suspension ground centrifuge
CN110013919B (en) * 2019-03-11 2023-10-17 中国水利水电科学研究院 Vacuum pipeline magnetic suspension rock-soil centrifuge
CN114618692A (en) * 2022-03-11 2022-06-14 海门海立电子科技有限公司 Magnetic suspension centrifuge

Also Published As

Publication number Publication date
BRPI1103100B1 (en) 2022-02-15
WO2012174624A8 (en) 2013-02-28
BRPI1103100A2 (en) 2013-07-23

Similar Documents

Publication Publication Date Title
CN107222131B (en) A kind of rotor gravity unloading type magnetic bearing compound machine
US4040681A (en) Magnetically levitated object
US7876010B2 (en) Passive magnetic bearing configurations
CN103427538B (en) Flywheel battery magnetic suspension supporting arrangement
US2566221A (en) Electromagnetic levitation apparatus
NO132604B (en)
US20160036310A1 (en) Magnetic Levitation Electrical Generator
KR20080040006A (en) Magnetically levitated transport system
WO2012174624A1 (en) Thrust-stabilised magnetic levitation ultracentrifuge
WO2020160698A1 (en) Magnetic kinetic energy inertial power generation device
US20070090706A1 (en) Frictionless suspension structure
TW201310871A (en) Magnetic levitation type energy generating device
WO2023284826A1 (en) Double-magnetomotive multifunctional suspension type motor-generator
KR100445224B1 (en) A Superconductor Flywheel Energy Storage System using a Hybrid Bearings
CN203416096U (en) Magnetic-suspension supporting device for flywheel battery
CN104478035B (en) A kind of magnetic suspension hydraulic centrifugal device
US20210110955A1 (en) Magnetic levitation electrical generator
CN113595446A (en) Magnetic boosting suspension type motor generator high-speed rotor
CN209545468U (en) Crossed Circle rotor spherical tanks aircraft
CN203617834U (en) Low-power magnetic suspension flywheel energy storage apparatus
US20180375418A1 (en) Magnetic levitation electrical generator
CN216216592U (en) Controllable rotatory multi-end suspending device
CN217081123U (en) Permanent magnetic suspension bearing
CN216086443U (en) High-performance brushless motor
CN216971022U (en) Permanent magnet damping carrier roller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802477

Country of ref document: EP

Kind code of ref document: A1